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THESIS ABSTRACT 
The focus of this thesis is to implement factor graphs into the problem of detection, 

classification, and localization (DCL) of underwater objects using active SOund Navigation And 
Ranging (SONAR). A factor graph is a bipartite graphical representation of the decomposition of 
a particular function. Messages are passed along the edges connecting factor and variable nodes, 
on which, a message passing algorithm is applied to compute the posterior probabilities at a 
particular node. 

This thesis addresses two issues. In the first section, the formulation of factor graphs for 
each section of the DCL chain required followed by their closed-form solutions. For the detector, 
the factor graph determines if the signal is a detection or simply noise. In the classifier, it outputs 
the probability for the elements in the class . Last, when using a factor graph for the tracker, it 
gives the estimated state of the object being tracked. 

The second part concentrates on the application to Continuous Active SONAR (CAS). 
When using CAS, a bistatic configuration is used allowing for a more rapid update rate where two 
unmanned underwater vehicles (UUV s) are used as the receiver and transmitter. The goal is to 
evaluate CAS's effectiveness to determine if the tracking accuracy improves as the transmit 
interval decreases. If CAS proves to be more efficient in target tracking, the next objective is to 
determine which messages sent between the two UUV s are most beneficial. To test this, a particle 
filter simulation is used. 



Chapter 1: INTRODUCTION 

1.1 Motivation 

SOund Navigation And Ranging (SONAR) is a technology used in naval applications to 
detect undersea objects. A signal is transmitted from a source and is then reflected from different 
undersea entities. This includes rocks, sea creatures, the ocean floor, the ocean surface, and targets 
of interest. The received echoes are analyzed to determine the identity of, and track the objects 
that created them. It is important to extract as much information as possible from the reflection of 
the signal while using minimal resources . This information is vital for knowing whether to stop 
or continue tracking an entity, or determine if other action is required to be taken. For this process 
to be optimal, the detector, classifier, and tracker need to utilize models and parameters that 
accurately match the environment in order to minimize false or missed detections. 

In pulsed active SONAR (PAS), a source transmits a short pulse of sound, or ping, and then 
listens for the echo from the signal. A configuration in which the transmitter and the receiver are 
co-located is known as a mono static situation (Y akubovskiy, 2009). If an echo arrives at the same 
time a transmission is taking place, the data from the reflection is not received, leading to a loss of 
data. To avoid this loss, long listen intervals between transmissions are used, leading to lower 
update rates, which can cause difficulties for the tracker (Grimmett & Wakayama, 2013). As 
opposed to PAS, continuous active SONAR (CAS) transmits a continuous signal. This requires a 
bistatic configuration, i.e., the use of a separate, non-co-located, transmitter and receiver 
(Yakubovskiy, 2009) . This configuration permits a higher update rate, and in practice will allow 
the use of a lower transmit source level to achieve the same total echo energy. 

1.2 Problem Statement 

1.2.1 Detection Classification and Localization 

The Detection, Classification, and Localization (DCL) process begins by an unmanned 
underwater vehicle (UUV) receiving the reflection of the signal previously transmitted. If the 
received signal level is above a set threshold, set by the detector, the signal is deemed as a possible 
object to identify and possibly track. The detector sends the data to the classifier to be analyzed 
by identifying specific features characterized within the signal. Once the echo has been identified 
as an object of interest, the data is sent to the tracker. The tracker attempts to determine if the data 
is from an object that is currently being tracked, in which case the data is used to update the track, 
or if it is from a new object and a new track needs to be created. The tracker can perform further 
classification, based on the object's movement. 

The objective of this thesis is to develop graph-based algorithms for improved detection, 
classification, localization, and tracking of underwater objects using continuous active sources . 
Next, is to apply these newly developed factor graph approaches to the detection, classification, 
and localization chain and if possible, use the output information to feed back into the process for 
more accurate data. 

1.2.2 Continuous Active SONAR 

Continuous active SONAR uses a bistatic configuration. In such a configuration, the 
transmitter and receiver are separate vehicles, allowing the transmitter to send a continuous signal 
without the threat of information loss. Without this limit of time between signal transmissions, 
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the detector, classifier, and tracker can receive a constant flow of data. A goal of this thesis is to 
evaluate the performance of CAS to determine if the accuracy of the location detennined by the 
tracker improves as the update rate is increased. 

In order to localize the object in relation to the receiver using bistatic SONAR, the relative 
location of the transmitter to the receiver needs to be known along with the time the signal is 
transmitted. Position information is easy to obtain if both the transmitter and receiver are 
immobile, or if Global Positioning System (GPS) is available. Likewise, time synchronization is 
easy if radio communications are available for use. However, in an unmanned underwater vehicle 
(UlN) scenario, both the transmitter and receiver are in motion, GPS is generally nol available, 
and there is typically no radio link. However, different pieces of information exist which can be 
used to help deduce the relative geometry. For example, the direct blast from the transmitter, and 
the bearing measurements in relation to the receiver. Also, acoustic communications (of low 
bandwidth) can be used via an acoustic modem, or by embedding messages within the source 
transmit signal. Messages could also be received by measurements taken from a SONAR sensing 
mechanism. The goal of the thesis is to determine which messages will be the most beneficial to 
better localize the object being tracked. 

1.3 Original Contributions 

Even though the implementation of the detector, classifier, and tracker into factor graphs 
had been found previously, one of the original contributions of this thesis is the computation of 
closed form solutions for the factor graph tracker. The closed form solutions were also found to 
be equivalent to the equations of the standard Kalman filter. MA TLAB codes of the two trackers 
were constructed and ran against each other to track a noisy object, and both we1·e found to 
identically track the object. A key difference found is the factor graph tracker has the capability 
to track objects with biased measurements. 

Another contribution was proving the effectiveness of CAS versus PAS since it was proven 
that the smaller the transmit interval, the lower the tracking error. Because of this result, further 
research was conducted to determine the value of different messages that could be known when 
tracking an object. The utility of each message combination given different scenarios were found 
and are valuable contributions to target tracking. 
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Chapter 2: BACKGROUND 

2.1 Factor Graph 

A factor graph is the graphical representation of the decomposition of a particular function. 
It consists of two types of nodes, variable and factor nodes, connected to each other through edges, 
classifying a factor graph as a bipartite graph. For every variable x;, there is a variable node, and 
there is a factor node for every function£. Nodes, x; andjj, are connected via an edge, if and only 
if x; is an argument of jj. A function g(x1, ... ,x,J that is equal to the product of multiple "local 
functions", all having arguments from a subset of {x /, ... ,x"} is shown below in Equation 1. 

g(x1, ... ,Xn) = n!j(XJ) 
} Ej 

(1) 

where J is a discrete index set. J0 is a subset of {xJ, ... ,x"}, whose elements are arguments of the 
sub-function£()0). Equation 1 can easily be represented as a factor graph relating the arguments 
and their local functions. 

As an example, presented in several sources, suppose a function, g, consisting of five 
variables, XJ, ... , X5, is represented as the product of five functions ,JA, fs, f c, JD, and/£, such thatXA 
= {x1}, Xs = {x2}, Xc = {x!,X2,X3}, XD = {x3,X4}, and X£= {x3,X5}, where {A, B, C, D, E) are elements 
of the discrete set J. The factorization of the function g, shown in Equation 2, 

g(xl, X2, X3, X4, Xs) = fA (xl)fa(x2)fc(xv X2, x3)fo(X3, X4)f£(x3, Xs) 

(2) 

can be expressed via the facto r graph in Figure 1. (Frank R. Kschischang, 2001). 

Figure 1: The factorization of g(x1.X2,XJ,X4,X5) expressed as a f actor graph. Th e squares represent the fa ctor nodes, 
jj, and the circles are the variable nodes, Xn. image based on (Frank R. Kschischang, 2001). This image has been 
used in several papers as a general representation of a f actor graph. 

Another form of a factor graph is described by Forney in (Forney, 2005) in which Equation 
2 would be represented by Figure 2. 
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Figure 2: Forney's factor graph of Equation 2. 

Forney's version of a factor graph will be used later in the paper, but for further description of how 
a factor graph may be marginalized; the first factor graph will be used as reference. 

Marginal computations at gi(Xi) may be desired when using factor graphs (i .e. if 
g(xJ.X2,X3,X4,X5) is a joint probability mass function) and can be done by using the distributive 
property. This will be demonstrated by solving for the marginalization of g3(x3). To get a better 
visual of how this property is used, the factor graph in Figure 1 can be rearranged to more clearly 
identify the edges connecting to g3(x3) and is shown in Figure 3. This is known as a rooted tree 
with X3 as the root. However, note that only the visual display is changing, while the connections 
will remain the same as in Figure 1. 

The marginalization of g3(x3) can be written as 

93(x3) = (I fA(xl)fa(Xz)fc(xv Xz, x3)) X (I fv(x3, X4)) X (I fE(x3, Xs)). 
- {x3} - {x3} -{x3} 

Since typically, more than one marginalization will need to be computed, it is more efficient to use 
the sum-product algorithm, which is explained in section 2.1.1. 
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Figure 3: Th e fun ction g(xi,X2,XJ,X4,X5) rearranged to foc us on the marginalization at gJ(XJ). Image based on (Frank 
R. Kschischang, 2001) . This image has been used in several papers as a general representation of a f actor graph. 

2.1.1 Belief Propagation 

Belief Propagation (BP) can be used for problems in artificial intelligence, digital 
communications, statistical physics, and error-correcting coding theory, among other areas (Frank 
R. Kschischang, 2001), (Jonathan S. Yedidia, 2001) . BeliefPropagation, also known as the sum
product algorithm, is used when trying to calculate the marginals for an inference problem that is 
using message passing. If a graph doesn' t contain any loops, then the BP converges to an exact 
solution, otherwise, it provides an estimation of the solution (Coughlan, 2009) . 

Messages are passed and updated between the nodes and once the messages converge, the 
posterior probabilities, also called marginal probabilities or beliefs, are calculated (Coughlan, 
2009) . Given a variable node x; and a factor nodejj, the message passed fromjj to x; can be denoted 
J1 f r ->x; ( xa. The message determines the appropriate state that Xi should be in (Jonathan s . y edidia, 

2001). Messages are passed along the edges between nodes and can travel in both directions. 
Messages fltr xJxa are vectors with the same dimensions as x ; (Jonathan S. Yedidia, 2001) . 

Nodes connected to a node x;, through an edge are called neighbors and can be denoted as n(xa . 
A section of a factor graph, along with its messages, is illustrated in Figure 4. The messages 
between nodes are calculated using the sum-product update rule. This rule states that the message 
sent from a node v on an edge e to another node q, is the product of the local function at v and all 
messages received at von different edges than e. The product is then summarized for the variable 
associated with e. If v is a variable node, then the unit function is multiplied (Frank R. 
Kschischang, 2001) . Referring to Figure 4 for notation, the message calculated from a variable 
node to a function node is given by Equation 3. 
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Jlx--+f(x) = n Jlh --+x(x) 
hEn(x){f} 

Jlr--.xCx) =(I rex) n Jly--.r(Y)) 
-{x} yEn(f)\{x} 

(3) 

(4) 

Equation 4 is used if a message is passed from a local function to a variable, where X = n(f) is 
the vector of neighboring variable nodes to the function/and the expression n(f)\{x} indicates 
all neighboring variable nodes to the function node f excluding the variable node x. The dashed 
ovals in Figure 4 indicate the neighbors of x and f excluding/ and x, respectively. If a node is only 
connected to one other node, it is considered a leaf node. If a leaf node is a variable node, such as 
y 1 in Figure 4, then the message is computed using Equation 5 and if a leaf node is a factor node, 
like h2 in Figure 4, Equation 6 is used. 

(5) 

llt--+x(x) = f(x) 

(6) 

Figure 4: A section of a fa ctor graph illustrating the sum-product update rule. Image based on (Frank R. 
Kschischang, 2001). This image has been used in several papers as a general representation of a fa ctor graph. 
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In order to begin using the sum-product algorithm, message passing begins at the leaves of 
the factor graph. An example from (Frank R. Kschischang, 2001) of the sum-product algorithm 
will be broken down for Equation 2. The factor graph for Equation 2 is re-arranged in Figure 5 to 
clearly visualize the messages being passed. 

5 

Figure 5: Re-arranged factor graph of Equation 2. Each step of the sum-product algorithm is labeled in red. Image 
based on (Frank R. Kschischang, 2001). This image has been used in several papers as a general representation of 
a factor graph. 

For this factor graph, only 5 steps are needed to compute the messages, which are labeled 
in red above in Figure 5. 

Step 1: 

Step 2: 

f..lt A-->x1 Cx1) = I fA Cx1) = fA Cx1) 
-{xl} 

f..lt8-->x2 (Xz) = I fa(Xz) = fa(Xz) 
-{xz} 

f..lx4-->fv(x4) = 1 

f..lxs-->fE(xs) = 1 

f..lx1-->fc(x1) = f..ltA-->xl (xl) 

f..lxz-->fc(Xz) = f..ltB-->xz(Xz) 

f..ltv-->x/x3) = I f..lx4-->fv(x4)fv(X3,x4) 
-{x3} 
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Step 3: 

Step 4: 

Step 5: 

llfE->x/X3) = I llx5 -> fE(xs)fE(x3, Xs) 
-{x3} 

lltc->x3 (x3) = I 11-xl -> fc(xl)llx2 -> fc(xz)fc(XvXz,X3) 
-{x3} 

llx3-> fc(x3) = lltv->x3 (x3)1ltE ->x3 (x3) 

11-tc->xl (xl) = I 11-x3-> fc(x3)11-x 2 -> fc(xz)fc(Xl, Xz, X3) 

-{xd 

11-tc->xz (xz) = I 11-x3->fc(x3)11-x1->f c(xl)fc(Xv Xz, X3) 
-{xz} 

llx3->fv(x3) = lltc->x3(x3)1ltE->x3(x3) 

llx3->fE (x3) = 11-tc->x3(x3)11-tv->x3(x3) 

llx1->fA(x1) = 11-tc->xl(xl) 

11-xz->fB(Xz) = 11-tc->xz (Xz) 

11-tv ->x4 (x4) = I 11-x3->fv(x3)fD(x3,x4) 
- {x4} 

11-tE->xsCxs) = I 11-x3->fE(x3)fE(x3,xs) 
-{xs} 

The function can be calculated at any one of the variable nodes by multiplying all messages 
heading toward the specific variable node. The functions at each variable are written below. 

91 Cx1) = 11-t A->x1 (xl) 11-tc->xl Cx1) 

9z(Xz) = 11-tB->xz(Xz) 11-tc->xz(Xz) 

93 (x3) = 11-t c->x3 (x3) 11-t v->x3 (x3)/lfE-.x3 (x3) 

94(x4) = 11-tv->x4 (x4) 

9s(xs) = 11-tE->xsCxs) 

At this stage, the marginal distribution of each variable node is proportional to the product 
of all the messages from neighboring nodes directed toward the variable node after being 
normalized. Equation 7 shows the belief of a variable node before normalization. The belief 
converging at a factor node is proportional to the product of the function and the messages from 
the neighboring variable nodes after normalization as shown in Equation 8 (before normalization) 
(Coughlan, 2009). 
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bi(xa 0( n lltr->xJxa 
[jEn(xi) 

hxj(Xj) oc [j(Xj) n flx; -+t/xJ) 
x;En([j) 

(7) 

(8) 

If the factor graph is open and does not contain a closed chain or loop, i.e. a tree, then the 
exact marginals can be established. 

2.1.2 Gaussian Belief Propagation 

2.l.2.1 Undirected Graphs 

The Gaussian Belief Propagation (GaBP) algorithm is used when the joint probability 
distributions are Gaussian. When using GaBP, the messages and beliefs are also all Gaussian and 
the means and inverse covariance matrices can be used for the update equations. Weiss and 
Freeman (Weiss & Freeman, Oct., 2001) describe the different equations used to determine the 
beliefs for the GaBP algorithm in an undirected graph, which, when compared to regular belief 
propagation, are not as difficult. 

The information matrix Jy is given by the equation 

]ij = [bar ~]. 
(9) 

In GaBP, the update equations can be the means and inverse covariance matrices due to the 
messages between neighboring nodes also being a mean and inverse covariance matrix. The 
message update equations are given by 

vij = c- b(a + Vo)-lbT 

(10) 

(11) 

where Vij and mij is the precision or inverse covariance matrix and mean vector, respectfully, sent 
from the node Xi to the node XJ. The initials are described in the equations below. 

Vo = Vu + I vki 

XkEN(x;)\Xj 
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(13) 

In the above equations, Vu and mu are the inverse covariance matrix and mean vector, respectively 
of the function fu (xi, Yi) . The mean of the posterior probability at node X i is represented by mi. 

Likewise, Vi is the inverse covariance matrix of the belief at node Xi. Lastly, the expression 
N(xa\x1 denotes all neighboring nodes of Xi, with the exception of XJ. Finally, the beliefs, or 
posterior probabilities in an undirected graph are declared as Equations 14 and 15. 

vi = Vu + L vki 

Xk EN(xi) 

(14) 

(15) 

If the information matrix Jij is diagonally dominant, then the Gaussian belief propagation will 
converge, resulting in precise means (Loeliger, et al., 2007) . (Weiss & Freeman, Oct., 2001) . 

2. 1.2.2 Directed Graphs 

Unfortunately, a factor graph is a directed graph, which causes the Gaussian messages to 
become a little more complex to compute. Linear factor graph models contain nodes of 
multiplication, addition, and equality, resulting in different forks to be formed in the graph. 
Because of this characteristic, the messages for a directed Gaussian linear factor graph are also 
Gaussian and remain so throughout computation using the sum-product algorithm. The technique 
about to be described can be used in many signal processing situations, as referred to by Loeliger. 
(Loeliger, et al., 2007). 

The mean and covariance will still be represented by m and V, however, since this is a 
directed graph, the notation needs to reflect direction. If x is a variable signified by a directed 
edge, then the message containing x following the direction of the edge is represented by -;:£;, 
whereas '14 is the notation of the message passing in the opposite direction of the edge. Likewise, 

the mean and covariance of x in the direction of the edge is denoted as mx and 11;, respectively and 

by mx and fx" when traveling in the opposite direction. The marginals ofthe messages are denoted 
as m x and Vx. The following update rules defined by Loeliger (Loeliger, et al. , 2007) will be 
described using Forney's factor graph with arrows. The arrows are not necessary but make the 
direction of the factor graph more evident. 

When two branches, X and Y, are directed toward an equality node, the resulting message 
of edge Z has an equivalent marginal as the two individual incoming messages. This is 
demonstrated below in Figure 6. The same setup is shown in Figure 7 but with an addition node 
instead of the equality node. The equations are basic addition and mean subtraction for 
computation of the distributions at edge Z and the edge X in the opposing direction. 
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mx =my= mz 

Figure 6: Gaussian messages for basic equality node. Image based on (Loeliger, et al. , 2007). 

mx +my= mz 

Figure 7: Gaussian messages for basic addition node. Image based on (Loeliger, eta!., 2007). 

Figure 8 illustrates the computation of the covariance, mean, and marginals for forward matrix 
multiplication in a factor graph where A is a matrix. 

___, __,H 
Vy = AVxA 

Vy = AVxAH 

my= Amx 

Figure 8: Gaussian messages for matrix multiplication. Image based on (Loeliger, eta!., 2007). 

Last, when combining a branch of matrix multiplication with the equality node, a more complex 
calculation is formed and shown in Figure 9. 
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-+-+ -+H-+ 
Vz = Vx- VxA GAVx 

mz = mx + lf;AHG(my- Amx) 

where G ~ (if;+ Alf;AH)-1 

Figure 9: Gaussian messages f or combined matrix multiplication and an equality node. Image based on (Loeliger, et 
al., 2007). 

For backwards Gaussian distribution involving matrix multiplication, different steps are required, 
but are not utilized in this thesis and therefore, will not be covered. The reader m' y refer to 
(Loeliger, et al., 2007) for more information regarding this topic. (Loeliger, et al. , 200-:') . 

2.2 Signal Processing for Undersea Systems 

2.2.1 Signal Detection Theory 

Signal Detection Theory is used in various areas of study, such as medical, p~ychology, 

legal, digital communication systems, RADAR and SONAR systems, and speaker classification 
just to name a few (Van Trees, 2001), (Heeger, 2003-2007). In a general signal detection problem, 
a source produces an output of all possible scenarios, called hypotheses. These are labeled as Ho, 
H1 ... . , HNfor N possible scenarios. In the case of digital communication, these could beH, and Ho 
to represent a "one" or "zero" being transmitted, respectively. For the medical scenario if a 
radiologist is attempting to locate a tumor, H, would represent a tumor is present and Ho would 
represent no tumor. In a SONAR or RADAR scenario, H, would represent the reflected signal is 
present and Ho would mean that just noise is present. However, the observer does not know which 
one is the correct hypothesis. The probabilistic transition mechanism knows which of the 
hypotheses are correct and using the known conditional probabilities densities for each hypothesis, 
it projects a value into the observation space. The observation space is made up of a set of M 
observed variables, n, r2, ... ,r M, which are elements in the vector R . These elemer:ts are the 
assigned values from the source output added to random noise n. A diagram demons:rating the 
basic structure of signal detection theory is given in Figure 10. (Van Trees, 2001 ). 
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HI : Source 

H 0 

Probabilistic 
Transit ion 

Mechanism 

Observat~ion 

Space 

Decision 

Deds,ion 

Rule 

Figure iO: Basic operation of a signal detection theory example. image based on (Van Trees, 2001). 

When assuming a simple binary scenario, such as in SONAR, where HI and Ho are the two 
hypotheses, thF two knownl conditional probability densities sent by the transition mechanism 
would be p(R I HI) and p(R Ho), respectively. Given that either HI or H o must be true, there are 
four possible decisions that can be made. Two of which are the correct decisions: if Ho is true and 
the decision were to select Ho, and if HI is true and selected. The first would be considered a 
rejection, and the later would be termed a detection. A miss would be made if HI were true but Ho 
was selected. Last, if HI was selected when Ho were true, then this would be considered a false 
alarm. A decision rule is required for the observer to determine which to choose. This decision 
can be made by setting a threshold A., in which everything above the threshold, the observer chooses 
HI and for everything below, Ho is chosen (Macmillan, 2002). Figure 11 illustrates the use of this 
threshold on the distribution curves for the noise and the signal plus noise. 

Rejections 

Misses 

Noise Distribution 
Curve 

Signal+ Noise 
Distribution Curve 

Figure i 1: The noise and signal distribution curves with means MNoise and Msignal respectively, with a threshold, A.. 
image based on (Macmillan, 2002). 
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Since every value above the threshold is chosen to be the signal, then that area under the 
noise curve would all be false alarms, where that same area under the signal curve would be correct 
detections . The area below the threshold for the noise distribution would be correct rejections, and 
missed detections when under the signal probability distribution curve. 

The goal is to maximize the probability of detection, PD, while minimizing the probability 
of a false alarm, PF. By either using Bayes Criterion or Neyman-Pearson Criterion, both lead to 
the likelihood ratio, A(R), which is given in the equation below. 

A(R) ~ p(R I Hl) 

p(R IH0) 

(16) 

In order to perform a likelihood ratio test, the threshold, A, needs to be calculated. If using 
Bayes Criterion, the threshold is formed based on the a priori probabilities of the original source 
outputs for HI and Ho, given by PI and Po, respectively. It is also determined by the cost, CiJ of 
each decision, where i denotes the hypothesis that was selected, andj is the hypothesis that is true. 
The assumption is made that the cost of a wrong decision is greater than the cost of a correct 
decision, as is shown below. 

C1o >Coo 

Co1 > Cu 

Using the costs and the a priori probabilities, the threshold can be computed as the given equation. 

Po(Clo- Coo) 
,1~-----

pl (Col - Cu) 

(17) 

When using the Neyman-Pearson criterion, a desired PF is selected and set equal to the 
equation below. In order to fmd the threshold, the equation is solved for A. 

00 

For both criterions, the likelihood ratio test is given as 

Hl 

A(R) ~ ;t 

Ho 

(18) 

(19) 

The likelihood ratio test explains that if the likelihood ratio is greater than the threshold, the 
selection of H 1 should be made. If the ratio is less than the threshold, the selection should be H 0 . 

A fmal illustration of the signal detection theory using the threshold is given in the following 
figure. (Van Trees, 2001). 
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Figure 12: The possible results using signal detection theory. image based on (Van Trees, 2001). 

In the above figure, the two overlapping curves are the conditional probability densities for 
H1 and Ho. The threshold is marked in red in the center. The cyan shaded area represents the PD, 
while the yellow shaded area is the PF. The figure displays how the use of the threshold is reducing 
the probability of false alarms while increasing the probability of detection. 

2.2.2 Classification 

A classifier is a model predicting a class label for an object given the vector of features 
supplied by a feature extractor. They are used heavily in the medical field, for instance when 
classifying a disease, and also in text and language, such as detecting spam within emails. In naval 
applications, classification is used to identify the class of the undersea object being detected and/or 
tracked. Within a classifier, the probabilities for the different possible classes are calculated since 
it is highly improbable to always achieve perfect classification (Duda, Hart, & Stork, 2001). One 
of the most common forms of a classifier is a Bayesian network. 

2.2.2.1 Bayesian Network 

A Bayesian network, or Bayesian belief network, is a directed graphical model of a directed 
graph G = (V, E) where VandE are vertices and edges of the graph, respectively. The probability 
distributions of these directed graphs factorize as the product of the local functions, given by 

p(y,x) = n p(vlvrr) 
vEV 

(20) 

where y is an element of the output variables, x is an element of the input variables, and v,. are the 
parents of v. The set of nodes that come before node v are known as the parents of v, likewise, the 
nodes that come after v are the children of v. To understand the notation of a Bayesian belief net, 
Figure 13 will be used as a source of referral. In the belief net, the bold capital letters are nodes 
with their associated variables, or states, given by the respective lowercase letters. For example, 
node A has variables a, , a2, ... , labeled as the feature a . The edges between each node are 
directional and represent the conditional probabilities. For instance, the edge connecting A and C 
signifies the conditional probabilities P(c;ia1) given by the matrix P( cia). The nodes that are not 
connected by an edge are considered to be conditionally independent. 
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P(a) P(b) 

Figure 13: A Bayesian belief net where the bold capital/etters are nodes with their associated variab!es .. or states, 
given by the respective lowercase letters. Th e edges between each node are directional and represent the conditional 
probabilities. Image based on (Duda, Hart, & Stork, 2001). 

A belief net operates by calculating the state of a node based on the states of the connected 
nodes . Figure 14 illustrates a section of a Bayesian belief net having nodes 1tt, m, .. . , 1tn, X, and 
Ct , C2, ... , Cm where 1tt, 1t2, ... , 1tn are X's parents, 1t, and nodes Ct, C2, ... , Cm are X's children, 
C. If the variable values of all nodes besides X are known, a.k.a. the evidence, then the relative 
probabilities of the set of variables in x on node X, given the collected evidence e, at all other 
nodes, is known as the belief ofx, denoted as P(xje). Equation 21 shows how P(x!e) is reliant on 
both, the parents and children. 

(21) 
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The evidence of the parent and children nodes is given by err and ec, respectively. To fmd the 
fmal belief ofx, Equation 21 will be normalized over the states at X. (Duda, Hart, & Stork, 2001). 

---/ 

( 
........ 

' .... _ 

------------------- -------

-----------------

----..... 
Parents ofX 

----------

-------~ ........... 

" .I 

Children of X ) ------------
Figure 14: A section of a Bayesian belief net having nodes Tr/, m, .. . , 1fn, X, and C1, C1, ... , Cm where m, m, ... , 1fn are 
X 's parents, and nodes C1, C1, ... , C,, are X 's children. Image based on (Duda, Hart, & Stork, 2001). 

The first factor of Equation 21 is the product of the children's independent likelihoods. 
Equation 22 gives the expansion of the first factor from Equation 21. 

ICI 

P(eclx) = n P(ecjlx) 
}=1 

(22) 

In the equation above, c1 denotes the jth child node, while the values of the probabilities of its 

variables is given by ec-. The number of elements in set Cis given by ICI, and lrrl is likewise, the 
J 

number of elements in set n, which will be seen in the equation below for the second factor of 
Equation 21 . 

lrrl 

P(xlerr) = I P(xlrrmn) n P(rrderr) 
all1fmn i=l 

(23) 

Equation 23 shows the reliance the belief has on the parent nodes where 1Tmn represents the specific 
value for variable n on parent node 1Tm. Comparable to Equation 22, rri denotes the ith parent 
node, while the values of the probabilities of its variables is given by eni. Equation 24 shows the 
proportionality of the belief of x to the combination of the two previously defmed equations. 
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ICI lrrl 

P(xle) 0( n P(ecjlx) I P(xlrrmn) n P(rrilerr) 
}=1 all 1fmn i=l 

(24) 

The fmal belief is found when Equation 24 is normalized over the variables at node X. (Duda, 
Hart, & Stork, 2001). 

2.2.2.2 Naive Bayes Classifier 

The naive Bayes classifier can be illustrated as a simple Bayesian belief net, where the 
features are conditionally independent. It has shown to be a very efficient, and in certain cases, an 
optimal classifier, even though the assumption of complete conditional independence cf features 
is very unlikely to be true in real-world scenarios (Zhang, 2004). Equation 25 gives the joint 
probability formula of which the naive Bayes classifier is founded. 

K 

p(y,x) = p(y) n p(xkiY) 
k=l 

(25) 

In the above equation, y is the class variable and x = (x,, x2, ... , XK) are features for the object (Sutton 
& McCallum). Figure 15 illustrates an example of a naive Bayes classifier. 

Figure 15: An example of a nai"ve Bayes classifier with class variable y and features x = (x,, x2, . . . , xi\). 

2.2.3 Tracking 

2.2.3.1 Kalman Filtering 

The Kalman Filter was first introduced by Rudolf E. Kalman in 1960 when he published 
his paper describing a recursive solution to the linear filtering and prediction problems (Kalman, 
March 1960). It is a data fusion algorithm most commonly used for data smoothing and providing 
the best mathematical estimate for the state parameters. The Kalman Filter is applied to many 
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devices used today such as satellite navigation and control devices in vehicles, smart phones, and 
certain computer games. (Faragher, 20 12). According to (Maybeck, 1979), the job of a filter is to 
fmd the best possible estimate with the least amount of error of the state given the noisy data 
collected. To reach this goal, the filter uses the measurements being collected in the data to portray 
the conditional probability density of the state. The word conditional is used due to the 
measurements being the detenninistic factor of the shape and location along the x-axis . The shape 
of the conditional probability density graph determines the confidence in the information at the 
specific x-value. From this function the best estimate can be determined using, most commonly, 
the mean estimate, which is the "center of probability mass", the mode estimate, which is the x
value at the highest density point, or the median estimate, which is the x-value dividing the density 
in half. The Kalman filter is determined to be the best filter under the circumstances where the 
system model is linear and the process and measurement noises are both white and Gaussian which 
causes the mean, mode, and median of the estimate to all lie on the same x-value. (Maybeck, 1979). 

Suppose a signal S n, needs to be projected, given real measurement data (zo, Z J, ... , zn), and 
the signal and measurement data are categorized by the autocorrelation and cross-correlation 
functions (Sorenson, 1970). Using the reference (Welch & Bishop, 2006), the procedure for 
estimating the real state x, of a discrete-time controlled process, will be discussed. The state x at 
time step k, is defmed by the linear stochastic differential equation 

xk = Axk-1 + Buk-1 + wk 

(26) 

where w is zero-mean, white, Gaussian process noise, and A is ann x n matrix relating the state at 
the prior time step k - I , to its current time step k. For this demonstration A will remain constant, 
however, it is possible that A may change with each iteration in real life applications. The variable 
u, is a real control input that is optional and related to the state x, by the n x I matrix B. The 
measurement for time step k, is given by 

(27) 

where v is zero-mean, white, Gaussian measurement noise independent from the process noise w, 
and His an m x n matrix that describes the relationship between the measurement and state, which 
will remain constant for this demonstration but is subject to change in a real life application. The 
covariances of the process noise and measurement noise, Q and R respectively, are assumed to 
also be constant here, but could change with each time step or measurement. 

Let x; be real and the a priori estimate of the state at time k given Xk - 1 and let xk be the a 
posteriori real state estimate at time k given the measurement, Zk. The errors of both state estimates, 
a priori and a posteriori , can now respectively be given as 

e; = xk- x; 
and ek = xk - xk. 

From these errors, we can determine the covariances of the two a priori and a posteriori error 
estimates to be 

Pk = E[ei; ei;T] 

and Pk = E[eke[] . 
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In order to reduce the a posteriori error covariance, the n x m matrix K is introduced, also known 
as the Kalman gain, and is defined as 

Kk = Pi:HT(HPi:HT + R)- 1 . 

(28) 

The weight of the gain affects the level of confidence put on the measurement, Zk, and the predicted 
measurement, Hxk_ . For instance, as the R, the error covariance of the measurement, approaches 
zero, the confidence in the measurement, Zk, increases and decreases in the predicted measurement, 
Hxk_. However, as the covariance of the a priori estimate error, P;; , approaches zero, the opposite 
occurs. The confidence in the measurement, Zk, decreases and the confidence in the predicted 
measurement, Hxk_, increases. 

The Kalman filter process is a cycle between forming estimates of current states, then 
updating those estimates from measurements received, and finally, using those updates to predict 
the next a priori estimate. The cycle works by first estimating the "process state" at a time, k, and 
then acquires data consisting of measurements taken in a noisy atmosphere. Equations that are 
used to predict the estimates of the state and error covariance in order to form the a priori estimate 
will be called "time update equations". Using A and B from Equation 26, these eq 'ations are 
defmed by 

(29) 

(30) 

Once the measurement data is applied and the estimate is adjusted, or corrected, then the a 
posteriori estimate is formed and then used to predict the a priori estimate at the next state. The 
equations used to apply the information from the measurements are to be called the "measurement 
update equations" and are given by the Kalman gain (Equation 28), along with the a posteriori 
state estimate equation, and the a posteriori error covariance estimate, all of which are given 
below, respectively, as 

Kk = Pi:HT(HP;;Hr + R)- 1 

xk = xk_ + Kk(zk- Hxk_) 

(31) 

(32) 

From here, the process begins again using the recently found a posteriori estimates to calculate 
the next a priori estimates, as is demonstrated in the figure below. 
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Figure 16: An image of the recursive process of the Kalman filter using the time and measurement update Equation~, 

28-32. Image based on (Welch & Bishop, 2006). 

When performing the Kalman filter, typically R, the covariance of the measurement noise , 
is measured ahead of time. However, Q, the covariance ofthe process noise, is not so easily found 
and may need to be adjusted in order to achieve the best execution ofthe Kalman filter. Since w e 
assumed that Q and R would remain constant, the Kalman gain and estimated error covariance, Kk 
and Pk respectively, will also reach a steady-state and remain there. 

2.2.3. 1. Particle Filtering 

Particle fit · ering, also known as bootstrap filtering, was first introduced in 1993 and is 
another filter whose goal is to estimate the state of an active system given its noisy measurements 
(Gordon, Salmond, & Smith, 1993). Where the Kalman filter provides the solution to a linear 
problem with Gaussian noise, the particle filter has the benefit of being a nonlinear filter solving 
non-Gaussian scenarios. Built on point mass characterizations, or particles, of the required state 
probability densities, the particle filter executes a sequential Monte Carlo approximation (Ristic, 
Arulampalam, & Gordon, 2004) . A Monte Carlo model illustrates the outcomes of all the possible 
decisions one can make along with the risk assessment associated with each choice (Palisade 
Corporation, 20 15). The particle filter results in a probability distribution represented as a cloud 
of particles in contrast to giving closed form density expressions as with the Kalman filter. The 
surrounding particle cloud consists of a collection of random samples and their supplementary 
weights which are used to calculate future estimates of the state (Ristic, Arulampalam, & Gordon, 
2004). 

To initialize the particle filter, an original set of particles is generated { (x, w)} where xis the 
current state vector and w is a weight. Just like in the Kalman filter, a future state, x', is estimated 
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based on the prior time step of the state with associated process noise, U, and the measurement 
taken, z, with its associated measurement noise, V. Unlike the Kalman filter, the predicted state 
equation does not need to be linear, nor is the noise required to be Gaussian, therefore, the predicted 
state and measurement equations will take the general form shown below, respectively. 

x' = F(x, U) 

(33) 

z = G(x, V) 

(34) 

Each particle is designated a specific weight generated given the measurement vector, z. The 
updated weight, w', is given by Equation 35. 

w' = P(x'lz)w 

(35) 

For particles whose predicted states are inconsistent with measurements or violate any a priori 
conditions, for instance breach a maximum velocity boundary, their weights are assigned as a zero, 
thus abolishing those particles. 

A common problem that comes into play with particle filters is the problem of degeneracy. 
After repeating these steps a certain amount of times, the number of particles remaining to estimate 
future state possibilities, will reduce to a single particle. To prevent this problem, an effective 
sample size NeJJ iS estimated by the following equation. 

~ 1 
Neff= If=l(wi) 2 

(36) 

In Equation 36, wi is the weight for each sample, i, where i = 1, ... , N samples. Once the effective 
sample size drops to reach a predetermined minimum, resampling becomes necessary. 
Resampling corrects the degeneracy problem by removing the low weighted samples and replacing 
them with multiples of the high weighted samples creating all uniform weights. The higher the 
sample weight is, the better chance that particle has of being selected to be multiplied. Figure 17 
is a pseudocode illustrating the process of a typical particle filter. (Ristic, Arulampalam, & 
Gordon, 2004). 
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Particle Filrer Pseudocode 

INITIALIZE: 
• Create collection of particles: { (~ I x is a state, w is a \;...'eight} 
LOOP: 
• Project particles fomrard: Particle flltering allo\¥S dynamics of the arbitrruy functional form x 

F(!..;l]) , '"here x is the cun·ent state, Vis process noise, and x' is the predicted state. However, 

for the applications considered so fru·, the simulations have employed standard linear models, 
i.e., x' = x + V: 

• Apply physical constraints: Particle states that violate a priori conditions such as forbidden 
regions or maximum velocity limits are eliminated (weights set to zero). 

• Apply measurements: Weights of particles are adjusted based on measurements via w' = 

P(~ where z is a measurement vector and w' is the updated \Veight. Again, the 
measurement model can be arbitrary, i.e. , z = G~. 

• Resample as ne,eded: As the iteration progresses, information tends to become concentrated in a 
subset of the particles. (This is true even if \~oreights do not go totally to zero.) When the 
effective number ofparticles becomes small, a random sampling (with replacement) is 
performed. 

• Calculate application-specific ensemble statistics as needed. 
END; 

Figure 17: Particle filter pseudocode illustrating the typical process of a particle filter. (Sacha & Shaffer, 2010) 

The downfall, compared to the Kalman filter, is the particle filter requires a high 
computational cost. The more particles that are used yield a more closely converged probability 
density but result in a more expensive cost. However, due to the speed of current technology, 
particle filters are still able to be implemented in the field nonetheless. Particle filtering is already 
being implemented in the field of interest addressed in this thesis: target tracking, as well as other 
areas, such as chemical engineering, computer vision, robotics, and financial econometrics 
(Doucet & Johansen, 2008). 

2.2.3 .1.1 Other Particle Filter Research Efforts 

Goldhahn and Braca have recently performed research in this field of tracking undersea 
objects with a particle filter. Their research focuses on the use of autonomous underwater vehicles 
(AUVs) for a multi-static tracking configuration with multiple sensor and receiver pairs for anti
submarine warfare (ASW). They are simulating the use of horizontal line arrays as the receivers 
which suffer from port-starboard (left-right) ambiguity resulting in complications for different 
detection and tracking algorithms. The variation of the probability of detection due to the 
environment, in which the tracking is taking place, is also being applied to their simulation. They 
are using a particle filter to restructure the Bayesian posterior distribution of the state of the target 
given the collected information taken from the sensors. (Goldhahn, et al., 4-9 May 2014). 
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2.3 Continuous Active SONAR 

2.3 .1 Pulsed Active and Continuous Active SONAR 

When trying to locate an underwater object, SONAR is used and can either be passive or 
active. Passive SONAR only listens for acoustic activity as opposed to active SONAR which 
transmits a signal and then listens for an echo. Conventionally, when using mobile active SONAR, 
a single vehicle transmits a signal which is then reflected from an object and receiYed by the 
original transmitting vehicle. Once the echo, or ping, is received, the vehicle transmits another 
signal. This configuration, using a single transmitter/receiver, is known as monostatic SONAR 
(Yakubovskiy, 2009), and the mode of operation consisting of transmitting a short pulse followed 
by a long listen interval is referred to as Pulsed Active Sonar (PAS). 

The vehicles referred to in this thesis will be assumed to be unmanned underwater vehicles 
(UUVs). Two types ofUUVs exist: a UUV with a remote human operator, known as a remotely 
operated underwater vehicles (ROVs), and autonomous underwater vehicles (AUVs) which do not 
require any direct human operation (Dobbins, 2014) . UUVs, such as the biologically inspired 
"Robo-lobster", can perform underwater tasks in shallow, rough waters (Singer, 2009) . Other 
UUVs, such as a modified torpedo, like the Remote Environmental Monitoring Unit (REMUS), 
or a small submarine are able to operate in deeper waters (Singer, 2009) . Currently UUVs are 
used as SONAR platforms to search for objects but future applications that have been identified 
include being able to position and recover devices, take action on all forms of information, and to 
be able to engage all types of targets (Department of the Navy, 2004). 

PAS traditionally uses a monostatic configuration, in which it transmits a short signal burst, 
or chirp, via a frequency modulated waveform (FM) or by a short narrowband pulsed sinusoid. 
Even though these types of signals provide information regarding the range of the object being 
tracked, they may not offer much insight on Doppler. This will be discussed in more detail later. 
To avoid any loss of data, PAS must wait to hear the ping before transmitting another pulse 
(Grimmett & Wakayama, 2013). Since the speed of sound in water is only about 1500 m/s, the 
ping repetition interval (PRJ) tends to be large relative to the transmit pulse length, giving a very 
low duty cycle as small as 1%. This high PRJ makes tracking and classifying an object much more 
difficult since the rate of information recurrence is not high enough to accurately identify the signal 
echo versus noise, leading to the detection of more false alarms. (Hickman & Kralik, 2012) . 

To increase the transmission and reception rate, continuous active SONAR (CAS) can now 
be used. CAS uses a bistatic configuration, in which the transmitter and receiver are ru:o different 
UUVs with a large enough separation analogous to the transmitter-to-object and object-to-receiver 
distances (Y akubovskiy, 2009). When using a bistatic configuration, the transmitter does not need 
to wait to hear the ping before sending another transmission, which allows CAS to have a transmit 
duty-cycle of theoretically 100%. This high duty-cycle allows for a much higher rate of 
information recurrence leading to more accurate detection, classification, localization and tracking 
of an object with a potentially lower number of false alarms (Grimmett & Wakayama, 20 13). The 
downfall with having such a high duty-cycle is a decreased signal-to-noise ratio (SNR), also known 
as a signal-to-clutter-plus-noise ratio (SCNR), due to the continuous interference, referred to as 
the direct blast from the transmitter. 
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2.3 .2 CAS Transmission Waveforms 

There are different types of waveforms that can be used by CAS that result in different 
obtained information. One of these is a repeating linear frequency modulated waveform (LFM). 
An LFM allows for the opportunity to find the estimated range of the object being tracked based 
on the time delays for when echo is received. If using spectral processing to determine the time 
delay Ll'T, the following equation may be used 

T 
/J:r = !J.f PRJ 

B 

(37) 

where ilf is the frequency shift obtained by using the Short Time Fourier Transform, TPRJ is the 
time duration of the ping repetition interval, and B is the total bandwidth of the LFM (Grimmett 
& Wakayama, 2013) . 

To demonstrate the information that can be found when using a LFM waveform, a 
continuous active SONAR scenario was constructed in MA TLAB to transmit a LFM signal. The 
code simulated the interaction of an acoustic transmitter, a separately located receiver, and two 
targets and was designed based on the ray cone formulation in Figure 18. If the position of the 
transmitter is given at time t1, along with the description of the receiver's motion path, the code 
uses the forward ray cone formulation to calculate the time the signal reaches the receiver, thus, 
allowing for the position of the receiver to be found . A backward ray cone can map the energy 
backwards in time to the moment of transmit. (Ricker, 2003). 

Sound ray intersects 
object path at timet 

Figure 18: Forward Ray Cone. image from NURP annual report. 

in 

X 

The ray-cone code simulates the CAS signal received after being reflected form two 
different targets, and outputs the resulting spectrogram shown in Figure 19. The simulation 
confirmed that not only can the time delay of each of the targets be found when transmitting a 
LFM signal, but the time delay of the direct blast can also be detected. Learning the time delay 
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for each target allows for the computation of range. However, there is very little information that 
can be observed about the frequency which means the Doppler of the targets cannot be determined 
unambiguously. 
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Figure 19: Spectrogram from the MATLAB simulation of the received data from the transmitted LFM signal 

Different from a LFM signal, a continuous waveform (CW) can be continuously 
transmitted instead. When using a continuous CW signal, the Doppler shift of the target can be 
found and used to calculate the approximated continual bistatic range rate of change (Grimmett & 
Wakayama, 2013). The same MATLAB code as used previously, was run again, but ~imulating 
the transmission of a continuous CW signal. Its resulting spectrogram is shown in Figur~ 20. The 
figure shows the opposite result as when transmitting the LFM signal. The Doppler shift can now 
easily be observed, but the time delay can no longer be calculated. These results alone do not 
promote close state approximations for the detected object. 
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Figure 20: Spectre gram from the MATLAB simulation of the received data from the transm ."tted continuous CW 
signal 

2.3.3 Other Signal De~ign Research Efkrts 

Much research is being dJne with different CAS waveforms and geometry configurations 
to try and achieve a closer esf :nate of the desi::"ec target state. There are refined broadband 
waveforms that try to combine both CWs and Fl\t[s in order to fmd both range and Doppler 
measurements o.r the detected cbject. Hickman and Krolik discuss the use of a "non-recurrent 
wideband linear FM signal with circular Costas frequency-staggering across chirp repetition 
intervals", referred to as a slow-time Costas-coded ·~·:weform . The waveform ha.> been formulated 
to allow for high transmit rates while receiv_ng. b·Jth range and velocity estimates for each 
transmission, and also having a b gh SCNR (Hi~knrn & Krolik, 2012). 

Grimmett and Wakayama, on the other h:md, have looked at simply Lsing a continuous 
CW transmitted signal, but with using multiple -:ransnitter-receiver pairs. The~' apply a Gaussian 
Mixture Probability Hypothesis Density filter using Cl.e Doppler-bearing measurements taken from 
the transmitted continuous CW signals. When the~~ u3ed the measurements from multiple source
receiver pairs, tracking the state of an object proved to be much more succes~.ful, as opposed to 
using a single source-receiver pair. (Grimmett&: \'v' akayama, 2013). 

27 



Chapter 3: FACTOR GRAPHING FOR DCL 

3 .1 Detection 

3 .1.1 Detector Model 

In a SONAR detection problem, the receiver must be able to detect the existence of the 
transmitted signal amongst noisy data to determine whether to pass the data along to the classifier. 
This section will set up a detector in the form of a loop-free factor graph. Since there are no loops, 
belief propagation can be used to understand the incoming data. From this data, the likelihood 
ratio can be found. For the SONAR problem, the detector is a binary problem producing a hard
decision between the hypotheses H1 and Ho. If the transmitted signal is present, H1 is the 
hypothesis , and Ho denotes when the transmitted signal is not present. The received signal, R, is 
given by 

R=hs+w 

(38) 

where sis the original transmitted signal, h is the channel gain, and w ~ eN(o, CT~) is zero-mean, 

white, Gaussian noise. It is assumed that s, h, and w are all independent from each other. This 
detector model can be inserted into the factor graph given in Figure 21 where {j denotes the 
decision made by the Neyman-Pearson decision theory (NP) discussed in the next section. (Zarrin 
& Lim, 2008). 

Figure 21: Th e detector factor graph outputting the decision, e. 

3.1.2 Neyman-Pearson Decision Theory 

The decision, e, is a binary decision of either Ho or H1 , represented by the indices e = {0,1} 
respectively. The Neyman-Pearson theory makes this decision by maximizing the probability of 
detection, PD, while minimizing the probability of a false alarm, P F. This method uses the 
likelihood ratio, i\(R) given by Equation 16. A threshold of which to test the ratio against is 
determined by selecting the wanted PF and then solving Equation 18 for the threshold, A.. The 
likelihood ratio test is conducted by comparing the likelihood ratio to the threshold as in Equation 
19 and shown again below. 
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If the likelihood ratio is greater than the threshold, the factor graph will output {j = 1, and it will 
output e = 0 if the likelihood ratio is less than the threshold. 

3.2 Classification 

3 .2.1 Nai:ve Bayes Classifier 

The nai:ve Bayes classifier has been established as an efficient classifier in real-world 
scenarios with little training time (Zhang, 2004). This being the case, it is logical to utilize this 
form and transform it into a factor graph. The transformation is quite simple. Figure 22 illustrates 
the factor graph of the nai:ve Bayes classifier with class node, y, and features x = (x1, x2, ... , XK). 
The solid blue squares represent the edge factor nodes 1/Jk(y, xk). To determine the closed form 
solutions of this factor graph, all that is required is the defining of a factor node 1/J(y) as the input, 
and the edge factors 1/Jk(y, xk). The factor node 1/J(y) is equal to the a priori probability of class 
node y, p(y), and the edge factors 1/Jk(y, xk) equal the conditional probability for each feature Xk, 
p(xkly). These functions are directed through belief propagation to produce the closed form 
solution given in Equation 39. 

K 

p(y, x) = 1/J(y) n lfJk(y, xk) 
k=l 

(39) 

After substituting the probabilities into the appropriate factor nodes, the resulting equation is 
equivalent to the joint probability formula for the na'ive Bayes classifier given in Equation 25. 
(Sutton & McCallum). 

Figure 22: The factor graph form of the nai've Bayes classifier with class variable y and features x = (xJ , xz, ... , xK). 
The blue squares represent the edge factors 1/Jk(y, xk)· Image based on (Sutton & McCallum). 
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3.3 Tracking 

3. 3 .1 Kalman Filter 

The Kalman filter requires measurement updates from the reflected signal in the form of 
an update equation, along with a process update equation in order to locate the current state of the 
object being tracked. The state x at time step k will be defined by the linear stochastic differential 
equation 

(40) 

where W k is white Gaussian process noise, such that W k ~ N(O, CJw2), and A is ann x n matrix relating 
the state at the prior time step k - I, to its current time step k. For this demonstration, A will 
remain constant and there will be no real control input. The measurement z at time step k is defined 
by 

where vis white Gaussian measurement noise, represented by Vk ~ N(O, CJ/ ), and His an m x n 
matrix that describes the relationship between the measurement and state, and will remain constant 
for this setting. Q and R will represent the covariances for the process and measurement noise, 
respectively, and will also remain constant for this demonstration. 

For the scope of this research, the Kalman filter will use Equations 41 and 30 (both shown 
below) to predict the estimates of the state and error covariance to form the a priori estimate. 

x;; = Axk-1 

(41) 

and Pi: = APk_1Ar + Q, 

where x;; is the real a priori estimate of the state at time k given Xk - I and xk_1 is the a posteriori 
real state estimate at time k - I given Zk _ 1. The variable Pi: is the covariance of the a priori 
estimate error and Pk_1 is the covariance of the a posteriori error at time step k - I . 

The a posteriori estimate is fashioned after the previous estimate has been adjusted from 
the application of the measurement data. It is then used to predict the a priori estimate at the next 
state. Three equations are used to apply the measurement updates. These equations are the Kalman 
gain Kk , the a posteriori state estimate xk, and the a posteriori error covariance estimate Pk , and 
are shown below. 

Kk =Pi: HT(HP;; HT + R)-1 

xk = x;; + Kk(zk- Hx;;) 

Pk = (I - KkH)Pi: 

The goal is to fit a tracker into a factor graph model and have it track with a similar 
efficiency as the Kalman filter equations. Some variables will appear different to avoid conflicting 
with similar variables but will be addressed. 
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To set up the factor graph, the two state-space equations need to be found. If the 
assumption is made that the probability densities are Gaussian and the propagation is linear then 
the process state-space equation for the state of an object at time k is given by Equation 42. 

xk = Axk-1 + wk 

The measurement taken of the object at time k is given by Equation 43 

zk = CkXk + vk, 

(42) 

(43) 

where c is defmed by an n x m transposed matrix of ones and zeros describing the relationship 
between the measurement and the state. In this problem, unlike the Kalman filter, the noise wk 
and vk are not assumed to have zero-mean, while Xk and Zk are still the state and measurement at 
time step k, respectively. As before, A is still ann x n matrix relating the state at the previous time 
step k-1 to the state at the current step k. As described in (Loeliger, Jan, 2004), Figure 23 shows 
how these two state-space equations fit into a factor graph. 

Figure 23: Factor graph of the Kalman filter with its two state-space equations 

From this factor graph, Gaussian messages can be computed, resulting in the means m, and 
co variances V, of the state x and measurement z at time step k. By using the update rules for mean 
and covariance message computation outlined in (Loeliger, et al., 2007) and explained in section 
2.1.2.2 of this thesis, the Gaussian messages were computed for both the state and measurement 
at time k, resulting in the following equations: 

_, _ _, H _, (_, H _,) TH 
Vxk - AVxk_1 A + Vwk- AVxk_1 A + Vwk X (ck) 

[
,__ _, T( _, H _, ) T H]-1 T( _, H _, ) 

X Vzk + Vvk + ck AVxk_1 A + Vwk (ck) X ck AVxk_1 A + Vwk , 
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(44) 

(45) 

(46) 

and 

(47) 

where Vxk and ~k are the covariances of the state x and the measurement z at time step k, 
respectively. The means of the state x and the measurement z at time step k are represented by 
m xk and m zk' respectively. Throughout these equations, the arrows above the covariances V, and 
means m, indicate the direction the messages are traveling within the factor graph. 

In order to demonstrate the relevance between the Kalman filter equations and these Gaussian 

messages from the factor graph, the derivation for the covariance of the state x at time k, Vxk ' will 
be explained and compared to the a posteriori equations and Kalman gain from the Kalman filter, 
that are used to predict the next a priori. First, to make the derivation clearer, certain edges of the 
previous factor graph will be labeled and marked by circled numbers in order to break down each 
step of the derivation. The edited factor graph is shown in Figure 24 below. 

Xk-1 
~ 

Figure 24: Factor graph ofthe Kalmanfilter with certain edges numbered and circledforderivation. 

Beginning from the leaf at xk-l to the circled number 1, the covariance can be written as 
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To find the covariance at the circled number 2, the covariances of the first two branches are simply 
added together resulting in Equation 48. 

(48) 

Before the covariance of xk can be found, the branch beneath the"=" node must be addressed. As 
before, the derivation must begin at the leaves and calculate the covariance at the circled number 
3. Since the goal is to find the covariance of xk> the covariance at 3 must be calculated for the 
opposite direction the arrow is pointing, which Equation 49 shows us. 

v3 = ~k + Vvk 

(49) 

Finally, all the pieces are known to complete the derivation ofthe covariance of the state x at time 
step k. Since the node connected to xk is an equal sign, the last step is more complex than simply 
adding the two branches. Equation 50 gives the final step before substituting the previously found 
covanances. 

(50) 

where G ~ (v3 + crvz(c[)H) -
1 

Equation 44 yields the results after substituting in Equations 48, 49, and G into Equation 50 and is 
shown again below. 

-+_-+ H-+ (-+ H -+) TH 
Vxk- AVxk_1 A + Vwk- AVxk_1 A + Vwk X (ck) 

[
+- -+ T( -+ H -+ ) T H]-1 

T( -+ H -+ ) 
X l'zk + Vvk + ck AVxk_1 A + Vwk (ck) X ck AVxk_1 A + Vwk . 

Once the covariance of xk has been found the covariance of zk can also be found by first 
fmding the covariance of the circled number 3 for the direction it is now traveling and is given by 
Equation 51. 

Equation 51 is then used to compute the covariance of zk shown in Equation 52. 

~k = ~k + v3 

Once V3 is substituted, the resulting equation yields Equation 46, shown below. 

-+ -+ T-+ T H 
l'zk = Vvk + ck Vxk(ck) 

(51) 

(52) 

The full derivation of the mean of the state and measurement, x and z, at time step k can be viewed 
in Appendix A. 
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The resulting covariance t1xk in Equation 44 from the factor graph can be compared to the 
a posteriori error covariance estimate Pk in Equation 32 from the Kalman filter. This will be 
broken down one step at a time beginning with the comparison of the Kalman filter's P;; to the 

factor graph's V2 . In the Kalman filter, Pk-l represents the covariance of the state x at the previous 

time step k - I , which is represented as t1xk_
1 

in the factor graph. Q represents the covariance of 

the process noise in the Kalman filter and can be related to Vwk' which is the covariance of the 
process noise in the factor graph. Since A is the same n x n matrix in both models, then the Kalman 

filter's a priori covariance estimate in Equation 30, Pj; , can be related to the covariance V2 from 
the factor graph's Equation 48 and is illustrated below as 

Pj; = V2 

T _ __, H __, 
APk-lA + Q- AVxk_1 A + Vwk· 

Referring to the Kalman gain in Equation 28, H can be compared to c since they both are 
matrices relating the measurement to the state. The variable R in the Kalman filter is the covariance 

ofthe measurement noise, where v3 is the covariance of the measurement noise and a measurement 
covariance summed together. Since the covariance of the ideal position measurement values is 

zero, then R is equal to v3. Since it has already been shown above that Vz is relative to P;;' then it 
can be said that the Kalman gain Kk is equivalent to the expression below: 

__, TH 
Kk = V2 (ck) G 

The expression is shown below in Equation 53 with the substitutions made. 

Pj; HT (HPj; HT + R)-1 

_ ( __, H __, ) T H [..... __, T( __, H __, ) T H]-l - AVxk_1 A + Vwk X (ck) X Vzk + Vvk + ck AVxk_1 A + Vwk (ck) 

(53) 

By distributing Pj; in Equation 32, the following equation results: 

Pk = Pj;- KkHPj;. 

(54) 

After analyzing all the pieces to the above equation and relating them to their corresponding 
sections from the factor graph model, the following assumption stating that Equations 32 and 44 
are equal can be made: 

pk = VXk 

P;;- KkHP;; = Vz- (vzCcDHG)CcDVz 
(55) 

By analyzing the derivation of the mean of state x at time step k, mxk in appendix A, in a 
similar way, the a posteriori state estimate xk from Equation 32 can be shown to be similar to mxk 
from Equation 45 of the factor graph model. The derivation of this comparison is shown in 
Appendix B. 
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These comparisons demonstrate that when utilizing a factor graph as a tracker, the resulting 
equations can reduce to the a posteriori estimate equations in the standard Kalman filter under the 
assumption of zero-mean. However, it is important to note that unlike the standard Kalman filter, 
the factor graph does not require the noise to be zero-mean. Instead, it is able to compute a track 
for biased measurements if needed. 

3.3 . l.l Simulations 

To verify these equations derived in the previous section, some simulations in MATLAB were 
conducted. First, a common process path needed to be plotted for both the Kalman filter and the 
factor graph to track. An ideal process path was created, along with a realistic process . The 
realistic path is simply the ideal process with added noise. Figure 25 is the plot of these two paths. 
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Figure 25: Th e ideal process path with the realistic path to be tracked by the Kalman fi lter and the factor graph 

Once the realistic process path is graphed, both the Kalman filter and the factor graph are 
required to track the location of each point on the path. Figure 26 illustrates both the Kalman filter 
and factor graph tracking the process path. 
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Figure 26: Plot of the Kalman fi lter and fa ctor graph tracking the process path. Th e factor graph tracker plots the 
exact same path as the Kalman filter. 

As seen in the graph, not only do both the factor graph and the Kalman filter successfully 
track the process path, but the two tracks align perfectly together. To further analyze the results 
of the factor graph and the Kalman filter, they were plotted against each other and then the 
deviations between the two were also plotted as seen in Figure 27 and Figure 28, respe.::tively. 
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• 

Figure 2 7: Plot of the x- and y -values of the Kalman filter against the x- andy-values of the f actor graph. 

The goal when plotting these two trackers against each other is to see a forty-five degree 
line across the graph showing the linear relationship ofy = x for both the x-values and they-values. 
As demonstrated above, the result of the factor graph and Kalman filter plotted against each other 
is linear relationship y = x, where the x-values are plotted in blue and the y-values are in green. 
Figure 28 shows the exact differences between the values of the Kalman filter and factor graph. 
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Figure 28: Plots the difference between the x- and y-values of the fa ctor graph and the x- and y-values of th e Kalman 
filter. 

The above plot shows how different the values of the factor graph are to the Kalman filter. 
Since there is no deviation between the two tracks, they are identical. 

These plots have proven that the factor graph tracker is capable of tracking the process path 
successfully. They have also confirmed that there is no difference between the standard Kalman 
filter and the factor graph tracker, which suggests that the factor graph tracker is an appropriate 
alternative to the standard Kalman filter. 

Next, it is necessary to verify if the factor graph tracker is able to track the object when 
there is bias in the data. A MA TLAB simulation was conducted in which a bias of 0.4 m/s was 
applied to the velocity of the object in the x-direction. Figure 29 demonstrates the speed of the 
object with the applied bias and the Kalman filter ' s and factor graph tracker' s ability to track that 
object' s speed. The figure displays the speed ofthe object in blue, the track from the Kalman filter 
in red, and the track from the factor graph tracker in orange. Figure 30 illustrates the velocity 
deviation of the tracks of the Kalman filter and factor graph tracker from the velocity of the object 
and Figure 31 shows the location deviation. In these figures, the deviation of the Kaiman filter is 
in blue while the deviation of the factor graph tracker is in green. Last, the velocity and location 
root mean squared (RMS) errors were calculated for both the Kalman filter and factor graph tracker 
and are displayed in Table 1. The below figures and table verify the factor graph tracker' s ability 
to track an object with bias much more efficiently than the standard Kalman filter. 
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Figure 29: Plot of the Kalman fi lter and factor graph tracker tracking the obj ect with a bias of 0.4 m/s in the x
direction. 

Table 1: Location and velocity RMS errors for the Kalman fi lter and facto r graph tracker when tracking an object 
with a bias of0.4 mls in the x-direction of the velocity 

Root Mean Squared Errors 

Location RMS Error (m) Velocity RMS Error (m/s) 

Kalman Filter 129.6882 10.4902 

Factor Graph Tracker 36.6864 2.1496 
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Figure 30: Plot of the difference ofthe velocity of the object being tracked/rom the velocities of both :he tracks of 
the Kalman filter and factor graph tracker. The deviation of the Kalman filter is in blue and the deviation of the factor 
graph tracker is in green. 
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Figure 31 Plot of the difference of the location of the object being tracked from the locations of both the t.·acks of the 
Kalman filter and factor graph tracker. The deviation of the Kalman filter is in blue and the deviation Gj the factor 
graph tracker is in green. 
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Chapter 4: GRAPHICAL MODEL BASED CONTINUOUS ACTIVE 
SONAR 

4.1 Particle Filter Simulation 

In order to test the hypothesis that continuous active SONAR (CAS) will yield more 
accurate results when tracking an object verses pulsed active SONAR (PAS), a simulation of a 
particle filter in MA TLAB was performed. The simulation would test different scenarios modeling 
CAS and PAS to track an object and would output the error of each. The error collected would be 
the total area of the particle cloud surrounding the target with its own standard deviation. The 
other two pieces of error collected would be the root mean square (RMS) error for the position of 
the target and the velocity of the target. Each of these statistics also had their own standard 
deviations. 

4.1.1 Expected Results 

The expected result should show that the error decreases with each decrease in the time 
step interval and should be lower when compared to the monostatic scenario. If this is the outcome, 
then a bistatic situation must be used to continue. Since the receiver would no longer be used as 
the transmitter, the next step would be to determine the appropriate messages concerning the 
transmitter that should be embedded within the signal or measured for a closer estimate of the 
object. Depending on the number of messages that could be embedded or used, the expected 
results should show less error when knowing the transmit time, thus being able to calculate the 
range from the receiver to the source of the signal. The error should also decrease when knowing 
the Doppler between each element, the transmitter, receiver, and object, and when knowing the 
velocity of the source. 

4.1.2 Setup 

4. t .2. t Omnidirectional vs Forward-Directional 

Receive-arrays can be either omni-directional or directional with each having a benefit over 
the other. If the direction of the echo is known, the directional receiver can be used and help to 
offer information concerning the bearing uncertainty toward the object (Siuma, Crawford, 
Theriault, & Armstrong) . Ifthe receiver is between the signal source and the echo from the object, 
and is oriented toward the object, masking by the receiver vehicle body may mitigate the 
interference from the direct blast of the transmitter. However, if the direction of the object is 
unknown, having a directional receiver could result in missing the echo if it is oriented in the 
wrong direction. 

For these reasons, both an omni-directional receive-array and a forward-directional 
receive-array were tested in the particle filter at each scenario. The forward-directional receiver 
can receive data from anywhere within the hemisphere of the direction it is traveling; a total of 
180 degrees. This will be referred to as the receiver "seeing" the item. Within the particle filter 
code, a specific bearing standard deviation was used when determining if the receiver could see 
the source and is given in Table 3 in the Basic Operation section. 
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4.1.2.2 Vehicle Geometries and Velocities 

It was important to test the simulation using different spatial scenarios/configurations to 
observe if the results varied based on relative geometry, especially in the case of the forward
directional receiver. Three spatial configurations were tested to attempt to capture extremes of all 
possible scenarios. These geometries with each vehicle travel path are illustrated below. The 
transmitter is demonstrated by a green square, the receiver is a blue circle, and the target is given 
as a red asterisk. The arrows at the ends of each path indicate the direction the vehicle is traveling. 
The first two geometries use a bistatic configuration. Geometry 1 has the transmitter traveling 
behind the receiver, while the receiver is traveling toward the general area of the target and is 
shown in Figure 32. Figure 33 illustrates the second geometry, in which the source is now traveling 
so that it is in the view of the receiver. Geometry 3 is the monostatic case; meaning the 
transmission and reception of the transmission are performed by the same vehicle. This vehicle is 
traveling towards the target as presented in Figure 34. 
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Figure 32: Geometry 1: The source 's path of tra vel 
remains behind the path of the receiver while th e 
target remains in view of the receiver's path. 
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Figure 33: Geometry 2: Th e source 's tra vel path 
remains in view of the receiver's path and is tra veling 
between the receiver and target. 
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Figure 34: Geometry 3: Th e monostatic case. The source and receiver is one vehicle tra veling toward the target. 

At this time, the velocities of the vehicles were not of interest to be tested and therefore 
remained fixed. Table 1 describes the velocities for each vehicle. 

Table 2: The velocities of the vehicles used in the particle filter simulation 

Vehicle Velocities 

Vehicle 
Bistatic Cases 
Receiver 
Source 
Target 
Monostatic Case 
Receiver/Source 
Target 

4.1.2.3 Transmit Rate 

Speed m/s 

3 
2 

2.5 

3 
2.5 

Angle from Plot 
Origin (degrees) 

45 
-30 

-45 

45 
-45 

The transmit rate was varied to test if the ping repetition rate impacted the accuracy in 
tracking the object. For each scenario four different time steps were tried: one at three seconds, 
another at two seconds, one at one second, and the last one at half a second. Geometry 3 is the 
one exception to these trials. Since geometry 3 is the monostatic case, the transmitter has to wait 
to receive the echo before it can transmit again, as opposed to a bistatic case, where the source can 
continuously transmit without any risk oflosing data. For this reason, only the three second time
step will be tested on the monostatic case. 
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4.1.2.4 Known Messages 

In order to localize the object in relation to the receiver, several pieces of information are 
needed. First, the location of the transmitter in relation to the receiver must be known, and second, 
the time the signal was transmitted must also be known. Finally, the angle of arrival of the echo 
is needed. This information might be easy to obtain if the transmitter and receiver are stationary 
or if radio communications and GPS are readily available. Unfortunately, vehicles are typically 
in motion, and when working with undersea vehicles, GPS and radio frequencies are typically not 
accessible or available. 

A few resources are available that can be used to infer the relative geometry between the 
transmitter, receiver, and object. Such as using the direct blast from the transmitter, taking bearing 
measurements, or taking advantage of acoustic communications in which, a message or messages 
can be embedded within the transmitted signal to be intercepted by the receiver. 

Several message possibilities were tested, to determine which would be the most useful 
towards more precisely tracking an object. A message can either be an acoustic communication 
message embedded in the signal or it can also be a measurement provided by a SONAR sensing 
mechanism. Among the messages being tested was the time of transmit, thus allowing for the 
computation of the range between the source and receiver. Another possible message could consist 
of either sending the velocity of the source or just simply the speed of travel of the source. A 
message that can be measured is the complete bistatic Doppler from the source to the target to the 
receiver, and from the source to the receiver. A different standard deviation was used within the 
MATLAB code for each specific piece of information, which is given in Table 4. When the 
velocity of the source was known, two standard deviations were applied: speed and a separate 
bearing for velocity. 

Because there is limited bandwidth for communication, it is unknown how many messages 
can be embedded within the SONAR signal or sent by a side channel. An example of an acoustic 
transceiver that could be used for underwater acoustic communication is the WHO! Micro
Modem. It can operate at 10 kHz, 15 kHz, or 25 kHz, the same as the REMUS transponders used 
on some UUVs, using 4 kHz of bandwidth. The WHOI Micro-Modem has the ability to use 
frequency-shift keying with frequency hopping which allows it to operate in shallow water with 
bistatic UUV configurations. After implementing error-correction, the WHOI Micro-Modem has 
a data rate of 80 bps. It is beyond the scope of this thesis to determine the size of the messages 
being sent, the encoding details, or how many messages can be sent in a given time interval. For 
this reason, different quantities of messages were ran and compared. (Freitag, et al. , 7-23 Sept. 
2005) 

As it is possible for vehicles to lose clock synchronization, scenarios were also run 
assuming the transmit times are unknown. Finally, the type of signal being transmitted does not 
always allow for an accurate Doppler measurement to be taken, so different situations were run 
with Doppler being unknown to determine how beneficial each combination of known messages 
were. All possible combinations of the messages were assumed to be sent and measured in the 
program and all were assumed to be received. This resulted in a total of twelve combinations, 
which are given in Table 3. When executing the program, the source velocity message and source 
speed message were never both turned on at the same time since the velocity includes the speed. 
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Table 3: A II possible message combinations tested in th e particle fi lter simulation. Th e ones and zeros denote a 
message being used or not in that test, respectively . Th e source velocity and source speed were never run at the same 
time since velocity includes speed. 

Message Combinations 
Messages 

Combinations Trans mit Time Source Velocity Source Speed Doppler 
Zero Messa2:es 

1 0 0 0 0 
One Messa2:e 

2 1 0 0 0 
3 0 1 0 0 
4 0 0 1 0 
5 0 0 0 1 

Two Messa2:es 
6 1 1 0 0 
7 1 0 1 0 
8 1 0 0 1 
9 0 1 0 1 

10 0 0 1 1 
Three Messa2:es 

11 1 1 0 1 
12 1 0 1 1 

4. L .2.5 Basic Operation 

It is assumed that the bistatic time-difference of arrival, i.e., the difference between the 
echo time of arrival and direct blast, is always known for each acoustic processing cycle. Dividing 
by the speed of sound (assumed to be a constant 1500 meters per second) yields range between the 
source and target added to the range between the object and receiver and minus the range between 
the receiver and source. This is referred to as the delta range and is always known even though 
the individual component ranges may not be. When computing the delta range within the 
MATLAB particle filter code, the standard deviation for range, given below in Table 4, is applied. 
This range standard deviation is also used when computing the range for the source when given 
the transmit time. When the delta range is known, the problem of localizing the target is now 
narrowed down to an ellipse surrounding the source and receiver. The solution is located anywhere 
on the ellipse. Figure 35 illustrates this geometry where, as before, the blue circle is the receiver, 
the green square represents the source, and the red star is the target. The black lines represent the 
ranges between each connecting vehicle. 
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Src 

Figure 35: An ellipse representing the solution to the target location when delta range is known. The olue circle is 
the receiver, the green square is the source, and the red star is the target. Th e black lines represent the rar.ges between 
each connecting vehicle. 

Another fact that is always known is the bearings of the source and target in relc-tion to the 
receiver, for which a standard deviation for relative geometry bearing, also in Table 4, is applied. 
The one exception is if the receiver is forward-directional and cannot see the transmitter, as in 
geometry one. 

Table 4: Th e standard deviations used in the particle filt er simulation 

Standard Deviations 
Application 
Range 
Relative Geometry Bearing 
Doppler 
Source Speed 
Source Velocity Bearing 

Sigma value 
40m 

1 m/s 
1 m/s 
30° 

The simulation gives a joint estimation of the source state and then the object state, which 
consist of their geometries and velocities. In order for this to be done, each particle in the 
simulation has its own target and source state. The state of the source is predictec from the 
information obtained by the receiver from the direct blast and the target echo. Each particle in the 
cloud surrounding the transmitter is then used to estimate the state of its corresponding particle 
component in the cloud surrounding the target. Last, the program cleans out any particles whose 
paired states show inconsistency with the measurements being observed. This sirnulatiJn is done 
at the contact level and is not modeling actual time series. Figure 36 demonstrates a screen shot 
of the simulation while running. The yellow cloud is the particle cloud surrounding the transmitter 
and the pink cloud is the particle cloud surrounding the target. 
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Particle Fitter Demonstration 

u 

Figure 36: Screen shot during the particle filter simulation. The yello w particle cloud is surrounding the transmitter 
(green square), the pink cloud is surrounding the object (red asterisk), and the blue circle is the receiver. 

The particle filter code uses 10,000 particles for each simulation and is performed using the 
computer specifications given in Table 5. It did not make use of any graphics card acceleration. 
The program completes ten runs at each of the mentioned scenarios allowing for the estimation of 
random error affecting the results. At the end of each run, the program calculates the area of the 
particle cloud surrounding the target, the RMS error for the target position, and the RMS error for 
the target velocity. For each of these statistics, a standard deviation over the ensemble was also 
computed. 

Table 5: Computer specifications used for the particle filter simulation. 

Computer Specifications 

Processor Intel® Core TM 

Processor Number 

Processor Base Frequency 

Memory 

4.1 .3 Statistics and Results 

i5-2400 

3.1 GHz 

4GB 

For each scenario, the area of the particle cloud ellipse surrounding the target was calculated 
using Equation 56. 

A= rrab 

(56) 
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In the equation above, a is the radius of the major axis of the surrounding ellipse, while b is the 
radius of the minor axis. The root mean squared (RMS) error (RMSE) for both the predicted target 
location and velocity were also found for each situation. Equation 57 gives the formula for 
calculating RMS error where Yi is the predicted value at time i for n observations, and Yi is the 
actual value at time i. 

n 

RMS Error= ~L (Yi - yi) 2 

i=l 

(57) 

Since the RMS error of the location and velocity need to be found, as opposed to an arbitrary value, 
the distances between the x and y RMS error values for both location and velocity were calculated. 

Once the statistics for each scenario were found , the results for each specific situation 
where only the transmit intervals were changed, were analyzed for comparison. In every case, 
significantly less error was found for every decrease in the transmit interval. The following three 
figures demonstrate one case of the yielded target cloud area, and position and velocity RMS errors 
for an omni-directional receiver at geometry 1 with message configuration 11 . 
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Figure 3 7: Th e area of the target particle cloud for each transmit rate for an omni-directional receiver at geometry 
1 with message combination 11. 
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Figure 38: The RMS Error of the predicted target location for each transmit rate fo r an omni-directional receiver at 
geometry 1 with message combination 11. 
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Figure 39: The RMS Error of the predicted target velocity for each transmit rate for an omni-directional receiver at 
geometry 1 with message combination 11. 
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For every scenario tried in the simulation, the same trend of results shown in Figure 37, 
Figure 38, and Figure 39 were imitated. Since the location and speed of the target is found with 
significantly less error as the update rate increases, it can be concluded that CAS will be more 
effective in target localization with minimum error than PAS, being that CAS has a much higher 
update rate. To further verify this result, two paired t-tests were run to compare the scenario with 
the least error for the monostatic case against bistatic cases. The monostatic case involved 
knowing Doppler, since it resulted in the least error. The two geometric configurations were tested 
against knowing zero messages for the same setup, then the means for the two t-tests were 
calculated and used to compare the monostatic case verses the bistatic case. In every comparison, 
the bistatic configuration yielded the least error across all three statistics. 

Now that the effectiveness of CAS verses PAS has been proven to lead to more accurate 
results when locating the target, the messages and their combinations that will yield a more precise 
solution need to be found. Since it is unknown how many messages can be found or sent, the 
results will be calculated for the case of knowing zero messages, one message, two, and finally all 
three messages. To find these results, paired t-tests were utilized after combining both bistatic 
geometries together for each of the three statistics and for all message combinations with both 
directional receivers (forward-directional and omni-directional). 

The paired t-tests were first completed comparing each single message against zero messages. 
Second, the single messages were compared against each other to determine which message 
provided a more accurate estimate of the target location. Next, each combination of two messages 
was compared to each other and fmally, the two cases of knowing three messages were compared 
for each statistic over the two directional receivers. An example of a t-test plot result for a two 
message comparison is shown in Figure 40. Once the message combination that produced the 
most accurate solution was found for each limited message amount, paired t-tests were conducted 
to find the overall message combination for each statistic at both directional receiver types that 
resulted in the least error. And fmally the overall message combinations yielding the least error at 
each directional receiver type were compared against each other for each statistic. 
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Double Message Paired T-Test for Omni-directional 
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Figure 40: A paired t-test plot comparing the location RMS error f or a known transmit time and source velocity 
message combination against a transmit time and Doppler message combination using an omni-directional receiver. 
Th e Transmit Time and Doppler combination yielded the least error. 

When conducting the t-tests, the significance level, or alpha level, was chosen to be 0.05 . 
The p-value is the probability of obtaining a test statistic equal to the observed value or more 
extreme when the null hypothesis Ho, is true. If the p-value is greater than the alpha level, then 
the null hypothesis is accepted. Otherwise it is rejected and the alternative hypothesis Ha, is 
assumed true. A left-tailed t-test was performed where the null hypothesis states that a 
combination x is greater than or equal to a combination y verses the alternative hypothesis that the 
combination x is less than the combination y . Since t-tests are designed to compare the means to 
zero, combinationy is subtracted in the hypotheses to compare the expressions to zero. Once a 
combination is found to have less error than the one to which it is being compared, then that 
combination is then used for comparison to the other combinations when continuing. The 
hypotheses for each t-test and their resulting p-values are given in Table 6 along with the decision 
made for each test. For more information regarding t-tests, chapter 208 of the NCSS Statistical 
Software documentation clearly explains the operation and meaning of the test (NCSS Statistical 
Software, 2015) . 
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Table 6: Th e paired t-test hypotheses, resulting p-values, and the decisions made. 

Paired T-Tests 
Directional Accept/ 
R eceiver Number of H 0 : x - y ?:.0 H 0 : x-y< O P-value R eje ct 
Type Statis tic Mess ages (com x ?:. com y) (com x <com y) (a=O.OS) H o 

2 > 3 2 < 3 0 Reject 
O ne 2 > 4 2 < 4 0 Reject 

2 > 5 2 < 5 0 Reject 
6 > 7 6 < 7 0 Reject 

Location 
Two 

6 > 8 6 < 8 0 Reject 
RMS Error 6 > 9 6 < 9 0.0 138 Reject 

6 > 10 6 < 10 0 Reject 
Three 11 > 12 11 < 12 0 Reject 

Overall 
2 > 6 2 < 6 1 Accept 
6 > 11 6 < 11 1 Accept 
2 > 3 2 < 3 0. 1572 Reject 

One 2 > 4 2 < 4 0 Reject 
2 > 5 2 < 5 0 Reject 
6 > 7 6 < 7 0.0008 Reject 

Forward 
Velocity 

Two 
6 > 8 6 < 8 1 Accept 

RMS Error 8 > 9 8 < 9 1 Accept 
9 > 10 9 < 10 0.0036 Reject 

Three 11 > 12 11 < 12 0 Reject 

Overa ll 
2 > 9 2 < 9 1 Accept 
9 > 11 9 < 11 0.9224 Accept 
2 > 3 2 < 3 0 Reject 

One 2 > 4 2 < 4 0 Reject 
2 > 5 2 < 5 0 Reject 
6 > 7 6 < 7 0 Reject 

Area Two 
6 > 8 6 < 8 0 Reject 
6 > 9 6 < 9 0.9946 Accept 
9 > 10 9 < 10 0 Re ject 

Three 11 > 12 11 < 12 0 Re ject 

Overall 
2 > 9 2 < 9 1 Accept 
9 > 11 9 < 11 1 Accept 
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Table 6: The paired t-test hypotheses, resulting p-values, and the decisions made. 

Paired T-Tests 
Directional Accept/ 
Receiver Number of H 0 :x-y ?:.0 H 0 :x-y<O P-value Reject 
Type Statistic Messages (com x?:. com y) (com x <com y) (a=O.OS) Ho 

2 > 3 2 < 3 0 Reject 
One 2 > 4 2 < 4 0 Reject 

2 > 5 2 < 5 0 Reject 

Location 
6 ?:. 7 6 < 7 0.0338 Reject 

RMS Two 
6 ?:. 8 6 < 8 1 Accept 

Error 
8 ?:. 9 8 < 9 0 Reject 
8 > 10 8 < 10 0.0002 Reject 

Three 11 > 12 11 < 12 0.3025 Accept 

Overall 
2 > 8 2 < 8 1 Accept 
8 > 12 8 < 12 0.1255 Accept 
2 > 3 2 < 3 0.0002 Reject 

One 2 > 4 2 < 4 0 Reject 
2 > 5 2 < 5 0 Reject 

Velocity 
6 > 7 6 < 7 0.2714 Accept 
7 > 8 7 < 8 1 Accept 

Omni RMS Two 
8 > 9 8 < 9 0.592 Accept 

Error 
9 > 10 9 < 10 0.3224 Accept 

Three 1 1 > 12 11 < 12 0.0037 Reject 

Overall 
2 > 10 2 < 10 1 Accept 
10 > 11 10 < 11 0.9993 Accept 
2 > 3 2 < 3 0.0001 Reject 

One 2 > 4 2 < 4 0 Reject 
2 > 5 2 < 5 0 Reject 
6 > 7 6 < 7 0.0049 Reject 

Area Two 
6 > 8 6 < 8 1 Accept 
8 > 9 8 < 9 0.0002 Reject 
8 > 10 8 < 10 0.0001 Reject 

Three 11 > 12 11 < 12 0.0119 Reject 

Overall 
2 > 8 2 < 8 1 Accept 
8 > 11 8 < 11 1 Accept 

As predicted, when comparing each message combination to zero messages known, every 
combination yielded less error over knowing zero messages. When only one message could be 
known, each statistic over every scenario unanimously resulted in the known transmit time 
yielding a more accurate solution. If all three messages could be known, knowing the velocity 
over the speed also resulted in less error across the board with the exception of one scenario. This 
exception is for the location RMS error when the receiver is omni-directional, in which case, it 
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was more beneficial to use combination 12 (knowing the transmit time, the speed of the source, 
and the Doppler) Some varying results were found for cases limiting the number of n1essages to 
two and for statistical overall decisions. 

The first set of cases to be discussed for knowing two messages and the overall message 
combination will be when the receiver is forward-directional. When analyzing the location RMS 
error, message combination 6 (knowing the transmit time and source velocity) resulted in the least 
error. However, combination 9 (knowing the source velocity and Doppler) had the least velocity 
RMS error and the smallest target particle cloud area. For all three statistics, combination 11 
(knowing the transmit time, source velocity, and Doppler) yielded the least error overall, as was 
expected. 

Next, the cases having an omni-directional receiver will be analyzed for the same two message 
limits. Contrary to the previous scenario with the forward-directional receiver, combination 10 
(knowing the speed of the source and the Doppler) resulted in a lower velocity RMS error. 
Though, the smallest particle cloud area and lowest location RMS error were achieved by 
combination 8 (knowing the transmit time and Doppler). Overall for the omni-directional receiver, 
combination 11 had the smallest area and velocity RMS error but combination 12 had the lowest 
location RMS error. The summary of the paired t-test results are shown in Table 7 below. 
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Table 7: The paired t-test results f or each statistic and directional receiver type show the message combinations that 
resulted in the least error. 

Paired T-Test Res ults 
Directiona l Number of Message Combina tion with L eas t 
Rece ive r 

Statis tic 
Messages E rror 

Trans mit Source Source 
Comb.# Time Veloc ity Speed Doppler 

One 2 X 

Location Two 6 X X 

RMS Enor Three 11 X X X 

O verall 11 X X X 

One 2 X 

Forward 
Velocity Two 9 X X 

RMS En·or Three 11 X X X 

Overall 9 X X 

One 2 X 

Area 
Two 9 X X 

Three 11 X X X 

O verall 11 X X X 

One 2 X 

Location Two 8 X X 

RMS Enor Three 12 X X X 

Ove rall 12 X X X 

One 2 X 

Omni 
Velocity Two 10 X X 

RMS Enor Three 11 X X X 

O ve rall 11 X X X 

One 2 X 

Area 
Two 8 X X 

Three 11 X X X 

Overall 11 X X X 

Last, the population means of the forward-directional and omni-directional receivers were 
compared against each other for each of their overall least enor statistics. For each statistic, the 
omni-directional receiver resulted in the most accurate solution. 
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Chapter 5: RESULTS, CONCLUSIONS, AND THE FUTURE 

5 .1 Results and Conclusions 

5 .1.1 Factor Graphing for DCL 

The first goal of this thesis was to implement a factor graph for each compo:::1ent of the 
detection, classification, and localization (DCL) chain. This was achieved and explain~d for each 
section. 

A factor graph was found for the detector using the model equation for a received signal. 
The Neyman-Pearson hypothesis test is then applied to the signal in the next stage o: the factor 
graph leading to an output of identifying the data as either a signal detection or noise. If the 
received data is found to be a detection of the transmitted signal, it is sent on to the classifier for 
the next stage in the DCL chain. 

The naive Bayes classifier was easily transformed into a factor graph by simply identifying 
the equations and placements of the factor nodes. The class, y, requires an a priori probability, 
p(y), which is given by the factor node 1/J(y). For each feature, x= (x1, x2, ... , XK), connected to 
the class, y , a conditional probability, p(x iy) , is required and is given by the edge factor node 
1/J(y, xk) . When fmding the closed-form solution of the factor graph through belief p:-opagation, 
the resulting equation is equivalent to the joint probability formula for the naive Bayes classifier. 

Once the class is determined, the tracker proceeds to track the object. Impkmenting a 
factor graph into a tracker proved to be slightly more difficult. Two Gaussian state-spac~ equations 
with assumed linear propagation are used, describing the predicted state at a time k o: the object 
being tracked and the actual measurement taken of the object at time k . These state equations were 
implemented into a factor graph and through belief propagation, closed-form solutions were 
determined. The solutions showed that the factor graph tracker reduces to the Kalman filter if the 
noises are zero-mean. However, unlike the standard Kalman filter, the factor graph has the 
capability of inputting biased data to track the object. 

5.1 .2 Graphical Model Based Continuous Active Sonar 

The second goal of this thesis was to evaluate the performance of CAS to determine if the 
accuracy of the target location, determined by the tracker, improved as the update rate was 
increased. This was done through a particle filter simulation consisting of two bistatic 
configurations and a monostatic configuration. The monostatic configuration was limited to a 
transmit interval of three seconds since a monostatic system requires the unmanned underwater 
vehicle (UUV) to listen for the echo between transmissions. The bistatic configurations were 
tested with transmission intervals of three seconds, two seconds, one second, and half of a second. 
Also, because every receiver may not always be omni-directional, a forward-directional receive 
array was tested as well to compare the results . For each scenario, the area of the target particle 
cloud and the root mean square (RMS) errors for the location and velocity of the :arget were 
calculated. In every case, significantly less error was found for every decrease in tie transmit 
interval. Since the location and speed of the target is found with significantly less error as the 
update rate increases, it was concluded that CAS will be more effective in localizing a target with 
minimum error than PAS, being that CAS has a much higher update rate. 

As CAS was proven to be more beneficial in target tracking for the various 
scenarios studied, the next objective was to determine which messages sent between the two UUV s 
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(receiver and transmitter) were most beneficial for tracking an underwater object. A message can 
either be an acoustic communication message embedded in the signal or it can also be a 
measurement provided by a SONAR sensing mechanism. The messages tested were: the time of 
transmission, either the velocity of the source or just simply the speed of travel of the source, and 
the complete bistatic Doppler from the source to the object to the receiver, and from the source to 
the receiver. Because it may not be possible or beneficial for all messages to be received, all 
possible combinations of knowing one message, two messages, or all three messages were tested, 
using a particle filter simulation, for each configuration, transmit interval, and receiver type 
scenario. To identify the message combination with the least error, paired t-tests were conducted 
comparing all scenarios for the specific number of messages . 

For every scenario, if only one message could be known, knowing the transmit time 
resulted in the least error. If two messages could be known, the results varied for different 
scenarios. If the receiver was forward-directional, knowing the transmit time and the source 
velocity resulted in the least location RMS error, but knowing the source velocity and Doppler had 
the least velocity RMS error and smallest target particle cloud area. If the receiver was omni
directional, knowing the transmit time and Doppler gave the least location RMS error and the 
smallest particle cloud area. The least velocity RMS error was found by knowing the source speed 
and Doppler. If all three message categories could be known, it was best to know the transmit 
time, source velocity (as opposed to just its speed), and Doppler, for all but one scenario. That is, 
when the receiver is omni-directional, knowing the transmit time, source speed, and Doppler gave 
the least location RMS error. 

The different message combinations resulting in least error for each number of messages 
allowed were also tested against each other via paired t -tests. These overall message combinations 
resulting in the least error were found to be the combinations where all three messages could be 
known with the exception of one scenario. Knowing the source velocity and Doppler when the 
receiver is forward-directional resulted in the least overall velocity RMS error. Of the other overall 
message combinations, it was more beneficial to know the transmit time, source velocity, and 
Doppler. This also has one exception. When the receiver is omni-directional, knowing the source 
speed as opposed to the velocity gave the least location RMS error. 

Last, for each statistic, the omni-directional receiver resulted in the most overall accurate 
solution. With the exception of a couple surprises, most of the results found were as predicted. 

5.2 Significance of Results 

Implementing factor graphs into the sections of the DCL chain allows for the potential 
opportunity to feedback information obtained from the results of one section into a particular node 
of another section. However, the application of a tracker into a factor graph yielded the most 
significant result of this section of the thesis. The factor graph tracker was proven to be exactly as 
efficient as the standard Kalman filter, which is commonly used in tracking, but with the added 
bonus of the noise not requiring a zero-mean, allowing for the tracker to be able to handle the input 
of biased data. 

In the second section of the thesis, since it was proven that as the transmit interval 
decreased, the tracking error also decreased, the effectiveness of CAS versus PAS was also proven. 
This conclusion resulted in further research to determine the value of different messages that could 
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be known when tracking an object. The utility of each of these message combinati::ms given 
different scenarios were found and compared. Knowing which message combination to use for 
each scenario, could be found to be very useful in naval applications involving the tracking of 
different objects. 

5.3 Future Work 

One possible extension of the present work would be to use the results from the factor 
graph tracker to determine information regarding the object being tracked, for instance length of 
the object, and feed that information back into a classifier. The classifier in questio::1 may not 
necessarily be a factor graph but the goal of supplying feedback could still be achieved 

Another extension would be to run tests with stronger bias in the input data within the 
factor graph tracker. The availability of this closed-form bias expression may a[ow easier 
construction of practical trackers. 

Another line of investigation would be to run more detailed simulations to study the 
implementation of actual signals such as M-sequences, or combinations of FM and CW 
waveforms, with respect to direct blast cancellation and localization ability. Anothe~ aspect of 
this simulation would be to expand the number of geometries to address more applicati·)n specific 
configurations. Finally, it is necessary to determine the specifics regarding message er:coding for 
the transfer of information between the receiver and source, for example, to learn how many bits 
each type of message would require, and therefore, how many messages can be sent. 
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APPENDICES 

Appendix A: Mean Derivation 

The derivation of the mean of state x at time step k will be shown in this appendix and refers 
to Figure 1 below. 

Figure 1: Factor graph of the Kalman filter with certain edges numbered and circled f or derivation. 

First, the mean at the circled number 1 is found and shown below. 

(1) 

The mean at the circled number 2 is found by taking the sum of Equation 1 and the mean of the 
process noise, and is shown in Equation 2. 

(2) 

The next step is to calculate the mean of the lower branch beginning at the leaves. This is given 
by the equation below. 

Lastly, these equations are combined to derive the mean for the state x at time step k, given below 
in Equation 3. 

(3) 

After substituting the known equations into Equation 3, the derived mean of the statex at time step 
k yields the equation shown below. 
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__, _ __, __, ( __, H __,) TH 
m xk- Amxk- 1 + mwk + AVxk-1A + Vwk X (ck) 

[
._ __, T( __, H __, ) T H]-1 

X Vzk+Vvk+ck AVxk_1A +Vwk (ck) 

X [mzk- m vk- cf(Amxk-1 + mwk)] 

To continue further and fmd the mean for the measurement in the direction of flow m zk' 

the mean at the circled number 3 needs to be computed for the given arrow direction. This yields 
the following equation: 

(4) 

At this point, m zk can now be found by summing Equation 4 with the mean of the measurement 
noise and is given in the equation below. 

Appendix B: Mean and A Posteriori State Estimate Correlation 

. ' .... 

This appendix will illustrate how the mean of the state X at time step k, mxk' from the factor 
graph tracker, correlates to the a posteriori state estimate xk, in the Kalman filter. A~. reference, 
Equation 31 is placed below for the comparison. 

xk =xi;+ Kk(zk- Hxi;) 

The relationship between the Kalman gain and the factor graph model is given t::y Equation 
53 in section3 .3.1 of this paper. The measurement zk corresponds to the mean of the measurement 
m zk in the factor graph. Also, H has already been related to the matrix c in the previously 
mentioned section. 

The last piece to align with the mean from the factor graph, is the a priori state estimate xj; . 
This Equation 41 relates to the mean m2 , found in Appendix A, and below, both equations are 
g1ven. 

As explained in section 3.3.1, A is the same n x n matrix in both models. Since the objective 
is to prove that the a posteriori state estimate at time k, xk from the Kalman filter relates to the 
mean of the state x at time step k, mxk from the factor graph tracker, then it must be assumed that 
the a posteriori state estimate at time step k - I , xk_1, also relates to the mean of the state at the 
same time step, mXk-1" However, the mean has an extra expression, mwk' the mean of the process 
noise. Since the Kalman filter assumes that noise has a zero-mean, this expres~ion can be 
eliminated, leaving the two equations equivalent. 

xj; = mz 
Axk-1 = Amxk-1 

For the same reason, the mean ofthe measurement noise mvk ' is also eliminated from the equation 

for mxk· 
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Since all the essential parts of both the Kalman filter equation and the factor graph mean 
equation have been correlated when the means of the process and measurement noise are zero, it 
is necessary to say that the mean of the state x at time step k, m xk' from the factor graph, correlates 
to the a posteriori state estimate xk, in the Kalman filter resulting in the following equations: 
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