
NAVAL 
POSTGRADUATE

SCHOOL 
MONTEREY, CALIFORNIA 

THESIS 

Approved for public release; distribution is unlimited 

A COMPUTER SCIENTIST’S EVALUATION OF 
PUBLICALLY AVAILABLE HARDWARE TROJAN 

BENCHMARKS 

by 

Scott M. Slayback 

September 2015 

Thesis Advisor: Theodore Huffmire 
Second Reader: Mark Gondree 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 2015
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 
4. TITLE AND SUBTITLE
A COMPUTER SCIENTIST’S EVALUATION OF PUBLICALLY AVAILABLE 
HARDWARE TROJAN BENCHMARKS 

5. FUNDING NUMBERS

6. AUTHOR(S)  Slayback, Scott M. 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER  

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A 

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number N/A. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum 200 words)

Dr. Hassan Salmani and Dr. Mohammed Tehranipoor have developed a collection of publically available hardware 
Trojans, meant to be used as common benchmarks for the analysis of detection and mitigation techniques. In this 
thesis, we evaluate a selection of these Trojans from the perspective of a computer scientist with limited electrical 
engineering background. Note that this thesis is also intended to serve as a supplement to the existing documentation, 
since it provides a thorough description of each benchmark. This description presents a detailed analysis of each 
Trojan’s activation conditions and post-activation activity. In addition, we describe the difficulties we encountered in 
synthesizing and simulating each Trojan, and, where possible, provide solutions to those difficulties. 

14. SUBJECT TERMS
building security in, design for trust, hardware intellectual property cores, Hardware Oriented Security 
and Trust, hardware synthesis, hardware Trojans, HDL, inherently trustworthy systems, malicious 
hardware, reconfigurable hardware, secure interfaces, security education, trustworthy system 
development, Vivado 

15. NUMBER OF
PAGES 

165 
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF
ABSTRACT 

UU 
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  

Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

A COMPUTER SCIENTIST’S EVALUATION OF PUBLICALLY AVAILABLE 
HARDWARE TROJAN BENCHMARKS 

 
 

Scott M. Slayback 
Civilian, Scholarship for Service 
B.S., Gonzaga University, 2009 

 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
September 2015 

 
 

 
 
Author:  Scott M. Slayback 

 
 
 

Approved by:  Theodore Huffmire 
Thesis Advisor 

 
 
 

Mark Gondree  
Second Reader 

 
 
 

Peter Denning 
Chair, Department of Computer Science 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

Dr. Hassan Salmani and Dr. Mohammed Tehranipoor have developed a collection of 

publically available hardware Trojans, meant to be used as common benchmarks for the 

analysis of detection and mitigation techniques. In this thesis, we evaluate a selection of 

these Trojans from the perspective of a computer scientist with limited electrical 

engineering background. Note that this thesis is also intended to serve as a supplement to 

the existing documentation, since it provides a thorough description of each benchmark. 

This description presents a detailed analysis of each Trojan’s activation conditions and 

post-activation activity. In addition, we describe the difficulties we encountered in 

synthesizing and simulating each Trojan, and, where possible, provide solutions to those 

difficulties. 
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I. INTRODUCTION AND MOTIVATION 

The Department of Defense (DOD) is becoming increasingly dependent on 

untrusted integrated circuits (ICs). The Pentagon annually spends $3.5 billion on ICs 

destined for use in military equipment [1]. A single military plane may be constructed 

with over 1000 circuits [2]. If one of these circuits should fail during flight, the plane 

might lose control or communications from the aircraft may be broadcast without any 

scrambling or encryption. Such a failure could be the result of a deliberate hardware 

modification known as a hardware Trojan. 

A hardware Trojan, also referred to as a malicious inclusion, is a deliberate 

alteration to a piece of electronic hardware that causes that device, under certain 

conditions, to display undocumented functionality. Hardware Trojans may be added to 

varying items of hardware, including application-specific integrated circuits (ASICs), 

digital signal processors (DSPs), microprocessors, and other commercial off-the-shelf 

(COTS) products [3]. These alterations may also be applied to field-programmable gate 

arrays (FPGAs), either as changes to the underlying device or as subverted bitstreams 

meant to change the hardware configuration [3].  

The Trojan functionality, referred to as the “payload,” may disable some part of 

the circuit, transmit information to the adversary, or overwrite output values from the 

circuit [4]. The activation condition, referred to as the “trigger,” may be a specific 

combination of inputs, multiple input combinations in a predefined order, or the passage 

of a set amount of time [5]. A trigger can also be constructed from more than one of these 

elements. For example, a circuit may ignore the triggering combination until after a 

certain number of operations have been completed [5]. Note that it is also possible to 

create a Trojan with an “always-on” trigger. In these designs, the functionality operates at 

all times. Several of the benchmarks discussed in this thesis use this model. 

A malicious insider can insert a hardware Trojan at any stage of the design 

process, using a variety of techniques [4]. A Trojan to reduce a circuit’s reliability can be 

implemented simply by changing the geometry of a single wire [3]. More complex 
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Trojans require several thousand additional transistors, but those transistors have been 

added to a circuit that contains billions of other transistors [2].  

According to [6], the adversary can also compromise circuits by altering the 

components of the underlying design. Today, many chips are designed at least partly 

overseas, either because the company has purchased 3PIP cores, or because the designer 

has acquired at least some of the HDL in their design from searching online forums [6], 

[2]. A Trojan in any one of these cores can disrupt the operation of the entire device [6]. 

Testing for a hardware Trojan is difficult. As we have already discussed, a well-

designed Trojan uses only a small fraction of the physical structure of the overall circuit. 

In a physical examination, a tester would need to view billions of transistors in the 

circuit, and find as few as 1000 that had been added. Note that a thorough physical 

examination is destructive to the part under examination, because each layer of transistors 

must be ground away to reveal the layer underneath [2]. Further, the examination is of 

limited utility. Manufacturers use this technique on a single chip from a batch of 

thousands, based on the assumption that the manufacturing process will produce identical 

parts. However, Adee points out that a malicious insider can replace the circuit mask for 

a single silicon wafer, resulting in a Trojan that has been inserted into that chip alone. 

Even if the tested part is proven to be free of Trojan functionality, the status of the other 

parts in the bath remains unknown [2]. 

As Adee explains in [2], discovering a hardware Trojan with functional testing is 

also difficult. To find a discrepancy between a circuit input and the expected output, it is 

necessary to actually trigger Trojan functionality. For a simple combinatorial Trojan, a 

tester would need to apply each possible input combination in turn until either the Trojan 

is triggered or every possible input has been tried. For a Trojan with a 512-bit input, there 

are more than 13.4*10153 combinations. 

Hardware Trojans have become a particular risk due to the rise of global 

manufacturing. Many IC designers, including Sony and LSI Corp, have stopped 

producing their own ICs. Completed designs are sent to dedicated foundries, owned by 
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manufacturing companies. Very few of these foundries are located in the United States, 

and a growing number are located in China [2]. 

Acknowledging the potential dangers from hardware Trojans, the DOD has 

established a “Trusted Foundry” program, which certifies that certain IC production 

facilities are trusted to not alter the functionality of circuits they manufacture [1]. As of 

2009, only 2% of ICs purchased by the Pentagon came from foundries certified under this 

program [7]. 

In this thesis, we examine an existing, public, collection of hardware Trojans. Dr. 

Hassan Salmani and Dr. Mohammed Tehranipoor have created 92 hardware Trojans and 

posted them as benchmarks at the website trust-hub.org [8]. To the best of our 

knowledge, this is the only publically available set of hardware Trojan benchmarks. 

Other researchers have implemented their own hardware Trojans and used them in 

experiments, but we have been unable to find any means to access the HDL or bitstreams 

for any of these circuits. The Trust-hub benchmarks are the only hardware Trojan circuits 

that are available to be implemented by any researcher. This availability allows the Trust-

hub benchmarks to serve as a common standard for measuring the effectiveness of 

hardware Trojan detection and mitigation techniques. 

We conduct a thorough examination of 46 of the benchmarks from the Trust-hub 

collection. The purpose of this study is to determine the challenges that must be 

overcome in attempting to synthesize these benchmarks and conduct simulated 

experiments using them. To assist future researchers in conducting studies using these 

benchmarks, we have provided the following supplements to the existing documentation 

and resources: 

• We document the procedure for establishing a simulation environment 

using the Xilinx Vivado design suite. We also document the procedure for 

creating a Vivado project from one of the provided benchmarks. To 

complete our general discussion of Vivado, we describe the process of 

importing a test bench and conducting simulation of circuit activity. Note 

that some benchmarks discussed here will either fail to synthesize as 
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written, or produce simulation results that do not agree with the provided 

documentation. To assist future researchers, we document changes we 

have made to the provided HDL in order to complete synthesis and 

simulation. We have also written and provided two library files, which are 

necessary in order to synthesize the gate-level RS232 benchmarks. These 

libraries are included in a software archive provided in conjunction with 

this thesis. This archive is discussed in more detail in the appendix. 

• For each of the 46 benchmarks discussed in this thesis, we provide a 

detailed description of the trigger and functionality of the hardware Trojan 

that has been added to the circuit. We also identify benchmarks that 

provide incomplete or inaccurate documentation and provide corrections 

where appropriate. In particular, some of the RS232-based benchmarks 

provide documentation that either fails to identify the triggering condition 

for the included Trojan or incorrectly identifies that condition. For each of 

these benchmarks, we describe the correct triggering combination. 

• Finally, we have provided three test benches for use with the RS232 

benchmarks. These test benches, which have been included in the thesis 

software archive, can be used as baseline models for more complex test 

benches and simulations. Note that Salmani et al. already provide test 

benches appropriate for use with the AES and basicRSA benchmarks. 

These are discussed in the appropriate sections of this thesis.  

This thesis also aims to present a Computer Science perspective on hardware-

oriented security and trust (HOST) research. This perspective is essential to 

understanding how malicious inclusions inserted at the digital logic level cause security 

failures at higher levels of abstraction. 

Finally, this thesis recommends malicious inclusions that could be added to the 

benchmark suite. A high level sketch is provided for an inclusion that is complementary 

to the inclusions present in the suite, but that allows researchers to examine features not 

already demonstrated by existing benchmarks. 
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In a broader context, this work will advance Computer Science research and 

education by providing Computer Science students with the means to contribute 

meaningfully to HOST research. For example, the techniques described in this thesis 

could aid teachers in designing lab exercises for a hardware security course for Computer 

Scientists. Students with limited prior exposure to this material will benefit from the 

description of the pitfalls and difficulties involved in using Xilinx tools to simulate the 

hardware Trojan benchmarks available on the Trust-Hub website, or to assemble 

experiments based on other devices. 
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II. RELATED WORK 

Wang et al. developed a taxonomy for hardware Trojans in [3]. This taxonomy 

classifies Trojans according to physical structure, trigger mechanism, and payload 

actions. These researchers also provide a preliminary list of applications that are 

vulnerable to hardware Trojans. Many Trojan implementations and detection methods 

reference this work. In [7], Banga and Hsiao provide additional terminology that is 

relevant to this work. They define a combinatorial Trojan as a Trojan that triggers on a 

specific combination of input values, and a sequential Trojan as a Trojan that triggers 

after seeing several combinations in some specific order. 

According to [3], the preferred hardware Trojan detection techniques are 

automatic test-pattern generation (ATPG), failure-based analysis, and side channel 

analysis. ATPG designs a sequence of inputs based on the circuit’s netlist, and compares 

the resulting outputs from the expected outputs. This technique is ineffective against 

Trojans that modify the circuits logical layout. Failure based analysis uses microscopic 

imaging techniques and voltage induction to verify that a circuit conforms to its specified 

design. Most forms of failure based analysis are destructive to the chip they are 

performed on. Like ATPG, side channel analysis uses a series of input values to engage 

the circuit, but instead of concentrating on digital output values, side channel analysis 

measures analog current at intermediate stages of circuit logic, detecting hardware 

Trojans through unexpected activity in the circuit. Trojans may also be written to use 

side-channel analysis as a tool to leak information to malicious insiders. 

All three of these techniques operate only after fabrication. If a design-phase 

Trojan is detected, then all chips produced from that design are compromised and will 

need to be replaced. The chip design must be corrected, and the new design must be 

prototyped and tested before a new batch can be manufactured.  

A number of researchers have provided detailed evaluations of these detection 

techniques or added refinements to increase the success rate of hardware Trojan 

detection. Kutzner et al. conducted a trial of IC fingerprinting and side channel analysis 
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techniques. In this analysis, the researchers determined that the presence of operational 

noise noticeably reduced the reliability of these techniques [9]. Banga and Hsaio used 

side channel analysis on localized regions of a circuit to increase the reliability of Trojan 

detection [7]. 

In [6], Zhang and Tehranipoor used a mixture of formal verification, code 

coverage and ATPG to increase confidence in the presence or absence of hardware 

Trojans in IP cores provided by third parties. The researchers apply their technique to the 

RS232 series of hardware Trojans from [8]. These Trojan circuits will be discussed in 

detail in Chapter 4 of this work. 

In [10], Alkabani and Koushanfar propose the use of the “consistency” metric in 

side channel analysis. Using this metric, the researchers are able to evaluate the presence 

of a Trojan by repeated measurement and comparison of current leakage from the circuit. 

In [11], McIntyre et al. devised a Trojan detection system that allows gradual 

redefinition of circuit trust in a multi-core system by comparison of results from different 

cores. Since Trojans commonly trigger on specific input sequences, the researchers 

devised a method for reordering subtask operations without changing the final result. 

Two different, but equivalent sequences are provided to two different cores. If both return 

the same result, the system has high confidence that the sequences did not trigger the 

same Trojan, and that the specific operation was completed without Trojan interference. 

If the circuits return different results, the system uses additional subtask orderings and 

cores to determine which core is producing an invalid result, and is therefore likely to 

contain a malicious inclusion. 

In [12], Li and Lach propose another long-term, post-fabrication mechanism for 

detecting hardware Trojans. Here, the researchers state that the activation of the Trojan 

through its predefined trigger mechanism will cause an immediate, noticeable change in 

circuit delay characteristics. Continuous measurement of signal propagation allows the 

researchers to observe the change in delay and designate the circuit for further 

investigation. The technique is vulnerable to false positives caused by changes in 
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temperature and voltage, and sufficiently fast-acting Trojans may not cause a noticeable 

delay impact. 

In [13], Hicks et al. have developed Unused Circuit Identification (UCI), a 

design-phase test that identifies gates and paths that do not change signals during 

expected input sequences. Based on the fact that malicious inclusions are designed to not 

activate during normal circuit operation, the researchers remove UCI-selected logic from 

the circuit. In case UCI removes valid, non-malicious circuitry, these researchers also 

implemented a technique for adding software to simulate the activity of removed logic. 

Other researchers have created sample hardware Trojans, demonstrating 

techniques that are available to adversaries. In [14], King et al. implemented the Illinois 

malicious processor (IMP), a general-purpose hardware Trojan. The inclusions in the 

IMP are designed to support more complex attacks from software that can be 

implemented against a Linux system installed on the IMP. These researchers 

implemented a login backdoor, a password-stealing mechanism, and a privilege 

escalation attack as proof-of-concept. Dr. Salmani and Dr. Tehranipoor have designed a 

variety of sample hardware Trojans and posted them at the Trust-Hub website [8]. This 

thesis will analyze a selection of those sample Trojans, detailing their malicious 

functionality and outlining the processes needed to simulate and study the malicious 

activity. 
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III. METHODOLOGY 

This chapter will describe the methodology used in analysis of the available 

Trojan benchmarks.  

A. GETTING THE BENCHMARKS 

The Trojans were all downloaded from [8]. Benchmarks on this site can be 

categorized by the circuit they modify. For example, there are 21 Trojans designed to 

undermine the effectiveness of a 128-bit AES encryption circuit. These circuits are 

labelled AES-T100 through AES-T2100. The naming convention includes the final 

two zeroes as a means to distinguish between different placements and versions of the 

same Trojan in a particular circuit. For example, RS232-T901 is a slightly altered 

version of RS232-T900. 

To download a Benchmark, navigate to [8]. Select the name of the desired Trojan 

from the “Resources” column. A partial description of the Trojan will appear under 

“Info,” along with two links. Figure 1 demonstrates the relevant portion of the benchmark 

selection process. The full description can be read by following the “Learn More” link 

provided. 

Select the download link to acquire the Benchmark archive. Each archive contains 

source files that define the Benchmark. For most Benchmarks in this collection, these 

source files are HDL code written in Verilog or VHDL. Several Trojans, such as the 

EthernetMAC10GE series, include only DEF files, which represent the physical layout of 

the gates and wires in the circuit. This thesis does not discuss the operation of 

Benchmarks composed of DEF files. 

The archive will also contain a PDF file and a README. These documents both 

contain the same description that can be read by following the “Learn More” link. They 

may also provide additional information about the benchmarks, including the results of 

tests run by Salmani et al. 
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The archive may contain source code for a Trojan-free version of the benchmark 

or a test bench designed to demonstrate the function of the circuit. 

 
Figure 1.  Selection of a resource from the Trust Hub site. The button labeled 

“Download (ZIP)” will directly download an archive file containing all 
of the resources provided by Salmani et al. for the selected Trojan. Note 
that some Trojans are stored as RAR archives. The “Learn More” link 
will lead to a dedicated page for the selected Trojan. Note that the b19 
Trojans are stored as multi-part archives, and it is necessary to visit the 
dedicated page and download parts from the “supporting files” section. 

B. SOURCE CODE ANALYSIS 

Most of the provided circuits included source code written in Verilog or VHDL, 

so we began by attempting to perform a static source-code analysis of the Trojans. We 

used MD5 hashes to quickly find duplicate source code files. If a file’s hash matched that 

of a file from the Trojan-free implementation of the circuit, we could safely assume that 

the HDL defining the Trojan was not present in that file. If two files from different 

benchmarks produced the same hash, then we would only need to analyze that specific 

version of the file once. Any insights gained from that analysis could be applied to our 

analysis of other benchmarks that contain the same version of that file. After duplicate 

files were eliminated from the analysis group, we subjected the remaining files to diff 

tools to find the exact differences. 
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Some of these files differed only in the positioning of whitespace, which does not 

influence the functionality of circuits synthesized from Verilog or VHDL. The files from 

the RTL-based RS232 benchmarks commonly displayed this trait. Some of the remaining 

files drastically reordered HDL instructions, but did not alter the logic of those 

instructions. We recorded the list of logically equivalent files, then removed them from 

the analysis group.  

The remaining files included small sections of extra logic, which we were able to 

evaluate more closely. In most cases, we were able to confirm that the extra logic served 

to define the malicious inclusion. Examining this smaller portion of source code allowed 

us to more easily specific inputs or registers that fed into the trigger mechanism and 

outputs that were controlled by the Trojan functionality. 

C. SETTING UP THE ENVIRONMENT 

The second stage of analysis involved synthesis and error checking. We 

established a dedicated test environment for the remainder of the analysis process. On a 

Windows 7 virtual machine, we installed Xilinx Vivado Webpack version 2013.4. 

To download Vivado Webpack, you first need to establish an account on the 

Xilinx website. New user accounts can be created at 

https://secure.xilinx.com/webreg/createUser.do? You will need to 

provide your name, a user ID and password, and an email address from a university or 

business. The site will confirm your registration using the email you provide. 

Once you establish an account, use a browser to navigate to 

http://www.xilinx.com/support/download.html. Select your preferred 

version of the software from the column on the left side of the page. Select the link for 

“All OS Vivado and SDK Full Installer.” This link will download a 6 GB TAR/GZIP 

archive. Extract this file to a folder of your choosing. The total size of the extracted 

archive should be roughly 6.8 GB. The installer should be xsetup.exe, located in the 

top level of this directory. 
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D. SYNTHESIZING AND VIEWING A CIRCUIT 

We imported the source code of each Benchmark as a separate RTL project. We 

also created projects for the Trojan-free versions of circuits. To do this, start Vivado and 

select the “create a new project” link on the opening screen. This will open the new 

project wizard, which provides some guidance when creating a new project. The new 

project wizard consists of eight dialog windows, as follows. 

• Create a new Vivado Project: This is a short introduction to the new 

project design process. Select “next.” 

• Project Name: This dialog allows you to name your project and select a 

folder for the project directory. Note that you can specify the full path 

yourself, or allow Vivado to create a directory with the same name as the 

project. 

• Project Type: For all of the Benchmarks discussed here, we selected 

“RTL Project.” 

• Add Sources: Most of our work was done here. Choose “add files” to 

open a file chooser dialog box. For convenience, Vivado supports 

selecting multiple files in a single file-chooser instance. Navigate to the 

source directories of a downloaded benchmark and select the HDL files 

there. These may be Verilog files, with a .”v” extension or VHDL files 

with a .”vhd” extension. Do not add test benches at this time. Using test 

benches as design sources produces strange results from synthesis, 

schematics and simulation. Before selecting “next,” ensure that “Copy 

Sources into Project” is checked. 

• Add existing IP: This window allows you to add 3PIP cores to your 

project. None of the projects discussed here require any files to be added 

to this section. 

• Add Constraints: This window allows you to add simulation and 

synthesis constraints to the project. These constraints can be used to 

control timing and gate placement in a circuit. The Benchmark groups that 

we demonstrate in this work do not contain constraint files. 
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• Default Part: Your selection in this window is dependent on what 

physical hardware, if any, you expect to use for physical demonstration. 

All of our analysis in this work was conducted within Vivado. We selected 

the Artix-7 FPGA under “boards,” since we knew our advisor had at least 

one FPGA within that family.  

• New Project Summary: This final dialog summarizes all of your previous 

selctions in a single window. After reviewing them, select “Finish,” and 

Vivado will construct this project from the files you have provided. 

Once a project has been successfully created or opened, you will have access to 

Vivado’s main screen, as shown in Figure 2. Most functions that you will need during the 

simulation of these benchmarks can be found in the left pane, labelled “Flow Navigator.” 

My first action after creating a project was to select the “Run Synthesis” instruction from 

this pane. For most of the benchmarks discussed in this thesis, the default synthesis 

settings are appropriate. 

 
Figure 2.  Layout of the Vivado Main Screen. Synthesis, Simulation and 

schematics are opened from the flow navigator on the left. The window 
on the far right shows the results of these commands. In this case, the 
window shows a waveform diagram resulting from simulation. Note that 
the results window can be popped out and viewed separately from 
Vivado’s main window. The central windows allow some customization 
of the results window display. Errors and other messages are reported in 
the bottom window. 
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E. VIEWING SCHEMATICS 

After synthesis, we were able to examine the provided benchmarks by means of 

Vivado’s schematics generation. There are two schematic generation mechanisms 

available. Generating a schematic from a synthesized design will produce a gate-level 

schematic, treating each 1-bit wire as a separate entity. A 64-bit register would be 

displayed as 64 flip-flop modules. Generating a schematic from the elaborated design 

produces a simpler diagram that shows grouped wires and merges each register into a 

single stacked group. Most of the logic gate images in this document were generated 

from the elaborated design. Figure 3 demonstrates the three types of components 

displayed in a typical elaborated schematic. Note that the elaborated schematic can be 

generated before synthesis occurs, but elaboration will fail if there are any syntax errors 

or missing modules. 

 
Figure 3.  Components commonly displayed in a Vivado Schematic. At left is an 

example of a custom module. This module is defined as 
expand_key_128 in the Verilog file aes_128.v. The specific 
instance is named a1. Note that clicking the + sign in the top left corner 
will produce an expanded view of this module, including all internal 
components. The middle item is a sample register, used to store values 
that are relevant to the circuit across multiple clock cycles. The stacking 
effect is a visual cue provided to represent a bundled multi-bit register. It 
is possible to unbundle this collection and produce a schematic with a 
separate register for each bit. The rightmost figure demonstrates 
Vivado’s representation of primitive gates. Note that this XOR gate also 
handles multiple bits, but that no visual cue is given. 

Once a schematic has been generated, it is possible to generate a simpler 

schematic based on selected wires and objects. Control-click allows you to select 
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multiple objects. Pressing F4 will generate a new schematic containing the selected 

objects and any objects directly attached to them. Note that if you select a wire, the new 

schematic will include every gate, module and register connected to that wire. If the wire 

is used as an input for a large number of modules, the generated schematic will include 

all of those modules. For best results, build a new schematic from modules, registers and 

gates only. This will limit the number of additional features included in the schematic. 

When a new, partial schematic is generated, you will notice that registers are split 

into individual, 1-bit flip-flops. This may cause the registers to be divided into 128 parts 

or more, resulting in a diagram that is not easily viewed on one screen. To correct this, 

open the waveform options pane using the top button on the left-hand toolbar. This pane 

includes an option labelled “Bundle Registers.” Uncheck this option, then check it again. 

The schematic will regenerate, with all registers combined correctly. 

F. SIMULATION 

The last stage of analysis was to trigger the circuits in behavioral simulation. 

Some circuits provided test benches designed to trigger the Trojan. These were simply 

added to the relevant projects as simulation sources and run. To add a simulation source, 

right click inside the sources window and select “Add Sources.” In the dialog box that 

appears, select “Add or Create Simulation Sources.” Selecting “Next” will open a 

dialogue that is similar to the “Add Sources” window from synthesis. Use “Add Files” to 

add a test bench to your project. 

To run the test bench you have selected, click “Run Simulation” in the Flow 

Navigator. The default simulation settings are appropriate for the circuits discussed in 

this work, so you do not need to make any changes to “Simulation Settings.” After 

processing the test bench, Vivado will present a waveform diagram similar to that in 

Figure 4. 
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Figure 4.  Part of the waveform diagram generated by Vivado from 

test_aes_128.v and the Trojan-free version of the AES circuit. 
Note that Vivado does not support changing the font size or the 
background color of the waveform area. Both features have been 
requested on the Xilinx support forums. Also note that the 1-bit input 
clk is represented by graphical lows and highs, but multi-bit inputs are 
represented by numerical values. For clarity, we have edited the colors 
of other waveforms in this document using external imaging software. 
This one has been left to demonstrate Vivado’s default settings. 

 By default, the waveform diagram will display only the inputs and outputs from 

the unit under test. Additional circuit wires, such as Tj_Trig, can be added to the 

waveform window and saved in a new waveform configuration. To do this, use the 

schematic or the HDL code to determine the name of the wire you wish to inspect. In the 

“scopes” window, to the left of the waveform, select the module that contains the wire. 

The “Objects” window will list all nets in that module. Scroll down to the entry for the 

desired wire and drag it into the data region of the waveform window. This will add an 

entry to the window. Select “Save Waveform Configuration” from the left of the 

waveform window to save this change for future simulations of this project. 

Note that when simulation first completes, the waveform diagram is zoomed in to 

the picosecond scale. The “zoom out” button at the left of the waveform window allows 

you to change the scaling to a larger timescale. The benchmarks in this set operate on a 

clock cycle of 1 to 10 nanoseconds, so zooming to the level shown in Figure 4 should 

produce the best results. Note that “save waveform configuration” will not retain your 

zoom setting. Every time you relaunch the simulation, you will need to adjust the zoom 

level. 
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 The simulation will need to be restarted before the waveform diagram displays 

the value of new wires. Select “Run Simulation” again, and answer “Yes” when 

prompted to close the simulation and relaunch. 
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IV. BENCHMARKS 

A. TROJANS IN AES_128 

The Trojans in this set are based on an open-source implementation of a 128-bit 

AES encryption circuit. Each benchmark archive includes a folder <archive top 

level>/src/TjFree, containing 6 files. Aes_128.v, round.v and table.v 

contain the HDL code that defines the Trojan free circuit. These files are also present in 

each benchmark’s <archive top level>/src/TjIn folder. The file 

test_aes_128.v is a test bench intended to demonstrate basic functionality of the 

circuit. This file is also present in most of the Trojan-inclusive variants. File 

simulation.do is a batch file designed for use with ModelSim. The last file is a 

README that provides some explanation for simulation.do and 

test_aes_128.v. 

As Figure 5 demonstrates, the benchmarks in the AES series are modular in 

structure. In most of the benchmarks in this set, the aes_128 module is an unmodified 

version of the original, Trojan-free AES circuit. Most AES benchmarks contain two 

additional modules. The first is named TSC, and is defined in the file TSC.v. This 

module contains the logic that defines the Trojan functionality. In several of the 

benchmarks, the TSC module and file have been renamed to AM_Transmission and 

AM_Transmission.v, respectively. Note that the AM_Transmission module, like 

the TSC module, operates in isolation from aes_128 and accepts input Tj_Trig to 

determine part of its operation. The other module shown in Figure 5 is 

Trojan_Trigger, which controls when the functionality is active. This module is not 

always present in the benchmark. Its absence may represent an always-on trigger, but in 

some cases, Salmani et al. have instead written triggering logic into the TSC module. 
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Figure 5.  This schematic--generated from AES-T700--represents the structure of 

a typical AES Trojan from the collection. Note the modules for the 
trigger (Trojan_Trigger) and the Trojan functionality (TSC). These 
inclusions share common inputs with the Trojan-free aes_128 module, 
but they do not alter that module’s internal operation. 

1. Important Features of the Trojan-Free AES_128 Circuit 

Figures 6, 7, and 8 demonstrate the workings of the Trojan-free AES circuit, 

including inputs, outputs, and the custom modules that run the encryption process. As 

shown in Figure 6, AES accepts three inputs, labeled clk, state, and key. Wire clk 

is drawn from the system clock. Bus state is a single 128-bit block from the plaintext 

message. Some of the Trojans in this collection use state as an input to the 

Trojan_Trigger module.  
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Figure 6.  The input region of the Trojan-free AES implementation, complete with 

a world view of the circuit for context. The primary inputs to this circuit 
are state and key. Note that state and key are immediately 
XORed before the first round of the encryption process begins. 

Bus key is a 128-bit symmetric key used for the encryption and decryption 

processes. The value of key is the most valuable information a Trojan can leak from the 

AES circuit. Viewing state reveals a single message to the adversary. Viewing key 

allows the adversary to decrypt all messages that have been sent using that particular key. 

Salmani et al. have designed most of the leakage Trojans in the AES collection to leak a 

portion of the key. Note that Figure 5 also shows an input labeled rst, which is applied 

to the Trojan_Trigger and TSC modules, but is not an input to aes_128. The reset 

signal rst = 12 is used to revert the Trojan to its pre-activation state. In the test 

benches provided, rst = 12 is transmitted for a several clock cycles before the first 

values of key and state are assigned. Wire rst is then set to 02 for the remainder of 

circuit operation. 
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Figure 7.  The output region of the Trojan-free AES circuit. The box labeled rf 

represents an instantiation of the custom module final_round, which 
is defined in the Verilog file round.v. This module represents the 
tenth round of the AES encryption process. This round is similar to 
previous rounds. It accepts the last round key and the last intermediate 
state and produces the circuit’s final output. 

Figure 7 displays the final output of the AES circuit, and the module that 

produces it. Out is the ciphertext resulting from the AES operation using the given key 

and state. Trojans in this group do not interfere with this value. Leakage in the AES 

benchmark circuits may be caused by the addition of a separate output bus, or by 

deliberately inducing electrical activity that can be observed by side-channel analysis. 

Denial-of-service in this circuit is caused indirectly, through the operation of a power-

draining register. Exact details of these effects will be provided in the discussion of 

individual Trojans. 
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Figure 8.  The internal functionality of the Trojan-free AES circuit. The 

expand_key_128 modules generate intermediate round keys. Note 
that out_1 and out_2 hold the same value, so each round key is 
derived directly from the previous key. 

In the AES process, state is transformed to out through ten rounds of 

substitution and translation. Each round uses a separate key, but each of these 

intermediate round keys is derived from the original AES key. Figure 8 shows two of 

these rounds. Each round produces the output state_out, which is used as state_in 

for the next round. Each round’s key is generated by the expand_key_128 module, 

using the key from the previous round. Several of the Trojans in this collection alter the 

aes_128 module by adding additional module outputs, each of which leaks an 

intermediate round key to the TSC module. These intermediate keys are leaked through 

registers designed to be read by side-channel analysis. 
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2. AES-T100

The first few benchmarks in the AES collection use a slightly different structure 

than we discussed before. As Figure 9 shows, these benchmarks do not include a 

dedicated Trojan_Trigger module. Instead, the complete TSC module operates

without any activation condition. These Trojans are classified as “always-on” Trojans. 

Figure 9.  The structure of the benchmark AES-T100. Note the absence of the
Trojan_Trigger module that was shown in the typical Trojan
layout. No module is necessary to represent an always-on trigger. 

a. Trigger

AES-T100 does not have a trigger mechanism. As a result, all aspects of this

Trojan, including the rotation of the LFSR, are always active. 

b. Functionality

Figure 10 displays the internal functionality of the TSC module of AES-T100.

The Trojan in this circuit leaks bits from the AES secret key. The adversary who created 

this Trojan intends to read the leaked bits using side channel analysis. To simulate 

sufficient capacitance for detection, each bit is actually leaked in parallel across 8 wires. 
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The 64-bit output load actually represents only 8 bits of leaked information. In fact, 

under this payload design, only the 8 low-order bits of key are ever leaked through 

load. Note that Figure 10 only explicitly shows the leakage of bits 0 and 7. 

 
Figure 10.  Detail view of the TSC module of AES-T700. The output load is 

composed of 8 bits, each repeated 8 times. These bits are the result of 
XOR operations between key[7:0] and lfsr[7:0]. To simplify 
this view, we have hidden the XOR gates load0_i__0 to 
load0_i__5. These XOR gates function in parallel to the two shown, 
with each gate operating on a different bit pairing. 

Before being leaked, the bits of key are XORed with bits generated from the 

module lfsr. This modulation is designed to obfuscate the leakage, allowing only the 

adversary to translate side channel results into bits from the original key. Eight copies of 

each result are then fed to the register and transmitted to the capacitance circuit. 
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Figure 11.  One shift operation of the lfsr module. The value 0x99999 is the 

initial value of the AES-T700 LFSR register. The new high-order bit is 
calculated from an XOR of bits from positions 3, 7, 11, and 15. After 
this calculation, bits are shifted to the right, and the XOR result is used 
to fill in the missing bit. 

LFSR registers are used in pseudo random number generation, because the 

sequence of values they produce appears to be random. However, an LFSR is actually 

guaranteed to enter a repeating cycle of values. If the adversary knows the initial vector 

of an LFSR, they will be able to predict future values. The LFSR in AES-T100 is a 20-

bit register with an initial value of 0x9999. Figure 11 displays the first shift operation 

that will occur in this LFSR’s operation. All bits shift to the right, and the missing bit is 

then filled based on a 4-way XOR operation. Note that the initial value is not part of the 

LFSR cycle. The first three values of this register are one-time events, as no value in the 

cycle will lead back to them. The value 0x13333 is the first value that can be considered 

part of the LFSR cycle. After 131,071 (217 - 1) shifts, the cycle will restart at this same 

value. 
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3. AES-T200 

a. Trigger 

Like AES-T100, this benchmark doesn’t have an explicit trigger mechanism. All 

of the Trojan functionality, including the rotation of the LFSR, functions at all times. 

b. Functionality 

As shown in Figure 12, the functionality of AES-T200 is nearly identical to that 

of AES-T100. This module uses an LFSR to modulate the leaked bits of the key. This 

register is rotated every clock cycle without any need for activation. The distinction 

between this payload that in and AES-T100 is the initial value of the LFSR. While 

AES-T100 uses 0x99999 as an initial value, AES-T200 takes its initial value from the 

incoming plaintext. When a reset signal is observed, the LFSR is loaded with the low-

order bits of the input state. This feeding of an initial value allows the attacker to 

choose a different sequence to modulate the leaked bits of the key. 
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Figure 12.  Detail view of the Trojan in AES-T200. Note the addition of the input 

data to the lfsr_counter module. The value of data is 
determined by state, one of the inputs to the overall circuit. 

  



 31 

4. AES-T300 

Most Trojans in the AES collection work in isolation from the main AES circuit. 

The trigger and functionality share common inputs with AES, but are otherwise 

completely isolated from it. The files that comprise the AES circuit are used in an 

unaltered state. In contrast, the AES-T300 benchmark contains a modified version of 

module aes_128. This module has 8 additional outputs, each drawn from one of the 

intermediate round keys. Figure 13 shows a detail view of this. Note that the value of 

rk8 comes directly from the expand_key_128 module a8. The additional outputs are 

fed into the module TSC, which leaks them to the adversary. 
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Figure 13.  AES-T300 modifies the AES_128 module by adding eight additional 

outputs. These outputs carry eight of the round keys used during the 
AES encryption process. Note that the last two round keys are not 
leaked, but we assume that the attacker either knows or has the ability to 
discover the mechanism used to generate the key. 

a. Trigger 

This benchmark also uses an always-on trigger, meaning that the Trojan will be 

continuously active. The shift registers in this Trojan are dependent only on their 

respective round keys. 
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b. Functionality 

The TSC module contains 8 8-bit shift registers like the one shown in Figure 14. 

Each register is dedicated to the leakage of a single round key. When a reset signal is 

observed, each register is loaded with the value 101010102, or 0xAA. The register 

rotates whenever clk changes and input G is equal to 12. In AES-T300, this input is 

determined by performing a series of AND and XOR operations. The lowest 8 bits of 

state are ANDed with the lowest 8 bits of the round key. The resulting bits are subjected 

to an XOR operation. The final result of this operation is sent to the register. If this value 

is 12, the register will rotate twice every clock cycle until the round key changes and the 

test is performed again. 

 
Figure 14.  Detail view of a shift register from AES-T300. Note that the world 

view shown here is a partial schematic, depicting only 1 of the 8 
registers. On a reset signal, the register is fed with an initial value of 
101010102. Afterwards, register’s value remains unchanged unless the 
input G is 12. G is the result of AND and XOR operations performed 
using state and the first round key.  

Figure 15 shows a segment of the waveform for all eight registers. Note that the 

value of each register rotates between 0xAA and 0x55, which are the hex values of the 
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two alternating patterns for an 8-bit number. The adversary can identify the increased 

power consumption associated with the rotation.  

 
Figure 15.  A waveform diagram displaying the actions of the shift registers in 

AES-T300. The top waveform displays the actions of the system clock. 
One step of rotation for a register means a transition from a value of 
0xAA to 0x55 or back. In the view shown, each round key has a 
different value, so the registers are rotating at different times. For 
example, SHReg6 rotates every time the clock changes because it 
satisfies the AND and XOR test for the entire period shown. 

Note that there is an error in the source code of the TSC.v file, which produces 

unexpected starting values in the registers. 

 if (rst == 1) begin 
  SHReg1 <= “10101010”; 

The lines shown here cause the value 0x30 or 001100002 to be assigned to the 

first shift register. All 8 registers use this assignment statement, with consistent results. 

To correctly assign an alternating pattern to the register, change these lines to read: 

 if (rst == 1) begin 
  SHReg1 <= 8’hAA; 

A similar change will be required for each of the 8 registers. 
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5. AES-T400 

AES-T400 is the first Trojan in this set to include a defined Trojan_Trigger 

module, as shown in Figure 16. This module evaluates the state of the circuit against the 

predetermined triggering condition, and if these match, then the wire Tj_Trig will 

transmit the signal 12 to the module TSC, signaling that the Trojan should begin to 

operate. Note that the signal rst=12 is typically used to reset the Trojan. When a reset 

signal is observed, the Trojan will be deactivated, and the trigger will wait for the next 

time the condition is met. 

 
Figure 16.  The full view of AES-T400. Note that this benchmark follows the 

typical structure displayed earlier. The functionality module is named 
AM_Transmission, but it accepts inputs from the wires key and 
Tj_trig. Like the TSC module present in other benchmarks, 
AM_Transmission operates without disrupting the core functionality 
of the aes_128 module. 

a. Trigger 

AES-T400 is described as a combinational trigger that activates when an input of 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF is observed. Figure 17 demonstrates 

this portion of the Trojan trigger mechanism. 
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Figure 17.  A detail view of the AES-T400 trigger. Detected_i represents the 
actual comparison of the incoming value state against the predefined 
value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. Note that 
due to features of AES-T400’s functionality, additional gates have been 
added to set Tj_Trig to 02 within two clock cycles of activation. 

The activation of the Tj_Trig wire is designed to be temporary. While 

Tj_Trig has the value 12, the Trojan will load the value of input key into a register in 

the AM_Transmission module. However, the source code produces a different result. 

In the source code, the Trojan is activated when a reset signal is observed, and Tj_Trig 

becomes 02 one clock cycle later. It also becomes impossible to activate the Trojan after 

this point. 
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The following HDL code defines the activation of the AES-T400 trigger: 

 
 
always @(tempClk1, tempClk2) 
begin 
 Tj_Trig <= tempClk1 | tempClk2; 
end 
 
// Tj_Trig is high for two clock cycles 
always @(posedge clk) 
begin 
 if (rst == 1) begin tempClk1 <= 1; tempClk2 <= 0; end 
  else if ((tempClk1 == 1) && (Detected == 1))  
   begin tempClk1 <= 0; tempClk2 <= 1; end 
  else if ((tempClk1 == 0) && (tempClk2 == 1))  
   begin tempClk2 <= 0; end   
  else begin tempClk1 <= 0; tempClk2 <= 0; end 
end 
 

The first segment of code is used to determine the value on Tj_Trig. This value 

is decided by an OR operation between tempClk1 and tempClk2. If either wire is 12, 

the Tj_Trig will also be 12. Note that this assignment will occur every time one of the 

tempClk values changes. 

The second code segment is responsible for assigning values to tempClk1 and 

tempClk2. This assignment will run at the start of every clock cycle. These two wires 

draw their values from four sources: their previous states, rst, and Detected. 

Detected is a 1-bit signal representing that state has been observed with a value of 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF since the last reset. 

Note that when rst = 12, tempClk1 is also set to 12. This means that 

Tj_Trig is also immediately set to 12. On the next clock cycle, if state was not equal to 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF during the reset, tempClk1 and 

tempClk2 will be assigned a value of 02. This combination leads to a Tj_Trig value 

of 02 as well. Tj_Trig would hold a high value for only a single clock cycle. If the 

appropriate value of state is observed during a reset, then the high Trigger value will be 

maintained for two clock cycles. Note that the triggered portion of Trojan functionality is 
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the loading of a value into a register, and that event is scheduled to occur at the moment 

Tj_Trig is set to 12. Thus, the duration of the activation is not relevant. 

After tempClk1 and tempClk2 are both equal to 02, a reset is the only 

incoming signal that can cause one of them to become 12. tempClk1 is only set to 12 

by a reset, and tempClk2 is only ever set to 12 if tempClk1 and Detected are 

simultaneously equal to 12. 

b. Functionality 

AES-T400 uses a new leakage mechanism. The LFSR leakage circuits in AES-

T100 and AES-T200 rely on side channel analysis. The Trojan in this benchmark 

actually succeeds in transmitting information to an AM radio at 1560 kHz. If you choose 

to implement this circuit on physical hardware, note that the documentation does explain 

how to interpret the signals received on this radio frequency. Salmani et al. state that a 

single beep followed by a pause represents a 02, and a double beep represents a 12. 

Operating only within Vivado, we have been able to observe the operation of the output 

Antena [sic], which is the line that carries signals to the transmitter itself. Based on 

the structure of the HDL code, a 12 value of Antena [sic] results in a beep, and a 02 

value results in silence. 

When the Trojan is first activated, the value of the secret key is loaded into a 

register named ShiftReg. The structure of this register is shown in Figure 18. When 

the Tj_Trig wire is 02, this register will shift once for every full rotation of the 26-bit 

counter Baud8GeneratorACC. This register increments every clock cycle. As a result, 

ShiftReg will rotate one step every 2128x26 clock cycles. The least significant bit of this 

ShiftReg will be leaked to the transmitter, resulting in a transmission of the key in 

reverse order. 
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Figure 18.  The shift register of AES-T400. When Tj_Trig = 12, this register is 

loaded with key. Every time that the register’s C input is set to 12, the 
register input is updated with the output from SHIFTReg0_i. This 
output is the register’s previous value with every bit shifted to the right.  

The beeps are partly controlled by Baud8GeneratorACC. A first beep requires 

that the register contain a value of the form 0x000x…x1x…x1xxxx. The 12 signals 

are bits 4 and 15 of the register. The second beep occurs when Baud8GeneratorACC 

has the form 0x010x…x1x…x1xxxx and the ShiftReg[0] bit is 12. The change in 

the value of bit 24 results in a short period of silence in a double beep, while the 

requirement for a 02 value in bit 25 means that after the period allowed for the second 

beep, Baud8GeneratorACC must wrap around before the next bit is transmitted. This 

makes the pause between bits much longer than the pause in the middle of a pair. 
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6. AES-T500 

At first glance, AES-T500 does not appear to have a trigger module. The 

benchmark does not contain a Trojan_Trigger.v file, and, as Figure 19 shows, the 

benchmark circuit doesn’t explicitly define a module for the trigger. However, TSC.v 

contains a section of code that is an exact match for code in one of the 

Trojan_Trigger modules in AES-T800. The code even uses the name Tj_Trig to 

define the signal to the module payload. 

 
Figure 19.  The apparent structure of AES-T500. Note that while no trigger module 

has been explicitly defined, the TSC module contains logic dedicated to 
the purpose of triggering the Trojan after specific inputs have been 
observed. Also note that Vivado has not elaborated on the contents of 
the module TSC. Vivado takes this approach to modules that do not have 
a specific output. To work around this, we added an output to the TSC 
module, directly using an existing register to provide the output’s value. 
With this change, we were able to generate detail views of the internal 
workings of the TSC module. 
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a. Trigger 

The trigger in this benchmark is a sequential trigger. This trigger waits for four 

separate values of state to be observed, in order, before setting Tj_Trig to 12. The 

inputs are as follows: 

• 0x3243f6a8_885a308d_313198a2_e0370734 

• 0x00112233_44556677_8899aabb_ccddeeff 

• 0x0 

• 0x1 

Note that these inputs do not need to be observed in immediate succession. After 

each value is observed, a state register is updated. The value of this register must be 12 

for the next input value to move the sequence forward. Hundreds of state values could be 

observed between the first of the triggering values and the last. As long as the circuit is 

not reset, the Trigger mechanism will remember which of these states have been seen. 

Figure 20 shows the first two state comparisons. The register State0_reg identifies 

whether the first triggering input combination has been seen since the last reset. Note that 

the result of the state11_i comparison is ANDed with the register value. If they are 

not both 12, then the next state register will not be updated. 
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Figure 20.  A detail view of the first two comparisons performed by the trigger in 

AES-T500. Vivado represents the first comparison as the RTL_ROM 
module State0_i. This module is slightly overshadowed by the long 
binary input to State1_i. Note the result of this comparison is stored 
in the RTL_LATCH State0_reg. The second comparison is depicted 
as a direct comparison of state to a given value using an RTL_EQ 
module.  

b. Functionality 

AES-T500 is designed to perform a denial-of-service attack. Recall that AES-

T300 uses rotating registers to leak information to an adversary. This leakage is possible 

because the rotation of an alternating register increases power consumption. Side channel 

analysis allows the adversary to recognize that consumption and deduce information 

about the key. AES-T500 uses register rotation, but there is no intent to leak 

information. Instead, this Trojan is meant to be used on a battery-operated device. With 

the register rotating every time the clock changes, the device experiences an increased 

drain on the battery. As a result, the device will need more frequent recharges. Note that 

Figure 21 shows the full functionality of the device. The majority of the gates and 

registers shown in the world view are part of the benchmark’s trigger mechanism. Only 

DynamicPower_reg can be considered part of the functionality of this Trojan. 
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Figure 21.  Detail view of the Trojan functionality of AES-T500. 

DynamicPower_reg is initialized with an alternating pattern of 
1010…2. The wire feeding into G is Tj_trig. When this wire has a 
value of 12, the register will rotate on every clock cycle. The bus from Q 
to D represents the altered value being fed back into the register. Note 
that this view cuts off the extra output we added to force Vivado to 
generate this image. 

7. AES-T600 

a. Trigger 

AES-T600 uses the same trigger as AES-T400. The Trojan_Trigger.v 

files differ only in the placement of whitespace. This trigger has a mechanism for 

detecting a state value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF. However, 

the trigger activation actually occurs at reset. Note that if the expected state value occurs 

at the same time as the reset signal, then the Tj_Trig wire will remain 12 for two clock 

cycles. Otherwise, the trigger will return to 02 after 1 clock cycle. It will not be possible 

to activate the trigger again without another reset signal. 

b. Functionality 

The Trojan in AES-T600 leaks bits from the secret key. Unlike many of the 

other AES Trojans, this Trojan will actually leak the entire key, one bit at a time.  

When the wire Tj_Trig first shows a 12 value, the key from AES will be loaded 

into a register named SECRETkey. Since Tj_Trig quickly changes back to 02 and the 
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Trojan cannot be triggered again until a new reset, SECRETkey will retain the secret key 

assigned at reset for the remainder of the leakage process. 

When the value of SECRETkey changes, the least significant bit of the new value 

is fed to an inverter. The result is inverted again, and split across ten wires, as shown in 

Figure 22. These ten wires are meant to be read using side channel analysis. The result of 

this inversion is meant to be read through side channel analysis. Like the LFSR-

modulated leakage used in AES-T100 and AES-T200, the analysis is easier when the 

bit is repeated across multiple wires. 

 
Figure 22.  Leakage from the AES-T600 Trojan. Note that the wires INV1_out 

through INV11_out are defined as wires, but not circuit outputs in the 
Trust-Hub code. According to the documentation for this benchmark, the 
leaked bit can be recovered by measuring the leakage current. To 
produce this schematic, we extended the wires into module outputs. 
Without the change, Vivado would refuse to expand the TSC module. 
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To leak the rest of the secret key, AES-T600 uses SECRETkey as a shift 

register. A different 128-bit register is set to 02 when a reset signal is observed. Every 

clock cycle, this register increments. When the most significant bit becomes 12, the bits 

of SECRETkey shift one place. Since SECRETkey has just changed, the inverters now 

leak the new least significant bit. In this way, the key is leaked, in reverse order, to the 

side channel the adversary has prepared. 

8. AES-T700 

a. Trigger 

The trigger of AES-T700 operates by a single comparison operation. Figure 23 

demonstrates the Vivado schematic of this comparison mechanism. Each value of state is 

compared against the value 0x00112233445566778899AABBCCDDEEFF. Note that 

Vivado represents this comparison as a ROM access with only one of the 2128 memory 

locations containing a value of 12. 
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Figure 23.  Detail view of the Trojan_Trigger module of AES-T700. 

Activation is represented by a 12 signal on the output Tj_Trig. This 
signal begins when the correct input state is observed, as compared to 
the value in Tj_Trig_i. A 12 signal on rst will deactivate the Trojan 
by acting as the “clear” input of the RTL_LATCH. 

When a state with the chosen value is observed, the wire Tj_Trig will be set to 

12. This signal causes the Trojan module to activate. The Trojan will remain active until 

a signal of 12 is observed on the rst input, at which point the Tj_Trig will be set 

back to 02. Vivado represents the activation process using an S-R latch, identified as an 

RTL_LATCH. The output of the ROM comparison serves as the set signal for the latch. 

The value of Tj_trig is determined at the instant that one of the incoming signals 

changes, not at the start of a clock-cycle.   
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b. Functionality 

AES-T700 uses a leakage circuit nearly identical to that used in AES-T100. The 

LFSR has identical functionality, and the same initial value of 0x99999 is loaded at the 

rst signal. The only difference between the TSC module here and the TSC module in 

AES-T100 is the addition of the input Tj_Trig, which serves to signal the activation 

of the Trojan. 

In Figure 24, you can see that the wire Tj_Trig is only applied to the module 

lfsr. The XOR and leakage operations will occur regardless of whether or not the 

Trojan has been triggered. This means that the leaked bits will be repeatedly XORed with 

bits from the initial value of the LFSR—0x99999. Trojan activation in this circuit will 

cause the LFSR to begin operating, improving the leakage obfuscation. 

 
Figure 24.  Detail view of the TSC module of AES-T700. Note the presence of the 

Tj_Trig input. This input only applies to lfsr, meaning that only the 
operation of that module is affected by the activation of the Trojan. 
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9. AES-T800 

The AES series of benchmarks was designed in a very modular fashion. All of the 

benchmarks from this point forward directly copy their trigger, functionality or both from 

a previous circuit. As a result, we have included only a quick summary of duplicate 

elements, along with a reference to the benchmarks they have been borrowed from. 

a. Trigger 

The AES-T800 circuit uses a sequential trigger identical to that in AES-T500. 

The Trojan will be activated after the trigger module observes the sequence 

0x3243f6a8_885a308d_313198a2_e0370734, 

0x00112233_44556677_8899aabb_ccddeeff, 0x0, 0x1. However, AES-

T800 actually dedicates a module completely to this mechanism, instead of including the 

trigger as part of the TSC module. 

b. Functionality 

AES-T800 uses the exact same TSC module as AES-T700. This can be 

confirmed through hash comparison of TSC.v, which contains the logic for this module. 

The MD5 hash of this TSC.v is 0x9EA2ADE64F51E044AF4056C6B0F487E0. The 

module leaks 8 bits of the secret key after modulating them with bits generated by an 

LFSR. The LFSR is loaded with an initial value of 0x99999. Note that the XOR 

operation and the leakage will occur every clock cycle, but the LFSR will not rotate 

unless the Trojan has been triggered. 

10. AES-T900 

a. Trigger 

AES-T900 uses a 128-bit counter to determine the status of Tj_Trig. The 

functionality of this counter is shown in Figure 25. The counter is assigned a value of 02 

at reset. Every time an encryption is completed, the counter is incremented. When the 

counter has a value of 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the circuit is 

triggered. 
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Figure 25.  The counter in AES-T900. Vivado is not representing this counter 

using a register module. Instead, the value of the counter is represented 
by the loop passing between Counter0_i and Counter_i. Note that 
the select bit of Counter_i is provided by rst. 

b. Functionality 

AES-T900 uses the same TSC module as AES-T700 and AES-T800. An 

LFSR with an initial value of 0x99999 is used to modulate bits from the secret AES 

key. The bits are then leaked to a capacitance circuit. The adversary can read the leakage 

using side channel analysis. Since the adversary determined the initial vector and the 

LFSR mechanism, they will be able to convert the bits back to their correct values. Note 

that this Trojan only leaks the least significant 8 bits of the key. 

11. AES-T1000 

a. Trigger 

The trigger mechanism is identical to that uses in AES-T700. Both benchmarks 

use an identical version of Trojan_Trigger.v, with an MD5 hash of 

DF55995DD60E427AFB27050A0B6D21DD.  
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After the value 0x00112233445566778899AABBCCDDEEFF is observed, 

the wire Tj_Trig will be set to 12. A reset signal will return the value to 02. 

b. Functionality 

The functionality of AES-T1000 mixes the functionality of AES-T200 and 

AES-T700. The LFSR register is rotated every clock cycle, but only after activation, as 

represented by Tj_Trig = 12. The initial value of the LFSR is taken from the input 

plaintext, just as in AES-T200. While AES-T700 uses 0x99999 as an initial value, 

AES-T1000 takes its initial value from the incoming plaintext. This value is loaded at 

reset. 

 
Figure 26.  Detail view of the TSC module in AES-T1000. Note that this module 

combines features from AES-T200 and AES-T700. The LFSR register is 
initially fed from data, which is state in the overall circuit. Tj_Trig 
is used to control only the rotation of the LFSR. 
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12. AES-T1100 

a. Trigger 

AES-T1100 uses the same trigger as AES-T500 and AES-T800. Note that the 

Trojan_Trigger.v files of AES-T800 and AES-T1100 share an MD5 hash of 

403360F99B64A4524058DEC3268AE5AC. This trigger activates after observing the 

following sequence of state values in order, but not necessarily in immediate succession:  

• 0x3243f6a8_885a308d_313198a2_e0370734 
• 0x00112233_44556677_8899aabb_ccddeeff 
• 0x0 
• 0x1 

b. Functionality 

AES-T1100 copies the functionality of AES-T1000. These benchmarks share a 

common TSC.v file with an MD5 hash of 

0x3A8620C109A5D632A0448C6DFE996D2C. Note that this module leaks bits from 

the secret key after XORing them with bits from an LFSR register. This variant of the 

LFSR register is more flexible because it draws its initial value from state. This value is 

assigned when a reset signal is observed. 

13. AES-T1200 

a. Trigger 

AES-T1200 uses the same counter-based trigger as AES-T900. A 128-bit 

counter is assigned an initial value of 0x0. Every completed encryption causes the 

counter to increment. When the counter’s value is equal to 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the wire Tj_Trig will begin 

carrying the 12 signal that represents activation. 

b. Functionality 

This TSC module is defined in the same version of TSC.v used in AES-T1000 

and AES-T1100. As in those benchmarks, the Trojan leaks part of the secret key, but 

first XORs the leaked information with a value determined by an LFSR. When the circuit 
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reset signal is observed, the LFSR is loaded with the value of state. The LFSR only 

rotates after the Trojan has been triggered. 

14. AES-T1300 

a. Trigger 

The Trojan_Trigger module in AES-T1300 is identical to the 

combinational trigger presented in AES-T700. This trigger activates on an incoming 

state value of 0x00112233445566778899AABBCCDDEEFF, just like the trigger in 

AES-T700 and AES-T1000. Note that a hash comparison of Trojan_Trigger.v in 

these benchmarks will fail because a single space character has been added to the version 

in AES-T1300. 

b. Functionality 

The Trojan in AES-T1300 is based on the TSC module from AES-T300. Each 

round key is used to drive the rotation of a shift register. The adversary can learn 

information about the key by using side channel analysis to observe the action of these 

registers. However, the shift registers in AES-T1300 will not operate until Tj_Trig = 

12. 

15. AES-T1400 

a. Trigger 

AES-T1400 copies its trigger mechanism from AES-T500, AES-T800, and 

AES-T1100. The AES-T800, and AES-T1100, and AES-T1400 versions of 

Trojan_Trigger.v share a common hash value of 

403360F99B64A4524058DEC3268AE5AC. The Trojan in this circuit will activate 

after seeing the following outputs in order: 
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• 0x3243f6a8_885a308d_313198a2_e0370734 

• 0x00112233_44556677_8899aabb_ccddeeff 

• 0x0 

• 0x1 

b. Functionality 

The Trojan in AES-T1400 is identical to that in AES-T1300. Using side 

channel analysis, the adversary is able to glean information about the intermediate round 

keys. This information results from the rotation of a group of internal shift registers. 

However, the registers will not rotate unless the Trojan has already been activated.  

 

16. AES-T1500 

a. Trigger 

AES-T1500 uses the same counter-based trigger as AES-T900 and AES-

T1200. A 128-bit counter is assigned an initial value of 0x0. Every completed 

encryption causes the counter to increment. When the counter’s value is equal to 

0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF, the wire Tj_Trig will begin 

carrying the 12 signal that represents activation. 

b. Functionality 

The TSC module in AES-T1500 is identical to those in AES-T1300 and AES-

T1400. This Trojan leaks intermediate round keys using the action of shift registers. 

These registers will rotate based on a combination of bits from the associated round keys 

and the activation of the Trojan. 

17. AES-T1600 

a. Trigger 

The trigger in this benchmark is similar to the sequential trigger demonstrated in 

AES-T500 and AES-T800. However, this trigger incorporates the short-term aspect of 
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the AES-T400 trigger. The trigger is intended to activate after observing the appropriate 

input sequence, remain activated for two clock cycles, then deactivate. However, the 

exact HDL code provided causes the trigger to activate for one cycle on reset, regardless 

of inputs to the circuit. Note that the only purpose of activation in the included 

functionality is to load a key into a register. Leakage of the key occurs during the inactive 

period. 

b. Functionality 

The AM_Transmission module here is identical to that in AES-T400. Bits of 

the key are leaked, in reverse order, to an AM transmitter with a frequency of 1560 kHz. 

Each 02 bit is signified by one beep on this frequency, followed by a pause, while each 

12 bit is signified by two beeps. 

18. AES-T1700 

a. Trigger 

AES-T1700 uses the same counter-based trigger mechanism found in AES-

T900. This trigger counts encryptions until the 128-bit counter register reaches its 

maximum value. After that, the Trojan is triggered. Note that there seems to be an error 

in the provided HDL code. Unlike AES-T400 and AES-T1600, this trigger does not 

include the code that would cause immediate deactivation of the trigger. Since the 

functionality of this circuit relies on a short-term trigger to load the AES secret key into a 

register, then leaks the key during the inactive period, AES-T1700 will be unable to 

leak the key correctly.  

b. Functionality 

The AM_Transmission module used here is very similar to the one used in 

AES-T400 and AES-T1600. The only source code change is the absence of the register 

SECRETkey, which is present in the AES-T400 module. Note that this register is 

unused in that module. In the AES-T1700 Trojan, bits of the key are leaked, in reverse 
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order, to an AM transmitter with a frequency of 1560 kHz. Each 02 bit is signified by one 

beep on this frequency, followed by a pause, while each 12 bit is signified by two beeps. 

 

19. AES-T1800 

a. Trigger 

AES-T1800 uses a combinational trigger that is identical to that in AES-T700. 

The Trojan is inactive at reset, then activates when the state 

0x00112233445566778899AABBCCDDEEFF is observed. Note that this trigger is 

not defined in a separate module, but instead is written as part of the TSC module. The 

functionality, however, is identical. The lines that define the trigger are effectively pasted 

into the file TSC.v. 

b. Functionality 

This Trojan performs the same battery draining operation as AES-T500. This is 

accomplished by loading a 128-bit register with alternating 02s and 12s. Once the Trojan 

is triggered, the register will rotate once every clock cycle 

20. AES-T1900 

a. Trigger 

AES-T1900 uses the counter-based trigger found in AES-T900, AES-T1200, 

and AES-T1500. The 128-bit counter will count completed encryptions until 2128–1 

encryptions have been completed. After that, the Trojan will be active. A reset signal will 

deactivate the Trojan and reset the counter to 0x0. Note that this trigger is included in the 

module TSC, instead of being isolated in a dedicated Trojan_Trigger Module. 

b. Functionality 

This Trojan functions the same way as AES-T500 and AES-T1800. After 

observing the successful activation of the Trojan trigger, a register composed of 

alternating 12s and 02s begins rotating every clock cycle. This rotation causes an 
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increased power drain. In a battery-operated device, this will accelerate the failure of the 

device due to loss of power. Note that none of the documentation for AES-T500, AES-

T1800 or AES-T1900 states exactly how much additional power drain is produced by 

the rotation of the DynamicPower register. 

21. AES-T2000 

a. Trigger 

AES-T2000 uses the sequential trigger found in AES-T500, AES-T800, 

AES-T1100 and AES-T1400. This trigger is activated after the following values of 

state have been observed in order: 

• 0x3243f6a8_885a308d_313198a2_e0370734 
• 0x00112233_44556677_8899aabb_ccddeeff 
• 0x0 
• 0x1 

It is not necessary for these values to be observed in sequence. The Trojan can be 

deactivated with a reset signal.  

b. Functionality 

The functionality used in this benchmark is identical to that in AES-T600. The 

secret key is leaked, 1 bit at a time, to a group of ten parallel wires. The adversary can 

read these wires through side channel analysis. Note that the key is leaked in reverse 

order. Each bit of the key is transmitted to this leakage circuit for 2128–1 clock cycles 

before the next bit is leaked. 

 

22. AES-T2100 

a. Trigger 

AES-2100 is activated by the same counter-based mechanism used in AES-

T900. This 128-bit counter increments with every completed encryption. When the 

counter contains all 12s, the Trojan will activate. A reset signal will deactivate the Trojan 

and reinitialize the counter to a value of 0x0. 
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b. Functionality 

The functionality used in this benchmark is identical to that in AES-T600 and 

AES-T2000. This Trojan leaks the secret key, 1 bit at a time, to a group of ten parallel 

wires. The adversary can read these wires through side channel analysis. Note that the 

key is leaked in reverse order. Each bit of the key is transmitted to this leakage circuit for 

2128–1 clock cycles before the next bit is leaked. 

B. TROJANS IN BASICRSA 

The second set of Trojans we will discuss applies malicious inclusions to the 

basicRSA circuit found on the site opencores.org. Each benchmark contains three 

VHDL files. The high level circuit functionality is defined in rsacypher.vhd. File 

modmult.vhd contains multiplication submodules for the basicRSA circuit. Note 

that modmult.vhd remains unchanged across all four available benchmarks, with an 

MD5 hash of 0x494F66BBAC36397393D842DA7A71911A. The last file in each 

benchmark is the test bench rsatest16.vhd. These test benches are similar to one 

another, but each one contains inputs specifically chosen to activate the Trojan in the 

benchmark circuit that contains that test bench. 

Note that if you attempt to analyze these benchmarks in Vivado, it will be 

necessary to edit the HDL code in rsacypher.vhd. Due to a typo in this file, circuit 

simulation will report a value of 0xUUUUUUUU for the output cypher. This is Vivado’s 

representation of an uninitialized value. To correct this, locate the line in process 

mngcount that reads: 

elsif [sic] count = 0 

Change this line to read:  

elsif [sic] count /= 0 

This change corresponds more closely to comments in the HDL, which state that 

this condition should be met on each round of multiplication except the first. Wire 

count is only 02 during the first round within a particular encryption. 
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1. Important Features of the Trojan-Free BasicRSACircuit 

The basicRSA circuit is a demonstration circuit for the asymmetric RSA 

encryption process. Comments within the code state that this circuit is not meant for use 

in production environments. However, the circuit effectively demonstrates the encryption 

process because it uses keys small enough to be verified by external analysis. 

Like other asymmetric encryption algorithms, RSA makes use of a private key, 

held by the keyholder, and a public key, which is available to any party who wishes to 

communicate with the keyholder. A communicator can use the public key to encrypt a 

message to the keyholder, confident that only the keyholder is capable of reading the 

message. Additionally, the keyholder can use the private key to sign a message, allowing 

communicators to verify that they did send that message. 

In RSA, the two keys are composed of a total of three parts. The private key is 

composed of an exponent d and a modulus n. The public key is composed of an exponent   

e and the same modulus n. The keys can be used to convert between a plaintext message 

m and an encrypted ciphertext c according to the following equations: 

c = us (mod n) 

m = md (mod n) 

Note that the encryption and decryption equations are structurally identical. As a 

result, the same basicRSA circuit can be used to perform both tasks. 

See Figure 27 for a circuit diagram of the inputs to basic RSA. Bus inMod is 

used to input the modulus. Busses inExp and indata are used differently depending 

on the current circuit activity. During encryption, indata carries the plaintext message 

m, and inExp carries the public exponent e. During decryption, indata carries the 

ciphertext c and inExp carries the private exponent d. Note that the signature and 

verification process alters the matching of exponents to messages, but inExp is still used 

for the exponent and indata is used for the message to be converted. 
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Figure 27.  Inputs of the basicRSA circuit. The key inputs to be aware of are 

inExp and indata. Depending on the exact usage case of the circuit, 
at least one of these values is secret information not meant to be shared 
with the outside world. As a result, the adversary would attack 
confidentiality by causing the circuit to leak one or the other of these 
values. 

The outputs of the circuit are shown in Figure 28. The primary output bus is 

cypher, which carries the final result of the RSA process. Since the RSA algorithm is 

the same in both directions, cypher can carry either the encrypted message or the 

plaintext message. Wire ready is a signal designed to alert surrounding architecture that 

the basicRSA circuit has completed the encryption and that another encryption task can 

be assigned. 
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Figure 28.  The outputs from the basicRSA circuit. Output cypher carries the 

result of the RSA operation. Due to the structure of the algorithm, this 
can either be an encrypted ciphertext or a decrypted plaintext. Output 
ready notifies surrounding architecture that an RSA operation has been 
completed.  

2. BasicRSA-T100 

The Trojans in the basicRSA benchmarks have the smallest footprint of any 

Trojan discussed in this thesis. As shown in Figure 29, the Trojan in basicRSA-T100 

is composed of two gates. The comparator eqOp_i serves as the trigger mechanism, and 

the trigger output is used as the select bit of mux gate cypher_i. This gate represents 

the Trojan functionality. When the Trojan is active, the output of this gate will be one 

selected by the adversary. The effect of this choice will be explained in the Functionality 

section. 
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Figure 29.  The complete malicious inclusion of basicRSA-T100. Comparator 

eqOp_i compares the input indata with 0x44444444. The result of 
this operation is used as the select bit for the mux gate cypher_i. The 
input I1 of cypher_i is the bus product, which carries the result of 
iterative modmult operations. When the RSA algorithm has finished, 
product carries the correct final result. Input I0 of cypher_i is 
linked directly to circuit inExp. The output of cypher_i feeds 
directly to output cypher. 

a. Trigger 

The trigger in basicRSA-T100 is a simple combinational input. As shown in 

Figure 29, the circuit waits for the input 0x44444444 to be sent on input indata. 

Vivado represents the input test as a simple equality operation between the input and the 

target value. 

b. Functionality 

The Trojan in basicRSA-T100 overwrites the output cypher with the value 

of inExp. Note that in the circuit diagram shown in Figure 29, this is accomplished by 

using the result of the input comparison trigger as the select bit for a mux gate. This 

Trojan is intended to be used against the keyholder of an RSA private key. Use against 

another communicator would allow the adversary to recover the public key, which they 

will already have access to. If the adversary recovers the private key, they will be able to 



 62 

read any messages meant for the keyholder and also produce valid signatures in the name 

of that keyholder. 

3. BasicRSA-T200 

The Trojan in basicRSA-T200 is shown in Figure 30. Like the Trojan in 

basicRSA-T100, this Trojan requires only two gates. Note that these gates disrupt 

circuit operation at an early stage, and their effects propagate until the final output 

cypher is effectively replaced with the original plaintext input. 

 
Figure 30.  The complete Trojan in basicRSA-T200. Like basicRSA-T100, 

this benchmark triggers on a simple comparison operation. 
InputExponent_reg is added as an intermediate storage of inExp 
prior to the use of that input for the main RSA operation. If the Trojan is 
triggered, this intermediate storage location allows the value of inExp 
to be substituted with 0x00000001. The basicRSA circuit will then 
conduct encryption or decryption operations using the substitute value. 

a. Trigger 

The trigger in basicRSA-T200 is a simple combinational test, similar to that in 

basicRSA-T100. If the value of indata is 0x01fa0301, the Trojan will be 

triggered. As shown in Figure 30, Vivado represents this trigger with a single equality 

operation. 
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b. Functionality 

After the appropriate input value is seen, the Trojan in basicRSA-T200 will 

perform a simple replacement of inExp. Module modmult will receive the value 0x1 

in place of the normal exponent. 

The choice of exponent is based on the algorithm used in this circuit. The 

basicRSA that these circuits are based on uses a “square and multiply” algorithm to 

convert the message. For each bit of the exponent, the circuit will square the current 

iteration of the message. If that bit is a 12, then the message will be multiplied by this 

square, and the next iteration will be the result of this multiplication. If the bit is 02, then 

the squared value will be discarded, and the next iteration will be the same as the current 

iteration. The bits of the exponent are evaluated in reverse order, and a special algorithm 

is used to prepare the initial iteration of this process. If the least significant bit is 12, the 

message is simply loaded as the first iteration of the RSA process. If the bit is 02, then the 

value 0x1 is loaded instead. After the message has been subjected to all 32 iterations of 

this process, the result is transmitted as cypher. 

The adversary selected 0x1 as the replacement value because it completely 

disables the encryption process. The least significant bit is 12, which causes the circuit to 

load indata for the initial iteration. All other bits in the attacker’s chosen exponent 

have a value of 02. As a result, each iteration of the square and multiply algorithm will 

simply output the value of the previous iteration. After all 32 iterations are complete, the 

final value of product will be indata. This will be transmitted as if it were the result 

of the RSA algorithm. If this circuit were being used to encrypt and transmit a message, it 

would instead simply be transmitting the message in the clear, readable by anyone who 

cared to listen. 

4. BasicRSA-T300 

a. Trigger 

The trigger of basicRSA-T300 is based on a 32-bit counter with an initial 

value of 0x0. This counter is shown as a register and 32-bit adder in Figure 31. The 
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counter increments every time the ds signal becomes 12. The provided test bench sets 

this wire to 12 every time a new value is inserted on the indata bus. Since this Trojan 

is for demonstration purposes, the creator elected to reduce the triggering value of the 

counter to 0x2. This means that when the second encryption begins, the Trojan 

functionality will immediately trigger. 

 
Figure 31.  The trigger mechanism in basicRSA-T300. The core counter is 

composed of register TrojanCounter_reg and adder plusOp_i. 
Note that Q value of this register loops back through the adder, which 
adds 1 to the value on every loop. Also note that the register will only 
update its value if the Q value of TjEnable_reg is 12. 

This trigger boasts one additional feature. The counter in this Trojan is tied into 

the internal signal TjEnable. If TjEnable carries a 12 signal, the counter will 

function as described above. If TjEnable carries a 02 signal, the counter will not 

increment. As a result, the Trojan will have a reduced impact on power consumption. 

This reduced consumption will interfere with side-channel detection techniques. Note 

that the TjEnable signal is set to 12 on a reset, and 02 when the counter has a value of 
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0x2. This means that once the Trojan has been triggered, the unnecessary counter is 

disabled. The only impact on the circuit operation after this point comes from the Trojan 

functionality itself. 

b. Functionality 

The functionality of basicRSA-T300 is the same as that of basicRSA-T100. 

When the Trojan has been triggered, the cypher output will be replaced with the provided 

exponent inExp. This Trojan can capture both public and private exponents, but is most 

useful when used to capture a keyholder’s private exponent. 

5. BasicRSA-T400 

a. Trigger 

The trigger for basicRSA-T400 is identical to that for basicRSA-T300. 

Using a 32-bit counter, the Trojan counts 2 encryptions, and Trojan functionality 

becomes active at the start of the second encryption. To reduce the Trojan’s impact on 

power consumption and make it more difficult to detect, the counter is disabled after the 

Trojan is triggered. 

b. Functionality 

The Trojan in basicRSA-T400 disrupts the RSA encryption by inserting an 

additional mux gate between inExp and the modmult module, as shown in Figure 32. 

Before the Trojan is triggered, the circuit will function normally. Bus inExp will be 

used to control the functionality of modmult, and messages will be encrypted normally. 

After the Trojan is triggered, this mux gate will cause modmult to accept the value 

0x009add0a in place of inExp. This changes the sequence of multiplication 

operations in the RSA process and produces a different final output. The resulting 

cyphertext has been encrypted with a key selected by the adversary. As a result, only the 

attacker knows the corresponding decryption key. 
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Figure 32.  Circuit diagram of the functionality of basicRSA-T400. The 

comparator ItOp_i is the last component of the counter-based trigger 
mechanism. The result of this comparison will be used to select between 
using inExp to perform the RSA operation, or replacing it with the 
adversary’s chosen exponent: 0x009ADD0A. 

Note that this attack is most useful when performed against a user who wishes to 

encrypt a message and send it to a keyholder. In this scenario, the intended recipient will 

be unable to read the message, while the adversary will. If the receiver’s circuit is 

subverted by this Trojan during decryption, no one will be able to read the message. If the 

adversary uses their decryption key on the result of the attempted decryption, they will 

only be able to recover the original ciphertext. Without the corresponding decryption key, 

the adversary will remain unable to determine the original plaintext. 

C. TROJANS INSERTED IN THE REGISTER TRANSFER LEVEL (RTL) 
OF RS232 

This benchmark collection includes two major groups of RS232 benchmarks. Due 

to changes in the file structure and insertion stage between the two groups, this thesis will 

discuss each group separately. The first group, including all benchmarks from RS232-

T100 to RS232-T901, is based on RTL definitions of the RS232 circuit. This is the 

same level of abstraction that the authors used to insert Trojan functionality into the AES 

and RSA circuits. HDL at this level uses instructions similar to high-level software code, 
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including if statements and variables. The synthesis tools are responsible for converting 

this HDL to a collection of gates that acts according to the RTL specification. The other 

group of RS232 benchmarks, ranging from RS232-T1000 to RS232-T2000, has 

Trojans inserted at the gate level. This HDL specifies the logical arrangement of every 

logic gate in the circuit. Gate-level HDL will be discussed in more detail in Section D. 

Benchmarks in this set are composed of four files. File uart.v contains logic for 

the top-level RS232 circuit. This circuit instantiates a receiver module provided in 

u_rec.v and a transmitter module provided in u_xmit.v. All three of these files also 

instruct the synthesis tools to include the contents of file inc.h. 

Note that the include directive in every file has a hard-coded path based on the 

file structure of the benchmark authors’ computer. In order to synthesize these 

benchmarks without an error, it is necessary to change this line, which reads: 

`include “/home/salmani_h/Trust_HUB/Trojan_Inserted/inc.h” 

or 

`include “/home/xuehui/project/benchmark/src/inc.h” 

Xilinx is capable of handling relative paths in the include directive, so change the 

line to read:  

`include .”/inc.h.” 

Making this change allows you to import inc.h as though it is another source 

file. The circuit will then synthesize correctly. 

Note that the authors have not included a test bench for these benchmarks. We 

have written 3 test-benches and included them in the additional resources collection for 

this thesis. 
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1. Important Features of the Trojan-Free RS232 Circuit 

 The authors have not provided an explicit Trojan-free version of the RS232 

circuit. However, we were able to assemble one based on the provided documentation 

and the use of MD5 hashes and diff tools. The documentation for each benchmark 

identifies modules affected by the Trojan. For example, the documentation for RS232-

T300 states “Trojan trigger is a 32-bit counter inserted in the transmitter part of micro‐

UART core.” The phrase “transmitter part” refers to the iXMIT module, defined in 

u_xmit.v. Since the documentation did not make any reference to the iRECEIVER 

module, we decided to compare the file u_rec.v to the same file in RS232-T500, 

another transmitter-oriented benchmark. We discovered that the only difference between 

these files was the hard-coded path in the include directive. Since both benchmarks 

provide an identical inc.h file, this difference has no impact on the synthesis process. 

I conducted similar comparisons between other files to establish baselines for 

each of the files. We assumed that if files of the same name remained identical across 

benchmarks, and none of those benchmarks documented changes to the file in question, 

then we could accept those files as the original, Trojan-free versions. Unfortunately, only 

the inc.h files were truly identical, with all ten versions having an MD5 hash of 

0xA410FDE0B28A36ED0A13F0EB962BE60E. For the other files, we needed to 

examine the diff results in depth. Using these results, we labeled files as functionally 

identical if the only differences between them were in the include directive or in the 

placement of white space. We discovered that uart.v remained unchanged across nine 

of the benchmarks, and that each of the benchmarks in this collection modified only one 

of the HDL files. These will be highlighted in each individual benchmark’s description. 

Having determined which files represented my baseline, we assembled a new 

Vivado project using u_rec.v and u_xmit.v from RS232-T400, as well as 

uart.v and inc.h from RS232-T100. We named this project RS232-TjFree, 

according to the convention followed in the AES folders. 

The RS232 circuit is meant to be a sub-component of a larger architecture. This 

component is used to translate bytes of data into sequences of 1-bit signals that can be 
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sent, in sequence, from one device to another. The RS232 circuit is also responsible for 

converting a received sequence back to a usable byte of data. To accomplish this task, the 

circuit includes two nearly separate submodules, as shown previously in Figure 33. To 

prevent ambiguity and errors, both submodules and circuits that interact with them use 

certain conventions. These conventions dictate the ordering of bits in the transmitted 

sequence, as well as the signals to alert nearby circuits regarding when to exchange data 

with RS232. 

 
Figure 33.  High level schematic of the Trojan-free version of RS232. Note that the 

modules iRECEIVER and iXMIT operate in near isolation. They share 
the same clock and reset signals, but otherwise, each has its own inputs 
and outputs. Module iXMIT converts the byte xmit_dataH into a 
series of 1-bit signals transmitted through uart_XMIT_dataH. 
Module iRECEIVER does the opposite, accepting a series of bits from 
uart_REC_dataH and converting them to the byte rec_dataH. 

Figure 33 provides a black box view of the submodules iRECEIVER and 

iXMIT. Module iRECEIVER accepts incoming bit sequences on uart_dataH and 

converts them to bytes, which are sent on output bus rec_dataH. Note that a sequence 

is 10 bits of data. By convention, the first bit, which signals the start of the sequence, is a 

02. The last bit is a 12. The 8 bits in the middle are the bits of data from this byte, ordered 

from least-significant to most significant. Each bit is maintained for 16 clock cycles, to 
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allow the receiver to read and operate on it before the next one is presented. Module 

iRECEIVER uses a 1-byte register to store these bits, shifting the register contents to 

make room for each new bit. Timing is controlled by a state machine with 5 states: 

r_START, r_CENTER, r_WAIT, r_SAMPLE, and r_STOP. Figure 34 shows a 

representation of this state machine.  

 
Figure 34.  A diagram of the state machine in the iRECEIVER module of the 

RS232 circuit. Each time the machine leaves the r_SAMPLE state, a 
single bit is read from uart_dataH and added to the output register. 
State r_WAIT and register bitCellCntrH are used to control timing 
between each read operation. States r_START and r_CENTER confirm 
the initial 02 bit that signals the start of the message. The transition to 
r_STOP occurs after 8 bits have been read and another 15 clock cycles 
have passed. This extra time allows the circuit to account for the final bit 
of the serial message. 

For the benchmarks discussed here, the most relevant states are r_WAIT and 

r_SAMPLE. The r_WAIT state will delay for 14 clock cycles, as counted by register 

bitCell_cntrH. On the 15th clock cycle, the machine transitions to either 

r_SAMPLE, where the next bit is read from uart_dataH, or r_STOP. The 16th clock 

cycle allows time for the state machine to transition back from r_SAMPLE to r_WAIT. 

A transition to r_STOP occurs when the circuit has already read the 8 bits of this byte. 

These bits are counted by register recd_bitCntrH. Then REC_readyH will be set 

to 12, and the state machine will transition to r_START. Be aware that some of the 

Trojans use the values of registers bitCell_cntrH and recd_bitCntrH as 

triggering conditions, so it is useful to recognize their original purpose. 
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After the last bit in a sequence has been observed, Module iRECEIVER will send 

a 12 signal on wire rec_readyH, signifying that data is available to be read. Note that 

accurate signaling on this wire is essential for proper interaction with the overarching 

architecture. If other circuits in the architecture read data from rec_dataH at the wrong 

time, they will receive a partially converted byte, and begin operating on inaccurate data.  

Figure 33 also demonstrates the inputs and outputs of module iXMIT. This 

module accepts a byte of data on bus xmit_dataH and converts it to a 10-bit sequence 

according to the convention described above. This sequence is transmitted through wire 

uart_xmitH. To ensure that iXMIT is allowed to complete this task before a new 

message is provided for transmission, the wire xmit_doneH is used as an output to the 

external architecture. A 02 signal on this wire signifies that the iXMIT module is still in 

the process of sending the current byte. If a new input is applied to the xmit_dataH 

bus, the resulting sequence will be part of the current byte and part of the new byte. 

Ignoring this convention would prevent any decipherable message from being sent. 

To control the transmission and timing of each byte, iXMIT uses a state machine 

similar to that in iRECEIVER. The states in this module are x_IDLE, x_START, 

x_WAIT, x_SHIFT, and x_STOP. In state x_SHIFT, the next bit is transmitted on 

uart_xmitH, and the bit count is incremented. State x_STOP represents the 

completion of the transmitter conversion process. The Trojans written for the transmitter 

have less direct interaction with this state machine than the Trojans written for the 

receiver module have with their state machine.  

Note that iRECEIVER and iXMIT share the inputs sys_clk and sys_rst_l. 

wire sys_clk[sic] is the system clock, used for synchronization purposes. The 

sys_rst_l input is the reset input, which allows the circuit to be returned to a pre-

activation state. Note that this reset works differently than the rst wire used in the AES 

benchmarks. The RS232 circuits are inactive when sys_rst_l carries a 02 signal. To 

send messages, it is necessary to load this input with a sustained 12 signal. A system reset 

involves setting the sys_rst_l value to 02, then back to 12.  
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When this thesis discusses the Trojan functionality contained within each 

benchmark, we assume that the surrounding architecture follows the conventions 

described above. Several of these Trojans interfere with the wires rec_readyH and 

xmit_doneH, which control when nearby circuits attempt to send or collect data. To 

fully explain the impact of these Trojans, it is necessary to assume that linked circuits 

conform to expected conventions. 

2. RS232-T100 

The Trojan in RS232-T100 affects only the iRECEIVER module. All 

modifications to the HDL code of this benchmark occur in the file u_rec.v. Files 

uart.v and u_xmit.v are functionally identical to files of the same name found in 

other benchmarks. 

a. Trigger 

The documentation of RS232 states that the Trojan is triggered by a comparator 

across 19 signals. The documentation does not identify those signals. After searching the 

HDL code and the schematics, we were able to discern that these 19 signals are the 

individual bits of the registers bitCell_cntrH, recd_bitCntrH, and state, and 

the output rec_dataH. The relevant registers are shown in Figure 35, along with the 

first AND gates involved in funneling all 19 values into a single wire that represents the 

triggered state of the Trojan. Register state is the iRECEIVER module’s mechanism 

for identifying the current state of the internal state machine. Note that this means that the 

Trojan will be triggered at the end of the receiver’s conversion process. The Trojan will 

trigger when the following combination of values is observed: 

• recd_bitCntrH = 0x3 (3 bits of the key have been read.) 

• rec_dataH=0xFF (This register contains some bits from the current 

message and some from the previous message. Each of these bits is 12.) 

• state = 0x3 (The circuit is in the r_WAIT state.) 
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• bitCell_cntrH = 0xE (The circuit will be transitioning to the 

r_SAMPLE state during this clock cycle.) 

Note that the value of recd_bitCntrH is determined by the number of bits that have 
been read from a given input. This means that the rec_dataH value is not based on a 
single input, but rather the partial combination of two successive inputs. In particular, the 
first 5 bits of the initial input must be 111112, and the last 3 bits of the current input 
must be 1112. This causes the register to contain 111111112 when recd_bitCntrH 
is 0x3. Register bitCell_cntrH is guaranteed to cycle to 0xE once for each bit read, 
and the value of state corresponds to r_WAIT, which is part of the reading process. 

 
Figure 35.  Partial schematic showing the trigger registers of RS232-T100. These 

registers, in conjunction with the current value of rec_dataH, form 
the 19-bit trigger value of this Trojan. AND gates are used to funnel 
these inputs into a single result wire labelled ena. The world view 
above highlights the registers, showing how Vivado places them in the 
schematic. 
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b. Functionality 

The Trojan in this circuit is a simple mux gate, which accepts the final trigger 

result as the select bit. This gate selects between the correct result of output 

rec_readyH and a signal of 02. This means that prior to Trojan activation, 

rec_readyH will be 12 when the iRECEIVER circuit has a complete byte of data 

ready to be read, but when the Trojan is active, the rec_readyH signal will always be 

02. The external architecture will never be notified that there is data available to collect. 

A second mux gate selects between the correct rec_dataH result and 0x00. Note that 

the documentation only discusses the interference with rec_readyH. The additional 

overwrite of the converted data prevents the surrounding architecture from reading any 

meaningful answer, even if that architecture is designed to ignore the conventions of 

rec_readyH. Both mux gates are shown in Figure 36. 

 
Figure 36.  Schematic of the gates controlling the functionality of RS232-T100. 

The AND gate ena_i is the last gate in the trigger comparison process. 
The result of this operation is used as the select bit for two mux gates. 
One gate determines the output rec_readyH, and the other determines 
the output rec_dataH. Note that the result of the mux gate 
rec_dataH_i is fed back to another area of the receiver sub-circuit. This 
allows it to be used as part of the triggering conditional. 
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3. RS232-T200 

Like RS232-T100, this benchmark affects only the iRECEIVER module. 

iXMIT will continue to function normally. The Trojan triggers based on a set 

combination of values on two internal registers and the module output. After activation, 

this Trojan activates a counter. This counter has almost no impact on the circuit. 

a. Trigger 

The documentation for the benchmark describes the trigger as a comparator 

across 16 signals, but fails to identify the signals. The signals, like those in RS232-

T100 are based on internal registers and the output rec_dataH. Note that the register 

state is not part of the triggering condition in this trigger. According to the 

documentation, the required combination of values to trigger this Trojan is as follows: 

• recd_bitCntrH = 0xF 

• rec_dataH=0xFF 

• bitCell_cntrH = 0xF 

Note that as written, it is impossible to activate this Trojan. According to the HDL 

code, register recd_bitCntrH will count from 0x0 to 0x8 during the process of 

converting a single byte. When the circuit prepares to read the next byte, it will reset 

recd_bitCntrH to 0x0. The register will never hold a value of 0xF. In order to 

simulate this Trojan, we changed the HDL code to trigger the Trojan when this register 

held a value of 0x3, based on the example of RS232-T100. The relevant line in 

RS232-T200 is: 

Assign […] recd_bitCntrH[0]&recd_bitCntrH[1]&recd_bitCntrH[2]&recd_bitCntrH[3]; 

The equivalent line in RS232-T100 reads:  

Assign[…]recd_bitCntrH[0]&recd_bitCntrH[1]&(~recd_bitCntrH[2]&(~recd_bitCntrH[3]); 

b. Functionality 

The documentation claims that this Trojan reduces design reliability through the 

use of a counter. The HDL does include code to create a counter, which only increments 
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when the Trojan has been triggered. Note that this counter is never used as an input to 

any other part of the receiver sub-module. Because of this, Vivado will not include this 

counter or the trigger mechanism in the synthesized or elaborated designs. To produce the 

schematic in Figure 37, we added an output to the definition of the receiver module, and 

directly assigned count_l as the source of that output. With the output included, 

Vivado will actually display the entire malicious inclusion in the schematics and assign 

values to Trojan elements in the simulation waveform. Note that the counter still does not 

leak information or interfere with any other part of the receiver. 

 
Figure 37.  The Trojan in RS232-T200. The three gates shown make up a 10-bit 

counter, which increments every cycle while the Trojan is active. Note 
that this counter is not used as an input to any other part of the circuit. 
Also note that output count_l was artificially added to prevent 
Vivado’s automatic optimization from excising both the Trojan and the 
trigger. 

4. RS232-T300 

The RS232-T300 benchmark demonstrates Trojan functionality in the transmitter 

module of the RS232 circuit. In this benchmark, u_xmit.v is the modified file. Files 

uart.v and u_rec.v are functionally identical to those we used in the Trojan-free 

circuit. 
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a. Trigger 

This benchmark uses a 32-bit counter as a Trojan. This counter, shown in Figure 

38, begins with a value of 0x0, and increments every time a byte of data is transmitted. 

Note that the Trojan functionality in this circuit will not trigger until this counter reaches 

a value of 0xFFFFFFFF. In order to simulate this Trojan, we found it necessary to edit 

the HDL code in u_xmit.v. We changed the starting value of the counter to 

0xFFFFFFFC, which caused the Trojan to trigger after four transmissions. Note that 

after activation, the counter resets to the initial value, but the Trojan remains active until 

a reset signal is observed. 

 
Figure 38.  Partial Schematic of the trigger mechanism in RS232-T300. Register 

count_in_reg, the adder, and the mux gate count_in_l form a 
counter that is designed to count from 0 to 0xFFFFFFFF. When the 
counter reaches the final value, the ROM unit DataSend_ena_reg 
will send a 12 signal, representing activation.  

b. Functionality 

The documentation states that the Trojan will replace the 7th bit of every message 

transmitted after activation. After some experimentation, we have concluded that this 

statement refers to bit 7, assuming that the least-significant bit is numbered 0. Thus, the 

highest order-bit of each byte is set to 12, regardless of its original value. Note that some 

messages sent by RS232-T300 will be unaffected because the highest-order bit already 
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is 12. For example, the byte 0x4C will become 0xCC, but the byte 0xA2 will still be 

transmitted as 0xA2. 

5. RS232-T400 

The Trojan in RS232-T400 does not affect the internal workings of either of the 

submodules in the circuit. Files u_rec.v and u_xmit.v are unaltered. Instead, the 

authors implemented this inclusion in the file uart.v. 

a. Trigger 

The Trojan in this benchmark uses a comparison-based trigger, as shown in 

Figure 39. This trigger tests the values of rec_dataH and xmit_dataH against 

0x4C. If both busses hold this value at the same time, the Trojan will trigger. Note that 

the trigger is not saved. When one of these wires no longer holds a 0x4C value, the 

Trojan will cease to operate. Note that the HDL code doesn’t directly refer to the value 

0x4C. The value is assembled by concatenating X_START, X_WAIT, and X_SHIFT, 

which are all values defined in inc.h. The relevant line is: 

if((rec_dataH_rec==xmit_dataH)=={x_START,x_WAIT,x_SHIFT[1:0]}) 

The trigger does not sustain its effect. When either of the triggering inputs 

changes to a value other that 0x4C, the Trojan will deactivate the next time 

xmit_doneH is 12. 
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Figure 39.  The trigger mechanism of RS232-T400. The RTL_EQ primitive is 

responsible for comparing rec_dataH against xmit_dataH. The 
result of this operation is fed into ROM cntr_i. If the values are equal, 
the value of register cntr_reg will be set to 12. This wire is used as a 
select bit for a mux gate, which controls the final rec_dataH output 
from the circuit. 

b. Functionality 

This Trojan partially replaces the data of the output rec_dataH before that data is 

transmitted to the rest of the circuit. The replacement is accomplished by shifting all of 

the bits in the lower nibble by one place. The least significant bit in the upper nibble is 

simply overwritten. A 12 bit is appended to this value to produce a full byte of data. This 

process transforms the triggering value of 0x4C into a transmitted value of 0x59. Note 

that since the trigger is only active for the duration of the 0x4C input, this is the only 

value that will be converted. 
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Figure 40.  The Trojan functionality of RS232-T400. The key feature of this Trojan 

is the mux gate rec_dataH_temp_i, which is used to determine 
whether the final circuit output should be the correct value of 
rec_dataH, as determined by the iRECEIVER module, or a reordered 
combination of bits. Note that both iRECEIVER and the overall circuit 
have an output labelled rec_dataH. In every other circuit in this 
group, the distinction is unnecessary because the module output is fed to 
the overall circuit output without modification. 

6. RS232-T500 

a. Trigger 

The module RS232-T500 uses the same trigger mechanism as that in RS232-

T300. A 32-bit counter is incremented after every complete transmission from the 

iXMIT module, and after the counter has reached the maximum value, the Trojan 

triggers. Note that in order to effectively analyze this Trojan, we alter the HDL code in 

u_xmit.v. Based on my modification, the counter’s initial value is 0xFFFFFFFC. 

Note that after the Trojan triggers, the counter will return to its initial value, but the 

Trojan will remain activated until the circuit is reset. 
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b. Functionality 

After the Trojan in the circuit is activated, the signal xmit_doneH will be stuck 

at 02. This signal prevents the external circuit from recognizing that the iXMIT module 

is available to transmit more data. The result is a straightforward denial-of-service. Note 

that an external architecture could bypass this by sending data to the circuit anyway. The 

transmitter would still run through the process of parsing and transmitting the byte. 

However, the xmit_doneH convention provides a lock mechanism and reduces race 

conditions. Without it, the delineation between messages could be disrupted by other 

circuit activity.  

7. RS232-T600 

a. Trigger 

The trigger is activated by a sequence of inputs on xmit_dataH. If the 

following sequence is observed, the Trojan will be triggered: 0xAA, 0x55, 0x22, 0xFF. 

Note that these inputs must be observed in order and in immediate succession. To control 

this, the authors implemented a state machine, shown in Figure 41. Each state represents 

a certain stage in the sequence. If the correct value is observed on xmit_dataH, the 

machine will transition to the next state. The appearance of another value in the middle of 

the sequence will cause the circuit to discard all previously observed sequence values and 

start again. Also note that the documentation incorrectly identifies the sequence as 0xAA, 

0x55, 0x00, 0xFF. The value 0x22 can be found in the HDL code, and we have 

confirmed in simulation that this sequence triggers the Trojan. After the Trojan is 

triggered, it will remain active until a reset occurs. 
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Figure 41.  The RTL layout of the state machine that controls the trigger of 

RS232-T600. Each state_DataSend_i__# ROM module 
represents a potential state. The output of that module is dependent on 
the current value of xmit_dataH. The mux gate 
state_DataSend_i__4 will only select one of these values to pass 
through to state_DataSend_reg. This register actually contains the 
select bits responsible for that choice; the current state is responsible for 
determining which values can potentially be passed to the register. 

b. Functionality 

After the Trojan is triggered, the outputs of iXMIT will both be affected. Output 

xmit_doneH will be set to 12, ensuring that this circuit announces that it is always 

ready to transmit a new message. This means that each byte will be sent to iXMIT as 

soon as it exists. If the external architecture wishes to send a lot of data, then the iXMIT 

byte could change every clock cycle. Each bit transmitted could come from a different 

message. When the circuit does receive a new message to transmit, it will replace the 

high-order bit of the message with a 12. When we ran this in simulation using my test-

bench, bytes 0x22, 0x17, 0x11, 0xBA, and 0x41 were transformed to 0xA2, 0x97, 
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0x91, 0xBA, and 0xC1, respectively. Note that byte 0xBA was essentially unaltered. 

Also note that my test-bench was written according to transmission timing, not according 

to the convention. 

8. RS232-T700 

a. Trigger 

The trigger in RS232-T700 is identical to that in RS232-T600. The Trojan 

will be activated after xmit_dataH carries the following bytes, in immediate 

succession: 0xAA, 0x55, 0x00, 0xFF. 

b. Functionality 

Module RS232-T700 borrows its functionality from RS232-T500. The 

xmit_doneH signal is stuck at 02 from activation until the next reset. As long as the 

external architecture obeys the condition, iXMIT will never receive another signal to 

transmit. 

9. RS232-T800 

The RS232-T800 benchmark was constructed by modifying the HDL present in 

u_rec.v. Files uart.v and u_xmit.v are unchanged.  

a. Trigger 

The trigger is borrowed from RS232-T100. It triggers based on the presence of 

the following register and input values: 

• recd_bitCntrH = 0x3 

• rec_dataH=0xFE 

• bitCell_cntrH = 0x7 

• state = 0x3 
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The trigger is written in such a way that the Trojan will deactivate as soon as any 

part of the triggering state changes. This will happen in a single clock cycle, when 

register bitCell_cntrH increments. 

b. Functionality 

The functionality of this circuit produces a subtle error in the interpretation of 

messages. When the Trojan in this circuit is triggered, rec_readyH will be set to 12 

immediately. Note that recd_bitCntrH has a value of 0x3. This means that 

iRECEIVER has not finished converting the current byte. Output rec_dataH is 

carrying a value constructed from part of the current byte and part of the previous byte, 

but the rec_readyH signal of 12 signifies that data is ready for collection.  

The external architecture has been designed to accommodate this convention, and 

the byte 0xFE will be immediately collected and subject to whatever operations were 

planned for the next byte. The problem becomes worse after 5 more bits have been read. 

Now, iRECEIVER actually has finished reading a byte, and rec_readyH will be set to 

12 again. The architecture will accept this new value and all subsequent values as 

additional data. A byte will have been inserted into the sequence, but everything will 

otherwise be in order.  

The impact of this depends heavily on the purpose of the overall architecture. For 

example, if this RS232 module is accepting a private RSA key from a card reader, that 

key is now incorrect. Any signature computed using that key cannot be verified using the 

public key. 

10. RS232-T900 

The benchmark in RS232-T900 was created by modifying the HDL code in 

u_xmit.v. Specifically, the authors added an extra state to the existing iXMIT state 

machine and defined a process to recognize a sequence of inputs coming into the iXMIT 

module. 
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a. Trigger 

The RS232-T900 trigger is similar to the trigger mechanism used by RS232-

T600 and RS232-T700. In this benchmark, the Trojan will trigger after the following 

sequence of inputs is encountered in immediate succession: 0xAA, 0x55, 0x22, 0xFF. 

Note that the documentation for RS232-T900 incorrectly states that the input sequence 

is 0xAA, 0x55, 0x00, 0xFF. The value 0x22 is the third value listed in the HDL code, 

and we were able to simulate this Trojan’s activation using that value instead of 0x00. 

This trigger uses a simple state machine to track how many of the sequence values 

it has seen, and which value it should expect next. Note that if the iXMIT module 

receives any value other than the expected value, the state machine will immediately 

revert to the starting state, and the expected value will be set to the first value in the 

sequence.  

b. Functionality 

Module RS232-T900 uses a denial-of-service Trojan, designed to lock the 

circuit in a non-transmitting state. To accomplish this, an extra state is added to the 

transmitter’s internal state machine. 

11. RS232-T901 

This benchmark is not a distinct Trojan. It is a new version of RS232-T900. The 

only distinction between these two benchmarks is the combination used to trigger the 

Trojan.  

a. Trigger 

In RS232-T901, the Trojan will trigger when the following sequence of inputs 

is observed on wire xmit_dataH: 0xAA, 0x00, 0x55, 0xFF. Note that these inputs 

must be observed in order and in immediate succession. The trigger has no long-term 

mechanism for remembering its place in the input sequence. 



 86 

b. Functionality 

Module RS232-T901 uses the same denial-of-service mechanism discussed in 

RS232-T900. When the Trojan is triggered, the iXMIT module enters the 

x_DataSend state. The circuit will only transition out of this state at circuit reset. 

While in x_DataSend, the circuit ignores inputs and makes no changes to the outputs. 

D. TROJANS INSERTED IN THE GATE LEVEL OF RS232 

The final set of benchmarks demonstrates the insertion of Trojans in gate-level 

HDL code. Like those discussed in the previous section, these Trojans target an RS232 

implementation. This implementation follows a different file structure than that observed 

previously. Instead of a modularized design composed of three files, each benchmark 

contains two versions of the file uart.v. One of these is designed for 90 nm circuits, 

and the other is designed for 180 nm circuits. 

For the purposes of this thesis, we will concentrate our discussion on the 180 nm 

version of each benchmark. This decision is based on the fact that several elements of the 

provided documentation for each benchmark are drawn from this version and directly 

contradict the HDL code provided for the 90 nm version. In particular, each benchmark’s 

documentation actually includes a small segment of Verilog code. This code, which 

defines the malicious inclusion, is directly copied from the 180 nm version of the circuit. 

Using find operations, we have confirmed that the documentation does not precisely 

reflect the 90 nm version of uart.v in any of the following benchmarks. At least one of 

the documentation-defined gates is missing in every case. In several cases, the 90nm 

Trojan does not have any capacity to control output signals that the 180nm Trojan has 

direct access to. In order to provide a clear, consistent picture of each Trojan, this thesis 

will concentrate on the inclusions reflected in the provided documentation. 

Note that none of the provided benchmarks will synthesize in Vivado. These 

benchmarks were produced using Synopsys standard libraries, which are not included by 

default in Vivado. As a result, any attempt to synthesize uart.v alone will fail. Vivado 

will state that modules cannot be instantiated because they are undefined. To fix this, we 
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wrote a Verilog library containing definitions for each of the missing modules. To 

implement these modules correctly, we used the documentation for each library, which 

includes a truth table describing the behavior. We would like to thank Dr. Wei (“Vinnie”) 

Hu of UCSD for providing starter code for a selection of the Synopsys modules. This 

starter code provided a model that allowed us to implement each of the necessary 

modules. Note that we have provided two separate libraries in the software artifacts for 

this thesis. The first, lib_90.v, will allow you to synthesize the 90 nm version of each 

benchmark. The second, lib_180.v, was written for the 180 nm version. In either 

case, import the library file to your project as if it were a standard Verilog file. With this 

file included, Vivado will be able to run elaboration, synthesis and simulation without 

reporting an error. 

While using the library will allow Vivado to synthesize each benchmark, you will 

discover that it does not synthesize correctly. Vivado’s synthesis tool performs many 

optimization steps, which prune redundant or non-transitive logic from each circuit. In 

the RS232 circuits discussed in this section, Vivado will optimize away most of the 

circuit, including the entire inclusion. We have been unable to completely disable 

optimization. However, we discovered that the elaborated design and the behavioral 

simulation are not impacted by Vivado’s optimization. Once you have established that 

your circuit synthesizes without Vivado reporting an error, you will find it easier to use 

the pre-synthesis design for evaluation of each benchmark. If you wish to perform post-

synthesis studies, you can reduce the impact of optimization in the synthesis settings 

dialog. Change the setting “flatten hierarchy” to “none.” This will prevent Vivado from 

optimizing away some of the modules listed in the HDL code, though it does not protect 

every module. 

1. Common Features of the Gate Level RS232 Benchmarks 

The authors do not provide a Trojan-free implementation of this circuit, and we 

have been unable to locate a definite source for the HDL code provided to represent these 

circuits.  
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Due the lack of a Trojan-free implementation, we will use this section to discuss 

the common features of these benchmarks, including inputs, outputs, and registers. We 

will also provide a brief description of the structure of the malicious inclusion used in this 

set. We include this discussion here because, with the exception of RS232-T1800, the 

inclusions in this set are variations on a common structure. Later explanations will be 

more easily explained in terms of this common structure. 

This version of the RS232 module does not list explicit modules for the receiver 

and the transmitter, but, it does retain the same set of inputs and outputs as the Trojan-

free RTL circuit shown in the previous section. Input uart_REC_dataH accepts a 

sequence of bits, which is converted to the byte rec_dataH and provided to the 

external architecture. Output rec_readyH signals the completion of this process. The 

8-bit input bus xmit_dataH accepts data from the architecture and converts it to a 

sequence of bits. Output xmit_doneH is used to inform the external architecture that 

the circuit is ready to accept and transmit another message. The bit sequences follow the 

same convention used in the previous RS232 circuits. The transmitter sends a 02 to 

signal the start of a new message, sends each bit in order from least-significant to most 

significant, and ends the sequence with a 12. 

In addition to inputs and outputs, the gate-level implementation of module RS232 

seems to use the same registers as the RTL version of the circuit. Note that the gate-level 

implementations of module RS232 all include a group of flip-flops with the names 

iXMIT_state_reg_0_, iXMIT_state_reg_1_, and iXMIT_state_reg_2. 

These flip-flops seem to represent the 3-bit register state from the iXMIT module of 

the RTL version of this circuit. Other registers from the RTL circuit also seem to be   

represented by flip-flops in the gate-level circuits. This correlation allows us to discuss 

the circuit in terms of multi-bit register activity, instead of only discussing the value of 

individual bits. This will be particularly significant when discussing the activities of 

counters like the transmitter’s bitCountH register. 

Figure 42 showcases the structure of a typical inclusion from this set. The exact 

layout varies across benchmarks, but each inclusion includes a single gate that marks the 
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transition between trigger and functionality. In almost every case, this gate is an OR gate 

labeled U302. The Y output of this gate, identified as iCTRL in the HDL code, is the 

centerpiece of this Inclusion’s design. The results of every gate and module in the trigger 

funnel down into this wire, and it is used as the input for all gates in the functionality of 

the Trojan. Therefore, the value iCTRL is a direct representation of whether or not the 

Trojan has been activated. 

 
Figure 42.  A partial schematic representing a typical layout for the inclusion in the 

gate-level RS232 circuits. This particular schematic was generated from 
RS232-T1000. Note that while each of the structures shown here is 
depicted as a custom module, the labels AND2X1, OR4X1, etc…, reveal 
them to be implementations of common logic gates. This is a result of 
uart.v using gates defined in a non-standard Vivado library.  

Note that the value representing an activated Trojan is iCTRL = 02. This is not 

listed in the documentation for any of these inclusions. However, every Trojan’s 

functionality is built from one or more AND gates, with iCTRL acting as the A input to 

each gate. From the AND truth table included in Figure 42, we can see that if iCTRL = 

12 then the output value of each AND gate will equal to the B input of that gate. In this 

case, the Trojan is not influencing the circuit outputs, so we can state that it is inactive. A 
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value of iCTRL = 02 forces the output of the AND gate to 02, regardless of the value of 

the B input. The Trojan is actively controlling the values of different wires in the circuit, 

including, in RS232-T1000, the xmit_doneH output. Therefore, activation occurs 

when iCTRL = 02. 

The source values that determine iCTRL vary slightly across benchmarks, but the 

schematic shown in Figure 42 depicts the most common layout. Specifically, U302’s 

inputs are provided by two OR gates, which accept NAND gate outputs as their own 

inputs. For the sake of image readability, not all of the NAND gates are shown here. More 

detailed and complete views will be provided as needed in individual benchmarks. 

Using the known value of iCTRL and the schematic shown in Figure 42, we can 

determine wire values required to activate the Trojan. In particular, using the properties 

of OR gates, we can establish that the outputs of U296 and U301 must both be 02. If 

either of these wires were to carry a value of 12, the iCTRL output would be 12, and the 

Trojan would be inactive. Note that U296 and U301 are also OR gates. Therefore, we 

can use the same logic to establish that each of their input ports will need a 02 value as 

well. In our discussion of RS232-T1200, we will perform a complete trace to determine 

all of the source values that affect the wire of iCTRL. This trace should demonstrate the 

methodology for finding these source values. For all other circuits in this set, we will 

either provide a list of the triggering values and a short summary of differences from the 

RS232-T1200 circuit, or we will prove that the Trojan cannot be triggered. 

2. RS232-T1000 

The first Trojan in the gate-level RS232 group cannot be triggered. This is 

because the iCTRL = 02 condition requires a wire to hold a value of 02 and 12 at the 

same time. To prove this, and to provide tools that aid the analysis of later sections, we 

will continue to trace gate inputs from the inclusion until we can demonstrate this 

contradictory requirement. 
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a. Trigger 

Figure 43 continues the trace we began in the previous section. We have already 

established that each input to gate U296 must be 02. From the NAND truth table, this 

also tells us that every input of gates U293, U294, and U295 must be 12. Note that 

U293 is driven directly by flip-flop outputs. With some exceptions, we can accept flip-

flops as value sources in our trace. This is because, using feedback, the flip-flops can 

retain a value across multiple clock cycles, independent of the value of circuit inputs. For 

example, the iXMIT_state_reg flip-flops form a register that tracks the transmitter’s 

internal state machine. This register changes to track the conversion of a byte of data into 

a bitstream. However, the value of that byte does not affect the activity of the register. 

Thus, these flip-flops serve as source values for our trace. 

 
Figure 43.  Partial schematic of the inputs to U296. Remember that we have 

previously established that the output and the inputs of U296 must each 
have a 02 value in order to trigger the Trojan in this circuit. The NAND 
truth table shows the only combination of inputs that will yield 02 as an 
output. 
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Observe the A input to U293. Flip-flop iXMIT_bitCell_cntrH_reg_2_ 

provides the value for this input. As stated above, this means that the QN output of 

iXMIT_bitCell_cntrH_reg_2_ will need to carry a value of 12 in order to trigger 

the Trojan in this circuit. 

After using gate U292 to determine the output values of the flip-flops above, we 

will continue our trace with gate U294. Figure 44 shows this gate, along with the inputs 

relevant to our discussion. Remember that the output of U294 is 02, based on the 

requirements of U296. The NAND truth table establishes that the inputs of U294 must 

then be 12. U88 and U90, as AND gates, will need 12 inputs as well. For U90(A), the 

input wire is iXMIT_bitCell_cntrH_reg_0_(QN) 

 
Figure 44.  Partial schematic of the inputs to U294. Note that the value of 

iXMIT_bitCell_cntrH_reg_2_(QN) is being reused. Many of 
the circuits reuse source values and other gates in the trigger mechanism. 
This can lead to contradictions like the one discussed here.. 

Note that iXMIT_bitCell_cntrH_reg_0_ has two output values: Q and 

QN. Output QN can also be referred to as “Q not,” since the design of this flip-flop 

explicitly establishes these values as opposite. Since QN is 12, we know that Q must be 

02. The Q output of iXMIT_bitCell_cntrH_reg_0_ is used as an input to U211, 

a NAND gate. As our truth table shows, any 02 input forces the output of U211 to 12, 

regardless of other input values. 
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Now examine U88. Input A, already known to be 12, is also the output of U216, 

an XOR gate. The XOR truth table shows that the gate inputs of U216 must have 

opposite values. We know the value of the B input from our discussion of U211. 

Therefore, U216(A) must have a value of 02. However, this value is 

iXMIT_bitCell_cntrH_reg_2_(QN), which we have already established to have 

a value of 12. Based on our analysis, the Trojan can only be activated when 

iXMIT_bitCell_cntrH_reg_2_(QN) has a value of 02 and 12 at the same time. 

Therefore, the Trojan cannot be activated. 

b. Functionality 

Figure 45 shows the functional portion of this inclusion. Wire iCTRL is used as 

an input to each of the displayed AND gates. Note that only one of these AND gates 

directly controls a circuit output. The gate U303 can be used to force xmit_doneH to 

02, which prevents the RS232 circuit from notifying the larger architecture that it is 

ready to send a transmission. Gate U305 has some influence over the 

uart_XMIT_dataH output. In addition to the OAI truth table, we have added an 

exploded view of the OAI module has been added to Figure 45 to demonstrate the logical 

design. Note that if input A0 and input A1 are both equal to 02, the final module output 

will be 12. Through U305, the malicious inclusion can force A1 to hold a value of 02, 

even when the normal value would be 12. If the A0 output is also 02, then the output 

uart_XMIT_dataH will be forced to 12. Note that if B0 has a 02 value, then the 

output will already have a 12 value, and no impact will come from this portion of the 

Trojan. Based on the analysis of the OAI module, the U305 portion of the Trojan can be 

best described as causing reduced accuracy in the transmitted messages. 
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Figure 45.  Schematic of the functional portion of RS232-T1000. Note that U303, 

U304 and U305 are all AND gates. All three of these gates share the 
common input iCTRL. Module U303 directly controls the circuit output 
xmit_doneH, and U305 is only separated from uart_XMIT_dataH 
by a single intermediate module. The internal functionality of this OR-
AND-invert (OAI) module is shown in the insert above U3. Module 
U304 does not affect the logical operation of the circuit. 

The output of U304 is listed in the HDL code as rec_dataH_rec[0]. 

Searching the schematics and the HDL code, we have been unable to find another place 

where this wire is used. We conclude that this portion of the Trojan has no impact on 

circuit functionality. 

3. RS232-T1100 

This Trojan is also unable to trigger due to self-contradictory requirements. Note 

that as part of the demonstration of this contradiction, we will delve into the internal 

operation of modules U91 and U92, which are part of the trace of most circuits in this 
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set. These modules are each constructed of a combination of several different gates, and a 

detailed knowledge of their structure will add clarity to later discussions. 

a. Trigger 

Figure 46 demonstrates some of the source inputs to the inclusion in RS232-

T1100. The iXMIT_state flip-flops are particularly relevant to this analysis. Each of 

these is required to produce a value of 12 on their QN output in order to meet the 

requirements imposed by NAND gate U293. 

 
Figure 46.  Partial schematic of U296 and inputs relevant to this discussion. U293 

and U294 are both NAND gates with required outputs of 02. As a result, 
all of their inputs must be 12. This includes the QN outputs from 
iXMIT_state. 
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Figure 47 shows part of the trace from AND gate U88. By the requirements of 

U294, we know that U88’s output must be 12. Only 12 inputs will produce this value, so 

we also know the output of U91. You will note that there are two possible input 

combinations that can produce the required output of U91. The first combination depends 

on iXMIT_state_reg_0_(QN). Due to the conditions imposed by U293, we know 

that this wire must carry a 12 input. The A inputs cannot meet the requirements to support 

U91(Y) = 12. Therefore, U91 must receive a 02 from its B input, which is provided by 

U92. 

 
Figure 47.  Partial schematic showing a trace from U88. Of particular interest is the 

module U91. In order to add clarity to later discussions regarding this 
module, the internal structure is shown here. The truth tables shown here 
indicate the possible input combinations at each stage of the diagram. 
Note that only one of the inputs to the AND gate must be 02, and that 
the other can be 12 or 02 without affecting the final output. 

Figure 48 shows the conditions leading to the output of U92. As with U91, this 

module allows for some flexibility in its inputs. In this case, either U97 and U96 must 

have 12 outputs, or U95 and U93 must have 12 outputs. 
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Figure 48.  Partial schematic of U292 and its inputs. The AOI truth table describes 

the possible inputs to this module. Additional tables are used to illustrate 
the required values at each intermediate stage of the module. 

The NOR gate U95 is determined by the QN outputs of 

iXMIT_state_reg_0_ and iXMIT_state_reg_1_. From U293, we know that 

both of these values are 12. By the NOR truth table, we can show that this input 

combination leads to an output value of 02. The other combination can be eliminated by 

an examination of U97. This NOR gate also depends on the value of 

iXMIT_state_reg_0_(QN). Once again, U293 has determined that this value is 12. 

Any 12 input to a NOR gate forces the output to 02, which prevents U97 from meeting 

the 12 output requirement shown in the AOI truth table. As a result, neither U92 nor U91 

can satisfy their output requirements, and the Trojan is impossible to activate. 
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b. Functionality 

The functionality in this benchmark is part of that used in RS232-T1000. Figure 

49 displays the relevant gates. If it could be triggered, the Trojan would reduce the 

accuracy of translated messages by occasionally changing a 02 bit to a 12. 

 
Figure 49.  As in RS232-T1000, the Trojan functionality is determined by 

iCTRL’s influence over an AND gate. In this case, there is only the 
single AND gate U305, which influences, but does not directly control 
the transmission output uart_XMIT_dataH. 

4. RS232-T1200 

Since RS232-T1200 is the first Trojan that does not depend on contradictory 

source values to trigger, we will use it to demonstrate the process of discovering the 

triggering state required by the gate-level malicious inclusion. In the following section, 

we will conduct a complete trace of the inputs feeding the Trojan trigger in RS232-

T1200. This trace will demonstrate the logic used to derive the necessary values and 

ensure that the circuit does not depend on a self-contradictory state. For the other 

benchmarks in this set, this thesis will only present the input values and a short summary 

of the differences between that inclusion and this one.   
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a. Trigger 

We will begin our analysis with a reminder: the Trojan is considered to be active 

if and only if the wire iCTRL carries a value of 02. If iCTRL = 12, there is no 

alteration to the final outputs of the circuit, and the Trojan is inactive. Note that in most 

of the circuits in this set, iCTRL is the Y output of the OR gate U302. In deference to the 

HDL code, this thesis will use the name iCTRL. 

Figure 50 shows a view of U302 and the two previous levels of the trace for this 

circuit. Note that iCTRL is the final result of OR gate U302. We know that, while the 

Trojan is triggered, this output has a value of 02. According to the OR truth table, there is 

only one input combination that will produce this output. Accordingly, we know that 

U296 and U301 also have outputs of 02.  

Since U296 and U301 are also OR gates, we can use the same logic to determine 

that all of their inputs must also be 02. This accounts for the outputs of U292, U293, 

U294, U295, U297, and U300, all of which are 4-way NAND gates. Note that to 

produce a 02 output, each of these gates will need to accept only 12 inputs. The truth 

tables for these gates will be shown as we discuss each of these gates individually. 
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Figure 50.  Partial schematic showing the trigger of RS232-T1200. For space 

considerations, the inputs of the NAND gates have been omitted, but all 
6 are 4-input gates. Note that, to produce an output of iCTRL = 02, the 
outputs of each of these NAND gates must be 02, as indicated by the OR 
truth table. 
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Figure 51.  Schematic for the trace of inputs from NAND gate U292. This gate 

directly accepts the Q outputs of iXMIT_state_reg_0_, 
iXMIT_state_reg_1_, and iXMIT_state_reg_2_. We will 
accept these values as source values. 

Figure 51 continues the trace by examining NAND gate U292. Note that for the 

B, C and D inputs, we have already reached flip-flops iXMIT_state_reg_0_, 

iXMIT_state_reg_1_, and iXMIT_state_reg_2_. We do not need to pursue 

these inputs further. The Q outputs of these gates can each be recorded as requiring a 12 

value. If we treat iXMIT_state as the state register from the transmitter module, we 

are searching for a transmitter state of 1112, which is defined in inc.h as 

x_Datasend. You may note that this state was not discussed in the RTL section of this 

thesis. It is not part of the state machine described in the RTL source, and we have been 

unable to produce this state in simulation of the RS232-T1200 circuit. Note that this is 

not a contradiction that cannot be resolved, only a challenge that a computer science 

student was unable to meet. 
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From U292’s A input, our results are less definite. U74, an inverter, must receive 

a 02 input, allowing it to produce a 12 value for the NAND gate. The input to U74 

comes from the AOI module U75. Observe the AOI truth table. There are actually two 

sets of inputs that can produce the correct output from this module. For the first set, A0 

and A1 must be 12. For the second set, B0 and B1 must be 12. In either case, we lose the 

ability to state the value of the other inputs. 

Figure 52 shows the trace from U294. As before, all inputs to this gate must be 

12. For AND gates U88, U89, and U90, this means that they must also have 12 inputs. 

Note that U90(A) is a flip-flop value: iXMIT_bitCell_cntrH_reg_0_(QN). This 

wire carries a 12 value, while the Q output carries a 02. This knowledge is instrumental in 

learning additional source values from this schematic. 

 
Figure 52.  Schematic of the source values leading to U294. While no flip-flops 

directly provide inputs to U294, the AND gate U90 still provides a clear 
value for iXMIT_bitCell_cntrH_reg_0_. Using this value and 
the properties of U211, U215, U217, and U218, we can determine the 
requirements for iXMIT_bitCell_cntrH_reg_1_ and 
iXMIT_bitCell_cntrH_reg_3_. 
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Examine gate U215 in Figure 52. We know that the output of this gate is 12, 

because it serves as an input to U89. However, U215 is an XOR gate. A 12 output 

requires that the inputs be opposite: 12 and 02. The order is not specified by the 

properties of XOR gates. It is specified, however, by our knowledge of 

iXMIT_bitCell_cntrH_reg_0_(Q). This wire provides a 02 input as U215’s B 

value. Now we know that A, which is iXMIT_bitCell_cntrH_reg_1_(Q), must 

be 12. 

The flip-flops we have discovered allow us to determine a few wire values going 

forward as well. U211, a NAND gate, accepts the exact same inputs as U215. In NAND, 

a (12, 02) input combination produces a 12 output. This output is used as an input to 

U217. We can see from the NOR truth table that this 12 input is sufficient to force the 

output of gate U217 to 02, regardless of the value 

iXMIT_bitCell_cntrH_reg_2_(QN) carries. 

There are two more logic gates worth examining in this diagram. First, observe 

the XOR gate U216. We know that, as an input to U88, U216(Y) must be 12. We also 

have determined that U211 has a 12 output. Since U216 is an XOR gate, a 12 output is 

the result of accepting a (12, 02) input. The 12 already known, so the other input, 

iXMIT_bitCell_cntrH_reg_2_(QN), must be 02. 

Now we can examine U218. We know that the output of this gate must be 12, to 

satisfy U294. We also know that the B input of this gate is 02. These two pieces of 

information allow us to determine that the A input, 

iXMIT_bitCell_cntrH_reg_3_(Q), must be 12. Thus, from the schematic above, 

we have discovered the following properties of an activated Trojan circuit:  

iXMIT_bitCell_cntrH_reg_0_(Q) = 02 

iXMIT_bitCell_cntrH_reg_1_(Q) = 12 

iXMIT_bitCell_cntrH_reg_2_(Q) = 12 

iXMIT_bitCell_cntrH_reg_3_(Q) = 12.  
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Note that when discussing flip-flops, we will attempt to maintain consistency by 

identifying the Q output of each module, even if the QN output was the first output 

discovered. This also allows us to discuss the equivalent register value of a group of flip-

flops. For example, the values listed here correspond to a register value of 0xE. In the 

RTL version of this circuit, bitCell_cntrH = 0xE was the signal for the transmitter 

state machine to place the next sequence bit on wire uart_xmit_dataH. This value is 

reproduced on a regular basis as part of the circuit’s operation. 

 
Figure 53.  Schematic of the source values leading to U293. The flip-flops shown 

here correspond to the RTL register bitCountH. Note that from this 
schematic, we can determine a relationship between 
iXMIT_bitCountH_reg_1_(Q) and 
iXMIT_bitCountH_reg_0_(Q), but we cannot assign precise 
values to them. 

We will continue our analysis using Figure 53. The displayed module U293 is 

one of the NAND gates that provides a 02 value for U296. Thus, we know that all inputs 

to U293 must be 12. For U219, an XOR gate, this means that 

iXMIT_bitCountH_reg_1_(Q) and iXMIT_bitCountH_reg_0_(Q) must 

form a (12, 02) pair, but it does not determine the ordering of that pair. The only rule 

imposed on these values is that they must be opposite. Note that this knowledge is still 
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useful. These two values are reused as inputs to U208, a NAND gate. Since the inputs of 

this gate include at least one 02, the output Y must be 12. 

Knowing the output of U208, we will now examine U220. By our analysis of 

U293, we know that U220(Y) is 12. Input U220(B) is the 12 from U208. With these 

two pieces of information, we can determine that the value of U220(A), 

iXMIT_bitCountH_reg_2_(QN), is 02. 

The last flip-flop value we can determine from this schematic is 

iXMIT_bitCountH_reg_3_(Q), which is used as the A input of U222. Like U220, 

U222 is an XOR gate with an output of 12. The B input of U222 is U221(Y). Note that 

U221 is a NOR gate that accepts U208(Y) and iXMIT_bitCountH_reg_2_(QN), 

for a (12, 02) input combination. That means U221(Y) must be 02. Since U222 needs 

opposite inputs to produce a 12 output, iXMIT_bitCountH_reg_3_(Q) must be 12. 

After examining the schematic in Figure 53, we can state the following: 

iXMIT_bitCountH_reg_3_(Q) = 12 

iXMIT_bitCountH_reg_2_(Q) = 12 

iXMIT_bitCountH_reg_1_(Q) != iXMIT_bitCountH_reg_0_(Q) 

Due to the flexibility resulting from iXMIT_bitCountH_reg_1_(Q) and 

iXMIT_bitCountH_reg_0_(Q), these results show that the trigger can be activated 

if the register bitCountH has a value of either 1310 or 1410. Register bitCountH is 

meant to count bits of one message as they are transmitted. After a complete mesage has 

been transmitted, the register will be reset to 010 and the count will begin again. 

Note that a value of 1310 or 1410 on bitCountH may be unachievable. The 

RS232 circuit is designed to transmit and receive single bytes. Under this design, 

bitCountH should never hold a value greater than 810. In the gate-level design, input 

bus xmit_dataH and output bus rec_dataH are both 8 bits wide. If the circuit 

counts a message longer than 8 bits, it has no means to complete the conversion. Note 

that we are discussing the value of bitCountH in base 10 notation because that is the 
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notation used to assign the value of this register in the HDL code defining the RTL 

version of the circuit.  

Figure 54 shows the source values for NAND gate U295. The A value is 

determined by U216, which we have already examined as part of our study of U294. 

Recall that, as an input to U88, U216 was required to have a value of 12 on its Y output. 

We can confirm that, because U216(Y) is the A input to U295, this requirement holds 

without causing a contradiction. Comparing the requirements for each reuse of a module 

allows us to confirm that the activation of RS232-T1200 does not depend on 

contradictory source values. 

 
Figure 54.  Schematic of the source values leading to U295. Note that the A input 

of U295 is provided by U216(Y), which we discussed in our 
examination of U294. This reuse of source gates is common among the 
gate-level RS232 circuits.  

Module U295 also tells us the values of three new flip-flops. 

iXMIT_xmit_ShiftRegH_reg_7_(Q), 

iXMIT_xmit_ShiftRegH_reg_6_(Q), and 

iXMIT_xmit_ShiftRegH_reg_5_(Q) must each have a value of 12. Note that 

these flip-flops represent the high-order bits of the register xmit_ShiftRegH, which is 

used as an intermediate storage for the byte currently being transmitted. Based on the 
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RTL version of the circuit, bit [0] of the register is used as the value of 

uart_XMIT_dataH. After the appropriate time has elapsed, all bits in the register are 

shifted one position. The previous bit [1] is now bit [0] and is being transmitted on 

uart_XMIT_dataH. The empty value of bit [7] is filled with a 12. After another bit is 

transmitted, this 12 will be shifted to bit [6]. Note that after 3 bits of a message have 

been transmitted, the Q outputs of these flip-flops are all guaranteed to carry the value 12. 

Therefore, this Trojan activation condition can be met regardless of the value of circuit 

input bus xmit_dataH. 

You may notice that Figures 52 and 53 include gates that have not yet been 

discussed. This is a deliberate choice, because gates U91 and U87 are both linked to 

source values we have already examined. The analysis so far has been focused on finding 

the source values for the trigger in RS232-T1200 by the most efficient means possible. 

Since U91 and U87 have more ambiguity in their inputs, we have chosen to use them for 

the purpose of confirming the lack of contradictory requirements in this Trojan’s trigger 

input sources.  

We will begin by examining U91, which is shown in Figure 55. We know, from 

U88, U89, and U90 that U91 needs a 12 output. In the interest of verification, we will 

actually approach this problem from our known flip-flop values. If we can establish a 12 

value for U91(Y), then we can state that our required source values are free of 

contradiction. 

The first input to U91 is the Y output of U102, which is a NAND gate accepting 

iXMIT_bitCell_cntrH_2_(Q), iXMIT_bitCell_cntrH_1_(Q), and 

iXMIT_bitCell_cntrH_3_(Q) as inputs. Since all three of these inputs are 12, we 

know that U102(Y) = 02. This value, combined with a 12 output from 

iXMIT_bitCell_cntrH_0_(QN), results in U101(Y) = 02. We will use this and 

iXMIT_state_reg_2_(QN) = 02 to establish that U100(Y) = 12. Through 

inverter U99, the A1 input of U91 becomes 02. Value iXMIT_state_reg_0_(QN) 
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is also 02, meaning that both items in the A pair of U91 are 02. By the AOI truth table 

shown in Figure 55, U91(Y) has been confirmed as 12. 

 
Figure 55.  Partial Schematic of the source values for U91. Note that the values for 

every flip-flop shown here have already been determined. We will use 
this diagram for verification purposes. 

Observe Figure 56. The final gate in this structure is U87, which connects directly 

to U293, as shown in Figure 53. This means that U87’s final output must be 12. Note 

that U87 accepts inputs from U218 and U91, both of which have been used in previous 

schematics. We have proven that, based on our known inputs, U91 has a 12 input. The 

XOR gate U218 was instrumental in determining the value of 

iXMIT_bitCell_cntrH_3_(Q). From U294, we know that U218(Y) carries a 12 

input. Since we have previously examined the source values of both of these gates, we 

can accept these 12 values as valid and prove that U87(Y) is indeed 12. 
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Figure 56.  Partial schematic of the inputs of U87. As with U91, we will use known 

values to demonstrate that RS232-T1200 does not contain a 
contradiction. 

With this confirmation, we have completed the trace of the source values to 

U296. Note that all of the flip-flop sources we discovered were part of the transmitter 

portion of the RS232 circuit. This seems to be a deliberate design choice by the 

inclusion’s designers. The second portion of our analysis will focus on the gates that 

serve as inputs to U301. The source values for this portion of the trigger are drawn from 

the receiver portion of the circuit. We will begin by discussing U297, which is 

determined by the values of 2 registers. 

Figure 57 shows the flip-flop sources that are used to determine the output of 

U297. Recall that we have already established that output U297(Y) must carry a value 

of 02. Because U297 is a NAND gate, all four of its inputs must be 12, according to the 

same logic used to determine input values for U292, U293, U294, and U295. This 

means we have already determined that iRECEIVER_state_reg_2_(Q) = 12, 
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iRECEIVER_state_reg_1_(Q) = 12, and iRECEIVER_state_reg_0_(Q) 

= 12. 

 
Figure 57.  Schematic of the source values leading to U297. Note that U297 can be 

used to directly determine the iRECEVER_state values, while 
iRECEIVER_bitCell_cntrH requires several stages of analysis. 
However, there are no ambiguous input combinations in this set. Each 
gate’s required output allows for only one possible combination of 
inputs. 

We will now investigate U297’s A input, which is provided by the Y output of 

U108. If this wire is 12, then U108(A), which is U137(Y), and U108(B), which is 

U123(Y), must both be 12 as well. 

U123 is a NOR gate, which can only produce a 12 output if both inputs are 02. 

These 02s are the QN outputs of iRECEIVER_state_reg_0_ and 

iRECEIVER_state_reg_1_. Note that this information is simply a confirmation of 

the previously discovered values iRECEIVER_state_reg_1_(Q) = 12, and 

iRECEIVER_state_reg_0_(Q) = 12. 

Gate U108’s other input is the result of inverter U137. The inverter acts as a 

simple NOT gate, so U137’s input, U138(Y), must be 02. We have already discussed 
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NAND gates like U138. If the output is 02, the inputs must all be 12. This gives us the 

values for all of the iRECEIVER_bitCell_cntrH flip-flops. For 

iRECEIVER_bitCell_cntrH_0_, U138 uses the QN output, so the Q output is 

actually 02. For the other three flip-flops, U138 uses the Q output as its source value. 

This means that each of those Q outputs has a value of 12.  

In summary, we have discovered the following source values from U297: 

iRECEIVER_state_reg_2_(Q) = 12 

iRECEIVER_state_reg_1_(Q) = 12 

iRECEIVER_state_reg_0_(Q) = 12 

iRECEIVER_bitCell_cntrH_3_(Q) = 12 

iRECEIVER_bitCell_cntrH_2_(Q) = 12 

iRECEIVER_bitCell_cntrH_1_(Q) = 12 

iRECEIVER_bitCell_cntrH_0_(Q) = 02 

These values represent a state of 1112 for the receiver state machine and a 

bitCell_cntrH value of 0xE. Note that this state is not defined in the RTL file 

inc.h, and we have been unable to produce it in simulation. However, 

bitCell_cntrH = 0xE is a timing condition that is guaranteed to occur once for 

every bit that is received by this circuit. 

The NAND gate U300 is shown in Figure 58. Trojan activation requires that 

U300(Y) = 02, and thus all inputs to U300 must be 12. This proves simple to analyze as 

the inputs to U300 are directly provided by the iDatasend flip-flops shown in Figure 

58. These flip-flops are documented elements of the inclusion, and we will demonstrate 

the analysis of iDatasend_reg_1 in order to provide guidance for later analysis. 
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Figure 58.  Schematic of the source values leading to U300. Note that all of these 

values are Q outputs from inserted flip-flop modules. 

Figure 59 displays the source values of the iDatasend_reg_1 flip-flop. 

Because this flip-flop was added to the as part of the malicious inclusion, we will analyze 

its inputs more thoroughly. First, observe input SN. Vivado’s schematics use this wire 

shape to represent a constant 12. For our purposes, this means that the condition SN = 

0, which is part of the bottom two rows of the SDFFSR truth table, can never exist for 
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this flip-flop. There are now only two possible combinations that can produce a Q = 1 

output from this flip-flop. 

 
Figure 59.  Schematic of the source values leading to iDataSend_reg_1. Note 

that SN is set to the constant 12, meaning that input combinations in the 
bottom most rows of the SDFFSR truth table will never be observed. 

We can eliminate one of these combinations from consideration by examining the 

SI input. This input is drawn from iXMIT_bitCell_cntrH_0_(Q). In row 4 of the 

SDFFSR truth table, we can see a combination that requires SI to be 12. We have 

already established that, during Trojan operation, iXMIT_bitCell_cntrH_0_(Q) 

= 02. Changing this value alone will cause iDatasend_reg_1(Q) to be set to 02 at 

the start of the next clock cycle. This action would deactivate the Trojan. 
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The first row of the SDFFSR truth table is the only one that can produce a 

sustained 12 value. This can be accomplished by four set values being maintained on the 

inputs to this flip-flop. 

First, RN is required to be 12. RN is produced by a double inversion of 

sys_rst_l, which means that RN = sys_rst_l. Recall from our discussion of 

circuit features that sys_rst_l is required to maintain a 12 input during normal circuit 

operation. The SN = 1 condition is also easily met because the input is the constant 12. 

The value of input SE is directly provided by circuit input test_se. The user can 

directly set this value to 02. Finally, the D = 12 flip-flop requirement is met because it is 

provided by U89(Y), which is also an input to U294. Therefore, if all other triggering 

conditions are met, iDatasend_reg_1(Q) = 1 adds only the condition test_se 

= 12. 

Similar examinations of iDatasend_reg_2, iDatasend_reg_3, and 

iDatasend_reg_4 will reveal two additional requirements: input 

UART_rec_dataH = 12 and iRECEIVER_rec_datSyncH_reg(Q) = 12. 

These are the last driving values for this particular trigger mechanism. 

Table 1 presents a summary of the register values we discovered during the 

analysis of this circuit. Each set of related flip-flops is grouped together so that the 

associated register value can be displayed in association with the appropriate values. 
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Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iXMIT_state_reg_#_  1 1 1 1112 
iRECEIVER_state_reg_#_  1 1 1 1112 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 1.   Table of register values for RS232-T1200. This table represents 
grouped flip-flop Q values required to activate the Trojan in RS232-
T1200. We have presented the flip-flops in this fashion so that we 
can also present the value of the RTL register, which is useful in 
explaining the purpose of each flip-flop group. 

 

Note that in addition to the values shown in Table 1, RS232-T1200 requires the  

following values to  activate the inserted Trojan: 

• UART_rec_dataH = 12 

• sys_rst_l = 12 

• test_se = 12 

• iRECEIVER_rec_datSyncH_reg(Q) = 12 

 

If all of the above conditions are met, iCTRL will carry a 02 value, and the 

Trojan will be active. 

b. Functionality 

The Trojan in this circuit accomplishes part of the functionality shown in 

RS232-T1000. In Figure 60, you will observe that iCTRL can be used to force the 

output xmit_doneH to 02. This prevents the RS232 circuit from notifying the larger 

architecture that the most recent message has been sent. Without this notification, the 

architecture will not submit another message, and the system will suffer a denial-of-

service. 
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Figure 60.  The Trojan functionality of RS232-T1200. Note that the value of gate 

U303 is used as the output xmit_doneH. This allows the iCTRL wire to 
force that output to 02 after the Trojan is triggered. 

5. RS232-T1300 

a. Trigger 

The triggering source values of RS232-T1300 are shown in Table 2. If the Q 

output of these flip-flops carries the value shown, then iCTRL will carry a 02 value, and 

the Trojan will be activated. Note that the “value” column was added based on the 

apparent relationship between these flip-flops and the registers found in the RTL version 

of RS232. We selected the base of each value according to the HDL from RS232-

T100. For example, the state values are defined in file inc.h as 3-digit binary values, 

while WORD_LEN, which is used in conjunction with register iXMIT_bitCount, is 

defined as 810. 
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Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iXMIT_state_reg_#_  1 1 1 1112 
iRECEIVER_state_reg_#_  1 1 1 1112 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 2.   Table of source values for the RS232-T1300 trigger mechanism. 
The flip-flops have been grouped into logical registers, to 
demonstrate the full value of each group. Note that 
iXMIT_xmit_ShiftRegH_reg is actually an 8-bit register, but 
that bits 0 through 4 have no impact of the Trojan trigger. Also note 
that the outputs iXMIT_bitCount_reg_1_(Q) and 
iXMIT_bitCount_reg_0_(Q) must have opposite values, but 
that the order of those values does not alter the result of the Trojan 
trigger. 

 

The Trigger of RS232-T1300 is similar to that of RS232-T1200, but it is 

missing several elements, as shown in Figure 61. In particular, most of the receiver side 

logic has been removed from the trigger mechanism. U302 draws its B input directly 

from NAND gate U297. Note that U297 still needs to provide an output of 02 to trigger 

the Trojan. Source value requirements for this gate also remain unchanged from those in 

RS232-T1200. However, U298, U299, U300 and their source values are no longer 

relevant to the operation of this Trojan. In particular, the iDatasend flip-flops have 

been completely removed from this circuit. 
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Figure 61.  Partial schematic of the trigger for RS232-T1300. This Trojan has a 

slightly different structure than that used in other benchmarks in this 
group. The OR gate U301 has been removed from the structure, and 
NAND U297 is directly connected to U302. 

b. Functionality 

RS232-T1300 uses similar functionality to the previous gate-level Trojans. 

When triggered, this Trojan will force the outputs rec_readyH and xmit_doneH to 

02, as shown in Figure 62. This results in a denial-of-service attack against the system. 

While these signals are 02, the architecture will not collect data from the receiver or 

attempt to send it through the transmitter. 
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Figure 62.  The functionality of RS232-T1300. Note that U304 controls the 

rec_readyH output, and U303 controls xmit_doneH. Since both are 
AND gates, the iCTRL wire can be used to force these outputs to 02. 

6. RS232-T1400 

a. Trigger 

The Trojan in RS232-T1400 cannot trigger as designed, because the triggering 

state requires mutually exclusive output values from a flip-flop. The relevant gates are 

shown in Figure 63. Wire iCTRL is the Y output of the OR gate U302. To achieve an 

output of iCTRL = 02, all of the inputs to U302 must also be 02. 
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Figure 63.  Partial schematic of the trigger mechanism of RS232-T1400. Only the 

gates that display the contradictory requirements are shown here. The Y 
output of U302 is iCTRL, which represents the activation state of the 
Trojan. For the Trojan to be active, this output must have a value of 02. 
Truth tables have been provided for the relevant gates. The highlighted 
entry in each truth table represents the output required to activate the 
Trojan. 

Similarly, U301 must accept only 02 inputs, to insure that its output meets the 

required condition of serving as a 02 input to U302. Note that the C and D inputs of 

U301 are provided by U299 and U300, which are both NAND gates. As shown in the 

NAND truth table, both of these gates will need to accept only 12 inputs. For U300(C), 

this can be provided directly by iRECEIVER_bitCell_cntrH_reg_0_(Q). For 

U299(C), the 12 is provided by U127.  

As an AND gate, U127 will also need 12 inputs. One of the inputs to U127 is 

iRECEIVER_bitCell_cntrH_reg_0_(QN). Note that QN is “Q not,” or the 

opposite of Q. Since we already established the Q output of this flip-flop as 12 to meet the 

conditions of U300, QN must be 02. This forces the output of U127 to 02, meaning that 
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the required Trojan activation conditions cannot be met. As a result, RS232-T1400 is 

incapable of altering the outputs of the circuit. 

b. Functionality 

The functionality of RS232-T1400 is borrowed directly from RS232-T1200. 

An AND gate, identified in the HDL source as U303, links the iCTRL wire to the 

xmit_doneH output. If the Trojan were able to be triggered, then iCTRL would be set 

to 02, as the conclusion of that triggering process. As a result, the AND gate U303 would 

force xmit_doneH to hold a 02 value as well. This will act as a denial-of-service by 

preventing the circuit from reporting that it is ready to transmit another message. 

7. RS232-T1500 

a. Trigger 

The trigger mechanism of RS232-1500 is slightly different than that of 

RS232-T1400, but it suffers from the same flaw. The flip-flop 

iRECEIVER_bitCell_cntrH_reg_0_ is required to produce the same values on 

its Q and QN outputs. Without both of these outputs being equal to 12, the conditions for 

iCTRL = 02 cannot be met. However, Q and QN are, by the design of the flip-flop, 

guaranteed to have opposite values. Therefore, this Trojan cannot trigger. 

b. Functionality 

The functionality in this circuit is an exact match to that in RS232-T1000. The 

iCTRL wire has direct control over the xmit_doneH output and partial control over the 

uart_XMIT_dataH output. If iCTRL were able to hold a value of 02, it could prevent 

future messages from being provided to the RS232 circuit and potentially alter the 

current message by changing some 02s to 12s. A third AND gate accepts iCTRL as an 

input, but the output of that gate doesn’t interact with any other part of the circuit. 
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8. RS232-T1600 

a. Trigger 

The triggering values of RS232-T1600 are shown in Table 3. The 

iXMIT_state_reg flip-flops are still found in the trace, but they are not directly 

connected to a NAND gate as they are in most other benchmarks in this group. As a 

result, these flip-flops to not have a definitive requirement for a 12 value as they do in 

most of the other circuits in this set. 

 

Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_state_reg_#_  ? ? ? unknown 
iRECEIVER_state_reg_#_  1 1 1 7 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 3.   Table of triggering inputs for RS232-T1600. Note that inclusion 
in this circuit does not link directly to the XMIT_state_reg flip-
flops. These source values are now fed to the Trojan by way of XOR 
gates, an approach that adds flexibility to their required values. 

b. Functionality 

The functionality in this circuit is borrowed from RS232-T1300. When active, 

the Trojan will force the outputs xmit_doneH and rec_readyH to 02. These outputs 

are necessary to coordinate message transmission and collection with the larger circuit. 

As long as these are held at 02, no new messages will be sent, and received messages will 

not be collected. The result is a complete denial-of-service on the RS232 circuit. 
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9. RS232-T1700 

a. Trigger 

Table 4 shows the required Q outputs for each register in the RS232-T1700 

trigger. For this benchmark, RS232-T1900, and RS232-T2000, an additional 

requirement has been added. A new circuit input, ena, has been added, as shown in 

Figure 64. This input serves as the A input for all of the NAND inputs in this circuit. As a 

result, the trigger now includes a requirement that ena = 12. This will fulfill the A=1 

requirement for each of the NAND gates in the inclusion. If all other requirements are 

met, then the Trojan will trigger. 

Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iRECEIVER_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_state_reg_#_  1 1 1 1112 
iRECEIVER_state_reg_#_  1 1 1 1112 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 4.   Table of flip-flop Q values required to trigger the Trojan in 
RS232-T1700. Note that this table does not include 
iRECEIVER_bitCell_cntrH. The flip-flops for that register are 
not found in the  structure of RS232-T1700’s trigger. 
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Figure 64.  Partial schematic of the trigger mechanism for the RS232-T1700 

benchmark. This schematic illustrates the new ena input wire that was 
added as part of this inclusion. In this benchmark, ena is used as an 
input to each of the NAND gates in the inclusion. This replaces some of 
the intermediate inputs that were used to control the Trojan in other 
benchmarks in this set.  

b. Functionality 

In this circuit, iCTRL controls only the output signal xmit_doneH. Without the 

coordination provided by this signal, the larger architecture will not provide any new 

messages to be transmitted to other devices. This results in a denial-of-service attack 

against the transmitter portion of RS232. 
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10. RS232-T1800 

The RS232-T1800 circuit is unique in this collection. The entire inclusion is 

composed of four gates, which have almost no interaction with the rest of the circuit. 

 
Figure 65.  The complete inclusion in RS232-T1800. Note that the output of the 

final INV gate is not used anywhere else in the circuit. The Trojan is 
almost completely isolated from the rest of the circuit, sharing only the 
sys_clk input. 

a. Trigger 

The Trojan in this circuit is controlled by an extra input wire, ena, which is 

shown in Figure 65. In this case, ena = 12 represents an active Trojan. This allows the 

output of AND gate U300 to change according to sys_clk. The value ena = 02 

would completely disable the additional functionality of these gates. 

b. Functionality 

It is not clear exactly what this Trojan accomplishes. The documentation states 

that the Trojan will “reduce design reliability,” but does not explain how. The final output 

of the inclusion, sys_clk_hh, is not used anywhere else in the circuit. Note that this 

Trojan does cause a group of internal wires to rapidly alternate values. This action is 

similar to the battery draining register used in several of the AES designs. We have been 

unable to determine any other potential explanation for this Trojan’s functionality. 
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11. RS232-T1900 

a. Trigger 

Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iXMIT_state_reg_#_  ? ? ? unknown 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 5.   Table of flip-flop Q values required to trigger the Trojan in 
RS232-T1900. Note that the iRECEIVER conditions have all been 
removed from this inclusion. 

 
Figure 66.  Schematic showing the inclusion in RS232-T1900. Note that U302 

has been replaced by U296. In addition, the circuit is dependent on 12 
values on ena and the iDatasend flip-flops. 
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The trigger in RS232-T1900 does not include the 2-way OR gate U302. 

Instead, iCTRL is provided directly by the 4-way OR gate U296, as shown in Figure 66. 

This gate still accepts inputs from NAND gates, but source values now include circuit 

input ena and the iDatasend flip-flops. Each of these extra source values needs to 

provide a 12 value to meet Trojan conditions. 

b. Functionality 

The Trojan in RS232-T1900 performs a denial-of-service against the 

transmitter portion of the circuit, just like RS232-T1200 and RS232-T1400. This is 

accomplished by forcing the value of xmit_doneH to 02. If the overall architecture 

follows the conventions of this circuit, then no new messages will be provided for 

transmission until xmit_doneH carries a 12. This delays the next transmission for as 

long as the Trojan remains active. 

12. RS232-T2000 

a. Trigger 

Table 6 lists the flip-flop values required to trigger the Trojan in RS232-T2000. 

This group is supplemented by the flip-flop iDatasend_reg. To trigger the Trojan, 

iDatasend_reg must have a Q output of 02 at the same time that all of the listed flip-

flop conditions are met, and the input ena carries a 12 signal. 

 

Register 3 2 1 0 Value 
iXMIT_bitCell_cntrH_reg_#_ 1 1 1 0 0xE 
iXMIT_bitCount_reg_#_ 1 1 ≠[0] ≠[1] 13 or 14 
iXMIT_state_reg_#_  1 1 1 1112 

 
Register 7 6 5 Value 
iXMIT_xmit_ShiftRegH_reg_#_ 1 1 1 0xE0 to 0xFF 

Table 6.   Triggering inputs for RS232-T2000. Note that the receiver-side 
logic has been completely removed from this inclusion’s trigger. 
Instead, the B input of U302 is provided by the flip-flop 
iDatasend_reg 
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There are two possible input combinations that will assign a value of 02 to 

iDatasend_reg’s Q output. These combinations are shown in Table 7. Note that once 

a value is assigned to Q, it will remain assigned until an input configuration is seen that 

forces the value to change.   

 
 First Second 
sys_clk rising rising 
ena 1 1 
sys_rst 1 1 
iRECEIVER_rec_datSyncH_reg(Q) 0 x 
test_se 0 1 
iRECEIVER_par_dataH_reg_7_(Q) x 0 

Table 7.   Table listing the source values required to set iDatasend(Q) = 
02. Wires sys_clk, ena, sys_rst, and test_se are circuit 
inputs. The other values identified here are flip-flop outputs.  

 

b. Functionality 

When activated, RS232-T2000 conducts a denial-of-service against the 

transmitter and receiver portions of the circuit. This is accomplished by forcing both 

xmit_doneH and rec_readyH to hold a value of 02 for as long as iCTRL has a value 

of 02. Note that this is the same mechanism used in RS232-T1300 and RS232-

T1600. 
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V. CONCLUSION 

A. SUMMARY 

Of the benchmarks we have examined, the AES benchmarks are the best suited 

for use by researchers with limited prior exposure to the resources at the Trust-Hub 

website [8]. This is based on several distinct features of this benchmark set. First, each 

benchmark’s documentation explicitly identifies the triggering condition for that 

benchmark. The documentation also describes what effect the Trojan will have when it 

has been activated.  

Second, each AES Trojan is designed in a modular structure, with the trigger and 

functionality each being written in a separate file. This feature greatly simplifies static 

HDL analysis. Note that there are a few exceptions, most notably AES-T1800 and 

AES-T1900, each of which merges the trigger and functionality into a single module. 

Also note that the Trojans in these benchmarks actually operate in isolation from the 

AES_128 module. These Trojans accept the same input busses as the Trojan-free circuit, 

but they do not actually alter existing output busses. Instead, they provide alternate 

channels for the leakage of secret information. 

The next significant feature of this benchmark set is the inclusion of a Trojan-free 

implementation of AES_128 with each benchmark. This circuit can serve as a ‘control’ 

circuit for simulation purposes, allowing a researcher to compare the activity of a Trojan-

inclusive circuit with that of a Trojan-free circuit.  

Finally, each of the AES benchmarks includes a selection of test benches. These 

test benches have been written so that they actually provide the input values required to 

activate the combinatorial and sequential triggers among the AES Trojans. Note that none 

of the provided test benches will cause the activation of the counter-based AES Trojans 

to activate. 

The basicRSA benchmarks are somewhat less easy-to-use than the AES 

benchmarks. However, the basicRSA benchmarks do share some of the advantages of 

the AES benchmarks. The benchmark documentation for each of these circuits does 
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describe the activation condition and functionality of the Trojan. Each benchmark also 

includes a dedicated test bench designed to trigger the Trojan in that benchmark. Note 

that while the benchmark archives do not actually include a Trojan-free implementation 

of the circuit, one can be found at the opencores.org website. 

The key distinction between the AES circuits and the basicRSA circuits is 

found when we attempt to perform static analysis on the HDL code. The basicRSA 

benchmarks do not assign specific modules or files to the Trojan aspects. This makes 

them slightly more difficult to analyze, but also allows them to be more easily merged 

with the existing circuit. The basicRSA circuits actually alter the function of the core 

circuit, causing the final output bus to produce different values, including the direct 

leakage of the private exponent. Note that the difficulty of analyzing the HDL is 

mitigated by the liberal use of comments in rsacypher.vhd. The HDL defining the 

inclusion is specifically identified in comments within each instance of this file. 

It will be more difficult for a researcher to develop familiarity with the RS232 

benchmarks. The difficulties in these benchmarks are the result of synthesis challenges 

and limited documentation. We have made an effort to address these difficulties here in 

this thesis. Note that we have provided a method for constructing a Trojan-free 

implementation of the RTL version of RS232, but we have been unable to find a Trojan-

free circuit to use in conjunction with the gate-level benchmarks. Note that none of the 

RS232 benchmarks have been provided with a test bench. We have written test benches 

that correctly trigger Trojans in the RTL set of benchmarks. These test benches can also 

be used to simulate normal operation of any of the gate-level implementations of RS232. 

Note that we have been unsuccessful in our efforts to develop a test bench that will 

trigger the Trojans in any of the gate-level implementations. 

Five of the 10 RTL-based benchmarks accurately identify their triggering 

condition. RS232-T600 and RS232-T900 list an incorrect combination, and RS232-

T100, RS232-T200, and RS232-T800 provide an incomplete description of their 

triggering conditions. In particular, the documentation for each of these three benchmarks 
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defines the number of signals that control the Trojan trigger, but does not specifically 

identify what signals are used, or what values they need to hold.  

The documentation in the gate-level RS232 benchmarks doesn’t discuss source 

values for the Trojan trigger mechanism at all. Instead, the documentation identifies the 

activation probability for each Trojan, and shows statistics from tests performed by the 

benchmark authors. The documentation also lists added lines of HDL, which proved 

useful in tracing through the circuit diagrams in order to determine the values required to 

activate each Trojan. 

The RS232 benchmarks also require additional editing in order to synthesize 

correctly in Vivado. The files in the RTL version of these benchmarks contain an 

include directive with a hard-coded path that needs to be rewritten in order for the 

benchmark to be used on a computer other than the original author’s. The gate-level 

benchmarks are based on a library that is not available for use in Vivado. In conjunction 

with this thesis, we have provided a substitute library that provides a logical 

implementation of each module required by the RS232 gate-level benchmarks. 

B. FUTURE WORK AND LESSONS LEARNED  

In this thesis, we have analyzed 46 of the 92 benchmarks available on Trust-

Hub [8]. We focused this thesis on those that we were able to provide an in-depth 

analysis of, with a preference for the largest benchmark sets, namely AES and RS232. It 

would be helpful for future researchers to complete this study, providing a full, in-depth 

description of each of the remaining benchmarks. Note that many of these benchmarks 

are gate-level designs that will be easier to synthesize using the libraries lib_90.v and 

lib_180.v.  

Future researchers should also conduct an evaluation of existing Trojan detection 

and mitigation techniques against the benchmarks in this collection. The purpose of this 

study would be to evaluate the usefulness of these Trojans as common benchmarks. If 

existing techniques can be effectively applied against these Trojans, then new techniques 

can be evaluated against them as well. The common frame of reference will provide a 

more meaningful tool for evaluating detection and mitigation techniques against one 



 132 

another. If there are difficulties in applying a particular detection method, then the results 

of that investigation can be used to improve the structure of the available benchmarks. 

In addition to conducting analysis against the existing benchmarks, researchers 

should consider expanding the collection. Only 15 different circuits are represented 

among the benchmarks at the Trust-Hub website [8], counting the RTL and gate-level 

versions of RS232 separately. The vga_lcd circuit is represented by only a single 

benchmark. We propose that the collection be expanded to include a wider array of 

benchmarks. Based on our research here, we would like to propose some structural 

elements that can be incorporated into future benchmarks. 

C. ELEMENTS OF FUTURE BENCHMARKS 

This section is meant to serve as a high-level sketch of future benchmarks that can 

be added to the collection at [8], based on our experiences in simulating the circuits 

discussed in this thesis. It is our hope that the incorporation of features discussed here 

will make it easier for new researchers to use this collection as a common source of 

standard benchmarks when conducting research into Trojan detection and mitigation. 

The first benchmark feature we will discuss here is documentation. Based on our 

experiences with RS232 benchmarks, we propose that documentation of all future 

benchmarks include, at minimum, the following features: 

• A short description of the Trojan-free circuit, including its purpose, inputs 

and outputs. 

• A detailed list of all register and input values required to activate 

combinatorial or sequential triggers, if applicable. If the trigger is based on 

a counter, the description of the trigger should identify whether the 

counter counts clock cycles or circuit operations. 

• A description of the Trojan’s impact on the circuit after activation. Ideally, 

this description will include a listing of expected values based on a test 

bench that is provided as part of the benchmark archive. 
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• If a Trojan-free implementation of the circuit is not already provided in a 

benchmark archive, the documentation should identify the source of the 

original circuit. This may be a website like opencores.org, or an 

explanation of the use of tools for automatic HDL generation. 

The structure of future Trojans will vary dramatically, but we propose that the 

trigger and the functionality for each Trojan be written as separate modules. These 

modules will allow a new researcher to more quickly perform a static analysis of the 

changes to the HDL between different benchmarks. Note that not all HDL changes will 

be part of these modules. The AES Trojans discussed in this thesis treated the Trojans as 

completely separate circuits, and as a result, the aes_128 module remained unchanged. 

While this technique produces the simplest analysis, it limits the creation of Trojans that 

interfere with circuit outputs or make use of internal registers. Therefore, we suggest that 

the trigger and functionality modules be instantiated within the modified circuit. This 

represents a compromise between the versatility of the Trojan and the ease of analysis for 

a researcher new to the benchmarks.  

 
Figure 67.  A portion of the Trojan-free AES circuit diagram. We will use this to 

identify specific internal wires and busses that can be used as inputs to a 
Trojan_trigger module or outputs form a TSC module, similar to 
those used in earlier AES benchmarks. 
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As an example, we propose a high-level sketch of an AES Trojan that is 

incorporated into the AES circuit. Examine Figure 67. This figure displays 3 rounds of 

the AES encryption process. We propose the addition of two modules: 

Trojan_trigger and TSC.  

The Trojan_Trigger module will accept the bus state_out of module r4 

as an input and produce a single-bit wire tj_trig as an output. Internally, 

Trojan_Trigger will compare bus state_out of module r4 to the preselected 

value 0xAAAA…AAAA. If these values are identical, then tj_trig will be set to 12. 

Because the AES circuit does not include a reset signal, Trojan trigger will also include a 

32-bit counter that increments every clock cycle while tj_trig = 12. When this 

counter reaches a value of 0xFFFFFFFF, tj_trig will be set to 02, and the counter 

will be reset to 0x0. 

Module TSC will accept tj_trig and bus state_out of r4 as inputs, and 

the output of TSC will act as bus state_in of module r5. While tj_trig = 02, 

TSC will feed bus state_out of module r4 directly to bus state_in of module r5, 

exactly as shown in Figure 67. When tj_trig = 12, TSC will instead use a chosen 

plaintext value as bus state_in of module r5. 

The proposed Trojan serves primarily as an attack against reliability. After a 

plaintext/key combination produces the correct output from module r4, future outputs 

from the circuit will be based on the encryption of the attacker’s chosen plaintext. Note 

that the attacker might be able to use this plaintext and the resulting ciphertext to 

determine the value of roughly half of the intermediate round keys used during the 

encryption. If the key expansion algorithm is known, the attacker may even be able to use 

this information to determine the original value of circuit input key. 

The Trojan discussed above interferes with the internal operation of the module 

aes_128, but also allows the benchmark authors to implement the trigger and 

functionality as dedicated, easily-analyzed modules. We believe that this will be a 

valuable aid to researchers who do not have a pre-existing familiarity with the 

benchmarks. 
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APPENDIX. RESOURCES 

As part of this thesis, we have created several Verilog files that should assist the 

reader in simulating the benchmarks in the RS232 set. These additional resources can be 

found at https://calhoun.nps.edu/handle/10945/45406. At this URL, you will find an 

archive named Slayback_thesis_resources.zip. Within that archive, we have 

supplied 5 Verilog files and a readme explaining the purpose of each file. 

The files lib_90.v and lib_180.v are library files that provide definitions 

for several modules required by the benchmarks RS232-T1000 through RS232-

T2000. None of these benchmarks will synthesize unless you include the appropriate 

module library. To do this, follow the project creation process as described in Chapter III. 

When selecting source files to build the project, add uart.v from the benchmark 

archive, then add one of these libraries. Use lib_90.v with the 90nm version of each 

benchmark and lib_180.v with the 180nm version. Once the project has been built 

with these files, synthesis and elaboration can be conducted without error. 

The remaining files are test benches. Section III-D explains how to import a test 

bench into an existing project. These test benches were designed as baseline test benches 

for the RTL versions of RS232. For receiver-based Trojans, such as those in RS232-

T100 and RS232-T200, use the test bench test_rs232_rec.v. This file provides 

10 input sequences to the receiver, but none to the transmitter. For transmitter-based 

Trojans, such as RS232-T300 and RS232-T500, use test_rs232_rec.v. For 

consistency, this test bench provides the 10 values from test_rs232_rec.v as 1-

byte inputs. Some changes to this sequence may be required to trigger an individual 

Trojan. 

The last test bench, test_rs232_400.v, provides 4 inputs each to the 

receiver and transmitter modules. This file can be used to conduct experiments with 

Trojans that depend on simultaneous activity in both modules.  

Note that we have used these test benches on the gate-level RS232 benchmarks. 

We have been able to simulate normal RS232 activity, but we have been unable to trigger 

https://calhoun.nps.edu/handle/10945/45406
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the Trojan contained in any of the benchmarks from RS232-T1000 through RS232-

T2000. 
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This archive contains 5 Verilog files developed as part of the thesis "A Computer

Scientist’s Evaluation of Publically Available Hardware Trojan Benchmarks." These files

are a provided as an aid to researchers who wish to verify conclusions drawn as part of

this thesis or conduct additional research into the RS232 benchmarks found at

trust-hub.org. The first two files are module libraries which are required for the

synthesis of RS232-T1000 through RS232-T2000. The remaining files are test benches which

can be used to conduct experiments on any of the benchmarks in the RS232 set.



----------------------------------------------------------------------------------------

                                 Libraries



lib_90.v : 

This file is meant for use with the 90nm versions of the gate-level RS232 circuits

(RS232-T1000 to RS232-T2000). The HDL in this file defines the logic of 18 modules which

are instantiated in these benchmarks. The module definitions are implementations of the

logic described in the 90nm Synopsys Digital Standard Cell Library Databook, revision 1.4

	

To use this file with any of the gate-level RS232 benchmarks, create a project for the

benchmark. When prompted to add sources, select this file and 

<benchmark top level>/src/90nm/uart.v. When Vivado has finished preparing the project,

you will be able to conduct elaboration, synthesis and simulation operations without

error.



lib_180.v : 

This file is meant for use with the 180nm versions of the gate-level RS232 circuits

(RS232-T1000 to RS232-T2000). The HDL in this file defines the logic of 15 modules which

are instantiated in these benchmarks. The module definitions are implementations of the

logic described in the 90nm Synopsys Digital Standard Cell Library Databook, revision 1.4

	

To use this file with any of the gate-level RS232 benchmarks, create a project for the

benchmark. When prompted to add sources, select this file and <benchmark top

level>/src/180nm/uart.v. When Vivado has finished preparing the project, you will be

able to conduct elaboration, synthesis and simulation operations without error.



-----------------------------------------------------------------------------------------

                                 Test Benches



to use any of the following test benches:

1. create a project for any of the RS232 benchmarks and import the appropriate files

	for an RTL benchmark (T100 to T901): uart.v, u_rec.v, u_xmit.v, and inc.h

	for a gate-level benchmark (T1000 to T2000): uart.v and either lib_90.v or lib_180.v

	

2. After the project is constructed: File -> add sources



3. select "add or create simulation sources" and select "next"



4. choose "Add Files" and use the file chooser to select your preferred test bench



5. select "finish, and wait for Vivado to rebuild the source file hierarchy.



6. Open the simulation settings dialog and change "Simulation Run TIme" to 4000 ns. This

	will give all of the provided test benches sufficient time to complete. 



7. Run the simulation.	

	

test_rs232_rec.v:



This test bench provides a simulated sequence of inputs for the receiver module of the

RS232 circuit. In particular, 10 10-bit sequences are provided on input uart_REC_dataH.

Each sequence will be converted to a byte of data and sent to output bus rec_dataH.

This test bench is specifically designed as a baseline that can be adapted easily to

conduct simulations of the Trojans in RS232-T100, RS232-T200 or RS232-T800.



When this test bench is run on the Trojan-free implementation of RS232, the following

sequence will be observed on rec_dataH: 

	0x2B, 0x55, 0x21, 0x47, 0xBE, 0x4F, 0xC4, 0xBA, 0xB1, 0x41

	

	

	

test_rs232_xmit.v:



This test bench provides a simulated sequence of inputs for the transmitter module of

RS232. In particular, 10 bytes of data are provided on xmit_dataH. Each byte will be

translated into a 10-bit sequence and transmitted on uart_xmit_dataH. This test bench

was designed to serve as a baseline that can be easily adapted to conduct simulations of

the Trojans in RS232-T300, RS232-T400, RS232-T500, RS232-T600, RS232-T700, RS232-T900,

and RS232-T901.



For consistency, we have written this test bench to follow the same sequence as that in

test_rs232_rec.v:

	0x2B, 0x55, 0x21, 0x47, 0xBE, 0x4F, 0xC4, 0xBA, 0xB1, 0x41



When this test bench is run on the Trojan-free implementation of the RS232 circuit, the

output uart_xmit_dataH will produce a sequence of 1 and 0 signals representing the

inputs provided on xmit_dataH. Note that each bit will last for 32 ns.



As an example of the conversion result, the input 0x2B will be translated to 0 1101 0100 1

the first and last bits are used to delineate the start and end of the sequence. The 8

bits in between are transmitted in order from least significant to most significant. 









test_rs232_400.v:



This test bench provides a sequence of simulation inputs for testing the transmitter and

the receiver simultaneously. This test bench was written to be used in tests of the

Trojan in RS232-T400. It has also been used as the baseline test bench during our

attempts to trigger Trojans in the gate-level versions of RS232. 



the receiver will output the sequence 0x2B, 0x55, 0x4C, 0xC7

the transmitter will follow the sequence 0x37, 0xAA, 0x4C, 0xB7






module AND2X1(A, B, Y);

  input A, B;

  output Y;



  assign Y = A & B; 

endmodule



module AOI21X1(A0, A1, B0, Y);

  input A0, A1, B0;

  output Y;



  assign Y = ~((A0 & A1) | B0);

endmodule



module AOI22X1(A0, A1, B0, B1, Y);

  input A0, A1, B0, B1;

  output Y;



  assign Y = ~((A0 & A1) | (B0 & B1));

endmodule



module BUFX1(A, Y);

    input A;

    output Y;

    

    assign Y = A;

endmodule



module INVX1(A, Y);

  input A;

  output Y;



  assign Y = ~A;

endmodule



module MX2X1(A, B, S0, Y);

  input A, B, S0;

  output Y;



  assign Y = ~S0 & A | S0 & B;

endmodule



module NAND2X1(A, B, Y);

  input A, B;

  output Y;



  assign Y = ~(A & B);

endmodule



module NOR2X1(A, B, Y);

  input A, B;

  output Y;



  assign Y = ~(A | B);

endmodule



module NAND3X1(A, B, C, Y);

  input A, B, C;

  output Y;



  assign Y = ~(A & B & C);

endmodule



module OR2X1(A, B, Y);

  input A, B;

  output Y;



  assign Y = A | B;

endmodule



module OR4X1(A, B, C, D, Y);

  input A, B, C, D;

  output Y;



  assign Y = A | B | C | D;

endmodule



module NAND4X1(A, B, C, D, Y);

  input A, B, C, D;

  output Y;



  assign Y = ~(A & B & C & D);

endmodule



module SDFFSRX1(D, SI, SE, CK, SN, RN, Q, QN);

	input D, SI, SE, SN, RN, CK;

	output Q, QN;

    reg Q, QN;

    

	always @(CK)

	begin

		Q <= ((D & ~SE) | (SI & SE) | ~RN) & SN;

		QN <= ~(((D & ~SE) | (SI & SE) | ~RN) & SN);

	end

endmodule



module OAI21X1(A0, A1, B0, Y);

  input A0, A1, B0;

  output Y;



  assign Y = ~((A0 | A1) & B0);

endmodule



module XOR2X1(A, B, Y);

  input A, B;

  output Y;



  assign Y = A ^ B;

endmodule


module AND2X1(IN1, IN2, Q);

  input IN1, IN2;

  output Q;



  assign Q = IN1 & IN2; 

endmodule



module AOI21X2(IN1, IN2, IN3, IN4, QN);

  input IN1, IN2, IN3, IN4;

  output QN;



  assign QN = ~((IN1 & IN2) | (IN3 & IN4));

endmodule



module AOI22X2(IN1, IN2, IN3, IN4, QN);

  input IN1, IN2, IN3, IN4;

  output QN;



  assign QN = ~((IN1 & IN2) | (IN3 & IN4));

endmodule



module DFFARX1(D, RSTB, CLK, Q, QN);

	input D, RSTB, CLK;

	output Q, QN;

	reg Q, QN;



	always@(CLK or RSTB)

	begin

		if(~RSTB)

		begin

			Q <= 1'b0;

			QN <= 1'b1;

		end

	    else if(CLK == 1)

		begin

			Q <= D;

			QN <= ~D;

		end

	end

endmodule



module DFFASX1(D, CLK, SETB, Q, QN);

	input D, SETB, CLK;

	output Q, QN;

	reg Q, QN;



	always@(CLK or SETB)

	begin

		if(SETB)

		begin

			Q <= 1'b1;

			QN <= 1'b0;

		end

	    else if(CLK == 1)

		begin

			Q <= D;

			QN <= ~D;

		end

	end

endmodule



module INVX0(IN, QN);

  input IN;

  output QN;



  assign QN = ~IN;

endmodule



module INVX32(IN, QN);

  input IN;

  output QN;



  assign QN = ~IN;

endmodule



module ISOLORX8(D, ISO, Q);

  input D, ISO;

  output Q;



  assign Q = D | ISO;

endmodule



module MUX21X1(IN1, IN2, S, Q);

  input IN1, IN2, S;

  output Q;



  assign Q = ~S & IN1 | S & IN2;

endmodule



module MUX21X2(IN1, IN2, S, Q);

  input IN1, IN2, S;

  output Q;



  assign Q = ~S & IN1 | S & IN2;

endmodule



module NAND2X4(IN1, IN2, QN);

  input IN1, IN2;

  output QN;



  assign QN = ~(IN1 & IN2);

endmodule



module NAND3X4(IN1, IN2, IN3, QN);

  input IN1, IN2, IN3;

  output QN;



  assign QN = ~(IN1 & IN2 & IN3);

endmodule



module NAND4X1(IN1, IN2, IN3, IN4, QN);

  input IN1, IN2, IN3, IN4;

  output QN;



  assign QN = ~(IN1 & IN2 & IN3 & IN4);

endmodule



module NBUFFX16(IN, Q);

  input IN;

  output Q;



  assign Q = IN;

endmodule



module NOR2X4(IN1, IN2, QN);

  input IN1, IN2;

  output QN;



  assign QN = ~(IN1 | IN2);

endmodule



module OAI21X2(IN1, IN2, IN3, IN4, QN);

  input IN1, IN2, IN3, IN4;

  output QN;



  assign QN = ~(IN1 | IN2) & (IN3 | IN4);

endmodule



module OR4X4(IN1, IN2, IN3, IN4, Q);

  input IN1, IN2, IN3, IN4;

  output Q;



  assign Q = IN1 | IN2 | IN3 | IN4;

endmodule



module XOR2X2(IN1, IN2, Q);

  input IN1, IN2;

  output Q;



  assign Q = IN1 ^ IN2;

endmodule


`timescale 1ns / 1ps



module test_rs232;



//transmitter inputs

reg [7:0] xmit_dataH;

reg xmitH;



//reciever inputs

reg uart_REC_dataH;

reg sys_clk;

reg sys_rst_l;



//outputs

wire [7:0] rec_dataH;

wire rec_readyH;



//transmitter outputs

wire uart_XMIT_dataH;

wire xmit_doneH;



uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);



	initial begin



	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#32

	sys_rst_l = 1;

	xmit_dataH = 8'h37;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0



	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit



	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 1; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit



//end of sequence: 2B



	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'hAA;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0



	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit



	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit



//end of sequence: 55



	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'h4C;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0



	#32

	xmitH = 0;

	uart_REC_dataH = 0; //1st bit



	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit



//end of sequence: 4C



	#64	//sufficient time for transmitter to finish

	xmit_dataH = 8'hb7;

	xmitH = 1; //signals presence of data for transmitter

	uart_REC_dataH = 0; //start signal bit for receiver is 0



	#32

	xmitH = 0;

	uart_REC_dataH = 1; //1st bit



	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 1; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit



//end of sequence: C7

	

	

	#3000;

	$finish;

	end



	always #1 sys_clk = ~sys_clk; //clock cycle=2



endmodule


`timescale 1ns / 1ps



module test_rs232;



//transmitter inputs

reg [7:0] xmit_dataH;

reg xmitH;



//reciever inputs

reg uart_REC_dataH;

reg sys_clk;

reg sys_rst_l;



//outputs

wire [7:0] rec_dataH;

wire rec_readyH;



//transmitter outputs

wire uart_XMIT_dataH;

wire xmit_doneH;



uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);



	initial begin



	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#5;

	sys_rst_l = 1;

	uart_REC_dataH = 0; //start signal bit is 0

	

	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 1; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit



//end of 1st sequence: 2B



    #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: 55



    #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: 21



    #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: 47	





    #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 1; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 1; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: BE	





   #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: 4F	



   #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 1; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 1; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: C4



   #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 0; //1st bit

	

	#32;

	uart_REC_dataH = 1; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 1; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 1; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 1; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: BA



   #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 1; //5 bit

	

	#32;

    uart_REC_dataH = 1; //6 bit

	

    #32;

    uart_REC_dataH = 0; //7 bit



	#32;

    uart_REC_dataH = 1; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of 1st sequence: B1



   #32;

    uart_REC_dataH = 0; //start bit



	#32;

	uart_REC_dataH = 1; //1st bit

	

	#32;

	uart_REC_dataH = 0; //2 bit

	

	#32;

	uart_REC_dataH = 0; //3 bit



	#32;

	uart_REC_dataH = 0; //4 bit

	

	#32;

	uart_REC_dataH = 0; //5 bit

	

	#32;

    uart_REC_dataH = 0; //6 bit

	

    #32;

    uart_REC_dataH = 1; //7 bit



	#32;

    uart_REC_dataH = 0; //8th bit



	#32;

    uart_REC_dataH = 1; //trailing bit

	//end of sequence: 41

	#3000;

	$finish;

	end



	always #1 sys_clk = ~sys_clk;

endmodule


`timescale 1ns / 1ps



module test_rs232;



//inputs

reg [7:0] xmit_dataH;

reg sys_clk;

reg uart_REC_dataH;

reg sys_rst_l;

reg xmitH;



//outputs

wire [7:0] rec_dataH;

wire rec_readyH;

wire uart_XMIT_dataH;

wire xmit_doneH;



uart uut(sys_clk, sys_rst_l, uart_XMIT_dataH, xmitH, xmit_dataH, xmit_doneH, uart_REC_dataH, rec_dataH, rec_readyH);



	initial begin



	xmit_dataH = 0;

	sys_clk = 0;

	uart_REC_dataH = 0;

	sys_rst_l = 0;

	xmitH = 0;

	

	#5;

	sys_rst_l = 1;

	xmit_dataH = 8'h37;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

//---------------------------------------------

	xmit_dataH = 8'haa;

	xmitH = 1;

	

	#32;

	

	xmitH = 0;

	#320;

	xmit_dataH = 8'h55;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'h00;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'hff;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'h22;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'h17;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'h11;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'hba;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#320;

	xmit_dataH = 8'h41;

	xmitH = 1;

	

	#32;

	xmitH = 0;



	#3000;

	$finish;

	end



	always #1 sys_clk = ~sys_clk;

endmodule

