
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A COMPUTER SCIENTIST’S EVALUATION OF
PUBLICALLY AVAILABLE HARDWARE TROJAN

BENCHMARKS

by

Scott M. Slayback

September 2015

Thesis Advisor: Theodore Huffmire
Second Reader: Mark Gondree

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE
A COMPUTER SCIENTIST’S EVALUATION OF PUBLICALLY AVAILABLE
HARDWARE TROJAN BENCHMARKS

5. FUNDING NUMBERS

6. AUTHOR(S) Slayback, Scott M.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Dr. Hassan Salmani and Dr. Mohammed Tehranipoor have developed a collection of publically available hardware
Trojans, meant to be used as common benchmarks for the analysis of detection and mitigation techniques. In this
thesis, we evaluate a selection of these Trojans from the perspective of a computer scientist with limited electrical
engineering background. Note that this thesis is also intended to serve as a supplement to the existing documentation,
since it provides a thorough description of each benchmark. This description presents a detailed analysis of each
Trojan’s activation conditions and post-activation activity. In addition, we describe the difficulties we encountered in
synthesizing and simulating each Trojan, and, where possible, provide solutions to those difficulties.

14. SUBJECT TERMS
building security in, design for trust, hardware intellectual property cores, Hardware Oriented Security
and Trust, hardware synthesis, hardware Trojans, HDL, inherently trustworthy systems, malicious
hardware, reconfigurable hardware, secure interfaces, security education, trustworthy system
development, Vivado

15. NUMBER OF
PAGES

165
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A COMPUTER SCIENTIST’S EVALUATION OF PUBLICALLY AVAILABLE
HARDWARE TROJAN BENCHMARKS

Scott M. Slayback
Civilian, Scholarship for Service
B.S., Gonzaga University, 2009

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Author: Scott M. Slayback

Approved by: Theodore Huffmire
Thesis Advisor

Mark Gondree
Second Reader

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Dr. Hassan Salmani and Dr. Mohammed Tehranipoor have developed a collection of

publically available hardware Trojans, meant to be used as common benchmarks for the

analysis of detection and mitigation techniques. In this thesis, we evaluate a selection of

these Trojans from the perspective of a computer scientist with limited electrical

engineering background. Note that this thesis is also intended to serve as a supplement to

the existing documentation, since it provides a thorough description of each benchmark.

This description presents a detailed analysis of each Trojan’s activation conditions and

post-activation activity. In addition, we describe the difficulties we encountered in

synthesizing and simulating each Trojan, and, where possible, provide solutions to those

difficulties.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND MOTIVATION ..1

II. RELATED WORK ..7

III. METHODOLOGY ..11
A. GETTING THE BENCHMARKS ...11
B. SOURCE CODE ANALYSIS ...12
C. SETTING UP THE ENVIRONMENT ..13
D. SYNTHESIZING AND VIEWING A CIRCUIT14
E. VIEWING SCHEMATICS ...16
F. SIMULATION ...17

IV. BENCHMARKS ..21
A. TROJANS IN AES_128 ...21
B. TROJANS IN BASICRSA ..57
C. TROJANS INSERTED IN THE REGISTER TRANSFER LEVEL

(RTL) OF RS232 ..66
D. TROJANS INSERTED IN THE GATE LEVEL OF RS23286

V. CONCLUSION ..129
A. SUMMARY ..129
B. FUTURE WORK AND LESSONS LEARNED ..131
C. ELEMENTS OF FUTURE BENCHMARKS ...132

APPENDIX. RESOURCES ..135

LIST OF REFERENCES ..137

INITIAL DISTRIBUTION LIST ...139

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Selection of a resource from the Trust Hub site. The button labeled
“Download (ZIP)” will directly download an archive file containing all of
the resources provided by Salmani et al. for the selected Trojan. Note that
some Trojans are stored as RAR archives. The “Learn More” link will
lead to a dedicated page for the selected Trojan. Note that the b19 Trojans
are stored as multi-part archives, and it is necessary to visit the dedicated
page and download parts from the “supporting files” section.12

Figure 2. Layout of the Vivado Main Screen. Synthesis, Simulation and schematics
are opened from the flow navigator on the left. The window on the far
right shows the results of these commands. In this case, the window shows
a waveform diagram resulting from simulation. Note that the results
window can be popped out and viewed separately from Vivado’s main
window. The central windows allow some customization of the results
window display. Errors and other messages are reported in the bottom
window. ..15

Figure 3. Components commonly displayed in a Vivado Schematic. At left is an
example of a custom module. This module is defined as
expand_key_128 in the Verilog file aes_128.v. The specific
instance is named a1. Note that clicking the + sign in the top left corner
will produce an expanded view of this module, including all internal
components. The middle item is a sample register, used to store values that
are relevant to the circuit across multiple clock cycles. The stacking effect
is a visual cue provided to represent a bundled multi-bit register. It is
possible to unbundle this collection and produce a schematic with a
separate register for each bit. The rightmost figure demonstrates Vivado’s
representation of primitive gates. Note that this XOR gate also handles
multiple bits, but that no visual cue is given. ...16

Figure 4. Part of the waveform diagram generated by Vivado from
test_aes_128.v and the Trojan-free version of the AES circuit. Note
that Vivado does not support changing the font size or the background
color of the waveform area. Both features have been requested on the
Xilinx support forums. Also note that the 1-bit input clk is represented by
graphical lows and highs, but multi-bit inputs are represented by
numerical values. For clarity, we have edited the colors of other
waveforms in this document using external imaging software. This one
has been left to demonstrate Vivado’s default settings.18

Figure 5. This schematic--generated from AES-T700--represents the structure of a
typical AES Trojan from the collection. Note the modules for the trigger
(Trojan_Trigger) and the Trojan functionality (TSC). These
inclusions share common inputs with the Trojan-free aes_128 module,
but they do not alter that module’s internal operation.22

 x

Figure 6. The input region of the Trojan-free AES implementation, complete with a
world view of the circuit for context. The primary inputs to this circuit are
state and key. Note that state and key are immediately XORed
before the first round of the encryption process begins.23

Figure 7. The output region of the Trojan-free AES circuit. The box labeled rf
represents an instantiation of the custom module final_round, which
is defined in the Verilog file round.v. This module represents the tenth
round of the AES encryption process. This round is similar to previous
rounds. It accepts the last round key and the last intermediate state and
produces the circuit’s final output..24

Figure 8. The internal functionality of the Trojan-free AES circuit. The
expand_key_128 modules generate intermediate round keys. Note that
out_1 and out_2 hold the same value, so each round key is derived
directly from the previous key. ..25

Figure 9. The structure of the benchmark AES-T100. Note the absence of the
Trojan_Trigger module that was shown in the typical Trojan layout.
No module is necessary to represent an always-on trigger.26

Figure 10. Detail view of the TSC module of AES-T700. The output load is
composed of 8 bits, each repeated 8 times. These bits are the result of
XOR operations between key[7:0] and lfsr[7:0]. To simplify this
view, we have hidden the XOR gates load0_i__0 to load0_i__5.
These XOR gates function in parallel to the two shown, with each gate
operating on a different bit pairing. ...27

Figure 11. One shift operation of the lfsr module. The value 0x99999 is the
initial value of the AES-T700 LFSR register. The new high-order bit is
calculated from an XOR of bits from positions 3, 7, 11, and 15. After this
calculation, bits are shifted to the right, and the XOR result is used to fill
in the missing bit. ...28

Figure 12. Detail view of the Trojan in AES-T200. Note the addition of the input
data to the lfsr_counter module. The value of data is determined
by state, one of the inputs to the overall circuit. ...30

Figure 13. AES-T300 modifies the AES_128 module by adding eight additional
outputs. These outputs carry eight of the round keys used during the AES
encryption process. Note that the last two round keys are not leaked, but
we assume that the attacker either knows or has the ability to discover the
mechanism used to generate the key. ...32

Figure 14. Detail view of a shift register from AES-T300. Note that the world view
shown here is a partial schematic, depicting only 1 of the 8 registers. On a
reset signal, the register is fed with an initial value of 101010102.
Afterwards, register’s value remains unchanged unless the input G is 12. G
is the result of AND and XOR operations performed using state and the
first round key. ...33

Figure 15. A waveform diagram displaying the actions of the shift registers in AES-
T300. The top waveform displays the actions of the system clock. One

 xi

step of rotation for a register means a transition from a value of 0xAA to
0x55 or back. In the view shown, each round key has a different value, so
the registers are rotating at different times. For example, SHReg6 rotates
every time the clock changes because it satisfies the AND and XOR test
for the entire period shown. ...34

Figure 16. The full view of AES-T400. Note that this benchmark follows the typical
structure displayed earlier. The functionality module is named
AM_Transmission, but it accepts inputs from the wires key and
Tj_trig. Like the TSC module present in other benchmarks,
AM_Transmission operates without disrupting the core functionality
of the aes_128 module..35

Figure 17. A detail view of the AES-T400 trigger. Detected_i represents the
actual comparison of the incoming value state against the predefined value
of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. Note that due to
features of AES-T400’s functionality, additional gates have been added
to set Tj_Trig to 02 within two clock cycles of activation.36

Figure 18. The shift register of AES-T400. When Tj_Trig = 12, this register is
loaded with key. Every time that the register’s C input is set to 12, the
register input is updated with the output from SHIFTReg0_i. This
output is the register’s previous value with every bit shifted to the right.39

Figure 19. The apparent structure of AES-T500. Note that while no trigger module
has been explicitly defined, the TSC module contains logic dedicated to
the purpose of triggering the Trojan after specific inputs have been
observed. Also note that Vivado has not elaborated on the contents of the
module TSC. Vivado takes this approach to modules that do not have a
specific output. To work around this, we added an output to the TSC
module, directly using an existing register to provide the output’s value.
With this change, we were able to generate detail views of the internal
workings of the TSC module. ..40

Figure 20. A detail view of the first two comparisons performed by the trigger in
AES-T500. Vivado represents the first comparison as the RTL_ROM
module State0_i. This module is slightly overshadowed by the long
binary input to State1_i. Note the result of this comparison is stored in
the RTL_LATCH State0_reg. The second comparison is depicted as a
direct comparison of state to a given value using an RTL_EQ module.42

Figure 21. Detail view of the Trojan functionality of AES-T500.
DynamicPower_reg is initialized with an alternating pattern of
1010…2. The wire feeding into G is Tj_trig. When this wire has a
value of 12, the register will rotate on every clock cycle. The bus from Q
to D represents the altered value being fed back into the register. Note that
this view cuts off the extra output we added to force Vivado to generate
this image. ..43

 xii

Figure 22. Leakage from the AES-T600 Trojan. Note that the wires INV1_out
through INV11_out are defined as wires, but not circuit outputs in the
Trust-Hub code. According to the documentation for this benchmark, the
leaked bit can be recovered by measuring the leakage current. To produce
this schematic, we extended the wires into module outputs. Without the
change, Vivado would refuse to expand the TSC module.44

Figure 23. Detail view of the Trojan_Trigger module of AES-T700. Activation
is represented by a 12 signal on the output Tj_Trig. This signal begins
when the correct input state is observed, as compared to the value in
Tj_Trig_i. A 12 signal on rst will deactivate the Trojan by acting as
the “clear” input of the RTL_LATCH. ...46

Figure 24. Detail view of the TSC module of AES-T700. Note the presence of the
Tj_Trig input. This input only applies to lfsr, meaning that only the
operation of that module is affected by the activation of the Trojan.47

Figure 25. The counter in AES-T900. Vivado is not representing this counter using
a register module. Instead, the value of the counter is represented by the
loop passing between Counter0_i and Counter_i. Note that the
select bit of Counter_i is provided by rst. ...49

Figure 26. Detail view of the TSC module in AES-T1000. Note that this module
combines features from AES-T200 and AES-T700. The LFSR register is
initially fed from data, which is state in the overall circuit. Tj_Trig is
used to control only the rotation of the LFSR. ...50

Figure 27. Inputs of the basicRSA circuit. The key inputs to be aware of are
inExp and indata. Depending on the exact usage case of the circuit, at
least one of these values is secret information not meant to be shared with
the outside world. As a result, the adversary would attack confidentiality
by causing the circuit to leak one or the other of these values.59

Figure 28. The outputs from the basicRSA circuit. Output cypher carries the
result of the RSA operation. Due to the structure of the algorithm, this can
either be an encrypted ciphertext or a decrypted plaintext. Output ready
notifies surrounding architecture that an RSA operation has been
completed. ..60

Figure 29. The complete malicious inclusion of basicRSA-T100. Comparator
eqOp_i compares the input indata with 0x44444444. The result of
this operation is used as the select bit for the mux gate cypher_i. The
input I1 of cypher_i is the bus product, which carries the result of
iterative modmult operations. When the RSA algorithm has finished,
product carries the correct final result. Input I0 of cypher_i is
linked directly to circuit inExp. The output of cypher_i feeds directly
to output cypher. ...61

Figure 30. The complete Trojan in basicRSA-T200. Like basicRSA-T100, this
benchmark triggers on a simple comparison operation.
InputExponent_reg is added as an intermediate storage of inExp

 xiii

prior to the use of that input for the main RSA operation. If the Trojan is
triggered, this intermediate storage location allows the value of inExp to
be substituted with 0x00000001. The basicRSA circuit will then
conduct encryption or decryption operations using the substitute value.62

Figure 31. The trigger mechanism in basicRSA-T300. The core counter is
composed of register TrojanCounter_reg and adder plusOp_i.
Note that Q value of this register loops back through the adder, which adds
1 to the value on every loop. Also note that the register will only update its
value if the Q value of TjEnable_reg is 12. ...64

Figure 32. Circuit diagram of the functionality of basicRSA-T400. The
comparator ItOp_i is the last component of the counter-based trigger
mechanism. The result of this comparison will be used to select between
using inExp to perform the RSA operation, or replacing it with the
adversary’s chosen exponent: 0x009ADD0A. ..66

Figure 33. High level schematic of the Trojan-free version of RS232. Note that the
modules iRECEIVER and iXMIT operate in near isolation. They share
the same clock and reset signals, but otherwise, each has its own inputs
and outputs. Module iXMIT converts the byte xmit_dataH into a series
of 1-bit signals transmitted through uart_XMIT_dataH. Module
iRECEIVER does the opposite, accepting a series of bits from
uart_REC_dataH and converting them to the byte rec_dataH.69

Figure 34. A diagram of the state machine in the iRECEIVER module of the RS232
circuit. Each time the machine leaves the r_SAMPLE state, a single bit is
read from uart_dataH and added to the output register. State r_WAIT
and register bitCellCntrH are used to control timing between each
read operation. States r_START and r_CENTER confirm the initial 02 bit
that signals the start of the message. The transition to r_STOP occurs
after 8 bits have been read and another 15 clock cycles have passed. This
extra time allows the circuit to account for the final bit of the serial
message. ...70

Figure 35. Partial schematic showing the trigger registers of RS232-T100. These
registers, in conjunction with the current value of rec_dataH, form the
19-bit trigger value of this Trojan. AND gates are used to funnel these
inputs into a single result wire labelled ena. The world view above
highlights the registers, showing how Vivado places them in the
schematic..73

Figure 36. Schematic of the gates controlling the functionality of RS232-T100. The
AND gate ena_i is the last gate in the trigger comparison process. The
result of this operation is used as the select bit for two mux gates. One gate
determines the output rec_readyH, and the other determines the output
rec_dataH. Note that the result of the mux gate rec_dataH_i is fed back
to another area of the receiver sub-circuit. This allows it to be used as part
of the triggering conditional...74

 xiv

Figure 37. The Trojan in RS232-T200. The three gates shown make up a 10-bit
counter, which increments every cycle while the Trojan is active. Note
that this counter is not used as an input to any other part of the circuit.
Also note that output count_l was artificially added to prevent Vivado’s
automatic optimization from excising both the Trojan and the trigger.76

Figure 38. Partial Schematic of the trigger mechanism in RS232-T300. Register
count_in_reg, the adder, and the mux gate count_in_l form a
counter that is designed to count from 0 to 0xFFFFFFFF. When the
counter reaches the final value, the ROM unit DataSend_ena_reg will
send a 12 signal, representing activation. ..77

Figure 39. The trigger mechanism of RS232-T400. The RTL_EQ primitive is
responsible for comparing rec_dataH against xmit_dataH. The
result of this operation is fed into ROM cntr_i. If the values are equal,
the value of register cntr_reg will be set to 12. This wire is used as a
select bit for a mux gate, which controls the final rec_dataH output
from the circuit. ..79

Figure 40. The Trojan functionality of RS232-T400. The key feature of this Trojan is
the mux gate rec_dataH_temp_i, which is used to determine whether
the final circuit output should be the correct value of rec_dataH, as
determined by the iRECEIVER module, or a reordered combination of
bits. Note that both iRECEIVER and the overall circuit have an output
labelled rec_dataH. In every other circuit in this group, the distinction
is unnecessary because the module output is fed to the overall circuit
output without modification. ..80

Figure 41. The RTL layout of the state machine that controls the trigger of RS232-
T600. Each state_DataSend_i__# ROM module represents a
potential state. The output of that module is dependent on the current
value of xmit_dataH. The mux gate state_DataSend_i__4 will
only select one of these values to pass through to
state_DataSend_reg. This register actually contains the select bits
responsible for that choice; the current state is responsible for determining
which values can potentially be passed to the register.82

Figure 42. A partial schematic representing a typical layout for the inclusion in the
gate-level RS232 circuits. This particular schematic was generated from
RS232-T1000. Note that while each of the structures shown here is
depicted as a custom module, the labels AND2X1, OR4X1, etc…, reveal
them to be implementations of common logic gates. This is a result of
uart.v using gates defined in a non-standard Vivado library.89

Figure 43. Partial schematic of the inputs to U296. Remember that we have
previously established that the output and the inputs of U296 must each
have a 02 value in order to trigger the Trojan in this circuit. The NAND
truth table shows the only combination of inputs that will yield 02 as an
output. ..91

 xv

Figure 44. Partial schematic of the inputs to U294. Note that the value of
iXMIT_bitCell_cntrH_reg_2_(QN) is being reused. Many of the
circuits reuse source values and other gates in the trigger mechanism. This
can lead to contradictions like the one discussed here..92

Figure 45. Schematic of the functional portion of RS232-T1000. Note that U303,
U304 and U305 are all AND gates. All three of these gates share the
common input iCTRL. Module U303 directly controls the circuit output
xmit_doneH, and U305 is only separated from uart_XMIT_dataH
by a single intermediate module. The internal functionality of this OR-
AND-invert (OAI) module is shown in the insert above U3. Module U304
does not affect the logical operation of the circuit. ..94

Figure 46. Partial schematic of U296 and inputs relevant to this discussion. U293
and U294 are both NAND gates with required outputs of 02. As a result,
all of their inputs must be 12. This includes the QN outputs from
iXMIT_state. ..95

Figure 47. Partial schematic showing a trace from U88. Of particular interest is the
module U91. In order to add clarity to later discussions regarding this
module, the internal structure is shown here. The truth tables shown here
indicate the possible input combinations at each stage of the diagram. Note
that only one of the inputs to the AND gate must be 02, and that the other
can be 12 or 02 without affecting the final output. ..96

Figure 48. Partial schematic of U292 and its inputs. The AOI truth table describes
the possible inputs to this module. Additional tables are used to illustrate
the required values at each intermediate stage of the module.97

Figure 49. As in RS232-T1000, the Trojan functionality is determined by iCTRL’s
influence over an AND gate. In this case, there is only the single AND
gate U305, which influences, but does not directly control the
transmission output uart_XMIT_dataH. ..98

Figure 50. Partial schematic showing the trigger of RS232-T1200. For space
considerations, the inputs of the NAND gates have been omitted, but all 6
are 4-input gates. Note that, to produce an output of iCTRL = 02, the
outputs of each of these NAND gates must be 02, as indicated by the OR
truth table. ..100

Figure 51. Schematic for the trace of inputs from NAND gate U292. This gate
directly accepts the Q outputs of iXMIT_state_reg_0_,
iXMIT_state_reg_1_, and iXMIT_state_reg_2_. We will
accept these values as source values. ...101

Figure 52. Schematic of the source values leading to U294. While no flip-flops
directly provide inputs to U294, the AND gate U90 still provides a clear
value for iXMIT_bitCell_cntrH_reg_0_. Using this value and the
properties of U211, U215, U217, and U218, we can determine the
requirements for iXMIT_bitCell_cntrH_reg_1_ and
iXMIT_bitCell_cntrH_reg_3_. ..102

 xvi

Figure 53. Schematic of the source values leading to U293. The flip-flops shown
here correspond to the RTL register bitCountH. Note that from this
schematic, we can determine a relationship between
iXMIT_bitCountH_reg_1_(Q) and
iXMIT_bitCountH_reg_0_(Q), but we cannot assign precise values
to them. ..104

Figure 54. Schematic of the source values leading to U295. Note that the A input of
U295 is provided by U216(Y), which we discussed in our examination of
U294. This reuse of source gates is common among the gate-level RS232
circuits. ...106

Figure 55. Partial Schematic of the source values for U91. Note that the values for
every flip-flop shown here have already been determined. We will use this
diagram for verification purposes. ...108

Figure 56. Partial schematic of the inputs of U87. As with U91, we will use known
values to demonstrate that RS232-T1200 does not contain a
contradiction. ...109

Figure 57. Schematic of the source values leading to U297. Note that U297 can be
used to directly determine the iRECEVER_state values, while
iRECEIVER_bitCell_cntrH requires several stages of analysis.
However, there are no ambiguous input combinations in this set. Each
gate’s required output allows for only one possible combination of inputs. .110

Figure 58. Schematic of the source values leading to U300. Note that all of these
values are Q outputs from inserted flip-flop modules.112

Figure 59. Schematic of the source values leading to iDataSend_reg_1. Note
that SN is set to the constant 12, meaning that input combinations in the
bottom most rows of the SDFFSR truth table will never be observed.113

Figure 60. The Trojan functionality of RS232-T1200. Note that the value of gate
U303 is used as the output xmit_doneH. This allows the iCTRL wire to
force that output to 02 after the Trojan is triggered.116

Figure 61. Partial schematic of the trigger for RS232-T1300. This Trojan has a
slightly different structure than that used in other benchmarks in this
group. The OR gate U301 has been removed from the structure, and
NAND U297 is directly connected to U302. ..118

Figure 62. The functionality of RS232-T1300. Note that U304 controls the
rec_readyH output, and U303 controls xmit_doneH. Since both are
AND gates, the iCTRL wire can be used to force these outputs to 02..........119

Figure 63. Partial schematic of the trigger mechanism of RS232-T1400. Only the
gates that display the contradictory requirements are shown here. The Y
output of U302 is iCTRL, which represents the activation state of the
Trojan. For the Trojan to be active, this output must have a value of 02.
Truth tables have been provided for the relevant gates. The highlighted
entry in each truth table represents the output required to activate the
Trojan. ..120

 xvii

Figure 64. Partial schematic of the trigger mechanism for the RS232-T1700
benchmark. This schematic illustrates the new ena input wire that was
added as part of this inclusion. In this benchmark, ena is used as an input
to each of the NAND gates in the inclusion. This replaces some of the
intermediate inputs that were used to control the Trojan in other
benchmarks in this set. ...124

Figure 65. The complete inclusion in RS232-T1800. Note that the output of the
final INV gate is not used anywhere else in the circuit. The Trojan is
almost completely isolated from the rest of the circuit, sharing only the
sys_clk input..125

Figure 66. Schematic showing the inclusion in RS232-T1900. Note that U302 has
been replaced by U296. In addition, the circuit is dependent on 12 values
on ena and the iDatasend flip-flops. ...126

Figure 67. A portion of the Trojan-free AES circuit diagram. We will use this to
identify specific internal wires and busses that can be used as inputs to a
Trojan_trigger module or outputs form a TSC module, similar to
those used in earlier AES benchmarks...133

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

LIST OF TABLES

Table 1. Table of register values for RS232-T1200. This table represents grouped
flip-flop Q values required to activate the Trojan in RS232-T1200. We
have presented the flip-flops in this fashion so that we can also present the
value of the RTL register, which is useful in explaining the purpose of
each flip-flop group..115

Table 2. Table of source values for the RS232-T1300 trigger mechanism. The
flip-flops have been grouped into logical registers, to demonstrate the full
value of each group. Note that iXMIT_xmit_ShiftRegH_reg is
actually an 8-bit register, but that bits 0 through 4 have no impact of the
Trojan trigger. Also note that the outputs
iXMIT_bitCount_reg_1_(Q) and
iXMIT_bitCount_reg_0_(Q) must have opposite values, but that
the order of those values does not alter the result of the Trojan trigger.117

Table 3. Table of triggering inputs for RS232-T1600. Note that inclusion in this
circuit does not link directly to the XMIT_state_reg flip-flops. These
source values are now fed to the Trojan by way of XOR gates, an approach
that adds flexibility to their required values. ...122

Table 4. Table of flip-flop Q values required to trigger the Trojan in RS232-
T1700. Note that this table does not include
iRECEIVER_bitCell_cntrH. The flip-flops for that register are not
found in the structure of RS232-T1700’s trigger.123

Table 5. Table of flip-flop Q values required to trigger the Trojan in RS232-
T1900. Note that the iRECEIVER conditions have all been removed
from this inclusion. ..126

Table 6. Triggering inputs for RS232-T2000. Note that the receiver-side logic
has been completely removed from this inclusion’s trigger. Instead, the B
input of U302 is provided by the flip-flop iDatasend_reg127

Table 7. Table listing the source values required to set iDatasend(Q) = 02.
Wires sys_clk, ena, sys_rst, and test_se are circuit inputs. The
other values identified here are flip-flop outputs. ..128

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 xxi

LIST OF ACRONYMS AND ABBREVIATIONS

3PIP 3rd party intellectual property

AOI AND-OR-invert

ASIC application-specific integrated circuit

COTS commercial off-the-shelf

DEF design exchange file

DSP digital signal processor

FPGA field-programmable gate array

HDL hardware descriptor language

HOST hardware oriented security and trust

IC integrated circuit

IMP Illinois malicious processor

LFSR linear feedback shift register

OAI OR-AND-invert

RTL register-transfer level

XOR exclusive or

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

 xxiii

ACKNOWLEDGMENTS

I would like to thank Drs. Salmani and Tehranipoor for assembling the

benchmark collection discussed in this thesis. This seems to be the first serious attempt at

a publically available benchmark collection for hardware Trojans, and I believe that it

will be very helpful to future researchers. Dr. Salmani also took time to answer questions

that I had about the features of many benchmarks discussed in this thesis.

I would also like to thank Dr. Ryan Kastner, Mr. Janarbek Matai, and Dr. Wei

(“Vinnie”) Hu of University of California, San Diego, for their technical assistance. In

particular, these researchers made themselves available to answer questions about

advanced features of the Vivado software. Their assistance made it possible to synthesize

the benchmarks and subject them to simulation.

I would like to thank Mark Gondree for serving as my second reader and helping

me to clarify the contribution of this thesis.

Finally, I would like to thank my advisor, Professor Ted Huffmire, who helped

me to plan and organize this thesis and assisted me by providing lab space for me to

conduct this research. Without Professor Huffmire’s aid, this thesis’ contribution to

HOST research would be substantially reduced.

 xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION AND MOTIVATION

The Department of Defense (DOD) is becoming increasingly dependent on

untrusted integrated circuits (ICs). The Pentagon annually spends $3.5 billion on ICs

destined for use in military equipment [1]. A single military plane may be constructed

with over 1000 circuits [2]. If one of these circuits should fail during flight, the plane

might lose control or communications from the aircraft may be broadcast without any

scrambling or encryption. Such a failure could be the result of a deliberate hardware

modification known as a hardware Trojan.

A hardware Trojan, also referred to as a malicious inclusion, is a deliberate

alteration to a piece of electronic hardware that causes that device, under certain

conditions, to display undocumented functionality. Hardware Trojans may be added to

varying items of hardware, including application-specific integrated circuits (ASICs),

digital signal processors (DSPs), microprocessors, and other commercial off-the-shelf

(COTS) products [3]. These alterations may also be applied to field-programmable gate

arrays (FPGAs), either as changes to the underlying device or as subverted bitstreams

meant to change the hardware configuration [3].

The Trojan functionality, referred to as the “payload,” may disable some part of

the circuit, transmit information to the adversary, or overwrite output values from the

circuit [4]. The activation condition, referred to as the “trigger,” may be a specific

combination of inputs, multiple input combinations in a predefined order, or the passage

of a set amount of time [5]. A trigger can also be constructed from more than one of these

elements. For example, a circuit may ignore the triggering combination until after a

certain number of operations have been completed [5]. Note that it is also possible to

create a Trojan with an “always-on” trigger. In these designs, the functionality operates at

all times. Several of the benchmarks discussed in this thesis use this model.

A malicious insider can insert a hardware Trojan at any stage of the design

process, using a variety of techniques [4]. A Trojan to reduce a circuit’s reliability can be

implemented simply by changing the geometry of a single wire [3]. More complex

 2

Trojans require several thousand additional transistors, but those transistors have been

added to a circuit that contains billions of other transistors [2].

According to [6], the adversary can also compromise circuits by altering the

components of the underlying design. Today, many chips are designed at least partly

overseas, either because the company has purchased 3PIP cores, or because the designer

has acquired at least some of the HDL in their design from searching online forums [6],

[2]. A Trojan in any one of these cores can disrupt the operation of the entire device [6].

Testing for a hardware Trojan is difficult. As we have already discussed, a well-

designed Trojan uses only a small fraction of the physical structure of the overall circuit.

In a physical examination, a tester would need to view billions of transistors in the

circuit, and find as few as 1000 that had been added. Note that a thorough physical

examination is destructive to the part under examination, because each layer of transistors

must be ground away to reveal the layer underneath [2]. Further, the examination is of

limited utility. Manufacturers use this technique on a single chip from a batch of

thousands, based on the assumption that the manufacturing process will produce identical

parts. However, Adee points out that a malicious insider can replace the circuit mask for

a single silicon wafer, resulting in a Trojan that has been inserted into that chip alone.

Even if the tested part is proven to be free of Trojan functionality, the status of the other

parts in the bath remains unknown [2].

As Adee explains in [2], discovering a hardware Trojan with functional testing is

also difficult. To find a discrepancy between a circuit input and the expected output, it is

necessary to actually trigger Trojan functionality. For a simple combinatorial Trojan, a

tester would need to apply each possible input combination in turn until either the Trojan

is triggered or every possible input has been tried. For a Trojan with a 512-bit input, there

are more than 13.4*10153 combinations.

Hardware Trojans have become a particular risk due to the rise of global

manufacturing. Many IC designers, including Sony and LSI Corp, have stopped

producing their own ICs. Completed designs are sent to dedicated foundries, owned by

 3

manufacturing companies. Very few of these foundries are located in the United States,

and a growing number are located in China [2].

Acknowledging the potential dangers from hardware Trojans, the DOD has

established a “Trusted Foundry” program, which certifies that certain IC production

facilities are trusted to not alter the functionality of circuits they manufacture [1]. As of

2009, only 2% of ICs purchased by the Pentagon came from foundries certified under this

program [7].

In this thesis, we examine an existing, public, collection of hardware Trojans. Dr.

Hassan Salmani and Dr. Mohammed Tehranipoor have created 92 hardware Trojans and

posted them as benchmarks at the website trust-hub.org [8]. To the best of our

knowledge, this is the only publically available set of hardware Trojan benchmarks.

Other researchers have implemented their own hardware Trojans and used them in

experiments, but we have been unable to find any means to access the HDL or bitstreams

for any of these circuits. The Trust-hub benchmarks are the only hardware Trojan circuits

that are available to be implemented by any researcher. This availability allows the Trust-

hub benchmarks to serve as a common standard for measuring the effectiveness of

hardware Trojan detection and mitigation techniques.

We conduct a thorough examination of 46 of the benchmarks from the Trust-hub

collection. The purpose of this study is to determine the challenges that must be

overcome in attempting to synthesize these benchmarks and conduct simulated

experiments using them. To assist future researchers in conducting studies using these

benchmarks, we have provided the following supplements to the existing documentation

and resources:

• We document the procedure for establishing a simulation environment

using the Xilinx Vivado design suite. We also document the procedure for

creating a Vivado project from one of the provided benchmarks. To

complete our general discussion of Vivado, we describe the process of

importing a test bench and conducting simulation of circuit activity. Note

that some benchmarks discussed here will either fail to synthesize as

 4

written, or produce simulation results that do not agree with the provided

documentation. To assist future researchers, we document changes we

have made to the provided HDL in order to complete synthesis and

simulation. We have also written and provided two library files, which are

necessary in order to synthesize the gate-level RS232 benchmarks. These

libraries are included in a software archive provided in conjunction with

this thesis. This archive is discussed in more detail in the appendix.

• For each of the 46 benchmarks discussed in this thesis, we provide a

detailed description of the trigger and functionality of the hardware Trojan

that has been added to the circuit. We also identify benchmarks that

provide incomplete or inaccurate documentation and provide corrections

where appropriate. In particular, some of the RS232-based benchmarks

provide documentation that either fails to identify the triggering condition

for the included Trojan or incorrectly identifies that condition. For each of

these benchmarks, we describe the correct triggering combination.

• Finally, we have provided three test benches for use with the RS232

benchmarks. These test benches, which have been included in the thesis

software archive, can be used as baseline models for more complex test

benches and simulations. Note that Salmani et al. already provide test

benches appropriate for use with the AES and basicRSA benchmarks.

These are discussed in the appropriate sections of this thesis.

This thesis also aims to present a Computer Science perspective on hardware-

oriented security and trust (HOST) research. This perspective is essential to

understanding how malicious inclusions inserted at the digital logic level cause security

failures at higher levels of abstraction.

Finally, this thesis recommends malicious inclusions that could be added to the

benchmark suite. A high level sketch is provided for an inclusion that is complementary

to the inclusions present in the suite, but that allows researchers to examine features not

already demonstrated by existing benchmarks.

 5

In a broader context, this work will advance Computer Science research and

education by providing Computer Science students with the means to contribute

meaningfully to HOST research. For example, the techniques described in this thesis

could aid teachers in designing lab exercises for a hardware security course for Computer

Scientists. Students with limited prior exposure to this material will benefit from the

description of the pitfalls and difficulties involved in using Xilinx tools to simulate the

hardware Trojan benchmarks available on the Trust-Hub website, or to assemble

experiments based on other devices.

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. RELATED WORK

Wang et al. developed a taxonomy for hardware Trojans in [3]. This taxonomy

classifies Trojans according to physical structure, trigger mechanism, and payload

actions. These researchers also provide a preliminary list of applications that are

vulnerable to hardware Trojans. Many Trojan implementations and detection methods

reference this work. In [7], Banga and Hsiao provide additional terminology that is

relevant to this work. They define a combinatorial Trojan as a Trojan that triggers on a

specific combination of input values, and a sequential Trojan as a Trojan that triggers

after seeing several combinations in some specific order.

According to [3], the preferred hardware Trojan detection techniques are

automatic test-pattern generation (ATPG), failure-based analysis, and side channel

analysis. ATPG designs a sequence of inputs based on the circuit’s netlist, and compares

the resulting outputs from the expected outputs. This technique is ineffective against

Trojans that modify the circuits logical layout. Failure based analysis uses microscopic

imaging techniques and voltage induction to verify that a circuit conforms to its specified

design. Most forms of failure based analysis are destructive to the chip they are

performed on. Like ATPG, side channel analysis uses a series of input values to engage

the circuit, but instead of concentrating on digital output values, side channel analysis

measures analog current at intermediate stages of circuit logic, detecting hardware

Trojans through unexpected activity in the circuit. Trojans may also be written to use

side-channel analysis as a tool to leak information to malicious insiders.

All three of these techniques operate only after fabrication. If a design-phase

Trojan is detected, then all chips produced from that design are compromised and will

need to be replaced. The chip design must be corrected, and the new design must be

prototyped and tested before a new batch can be manufactured.

A number of researchers have provided detailed evaluations of these detection

techniques or added refinements to increase the success rate of hardware Trojan

detection. Kutzner et al. conducted a trial of IC fingerprinting and side channel analysis

 8

techniques. In this analysis, the researchers determined that the presence of operational

noise noticeably reduced the reliability of these techniques [9]. Banga and Hsaio used

side channel analysis on localized regions of a circuit to increase the reliability of Trojan

detection [7].

In [6], Zhang and Tehranipoor used a mixture of formal verification, code

coverage and ATPG to increase confidence in the presence or absence of hardware

Trojans in IP cores provided by third parties. The researchers apply their technique to the

RS232 series of hardware Trojans from [8]. These Trojan circuits will be discussed in

detail in Chapter 4 of this work.

In [10], Alkabani and Koushanfar propose the use of the “consistency” metric in

side channel analysis. Using this metric, the researchers are able to evaluate the presence

of a Trojan by repeated measurement and comparison of current leakage from the circuit.

In [11], McIntyre et al. devised a Trojan detection system that allows gradual

redefinition of circuit trust in a multi-core system by comparison of results from different

cores. Since Trojans commonly trigger on specific input sequences, the researchers

devised a method for reordering subtask operations without changing the final result.

Two different, but equivalent sequences are provided to two different cores. If both return

the same result, the system has high confidence that the sequences did not trigger the

same Trojan, and that the specific operation was completed without Trojan interference.

If the circuits return different results, the system uses additional subtask orderings and

cores to determine which core is producing an invalid result, and is therefore likely to

contain a malicious inclusion.

In [12], Li and Lach propose another long-term, post-fabrication mechanism for

detecting hardware Trojans. Here, the researchers state that the activation of the Trojan

through its predefined trigger mechanism will cause an immediate, noticeable change in

circuit delay characteristics. Continuous measurement of signal propagation allows the

researchers to observe the change in delay and designate the circuit for further

investigation. The technique is vulnerable to false positives caused by changes in

 9

temperature and voltage, and sufficiently fast-acting Trojans may not cause a noticeable

delay impact.

In [13], Hicks et al. have developed Unused Circuit Identification (UCI), a

design-phase test that identifies gates and paths that do not change signals during

expected input sequences. Based on the fact that malicious inclusions are designed to not

activate during normal circuit operation, the researchers remove UCI-selected logic from

the circuit. In case UCI removes valid, non-malicious circuitry, these researchers also

implemented a technique for adding software to simulate the activity of removed logic.

Other researchers have created sample hardware Trojans, demonstrating

techniques that are available to adversaries. In [14], King et al. implemented the Illinois

malicious processor (IMP), a general-purpose hardware Trojan. The inclusions in the

IMP are designed to support more complex attacks from software that can be

implemented against a Linux system installed on the IMP. These researchers

implemented a login backdoor, a password-stealing mechanism, and a privilege

escalation attack as proof-of-concept. Dr. Salmani and Dr. Tehranipoor have designed a

variety of sample hardware Trojans and posted them at the Trust-Hub website [8]. This

thesis will analyze a selection of those sample Trojans, detailing their malicious

functionality and outlining the processes needed to simulate and study the malicious

activity.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. METHODOLOGY

This chapter will describe the methodology used in analysis of the available

Trojan benchmarks.

A. GETTING THE BENCHMARKS

The Trojans were all downloaded from [8]. Benchmarks on this site can be

categorized by the circuit they modify. For example, there are 21 Trojans designed to

undermine the effectiveness of a 128-bit AES encryption circuit. These circuits are

labelled AES-T100 through AES-T2100. The naming convention includes the final

two zeroes as a means to distinguish between different placements and versions of the

same Trojan in a particular circuit. For example, RS232-T901 is a slightly altered

version of RS232-T900.

To download a Benchmark, navigate to [8]. Select the name of the desired Trojan

from the “Resources” column. A partial description of the Trojan will appear under

“Info,” along with two links. Figure 1 demonstrates the relevant portion of the benchmark

selection process. The full description can be read by following the “Learn More” link

provided.

Select the download link to acquire the Benchmark archive. Each archive contains

source files that define the Benchmark. For most Benchmarks in this collection, these

source files are HDL code written in Verilog or VHDL. Several Trojans, such as the

EthernetMAC10GE series, include only DEF files, which represent the physical layout of

the gates and wires in the circuit. This thesis does not discuss the operation of

Benchmarks composed of DEF files.

The archive will also contain a PDF file and a README. These documents both

contain the same description that can be read by following the “Learn More” link. They

may also provide additional information about the benchmarks, including the results of

tests run by Salmani et al.

 12

The archive may contain source code for a Trojan-free version of the benchmark

or a test bench designed to demonstrate the function of the circuit.

Figure 1. Selection of a resource from the Trust Hub site. The button labeled

“Download (ZIP)” will directly download an archive file containing all
of the resources provided by Salmani et al. for the selected Trojan. Note
that some Trojans are stored as RAR archives. The “Learn More” link
will lead to a dedicated page for the selected Trojan. Note that the b19
Trojans are stored as multi-part archives, and it is necessary to visit the
dedicated page and download parts from the “supporting files” section.

B. SOURCE CODE ANALYSIS

Most of the provided circuits included source code written in Verilog or VHDL,

so we began by attempting to perform a static source-code analysis of the Trojans. We

used MD5 hashes to quickly find duplicate source code files. If a file’s hash matched that

of a file from the Trojan-free implementation of the circuit, we could safely assume that

the HDL defining the Trojan was not present in that file. If two files from different

benchmarks produced the same hash, then we would only need to analyze that specific

version of the file once. Any insights gained from that analysis could be applied to our

analysis of other benchmarks that contain the same version of that file. After duplicate

files were eliminated from the analysis group, we subjected the remaining files to diff

tools to find the exact differences.

 13

Some of these files differed only in the positioning of whitespace, which does not

influence the functionality of circuits synthesized from Verilog or VHDL. The files from

the RTL-based RS232 benchmarks commonly displayed this trait. Some of the remaining

files drastically reordered HDL instructions, but did not alter the logic of those

instructions. We recorded the list of logically equivalent files, then removed them from

the analysis group.

The remaining files included small sections of extra logic, which we were able to

evaluate more closely. In most cases, we were able to confirm that the extra logic served

to define the malicious inclusion. Examining this smaller portion of source code allowed

us to more easily specific inputs or registers that fed into the trigger mechanism and

outputs that were controlled by the Trojan functionality.

C. SETTING UP THE ENVIRONMENT

The second stage of analysis involved synthesis and error checking. We

established a dedicated test environment for the remainder of the analysis process. On a

Windows 7 virtual machine, we installed Xilinx Vivado Webpack version 2013.4.

To download Vivado Webpack, you first need to establish an account on the

Xilinx website. New user accounts can be created at

https://secure.xilinx.com/webreg/createUser.do? You will need to

provide your name, a user ID and password, and an email address from a university or

business. The site will confirm your registration using the email you provide.

Once you establish an account, use a browser to navigate to

http://www.xilinx.com/support/download.html. Select your preferred

version of the software from the column on the left side of the page. Select the link for

“All OS Vivado and SDK Full Installer.” This link will download a 6 GB TAR/GZIP

archive. Extract this file to a folder of your choosing. The total size of the extracted

archive should be roughly 6.8 GB. The installer should be xsetup.exe, located in the

top level of this directory.

 14

D. SYNTHESIZING AND VIEWING A CIRCUIT

We imported the source code of each Benchmark as a separate RTL project. We

also created projects for the Trojan-free versions of circuits. To do this, start Vivado and

select the “create a new project” link on the opening screen. This will open the new

project wizard, which provides some guidance when creating a new project. The new

project wizard consists of eight dialog windows, as follows.

• Create a new Vivado Project: This is a short introduction to the new

project design process. Select “next.”

• Project Name: This dialog allows you to name your project and select a

folder for the project directory. Note that you can specify the full path

yourself, or allow Vivado to create a directory with the same name as the

project.

• Project Type: For all of the Benchmarks discussed here, we selected

“RTL Project.”

• Add Sources: Most of our work was done here. Choose “add files” to

open a file chooser dialog box. For convenience, Vivado supports

selecting multiple files in a single file-chooser instance. Navigate to the

source directories of a downloaded benchmark and select the HDL files

there. These may be Verilog files, with a .”v” extension or VHDL files

with a .”vhd” extension. Do not add test benches at this time. Using test

benches as design sources produces strange results from synthesis,

schematics and simulation. Before selecting “next,” ensure that “Copy

Sources into Project” is checked.

• Add existing IP: This window allows you to add 3PIP cores to your

project. None of the projects discussed here require any files to be added

to this section.

• Add Constraints: This window allows you to add simulation and

synthesis constraints to the project. These constraints can be used to

control timing and gate placement in a circuit. The Benchmark groups that

we demonstrate in this work do not contain constraint files.

 15

• Default Part: Your selection in this window is dependent on what

physical hardware, if any, you expect to use for physical demonstration.

All of our analysis in this work was conducted within Vivado. We selected

the Artix-7 FPGA under “boards,” since we knew our advisor had at least

one FPGA within that family.

• New Project Summary: This final dialog summarizes all of your previous

selctions in a single window. After reviewing them, select “Finish,” and

Vivado will construct this project from the files you have provided.

Once a project has been successfully created or opened, you will have access to

Vivado’s main screen, as shown in Figure 2. Most functions that you will need during the

simulation of these benchmarks can be found in the left pane, labelled “Flow Navigator.”

My first action after creating a project was to select the “Run Synthesis” instruction from

this pane. For most of the benchmarks discussed in this thesis, the default synthesis

settings are appropriate.

Figure 2. Layout of the Vivado Main Screen. Synthesis, Simulation and

schematics are opened from the flow navigator on the left. The window
on the far right shows the results of these commands. In this case, the
window shows a waveform diagram resulting from simulation. Note that
the results window can be popped out and viewed separately from
Vivado’s main window. The central windows allow some customization
of the results window display. Errors and other messages are reported in
the bottom window.

 16

E. VIEWING SCHEMATICS

After synthesis, we were able to examine the provided benchmarks by means of

Vivado’s schematics generation. There are two schematic generation mechanisms

available. Generating a schematic from a synthesized design will produce a gate-level

schematic, treating each 1-bit wire as a separate entity. A 64-bit register would be

displayed as 64 flip-flop modules. Generating a schematic from the elaborated design

produces a simpler diagram that shows grouped wires and merges each register into a

single stacked group. Most of the logic gate images in this document were generated

from the elaborated design. Figure 3 demonstrates the three types of components

displayed in a typical elaborated schematic. Note that the elaborated schematic can be

generated before synthesis occurs, but elaboration will fail if there are any syntax errors

or missing modules.

Figure 3. Components commonly displayed in a Vivado Schematic. At left is an

example of a custom module. This module is defined as
expand_key_128 in the Verilog file aes_128.v. The specific
instance is named a1. Note that clicking the + sign in the top left corner
will produce an expanded view of this module, including all internal
components. The middle item is a sample register, used to store values
that are relevant to the circuit across multiple clock cycles. The stacking
effect is a visual cue provided to represent a bundled multi-bit register. It
is possible to unbundle this collection and produce a schematic with a
separate register for each bit. The rightmost figure demonstrates
Vivado’s representation of primitive gates. Note that this XOR gate also
handles multiple bits, but that no visual cue is given.

Once a schematic has been generated, it is possible to generate a simpler

schematic based on selected wires and objects. Control-click allows you to select

 17

multiple objects. Pressing F4 will generate a new schematic containing the selected

objects and any objects directly attached to them. Note that if you select a wire, the new

schematic will include every gate, module and register connected to that wire. If the wire

is used as an input for a large number of modules, the generated schematic will include

all of those modules. For best results, build a new schematic from modules, registers and

gates only. This will limit the number of additional features included in the schematic.

When a new, partial schematic is generated, you will notice that registers are split

into individual, 1-bit flip-flops. This may cause the registers to be divided into 128 parts

or more, resulting in a diagram that is not easily viewed on one screen. To correct this,

open the waveform options pane using the top button on the left-hand toolbar. This pane

includes an option labelled “Bundle Registers.” Uncheck this option, then check it again.

The schematic will regenerate, with all registers combined correctly.

F. SIMULATION

The last stage of analysis was to trigger the circuits in behavioral simulation.

Some circuits provided test benches designed to trigger the Trojan. These were simply

added to the relevant projects as simulation sources and run. To add a simulation source,

right click inside the sources window and select “Add Sources.” In the dialog box that

appears, select “Add or Create Simulation Sources.” Selecting “Next” will open a

dialogue that is similar to the “Add Sources” window from synthesis. Use “Add Files” to

add a test bench to your project.

To run the test bench you have selected, click “Run Simulation” in the Flow

Navigator. The default simulation settings are appropriate for the circuits discussed in

this work, so you do not need to make any changes to “Simulation Settings.” After

processing the test bench, Vivado will present a waveform diagram similar to that in

Figure 4.

 18

Figure 4. Part of the waveform diagram generated by Vivado from

test_aes_128.v and the Trojan-free version of the AES circuit.
Note that Vivado does not support changing the font size or the
background color of the waveform area. Both features have been
requested on the Xilinx support forums. Also note that the 1-bit input
clk is represented by graphical lows and highs, but multi-bit inputs are
represented by numerical values. For clarity, we have edited the colors
of other waveforms in this document using external imaging software.
This one has been left to demonstrate Vivado’s default settings.

 By default, the waveform diagram will display only the inputs and outputs from

the unit under test. Additional circuit wires, such as Tj_Trig, can be added to the

waveform window and saved in a new waveform configuration. To do this, use the

schematic or the HDL code to determine the name of the wire you wish to inspect. In the

“scopes” window, to the left of the waveform, select the module that contains the wire.

The “Objects” window will list all nets in that module. Scroll down to the entry for the

desired wire and drag it into the data region of the waveform window. This will add an

entry to the window. Select “Save Waveform Configuration” from the left of the

waveform window to save this change for future simulations of this project.

Note that when simulation first completes, the waveform diagram is zoomed in to

the picosecond scale. The “zoom out” button at the left of the waveform window allows

you to change the scaling to a larger timescale. The benchmarks in this set operate on a

clock cycle of 1 to 10 nanoseconds, so zooming to the level shown in Figure 4 should

produce the best results. Note that “save waveform configuration” will not retain your

zoom setting. Every time you relaunch the simulation, you will need to adjust the zoom

level.

 19

 The simulation will need to be restarted before the waveform diagram displays

the value of new wires. Select “Run Simulation” again, and answer “Yes” when

prompted to close the simulation and relaunch.

 20

THIS PAGE INTENTIONALLY LEFT BLANK

 21

IV. BENCHMARKS

A. TROJANS IN AES_128

The Trojans in this set are based on an open-source implementation of a 128-bit

AES encryption circuit. Each benchmark archive includes a folder <archive top

level>/src/TjFree, containing 6 files. Aes_128.v, round.v and table.v

contain the HDL code that defines the Trojan free circuit. These files are also present in

each benchmark’s <archive top level>/src/TjIn folder. The file

test_aes_128.v is a test bench intended to demonstrate basic functionality of the

circuit. This file is also present in most of the Trojan-inclusive variants. File

simulation.do is a batch file designed for use with ModelSim. The last file is a

README that provides some explanation for simulation.do and

test_aes_128.v.

As Figure 5 demonstrates, the benchmarks in the AES series are modular in

structure. In most of the benchmarks in this set, the aes_128 module is an unmodified

version of the original, Trojan-free AES circuit. Most AES benchmarks contain two

additional modules. The first is named TSC, and is defined in the file TSC.v. This

module contains the logic that defines the Trojan functionality. In several of the

benchmarks, the TSC module and file have been renamed to AM_Transmission and

AM_Transmission.v, respectively. Note that the AM_Transmission module, like

the TSC module, operates in isolation from aes_128 and accepts input Tj_Trig to

determine part of its operation. The other module shown in Figure 5 is

Trojan_Trigger, which controls when the functionality is active. This module is not

always present in the benchmark. Its absence may represent an always-on trigger, but in

some cases, Salmani et al. have instead written triggering logic into the TSC module.

 22

Figure 5. This schematic--generated from AES-T700--represents the structure of

a typical AES Trojan from the collection. Note the modules for the
trigger (Trojan_Trigger) and the Trojan functionality (TSC). These
inclusions share common inputs with the Trojan-free aes_128 module,
but they do not alter that module’s internal operation.

1. Important Features of the Trojan-Free AES_128 Circuit

Figures 6, 7, and 8 demonstrate the workings of the Trojan-free AES circuit,

including inputs, outputs, and the custom modules that run the encryption process. As

shown in Figure 6, AES accepts three inputs, labeled clk, state, and key. Wire clk

is drawn from the system clock. Bus state is a single 128-bit block from the plaintext

message. Some of the Trojans in this collection use state as an input to the

Trojan_Trigger module.

 23

Figure 6. The input region of the Trojan-free AES implementation, complete with

a world view of the circuit for context. The primary inputs to this circuit
are state and key. Note that state and key are immediately
XORed before the first round of the encryption process begins.

Bus key is a 128-bit symmetric key used for the encryption and decryption

processes. The value of key is the most valuable information a Trojan can leak from the

AES circuit. Viewing state reveals a single message to the adversary. Viewing key

allows the adversary to decrypt all messages that have been sent using that particular key.

Salmani et al. have designed most of the leakage Trojans in the AES collection to leak a

portion of the key. Note that Figure 5 also shows an input labeled rst, which is applied

to the Trojan_Trigger and TSC modules, but is not an input to aes_128. The reset

signal rst = 12 is used to revert the Trojan to its pre-activation state. In the test

benches provided, rst = 12 is transmitted for a several clock cycles before the first

values of key and state are assigned. Wire rst is then set to 02 for the remainder of

circuit operation.

 24

Figure 7. The output region of the Trojan-free AES circuit. The box labeled rf

represents an instantiation of the custom module final_round, which
is defined in the Verilog file round.v. This module represents the
tenth round of the AES encryption process. This round is similar to
previous rounds. It accepts the last round key and the last intermediate
state and produces the circuit’s final output.

Figure 7 displays the final output of the AES circuit, and the module that

produces it. Out is the ciphertext resulting from the AES operation using the given key

and state. Trojans in this group do not interfere with this value. Leakage in the AES

benchmark circuits may be caused by the addition of a separate output bus, or by

deliberately inducing electrical activity that can be observed by side-channel analysis.

Denial-of-service in this circuit is caused indirectly, through the operation of a power-

draining register. Exact details of these effects will be provided in the discussion of

individual Trojans.

 25

Figure 8. The internal functionality of the Trojan-free AES circuit. The

expand_key_128 modules generate intermediate round keys. Note
that out_1 and out_2 hold the same value, so each round key is
derived directly from the previous key.

In the AES process, state is transformed to out through ten rounds of

substitution and translation. Each round uses a separate key, but each of these

intermediate round keys is derived from the original AES key. Figure 8 shows two of

these rounds. Each round produces the output state_out, which is used as state_in

for the next round. Each round’s key is generated by the expand_key_128 module,

using the key from the previous round. Several of the Trojans in this collection alter the

aes_128 module by adding additional module outputs, each of which leaks an

intermediate round key to the TSC module. These intermediate keys are leaked through

registers designed to be read by side-channel analysis.

26

2. AES-T100

The first few benchmarks in the AES collection use a slightly different structure

than we discussed before. As Figure 9 shows, these benchmarks do not include a

dedicated Trojan_Trigger module. Instead, the complete TSC module operates

without any activation condition. These Trojans are classified as “always-on” Trojans.

Figure 9. The structure of the benchmark AES-T100. Note the absence of the
Trojan_Trigger module that was shown in the typical Trojan
layout. No module is necessary to represent an always-on trigger.

a. Trigger

AES-T100 does not have a trigger mechanism. As a result, all aspects of this

Trojan, including the rotation of the LFSR, are always active.

b. Functionality

Figure 10 displays the internal functionality of the TSC module of AES-T100.

The Trojan in this circuit leaks bits from the AES secret key. The adversary who created

this Trojan intends to read the leaked bits using side channel analysis. To simulate

sufficient capacitance for detection, each bit is actually leaked in parallel across 8 wires.

 27

The 64-bit output load actually represents only 8 bits of leaked information. In fact,

under this payload design, only the 8 low-order bits of key are ever leaked through

load. Note that Figure 10 only explicitly shows the leakage of bits 0 and 7.

Figure 10. Detail view of the TSC module of AES-T700. The output load is

composed of 8 bits, each repeated 8 times. These bits are the result of
XOR operations between key[7:0] and lfsr[7:0]. To simplify
this view, we have hidden the XOR gates load0_i__0 to
load0_i__5. These XOR gates function in parallel to the two shown,
with each gate operating on a different bit pairing.

Before being leaked, the bits of key are XORed with bits generated from the

module lfsr. This modulation is designed to obfuscate the leakage, allowing only the

adversary to translate side channel results into bits from the original key. Eight copies of

each result are then fed to the register and transmitted to the capacitance circuit.

 28

Figure 11. One shift operation of the lfsr module. The value 0x99999 is the

initial value of the AES-T700 LFSR register. The new high-order bit is
calculated from an XOR of bits from positions 3, 7, 11, and 15. After
this calculation, bits are shifted to the right, and the XOR result is used
to fill in the missing bit.

LFSR registers are used in pseudo random number generation, because the

sequence of values they produce appears to be random. However, an LFSR is actually

guaranteed to enter a repeating cycle of values. If the adversary knows the initial vector

of an LFSR, they will be able to predict future values. The LFSR in AES-T100 is a 20-

bit register with an initial value of 0x9999. Figure 11 displays the first shift operation

that will occur in this LFSR’s operation. All bits shift to the right, and the missing bit is

then filled based on a 4-way XOR operation. Note that the initial value is not part of the

LFSR cycle. The first three values of this register are one-time events, as no value in the

cycle will lead back to them. The value 0x13333 is the first value that can be considered

part of the LFSR cycle. After 131,071 (217 - 1) shifts, the cycle will restart at this same

value.

 29

3. AES-T200

a. Trigger

Like AES-T100, this benchmark doesn’t have an explicit trigger mechanism. All

of the Trojan functionality, including the rotation of the LFSR, functions at all times.

b. Functionality

As shown in Figure 12, the functionality of AES-T200 is nearly identical to that

of AES-T100. This module uses an LFSR to modulate the leaked bits of the key. This

register is rotated every clock cycle without any need for activation. The distinction

between this payload that in and AES-T100 is the initial value of the LFSR. While

AES-T100 uses 0x99999 as an initial value, AES-T200 takes its initial value from the

incoming plaintext. When a reset signal is observed, the LFSR is loaded with the low-

order bits of the input state. This feeding of an initial value allows the attacker to

choose a different sequence to modulate the leaked bits of the key.

 30

Figure 12. Detail view of the Trojan in AES-T200. Note the addition of the input

data to the lfsr_counter module. The value of data is
determined by state, one of the inputs to the overall circuit.

 31

4. AES-T300

Most Trojans in the AES collection work in isolation from the main AES circuit.

The trigger and functionality share common inputs with AES, but are otherwise

completely isolated from it. The files that comprise the AES circuit are used in an

unaltered state. In contrast, the AES-T300 benchmark contains a modified version of

module aes_128. This module has 8 additional outputs, each drawn from one of the

intermediate round keys. Figure 13 shows a detail view of this. Note that the value of

rk8 comes directly from the expand_key_128 module a8. The additional outputs are

fed into the module TSC, which leaks them to the adversary.

 32

Figure 13. AES-T300 modifies the AES_128 module by adding eight additional

outputs. These outputs carry eight of the round keys used during the
AES encryption process. Note that the last two round keys are not
leaked, but we assume that the attacker either knows or has the ability to
discover the mechanism used to generate the key.

a. Trigger

This benchmark also uses an always-on trigger, meaning that the Trojan will be

continuously active. The shift registers in this Trojan are dependent only on their

respective round keys.

 33

b. Functionality

The TSC module contains 8 8-bit shift registers like the one shown in Figure 14.

Each register is dedicated to the leakage of a single round key. When a reset signal is

observed, each register is loaded with the value 101010102, or 0xAA. The register

rotates whenever clk changes and input G is equal to 12. In AES-T300, this input is

determined by performing a series of AND and XOR operations. The lowest 8 bits of

state are ANDed with the lowest 8 bits of the round key. The resulting bits are subjected

to an XOR operation. The final result of this operation is sent to the register. If this value

is 12, the register will rotate twice every clock cycle until the round key changes and the

test is performed again.

Figure 14. Detail view of a shift register from AES-T300. Note that the world

view shown here is a partial schematic, depicting only 1 of the 8
registers. On a reset signal, the register is fed with an initial value of
101010102. Afterwards, register’s value remains unchanged unless the
input G is 12. G is the result of AND and XOR operations performed
using state and the first round key.

Figure 15 shows a segment of the waveform for all eight registers. Note that the

value of each register rotates between 0xAA and 0x55, which are the hex values of the

 34

two alternating patterns for an 8-bit number. The adversary can identify the increased

power consumption associated with the rotation.

Figure 15. A waveform diagram displaying the actions of the shift registers in

AES-T300. The top waveform displays the actions of the system clock.
One step of rotation for a register means a transition from a value of
0xAA to 0x55 or back. In the view shown, each round key has a
different value, so the registers are rotating at different times. For
example, SHReg6 rotates every time the clock changes because it
satisfies the AND and XOR test for the entire period shown.

Note that there is an error in the source code of the TSC.v file, which produces

unexpected starting values in the registers.

 if (rst == 1) begin
 SHReg1 <= “10101010”;

The lines shown here cause the value 0x30 or 001100002 to be assigned to the

first shift register. All 8 registers use this assignment statement, with consistent results.

To correctly assign an alternating pattern to the register, change these lines to read:

 if (rst == 1) begin
 SHReg1 <= 8’hAA;

A similar change will be required for each of the 8 registers.

 35

5. AES-T400

AES-T400 is the first Trojan in this set to include a defined Trojan_Trigger

module, as shown in Figure 16. This module evaluates the state of the circuit against the

predetermined triggering condition, and if these match, then the wire Tj_Trig will

transmit the signal 12 to the module TSC, signaling that the Trojan should begin to

operate. Note that the signal rst=12 is typically used to reset the Trojan. When a reset

signal is observed, the Trojan will be deactivated, and the trigger will wait for the next

time the condition is met.

Figure 16. The full view of AES-T400. Note that this benchmark follows the

typical structure displayed earlier. The functionality module is named
AM_Transmission, but it accepts inputs from the wires key and
Tj_trig. Like the TSC module present in other benchmarks,
AM_Transmission operates without disrupting the core functionality
of the aes_128 module.

a. Trigger

AES-T400 is described as a combinational trigger that activates when an input of

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF is observed. Figure 17 demonstrates

this portion of the Trojan trigger mechanism.

 36

Figure 17. A detail view of the AES-T400 trigger. Detected_i represents the
actual comparison of the incoming value state against the predefined
value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. Note that
due to features of AES-T400’s functionality, additional gates have been
added to set Tj_Trig to 02 within two clock cycles of activation.

The activation of the Tj_Trig wire is designed to be temporary. While

Tj_Trig has the value 12, the Trojan will load the value of input key into a register in

the AM_Transmission module. However, the source code produces a different result.

In the source code, the Trojan is activated when a reset signal is observed, and Tj_Trig

becomes 02 one clock cycle later. It also becomes impossible to activate the Trojan after

this point.

 37

The following HDL code defines the activation of the AES-T400 trigger:

always @(tempClk1, tempClk2)
begin
 Tj_Trig <= tempClk1 | tempClk2;
end

// Tj_Trig is high for two clock cycles
always @(posedge clk)
begin
 if (rst == 1) begin tempClk1 <= 1; tempClk2 <= 0; end
 else if ((tempClk1 == 1) && (Detected == 1))
 begin tempClk1 <= 0; tempClk2 <= 1; end
 else if ((tempClk1 == 0) && (tempClk2 == 1))
 begin tempClk2 <= 0; end
 else begin tempClk1 <= 0; tempClk2 <= 0; end
end

The first segment of code is used to determine the value on Tj_Trig. This value

is decided by an OR operation between tempClk1 and tempClk2. If either wire is 12,

the Tj_Trig will also be 12. Note that this assignment will occur every time one of the

tempClk values changes.

The second code segment is responsible for assigning values to tempClk1 and

tempClk2. This assignment will run at the start of every clock cycle. These two wires

draw their values from four sources: their previous states, rst, and Detected.

Detected is a 1-bit signal representing that state has been observed with a value of

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF since the last reset.

Note that when rst = 12, tempClk1 is also set to 12. This means that

Tj_Trig is also immediately set to 12. On the next clock cycle, if state was not equal to

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF during the reset, tempClk1 and

tempClk2 will be assigned a value of 02. This combination leads to a Tj_Trig value

of 02 as well. Tj_Trig would hold a high value for only a single clock cycle. If the

appropriate value of state is observed during a reset, then the high Trigger value will be

maintained for two clock cycles. Note that the triggered portion of Trojan functionality is

 38

the loading of a value into a register, and that event is scheduled to occur at the moment

Tj_Trig is set to 12. Thus, the duration of the activation is not relevant.

After tempClk1 and tempClk2 are both equal to 02, a reset is the only

incoming signal that can cause one of them to become 12. tempClk1 is only set to 12

by a reset, and tempClk2 is only ever set to 12 if tempClk1 and Detected are

simultaneously equal to 12.

b. Functionality

AES-T400 uses a new leakage mechanism. The LFSR leakage circuits in AES-

T100 and AES-T200 rely on side channel analysis. The Trojan in this benchmark

actually succeeds in transmitting information to an AM radio at 1560 kHz. If you choose

to implement this circuit on physical hardware, note that the documentation does explain

how to interpret the signals received on this radio frequency. Salmani et al. state that a

single beep followed by a pause represents a 02, and a double beep represents a 12.

Operating only within Vivado, we have been able to observe the operation of the output

Antena [sic], which is the line that carries signals to the transmitter itself. Based on

the structure of the HDL code, a 12 value of Antena [sic] results in a beep, and a 02

value results in silence.

When the Trojan is first activated, the value of the secret key is loaded into a

register named ShiftReg. The structure of this register is shown in Figure 18. When

the Tj_Trig wire is 02, this register will shift once for every full rotation of the 26-bit

counter Baud8GeneratorACC. This register increments every clock cycle. As a result,

ShiftReg will rotate one step every 2128x26 clock cycles. The least significant bit of this

ShiftReg will be leaked to the transmitter, resulting in a transmission of the key in

reverse order.

 39

Figure 18. The shift register of AES-T400. When Tj_Trig = 12, this register is

loaded with key. Every time that the register’s C input is set to 12, the
register input is updated with the output from SHIFTReg0_i. This
output is the register’s previous value with every bit shifted to the right.

The beeps are partly controlled by Baud8GeneratorACC. A first beep requires

that the register contain a value of the form 0x000x…x1x…x1xxxx. The 12 signals

are bits 4 and 15 of the register. The second beep occurs when Baud8GeneratorACC

has the form 0x010x…x1x…x1xxxx and the ShiftReg[0] bit is 12. The change in

the value of bit 24 results in a short period of silence in a double beep, while the

requirement for a 02 value in bit 25 means that after the period allowed for the second

beep, Baud8GeneratorACC must wrap around before the next bit is transmitted. This

makes the pause between bits much longer than the pause in the middle of a pair.

 40

6. AES-T500

At first glance, AES-T500 does not appear to have a trigger module. The

benchmark does not contain a Trojan_Trigger.v file, and, as Figure 19 shows, the

benchmark circuit doesn’t explicitly define a module for the trigger. However, TSC.v

contains a section of code that is an exact match for code in one of the

Trojan_Trigger modules in AES-T800. The code even uses the name Tj_Trig to

define the signal to the module payload.

Figure 19. The apparent structure of AES-T500. Note that while no trigger module

has been explicitly defined, the TSC module contains logic dedicated to
the purpose of triggering the Trojan after specific inputs have been
observed. Also note that Vivado has not elaborated on the contents of
the module TSC. Vivado takes this approach to modules that do not have
a specific output. To work around this, we added an output to the TSC
module, directly using an existing register to provide the output’s value.
With this change, we were able to generate detail views of the internal
workings of the TSC module.

 41

a. Trigger

The trigger in this benchmark is a sequential trigger. This trigger waits for four

separate values of state to be observed, in order, before setting Tj_Trig to 12. The

inputs are as follows:

• 0x3243f6a8_885a308d_313198a2_e0370734

• 0x00112233_44556677_8899aabb_ccddeeff

• 0x0

• 0x1

Note that these inputs do not need to be observed in immediate succession. After

each value is observed, a state register is updated. The value of this register must be 12

for the next input value to move the sequence forward. Hundreds of state values could be

observed between the first of the triggering values and the last. As long as the circuit is

not reset, the Trigger mechanism will remember which of these states have been seen.

Figure 20 shows the first two state comparisons. The register State0_reg identifies

whether the first triggering input combination has been seen since the last reset. Note that

the result of the state11_i comparison is ANDed with the register value. If they are

not both 12, then the next state register will not be updated.

 42

Figure 20. A detail view of the first two comparisons performed by the trigger in

AES-T500. Vivado represents the first comparison as the RTL_ROM
module State0_i. This module is slightly overshadowed by the long
binary input to State1_i. Note the result of this comparison is stored
in the RTL_LATCH State0_reg. The second comparison is depicted
as a direct comparison of state to a given value using an RTL_EQ
module.

b. Functionality

AES-T500 is designed to perform a denial-of-service attack. Recall that AES-

T300 uses rotating registers to leak information to an adversary. This leakage is possible

because the rotation of an alternating register increases power consumption. Side channel

analysis allows the adversary to recognize that consumption and deduce information

about the key. AES-T500 uses register rotation, but there is no intent to leak

information. Instead, this Trojan is meant to be used on a battery-operated device. With

the register rotating every time the clock changes, the device experiences an increased

drain on the battery. As a result, the device will need more frequent recharges. Note that

Figure 21 shows the full functionality of the device. The majority of the gates and

registers shown in the world view are part of the benchmark’s trigger mechanism. Only

DynamicPower_reg can be considered part of the functionality of this Trojan.

 43

Figure 21. Detail view of the Trojan functionality of AES-T500.

DynamicPower_reg is initialized with an alternating pattern of
1010…2. The wire feeding into G is Tj_trig. When this wire has a
value of 12, the register will rotate on every clock cycle. The bus from Q
to D represents the altered value being fed back into the register. Note
that this view cuts off the extra output we added to force Vivado to
generate this image.

7. AES-T600

a. Trigger

AES-T600 uses the same trigger as AES-T400. The Trojan_Trigger.v

files differ only in the placement of whitespace. This trigger has a mechanism for

detecting a state value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. However,

the trigger activation actually occurs at reset. Note that if the expected state value occurs

at the same time as the reset signal, then the Tj_Trig wire will remain 12 for two clock

cycles. Otherwise, the trigger will return to 02 after 1 clock cycle. It will not be possible

to activate the trigger again without another reset signal.

b. Functionality

The Trojan in AES-T600 leaks bits from the secret key. Unlike many of the

other AES Trojans, this Trojan will actually leak the entire key, one bit at a time.

When the wire Tj_Trig first shows a 12 value, the key from AES will be loaded

into a register named SECRETkey. Since Tj_Trig quickly changes back to 02 and the

 44

Trojan cannot be triggered again until a new reset, SECRETkey will retain the secret key

assigned at reset for the remainder of the leakage process.

When the value of SECRETkey changes, the least significant bit of the new value

is fed to an inverter. The result is inverted again, and split across ten wires, as shown in

Figure 22. These ten wires are meant to be read using side channel analysis. The result of

this inversion is meant to be read through side channel analysis. Like the LFSR-

modulated leakage used in AES-T100 and AES-T200, the analysis is easier when the

bit is repeated across multiple wires.

Figure 22. Leakage from the AES-T600 Trojan. Note that the wires INV1_out

through INV11_out are defined as wires, but not circuit outputs in the
Trust-Hub code. According to the documentation for this benchmark, the
leaked bit can be recovered by measuring the leakage current. To
produce this schematic, we extended the wires into module outputs.
Without the change, Vivado would refuse to expand the TSC module.

 45

To leak the rest of the secret key, AES-T600 uses SECRETkey as a shift

register. A different 128-bit register is set to 02 when a reset signal is observed. Every

clock cycle, this register increments. When the most significant bit becomes 12, the bits

of SECRETkey shift one place. Since SECRETkey has just changed, the inverters now

leak the new least significant bit. In this way, the key is leaked, in reverse order, to the

side channel the adversary has prepared.

8. AES-T700

a. Trigger

The trigger of AES-T700 operates by a single comparison operation. Figure 23

demonstrates the Vivado schematic of this comparison mechanism. Each value of state is

compared against the value 0x00112233445566778899AABBCCDDEEFF. Note that

Vivado represents this comparison as a ROM access with only one of the 2128 memory

locations containing a value of 12.

 46

Figure 23. Detail view of the Trojan_Trigger module of AES-T700.

Activation is represented by a 12 signal on the output Tj_Trig. This
signal begins when the correct input state is observed, as compared to
the value in Tj_Trig_i. A 12 signal on rst will deactivate the Trojan
by acting as the “clear” input of the RTL_LATCH.

When a state with the chosen value is observed, the wire Tj_Trig will be set to

12. This signal causes the Trojan module to activate. The Trojan will remain active until

a signal of 12 is observed on the rst input, at which point the Tj_Trig will be set

back to 02. Vivado represents the activation process using an S-R latch, identified as an

RTL_LATCH. The output of the ROM comparison serves as the set signal for the latch.

The value of Tj_trig is determined at the instant that one of the incoming signals

changes, not at the start of a clock-cycle.

 47

b. Functionality

AES-T700 uses a leakage circuit nearly identical to that used in AES-T100. The

LFSR has identical functionality, and the same initial value of 0x99999 is loaded at the

rst signal. The only difference between the TSC module here and the TSC module in

AES-T100 is the addition of the input Tj_Trig, which serves to signal the activation

of the Trojan.

In Figure 24, you can see that the wire Tj_Trig is only applied to the module

lfsr. The XOR and leakage operations will occur regardless of whether or not the

Trojan has been triggered. This means that the leaked bits will be repeatedly XORed with

bits from the initial value of the LFSR—0x99999. Trojan activation in this circuit will

cause the LFSR to begin operating, improving the leakage obfuscation.

Figure 24. Detail view of the TSC module of AES-T700. Note the presence of the

Tj_Trig input. This input only applies to lfsr, meaning that only the
operation of that module is affected by the activation of the Trojan.

 48

9. AES-T800

The AES series of benchmarks was designed in a very modular fashion. All of the

benchmarks from this point forward directly copy their trigger, functionality or both from

a previous circuit. As a result, we have included only a quick summary of duplicate

elements, along with a reference to the benchmarks they have been borrowed from.

a. Trigger

The AES-T800 circuit uses a sequential trigger identical to that in AES-T500.

The Trojan will be activated after the trigger module observes the sequence

0x3243f6a8_885a308d_313198a2_e0370734,

0x00112233_44556677_8899aabb_ccddeeff, 0x0, 0x1. However, AES-

T800 actually dedicates a module completely to this mechanism, instead of including the

trigger as part of the TSC module.

b. Functionality

AES-T800 uses the exact same TSC module as AES-T700. This can be

confirmed through hash comparison of TSC.v, which contains the logic for this module.

The MD5 hash of this TSC.v is 0x9EA2ADE64F51E044AF4056C6B0F487E0. The

module leaks 8 bits of the secret key after modulating them with bits generated by an

LFSR. The LFSR is loaded with an initial value of 0x99999. Note that the XOR

operation and the leakage will occur every clock cycle, but the LFSR will not rotate

unless the Trojan has been triggered.

10. AES-T900

a. Trigger

AES-T900 uses a 128-bit counter to determine the status of Tj_Trig. The

functionality of this counter is shown in Figure 25. The counter is assigned a value of 02

at reset. Every time an encryption is completed, the counter is incremented. When the

counter has a value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the circuit is

triggered.

 49

Figure 25. The counter in AES-T900. Vivado is not representing this counter

using a register module. Instead, the value of the counter is represented
by the loop passing between Counter0_i and Counter_i. Note that
the select bit of Counter_i is provided by rst.

b. Functionality

AES-T900 uses the same TSC module as AES-T700 and AES-T800. An

LFSR with an initial value of 0x99999 is used to modulate bits from the secret AES

key. The bits are then leaked to a capacitance circuit. The adversary can read the leakage

using side channel analysis. Since the adversary determined the initial vector and the

LFSR mechanism, they will be able to convert the bits back to their correct values. Note

that this Trojan only leaks the least significant 8 bits of the key.

11. AES-T1000

a. Trigger

The trigger mechanism is identical to that uses in AES-T700. Both benchmarks

use an identical version of Trojan_Trigger.v, with an MD5 hash of

DF55995DD60E427AFB27050A0B6D21DD.

 50

After the value 0x00112233445566778899AABBCCDDEEFF is observed,

the wire Tj_Trig will be set to 12. A reset signal will return the value to 02.

b. Functionality

The functionality of AES-T1000 mixes the functionality of AES-T200 and

AES-T700. The LFSR register is rotated every clock cycle, but only after activation, as

represented by Tj_Trig = 12. The initial value of the LFSR is taken from the input

plaintext, just as in AES-T200. While AES-T700 uses 0x99999 as an initial value,

AES-T1000 takes its initial value from the incoming plaintext. This value is loaded at

reset.

Figure 26. Detail view of the TSC module in AES-T1000. Note that this module

combines features from AES-T200 and AES-T700. The LFSR register is
initially fed from data, which is state in the overall circuit. Tj_Trig
is used to control only the rotation of the LFSR.

 51

12. AES-T1100

a. Trigger

AES-T1100 uses the same trigger as AES-T500 and AES-T800. Note that the

Trojan_Trigger.v files of AES-T800 and AES-T1100 share an MD5 hash of

403360F99B64A4524058DEC3268AE5AC. This trigger activates after observing the

following sequence of state values in order, but not necessarily in immediate succession:

• 0x3243f6a8_885a308d_313198a2_e0370734
• 0x00112233_44556677_8899aabb_ccddeeff
• 0x0
• 0x1

b. Functionality

AES-T1100 copies the functionality of AES-T1000. These benchmarks share a

common TSC.v file with an MD5 hash of

0x3A8620C109A5D632A0448C6DFE996D2C. Note that this module leaks bits from

the secret key after XORing them with bits from an LFSR register. This variant of the

LFSR register is more flexible because it draws its initial value from state. This value is

assigned when a reset signal is observed.

13. AES-T1200

a. Trigger

AES-T1200 uses the same counter-based trigger as AES-T900. A 128-bit

counter is assigned an initial value of 0x0. Every completed encryption causes the

counter to increment. When the counter’s value is equal to

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the wire Tj_Trig will begin

carrying the 12 signal that represents activation.

b. Functionality

This TSC module is defined in the same version of TSC.v used in AES-T1000

and AES-T1100. As in those benchmarks, the Trojan leaks part of the secret key, but

first XORs the leaked information with a value determined by an LFSR. When the circuit

 52

reset signal is observed, the LFSR is loaded with the value of state. The LFSR only

rotates after the Trojan has been triggered.

14. AES-T1300

a. Trigger

The Trojan_Trigger module in AES-T1300 is identical to the

combinational trigger presented in AES-T700. This trigger activates on an incoming

state value of 0x00112233445566778899AABBCCDDEEFF, just like the trigger in

AES-T700 and AES-T1000. Note that a hash comparison of Trojan_Trigger.v in

these benchmarks will fail because a single space character has been added to the version

in AES-T1300.

b. Functionality

The Trojan in AES-T1300 is based on the TSC module from AES-T300. Each

round key is used to drive the rotation of a shift register. The adversary can learn

information about the key by using side channel analysis to observe the action of these

registers. However, the shift registers in AES-T1300 will not operate until Tj_Trig =

12.

15. AES-T1400

a. Trigger

AES-T1400 copies its trigger mechanism from AES-T500, AES-T800, and

AES-T1100. The AES-T800, and AES-T1100, and AES-T1400 versions of

Trojan_Trigger.v share a common hash value of

403360F99B64A4524058DEC3268AE5AC. The Trojan in this circuit will activate

after seeing the following outputs in order:

 53

• 0x3243f6a8_885a308d_313198a2_e0370734

• 0x00112233_44556677_8899aabb_ccddeeff

• 0x0

• 0x1

b. Functionality

The Trojan in AES-T1400 is identical to that in AES-T1300. Using side

channel analysis, the adversary is able to glean information about the intermediate round

keys. This information results from the rotation of a group of internal shift registers.

However, the registers will not rotate unless the Trojan has already been activated.

16. AES-T1500

a. Trigger

AES-T1500 uses the same counter-based trigger as AES-T900 and AES-

T1200. A 128-bit counter is assigned an initial value of 0x0. Every completed

encryption causes the counter to increment. When the counter’s value is equal to

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the wire Tj_Trig will begin

carrying the 12 signal that represents activation.

b. Functionality

The TSC module in AES-T1500 is identical to those in AES-T1300 and AES-

T1400. This Trojan leaks intermediate round keys using the action of shift registers.

These registers will rotate based on a combination of bits from the associated round keys

and the activation of the Trojan.

17. AES-T1600

a. Trigger

The trigger in this benchmark is similar to the sequential trigger demonstrated in

AES-T500 and AES-T800. However, this trigger incorporates the short-term aspect of

 54

the AES-T400 trigger. The trigger is intended to activate after observing the appropriate

input sequence, remain activated for two clock cycles, then deactivate. However, the

exact HDL code provided causes the trigger to activate for one cycle on reset, regardless

of inputs to the circuit. Note that the only purpose of activation in the included

functionality is to load a key into a register. Leakage of the key occurs during the inactive

period.

b. Functionality

The AM_Transmission module here is identical to that in AES-T400. Bits of

the key are leaked, in reverse order, to an AM transmitter with a frequency of 1560 kHz.

Each 02 bit is signified by one beep on this frequency, followed by a pause, while each

12 bit is signified by two beeps.

18. AES-T1700

a. Trigger

AES-T1700 uses the same counter-based trigger mechanism found in AES-

T900. This trigger counts encryptions until the 128-bit counter register reaches its

maximum value. After that, the Trojan is triggered. Note that there seems to be an error

in the provided HDL code. Unlike AES-T400 and AES-T1600, this trigger does not

include the code that would cause immediate deactivation of the trigger. Since the

functionality of this circuit relies on a short-term trigger to load the AES secret key into a

register, then leaks the key during the inactive period, AES-T1700 will be unable to

leak the key correctly.

b. Functionality

The AM_Transmission module used here is very similar to the one used in

AES-T400 and AES-T1600. The only source code change is the absence of the register

SECRETkey, which is present in the AES-T400 module. Note that this register is

unused in that module. In the AES-T1700 Trojan, bits of the key are leaked, in reverse

 55

order, to an AM transmitter with a frequency of 1560 kHz. Each 02 bit is signified by one

beep on this frequency, followed by a pause, while each 12 bit is signified by two beeps.

19. AES-T1800

a. Trigger

AES-T1800 uses a combinational trigger that is identical to that in AES-T700.

The Trojan is inactive at reset, then activates when the state

0x00112233445566778899AABBCCDDEEFF is observed. Note that this trigger is

not defined in a separate module, but instead is written as part of the TSC module. The

functionality, however, is identical. The lines that define the trigger are effectively pasted

into the file TSC.v.

b. Functionality

This Trojan performs the same battery draining operation as AES-T500. This is

accomplished by loading a 128-bit register with alternating 02s and 12s. Once the Trojan

is triggered, the register will rotate once every clock cycle

20. AES-T1900

a. Trigger

AES-T1900 uses the counter-based trigger found in AES-T900, AES-T1200,

and AES-T1500. The 128-bit counter will count completed encryptions until 2128–1

encryptions have been completed. After that, the Trojan will be active. A reset signal will

deactivate the Trojan and reset the counter to 0x0. Note that this trigger is included in the

module TSC, instead of being isolated in a dedicated Trojan_Trigger Module.

b. Functionality

This Trojan functions the same way as AES-T500 and AES-T1800. After

observing the successful activation of the Trojan trigger, a register composed of

alternating 12s and 02s begins rotating every clock cycle. This rotation causes an

 56

increased power drain. In a battery-operated device, this will accelerate the failure of the

device due to loss of power. Note that none of the documentation for AES-T500, AES-

T1800 or AES-T1900 states exactly how much additional power drain is produced by

the rotation of the DynamicPower register.

21. AES-T2000

a. Trigger

AES-T2000 uses the sequential trigger found in AES-T500, AES-T800,

AES-T1100 and AES-T1400. This trigger is activated after the following values of

state have been observed in order:

• 0x3243f6a8_885a308d_313198a2_e0370734
• 0x00112233_44556677_8899aabb_ccddeeff
• 0x0
• 0x1

It is not necessary for these values to be observed in sequence. The Trojan can be

deactivated with a reset signal.

b. Functionality

The functionality used in this benchmark is identical to that in AES-T600. The

secret key is leaked, 1 bit at a time, to a group of ten parallel wires. The adversary can

read these wires through side channel analysis. Note that the key is leaked in reverse

order. Each bit of the key is transmitted to this leakage circuit for 2128–1 clock cycles

before the next bit is leaked.

22. AES-T2100

a. Trigger

AES-2100 is activated by the same counter-based mechanism used in AES-

T900. This 128-bit counter increments with every completed encryption. When the

counter contains all 12s, the Trojan will activate. A reset signal will deactivate the Trojan

and reinitialize the counter to a value of 0x0.

 57

b. Functionality

The functionality used in this benchmark is identical to that in AES-T600 and

AES-T2000. This Trojan leaks the secret key, 1 bit at a time, to a group of ten parallel

wires. The adversary can read these wires through side channel analysis. Note that the

key is leaked in reverse order. Each bit of the key is transmitted to this leakage circuit for

2128–1 clock cycles before the next bit is leaked.

B. TROJANS IN BASICRSA

The second set of Trojans we will discuss applies malicious inclusions to the

basicRSA circuit found on the site opencores.org. Each benchmark contains three

VHDL files. The high level circuit functionality is defined in rsacypher.vhd. File

modmult.vhd contains multiplication submodules for the basicRSA circuit. Note

that modmult.vhd remains unchanged across all four available benchmarks, with an

MD5 hash of 0x494F66BBAC36397393D842DA7A71911A. The last file in each

benchmark is the test bench rsatest16.vhd. These test benches are similar to one

another, but each one contains inputs specifically chosen to activate the Trojan in the

benchmark circuit that contains that test bench.

Note that if you attempt to analyze these benchmarks in Vivado, it will be

necessary to edit the HDL code in rsacypher.vhd. Due to a typo in this file, circuit

simulation will report a value of 0xUUUUUUUU for the output cypher. This is Vivado’s

representation of an uninitialized value. To correct this, locate the line in process

mngcount that reads:

elsif [sic] count = 0

Change this line to read:

elsif [sic] count /= 0

This change corresponds more closely to comments in the HDL, which state that

this condition should be met on each round of multiplication except the first. Wire

count is only 02 during the first round within a particular encryption.

 58

1. Important Features of the Trojan-Free BasicRSACircuit

The basicRSA circuit is a demonstration circuit for the asymmetric RSA

encryption process. Comments within the code state that this circuit is not meant for use

in production environments. However, the circuit effectively demonstrates the encryption

process because it uses keys small enough to be verified by external analysis.

Like other asymmetric encryption algorithms, RSA makes use of a private key,

held by the keyholder, and a public key, which is available to any party who wishes to

communicate with the keyholder. A communicator can use the public key to encrypt a

message to the keyholder, confident that only the keyholder is capable of reading the

message. Additionally, the keyholder can use the private key to sign a message, allowing

communicators to verify that they did send that message.

In RSA, the two keys are composed of a total of three parts. The private key is

composed of an exponent d and a modulus n. The public key is composed of an exponent

e and the same modulus n. The keys can be used to convert between a plaintext message

m and an encrypted ciphertext c according to the following equations:

c = us (mod n)

m = md (mod n)

Note that the encryption and decryption equations are structurally identical. As a

result, the same basicRSA circuit can be used to perform both tasks.

See Figure 27 for a circuit diagram of the inputs to basic RSA. Bus inMod is

used to input the modulus. Busses inExp and indata are used differently depending

on the current circuit activity. During encryption, indata carries the plaintext message

m, and inExp carries the public exponent e. During decryption, indata carries the

ciphertext c and inExp carries the private exponent d. Note that the signature and

verification process alters the matching of exponents to messages, but inExp is still used

for the exponent and indata is used for the message to be converted.

 59

Figure 27. Inputs of the basicRSA circuit. The key inputs to be aware of are

inExp and indata. Depending on the exact usage case of the circuit,
at least one of these values is secret information not meant to be shared
with the outside world. As a result, the adversary would attack
confidentiality by causing the circuit to leak one or the other of these
values.

The outputs of the circuit are shown in Figure 28. The primary output bus is

cypher, which carries the final result of the RSA process. Since the RSA algorithm is

the same in both directions, cypher can carry either the encrypted message or the

plaintext message. Wire ready is a signal designed to alert surrounding architecture that

the basicRSA circuit has completed the encryption and that another encryption task can

be assigned.

 60

Figure 28. The outputs from the basicRSA circuit. Output cypher carries the

result of the RSA operation. Due to the structure of the algorithm, this
can either be an encrypted ciphertext or a decrypted plaintext. Output
ready notifies surrounding architecture that an RSA operation has been
completed.

2. BasicRSA-T100

The Trojans in the basicRSA benchmarks have the smallest footprint of any

Trojan discussed in this thesis. As shown in Figure 29, the Trojan in basicRSA-T100

is composed of two gates. The comparator eqOp_i serves as the trigger mechanism, and

the trigger output is used as the select bit of mux gate cypher_i. This gate represents

the Trojan functionality. When the Trojan is active, the output of this gate will be one

selected by the adversary. The effect of this choice will be explained in the Functionality

section.

 61

Figure 29. The complete malicious inclusion of basicRSA-T100. Comparator

eqOp_i compares the input indata with 0x44444444. The result of
this operation is used as the select bit for the mux gate cypher_i. The
input I1 of cypher_i is the bus product, which carries the result of
iterative modmult operations. When the RSA algorithm has finished,
product carries the correct final result. Input I0 of cypher_i is
linked directly to circuit inExp. The output of cypher_i feeds
directly to output cypher.

a. Trigger

The trigger in basicRSA-T100 is a simple combinational input. As shown in

Figure 29, the circuit waits for the input 0x44444444 to be sent on input indata.

Vivado represents the input test as a simple equality operation between the input and the

target value.

b. Functionality

The Trojan in basicRSA-T100 overwrites the output cypher with the value

of inExp. Note that in the circuit diagram shown in Figure 29, this is accomplished by

using the result of the input comparison trigger as the select bit for a mux gate. This

Trojan is intended to be used against the keyholder of an RSA private key. Use against

another communicator would allow the adversary to recover the public key, which they

will already have access to. If the adversary recovers the private key, they will be able to

 62

read any messages meant for the keyholder and also produce valid signatures in the name

of that keyholder.

3. BasicRSA-T200

The Trojan in basicRSA-T200 is shown in Figure 30. Like the Trojan in

basicRSA-T100, this Trojan requires only two gates. Note that these gates disrupt

circuit operation at an early stage, and their effects propagate until the final output

cypher is effectively replaced with the original plaintext input.

Figure 30. The complete Trojan in basicRSA-T200. Like basicRSA-T100,

this benchmark triggers on a simple comparison operation.
InputExponent_reg is added as an intermediate storage of inExp
prior to the use of that input for the main RSA operation. If the Trojan is
triggered, this intermediate storage location allows the value of inExp
to be substituted with 0x00000001. The basicRSA circuit will then
conduct encryption or decryption operations using the substitute value.

a. Trigger

The trigger in basicRSA-T200 is a simple combinational test, similar to that in

basicRSA-T100. If the value of indata is 0x01fa0301, the Trojan will be

triggered. As shown in Figure 30, Vivado represents this trigger with a single equality

operation.

 63

b. Functionality

After the appropriate input value is seen, the Trojan in basicRSA-T200 will

perform a simple replacement of inExp. Module modmult will receive the value 0x1

in place of the normal exponent.

The choice of exponent is based on the algorithm used in this circuit. The

basicRSA that these circuits are based on uses a “square and multiply” algorithm to

convert the message. For each bit of the exponent, the circuit will square the current

iteration of the message. If that bit is a 12, then the message will be multiplied by this

square, and the next iteration will be the result of this multiplication. If the bit is 02, then

the squared value will be discarded, and the next iteration will be the same as the current

iteration. The bits of the exponent are evaluated in reverse order, and a special algorithm

is used to prepare the initial iteration of this process. If the least significant bit is 12, the

message is simply loaded as the first iteration of the RSA process. If the bit is 02, then the

value 0x1 is loaded instead. After the message has been subjected to all 32 iterations of

this process, the result is transmitted as cypher.

The adversary selected 0x1 as the replacement value because it completely

disables the encryption process. The least significant bit is 12, which causes the circuit to

load indata for the initial iteration. All other bits in the attacker’s chosen exponent

have a value of 02. As a result, each iteration of the square and multiply algorithm will

simply output the value of the previous iteration. After all 32 iterations are complete, the

final value of product will be indata. This will be transmitted as if it were the result

of the RSA algorithm. If this circuit were being used to encrypt and transmit a message, it

would instead simply be transmitting the message in the clear, readable by anyone who

cared to listen.

4. BasicRSA-T300

a. Trigger

The trigger of basicRSA-T300 is based on a 32-bit counter with an initial

value of 0x0. This counter is shown as a register and 32-bit adder in Figure 31. The

 64

counter increments every time the ds signal becomes 12. The provided test bench sets

this wire to 12 every time a new value is inserted on the indata bus. Since this Trojan

is for demonstration purposes, the creator elected to reduce the triggering value of the

counter to 0x2. This means that when the second encryption begins, the Trojan

functionality will immediately trigger.

Figure 31. The trigger mechanism in basicRSA-T300. The core counter is

composed of register TrojanCounter_reg and adder plusOp_i.
Note that Q value of this register loops back through the adder, which
adds 1 to the value on every loop. Also note that the register will only
update its value if the Q value of TjEnable_reg is 12.

This trigger boasts one additional feature. The counter in this Trojan is tied into

the internal signal TjEnable. If TjEnable carries a 12 signal, the counter will

function as described above. If TjEnable carries a 02 signal, the counter will not

increment. As a result, the Trojan will have a reduced impact on power consumption.

This reduced consumption will interfere with side-channel detection techniques. Note

that the TjEnable signal is set to 12 on a reset, and 02 when the counter has a value of

 65

0x2. This means that once the Trojan has been triggered, the unnecessary counter is

disabled. The only impact on the circuit operation after this point comes from the Trojan

functionality itself.

b. Functionality

The functionality of basicRSA-T300 is the same as that of basicRSA-T100.

When the Trojan has been triggered, the cypher output will be replaced with the provided

exponent inExp. This Trojan can capture both public and private exponents, but is most

useful when used to capture a keyholder’s private exponent.

5. BasicRSA-T400

a. Trigger

The trigger for basicRSA-T400 is identical to that for basicRSA-T300.

Using a 32-bit counter, the Trojan counts 2 encryptions, and Trojan functionality

becomes active at the start of the second encryption. To reduce the Trojan’s impact on

power consumption and make it more difficult to detect, the counter is disabled after the

Trojan is triggered.

b. Functionality

The Trojan in basicRSA-T400 disrupts the RSA encryption by inserting an

additional mux gate between inExp and the modmult module, as shown in Figure 32.

Before the Trojan is triggered, the circuit will function normally. Bus inExp will be

used to control the functionality of modmult, and messages will be encrypted normally.

After the Trojan is triggered, this mux gate will cause modmult to accept the value

0x009add0a in place of inExp. This changes the sequence of multiplication

operations in the RSA process and produces a different final output. The resulting

cyphertext has been encrypted with a key selected by the adversary. As a result, only the

attacker knows the corresponding decryption key.

 66

Figure 32. Circuit diagram of the functionality of basicRSA-T400. The

comparator ItOp_i is the last component of the counter-based trigger
mechanism. The result of this comparison will be used to select between
using inExp to perform the RSA operation, or replacing it with the
adversary’s chosen exponent: 0x009ADD0A.

Note that this attack is most useful when performed against a user who wishes to

encrypt a message and send it to a keyholder. In this scenario, the intended recipient will

be unable to read the message, while the adversary will. If the receiver’s circuit is

subverted by this Trojan during decryption, no one will be able to read the message. If the

adversary uses their decryption key on the result of the attempted decryption, they will

only be able to recover the original ciphertext. Without the corresponding decryption key,

the adversary will remain unable to determine the original plaintext.

C. TROJANS INSERTED IN THE REGISTER TRANSFER LEVEL (RTL)
OF RS232

This benchmark collection includes two major groups of RS232 benchmarks. Due

to changes in the file structure and insertion stage between the two groups, this thesis will

discuss each group separately. The first group, including all benchmarks from RS232-

T100 to RS232-T901, is based on RTL definitions of the RS232 circuit. This is the

same level of abstraction that the authors used to insert Trojan functionality into the AES

and RSA circuits. HDL at this level uses instructions similar to high-level software code,

 67

including if statements and variables. The synthesis tools are responsible for converting

this HDL to a collection of gates that acts according to the RTL specification. The other

group of RS232 benchmarks, ranging from RS232-T1000 to RS232-T2000, has

Trojans inserted at the gate level. This HDL specifies the logical arrangement of every

logic gate in the circuit. Gate-level HDL will be discussed in more detail in Section D.

Benchmarks in this set are composed of four files. File uart.v contains logic for

the top-level RS232 circuit. This circuit instantiates a receiver module provided in

u_rec.v and a transmitter module provided in u_xmit.v. All three of these files also

instruct the synthesis tools to include the contents of file inc.h.

Note that the include directive in every file has a hard-coded path based on the

file structure of the benchmark authors’ computer. In order to synthesize these

benchmarks without an error, it is necessary to change this line, which reads:

`include “/home/salmani_h/Trust_HUB/Trojan_Inserted/inc.h”

or

`include “/home/xuehui/project/benchmark/src/inc.h”

Xilinx is capable of handling relative paths in the include directive, so change the

line to read:

`include .”/inc.h.”

Making this change allows you to import inc.h as though it is another source

file. The circuit will then synthesize correctly.

Note that the authors have not included a test bench for these benchmarks. We

have written 3 test-benches and included them in the additional resources collection for

this thesis.

 68

1. Important Features of the Trojan-Free RS232 Circuit

 The authors have not provided an explicit Trojan-free version of the RS232

circuit. However, we were able to assemble one based on the provided documentation

and the use of MD5 hashes and diff tools. The documentation for each benchmark

identifies modules affected by the Trojan. For example, the documentation for RS232-

T300 states “Trojan trigger is a 32-bit counter inserted in the transmitter part of micro‐

UART core.” The phrase “transmitter part” refers to the iXMIT module, defined in

u_xmit.v. Since the documentation did not make any reference to the iRECEIVER

module, we decided to compare the file u_rec.v to the same file in RS232-T500,

another transmitter-oriented benchmark. We discovered that the only difference between

these files was the hard-coded path in the include directive. Since both benchmarks

provide an identical inc.h file, this difference has no impact on the synthesis process.

I conducted similar comparisons between other files to establish baselines for

each of the files. We assumed that if files of the same name remained identical across

benchmarks, and none of those benchmarks documented changes to the file in question,

then we could accept those files as the original, Trojan-free versions. Unfortunately, only

the inc.h files were truly identical, with all ten versions having an MD5 hash of

0xA410FDE0B28A36ED0A13F0EB962BE60E. For the other files, we needed to

examine the diff results in depth. Using these results, we labeled files as functionally

identical if the only differences between them were in the include directive or in the

placement of white space. We discovered that uart.v remained unchanged across nine

of the benchmarks, and that each of the benchmarks in this collection modified only one

of the HDL files. These will be highlighted in each individual benchmark’s description.

Having determined which files represented my baseline, we assembled a new

Vivado project using u_rec.v and u_xmit.v from RS232-T400, as well as

uart.v and inc.h from RS232-T100. We named this project RS232-TjFree,

according to the convention followed in the AES folders.

The RS232 circuit is meant to be a sub-component of a larger architecture. This

component is used to translate bytes of data into sequences of 1-bit signals that can be

 69

sent, in sequence, from one device to another. The RS232 circuit is also responsible for

converting a received sequence back to a usable byte of data. To accomplish this task, the

circuit includes two nearly separate submodules, as shown previously in Figure 33. To

prevent ambiguity and errors, both submodules and circuits that interact with them use

certain conventions. These conventions dictate the ordering of bits in the transmitted

sequence, as well as the signals to alert nearby circuits regarding when to exchange data

with RS232.

Figure 33. High level schematic of the Trojan-free version of RS232. Note that the

modules iRECEIVER and iXMIT operate in near isolation. They share
the same clock and reset signals, but otherwise, each has its own inputs
and outputs. Module iXMIT converts the byte xmit_dataH into a
series of 1-bit signals transmitted through uart_XMIT_dataH.
Module iRECEIVER does the opposite, accepting a series of bits from
uart_REC_dataH and converting them to the byte rec_dataH.

Figure 33 provides a black box view of the submodules iRECEIVER and

iXMIT. Module iRECEIVER accepts incoming bit sequences on uart_dataH and

converts them to bytes, which are sent on output bus rec_dataH. Note that a sequence

is 10 bits of data. By convention, the first bit, which signals the start of the sequence, is a

02. The last bit is a 12. The 8 bits in the middle are the bits of data from this byte, ordered

from least-significant to most significant. Each bit is maintained for 16 clock cycles, to

 70

allow the receiver to read and operate on it before the next one is presented. Module

iRECEIVER uses a 1-byte register to store these bits, shifting the register contents to

make room for each new bit. Timing is controlled by a state machine with 5 states:

r_START, r_CENTER, r_WAIT, r_SAMPLE, and r_STOP. Figure 34 shows a

representation of this state machine.

Figure 34. A diagram of the state machine in the iRECEIVER module of the

RS232 circuit. Each time the machine leaves the r_SAMPLE state, a
single bit is read from uart_dataH and added to the output register.
State r_WAIT and register bitCellCntrH are used to control timing
between each read operation. States r_START and r_CENTER confirm
the initial 02 bit that signals the start of the message. The transition to
r_STOP occurs after 8 bits have been read and another 15 clock cycles
have passed. This extra time allows the circuit to account for the final bit
of the serial message.

For the benchmarks discussed here, the most relevant states are r_WAIT and

r_SAMPLE. The r_WAIT state will delay for 14 clock cycles, as counted by register

bitCell_cntrH. On the 15th clock cycle, the machine transitions to either

r_SAMPLE, where the next bit is read from uart_dataH, or r_STOP. The 16th clock

cycle allows time for the state machine to transition back from r_SAMPLE to r_WAIT.

A transition to r_STOP occurs when the circuit has already read the 8 bits of this byte.

These bits are counted by register recd_bitCntrH. Then REC_readyH will be set

to 12, and the state machine will transition to r_START. Be aware that some of the

Trojans use the values of registers bitCell_cntrH and recd_bitCntrH as

triggering conditions, so it is useful to recognize their original purpose.

 71

After the last bit in a sequence has been observed, Module iRECEIVER will send

a 12 signal on wire rec_readyH, signifying that data is available to be read. Note that

accurate signaling on this wire is essential for proper interaction with the overarching

architecture. If other circuits in the architecture read data from rec_dataH at the wrong

time, they will receive a partially converted byte, and begin operating on inaccurate data.

Figure 33 also demonstrates the inputs and outputs of module iXMIT. This

module accepts a byte of data on bus xmit_dataH and converts it to a 10-bit sequence

according to the convention described above. This sequence is transmitted through wire

uart_xmitH. To ensure that iXMIT is allowed to complete this task before a new

message is provided for transmission, the wire xmit_doneH is used as an output to the

external architecture. A 02 signal on this wire signifies that the iXMIT module is still in

the process of sending the current byte. If a new input is applied to the xmit_dataH

bus, the resulting sequence will be part of the current byte and part of the new byte.

Ignoring this convention would prevent any decipherable message from being sent.

To control the transmission and timing of each byte, iXMIT uses a state machine

similar to that in iRECEIVER. The states in this module are x_IDLE, x_START,

x_WAIT, x_SHIFT, and x_STOP. In state x_SHIFT, the next bit is transmitted on

uart_xmitH, and the bit count is incremented. State x_STOP represents the

completion of the transmitter conversion process. The Trojans written for the transmitter

have less direct interaction with this state machine than the Trojans written for the

receiver module have with their state machine.

Note that iRECEIVER and iXMIT share the inputs sys_clk and sys_rst_l.

wire sys_clk[sic] is the system clock, used for synchronization purposes. The

sys_rst_l input is the reset input, which allows the circuit to be returned to a pre-

activation state. Note that this reset works differently than the rst wire used in the AES

benchmarks. The RS232 circuits are inactive when sys_rst_l carries a 02 signal. To

send messages, it is necessary to load this input with a sustained 12 signal. A system reset

involves setting the sys_rst_l value to 02, then back to 12.

 72

When this thesis discusses the Trojan functionality contained within each

benchmark, we assume that the surrounding architecture follows the conventions

described above. Several of these Trojans interfere with the wires rec_readyH and

xmit_doneH, which control when nearby circuits attempt to send or collect data. To

fully explain the impact of these Trojans, it is necessary to assume that linked circuits

conform to expected conventions.

2. RS232-T100

The Trojan in RS232-T100 affects only the iRECEIVER module. All

modifications to the HDL code of this benchmark occur in the file u_rec.v. Files

uart.v and u_xmit.v are functionally identical to files of the same name found in

other benchmarks.

a. Trigger

The documentation of RS232 states that the Trojan is triggered by a comparator

across 19 signals. The documentation does not identify those signals. After searching the

HDL code and the schematics, we were able to discern that these 19 signals are the

individual bits of the registers bitCell_cntrH, recd_bitCntrH, and state, and

the output rec_dataH. The relevant registers are shown in Figure 35, along with the

first AND gates involved in funneling all 19 values into a single wire that represents the

triggered state of the Trojan. Register state is the iRECEIVER module’s mechanism

for identifying the current state of the internal state machine. Note that this means that the

Trojan will be triggered at the end of the receiver’s conversion process. The Trojan will

trigger when the following combination of values is observed:

• recd_bitCntrH = 0x3 (3 bits of the key have been read.)

• rec_dataH=0xFF (This register contains some bits from the current

message and some from the previous message. Each of these bits is 12.)

• state = 0x3 (The circuit is in the r_WAIT state.)

 73

• bitCell_cntrH = 0xE (The circuit will be transitioning to the

r_SAMPLE state during this clock cycle.)

Note that the value of recd_bitCntrH is determined by the number of bits that have
been read from a given input. This means that the rec_dataH value is not based on a
single input, but rather the partial combination of two successive inputs. In particular, the
first 5 bits of the initial input must be 111112, and the last 3 bits of the current input
must be 1112. This causes the register to contain 111111112 when recd_bitCntrH
is 0x3. Register bitCell_cntrH is guaranteed to cycle to 0xE once for each bit read,
and the value of state corresponds to r_WAIT, which is part of the reading process.

Figure 35. Partial schematic showing the trigger registers of RS232-T100. These

registers, in conjunction with the current value of rec_dataH, form
the 19-bit trigger value of this Trojan. AND gates are used to funnel
these inputs into a single result wire labelled ena. The world view
above highlights the registers, showing how Vivado places them in the
schematic.

 74

b. Functionality

The Trojan in this circuit is a simple mux gate, which accepts the final trigger

result as the select bit. This gate selects between the correct result of output

rec_readyH and a signal of 02. This means that prior to Trojan activation,

rec_readyH will be 12 when the iRECEIVER circuit has a complete byte of data

ready to be read, but when the Trojan is active, the rec_readyH signal will always be

02. The external architecture will never be notified that there is data available to collect.

A second mux gate selects between the correct rec_dataH result and 0x00. Note that

the documentation only discusses the interference with rec_readyH. The additional

overwrite of the converted data prevents the surrounding architecture from reading any

meaningful answer, even if that architecture is designed to ignore the conventions of

rec_readyH. Both mux gates are shown in Figure 36.

Figure 36. Schematic of the gates controlling the functionality of RS232-T100.

The AND gate ena_i is the last gate in the trigger comparison process.
The result of this operation is used as the select bit for two mux gates.
One gate determines the output rec_readyH, and the other determines
the output rec_dataH. Note that the result of the mux gate
rec_dataH_i is fed back to another area of the receiver sub-circuit. This
allows it to be used as part of the triggering conditional.

 75

3. RS232-T200

Like RS232-T100, this benchmark affects only the iRECEIVER module.

iXMIT will continue to function normally. The Trojan triggers based on a set

combination of values on two internal registers and the module output. After activation,

this Trojan activates a counter. This counter has almost no impact on the circuit.

a. Trigger

The documentation for the benchmark describes the trigger as a comparator

across 16 signals, but fails to identify the signals. The signals, like those in RS232-

T100 are based on internal registers and the output rec_dataH. Note that the register

state is not part of the triggering condition in this trigger. According to the

documentation, the required combination of values to trigger this Trojan is as follows:

• recd_bitCntrH = 0xF

• rec_dataH=0xFF

• bitCell_cntrH = 0xF

Note that as written, it is impossible to activate this Trojan. According to the HDL

code, register recd_bitCntrH will count from 0x0 to 0x8 during the process of

converting a single byte. When the circuit prepares to read the next byte, it will reset

recd_bitCntrH to 0x0. The register will never hold a value of 0xF. In order to

simulate this Trojan, we changed the HDL code to trigger the Trojan when this register

held a value of 0x3, based on the example of RS232-T100. The relevant line in

RS232-T200 is:

Assign […] recd_bitCntrH[0]&recd_bitCntrH[1]&recd_bitCntrH[2]&recd_bitCntrH[3];

The equivalent line in RS232-T100 reads:

Assign[…]recd_bitCntrH[0]&recd_bitCntrH[1]&(~recd_bitCntrH[2]&(~recd_bitCntrH[3]);

b. Functionality

The documentation claims that this Trojan reduces design reliability through the

use of a counter. The HDL does include code to create a counter, which only increments

 76

when the Trojan has been triggered. Note that this counter is never used as an input to

any other part of the receiver sub-module. Because of this, Vivado will not include this

counter or the trigger mechanism in the synthesized or elaborated designs. To produce the

schematic in Figure 37, we added an output to the definition of the receiver module, and

directly assigned count_l as the source of that output. With the output included,

Vivado will actually display the entire malicious inclusion in the schematics and assign

values to Trojan elements in the simulation waveform. Note that the counter still does not

leak information or interfere with any other part of the receiver.

Figure 37. The Trojan in RS232-T200. The three gates shown make up a 10-bit

counter, which increments every cycle while the Trojan is active. Note
that this counter is not used as an input to any other part of the circuit.
Also note that output count_l was artificially added to prevent
Vivado’s automatic optimization from excising both the Trojan and the
trigger.

4. RS232-T300

The RS232-T300 benchmark demonstrates Trojan functionality in the transmitter

module of the RS232 circuit. In this benchmark, u_xmit.v is the modified file. Files

uart.v and u_rec.v are functionally identical to those we used in the Trojan-free

circuit.

 77

a. Trigger

This benchmark uses a 32-bit counter as a Trojan. This counter, shown in Figure

38, begins with a value of 0x0, and increments every time a byte of data is transmitted.

Note that the Trojan functionality in this circuit will not trigger until this counter reaches

a value of 0xFFFFFFFF. In order to simulate this Trojan, we found it necessary to edit

the HDL code in u_xmit.v. We changed the starting value of the counter to

0xFFFFFFFC, which caused the Trojan to trigger after four transmissions. Note that

after activation, the counter resets to the initial value, but the Trojan remains active until

a reset signal is observed.

Figure 38. Partial Schematic of the trigger mechanism in RS232-T300. Register

count_in_reg, the adder, and the mux gate count_in_l form a
counter that is designed to count from 0 to 0xFFFFFFFF. When the
counter reaches the final value, the ROM unit DataSend_ena_reg
will send a 12 signal, representing activation.

b. Functionality

The documentation states that the Trojan will replace the 7th bit of every message

transmitted after activation. After some experimentation, we have concluded that this

statement refers to bit 7, assuming that the least-significant bit is numbered 0. Thus, the

highest order-bit of each byte is set to 12, regardless of its original value. Note that some

messages sent by RS232-T300 will be unaffected because the highest-order bit already

 78

is 12. For example, the byte 0x4C will become 0xCC, but the byte 0xA2 will still be

transmitted as 0xA2.

5. RS232-T400

The Trojan in RS232-T400 does not affect the internal workings of either of the

submodules in the circuit. Files u_rec.v and u_xmit.v are unaltered. Instead, the

authors implemented this inclusion in the file uart.v.

a. Trigger

The Trojan in this benchmark uses a comparison-based trigger, as shown in

Figure 39. This trigger tests the values of rec_dataH and xmit_dataH against

0x4C. If both busses hold this value at the same time, the Trojan will trigger. Note that

the trigger is not saved. When one of these wires no longer holds a 0x4C value, the

Trojan will cease to operate. Note that the HDL code doesn’t directly refer to the value

0x4C. The value is assembled by concatenating X_START, X_WAIT, and X_SHIFT,

which are all values defined in inc.h. The relevant line is:

if((rec_dataH_rec==xmit_dataH)=={x_START,x_WAIT,x_SHIFT[1:0]})

The trigger does not sustain its effect. When either of the triggering inputs

changes to a value other that 0x4C, the Trojan will deactivate the next time

xmit_doneH is 12.

 79

Figure 39. The trigger mechanism of RS232-T400. The RTL_EQ primitive is

responsible for comparing rec_dataH against xmit_dataH. The
result of this operation is fed into ROM cntr_i. If the values are equal,
the value of register cntr_reg will be set to 12. This wire is used as a
select bit for a mux gate, which controls the final rec_dataH output
from the circuit.

b. Functionality

This Trojan partially replaces the data of the output rec_dataH before that data is

transmitted to the rest of the circuit. The replacement is accomplished by shifting all of

the bits in the lower nibble by one place. The least significant bit in the upper nibble is

simply overwritten. A 12 bit is appended to this value to produce a full byte of data. This

process transforms the triggering value of 0x4C into a transmitted value of 0x59. Note

that since the trigger is only active for the duration of the 0x4C input, this is the only

value that will be converted.

 80

Figure 40. The Trojan functionality of RS232-T400. The key feature of this Trojan

is the mux gate rec_dataH_temp_i, which is used to determine
whether the final circuit output should be the correct value of
rec_dataH, as determined by the iRECEIVER module, or a reordered
combination of bits. Note that both iRECEIVER and the overall circuit
have an output labelled rec_dataH. In every other circuit in this
group, the distinction is unnecessary because the module output is fed to
the overall circuit output without modification.

6. RS232-T500

a. Trigger

The module RS232-T500 uses the same trigger mechanism as that in RS232-

T300. A 32-bit counter is incremented after every complete transmission from the

iXMIT module, and after the counter has reached the maximum value, the Trojan

triggers. Note that in order to effectively analyze this Trojan, we alter the HDL code in

u_xmit.v. Based on my modification, the counter’s initial value is 0xFFFFFFFC.

Note that after the Trojan triggers, the counter will return to its initial value, but the

Trojan will remain activated until the circuit is reset.

 81

b. Functionality

After the Trojan in the circuit is activated, the signal xmit_doneH will be stuck

at 02. This signal prevents the external circuit from recognizing that the iXMIT module

is available to transmit more data. The result is a straightforward denial-of-service. Note

that an external architecture could bypass this by sending data to the circuit anyway. The

transmitter would still run through the process of parsing and transmitting the byte.

However, the xmit_doneH convention provides a lock mechanism and reduces race

conditions. Without it, the delineation between messages could be disrupted by other

circuit activity.

7. RS232-T600

a. Trigger

The trigger is activated by a sequence of inputs on xmit_dataH. If the

following sequence is observed, the Trojan will be triggered: 0xAA, 0x55, 0x22, 0xFF.

Note that these inputs must be observed in order and in immediate succession. To control

this, the authors implemented a state machine, shown in Figure 41. Each state represents

a certain stage in the sequence. If the correct value is observed on xmit_dataH, the

machine will transition to the next state. The appearance of another value in the middle of

the sequence will cause the circuit to discard all previously observed sequence values and

start again. Also note that the documentation incorrectly identifies the sequence as 0xAA,

0x55, 0x00, 0xFF. The value 0x22 can be found in the HDL code, and we have

confirmed in simulation that this sequence triggers the Trojan. After the Trojan is

triggered, it will remain active until a reset occurs.

 82

Figure 41. The RTL layout of the state machine that controls the trigger of

RS232-T600. Each state_DataSend_i__# ROM module
represents a potential state. The output of that module is dependent on
the current value of xmit_dataH. The mux gate
state_DataSend_i__4 will only select one of these values to pass
through to state_DataSend_reg. This register actually contains the
select bits responsible for that choice; the current state is responsible for
determining which values can potentially be passed to the register.

b. Functionality

After the Trojan is triggered, the outputs of iXMIT will both be affected. Output

xmit_doneH will be set to 12, ensuring that this circuit announces that it is always

ready to transmit a new message. This means that each byte will be sent to iXMIT as

soon as it exists. If the external architecture wishes to send a lot of data, then the iXMIT

byte could change every clock cycle. Each bit transmitted could come from a different

message. When the circuit does receive a new message to transmit, it will replace the

high-order bit of the message with a 12. When we ran this in simulation using my test-

bench, bytes 0x22, 0x17, 0x11, 0xBA, and 0x41 were transformed to 0xA2, 0x97,

 83

0x91, 0xBA, and 0xC1, respectively. Note that byte 0xBA was essentially unaltered.

Also note that my test-bench was written according to transmission timing, not according

to the convention.

8. RS232-T700

a. Trigger

The trigger in RS232-T700 is identical to that in RS232-T600. The Trojan

will be activated after xmit_dataH carries the following bytes, in immediate

succession: 0xAA, 0x55, 0x00, 0xFF.

b. Functionality

Module RS232-T700 borrows its functionality from RS232-T500. The

xmit_doneH signal is stuck at 02 from activation until the next reset. As long as the

external architecture obeys the condition, iXMIT will never receive another signal to

transmit.

9. RS232-T800

The RS232-T800 benchmark was constructed by modifying the HDL present in

u_rec.v. Files uart.v and u_xmit.v are unchanged.

a. Trigger

The trigger is borrowed from RS232-T100. It triggers based on the presence of

the following register and input values:

• recd_bitCntrH = 0x3

• rec_dataH=0xFE

• bitCell_cntrH = 0x7

• state = 0x3

 84

The trigger is written in such a way that the Trojan will deactivate as soon as any

part of the triggering state changes. This will happen in a single clock cycle, when

register bitCell_cntrH increments.

b. Functionality

The functionality of this circuit produces a subtle error in the interpretation of

messages. When the Trojan in this circuit is triggered, rec_readyH will be set to 12

immediately. Note that recd_bitCntrH has a value of 0x3. This means that

iRECEIVER has not finished converting the current byte. Output rec_dataH is

carrying a value constructed from part of the current byte and part of the previous byte,

but the rec_readyH signal of 12 signifies that data is ready for collection.

The external architecture has been designed to accommodate this convention, and

the byte 0xFE will be immediately collected and subject to whatever operations were

planned for the next byte. The problem becomes worse after 5 more bits have been read.

Now, iRECEIVER actually has finished reading a byte, and rec_readyH will be set to

12 again. The architecture will accept this new value and all subsequent values as

additional data. A byte will have been inserted into the sequence, but everything will

otherwise be in order.

The impact of this depends heavily on the purpose of the overall architecture. For

example, if this RS232 module is accepting a private RSA key from a card reader, that

key is now incorrect. Any signature computed using that key cannot be verified using the

public key.

10. RS232-T900

The benchmark in RS232-T900 was created by modifying the HDL code in

u_xmit.v. Specifically, the authors added an extra state to the existing iXMIT state

machine and defined a process to recognize a sequence of inputs coming into the iXMIT

module.

 85

a. Trigger

The RS232-T900 trigger is similar to the trigger mechanism used by RS232-

T600 and RS232-T700. In this benchmark, the Trojan will trigger after the following

sequence of inputs is encountered in immediate succession: 0xAA, 0x55, 0x22, 0xFF.

Note that the documentation for RS232-T900 incorrectly states that the input sequence

is 0xAA, 0x55, 0x00, 0xFF. The value 0x22 is the third value listed in the HDL code,

and we were able to simulate this Trojan’s activation using that value instead of 0x00.

This trigger uses a simple state machine to track how many of the sequence values

it has seen, and which value it should expect next. Note that if the iXMIT module

receives any value other than the expected value, the state machine will immediately

revert to the starting state, and the expected value will be set to the first value in the

sequence.

b. Functionality

Module RS232-T900 uses a denial-of-service Trojan, designed to lock the

circuit in a non-transmitting state. To accomplish this, an extra state is added to the

transmitter’s internal state machine.

11. RS232-T901

This benchmark is not a distinct Trojan. It is a new version of RS232-T900. The

only distinction between these two benchmarks is the combination used to trigger the

Trojan.

a. Trigger

In RS232-T901, the Trojan will trigger when the following sequence of inputs

is observed on wire xmit_dataH: 0xAA, 0x00, 0x55, 0xFF. Note that these inputs

must be observed in order and in immediate succession. The trigger has no long-term

mechanism for remembering its place in the input sequence.

 86

b. Functionality

Module RS232-T901 uses the same denial-of-service mechanism discussed in

RS232-T900. When the Trojan is triggered, the iXMIT module enters the

x_DataSend state. The circuit will only transition out of this state at circuit reset.

While in x_DataSend, the circuit ignores inputs and makes no changes to the outputs.

D. TROJANS INSERTED IN THE GATE LEVEL OF RS232

The final set of benchmarks demonstrates the insertion of Trojans in gate-level

HDL code. Like those discussed in the previous section, these Trojans target an RS232

implementation. This implementation follows a different file structure than that observed

previously. Instead of a modularized design composed of three files, each benchmark

contains two versions of the file uart.v. One of these is designed for 90 nm circuits,

and the other is designed for 180 nm circuits.

For the purposes of this thesis, we will concentrate our discussion on the 180 nm

version of each benchmark. This decision is based on the fact that several elements of the

provided documentation for each benchmark are drawn from this version and directly

contradict the HDL code provided for the 90 nm version. In particular, each benchmark’s

documentation actually includes a small segment of Verilog code. This code, which

defines the malicious inclusion, is directly copied from the 180 nm version of the circuit.

Using find operations, we have confirmed that the documentation does not precisely

reflect the 90 nm version of uart.v in any of the following benchmarks. At least one of

the documentation-defined gates is missing in every case. In several cases, the 90nm

Trojan does not have any capacity to control output signals that the 180nm Trojan has

direct access to. In order to provide a clear, consistent picture of each Trojan, this thesis

will concentrate on the inclusions reflected in the provided documentation.

Note that none of the provided benchmarks will synthesize in Vivado. These

benchmarks were produced using Synopsys standard libraries, which are not included by

default in Vivado. As a result, any attempt to synthesize uart.v alone will fail. Vivado

will state that modules cannot be instantiated because they are undefined. To fix this, we

 87

wrote a Verilog library containing definitions for each of the missing modules. To

implement these modules correctly, we used the documentation for each library, which

includes a truth table describing the behavior. We would like to thank Dr. Wei (“Vinnie”)

Hu of UCSD for providing starter code for a selection of the Synopsys modules. This

starter code provided a model that allowed us to implement each of the necessary

modules. Note that we have provided two separate libraries in the software artifacts for

this thesis. The first, lib_90.v, will allow you to synthesize the 90 nm version of each

benchmark. The second, lib_180.v, was written for the 180 nm version. In either

case, import the library file to your project as if it were a standard Verilog file. With this

file included, Vivado will be able to run elaboration, synthesis and simulation without

reporting an error.

While using the library will allow Vivado to synthesize each benchmark, you will

discover that it does not synthesize correctly. Vivado’s synthesis tool performs many

optimization steps, which prune redundant or non-transitive logic from each circuit. In

the RS232 circuits discussed in this section, Vivado will optimize away most of the

circuit, including the entire inclusion. We have been unable to completely disable

optimization. However, we discovered that the elaborated design and the behavioral

simulation are not impacted by Vivado’s optimization. Once you have established that

your circuit synthesizes without Vivado reporting an error, you will find it easier to use

the pre-synthesis design for evaluation of each benchmark. If you wish to perform post-

synthesis studies, you can reduce the impact of optimization in the synthesis settings

dialog. Change the setting “flatten hierarchy” to “none.” This will prevent Vivado from

optimizing away some of the modules listed in the HDL code, though it does not protect

every module.

1. Common Features of the Gate Level RS232 Benchmarks

The authors do not provide a Trojan-free implementation of this circuit, and we

have been unable to locate a definite source for the HDL code provided to represent these

circuits.

 88

Due the lack of a Trojan-free implementation, we will use this section to discuss

the common features of these benchmarks, including inputs, outputs, and registers. We

will also provide a brief description of the structure of the malicious inclusion used in this

set. We include this discussion here because, with the exception of RS232-T1800, the

inclusions in this set are variations on a common structure. Later explanations will be

more easily explained in terms of this common structure.

This version of the RS232 module does not list explicit modules for the receiver

and the transmitter, but, it does retain the same set of inputs and outputs as the Trojan-

free RTL circuit shown in the previous section. Input uart_REC_dataH accepts a

sequence of bits, which is converted to the byte rec_dataH and provided to the

external architecture. Output rec_readyH signals the completion of this process. The

8-bit input bus xmit_dataH accepts data from the architecture and converts it to a

sequence of bits. Output xmit_doneH is used to inform the external architecture that

the circuit is ready to accept and transmit another message. The bit sequences follow the

same convention used in the previous RS232 circuits. The transmitter sends a 02 to

signal the start of a new message, sends each bit in order from least-significant to most

significant, and ends the sequence with a 12.

In addition to inputs and outputs, the gate-level implementation of module RS232

seems to use the same registers as the RTL version of the circuit. Note that the gate-level

implementations of module RS232 all include a group of flip-flops with the names

iXMIT_state_reg_0_, iXMIT_state_reg_1_, and iXMIT_state_reg_2.

These flip-flops seem to represent the 3-bit register state from the iXMIT module of

the RTL version of this circuit. Other registers from the RTL circuit also seem to be

represented by flip-flops in the gate-level circuits. This correlation allows us to discuss

the circuit in terms of multi-bit register activity, instead of only discussing the value of

individual bits. This will be particularly significant when discussing the activities of

counters like the transmitter’s bitCountH register.

Figure 42 showcases the structure of a typical inclusion from this set. The exact

layout varies across benchmarks, but each inclusion includes a single gate that marks the

 89

transition between trigger and functionality. In almost every case, this gate is an OR gate

labeled U302. The Y output of this gate, identified as iCTRL in the HDL code, is the

centerpiece of this Inclusion’s design. The results of every gate and module in the trigger

funnel down into this wire, and it is used as the input for all gates in the functionality of

the Trojan. Therefore, the value iCTRL is a direct representation of whether or not the

Trojan has been activated.

Figure 42. A partial schematic representing a typical layout for the inclusion in the

gate-level RS232 circuits. This particular schematic was generated from
RS232-T1000. Note that while each of the structures shown here is
depicted as a custom module, the labels AND2X1, OR4X1, etc…, reveal
them to be implementations of common logic gates. This is a result of
uart.v using gates defined in a non-standard Vivado library.

Note that the value representing an activated Trojan is iCTRL = 02. This is not

listed in the documentation for any of these inclusions. However, every Trojan’s

functionality is built from one or more AND gates, with iCTRL acting as the A input to

each gate. From the AND truth table included in Figure 42, we can see that if iCTRL =

12 then the output value of each AND gate will equal to the B input of that gate. In this

case, the Trojan is not influencing the circuit outputs, so we can state that it is inactive. A

 90

value of iCTRL = 02 forces the output of the AND gate to 02, regardless of the value of

the B input. The Trojan is actively controlling the values of different wires in the circuit,

including, in RS232-T1000, the xmit_doneH output. Therefore, activation occurs

when iCTRL = 02.

The source values that determine iCTRL vary slightly across benchmarks, but the

schematic shown in Figure 42 depicts the most common layout. Specifically, U302’s

inputs are provided by two OR gates, which accept NAND gate outputs as their own

inputs. For the sake of image readability, not all of the NAND gates are shown here. More

detailed and complete views will be provided as needed in individual benchmarks.

Using the known value of iCTRL and the schematic shown in Figure 42, we can

determine wire values required to activate the Trojan. In particular, using the properties

of OR gates, we can establish that the outputs of U296 and U301 must both be 02. If

either of these wires were to carry a value of 12, the iCTRL output would be 12, and the

Trojan would be inactive. Note that U296 and U301 are also OR gates. Therefore, we

can use the same logic to establish that each of their input ports will need a 02 value as

well. In our discussion of RS232-T1200, we will perform a complete trace to determine

all of the source values that affect the wire of iCTRL. This trace should demonstrate the

methodology for finding these source values. For all other circuits in this set, we will

either provide a list of the triggering values and a short summary of differences from the

RS232-T1200 circuit, or we will prove that the Trojan cannot be triggered.

2. RS232-T1000

The first Trojan in the gate-level RS232 group cannot be triggered. This is

because the iCTRL = 02 condition requires a wire to hold a value of 02 and 12 at the

same time. To prove this, and to provide tools that aid the analysis of later sections, we

will continue to trace gate inputs from the inclusion until we can demonstrate this

contradictory requirement.

 91

a. Trigger

Figure 43 continues the trace we began in the previous section. We have already

established that each input to gate U296 must be 02. From the NAND truth table, this

also tells us that every input of gates U293, U294, and U295 must be 12. Note that

U293 is driven directly by flip-flop outputs. With some exceptions, we can accept flip-

flops as value sources in our trace. This is because, using feedback, the flip-flops can

retain a value across multiple clock cycles, independent of the value of circuit inputs. For

example, the iXMIT_state_reg flip-flops form a register that tracks the transmitter’s

internal state machine. This register changes to track the conversion of a byte of data into

a bitstream. However, the value of that byte does not affect the activity of the register.

Thus, these flip-flops serve as source values for our trace.

Figure 43. Partial schematic of the inputs to U296. Remember that we have

previously established that the output and the inputs of U296 must each
have a 02 value in order to trigger the Trojan in this circuit. The NAND
truth table shows the only combination of inputs that will yield 02 as an
output.

 92

Observe the A input to U293. Flip-flop iXMIT_bitCell_cntrH_reg_2_

provides the value for this input. As stated above, this means that the QN output of

iXMIT_bitCell_cntrH_reg_2_ will need to carry a value of 12 in order to trigger

the Trojan in this circuit.

After using gate U292 to determine the output values of the flip-flops above, we

will continue our trace with gate U294. Figure 44 shows this gate, along with the inputs

relevant to our discussion. Remember that the output of U294 is 02, based on the

requirements of U296. The NAND truth table establishes that the inputs of U294 must

then be 12. U88 and U90, as AND gates, will need 12 inputs as well. For U90(A), the

input wire is iXMIT_bitCell_cntrH_reg_0_(QN)

Figure 44. Partial schematic of the inputs to U294. Note that the value of

iXMIT_bitCell_cntrH_reg_2_(QN) is being reused. Many of
the circuits reuse source values and other gates in the trigger mechanism.
This can lead to contradictions like the one discussed here..

Note that iXMIT_bitCell_cntrH_reg_0_ has two output values: Q and

QN. Output QN can also be referred to as “Q not,” since the design of this flip-flop

explicitly establishes these values as opposite. Since QN is 12, we know that Q must be

02. The Q output of iXMIT_bitCell_cntrH_reg_0_ is used as an input to U211,

a NAND gate. As our truth table shows, any 02 input forces the output of U211 to 12,

regardless of other input values.

 93

Now examine U88. Input A, already known to be 12, is also the output of U216,

an XOR gate. The XOR truth table shows that the gate inputs of U216 must have

opposite values. We know the value of the B input from our discussion of U211.

Therefore, U216(A) must have a value of 02. However, this value is

iXMIT_bitCell_cntrH_reg_2_(QN), which we have already established to have

a value of 12. Based on our analysis, the Trojan can only be activated when

iXMIT_bitCell_cntrH_reg_2_(QN) has a value of 02 and 12 at the same time.

Therefore, the Trojan cannot be activated.

b. Functionality

Figure 45 shows the functional portion of this inclusion. Wire iCTRL is used as

an input to each of the displayed AND gates. Note that only one of these AND gates

directly controls a circuit output. The gate U303 can be used to force xmit_doneH to

02, which prevents the RS232 circuit from notifying the larger architecture that it is

ready to send a transmission. Gate U305 has some influence over the

uart_XMIT_dataH output. In addition to the OAI truth table, we have added an

exploded view of the OAI module has been added to Figure 45 to demonstrate the logical

design. Note that if input A0 and input A1 are both equal to 02, the final module output

will be 12. Through U305, the malicious inclusion can force A1 to hold a value of 02,

even when the normal value would be 12. If the A0 output is also 02, then the output

uart_XMIT_dataH will be forced to 12. Note that if B0 has a 02 value, then the

output will already have a 12 value, and no impact will come from this portion of the

Trojan. Based on the analysis of the OAI module, the U305 portion of the Trojan can be

best described as causing reduced accuracy in the transmitted messages.

 94

Figure 45. Schematic of the functional portion of RS232-T1000. Note that U303,

U304 and U305 are all AND gates. All three of these gates share the
common input iCTRL. Module U303 directly controls the circuit output
xmit_doneH, and U305 is only separated from uart_XMIT_dataH
by a single intermediate module. The internal functionality of this OR-
AND-invert (OAI) module is shown in the insert above U3. Module
U304 does not affect the logical operation of the circuit.

The output of U304 is listed in the HDL code as rec_dataH_rec[0].

Searching the schematics and the HDL code, we have been unable to find another place

where this wire is used. We conclude that this portion of the Trojan has no impact on

circuit functionality.

3. RS232-T1100

This Trojan is also unable to trigger due to self-contradictory requirements. Note

that as part of the demonstration of this contradiction, we will delve into the internal

operation of modules U91 and U92, which are part of the trace of most circuits in this

 95

set. These modules are each constructed of a combination of several different gates, and a

detailed knowledge of their structure will add clarity to later discussions.

a. Trigger

Figure 46 demonstrates some of the source inputs to the inclusion in RS232-

T1100. The iXMIT_state flip-flops are particularly relevant to this analysis. Each of

these is required to produce a value of 12 on their QN output in order to meet the

requirements imposed by NAND gate U293.

Figure 46. Partial schematic of U296 and inputs relevant to this discussion. U293

and U294 are both NAND gates with required outputs of 02. As a result,
all of their inputs must be 12. This includes the QN outputs from
iXMIT_state.

 96

Figure 47 shows part of the trace from AND gate U88. By the requirements of

U294, we know that U88’s output must be 12. Only 12 inputs will produce this value, so

we also know the output of U91. You will note that there are two possible input

combinations that can produce the required output of U91. The first combination depends

on iXMIT_state_reg_0_(QN). Due to the conditions imposed by U293, we know

that this wire must carry a 12 input. The A inputs cannot meet the requirements to support

U91(Y) = 12. Therefore, U91 must receive a 02 from its B input, which is provided by

U92.

Figure 47. Partial schematic showing a trace from U88. Of particular interest is the

module U91. In order to add clarity to later discussions regarding this
module, the internal structure is shown here. The truth tables shown here
indicate the possible input combinations at each stage of the diagram.
Note that only one of the inputs to the AND gate must be 02, and that
the other can be 12 or 02 without affecting the final output.

Figure 48 shows the conditions leading to the output of U92. As with U91, this

module allows for some flexibility in its inputs. In this case, either U97 and U96 must

have 12 outputs, or U95 and U93 must have 12 outputs.

 97

Figure 48. Partial schematic of U292 and its inputs. The AOI truth table describes

the possible inputs to this module. Additional tables are used to illustrate
the required values at each intermediate stage of the module.

The NOR gate U95 is determined by the QN outputs of

iXMIT_state_reg_0_ and iXMIT_state_reg_1_. From U293, we know that

both of these values are 12. By the NOR truth table, we can show that this input

combination leads to an output value of 02. The other combination can be eliminated by

an examination of U97. This NOR gate also depends on the value of

iXMIT_state_reg_0_(QN). Once again, U293 has determined that this value is 12.

Any 12 input to a NOR gate forces the output to 02, which prevents U97 from meeting

the 12 output requirement shown in the AOI truth table. As a result, neither U92 nor U91

can satisfy their output requirements, and the Trojan is impossible to activate.

 98

b. Functionality

The functionality in this benchmark is part of that used in RS232-T1000. Figure

49 displays the relevant gates. If it could be triggered, the Trojan would reduce the

accuracy of translated messages by occasionally changing a 02 bit to a 12.

Figure 49. As in RS232-T1000, the Trojan functionality is determined by

iCTRL’s influence over an AND gate. In this case, there is only the
single AND gate U305, which influences, but does not directly control
the transmission output uart_XMIT_dataH.

4. RS232-T1200

Since RS232-T1200 is the first Trojan that does not depend on contradictory

source values to trigger, we will use it to demonstrate the process of discovering the

triggering state required by the gate-level malicious inclusion. In the following section,

we will conduct a complete trace of the inputs feeding the Trojan trigger in RS232-

T1200. This trace will demonstrate the logic used to derive the necessary values and

ensure that the circuit does not depend on a self-contradictory state. For the other

benchmarks in this set, this thesis will only present the input values and a short summary

of the differences between that inclusion and this one.

 99

a. Trigger

We will begin our analysis with a reminder: the Trojan is considered to be active

if and only if the wire iCTRL carries a value of 02. If iCTRL = 12, there is no

alteration to the final outputs of the circuit, and the Trojan is inactive. Note that in most

of the circuits in this set, iCTRL is the Y output of the OR gate U302. In deference to the

HDL code, this thesis will use the name iCTRL.

Figure 50 shows a view of U302 and the two previous levels of the trace for this

circuit. Note that iCTRL is the final result of OR gate U302. We know that, while the

Trojan is triggered, this output has a value of 02. According to the OR truth table, there is

only one input combination that will produce this output. Accordingly, we know that

U296 and U301 also have outputs of 02.

Since U296 and U301 are also OR gates, we can use the same logic to determine

that all of their inputs must also be 02. This accounts for the outputs of U292, U293,

U294, U295, U297, and U300, all of which are 4-way NAND gates. Note that to

produce a 02 output, each of these gates will need to accept only 12 inputs. The truth

tables for these gates will be shown as we discuss each of these gates individually.

 100

Figure 50. Partial schematic showing the trigger of RS232-T1200. For space

considerations, the inputs of the NAND gates have been omitted, but all
6 are 4-input gates. Note that, to produce an output of iCTRL = 02, the
outputs of each of these NAND gates must be 02, as indicated by the OR
truth table.

 101

Figure 51. Schematic for the trace of inputs from NAND gate U292. This gate

directly accepts the Q outputs of iXMIT_state_reg_0_,
iXMIT_state_reg_1_, and iXMIT_state_reg_2_. We will
accept these values as source values.

Figure 51 continues the trace by examining NAND gate U292. Note that for the

B, C and D inputs, we have already reached flip-flops iXMIT_state_reg_0_,

iXMIT_state_reg_1_, and iXMIT_state_reg_2_. We do not need to pursue

these inputs further. The Q outputs of these gates can each be recorded as requiring a 12

value. If we treat iXMIT_state as the state register from the transmitter module, we

are searching for a transmitter state of 1112, which is defined in inc.h as

x_Datasend. You may note that this state was not discussed in the RTL section of this

thesis. It is not part of the state machine described in the RTL source, and we have been

unable to produce this state in simulation of the RS232-T1200 circuit. Note that this is

not a contradiction that cannot be resolved, only a challenge that a computer science

student was unable to meet.

 102

From U292’s A input, our results are less definite. U74, an inverter, must receive

a 02 input, allowing it to produce a 12 value for the NAND gate. The input to U74

comes from the AOI module U75. Observe the AOI truth table. There are actually two

sets of inputs that can produce the correct output from this module. For the first set, A0

and A1 must be 12. For the second set, B0 and B1 must be 12. In either case, we lose the

ability to state the value of the other inputs.

Figure 52 shows the trace from U294. As before, all inputs to this gate must be

12. For AND gates U88, U89, and U90, this means that they must also have 12 inputs.

Note that U90(A) is a flip-flop value: iXMIT_bitCell_cntrH_reg_0_(QN). This

wire carries a 12 value, while the Q output carries a 02. This knowledge is instrumental in

learning additional source values from this schematic.

Figure 52. Schematic of the source values leading to U294. While no flip-flops

directly provide inputs to U294, the AND gate U90 still provides a clear
value for iXMIT_bitCell_cntrH_reg_0_. Using this value and
the properties of U211, U215, U217, and U218, we can determine the
requirements for iXMIT_bitCell_cntrH_reg_1_ and
iXMIT_bitCell_cntrH_reg_3_.

 103

Examine gate U215 in Figure 52. We know that the output of this gate is 12,

because it serves as an input to U89. However, U215 is an XOR gate. A 12 output

requires that the inputs be opposite: 12 and 02. The order is not specified by the

properties of XOR gates. It is specified, however, by our knowledge of

iXMIT_bitCell_cntrH_reg_0_(Q). This wire provides a 02 input as U215’s B

value. Now we know that A, which is iXMIT_bitCell_cntrH_reg_1_(Q), must

be 12.

The flip-flops we have discovered allow us to determine a few wire values going

forward as well. U211, a NAND gate, accepts the exact same inputs as U215. In NAND,

a (12, 02) input combination produces a 12 output. This output is used as an input to

U217. We can see from the NOR truth table that this 12 input is sufficient to force the

output of gate U217 to 02, regardless of the value

iXMIT_bitCell_cntrH_reg_2_(QN) carries.

There are two more logic gates worth examining in this diagram. First, observe

the XOR gate U216. We know that, as an input to U88, U216(Y) must be 12. We also

have determined that U211 has a 12 output. Since U216 is an XOR gate, a 12 output is

the result of accepting a (12, 02) input. The 12 already known, so the other input,

iXMIT_bitCell_cntrH_reg_2_(QN), must be 02.

Now we can examine U218. We know that the output of this gate must be 12, to

satisfy U294. We also know that the B input of this gate is 02. These two pieces of

information allow us to determine that the A input,

iXMIT_bitCell_cntrH_reg_3_(Q), must be 12. Thus, from the schematic above,

we have discovered the following properties of an activated Trojan circuit:

iXMIT_bitCell_cntrH_reg_0_(Q) = 02

iXMIT_bitCell_cntrH_reg_1_(Q) = 12

iXMIT_bitCell_cntrH_reg_2_(Q) = 12

iXMIT_bitCell_cntrH_reg_3_(Q) = 12.

 104

Note that when discussing flip-flops, we will attempt to maintain consistency by

identifying the Q output of each module, even if the QN output was the first output

discovered. This also allows us to discuss the equivalent register value of a group of flip-

flops. For example, the values listed here correspond to a register value of 0xE. In the

RTL version of this circuit, bitCell_cntrH = 0xE was the signal for the transmitter

state machine to place the next sequence bit on wire uart_xmit_dataH. This value is

reproduced on a regular basis as part of the circuit’s operation.

Figure 53. Schematic of the source values leading to U293. The flip-flops shown

here correspond to the RTL register bitCountH. Note that from this
schematic, we can determine a relationship between
iXMIT_bitCountH_reg_1_(Q) and
iXMIT_bitCountH_reg_0_(Q), but we cannot assign precise
values to them.

We will continue our analysis using Figure 53. The displayed module U293 is

one of the NAND gates that provides a 02 value for U296. Thus, we know that all inputs

to U293 must be 12. For U219, an XOR gate, this means that

iXMIT_bitCountH_reg_1_(Q) and iXMIT_bitCountH_reg_0_(Q) must

form a (12, 02) pair, but it does not determine the ordering of that pair. The only rule

imposed on these values is that they must be opposite. Note that this knowledge is still

 105

useful. These two values are reused as inputs to U208, a NAND gate. Since the inputs of

this gate include at least one 02, the output Y must be 12.

Knowing the output of U208, we will now examine U220. By our analysis of

U293, we know that U220(Y) is 12. Input U220(B) is the 12 from U208. With these

two pieces of information, we can determine that the value of U220(A),

iXMIT_bitCountH_reg_2_(QN), is 02.

The last flip-flop value we can determine from this schematic is

iXMIT_bitCountH_reg_3_(Q), which is used as the A input of U222. Like U220,

U222 is an XOR gate with an output of 12. The B input of U222 is U221(Y). Note that

U221 is a NOR gate that accepts U208(Y) and iXMIT_bitCountH_reg_2_(QN),

for a (12, 02) input combination. That means U221(Y) must be 02. Since U222 needs

opposite inputs to produce a 12 output, iXMIT_bitCountH_reg_3_(Q) must be 12.

After examining the schematic in Figure 53, we can state the following:

iXMIT_bitCountH_reg_3_(Q) = 12

iXMIT_bitCountH_reg_2_(Q) = 12

iXMIT_bitCountH_reg_1_(Q) != iXMIT_bitCountH_reg_0_(Q)

Due to the flexibility resulting from iXMIT_bitCountH_reg_1_(Q) and

iXMIT_bitCountH_reg_0_(Q), these results show that the trigger can be activated

if the register bitCountH has a value of either 1310 or 1410. Register bitCountH is

meant to count bits of one message as they are transmitted. After a complete mesage has

been transmitted, the register will be reset to 010 and the count will begin again.

Note that a value of 1310 or 1410 on bitCountH may be unachievable. The

RS232 circuit is designed to transmit and receive single bytes. Under this design,

bitCountH should never hold a value greater than 810. In the gate-level design, input

bus xmit_dataH and output bus rec_dataH are both 8 bits wide. If the circuit

counts a message longer than 8 bits, it has no means to complete the conversion. Note

that we are discussing the value of bitCountH in base 10 notation because that is the

 106

notation used to assign the value of this register in the HDL code defining the RTL

version of the circuit.

Figure 54 shows the source values for NAND gate U295. The A value is

determined by U216, which we have already examined as part of our study of U294.

Recall that, as an input to U88, U216 was required to have a value of 12 on its Y output.

We can confirm that, because U216(Y) is the A input to U295, this requirement holds

without causing a contradiction. Comparing the requirements for each reuse of a module

allows us to confirm that the activation of RS232-T1200 does not depend on

contradictory source values.

Figure 54. Schematic of the source values leading to U295. Note that the A input

of U295 is provided by U216(Y), which we discussed in our
examination of U294. This reuse of source gates is common among the
gate-level RS232 circuits.

Module U295 also tells us the values of three new flip-flops.

iXMIT_xmit_ShiftRegH_reg_7_(Q),

iXMIT_xmit_ShiftRegH_reg_6_(Q), and

iXMIT_xmit_ShiftRegH_reg_5_(Q) must each have a value of 12. Note that

these flip-flops represent the high-order bits of the register xmit_ShiftRegH, which is

used as an intermediate storage for the byte currently being transmitted. Based on the

 107

RTL version of the circuit, bit [0] of the register is used as the value of

uart_XMIT_dataH. After the appropriate time has elapsed, all bits in the register are

shifted one position. The previous bit [1] is now bit [0] and is being transmitted on

uart_XMIT_dataH. The empty value of bit [7] is filled with a 12. After another bit is

transmitted, this 12 will be shifted to bit [6]. Note that after 3 bits of a message have

been transmitted, the Q outputs of these flip-flops are all guaranteed to carry the value 12.

Therefore, this Trojan activation condition can be met regardless of the value of circuit

input bus xmit_dataH.

You may notice that Figures 52 and 53 include gates that have not yet been

discussed. This is a deliberate choice, because gates U91 and U87 are both linked to

source values we have already examined. The analysis so far has been focused on finding

the source values for the trigger in RS232-T1200 by the most efficient means possible.

Since U91 and U87 have more ambiguity in their inputs, we have chosen to use them for

the purpose of confirming the lack of contradictory requirements in this Trojan’s trigger

input sources.

We will begin by examining U91, which is shown in Figure 55. We know, from

U88, U89, and U90 that U91 needs a 12 output. In the interest of verification, we will

actually approach this problem from our known flip-flop values. If we can establish a 12

value for U91(Y), then we can state that our required source values are free of

contradiction.

The first input to U91 is the Y output of U102, which is a NAND gate accepting

iXMIT_bitCell_cntrH_2_(Q), iXMIT_bitCell_cntrH_1_(Q), and

iXMIT_bitCell_cntrH_3_(Q) as inputs. Since all three of these inputs are 12, we

know that U102(Y) = 02. This value, combined with a 12 output from

iXMIT_bitCell_cntrH_0_(QN), results in U101(Y) = 02. We will use this and

iXMIT_state_reg_2_(QN) = 02 to establish that U100(Y) = 12. Through

inverter U99, the A1 input of U91 becomes 02. Value iXMIT_state_reg_0_(QN)

 108

is also 02, meaning that both items in the A pair of U91 are 02. By the AOI truth table

shown in Figure 55, U91(Y) has been confirmed as 12.

Figure 55. Partial Schematic of the source values for U91. Note that the values for

every flip-flop shown here have already been determined. We will use
this diagram for verification purposes.

Observe Figure 56. The final gate in this structure is U87, which connects directly

to U293, as shown in Figure 53. This means that U87’s final output must be 12. Note

that U87 accepts inputs from U218 and U91, both of which have been used in previous

schematics. We have proven that, based on our known inputs, U91 has a 12 input. The

XOR gate U218 was instrumental in determining the value of

iXMIT_bitCell_cntrH_3_(Q). From U294, we know that U218(Y) carries a 12

input. Since we have previously examined the source values of both of these gates, we

can accept these 12 values as valid and prove that U87(Y) is indeed 12.

 109

Figure 56. Partial schematic of the inputs of U87. As with U91, we will use known

values to demonstrate that RS232-T1200 does not contain a
contradiction.

With this confirmation, we have completed the trace of the source values to

U296. Note that all of the flip-flop sources we discovered were part of the transmitter

portion of the RS232 circuit. This seems to be a deliberate design choice by the

inclusion’s designers. The second portion of our analysis will focus on the gates that

serve as inputs to U301. The source values for this portion of the trigger are drawn from

the receiver portion of the circuit. We will begin by discussing U297, which is

determined by the values of 2 registers.

Figure 57 shows the flip-flop sources that are used to determine the output of

U297. Recall that we have already established that output U297(Y) must carry a value

of 02. Because U297 is a NAND gate, all four of its inputs must be 12, according to the

same logic used to determine input values for U292, U293, U294, and U295. This

means we have already determined that iRECEIVER_state_reg_2_(Q) = 12,

 110

iRECEIVER_state_reg_1_(Q) = 12, and iRECEIVER_state_reg_0_(Q)

= 12.

Figure 57. Schematic of the source values leading to U297. Note that U297 can be

used to directly determine the iRECEVER_state values, while
iRECEIVER_bitCell_cntrH requires several stages of analysis.
However, there are no ambiguous input combinations in this set. Each
gate’s required output allows for only one possible combination of
inputs.

We will now investigate U297’s A input, which is provided by the Y output of

U108. If this wire is 12, then U108(A), which is U137(Y), and U108(B), which is

U123(Y), must both be 12 as well.

U123 is a NOR gate, which can only produce a 12 output if both inputs are 02.

These 02s are the QN outputs of iRECEIVER_state_reg_0_ and

iRECEIVER_state_reg_1_. Note that this information is simply a confirmation of

the previously discovered values iRECEIVER_state_reg_1_(Q) = 12, and

iRECEIVER_state_reg_0_(Q) = 12.

Gate U108’s other input is the result of inverter U137. The inverter acts as a

simple NOT gate, so U137’s input, U138(Y), must be 02. We have already discussed

 111

NAND gates like U138. If the output is 02, the inputs must all be 12. This gives us the

values for all of the iRECEIVER_bitCell_cntrH flip-flops. For

iRECEIVER_bitCell_cntrH_0_, U138 uses the QN output, so the Q output is

actually 02. For the other three flip-flops, U138 uses the Q output as its source value.

This means that each of those Q outputs has a value of 12.

In summary, we have discovered the following source values from U297:

iRECEIVER_state_reg_2_(Q) = 12

iRECEIVER_state_reg_1_(Q) = 12

iRECEIVER_state_reg_0_(Q) = 12

iRECEIVER_bitCell_cntrH_3_(Q) = 12

iRECEIVER_bitCell_cntrH_2_(Q) = 12

iRECEIVER_bitCell_cntrH_1_(Q) = 12

iRECEIVER_bitCell_cntrH_0_(Q) = 02

These values represent a state of 1112 for the receiver state machine and a

bitCell_cntrH value of 0xE. Note that this state is not defined in the RTL file

inc.h, and we have been unable to produce it in simulation. However,

bitCell_cntrH = 0xE is a timing condition that is guaranteed to occur once for

every bit that is received by this circuit.

The NAND gate U300 is shown in Figure 58. Trojan activation requires that

U300(Y) = 02, and thus all inputs to U300 must be 12. This proves simple to analyze as

the inputs to U300 are directly provided by the iDatasend flip-flops shown in Figure

58. These flip-flops are documented elements of the inclusion, and we will demonstrate

the analysis of iDatasend_reg_1 in order to provide guidance for later analysis.

 112

Figure 58. Schematic of the source values leading to U300. Note that all of these

values are Q outputs from inserted flip-flop modules.

Figure 59 displays the source values of the iDatasend_reg_1 flip-flop.

Because this flip-flop was added to the as part of the malicious inclusion, we will analyze

its inputs more thoroughly. First, observe input SN. Vivado’s schematics use this wire

shape to represent a constant 12. For our purposes, this means that the condition SN =

0, which is part of the bottom two rows of the SDFFSR truth table, can never exist for

 113

this flip-flop. There are now only two possible combinations that can produce a Q = 1

output from this flip-flop.

Figure 59. Schematic of the source values leading to iDataSend_reg_1. Note

that SN is set to the constant 12, meaning that input combinations in the
bottom most rows of the SDFFSR truth table will never be observed.

We can eliminate one of these combinations from consideration by examining the

SI input. This input is drawn from iXMIT_bitCell_cntrH_0_(Q). In row 4 of the

SDFFSR truth table, we can see a combination that requires SI to be 12. We have

already established that, during Trojan operation, iXMIT_bitCell_cntrH_0_(Q)

= 02. Changing this value alone will cause iDatasend_reg_1(Q) to be set to 02 at

the start of the next clock cycle. This action would deactivate the Trojan.

 114

The first row of the SDFFSR truth table is the only one that can produce a

sustained 12 value. This can be accomplished by four set values being maintained on the

inputs to this flip-flop.

First, RN is required to be 12. RN is produced by a double inversion of

sys_rst_l, which means that RN = sys_rst_l. Recall from our discussion of

circuit features that sys_rst_l is required to maintain a 12 input during normal circuit

operation. The SN = 1 condition is also easily met because the input is the constant 12.

The value of input SE is directly provided by circuit input test_se. The user can

directly set this value to 02. Finally, the D = 12 flip-flop requirement is met because it is

provided by U89(Y), which is also an input to U294. Therefore, if all other triggering

conditions are met, iDatasend_reg_1(Q) = 1 adds only the condition test_se

= 12.

Similar examinations of iDatasend_reg_2, iDatasend_reg_3, and

iDatasend_reg_4 will reveal two additional requirements: input

UART_rec_dataH = 12 and iRECEIVER_rec_datSyncH_reg(Q) = 12.

These are the last driving values for this particular trigger mechanism.

Table 1 presents a summary of the register values we discovered during the

analysis of this circuit. Each set of related flip-flops is grouped together so that the

associated register value can be displayed in association with the appropriate values.

 115

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iXMIT_state_reg_#_ 1 1 1 1112
iRECEIVER_state_reg_#_ 1 1 1 1112

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 1. Table of register values for RS232-T1200. This table represents
grouped flip-flop Q values required to activate the Trojan in RS232-
T1200. We have presented the flip-flops in this fashion so that we
can also present the value of the RTL register, which is useful in
explaining the purpose of each flip-flop group.

Note that in addition to the values shown in Table 1, RS232-T1200 requires the

following values to activate the inserted Trojan:

• UART_rec_dataH = 12

• sys_rst_l = 12

• test_se = 12

• iRECEIVER_rec_datSyncH_reg(Q) = 12

If all of the above conditions are met, iCTRL will carry a 02 value, and the

Trojan will be active.

b. Functionality

The Trojan in this circuit accomplishes part of the functionality shown in

RS232-T1000. In Figure 60, you will observe that iCTRL can be used to force the

output xmit_doneH to 02. This prevents the RS232 circuit from notifying the larger

architecture that the most recent message has been sent. Without this notification, the

architecture will not submit another message, and the system will suffer a denial-of-

service.

 116

Figure 60. The Trojan functionality of RS232-T1200. Note that the value of gate

U303 is used as the output xmit_doneH. This allows the iCTRL wire to
force that output to 02 after the Trojan is triggered.

5. RS232-T1300

a. Trigger

The triggering source values of RS232-T1300 are shown in Table 2. If the Q

output of these flip-flops carries the value shown, then iCTRL will carry a 02 value, and

the Trojan will be activated. Note that the “value” column was added based on the

apparent relationship between these flip-flops and the registers found in the RTL version

of RS232. We selected the base of each value according to the HDL from RS232-

T100. For example, the state values are defined in file inc.h as 3-digit binary values,

while WORD_LEN, which is used in conjunction with register iXMIT_bitCount, is

defined as 810.

 117

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iXMIT_state_reg_#_ 1 1 1 1112
iRECEIVER_state_reg_#_ 1 1 1 1112

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 2. Table of source values for the RS232-T1300 trigger mechanism.
The flip-flops have been grouped into logical registers, to
demonstrate the full value of each group. Note that
iXMIT_xmit_ShiftRegH_reg is actually an 8-bit register, but
that bits 0 through 4 have no impact of the Trojan trigger. Also note
that the outputs iXMIT_bitCount_reg_1_(Q) and
iXMIT_bitCount_reg_0_(Q) must have opposite values, but
that the order of those values does not alter the result of the Trojan
trigger.

The Trigger of RS232-T1300 is similar to that of RS232-T1200, but it is

missing several elements, as shown in Figure 61. In particular, most of the receiver side

logic has been removed from the trigger mechanism. U302 draws its B input directly

from NAND gate U297. Note that U297 still needs to provide an output of 02 to trigger

the Trojan. Source value requirements for this gate also remain unchanged from those in

RS232-T1200. However, U298, U299, U300 and their source values are no longer

relevant to the operation of this Trojan. In particular, the iDatasend flip-flops have

been completely removed from this circuit.

 118

Figure 61. Partial schematic of the trigger for RS232-T1300. This Trojan has a

slightly different structure than that used in other benchmarks in this
group. The OR gate U301 has been removed from the structure, and
NAND U297 is directly connected to U302.

b. Functionality

RS232-T1300 uses similar functionality to the previous gate-level Trojans.

When triggered, this Trojan will force the outputs rec_readyH and xmit_doneH to

02, as shown in Figure 62. This results in a denial-of-service attack against the system.

While these signals are 02, the architecture will not collect data from the receiver or

attempt to send it through the transmitter.

 119

Figure 62. The functionality of RS232-T1300. Note that U304 controls the

rec_readyH output, and U303 controls xmit_doneH. Since both are
AND gates, the iCTRL wire can be used to force these outputs to 02.

6. RS232-T1400

a. Trigger

The Trojan in RS232-T1400 cannot trigger as designed, because the triggering

state requires mutually exclusive output values from a flip-flop. The relevant gates are

shown in Figure 63. Wire iCTRL is the Y output of the OR gate U302. To achieve an

output of iCTRL = 02, all of the inputs to U302 must also be 02.

 120

Figure 63. Partial schematic of the trigger mechanism of RS232-T1400. Only the

gates that display the contradictory requirements are shown here. The Y
output of U302 is iCTRL, which represents the activation state of the
Trojan. For the Trojan to be active, this output must have a value of 02.
Truth tables have been provided for the relevant gates. The highlighted
entry in each truth table represents the output required to activate the
Trojan.

Similarly, U301 must accept only 02 inputs, to insure that its output meets the

required condition of serving as a 02 input to U302. Note that the C and D inputs of

U301 are provided by U299 and U300, which are both NAND gates. As shown in the

NAND truth table, both of these gates will need to accept only 12 inputs. For U300(C),

this can be provided directly by iRECEIVER_bitCell_cntrH_reg_0_(Q). For

U299(C), the 12 is provided by U127.

As an AND gate, U127 will also need 12 inputs. One of the inputs to U127 is

iRECEIVER_bitCell_cntrH_reg_0_(QN). Note that QN is “Q not,” or the

opposite of Q. Since we already established the Q output of this flip-flop as 12 to meet the

conditions of U300, QN must be 02. This forces the output of U127 to 02, meaning that

 121

the required Trojan activation conditions cannot be met. As a result, RS232-T1400 is

incapable of altering the outputs of the circuit.

b. Functionality

The functionality of RS232-T1400 is borrowed directly from RS232-T1200.

An AND gate, identified in the HDL source as U303, links the iCTRL wire to the

xmit_doneH output. If the Trojan were able to be triggered, then iCTRL would be set

to 02, as the conclusion of that triggering process. As a result, the AND gate U303 would

force xmit_doneH to hold a 02 value as well. This will act as a denial-of-service by

preventing the circuit from reporting that it is ready to transmit another message.

7. RS232-T1500

a. Trigger

The trigger mechanism of RS232-1500 is slightly different than that of

RS232-T1400, but it suffers from the same flaw. The flip-flop

iRECEIVER_bitCell_cntrH_reg_0_ is required to produce the same values on

its Q and QN outputs. Without both of these outputs being equal to 12, the conditions for

iCTRL = 02 cannot be met. However, Q and QN are, by the design of the flip-flop,

guaranteed to have opposite values. Therefore, this Trojan cannot trigger.

b. Functionality

The functionality in this circuit is an exact match to that in RS232-T1000. The

iCTRL wire has direct control over the xmit_doneH output and partial control over the

uart_XMIT_dataH output. If iCTRL were able to hold a value of 02, it could prevent

future messages from being provided to the RS232 circuit and potentially alter the

current message by changing some 02s to 12s. A third AND gate accepts iCTRL as an

input, but the output of that gate doesn’t interact with any other part of the circuit.

 122

8. RS232-T1600

a. Trigger

The triggering values of RS232-T1600 are shown in Table 3. The

iXMIT_state_reg flip-flops are still found in the trace, but they are not directly

connected to a NAND gate as they are in most other benchmarks in this group. As a

result, these flip-flops to not have a definitive requirement for a 12 value as they do in

most of the other circuits in this set.

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_state_reg_#_ ? ? ? unknown
iRECEIVER_state_reg_#_ 1 1 1 7

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 3. Table of triggering inputs for RS232-T1600. Note that inclusion
in this circuit does not link directly to the XMIT_state_reg flip-
flops. These source values are now fed to the Trojan by way of XOR
gates, an approach that adds flexibility to their required values.

b. Functionality

The functionality in this circuit is borrowed from RS232-T1300. When active,

the Trojan will force the outputs xmit_doneH and rec_readyH to 02. These outputs

are necessary to coordinate message transmission and collection with the larger circuit.

As long as these are held at 02, no new messages will be sent, and received messages will

not be collected. The result is a complete denial-of-service on the RS232 circuit.

 123

9. RS232-T1700

a. Trigger

Table 4 shows the required Q outputs for each register in the RS232-T1700

trigger. For this benchmark, RS232-T1900, and RS232-T2000, an additional

requirement has been added. A new circuit input, ena, has been added, as shown in

Figure 64. This input serves as the A input for all of the NAND inputs in this circuit. As a

result, the trigger now includes a requirement that ena = 12. This will fulfill the A=1

requirement for each of the NAND gates in the inclusion. If all other requirements are

met, then the Trojan will trigger.

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_state_reg_#_ 1 1 1 1112
iRECEIVER_state_reg_#_ 1 1 1 1112

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 4. Table of flip-flop Q values required to trigger the Trojan in
RS232-T1700. Note that this table does not include
iRECEIVER_bitCell_cntrH. The flip-flops for that register are
not found in the structure of RS232-T1700’s trigger.

 124

Figure 64. Partial schematic of the trigger mechanism for the RS232-T1700

benchmark. This schematic illustrates the new ena input wire that was
added as part of this inclusion. In this benchmark, ena is used as an
input to each of the NAND gates in the inclusion. This replaces some of
the intermediate inputs that were used to control the Trojan in other
benchmarks in this set.

b. Functionality

In this circuit, iCTRL controls only the output signal xmit_doneH. Without the

coordination provided by this signal, the larger architecture will not provide any new

messages to be transmitted to other devices. This results in a denial-of-service attack

against the transmitter portion of RS232.

 125

10. RS232-T1800

The RS232-T1800 circuit is unique in this collection. The entire inclusion is

composed of four gates, which have almost no interaction with the rest of the circuit.

Figure 65. The complete inclusion in RS232-T1800. Note that the output of the

final INV gate is not used anywhere else in the circuit. The Trojan is
almost completely isolated from the rest of the circuit, sharing only the
sys_clk input.

a. Trigger

The Trojan in this circuit is controlled by an extra input wire, ena, which is

shown in Figure 65. In this case, ena = 12 represents an active Trojan. This allows the

output of AND gate U300 to change according to sys_clk. The value ena = 02

would completely disable the additional functionality of these gates.

b. Functionality

It is not clear exactly what this Trojan accomplishes. The documentation states

that the Trojan will “reduce design reliability,” but does not explain how. The final output

of the inclusion, sys_clk_hh, is not used anywhere else in the circuit. Note that this

Trojan does cause a group of internal wires to rapidly alternate values. This action is

similar to the battery draining register used in several of the AES designs. We have been

unable to determine any other potential explanation for this Trojan’s functionality.

 126

11. RS232-T1900

a. Trigger

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iXMIT_state_reg_#_ ? ? ? unknown

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 5. Table of flip-flop Q values required to trigger the Trojan in
RS232-T1900. Note that the iRECEIVER conditions have all been
removed from this inclusion.

Figure 66. Schematic showing the inclusion in RS232-T1900. Note that U302

has been replaced by U296. In addition, the circuit is dependent on 12
values on ena and the iDatasend flip-flops.

 127

The trigger in RS232-T1900 does not include the 2-way OR gate U302.

Instead, iCTRL is provided directly by the 4-way OR gate U296, as shown in Figure 66.

This gate still accepts inputs from NAND gates, but source values now include circuit

input ena and the iDatasend flip-flops. Each of these extra source values needs to

provide a 12 value to meet Trojan conditions.

b. Functionality

The Trojan in RS232-T1900 performs a denial-of-service against the

transmitter portion of the circuit, just like RS232-T1200 and RS232-T1400. This is

accomplished by forcing the value of xmit_doneH to 02. If the overall architecture

follows the conventions of this circuit, then no new messages will be provided for

transmission until xmit_doneH carries a 12. This delays the next transmission for as

long as the Trojan remains active.

12. RS232-T2000

a. Trigger

Table 6 lists the flip-flop values required to trigger the Trojan in RS232-T2000.

This group is supplemented by the flip-flop iDatasend_reg. To trigger the Trojan,

iDatasend_reg must have a Q output of 02 at the same time that all of the listed flip-

flop conditions are met, and the input ena carries a 12 signal.

Register 3 2 1 0 Value
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14
iXMIT_state_reg_#_ 1 1 1 1112

Register 7 6 5 Value
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF

Table 6. Triggering inputs for RS232-T2000. Note that the receiver-side
logic has been completely removed from this inclusion’s trigger.
Instead, the B input of U302 is provided by the flip-flop
iDatasend_reg

 128

There are two possible input combinations that will assign a value of 02 to

iDatasend_reg’s Q output. These combinations are shown in Table 7. Note that once

a value is assigned to Q, it will remain assigned until an input configuration is seen that

forces the value to change.

 First Second
sys_clk rising rising
ena 1 1
sys_rst 1 1
iRECEIVER_rec_datSyncH_reg(Q) 0 x
test_se 0 1
iRECEIVER_par_dataH_reg_7_(Q) x 0

Table 7. Table listing the source values required to set iDatasend(Q) =
02. Wires sys_clk, ena, sys_rst, and test_se are circuit
inputs. The other values identified here are flip-flop outputs.

b. Functionality

When activated, RS232-T2000 conducts a denial-of-service against the

transmitter and receiver portions of the circuit. This is accomplished by forcing both

xmit_doneH and rec_readyH to hold a value of 02 for as long as iCTRL has a value

of 02. Note that this is the same mechanism used in RS232-T1300 and RS232-

T1600.

 129

V. CONCLUSION

A. SUMMARY

Of the benchmarks we have examined, the AES benchmarks are the best suited

for use by researchers with limited prior exposure to the resources at the Trust-Hub

website [8]. This is based on several distinct features of this benchmark set. First, each

benchmark’s documentation explicitly identifies the triggering condition for that

benchmark. The documentation also describes what effect the Trojan will have when it

has been activated.

Second, each AES Trojan is designed in a modular structure, with the trigger and

functionality each being written in a separate file. This feature greatly simplifies static

HDL analysis. Note that there are a few exceptions, most notably AES-T1800 and

AES-T1900, each of which merges the trigger and functionality into a single module.

Also note that the Trojans in these benchmarks actually operate in isolation from the

AES_128 module. These Trojans accept the same input busses as the Trojan-free circuit,

but they do not actually alter existing output busses. Instead, they provide alternate

channels for the leakage of secret information.

The next significant feature of this benchmark set is the inclusion of a Trojan-free

implementation of AES_128 with each benchmark. This circuit can serve as a ‘control’

circuit for simulation purposes, allowing a researcher to compare the activity of a Trojan-

inclusive circuit with that of a Trojan-free circuit.

Finally, each of the AES benchmarks includes a selection of test benches. These

test benches have been written so that they actually provide the input values required to

activate the combinatorial and sequential triggers among the AES Trojans. Note that none

of the provided test benches will cause the activation of the counter-based AES Trojans

to activate.

The basicRSA benchmarks are somewhat less easy-to-use than the AES

benchmarks. However, the basicRSA benchmarks do share some of the advantages of

the AES benchmarks. The benchmark documentation for each of these circuits does

 130

describe the activation condition and functionality of the Trojan. Each benchmark also

includes a dedicated test bench designed to trigger the Trojan in that benchmark. Note

that while the benchmark archives do not actually include a Trojan-free implementation

of the circuit, one can be found at the opencores.org website.

The key distinction between the AES circuits and the basicRSA circuits is

found when we attempt to perform static analysis on the HDL code. The basicRSA

benchmarks do not assign specific modules or files to the Trojan aspects. This makes

them slightly more difficult to analyze, but also allows them to be more easily merged

with the existing circuit. The basicRSA circuits actually alter the function of the core

circuit, causing the final output bus to produce different values, including the direct

leakage of the private exponent. Note that the difficulty of analyzing the HDL is

mitigated by the liberal use of comments in rsacypher.vhd. The HDL defining the

inclusion is specifically identified in comments within each instance of this file.

It will be more difficult for a researcher to develop familiarity with the RS232

benchmarks. The difficulties in these benchmarks are the result of synthesis challenges

and limited documentation. We have made an effort to address these difficulties here in

this thesis. Note that we have provided a method for constructing a Trojan-free

implementation of the RTL version of RS232, but we have been unable to find a Trojan-

free circuit to use in conjunction with the gate-level benchmarks. Note that none of the

RS232 benchmarks have been provided with a test bench. We have written test benches

that correctly trigger Trojans in the RTL set of benchmarks. These test benches can also

be used to simulate normal operation of any of the gate-level implementations of RS232.

Note that we have been unsuccessful in our efforts to develop a test bench that will

trigger the Trojans in any of the gate-level implementations.

Five of the 10 RTL-based benchmarks accurately identify their triggering

condition. RS232-T600 and RS232-T900 list an incorrect combination, and RS232-

T100, RS232-T200, and RS232-T800 provide an incomplete description of their

triggering conditions. In particular, the documentation for each of these three benchmarks

 131

defines the number of signals that control the Trojan trigger, but does not specifically

identify what signals are used, or what values they need to hold.

The documentation in the gate-level RS232 benchmarks doesn’t discuss source

values for the Trojan trigger mechanism at all. Instead, the documentation identifies the

activation probability for each Trojan, and shows statistics from tests performed by the

benchmark authors. The documentation also lists added lines of HDL, which proved

useful in tracing through the circuit diagrams in order to determine the values required to

activate each Trojan.

The RS232 benchmarks also require additional editing in order to synthesize

correctly in Vivado. The files in the RTL version of these benchmarks contain an

include directive with a hard-coded path that needs to be rewritten in order for the

benchmark to be used on a computer other than the original author’s. The gate-level

benchmarks are based on a library that is not available for use in Vivado. In conjunction

with this thesis, we have provided a substitute library that provides a logical

implementation of each module required by the RS232 gate-level benchmarks.

B. FUTURE WORK AND LESSONS LEARNED

In this thesis, we have analyzed 46 of the 92 benchmarks available on Trust-

Hub [8]. We focused this thesis on those that we were able to provide an in-depth

analysis of, with a preference for the largest benchmark sets, namely AES and RS232. It

would be helpful for future researchers to complete this study, providing a full, in-depth

description of each of the remaining benchmarks. Note that many of these benchmarks

are gate-level designs that will be easier to synthesize using the libraries lib_90.v and

lib_180.v.

Future researchers should also conduct an evaluation of existing Trojan detection

and mitigation techniques against the benchmarks in this collection. The purpose of this

study would be to evaluate the usefulness of these Trojans as common benchmarks. If

existing techniques can be effectively applied against these Trojans, then new techniques

can be evaluated against them as well. The common frame of reference will provide a

more meaningful tool for evaluating detection and mitigation techniques against one

 132

another. If there are difficulties in applying a particular detection method, then the results

of that investigation can be used to improve the structure of the available benchmarks.

In addition to conducting analysis against the existing benchmarks, researchers

should consider expanding the collection. Only 15 different circuits are represented

among the benchmarks at the Trust-Hub website [8], counting the RTL and gate-level

versions of RS232 separately. The vga_lcd circuit is represented by only a single

benchmark. We propose that the collection be expanded to include a wider array of

benchmarks. Based on our research here, we would like to propose some structural

elements that can be incorporated into future benchmarks.

C. ELEMENTS OF FUTURE BENCHMARKS

This section is meant to serve as a high-level sketch of future benchmarks that can

be added to the collection at [8], based on our experiences in simulating the circuits

discussed in this thesis. It is our hope that the incorporation of features discussed here

will make it easier for new researchers to use this collection as a common source of

standard benchmarks when conducting research into Trojan detection and mitigation.

The first benchmark feature we will discuss here is documentation. Based on our

experiences with RS232 benchmarks, we propose that documentation of all future

benchmarks include, at minimum, the following features:

• A short description of the Trojan-free circuit, including its purpose, inputs

and outputs.

• A detailed list of all register and input values required to activate

combinatorial or sequential triggers, if applicable. If the trigger is based on

a counter, the description of the trigger should identify whether the

counter counts clock cycles or circuit operations.

• A description of the Trojan’s impact on the circuit after activation. Ideally,

this description will include a listing of expected values based on a test

bench that is provided as part of the benchmark archive.

 133

• If a Trojan-free implementation of the circuit is not already provided in a

benchmark archive, the documentation should identify the source of the

original circuit. This may be a website like opencores.org, or an

explanation of the use of tools for automatic HDL generation.

The structure of future Trojans will vary dramatically, but we propose that the

trigger and the functionality for each Trojan be written as separate modules. These

modules will allow a new researcher to more quickly perform a static analysis of the

changes to the HDL between different benchmarks. Note that not all HDL changes will

be part of these modules. The AES Trojans discussed in this thesis treated the Trojans as

completely separate circuits, and as a result, the aes_128 module remained unchanged.

While this technique produces the simplest analysis, it limits the creation of Trojans that

interfere with circuit outputs or make use of internal registers. Therefore, we suggest that

the trigger and functionality modules be instantiated within the modified circuit. This

represents a compromise between the versatility of the Trojan and the ease of analysis for

a researcher new to the benchmarks.

Figure 67. A portion of the Trojan-free AES circuit diagram. We will use this to

identify specific internal wires and busses that can be used as inputs to a
Trojan_trigger module or outputs form a TSC module, similar to
those used in earlier AES benchmarks.

 134

As an example, we propose a high-level sketch of an AES Trojan that is

incorporated into the AES circuit. Examine Figure 67. This figure displays 3 rounds of

the AES encryption process. We propose the addition of two modules:

Trojan_trigger and TSC.

The Trojan_Trigger module will accept the bus state_out of module r4

as an input and produce a single-bit wire tj_trig as an output. Internally,

Trojan_Trigger will compare bus state_out of module r4 to the preselected

value 0xAAAA…AAAA. If these values are identical, then tj_trig will be set to 12.

Because the AES circuit does not include a reset signal, Trojan trigger will also include a

32-bit counter that increments every clock cycle while tj_trig = 12. When this

counter reaches a value of 0xFFFFFFFF, tj_trig will be set to 02, and the counter

will be reset to 0x0.

Module TSC will accept tj_trig and bus state_out of r4 as inputs, and

the output of TSC will act as bus state_in of module r5. While tj_trig = 02,

TSC will feed bus state_out of module r4 directly to bus state_in of module r5,

exactly as shown in Figure 67. When tj_trig = 12, TSC will instead use a chosen

plaintext value as bus state_in of module r5.

The proposed Trojan serves primarily as an attack against reliability. After a

plaintext/key combination produces the correct output from module r4, future outputs

from the circuit will be based on the encryption of the attacker’s chosen plaintext. Note

that the attacker might be able to use this plaintext and the resulting ciphertext to

determine the value of roughly half of the intermediate round keys used during the

encryption. If the key expansion algorithm is known, the attacker may even be able to use

this information to determine the original value of circuit input key.

The Trojan discussed above interferes with the internal operation of the module

aes_128, but also allows the benchmark authors to implement the trigger and

functionality as dedicated, easily-analyzed modules. We believe that this will be a

valuable aid to researchers who do not have a pre-existing familiarity with the

benchmarks.

 135

APPENDIX. RESOURCES

As part of this thesis, we have created several Verilog files that should assist the

reader in simulating the benchmarks in the RS232 set. These additional resources can be

found at https://calhoun.nps.edu/handle/10945/45406. At this URL, you will find an

archive named Slayback_thesis_resources.zip. Within that archive, we have

supplied 5 Verilog files and a readme explaining the purpose of each file.

The files lib_90.v and lib_180.v are library files that provide definitions

for several modules required by the benchmarks RS232-T1000 through RS232-

T2000. None of these benchmarks will synthesize unless you include the appropriate

module library. To do this, follow the project creation process as described in Chapter III.

When selecting source files to build the project, add uart.v from the benchmark

archive, then add one of these libraries. Use lib_90.v with the 90nm version of each

benchmark and lib_180.v with the 180nm version. Once the project has been built

with these files, synthesis and elaboration can be conducted without error.

The remaining files are test benches. Section III-D explains how to import a test

bench into an existing project. These test benches were designed as baseline test benches

for the RTL versions of RS232. For receiver-based Trojans, such as those in RS232-

T100 and RS232-T200, use the test bench test_rs232_rec.v. This file provides

10 input sequences to the receiver, but none to the transmitter. For transmitter-based

Trojans, such as RS232-T300 and RS232-T500, use test_rs232_rec.v. For

consistency, this test bench provides the 10 values from test_rs232_rec.v as 1-

byte inputs. Some changes to this sequence may be required to trigger an individual

Trojan.

The last test bench, test_rs232_400.v, provides 4 inputs each to the

receiver and transmitter modules. This file can be used to conduct experiments with

Trojans that depend on simultaneous activity in both modules.

Note that we have used these test benches on the gate-level RS232 benchmarks.

We have been able to simulate normal RS232 activity, but we have been unable to trigger

https://calhoun.nps.edu/handle/10945/45406

 136

the Trojan contained in any of the benchmarks from RS232-T1000 through RS232-

T2000.

 137

LIST OF REFERENCES

[1] J. Markoff, “Old trick threatens the newest weapons,” New York Times, p. D1,
Oct. 27, 2009.

[2] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5, pp. 34–39,
May 2008.

[3] X. Wang, M. Tehranipoor and J. Plusquellic, “Detecting malicious inclusions in
secure hardware: Challenges and solutions,” in Proceedings of the IEEE
International Workshop on Hardware-Oriented Security and Trust (HOST),
Anaheim, CA, Jun. 2008, pp. 15–19.

[4] R. Karri, J. Rajendran, K. Rosenfeld and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware Trojans,” IEEE Computer, vol. 43, no. 10,
pp. 39–46, Oct. 2010.

[5] F. Wolff, C. Papachristou, S. Bhunia and R. S. Chakraborty, “Towards Trojan-
free trusted ICs: Problem analysis and detection scheme,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE), Munich,
Germany, Mar. 2008, pp. 1362–1365.

[6] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans in third-
party digital IP cores,” in Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), San Diego, CA, Jun. 2011, pp.
67–70.

[7] M. Banga and M. S. Hsiao, “A region based approach for the identification of
hardware Trojans,” in Proceedings of the IEEE International Workshop on
Hardware-Oriented Security and Trust (HOST), Anaheim, CA, Jun. 2008, pp. 40–
47.

[8] Trust-HUB Resources: Benchmarks. [Online]. Available: https://www.trust-
hub.org/resources/benchmarks. Accessed Jun. 19, 2015

[9] S. Kutzner, A. Y. Poschmann and M. Stöttinger, “Hardware Trojan design and
detection: A practical evaluation,” in Proceedings of the Workshop on Embedded
Systems Security (WESS), Montreal, Canada, Sept. 2013, pp. 1–9.

[10] Y. Alkabani and F. Koushanfar, “Consistency-based characterization for IC
Trojan detection,” in Proceedings of the International Conference on Computer-
Aided Design (ICCAD), San Jose, CA, Nov. 2009, pp. 123–127.

https://www.trust-hub.org/resources/benchmarks
https://www.trust-hub.org/resources/benchmarks

 138

[11] D. McIntyre, F. Wolff, C. Papachristou, S. Bhunia and D. Weyer, “Dynamic
evaluation of hardware trust,” in Proceedings of the IEEE International Workshop
on Hardware-Oriented Security and Trust (HOST), San Francisco, CA, Jul. 2009,
pp. 108–111.

[12] J. Li and J. Lach, “At-speed delay characterization for IC authentication and
Trojan horse detection,” in IEEE International Workshop on Hardware-Oriented
Security and Trust (HOST), Anaheim, CA, Jun. 2008, pp. 8–14.

[13] M. Hicks, M. Finnicum, S. T. King, M. Martin and J. M. Smith, “Overcoming an
untrusted computing base: Detecting and removing malicious hardware
automatically,” in Proceedings of the IEEE Symposium on Security and Privacy
(SP), Oakland, CA, May 2010, pp. 159–172.

[14] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang and Y. Zhou, “Designing and
Implementing Malicious Hardware.” in Proceedings of the 1st USENIX Workshop
on Large-Scale Exploits and Emergent Threats (LEET), San Francisco, CA, April
2008, pp. 1–8

 139

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	I. INTRODUCTION AND MOTIVATION
	II. RELATED WORK
	III. METHODOLOGY
	A. GETTING THE BENCHMARKS
	B. SOURCE CODE ANALYSIS
	C. SETTING UP THE ENVIRONMENT
	D. SYNTHESIZING AND VIEWING A CIRCUIT
	E. VIEWING SCHEMATICS
	F. SIMULATION

	IV. BENCHMARKS
	A. TROJANS IN AES_128
	1. Important Features of the Trojan-Free AES_128 Circuit
	2. AES-T100
	a. Trigger
	b. Functionality

	3. AES-T200
	a. Trigger
	b. Functionality

	4. AES-T300
	a. Trigger
	b. Functionality

	5. AES-T400
	a. Trigger
	b. Functionality

	6. AES-T500
	a. Trigger
	b. Functionality

	7. AES-T600
	a. Trigger
	b. Functionality

	8. AES-T700
	a. Trigger
	b. Functionality

	9. AES-T800
	a. Trigger
	b. Functionality

	10. AES-T900
	a. Trigger
	b. Functionality

	11. AES-T1000
	a. Trigger
	b. Functionality

	12. AES-T1100
	a. Trigger
	b. Functionality

	13. AES-T1200
	a. Trigger
	b. Functionality

	14. AES-T1300
	a. Trigger
	b. Functionality

	15. AES-T1400
	a. Trigger
	b. Functionality

	16. AES-T1500
	a. Trigger
	b. Functionality

	17. AES-T1600
	a. Trigger
	b. Functionality

	18. AES-T1700
	a. Trigger
	b. Functionality

	19. AES-T1800
	a. Trigger
	b. Functionality

	20. AES-T1900
	a. Trigger
	b. Functionality

	21. AES-T2000
	a. Trigger
	b. Functionality

	22. AES-T2100
	a. Trigger
	b. Functionality

	B. TROJANS IN BASICRSA
	1. Important Features of the Trojan-Free BasicRSACircuit
	2. BasicRSA-T100
	a. Trigger
	b. Functionality

	3. BasicRSA-T200
	a. Trigger
	b. Functionality

	4. BasicRSA-T300
	a. Trigger
	b. Functionality

	5. BasicRSA-T400
	a. Trigger
	b. Functionality

	C. TROJANS INSERTED IN THE REGISTER TRANSFER LEVEL (RTL) OF RS232
	1. Important Features of the Trojan-Free RS232 Circuit
	2. RS232-T100
	a. Trigger
	b. Functionality

	3. RS232-T200
	a. Trigger
	b. Functionality

	4. RS232-T300
	a. Trigger
	b. Functionality

	5. RS232-T400
	a. Trigger
	b. Functionality

	6. RS232-T500
	a. Trigger
	b. Functionality

	7. RS232-T600
	a. Trigger
	b. Functionality

	8. RS232-T700
	a. Trigger
	b. Functionality

	9. RS232-T800
	a. Trigger
	b. Functionality

	10. RS232-T900
	a. Trigger
	b. Functionality

	11. RS232-T901
	a. Trigger
	b. Functionality

	D. TROJANS INSERTED IN THE GATE LEVEL OF RS232
	1. Common Features of the Gate Level RS232 Benchmarks
	2. RS232-T1000
	a. Trigger
	b. Functionality

	3. RS232-T1100
	a. Trigger
	b. Functionality

	4. RS232-T1200
	a. Trigger
	b. Functionality

	5. RS232-T1300
	a. Trigger
	b. Functionality

	6. RS232-T1400
	a. Trigger
	b. Functionality

	7. RS232-T1500
	a. Trigger
	b. Functionality

	8. RS232-T1600
	a. Trigger
	b. Functionality

	9. RS232-T1700
	a. Trigger
	b. Functionality

	10. RS232-T1800
	a. Trigger
	b. Functionality

	11. RS232-T1900
	a. Trigger
	b. Functionality

	12. RS232-T2000
	a. Trigger
	b. Functionality

	V. CONCLUSION
	A. SUMMARY
	B. FUTURE WORK AND LESSONS LEARNED
	C. ELEMENTS OF FUTURE BENCHMARKS

	APPENDIX. RESOURCES
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

This archive contains 5 Verilog files developed as part of the thesis "A Computer

Scientist’s Evaluation of Publically Available Hardware Trojan Benchmarks." These files

are a provided as an aid to researchers who wish to verify conclusions drawn as part of

this thesis or conduct additional research into the RS232 benchmarks found at

trust-hub.org. The first two files are module libraries which are required for the

synthesis of RS232-T1000 through RS232-T2000. The remaining files are test benches which

can be used to conduct experiments on any of the benchmarks in the RS232 set.

--

 Libraries

lib_90.v :

This file is meant for use with the 90nm versions of the gate-level RS232 circuits

(RS232-T1000 to RS232-T2000). The HDL in this file defines the logic of 18 modules which

are instantiated in these benchmarks. The module definitions are implementations of the

logic described in the 90nm Synopsys Digital Standard Cell Library Databook, revision 1.4

	

To use this file with any of the gate-level RS232 benchmarks, create a project for the

benchmark. When prompted to add sources, select this file and

<benchmark top level>/src/90nm/uart.v. When Vivado has finished preparing the project,

you will be able to conduct elaboration, synthesis and simulation operations without

error.

lib_180.v :

This file is meant for use with the 180nm versions of the gate-level RS232 circuits

(RS232-T1000 to RS232-T2000). The HDL in this file defines the logic of 15 modules which

are instantiated in these benchmarks. The module definitions are implementations of the

logic described in the 90nm Synopsys Digital Standard Cell Library Databook, revision 1.4

	

To use this file with any of the gate-level RS232 benchmarks, create a project for the

benchmark. When prompted to add sources, select this file and <benchmark top

level>/src/180nm/uart.v. When Vivado has finished preparing the project, you will be

able to conduct elaboration, synthesis and simulation operations without error.

 Test Benches

to use any of the following test benches:

1. create a project for any of the RS232 benchmarks and import the appropriate files

	for an RTL benchmark (T100 to T901): uart.v, u_rec.v, u_xmit.v, and inc.h

	for a gate-level benchmark (T1000 to T2000): uart.v and either lib_90.v or lib_180.v

	

2. After the project is constructed: File -> add sources

3. select "add or create simulation sources" and select "next"

4. choose "Add Files" and use the file chooser to select your preferred test bench

5. select "finish, and wait for Vivado to rebuild the source file hierarchy.

6. Open the simulation settings dialog and change "Simulation Run TIme" to 4000 ns. This

	will give all of the provided test benches sufficient time to complete.

7. Run the simulation.	

	

test_rs232_rec.v:

This test bench provides a simulated sequence of inputs for the receiver module of the

RS232 circuit. In particular, 10 10-bit sequences are provided on input uart_REC_dataH.

Each sequence will be converted to a byte of data and sent to output bus rec_dataH.

This test bench is specifically designed as a baseline that can be adapted easily to

conduct simulations of the Trojans in RS232-T100, RS232-T200 or RS232-T800.

When this test bench is run on the Trojan-free implementation of RS232, the following

sequence will be observed on rec_dataH:

	0x2B, 0x55, 0x21, 0x47, 0xBE, 0x4F, 0xC4, 0xBA, 0xB1, 0x41

	

	

	

test_rs232_xmit.v:

This test bench provides a simulated sequence of inputs for the transmitter module of

RS232. In particular, 10 bytes of data are provided on xmit_dataH. Each byte will be

translated into a 10-bit sequence and transmitted on uart_xmit_dataH. This test bench

was designed to serve as a baseline that can be easily adapted to conduct simulations of

the Trojans in RS232-T300, RS232-T400, RS232-T500, RS232-T600, RS232-T700, RS232-T900,

and RS232-T901.

For consistency, we have written this test bench to follow the same sequence as that in

test_rs232_rec.v:

	0x2B, 0x55, 0x21, 0x47, 0xBE, 0x4F, 0xC4, 0xBA, 0xB1, 0x41

When this test bench is run on the Trojan-free implementation of the RS232 circuit, the

output uart_xmit_dataH will produce a sequence of 1 and 0 signals representing the

inputs provided on xmit_dataH. Note that each bit will last for 32 ns.

As an example of the conversion result, the input 0x2B will be translated to 0 1101 0100 1

the first and last bits are used to delineate the start and end of the sequence. The 8

bits in between are transmitted in order from least significant to most significant.

test_rs232_400.v:

This test bench provides a sequence of simulation inputs for testing the transmitter and

the receiver simultaneously. This test bench was written to be used in tests of the

Trojan in RS232-T400. It has also been used as the baseline test bench during our

attempts to trigger Trojans in the gate-level versions of RS232.

the receiver will output the sequence 0x2B, 0x55, 0x4C, 0xC7

the transmitter will follow the sequence 0x37, 0xAA, 0x4C, 0xB7

module AND2X1(A, B, Y);

 input A, B;

 output Y;

 assign Y = A & B;

endmodule

module AOI21X1(A0, A1, B0, Y);

 input A0, A1, B0;

 output Y;

 assign Y = ~((A0 & A1) | B0);

endmodule

module AOI22X1(A0, A1, B0, B1, Y);

 input A0, A1, B0, B1;

 output Y;

 assign Y = ~((A0 & A1) | (B0 & B1));

endmodule

module BUFX1(A, Y);

 input A;

 output Y;

 assign Y = A;

endmodule

module INVX1(A, Y);

 input A;

 output Y;

 assign Y = ~A;

endmodule

module MX2X1(A, B, S0, Y);

 input A, B, S0;

 output Y;

 assign Y = ~S0 & A | S0 & B;

endmodule

module NAND2X1(A, B, Y);

 input A, B;

 output Y;

 assign Y = ~(A & B);

endmodule

module NOR2X1(A, B, Y);

 input A, B;

 output Y;

 assign Y = ~(A | B);

endmodule

module NAND3X1(A, B, C, Y);

 input A, B, C;

 output Y;

 assign Y = ~(A & B & C);

endmodule

module OR2X1(A, B, Y);

 input A, B;

 output Y;

 assign Y = A | B;

endmodule

module OR4X1(A, B, C, D, Y);

 input A, B, C, D;

 output Y;

 assign Y = A | B | C | D;

endmodule

module NAND4X1(A, B, C, D, Y);

 input A, B, C, D;

 output Y;

 assign Y = ~(A & B & C & D);

endmodule

module SDFFSRX1(D, SI, SE, CK, SN, RN, Q, QN);

	input D, SI, SE, SN, RN, CK;

	output Q, QN;

 reg Q, QN;

	always @(CK)

	begin

		Q <= ((D & ~SE) | (SI & SE) | ~RN) & SN;

		QN <= ~(((D & ~SE) | (SI & SE) | ~RN) & SN);

	end

endmodule

module OAI21X1(A0, A1, B0, Y);

 input A0, A1, B0;

 output Y;

 assign Y = ~((A0 | A1) & B0);

endmodule

module XOR2X1(A, B, Y);

 input A, B;

 output Y;

 assign Y = A ^ B;

endmodule

module AND2X1(IN1, IN2, Q);

 input IN1, IN2;

 output Q;

 assign Q = IN1 & IN2;

endmodule

module AOI21X2(IN1, IN2, IN3, IN4, QN);

 input IN1, IN2, IN3, IN4;

 output QN;

 assign QN = ~((IN1 & IN2) | (IN3 & IN4));

endmodule

module AOI22X2(IN1, IN2, IN3, IN4, QN);

 input IN1, IN2, IN3, IN4;

 output QN;

 assign QN = ~((IN1 & IN2) | (IN3 & IN4));

endmodule

module DFFARX1(D, RSTB, CLK, Q, QN);

	input D, RSTB, CLK;

	output Q, QN;

	reg Q, QN;

	always@(CLK or RSTB)

	begin

		if(~RSTB)

		begin

			Q <= 1'b0;

			QN <= 1'b1;

		end

	 else if(CLK == 1)

		begin

			Q <= D;

			QN <= ~D;

		end

	end

endmodule

module DFFASX1(D, CLK, SETB, Q, QN);

	input D, SETB, CLK;

	output Q, QN;

	reg Q, QN;

	always@(CLK or SETB)

	begin

		if(SETB)

		begin

			Q <= 1'b1;

			QN <= 1'b0;

		end

	 else if(CLK == 1)

		begin

			Q <= D;

			QN <= ~D;

		end

	end

endmodule

module INVX0(IN, QN);

 input IN;

 output QN;

 assign QN = ~IN;

endmodule

module INVX32(IN, QN);

 input IN;

 output QN;

 assign QN = ~IN;

endmodule

module ISOLORX8(D, ISO, Q);

 input D, ISO;

 output Q;

 assign Q = D | ISO;

endmodule

module MUX21X1(IN1, IN2, S, Q);

 input IN1, IN2, S;

 output Q;

 assign Q = ~S & IN1 | S & IN2;

endmodule

module MUX21X2(IN1, IN2, S, Q);

 input IN1, IN2, S;

 output Q;

 assign Q = ~S & IN1 | S & IN2;

endmodule

module NAND2X4(IN1, IN2, QN);

 input IN1, IN2;

 output QN;

 assign QN = ~(IN1 & IN2);

endmodule

module NAND3X4(IN1, IN2, IN3, QN);

 input IN1, IN2, IN3;

 output QN;

 assign QN = ~(IN1 & IN2 & IN3);

endmodule

module NAND4X1(IN1, IN2, IN3, IN4, QN);

 input IN1, IN2, IN3, IN4;

 output QN;

 assign QN = ~(IN1 & IN2 & IN3 & IN4);

endmodule

module NBUFFX16(IN, Q);

 input IN;

 output Q;

 assign Q = IN;

endmodule

module NOR2X4(IN1, IN2, QN);

 input IN1, IN2;

 output QN;

 assign QN = ~(IN1 | IN2);

endmodule

module OAI21X2(IN1, IN2, IN3, IN4, QN);

 input IN1, IN2, IN3, IN4;

 output QN;

 assign QN = ~(IN1 | IN2) & (IN3 | IN4);

endmodule

module OR4X4(IN1, IN2, IN3, IN4, Q);

 input IN1, IN2, IN3, IN4;

 output Q;

 assign Q = IN1 | IN2 | IN3 | IN4;

endmodule

module XOR2X2(IN1, IN2, Q);

 input IN1, IN2;

 output Q;

 assign Q = IN1 ^ IN2;

endmodule

`timescale 1ns / 1ps

module test_rs232;

//transmitter inputs

reg [7:0] xmit_dataH;

reg xmitH;

//reciever inputs

reg uart_REC_dataH;

reg sys_clk;

reg sys_rst_l;

//outputs

wire [7:0] rec_dataH;

wire rec_readyH;

//transmitter outputs

wire uart_XMIT_dataH;

wire xmit_doneH;

uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);

	initial begin

	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#32

	sys_rst_l = 1;

	xmit_dataH = 8'h37;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0

	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 1; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

//end of sequence: 2B

	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'hAA;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0

	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

//end of sequence: 55

	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'h4C;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0

	#32

	xmitH = 0;

	uart_REC_dataH = 0; //1st bit

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

//end of sequence: 4C

	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'hb7;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0

	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 1; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

//end of sequence: C7

	

	

	#3000;

	$finish;

	end

	always #1 sys_clk = ~sys_clk; //clock cycle=2

endmodule

`timescale 1ns / 1ps

module test_rs232;

//transmitter inputs

reg [7:0] xmit_dataH;

reg xmitH;

//reciever inputs

reg uart_REC_dataH;

reg sys_clk;

reg sys_rst_l;

//outputs

wire [7:0] rec_dataH;

wire rec_readyH;

//transmitter outputs

wire uart_XMIT_dataH;

wire xmit_doneH;

uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);

	initial begin

	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#5;

	sys_rst_l = 1;

	uart_REC_dataH = 0; //start signal bit is 0

	

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 1; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

//end of 1st sequence: 2B

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: 55

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: 21

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: 47	

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 1; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 1; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: BE	

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: 4F	

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 1; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: C4

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 1; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 1; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: BA

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

 uart_REC_dataH = 1; //6 bit

	

 #32;

 uart_REC_dataH = 0; //7 bit

	#32;

 uart_REC_dataH = 1; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of 1st sequence: B1

 #32;

 uart_REC_dataH = 0; //start bit

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit

	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

 uart_REC_dataH = 0; //6 bit

	

 #32;

 uart_REC_dataH = 1; //7 bit

	#32;

 uart_REC_dataH = 0; //8th bit

	#32;

 uart_REC_dataH = 1; //trailing bit

	//end of sequence: 41

	#3000;

	$finish;

	end

	always #1 sys_clk = ~sys_clk;

endmodule

`timescale 1ns / 1ps

module test_rs232;

//inputs

reg [7:0] xmit_dataH;

reg sys_clk;

reg uart_REC_dataH;

reg sys_rst_l;

reg xmitH;

//outputs

wire [7:0] rec_dataH;

wire rec_readyH;

wire uart_XMIT_dataH;

wire xmit_doneH;

uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);

	initial begin

	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#5;

	sys_rst_l = 1;

	xmit_dataH = 8'h37;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

//---

	xmit_dataH = 8'haa;

	xmitH = 1;

	

	#32;

	

	xmitH = 0;

	#320;

	xmit_dataH = 8'h55;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'h00;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'hff;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'h22;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'h17;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'h11;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'hba;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#320;

	xmit_dataH = 8'h41;

	xmitH = 1;

	

	#32;

	xmitH = 0;

	#3000;

	$finish;

	end

	always #1 sys_clk = ~sys_clk;

endmodule

