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Abstract

In this research project we developed correlation mining methods to answer the following
fundamental question about complex networks:

What are the fundamental limits on the amount of information that can
be inferred about a network from a small number n of indirect empirical
observations?

In these terms, the overall objective was to develop algorithms and establish perfor-
mance limits for mining information from correlation networks. The focus was on the
sample starved regime arises when the number of variables (columns of the correlation
matrix) is of the same order or larger than the number of observations available to esti-
mate or detect patterns in the matrix. A new framework was developed to answer the
above question based on spherical Gram matrices for inferring dependency structure of
large networks from limited and/or incomplete sample observations of network behav-
ior. The geometrical and statistical properties of these matrices was studied in the finite
sample regime and in the asymptotic limit as numbers of samples and/or nodes become
large. These properties led to quantification of fundamental performance tradeoffs and
gave insights into phase transitions and convergence rates for inferring dependencies in
network data. The theory was applied to practical complex network inference tasks
including: online prediction, network variable selection and error controlled topology
discovery.
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1 Project Overview

This research project addressed the following important question: what are the fundamental prop-
erties of a network of interacting variables that can be accurately estimated from a small number of
measurements? Properties of interest include collections of variables that are hubs, cliques and sep-
arators in the dependency graph associated with the network. This question lies as the foundation
of network science yet had not been previously addressed in the context of ”sample starved” regimes
where large network size, limited node accessibility, or fast network dynamics make collection of
large amounts of relevant data infeasible. On the other hand, almost all existing approaches to an-
swering this question rely explicitly or implicitly on asymptotically large sample size assumptions.
Indeed, network learning, inference and coding methods are commonly evaluated using strong law
of large numbers, central limit theorem, and concentration inequalities. All of these methods give
useful information about performance only as the number of samples (n) goes to infinity. However,
in sample starved situations where n is small, these classical laws of large numbers simply do not
apply and therefore asymptotic results are not useful. The researchl focused on sample-starved
inference and structure discovery problems for networks of inter-dependent variables. We devel-
oped performance predictions that accommodated small n regimes and this led to a new small n
theory. This theory applies to incomplete observations that inevitably result in large networks of
variables. We also developed scalable and accurate algorithms for estimating the graphical model
of multivariate dependency structure.

The question of sample starved structure discovery was formulated in the framework of multi-
variate dependency networks, also known as graphical models. One of the fundamental measures
of multivariate dependencies is the covariance or correlation matrix. The graphical model asso-
ciated with linear dependency is determined by the thresholded correlation matrix. Estimating
the correlation matrix is a fundamental problem and it plays a crucial role in many inferential
and data analysis methods. Principal component analysis (PCA), multivariate analysis of vari-
ance(MANOVA), classification via linear/quadratic discriminant analysis (LDA/QDA), canonical
correlation analysis (CCA) and partial least squares (PLS) all require estimating the covariance
matrix, its inverse (referred to as as the concentration or precision matrix) or some other function
of the elements of the covariance matrix. These data analysis methods frequently arise in network
inference tasks such as: network anomaly detection, network intrusion detection, social network
community detection, social networks, and network tomography. In this context, the sample starved
regime arises when the number of variables (columns of the correlation matrix) is significantly larger
than the number of observations available to estimate the elements of the matrix. In this project
we developed a general random matrix framework that applies to the broad class of estimators
based on thresholded sample correlation and pseudo-inverse correlation matrices

2 Accomplishments/New Findings

Our accomplshments fall into several areas listed below, and are discussed in more detail in the
sequel.

1. Foundational principles for large scale inference on structure of covariance

2. Predictive correlation screening with resource constraints
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3. Local hub screening in a correlation network

4. Non-convex sample-starved estimation of sparse inverse covariance matrices

5. Positivity invariance of thresholded correlation matrices

6. Applications to materials science

2.1 Foundational principles for large scale inference on structure of covariance

We developed general principles for reliable inference of covariance structure in the Big Data setting?
A book chapter (A.O. Hero and B. Rajaratnam, ”Large scale correlation mining for biomolecular
network discovery,” in Big Data Over Networks, 2015) and a journal article (A.O. Hero and B.
Rajaratnam, ”Foundational principles for large scale inference: Illustrations through correlation
mining,” IEEE Proceedings.vol. 105, no. 1, pp. 93-110, Jan. 2016) presents these principles in
a concise but accessible format. These principles are applicable to large-scale complex network
applications arising genomics, connectomics, eco-informatics, and elsewhere, where the data set is
often variable rich but sample starved: a regime where the number n of acquired samples (statistical
replicates) is far fewer than the number p of observed variables (genes, neurons, voxels, or chemical
constituents). Much of recent work has focused on understanding the computational complexity of
proposed methods for Big Data. Sample complexity, however, has received relatively less attention,
especially in the setting when the sample size n is fixed, and the dimension p grows without
bound. To address this gap, we developed a unified statistical framework that explicitly quantifies
the sample complexity of various inferential tasks. Sampling regimes can be divided into several
categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample
size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample
size go to infinity at comparable rates; and 3) the purely high-dimensional asymptotic regime
where the variable dimension goes to infinity and the sample size is fixed. Each regime has its
niche but only the latter regime applies to exa-scale data dimension. We illustrated this high-
dimensional framework for the problem of correlation mining, where it is the matrix of pairwise
and partial correlations among the variables that are of interest. Correlation mining arises in
numerous applications and subsumes the regression context as a special case. We introduced a
unified perspective of high-dimensional learning rates and sample complexity for different structured
covariance models and different inference tasks. These correlation mining principles were extended
to the case of complex valued random variables and, more specifically correlation mining in the
spectral-domain, in a recent book chapter ( H. Firouzi, D. Wei, and A.O. Hero, ”Spectral correlation
screening,” in Excursions in Harmonic Analysis, Eds. R. Balan, M. Begue, J. J. Benedetto, W.
Czaja and K. Okoudjou, Springer 2014).

2.2 Predictive correlation screening with resource constraints

We introduced a new approach to network variable selection, called Predictive Correlation Screening
(PCS), for predictor design from a few samples. Predictive Correlation Screening implements false
positive control on the selected variables, is well suited to small sample sizes, and is scalable to high
dimensions. We established asymptotic bounds for Familywise Error Rate (FWER) and obtained
bounds on resultant prediction mean square error. Unlike other variable selection methods based
on prediction, e.g., PCA regression, lasso or marginal regression, PCS is highly scalable and has

2



good performance in the small sample regime. PCS can be motivated by the following two-stage
predictor design problem for predictive health. In this problem we want to construct a simple
predictor function that can accurately assess a subject’s future health state using molecular (gene
expression) data. The designer must learn this multivariate predictor based on assays of successive
biological samples, which may be expensive to obtain and process. To save costs the designer adopts
a two stage strategy. She assays the whole genome on a few samples and from these assays she selects
a small number of variables using our theory of Predictive Correlation Screening. She subsequently
performs a much cheaper set of assays using only the small number of selected variables on the
remaining samples, to learn the predictor coefficients. Our PCS theory and experiments establish
the superiority of Predictive Correlation Screening relative to LASSO and correlation learning in
terms of MSE prediction performance and computational complexity. Our work on predictive
correlation screening has been published in (H. Firouzi, B. Rajaratnam, A. Hero, ”Predictive
Correlation Screening: Application to Two-stage Predictor Design in High Dimension,” AISTATS
2013) and in (H. Firouzi, B. Rajaratnam, A.O. Hero, ”Two-stage variable selection for molecular
prediction of disease,” Proceedings of IEEE CAMSAP 2013). A journal version of this paper has
been submitted (H. Firouzi, B. Rajaratnam, A.O. Hero, ”Two-stage Sampling, Prediction and
Adaptive Regression via Correlation Screening (SPARCS),” arxiv 1502:06189, Feb 2015).

2.3 Local hub screening in a correlation network

We have developed theory for controlling errors in localizing hubs, i.e., highly connected nodes,
by performing hub screening of a correlation network. Hub screening is a method for discovering
highly connected nodes in a large network. It is based on detecting nodes whose sample correlation,
or partial correlation, with other nodes exceeds a user-defined threshold. Previous hub screening
theory provided a way to select the correlation threshold in order to control the number of false
positives globally across all nodes of the network. In the past year we have developed new local
hub screening theory that can be used to control the false positives at a particular node. The
significance of the local hub screening theory is that it allows one to control errors on localization of
hubs where previous theory only controlled errors on detection of the presence of a hub somewhere
in the network. The theory is related to previous global hub screening theory that established a
Poisson-type limit to specify p-values on the number of spurious hub nodes found in the network.
Local hub screening theory also establishes Poisson limits. However, instead of being on the global
number of hub nodes found, here the Poisson limit applies to the node degree found at an individual
node. This yields asymptotic p-values that are local to each node. We obtain convergence rates
for proposed local hub screening method that are at least a factor of p faster than those of global
correlation hub screening. The theory of local hub screening is reported in (Firouzi, Rajaratnam,
and Hero, ”Local hub screening for partial correlation graphs,” Proceedings of SPIE workshop on
Wavelets and Sparsity, 2013).

2.4 Non-convex sample-starved estimation of sparse inverse covariance matrices

The most popular methods for estimation of the inverse covariance (precision) matrix has been to
impose sparsity and use `1-relaxation of the `0-norm in a convex penalized maximum likelihood
framework. This has led to the widespread use of LASSO and GLASSO approaches to inverse
covariance matrix estimation. These approaches rely on the accuracy of the convex `1-relaxation
of the non-convex `0 penalized maximum likelihood problem. However, the use of `1 introduces
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considerable shrinkage bias into the inverse covariance estimate. We have gone back to the basics,
motivated by the fact that the most natural sparsity promoting norm is the nonconvex `0 penalty,
and have proposed taking second look at the `0-penalized maximum likelihood problem despite
its lack of convexity. As reported in our journal publication (G. Marjanovic and A. O. Hero, ”l0
Sparse Inverse Covariance Estimation,” IEEE Trans on Signal Processing, vol. 63, no. 12, pp.
3218-3231, May 2015), we have developed an tractible and scalable approach for solving the origi-
nal nonconvex `0-penalized log-likelihood inverse covariance estimation problem without relaxation
of the `0 penalty. We introduced a novel cyclic descent algorithm for this non-convex optimiza-
tion problem with guaranteed convergence to a local minimizer. Due to the non-convexity of the
objective function, the convergence analysis is highly nontrivial. It demonstrates the correctness
of our proposed algorithm and the convergence properties were used to improve the cyclic descent
algorithm. Simulations demonstrated the reduced bias and superior quality of our non-convex `0
penalized algorithm as compared to the standard convex GLASSO `1 penalized approach.

2.5 Positivity invariance of thresholded correlation matrices

We have established that soft thresholding of full rank correlation matrices preserves positive defi-
niteness with high probability. Furthermore, soft thresholding of rank deficient correlation matrices,
as occurs in the sample starved regime, restores positive definiteness with high probability. This
is not true for hard thresholding. Estimation of covariance matrices in modern applications often
requires some form of regularization. One of the most common approaches to high-dimensional
covariance estimation is to induce sparsity via `1-regularization of inverse correlations, leading to
classes of models popularly referred to as graphical models. Such methods provide a natural ex-
tension of the maximum likelihood estimation framework and are guaranteed to provide estimates
which lie in the desired parameter space, namely the cone of positive definite matrices. Computing
such sparse estimates, however, requires solving optimization problems. Although such approaches
work well in moderate dimensions, they are not immediately scalable to the ultra high-dimensional
settings necessitated by modern applications. A lesser-known approach is to obtain sparse esti-
mates via thresholding of the individual elements of the sample covariance matrix by shrinking
or setting them to zero, using a prescribed function (such as hard and soft thresholding). Such
estimators have good asymptotic properties and are non-iterative, and therefore scale very well to
high-dimensional settings. However, it remains unclear whether, in finite sample settings, thresh-
olding methods produce positive definite covariance estimates. A non-positive definite estimator
is of limited use for many downstream applications. Recent algebraic work by co-PI Rajaratnam
builds on previous work by analysts Rudin and Schoenberg and shows that positive definiteness of
such estimators can only be guaranteed in restrictive settings. In particular, the functions which
leave the cone invariant are those which are analytic and absolutely monotonic. The work by co-PI
Rajaratnam proceeds to relax the problem with modern motivations in mind. More specifically, in
a series of papers in the Transaction of the American Mathematics Society, co-PI Rajaratnam to-
gether with his research group members demonstrates that restrictive assumptions can be removed
when a) rank constraints are imposed (as necessitated by modern sample starved applications),
and when b) sparsity constraints are imposed on the initial p.s.d matrix (as given by access to
domain specfic knowledge). We have also empirically demonstrated that elementwise soft thresh-
olding (compared to other thresholding procedures like hard thresholding) in fact retains positive
definiteness in finite samples with extremely high probability, leading to viable estimators for prac-
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tical applications. We show that it is possible to identify a priori a minimum level of regularization
that will almost always yield a positive definite estimate. We then apply soft thresholding in sev-
eral applications and observe that it is not only highly competitive, but also superior in terms of
computational complexity. Soft thresholding can therefore be applied in high dimensional regimes
where optimization-based methods are impractical. An article describing this work is being revised
for resubmission (D. Guillot, A.O. Hero, B. Naul, and Rajaratnam B. Scalable Sparse Covariance
Estimation via Soft Thresholding, 2015. (in revision).)

2.6 Applications to materials science

Our correlation mining principles and approaches were developed for several practical applications
in materials science, in collaboration with Jeff Simons at the Air Force Research Laboratory, at
Wright-Patterson AFB. These applications include a new physics-based dictionary approach to
materials indexing using scanning electron microscopy (SEM), publised in (Y.-H. Chen, S.U. Park,
D. Wei, M. Jackson, G. Newstadt, J. Simmons, M. De Graef and A. O. Hero, ”A Dictionary
Approach to the EBSD Indexing Problem,” Microscopy and Microanalysis, vol. 21, no. 3, pp.
739-752, June 2015). This approach relies on computing correlations between Kikuchi patterns on
a physical materials sample and the a dictionary of Kikuchi patterns computed from the transport
physics associated with SEM system geometry and the crystal symmetry group associated with the
orientations of polycrystaline grain structure in the sample. The bi-partite correlation graph obeys
the principles developed our paper (A.O. Hero and B. Rajaratnam, ”Foundational principles for
large scale inference: Illustrations through correlation mining,” IEEE Proceedings.vol. 105, no. 1,
pp. 93-110, Jan. 2016). In SEM indexing of polychrysatline materials the Kikuchi patterns are
indexed by the crystal orientation and the indices of the elements of the dictionary with highest
correlation to a sample Kikuchi pattern is used to specify an estimate of the orientation. This
is a suboptimal method of indexing the crystal orientations across the sample since it does not
properly account for the symmetry group that governs unambiguous orientations. To address this
we developed an optimal method of indexing that specifically incorporates the symmetry group in
a maximum likelihood framework (Y.-H. Chen, D. Wei, G. Newstadt, M. Jackson, J. P. Simmons,
M. De Graef and A. Hero, ”Parameter estimation in spherical symmetry groups,” IEEE Signal
Processing Letters, vol. 22, no. 8, pp. 1152-1155, Jan. 2015).

3 Personnel Supported

Personnel supported

• Al Hero (UM faculty PI)

• Bala Rajaratnam (Stanford faculty co-PI)

• Joseph Romano (Stanford faculty collaborator)

• Apoorva Khare (Stanford Research Associate)

• Douglas Sparks (Stanford postdoc)

• Brett Naul (Stanford student)
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• Taposh Banerjee (UM postdoc)

• Hamed Firouzi (UM student)

• Pin Yu Chen (UM student)
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detection,” IEEE Intl Conference on Acoust, Speech and Signal Processing (ICASSP16),
Shanghai 2016.

4. H. Firouzi, B. Rajaratnam, A.O. Hero, ”Two-stage variable selection for molecular prediction
of disease,” Proceedings of IEEE CAMSAP 2013. (Nominated for Best Student Paper Award).

5. H. Firouzi, B. Rajaratnam, A.O. Hero, ”Local hub screening for partial correlation graphs,”
Proceedings of SPIE workshop on Wavelets and Sparsity, 2013.

6. H. Firouzi, B. Rajaratnam, A. Hero, ”Predictive Correlation Screening: Application to Two-
stage Predictor Design in High Dimension,” AISTATS 2013. Nominated for Best Student
Paper Competition.

7. S.Y. Oh, O. Dalal, K. Khare, and B. Rajaratnam. Optimization methods for sparse pseudo-
likelihood graphical model selection. In NIPS - Neural Information Processing Systems Foun-
dation (conference proceedings). Montreal, CA, 2014. http://arxiv.org/abs/1409.3768.

8. Rajaratnam M., B., and K. A theoretical model for the term structure of corporate credit
based on competitive advantage. In European Financial Management Association Annual
Conference, 2015.

Book chapters

1. H. Firouzi, D. Wei, and A.O. Hero, ”Spectral correlation screening,” in Excursions in Har-
monic Analysis, Eds. R. Balan, M. Begue, J. J. Benedetto, W. Czaja and K. Okoudjou,
Springer 2014.

2. A.O. Hero and B. Rajaratnam, ”Large scale correlation mining for biomolecular network
discovery,” in Big Data Over Networks, Eds. S. Cui, A. Hero, T. Luo, J. Moura, Cambridge
University Press, 2015.

Technical reports

1. T. Banerjee and A.O. Hero, ”Quickest Detection for Changes in Maximal kNN Coherence of
Random Matrices,” arxiv 1508.04720, Aug 2015.

2. Y.-H. Chen, D. Wei, G. Newstadt, M. DeGraef, J. Simmons, A.O. Hero, ”Statistical Esti-
mation and Clustering of Group-invariant Orientation Parameters,” arxiv 1503.04127, Mar.
2015.

3. Yu-Hui Chen, Se Un Park, Dennis Wei, Gregory Newstadt, Michael Jackson, Jeff P. Sim-
mons, Marc De Graef, Alfred O. Hero. ”A Dictionary Approach to EBSD Indexing,” arxiv
1502:07436, Feb 2015. (.html) . This paper appeared in the Journal of Microscopy and
MicroAnalysis, Mar. 2015.
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4. S.-Y. Oh, F. Dewey E. Ashley, P.S. Tsao, R. Olshen and B. Rajaratnam, ”A Graphical-
network Model Framework for Case-control Studies with Application to Cardiovascular Biol-
ogy,” Technical Report, 2013.

5. Yu-Hui Chen, Dennis Wei, Gregory Newstadt, Jeffrey Simmons, Alfred hero ”Coercive Region-
level Registration for Multi-modal Images,” arxiv 1502:07436, Feb 2015.

6. H. Firouzi, B. Rajaratnam, A.O. Hero, ”Two-stage Sampling, Prediction and Adaptive Re-
gression via Correlation Screening (SPARCS),” arxiv 1502:06189, Feb 2015.

7. A. O. Hero and B. Rajaratnam, ”Foundational principles for large scale inference: Illustrations
through correlation mining,” Stanford University Dept of Statistics Technical Report 2015-13.

8. A.O. Hero and B. Rajaratnam, ”Large scale correlation mining for biomolecular network
discovery,” Stanford University Dept of Statistics Technical Report 2015-02

9. B. Rajaratnam and D. Sparks. MCMC-based inference in era of Big Data: A fundamen-
tal analysis of the convergence complexity of high-dimensional chains. Annals of Applied
Probability (under review), 2016. http://arxiv.org/abs/1508.00947.

10. A. Khare and B. Rajaratnam. Probability inequalities and tail estimates for metric semi-
groups. Annals of Probability (under review), 2015. http://arxiv.org/abs/1506.02605.

11. D. Montague and B. Rajaratnam. Graphical Markov models for infinitely many variables.
Transactions of the American Mathematical Society (under review), 2015. http://arxiv.org/abs/1501.07878.

5 Interactions/Transitions

5.1 Participation/presentations

The following are invited conference presentations, conferences and seminars in which co-PI’s pre-
sented work related to this grant.

1. A. Hero was plenary speaker at the Future Directions in Compressive Sensing and Sensing-
Processing Integration, workshop at Duke University (sponsored by the Office of the Secretary
of Defense (OSD)) Jan 2016, entitled “The need for new theory and new models.”

2. A. Hero gave plenary speaker at the IEEE Workshop on Signal Processing and Education,
Sundance UT, July 2015, entitled “Large scale correlation mining.”

3. A. Hero gave plenary speaker at the IEEE International Conf. on Image Processing (ICIP),
Paris, 2014 on “Correlation mining in image and video processing.”

4. A. Hero gave plenary lecture at IEEE CAMSAP Conference in Dec. 2013 entitled ”Small
Sample Correlation Mining in Massive Data Sets.”

5. A. Hero gave plenary lecture at the Network Theory Symposium of IEEE GlobalSiP in Dec.
2013 entitled ”Modeling of interaction networks: challenges and emerging solutions.”
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6. A. Hero gave plenary lecture at the 15 Year Anniversary of the Center for Imaging Science at
Johns Hopkins in May 2013 entitled ”Correlation mining in computational biology: pitfalls
and opportunities.”

7. A. Hero gave lecture at the ”Large Scale Machine Learning for Big Data” workshop at the
Institut Henri Poincarré in Paris, May 2013, entitled ”Correlation mining.”

8. A. Hero gave lecture at the Complex Networks Workshop, Eindhoven Jan 2013. ”High di-
mensional dependency network analysis with limited data.”

9. A. Hero gave lecture at the DARPA Workshop on Big Data and Large-Scale Analytics March
2013 entitled ”Correlation mining in massive data.”

10. A. Hero gave seminar and colloquium talks on correlation mining at the following venues

(a) Distinguished lecture at Univ. of Rochester in Sept 2013. ”Correlation mining in massive
data.”

(b) Distinguished lecture at Wayne State Univ. Computer Science Dept in Feb 2013. ”High
Throughput Correlation Screening and Variable Selection for Massive Data.”

(c) Distinguished lecture at Texas A&M Univ. in Sept 2013. ”Correlation mining in massive
data.”

(d) UIUC ECE Colloquium Sept 2013, Correlation mining in massive data.”

11. B. Rajaratnam gave an invited presentation at the DIMACS Workshop on Geological data
fusion: Tackling the statistical challenges of interpreting past environmental change, Novel
high dimensional statistical methodology for multiproxy paleoclimate reconstructions, Rut-
gers University (Jan, 2013)

12. B. Rajaratnam gave an invited presentation at the Carnegie-Mellon University, Department
of Statistics: (April, 2013)

13. B. Rajaratnam gave an invited presentation at the University of West Indies, Port of Spain,
Department of Mathematics and Statistics: (April, 2013)

14. B. Rajaratnam gave a series of three invited lectures at the Mathematics of Climate Change
Conference, Guanajuato, Mexico (July, 2013)

15. B. Rajaratnam gave an invited presentation at the Inaugural meetings of the Canadian Sta-
tistical Sciences Institute (CANSSI) , Waterloo Ontario (Aug, 2013)

16. B. Rajaratnam gave an invited presentation at the first Mathematical Congress of America
meetings, Special session on ”Graph and Network Analysis in Geosciences” , Guanajuato,
Mexico (Aug, 2013).

17. B. Rajaratnam gave an invited presentation at the University of Florida, Department of
Statistics: (Feb, 2014)

18. B. Rajaratnam gave an invited presentation at the Pennsylvania Sate University, Department
of Statistics: (Mar, 2014)
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19. B. Rajaratnam gave one of the keynote addresses at ”Symposium on spatial-temporal statis-
tics: methods and applications”, hosted by the Department of Statistics, University of Cali-
fornia at Davis. (April, 2014)

20. B. Rajaratnam presented work on covariance estimation applied to climate change at the
SAMSI closing workshop for the Program on Low-dimensional Structure in High-dimensional
Systems (LDHD) (May, 2014).

21. B. Rajaratnam gave an invited presentation at the University of Lancaster, department of
mathematics and statistics, June 2014.

22. B. Rajaratnam gave an invited presentation at the fourth annual workshop on Understanding
Climate Change from Data, NCAR Boulder, CO, June 2014.

23. B. Rajaratnam gave the plenary talk at the The American Institiute of Mathematics, work-
shop on positivity, graphical models and multivari- ate dependencies, October 2014.

24. B. Rajaratnam gave an invited presentation at Duke University, Department of Statistical
Science, November 2014.

25. B. Rajaratnam gave one of the two invited presentations at the University of Florence, De-
partment of Statistics, Mini-workshop in graphical models, December 2014.

26. B. Rajaratnam gave an invited presentation at the European University Institute, Florence,
Mini-workshop in statistics, December 2014.

27. B. Rajaratnam gave an invited presentation at the Joint Mathematics Meetings 2015, San
Antonio, January 2015.

28. B. Rajaratnam gave an invited presentation at the North Carolina State university, Raleigh,
January 2015.

29. B. Rajaratnam gave an invited presentation at the North Carolina State university, Raleigh,
February 2015.

30. B. Rajaratnam gave an invited presentation at Duke University, February 2015.

31. B. Rajaratnam gave an invited presentation at the University of Michigan, Ann Arbor, April
2015.

32. B. Rajaratnam gave an invited presentation at the University of California, Davis, March
2015

33. B. Rajaratnam gave an invited presentation at the University of Colorado,Denver, April 2015

34. B. Rajaratnam gave an invited presentation at theUniversity of Illinois at Urbana-Champaign,
May 2015
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5.2 Consultative and advisory functions

1. A. Hero serves on the National Academy of Sciences Committee on Applied and Theoretical
Statistics (CATS), 2012-. Advises the National Academies on the use of statistics in science,
engineering and technology. CATS organizes workshops for government agencies (currently
organizing workshops for NOAA, NSF, NIH).

2. A. Hero participated in the DARPA Workshop on Big Data and Large-Scale Analytics in
2013. The organizer of the workshop was DARPA DSO PM Tony Falcone. This workshop
had the objective of addressing the important current and especially future problems in data
analysis, as well as novel mathematical directions that might lead to their solution. The
participants were asked to help shape the direction of mathematical research at DARPA

3. B. Rajaratnam performed as young investigator at DARPA on developing rigorous foundation
for network analysis.

4. B. Rajaratnam (w/ H. Massam, D. Guillot, A. Khare) is principal organizer of the upcom-
ing AIM workshop on “Positivity, graphical models, and modeling of complex multivariate
dependencies,” sponsored by American Institute of Mathematics (Oct 2014).

5. B.Rajaratnam serves on the advisory Committee on Probability and Statistics in the Physical
Sciences of the Bernoulli Society.

6. B.Rajaratnam serves on the presidential search Committee of the Bernoulli Society.

5.3 Technology Assists, Transitions, and Transfers

1. A. Hero worked with Air Force Research Laboratory (AFRL) on applying correlation mining
methods developed in this grant to automated target recognition (ATR) and Materials Sci-
ence. He visited AFRL in April 2013 and Dec 2013. AFRL POCs: Edmund Zelnio and Jeff
Simmons.

2. A. Hero worked with Army Research Laboratory (ARL) on multicriteria network discovery
and human-in-the-loop sensing and processing. ARL POCs: Brian Sadler and Lance Kaplan.
He visited ARL in Jan 2013, Mar 2014, June 2015, and Sept 2015.

3. A. Hero worked with MIT Lincoln Laboratory on network analytics for social media and
human-in-the-loop sensing and processing. MIT POCs: Kevin Carter and Ted Tsiligkaridis.

4. A. Hero worked with Los Alamos National Laboratory on ...

5.4 New discoveries, inventions, or patent disclosures

New discoveries are reported in published papers. There were no inventions or patent disclosures.

6 Honors/Awards

Awards received during the period of this grant
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1. A. Hero received the 2015 Society Award, IEEE Signal Processing Society, the highest award
bestowed by the IEEE Signal Processing Society, presented at 2016 IEEE Intl. Conference
on Acoustics, Speech and Signal Processing in Shanghai China.

2. A. Hero received the 2013 Technical Achievement Award, IEEE Signal Processing Society,
presented at 2014 IEEE Intl. Conference on Acoustics, Speech and Signal Processing in
Florence Italy.

3. IEEE CAMSAP 2013 Best Student Paper Competition Award (2nd place) or a paper co-
authored with A. Hero’s former student Zhaoshi Meng and his former post-docs Dennis Wei
and Ami Wiesel entitled “Marginal Likelihoods for Distributed Estimation of Graphical Model
Parameters,” 2013 IEEE Computational Advances in Multi-Sensor Adaptive Processing work-
shop, St Martins.

4. IEEE ICIP 2013 Best Paper Award, for a paper co-authored with A. Hero’s former student
Paul Shearer and colleague Anna Gilbert entitled “Correcting Camera Shake by Incremental
Sparse Edge Approximation,” at the 2013 IEEE Intl. Conf. on Image Processing, Melbourne
Australia.

5. AISTATS 2013 Notable Paper Award for paper by A. Hero’s former student Zhaoshi Meng,
and former post-docs Dennis Wei and Ami Wiesel entitled ”Distributed Learning of Gaus-
sian Graphical Models via Marginal Likelihoods,” 16th Internation Conference on Artificial
Intelligence and Statistics 2013, Scottsdale AZ.

Keynote talks, plenary talks, and distinguished lectures during the period of this grant

1. A. Hero was plenary speaker at the Future Directions in Compressive Sensing and Sensing-
Processing Integration, workshop at Duke University (sponsored by the Office of the Secretary
of Defense (OSD)) Jan 2016.

2. A. Hero was plenary speaker at the IEEE Workshop on Signal Processing and Education,
Sundance UT, July 2015.

3. A. Hero was keynote speaker at the Conference on Scale Space and Variational Methods in
Computer Vision, Bordeaux May 2015.

4. A. Hero was plenary speaker at the IEEE International Conf. on Image Processing (ICIP),
Paris, 2014

5. A. Hero was keynote speaker at IEEE International Telecommunications Symposium (ITS),
Sao Paulo 2014.

6. A. Hero was keynote speaker at Conference on Quantitative Non-destructive Evaluation
(QNDE), Boise 2014.

7. A. Hero was plenary speaker at UC Riverside NSF IGERT Workshop and Retreat, Lake
Arrowhead CA, Dec 2013. “Extraction of bio-molecular expression patterns from massive
data: from hyperspectral imaging to personalized medicine ,”
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8. A. Hero was plenary speaker at IEEE CAMSAP Workshop, St Martin, Dec 2013. “Small
sample community detection in massive data sets,”

9. A. Hero was keynote speaker at New Sensing and Statistical Inference Methods Symposium,
IEEE GlobalSIP Conference, Dec 2013. “Resource constrained adaptive sensing,”

10. A. Hero was keynote speaker at Network Theory Symposium, IEEE GlobalSIP Conference,
Dec 2013. “Spatio-temporal graphical models for high dimensional network data.”

11. A. Hero gave a Distinguished lecture at Univ. of Rochester in Sept 2013. ”Correlation mining
in massive data.”

12. A. Hero gave a Distinguished lecture at Wayne State Univ. Computer Science Dept in Feb
2013. ”High Throughput Correlation Screening and Variable Selection for Massive Data.”

13. A. Hero gave a Distinguished lecture at Texas A&M Univ. in Sept 2013. ”Correlation mining
in massive data.”

14. A. Hero gave plenary lecture at the 15 Year Anniversary of the Center for Imaging Science
at Johns Hopkins in May 2013

15. B. Rajaratnam was one of the key invited speakers at the Mathematics of Climate Change
Conference, Guanajuato, Mexico (July, 2013)

16. B. Rajaratnam was one of the key invited speakers at the Inaugural meetings of the Canadian
Statistical Sciences Institute (CANSSI), Waterloo Ontario (Aug, 2013)

17. B. Rajaratnam received the NSF Career Award by the NSF’s Division of Mathematical Sci-
ences (2014).

Lifetime Honors/Awards

1. A. Hero received the 2015 Society Award, IEEE Signal Processing Society, the highest award
bestowed by the IEEE Signal Processing Society, presented at 2016 IEEE Intl. Conference
on Acoustics, Speech and Signal Processing in Shanghai China.

2. A. Hero received the 2013 Technical Achievement Award, IEEE Signal Processing Society,
presented at 2014 IEEE Intl. Conference on Acoustics, Speech and Signal Processing in
Florence Italy.

3. A. Hero received the 2011 Rackham Distinguished Faculty Achievement Award, University
of Michigan

4. A. Hero received the IEEE Third Millenium Medal 2000.

5. A. Hero received the Meritorious Service Award, IEEE Signal Processing Society, 1998.

6. A. Hero was elevated to Fellow of IEEE, 1997.

7. B. Rajaratnam received the NSF Career Award, 2014.

8. B. Rajaratnam received the UPS Foundation Award, 2012.
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9. B. Rajaratnam received the DARPA Young Faculty Award, 2011.

10. B. Rajaratnam received the NSA - American Mathematical Society (AMS) Young investigator
award in the mathematical sciences, 2010.
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