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ABSTRACT 

A Generalized Hough Transform (GHT)-based classification scheme for an 

object-of-interest in maritime-domain images is proposed in this thesis. First, the object 

edge points are extracted and used to generate a representation of the object as a Hough 

coordinate table by using the GHT algorithm. The table is then reformatted to a contour 

map called a Hough features map. The coordinates of dominant peaks or Hough features 

on the map are extracted and fed into a feed-forward, back-propagation neural network 

for classification. In this research, the scheme is tested using perfect shapes of triangles, 

squares, circles, and stars and maritime-domain images of ships, aircraft, and clouds, and 

the classification results obtained are reported.  
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I. INTRODUCTION 

Computer vision for ocean imagery is a growing research area for detection of 

objects-of-interest, such as ships, aircraft, islands, clouds, and oil spills [1], [2], [3]. 

Information obtained from satellite and other aerial imagery can be used to improve 

maritime safety and security or maritime domain awareness.  

Maritime domain awareness is vital for military operations, especially for 

maritime operations. The superiority in information warfare can improve the chances of 

victory. To achieve a large area of coverage and speedy communications, satellites, 

aircraft and drones are commonly used for surveillance and reconnaissance. These 

platforms gather information in an area of interest and relay it to control stations via 

electromagnetic transmissions. This information is then analyzed to build a common 

operating picture [4], which provides timely decision-making information to all levels of 

command.  

To ensure the timeliness and reliability of the common operating picture, an 

automated object classification system is needed. In this thesis, an effective feature 

extraction technique and a machine learning based classification tool are used to develop 

an automated classification scheme for differentiating maritime-domain objects, such as 

ships, aircraft, and clouds, contained in aerial imagery.  

A. THESIS OBJECTIVE 

The main objective of this thesis is to develop an effective automated 

classification scheme based on the Generalized Hough Transform (GHT) and a feed- 

forward, back-propagation neural network classifier to allow computer systems to 

classify any object-of-interest contained in aerial images in an automated manner. The 

GHT algorithm is used for selection of features that represent the shape of an object. 

Then, a back-propagation neural network is used to classify the object based on the 

features. 
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B. RELATED WORK 

Two major related works for this thesis are an automatic ship-types classification 

scheme [5] and a GHT based scheme for fingerprint localization and classification [6]. 

In [5], a Wiener adaptive filter was used to reduce noise in Synthetic Aperture 

Radar (SAR) images of ships prior to detection of ship edge points by using the Susan 

operator. Then, a Discrete Cosine Transform (DCT) was used for feature selection. In this 

thesis, a DCT filter is used to denoise maritime-domain images containing an object-of- 

interest before using a Sobel operator to detect the object edge points. .   

The GHT algorithm has been shown to be an effective technique for creating R-

tables used as models for fingerprinting [6]. Then, these tables are used for feature 

selection prior to classification. In this thesis, the GHT algorithm is used to create R-

tables for all objects-of-interest, but each table is reformatted to a contour map or Hough 

features map before feature selection.  

A back-propagation neural network with the Levenberg-Marquart training 

function was proven to be effective for ship classification [5]. In this thesis, a neural 

network with a scaled conjugate-gradient training function was used for object 

classification.  

C. ORGANIZATION 

This thesis consists of five chapters. The background of three underlying 

concepts—the GHT, the DCT, and the neural networks—is covered in Chapter II. A 

complete proposed GHT based classification scheme, the scheme development and its 

modular functionalities are presented in Chapter III. MATLAB implementations of the 

scheme and classification results are given in Chapter IV. Conclusions and 

recommendations for future work are provided in Chapter V. Three MATLAB scripts for 

Hough features map generation, feature extraction, and the feed-forward, back-

propagation neural network used in the proposed scheme are provided in Appendix A, B, 

and C, respectively.   
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II. BACKGROUND 

 A discussion of the Generalized Hough Transform (GHT), the Discrete Cosine 

Transform (DCT), and a neural network that is used in this work is provided in this 

chapter. The GHT is an effective computer vision algorithm for the detection of arbitrary 

object shapes [7], [8]. It has been suggested that GHT processing is slow and requires 

large memory storage [9], but these drawbacks can be mitigated with the use of a DCT 

filtering based denoising technique [10] and by reducing the GHT R-table to a Hough 

features map. 

The DCT is widely used in compression standards for video and image objects 

[11], [12]. Its two important properties—energy compaction and decorrelation—allow 

independent manipulation of the energy content of images and video frames in the 

frequency domain to reduce the size of data to be further processed [12]; therefore, the 

DCT is suitable for resolving the speed and memory storage problems of the GHT in this 

work.  

Neural networks have been used to provide excellent solutions to real-world 

problems in many industries, such as banking, aerospace, and defense [13]. In defense 

applications, the networks have been used for object discrimination, feature extraction, 

and image identification [13]. Neural networks are equipped with statistical tools for 

function fitting, pattern recognition, clustering, and time-series analysis [13]. A common 

neural network architecture used for pattern recognition in signal processing and other 

applications related to this thesis is discussed later in this chapter. 

A. GENERALIZED HOUGH TRANSFORM  

The generalized Hough transform requires three steps: edge detection, Hough 

parameter computation, and R-table generation [7].  
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1. Edge Detection  

In this research, an edge point is defined as the point at which the pixel value or 

the grayscale change exceeds the required threshold value. The threshold value is defined 

by using a number of possible parameters measurable in imagery, e.g., gradient 

magnitude, grayscale, or even the change in resolution itself. The value of the gradient 

magnitude is used to identify any edge points. By using processing speed as the selection 

criterion, we can select the optimal edge detection operator and derive the gradient 

magnitude. 

The quality of the edge points, the gradient magnitude, and gradient direction at 

each point are the most important features that determine the computational quality of 

Hough parameters discussed in the next step of the GHT approach.  

In this work, the Sobel operator is selected for the detection of significant edge 

points because of its low computational burden [14], [15].  Although the Sobel operator is 

sensitive to noise [14], the DCT low-pass filter is a promising solution to denoising an 

image prior to the edge detection [11]. Image denoising by using the DCT filtering is a 

part of this research work. The DCT is discussed later in this chapter.  

2. Hough Parameter Computations 

The GHT algorithm requires three Hough parameters: the gradient angle ϕ, the 

relative distance to a reference point 𝑟𝑟, and the base angle α to generate R-table as shown 

in Table 1 [7]. The gradient angle is defined as a gradient direction at each edge point of 

the object-of-interest. D. H. Ballard and C. M. Brown [7] suggested the use of the 

centroid of the object as a reference point; hence, the distance 𝑟𝑟 is simply the Euclidian 

distance between the edge point and the centroid and is called the distance to centroid 

throughout this thesis. The base angle is the angle between the x-axis and 𝑟𝑟 measured in a 

counter-clockwise direction. The geometry of Hough parameters is shown in Figure 1.  
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Table 1.   R-table  

 

 

 

Adapted from: [7] D. H. Ballard and C. M. Brown, “The Hough method for curve 
detection,” in Computer Vision, New Jersey: Prentice-Hall, 1982, pp. 128–131. 

 
Figure 1.  Geometry used to form the R-table  

Adapted from: [8] “Generalized Hough Transform (GHT),” class notes for Digital 
Signal Processing, Dept. of Computer Science & Engineering, Indian Institute of 
Technology, Delhi. 

3. R-table Generation 

In [8], an R-table is defined as a table containing the Hough parameters ϕ and the 

corresponding pairs of 𝑟𝑟 and α, (𝑟𝑟, α), for each ϕ. The arrangement of elements contained 

in the R-table is depicted in Table 1. The R-table represents the shape of the object-of- 

interest. Theoretically, any object appearing in different images with the same orientation 

and scale should yield the same R-table. As a result, the pattern of the R-table can be 

used directly for the comparison or classification in this work. As a result, the pattern of 

R-tables of any objects from different images can be used as an object identifier to 

compare images and in the classification of an object(s)-of-interest. 

𝜙𝜙1 (𝑟𝑟1,∝1),(𝑟𝑟2,∝2),(𝑟𝑟3,∝3),…… 
𝜙𝜙2 (𝑟𝑟20,∝20),(𝑟𝑟21,∝21),(𝑟𝑟22,∝22),… 

…… …………………………… 
𝜙𝜙360 (𝑟𝑟40,∝40),(𝑟𝑟41,∝41),(𝑟𝑟42,∝42),… 
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In detecting a two-dimensional (2D) shape by using the GHT algorithm, the 

scaling factors and rotation angle θ of the shape with respect to its reference model must 

be known  [7], [16]. The reference model is a selected shape of the object-of-interest with 

a specific scale and rotation angle.  

Ideally, if the exact scaling factor and the rotation angle are known, the object-of- 

interest can be resized to its reference model size by a factor of 1/𝑆𝑆 and rotated backward 

by θ so that the same size of R-tables of the same object in different images can be 

generated prior to the classification. Feasible methods of estimation of 𝑆𝑆 and θ are 

proposed by [17], [18] and [19], respectively. In reality, obtaining the exact scaling and 

rotation factors is not always possible. The estimation of these two parameters is also 

time-consuming. Because of the above problems, in this work we propose a new 

approach that simplifies the R-table for the object classification. A reformatted R-table 

concept is proposed and discussed in Chapter III. 

B. DISCRETE COSINE TRANSFORM  

In image processing, background noise is a major problem that impedes edge 

detection [11], [14]. Remote sensing imagery is commonly hampered by environmental 

noise such as brightness, rain and/or clouds and can be minimized by existing filtering 

techniques. In this work, the DCT filtering technique is leveraged for denoising an image. 

The DCT is a common tool for image compression. The most well known image 

compression application is the Joint Photographic Experts Group (JPEG) standard. In the 

first step of the JPEG compression process, the DCT is used to convert a raw image from 

pixel values (spatial domain) into DCT coefficients (frequency domain). Then, the low 

energy content (high frequency or abrupt changes of pixel values) is minimized by a 

quantization technique [12], [20].  

In a similar fashion to the JPEG standard, the denoising filter is used to minimize 

the high frequency background noise in an image prior to edge detection; however, 

excessive filtering of high frequency content causes blurred edges in an object-of-interest 

in an image [21]. In this work, the size and shape of the denoising filter is investigated in 
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order to prevent excessive filtering. To clearly understand the effects of the denoising 

filter, these two fundamental DCT concepts are reviewed in the following.  

1. The DCT Coefficients 

The equations for the 2D-DCT and 2D inverse DCT (2D-IDCT) for a matrix of 

𝑃𝑃 × 𝑃𝑃 are as follows [12]: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

2 1 2 1
,  ,

2 2

P P

i j

i u k j v
C u v u v f q p cos cos

P P
p p

α α
− −

= =

   + +
=    

   
∑∑   (1) 

where , 0,1, 2,..., 1u v P= − and ( )uα  and ( )vα are defined as  

 
0

(
2

)

1

0

Pu

P

for u

for u
α


=

=
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  (2) 

and 

 ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

2 1 2 1
,      C ,  

2 2

P P

u v

i u j v
f i j u v u v cos cos

P P
p p

α α
− −

= =

   + +
=    

   
∑∑   (3) 

where , 0,1, 2,..., 1.i j P= −   

Generally, a grayscale image or the intensity layer of a color image is preferred 

for computer vision applications.  A typical grayscale image is simply a matrix of 

numbers from 0 to 255. By using Equation (1), spatial-domain image data (grayscale 

values) can be transformed into frequency-domain data (the DCT coefficients) where 

values and positions in the matrix reflect energy and frequency, respectively.  

The spatial data is still needed for the calculation of the geometric parameters of 

the GHT. The IDCT is used to reproduce the spatial data after noise minimization. This 

new set of spatial data is then used for calculation of geometric parameters of the GHT.  

2. Frequency Interpretation of DCT Coefficients  

The frequency interpretation of DCT coefficients can be viewed as shown in 

Figure 2. The first element in a DCT coefficient matrix is called the DC coefficient (zero 

frequency) which accounts for the average brightness of an image [6], [14]. The 

remaining elements are AC coefficients. Low frequency content is contained in the upper 
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left corner region of the coefficient matrix. The farther the locations of a matrix element 

in the DCT coefficient matrix is from the DC coefficient, the higher the frequency 

content [12], [20].  

 

 
 

Figure 2.  Frequency interpretation of DCT coefficient matrix  
Adapted from: [12]  S. A. Khayam. (2003, Oct. 10). The Discrete Cosine 
Transform. [Online]. Available: http://www.lokminglui.com/dct_tr802.pdf  

S. A. Khayam [12] illustrated the distinction of energy distribution in the DCT 

coefficient matrix between an uncorrelated image and a correlated image as shown in 

Figure 3. Figure 3(a) is an uncorrelated image and Figure 3(c) is a correlated one. The 

energy distribution of the former is depicted in Figure 3(b), and that of the latter is in 

Figure 3(d). The uncorrelated image has more abrupt changes in pixel values, which 

means that there is more high frequency content than in the correlated one. Note that 

most of the energy of the two images is concentrated in the upper left corner, or the low 

frequency region, of the coefficient matrix. This energy distribution concept is used as a 

baseline for the implementation of the denoising filter described in Chapter IV. 
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Figure 3.  An example of energy distribution in an uncorrelated image (a) and 

a correlated image (c)  
Source: [12] S. A. Khayam. (2003, Oct. 10). The discrete cosine transform. 
[Online]. Available: http://www.lokminglui.com/dct_tr802.pdf  

C. NEURAL NETWORKS 

Neural networks have gained favor in classification techniques used in remote 

sensing over traditional statistical approaches, such as the Euclidian, the maximum- 

likelihood, and Mahalanobis distance classifiers [22]. The networks have been engineered 

to mimic the functionalities of the human brain. Compared to traditional classifiers, 

neural networks are more accurate, faster, and better able to deal with data from multiple, 

disparate sensors.  

In remote sensing, the feed-forward, back-propagation multi-layer perceptron 

(MLP) neural network is commonly used [22]. Its basic architecture is shown in Figure 4. 

The network consists of three layers: the input layer, the hidden layer, and the output 

layer. The nodes in the input layer represent elements of a feature vector. The hidden 

layer consists of nodes called hidden neurons, each of which is a weighting function. A 

higher number of hidden layers are known to enable the network to learn more complex 

patterns. The output layer represents the number of target types to be classified.  

(a) 

(c) 

(b) 

(d) 
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Figure 4.  The MLP basic architecture  

Source: [22] P. M. Atkinson and A. R. L. Tatnall, “Introduction to Neural 
networks in remote sensing,” Int’l J. Remote Sensing, pp. 699–709, 2015. 

Due to its ease of implementation and effective learning capability [22], the neural 

network with the MLP architecture is used as a classifier for the proposed classification 

scheme in this work.  

The GHT, DCT, and neural network concepts that are used for building a GHT-

based classification scheme were discussed above. The building blocks of the scheme and 

their functionalities are presented in the next chapter. 
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III. GHT-BASED CLASSIFICATION SCHEME 

This chapter is organized into two sections. The proposed GHT-based 

classification scheme is presented and described in the first section. The scheme consists 

of five modules: the Denoising Filter, the Edge Extractor, the GHT, the Hough Features 

Extractor and the Neural Network. In the second section, the functionalities of each 

module are discussed based on four underlying concepts: the DCT, edge detection, the 

GHT algorithm, and the MLP. Implementation of the classification scheme and 

significant test results are elaborated upon in Chapter IV. 

A. PROPOSED GHT-BASED CLASSIFICATION SCHEME  

The schematic diagram of the proposed GHT-based classification scheme is 

shown in Figure 5. 

1. Proposed Classification Scheme 

The proposed classification scheme is based on the GHT algorithm discussed in 

the previous chapter. Recall that the first step of the GHT algorithm is to obtain edge 

points of the object-of-interest. To improve the quality of the object edges and to reduce 

processing time, the Denoising Filter module is used to reduce background noise. The 

Edge Detector computes a gradient magnitude of all image pixels and detects significant 

edge points of the object based on the gradient magnitudes.  

The GHT module computes the following GHT parameters: the distance to the 

centroid, the base angle, and the gradient angle. The GHT module uses these parameters 

to build an R-table as shown in Table 1. The Hough Features Extractor module reformats 

the R-table. The reformatted R-table is called the Hough-features map in this work. The 

Hough features are extracted by identifying the significant peaks on the map. Finally, a 

neural network is used to classify the object-of-interest based on the Hough features.  
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Figure 5.  The proposed GHT-based classification scheme 

 

2. Scheme Development 

In order to develop the proposed classification scheme, related concepts are 

reviewed below. 

a. Denoising Filter 

The DCT coefficient thresholding techniques are commonly used for noise 

reduction in image and video compression standards, such as JPEG, MPEG, H.261, 

H263, and H.264 [11]. The DCT has two important properties: energy compaction and 

decorrelation [12]. Energy compaction is the property that only few coefficients 

(typically in the upper left corner of the DCT coefficient matrix) represent most of the 

energy in an image. The decorrelation property is the property that the transformed data 

or DCT coefficients become uncorrelated. In other words, the magnitude of each 

coefficient is independent of the neighboring coefficients, unlike the spatial values. 
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In Figure 6, the white pixels in the DCT coefficient matrix represent locations of 

the DCT coefficients where the energy of each DCT coefficient is above 1% of the 

maximum energy. Note that most of the energy of both ship images is concentrated in the 

low-frequency region. Consequently, the denoising filter is employed as the first module 

in the scheme to minimize the high-frequency noise by keeping only the high-energy data 

(low frequency DCT coefficients) for further processing.   

 

 
Figure 6.  Investigation of energy distributions of the DCT coefficients of 

two ships with some background noise (i.e., waves and white caps ) 

 

b. Edge Detector  

The Sobel operator, the Canny operator, and the Laplacian of Gaussian operator 

as described in [14], [15] are different edge detection operators. None of them is perfect 

in terms of noise sensitivity, processing time, or output parameters [14, Table 1, page 10]. 

For example, the Sobel operator is fast but sensitive to noise. The Canny operator is less 

sensitive to noise but time consuming. The Laplacian of the Gaussian operator gives 

correct edge points but malfunctions at the corners and curves.  

In the proposed scheme, Edge Detector is needed to prepare edge point 

coordinates, which are required for GHT parameter computations. The Sobel operator is 
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chosen for the detection of object edge points because of its low computational time [8], 

[9].  

c. Generalized Hough Transform 

The GHT algorithm has been successfully used for pattern recognition [23], 

detection [24], and classification [6]. Due to its high computational cost [25], a few 

variants of the GHT, such as the invariant generalized Hough transform [25], the 

randomized Hough transform [26], and the randomized, generalized Hough transform [9] 

have been developed to improve the detection time and storage capacity.  

The use of the denoising filter reduces the number of bad edge points caused by 

the high-frequency background noise before the GHT parameter computations [11].  As a 

result, computational time is reduced; therefore, the GHT is a good algorithm for the 

proposed classification scheme due to its successful applications on arbitrary object 

shapes [6], [9], [25].  The GHT implements Hough parameter computations and R-table 

generation.  

d. Hough Features Extractor 

Before the extraction of Hough features, all R-tables for objects to be classified 

must be reformatted as mentioned in the previous chapter. The reformatted R-table, 

called a Hough features map in this thesis, contains Hough features or dominant peaks. 

The concept used for reformatting the R-table and feature extraction is described in the 

next section. 

e. Neural Network 

The neural network is an important classification tool to aid in the human decision 

making process in industry, business, and science [27]. Broadly, there are four 

advantages of neural networks: self-adaptive machine learning to adapt to various types 

of data, universal parameter estimation for a variety of functions with desirable accuracy, 

flexible modeling of nonlinear, complex relationships and effective classification for 

statistical analysis [27].  
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References [5] and [28] attained good outcomes when applying the neural 

network as the classification tool for arbitrary shapes of objects-of-interest; therefore, the 

neural network classifier is a desirable option for the proposed scheme.  

B. FUNCTIONALITIES OF EACH MODULE 

This section is intended to provide a functional description and mathematical 

operations of module of the scheme.  

1. Denoising Filter 

Three steps are performed by this module. First, a denoising filter extracts the first 

layer or the intensity layer of an input image. Second, the module performs a 2D-DCT on 

the layer to transform all pixel values or spatial data into DCT coefficients or frequency-

domain data.  In the last step, the module filters out the coefficients in the high frequency 

region and then inverse-transforms the filtered data into spatial data by using a 2D-IDCT.   

2. Edge Detector 

In this module, the Sobel operator is used to obtain gradient magnitudes for the 

detection of object edge points. There are two Sobel operator kernels, bxS  and byS  , as 

shown in Figure 7. Each kernel is used to convolve with the preprocessed image from the 

Denoising Filter to compute the horizontal and vertical change, xG  and yG , at each image 

pixel, respectively [14]. Then, the gradient magnitudes | |G  are calculated as  

 2 2| | x yG G G= + . (4) 

The gradient magnitudes are normalized to the range 0 to 1. Thereafter, only 

pixels of magnitudes greater than a required threshold are considered significant edge 

points, which are given a value of 1. The remaining pixel values are set to 0. Finally, 

coordinates of the binary edge points ( , )i ix y  are obtained. 
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Figure 7.  Two kernels of Sobel operator  

Source: [14]  R. Maini, “Study and Comparison of Various Image Edge Detection 
Techniques,” Int'l J. Image Processing IJIP, vol. 3, no. 1, pp. 1–12. 

3. Generalized Hough Transform 

The GHT module receives significant edge point coordinates from the Edge 

Detector. Based on the edge points, the GHT computes the object centroid, the distance 

to the centroid and the base angle in sequence. Finally, the gradient direction at each edge 

point is calculated so that an R-table can be generated as shown in Table 1. 

a. Object Centroid 

A conventional centroid of a 2D object (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) is simply an average of all edge 

points ( , )i ix y . Because the denoising filter only minimizes the background noise but does 

not completely eliminate it [29], the location of an object centroid is still affected by 

background noise. To enhance the accuracy of the centroid location in the presence of 

noise, a multi-region property measurement algorithm available in MATLAB is used.  

b. Distance to Centroid  

 The distance between two points (𝑥𝑥𝑐𝑐, 𝑦𝑦𝑐𝑐) and (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) on a Cartesian coordinate 

plane can be easily computed by using the Euclidian distance; therefore, the distance to 

the centroid ir  for the thi edge point (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) is calculated as  

 2 2( ) ( )i c i c ir x x y y= − + −   (5) 
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c. Base Angle 

 From Figure 1, α  is the angle between the x-axis and the distance-to- centroid in 

the counter-clockwise direction. The mathematical expression for the base angle in 

degrees is:  
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d. Gradient Angle 

Changes in horizontal and vertical directions at each edge point are computed 

from the original image. Then the gradient angle is calculated using  

 1tan y
x

φ − ∆ =  ∆ 
  (7) 

where x∆  and y∆  are changes in the horizontal and vertical directions, respectively.  

e. R-table Generation 

An R-table is created based on three parameters:φ , 𝛼𝛼, and r . Pairs of 𝛼𝛼 and r  at 

each object edge point are categorized by their correspondingφ . A general format for the 

table is shown in Table 1. 

4. Hough Features Extractor 

 The Hough features extractor performs three major operations. The first 

operation is to reformat the R-table from the previous step into a square matrix of 360 × 

360 whose row and column values correspond to the gradient angle φ  and the base angle 

α , respectively. To do so, a zero matrix of 360 × 360 is established as a map template. 

Thereafter, the Hough Features Extractor sorts out by row all the ( , )r α  pairs in the R-

table which contain the sameα . Then it maps the total counts of α  occurrences into the 

template at a coordinate ( , )φ α . For example, if 185α =  occurs 50 times in the fifth row 

of the R-table, the value at a coordinate (5, 185) of the map is set to 50. 
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The second operation is to reduce the map dimensions. To resize the map, the 

Hough Features Extractor divides the mapped template into square blocks of 𝑛𝑛 × 𝑛𝑛, 

where n is any divisor of 360; averages all the elements in each block; and remaps the 

average into a new template of 𝑁𝑁 × 𝑁𝑁, where 𝑁𝑁 = 360/𝑛𝑛 . The remapping process is 

shown in Figure 8. 

 

 
Figure 8.  Remapping process when n = 2 

 

The last operation is to extract coordinates of dominant peaks on the Hough 

features map and arrange them in a feature vector, which is the required input format for 

the neural network.  

5. Neural Network 

Prior to the classification, the Neural Network module has to be trained by a set of 

features of known class so that a good statistical model is developed and the network can 

predict outputs from inputs [22]. For the MLP, the network computes the error for each 

input feed and then back-propagates it for correction until the network achieves an 

acceptable state [22].  

After obtaining the acceptable learning state, the Neural Network module is ready 

for classification. In the proposed scheme, a feature vector produced by the Hough 

Features Extractor module is fed into the trained network. The network compares the 

input features against the trained model to produce the class of the object [22].  
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The block diagram of the proposed GHT-based classification scheme, the scheme 

development, and the functionalities of each module in the scheme were discussed above. 

Implementation and classification performance results of the scheme are described in 

next chapter. 
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IV. IMPLEMENTATION AND RESULTS 

 This chapter is organized into two sections. In the first section, implementation of 

the five modules of the proposed classification scheme presented in Chapter III is 

described.  Results of different classification cases are presented in the second section. 

A. IMPLEMENTATION  

This section is intended to provide implementation details of the proposed 

classification scheme depicted in Figure 5. The MATLAB version 2014b is the 

programming language used for the implementation.  Some built-in functions in its image 

processing toolbox—imread.m, size.m, gradient.m, edge.m, dct2.m, 

idct2.m, distance.m, atan2d.m, regionprops.m and findpeaks.m—are 

utilized for the implementation of the first four modules. For the neural network 

classification, the pattern recognition tool in the Neural Network Toolbox is used. 

In practice, the Denoising Filter and the Edge Detector are implemented together 

because the output of the Edge Detector, i.e., edge point coordinates, is dependent on the 

performance of the Denoising Filter. Likewise, the Hough Feature Extractor needs the 

output (R-table) from the GHT; therefore, the two are combined to simplify 

implementation.  

The objective of this research is to design an automated classification system for 

aerial sensing imagery. Due to limited access to aerial sensing images, the author has 

acquired online aerial images of ships, aircraft, and clouds as an alternative for designing 

the system and demonstrating the concepts presented in Chapter III. In addition to these 

images, a set of miniature car images taken in a controlled environment is also used for 

proof-of-concept. The preparation of the car images is discussed later during the 

discussion of the implementation of the proposed edge detection algorithm and the 

proposed Hough features extraction algorithm.  
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1. Edge Detection 

As mentioned at the beginning of this chapter, the Denoising Filter and the Edge 

Detector are implemented together in MATLAB codes. To obtain an effective size and 

shape for denoising filter, the energy distribution of the DCT coefficients of all images 

and the output edge points obtained after filtering are utilized.   

a. Denoising Filter 

As described in Chapter III, the energy distribution in the DCT coefficient matrix 

of each image can be used to determine the size and shape of the denoising filter. In this 

case, all aerial images are transformed into DCT coefficient matrices so that their energy 

distribution can be observed. An example of the energy distribution of three images is 

shown in Figure 9. 

 

 
Figure 9.  An example of the energy distribution of three objects in the 

frequency domain 
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After observing all of the collected images, the energy is most likely to be 

contained within a square window size between 50 × 50 and 200 × 200 depending on the 

image size and the scale of the object contained in the image. The denoising filter size of 

ܮ ൈ  is defined as a matrix that has the same dimension as the image and contains all		ܮ

zeros with the exception of ones inside the window as shown in Figure 10.  

 

 
Figure 10.  The denoising filter size of ܮ ൈ ܹ for the image size of		ܮ ൈܪ		 

 

Another investigation is to check the effect of a change in the image size or object 

scale. To do so, some of the images are resized up to five times their original size by 

using the imresize.m function in MATLAB and then transformed to obtain their DCT 

coefficients for energy observation. According to Figure 11, we see that the energy in the 

high frequency region of the DCT coefficient matrix obviously expands as the image size 

or the object scale increases.  
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Figure 11.  An example of a change in the energy distribution of resized 

images 

 

To accommodate the variations of image size and object scales among the 

collected images, different denoising filter sizes with respect to the smaller dimension of 

an image have been used. The details of the denoising filter are discussed in the Edge 

Detector section. 

b. Edge Detector 

In this part, a built-in MATLAB function, edge.m, is used to detect and obtain 

the binary edge points of an object-of-interest based on the Sobel operator and the 

optimal thresholding algorithm. To verify that the use of DCT filtering improves the 

quality of edge points, the object edges detected in the test images after applying the 

denoising filter must be observed.   

In real-world problems, a particular photographic device produces a fixed image 

size and only the scale of the object contained in the image changes due to the variations 

of distance or optical zoom. Consequently, some images of miniature cars taken by an 
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iPhone-5 camera in a controlled environment are used for fair testing.  The images have 

been prepared such that they can be assumed to have the same quality and background 

noise. Two significant assessments of the proposed edge detection algorithm are as 

follows. 

(1) Denoising 

This test is to assess the performance of the denoising filter for noise reduction 

and the quality of the object edges after filtering. Different filter sizes are applied to the 

car images. Then the edge.m function with the Sobel edge detection algorithm is used 

to detect the object edges in the filtered images. The proposed edge detection algorithm is 

shown in Figure 12. 
 

 
Figure 12.  Flowchart of the proposed edge detection algorithm 

 

The best visual edges of the car are obtained when the filter size is 120 × 120. 

According to Figure 13, we see that, in this particular example, the use of the denoising 

filter effectively minimizes the high frequency background noise. Although some of the 

car edge points are lost due to filtering, the edge points fairly delineate the shape of the 
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car. Furthermore, the number of edge points is noticeably reduced after denoising. As a 

result, processing time required for generating the R-table is reduced.  

(2) Scaling 

This test is to verify that the denoising filter size of 120 × 120 works effectively 

on the same object with different scales. Two images of the same miniature car with 

different scales are denoised as shown in Figure 14. In this particular case, noise has been 

nearly eliminated and the object edges look very reasonable.  It is observed that the larger 

the size of the object, the more the edge loss. This phenomenon makes sense because the 

bigger object has more edges, or high frequency content information.  

 

 
Figure 13.  Edge detection of the same image: (b) without denoising filter and 

(d) with denoising filter size of 120 × 120  

(a) Image (b) Edge Points 

(c) Image (d) Edge Points 
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Figure 14.  Edge detection of the same image with different scales by using 

denoising filter size of 120 × 120: (b) S =1 and (d) S =0.5 

 

The filter size of 120 × 120 is not suitable for all the images due to the variations 

in size and quality; therefore, through experimentation a table of five empirical DCT 

filter sizes was obtained as shown in Table 2. 

 

Table 2.   Table of empirical denoising filter sizes with respect to the smaller 
dimension of images  

Image Size 
(smaller dimension) 

Filter Size 

          ≤ 250  80 × 80 
          ≤ 1000  100 × 100 
          ≤ 2500  120 × 120 
          ≤ 4000  140 × 140 
        Otherwise 160 × 160 

 
 
 
 

(a) Object   (b) Edge Points 

(c) Object  (d) Edge Points 
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2. Hough Features Extraction 

In this section, the implementation of the GHT and Hough Features Extractor 

modules are discussed. MATLAB scripts from [30] have been modified to compute all 

necessary Hough parameters and build R-tables. The ModelHough.m [30] is used for 

the generation of R-tables. The GHT algorithm is shown in Figure 15. Thereafter, to 

reformat the R-table into the Hough-features map and extract the Hough features, two 

author-developed functions, Hough_Features.m and SearchPeaks.m, are used. 

MALAB scripts of these functions are provided in Appendix A and B, respectively. 

 

 
Figure 15.  Flowchart of the GHT algorithm performed by ModelHough.m 

 

a. GHT Algorithm 

To generate the conventional R-table as in Table 1, three Hough parameters need 

to be computed: the distance to centroid r , the base angle α , and the gradient direction 

ϕ of each edge point. ModelHough.m leverages the regionprops.m function in 

MATLAB to find regional centroids of the binary object edges �𝑥𝑥𝑐𝑐𝑛𝑛 ,𝑦𝑦𝑐𝑐𝑛𝑛� and uses their 

average as the object centroid ( , )c cx y . The centroid is then used to calculate r  and α  

based on Equations (5) and (6), respectively. In the meantime, the gradient directions are 
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computed based on the pixel values of the original image by using gradient.m. 

Lastly, ModelHough.m arranges all parameters into the R-table format.  

Building an accurate R-table is not an easy task because the computations of α  

and r  are dependent on the location of the object centroid, which is sensitive to noise; 

therefore, regionprops.m is used to enhance the accuracy of the centroid location. 

Once the centroid location is deemed accurate, then the accurate distance to centroid can 

be computed by using distance.m. To compute α , the quadrant of the edge points 

with respect to the centroid must be taken into account. To solve the quadrant ambiguity 

and simplify the computation of α , atan2d.m is used.  

After obtaining all Hough parameters, the R-table is formed. A three-dimensional 

(3D) matrix is needed for storing both parameters. To do so, a zero matrix of 360 × 𝑇𝑇 ×

2 is established, where 𝑇𝑇 is the number of detected edge points. The first layer of the 

matrix is used for storing r  and the second layer for α .  

b. Hough Features Extraction Algorithm  

The Hough_Features.m function requires a block size n from a user to build 

the Hough features map as illustrated in Section B.4 of Chapter III. Thereafter, dominant 

peaks on the map are extracted and arranged into a row, vector format using 

SearchPeaks.m. The Hough features extraction process is depicted in Figure 16.  
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Figure 16.  Flowchart of Hough-features extraction algorithm    

 

With two inputs, R-table and n, the Hough_Features.m function performs 

three operations. The first operation is to reformat the R-table into the features map of 

360 × 360 or n = 1 as shown in Figure 17. Note that the dominant peaks are marked by 

colored asterisks. 

 

 
Figure 17.  An initial Hough-features map of a warship : (a) original image; 

(b) detected edge points; and (c) the Hough-features map 

ϕ 

α 

(a)  (b) 

(c) 
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The second operation is to reduce the dimension of the Hough-features map to 

𝑁𝑁 × 𝑁𝑁, where 𝑁𝑁 = 360/𝑛𝑛. The resized Hough-features map, for n = 12, is shown in 

Figure 18.  

 

 
Figure 18.  A reduced Hough-features map of a warship with n = 12: (a) 

original image; (b) detected edge points; and (c) the Hough-features map 

 

The last operation is to extract the dominant peaks on the map. To detect the 

peaks, SearchPeaks.m is developed based on findpeaks.m in MATLAB. The 

dominant peaks can be located by using findpeaks.m to search for local maxima in 

each row and column of the map. The dominant peaks are the local maxima detected in 

both searches. 

This peak detection algorithm occasionally produces false peak(s). For example, 

in Figure 18 the green peak is the true one, but the yellow is not; therefore, the algorithm 

must be modified to resolve the problem. A possible solution is to average all peaks that 

fall within the same cluster. 

 

 

 

ϕ 

α 

(a) (b) 

 (c) 
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c. Testing of the Hough Feature Extraction Algorithm 

The following are four test cases for the Hough-feature extraction algorithm. 

(1) Two Similar Objects 

This test case is to compare Hough-features maps of two similar objects. Images 

of two miniature cars (white and orange) are taken with the same camera and have the 

same background as shown in Figures 19(a) and (d). The edge detection results are 

shown in Figures 19(b) and (e). The maps of both cars are quite similar as seen in Figures 

19(c) and (f); however, the peak locations are different. This implies that the peak 

features are distinct and can be used for classification of similar objects.  

 

 
Figure 19.  Hough-features map and peaks of similar shaped objects (orange 

and white cars) 

 

(2) Rotation-invariance 

This case is to investigate whether the Hough features are rotation-invariant. To 

do so, Hough features maps of the same object with five different rotation angles of 0, 45, 

90, 135, and 180 degrees as shown in Figure 20 are used for comparison. For each case, 

the figure includes the image of the object, its edge points and the Hough features map. 

ϕ ϕ 

(a) 

α α 

(b) 

(c) 

(d) (e) 

(f) 
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As seen in Figure 20, no distinct or common pattern emerges among the five 

maps. Most peaks tend to shift when the object is rotated. This indicates that the peak 

features are not rotation-invariant.  

 

 
 

 
 

 
Figure 20.  Hough-features maps of five different orientations of the same 

object 

 
 

ϕ 

ϕ ϕ 

ϕ 

ϕ 

α 

α 

(a) Rotation Angle of 0° (b) Rotation Angle of 45° 
α 

α 

α 

(d) Rotation Angle of 135° (c) Rotation Angle of 90° 

  (e) Rotation Angle of 180° 
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(3) Scale-invariance 

This case is to investigate whether the peak features are scale-invariant. The maps 

of three images of the same object with scales of S = 1, 5/8, and 3/8 as shown in Figure 

21 are used for comparison. 

 

 
 

 
Figure 21.  Hough-features maps of three different scales of the same object 

 

From Figure 21, three maps of the scaled objects look very similar and most of 

their dominant peaks are in the same location or almost collocated. Consequently, the 

Hough features are likely scale-invariant.  

 

ϕ 

ϕ 

ϕ 

(a) Original (S = 1) (b) S = 5/8 

(c) S = 3/8 
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(4) Hough-Features Map of Four Different Objects 

This case is to ensure that different objects with the similar orientation do not 

have the same Hough features. Four objects used for the test are shown in Figure 22. For 

each case, the figure includes the image of the object, its edge points and the Hough- 

features map. Although the four images vary in size and background, the object edges are 

visually well defined as seen in Figure 22; therefore, their features can be used for fair 

comparison. 

 

 
Figure 22.  The Hough-features maps of four different objects with similar 

orientations 

 

ϕ ϕ 

ϕ ϕ 

(a) 
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(a) 
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 (d) 
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From Figure 22, the Hough features of each object are concentrated on the right 

hand side of the Hough-features map, but none of them have more than three peaks in 

common. For instance, the ship has two peaks in common with those of the car, three 

peaks in proximity of those of the plane, and two peaks in common with and one in 

proximity of the cloud. 

3. Neural Network Classification 

There are many options for using the Neural Network toolbox for the 

classification in MATLAB. The most convenient one is to use a Graphical User Interface, 

which does not allow a user to change certain options, such as training and performance 

functions, and options for the percentage of training, validation, and testing images are 

predefined. For example, the user can select only a percentage that is a multiple of five.  

In this research, the neural network is implemented by using a MATLAB script, 

which allows the user to change parameters. The neural network script generated by the 

Neural Pattern Recognition application is modified and named NN_Trial.m. The file is 

used for all the classification cases in the next section.   

NN_Trial.m uses the MLP structure with the scaled conjugate-gradient 

backpropagation training algorithm.  The percentage of training, validation, and testing 

images are set to 90, 5, and 5, respectively. The only variable in NN_Trail.m is the 

number of hidden neurons, which can be adjusted to improve classification performance. 

The MLP structure in the MATLAB Neural Network toolbox is shown in Figure 

23. A matrix of the Hough features is fed into the input node. The hidden layer performs 

the analysis based on the classification settings, e.g., the training function and the number 

of hidden neurons, to develop the best prediction model for a particular set of training 

features.  
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Figure 23.  The MLP structure in MATLAB  

Source: [13] M. H. Beale, M. T. Hagan, and H. D. Demuth. (n.d.). Neural network 
toolbox getting started guide. [Online]. Available: 
http://www.mathworks.com/help/pdf_doc/nnet/nnet_gs.pdf [Dec 8, 2015]. 

At completion of training, the program NN_Trial.m obtains a trained network 

with a prediction model. This trained network is then used to classify test features. The 

MATLAB script for NN_Trial.m is in Appendix C. 

B. CLASSIFICATION RESULTS 

MATLAB simulation results of the proposed classification scheme on two sets of 

images are presented in this section. The first set comprises 60 silhouettes of perfect 

shapes, and the second consists of 64 aerial images of maritime-domain objects, i.e., 

ships, aircraft, and clouds. Six binary classification cases, one three-class classification 

case, and one four-class classification case are investigated on the silhouettes. For 

maritime-domain images, classification results include three binary classification cases 

and one three-class classification case.  

1. Classification of Perfect Shapes 

The performance of the proposed GHT-based classification scheme on the 

perfectly shaped images of triangles, squares, circles, and stars is investigated in this 

section. These images are prepared by using the Windows paint program. The four 

objects-of-interest are different in size, orientation and location. There are 15 images of 

each shape; ten images are selected for training and the rest for testing. Some sample 

images are shown in Figure 24. Eight classification cases—six binary cases, a three-class 
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case, and a four-class case—are investigated. For all of these eight classification cases, a 

denoising filter was not used because the perfect shape images have no background noise. 

 

 
Figure 24.  Some samples of four perfect shapes 

 

a. Binary Classification  

In this case, silhouettes of two shapes are selected for testing. There are six 

possible combinations: triangle versus square, triangle versus circle, triangle versus star, 

square versus circle, square versus star, and circle versus star. For each combination, the 

training and testing samples consist of ten images and five images of each shape, 

respectively.  

Six dominant peaks extracted from the Hough features map size of 20 × 20 are 

used as input data and the hidden layer size of the neural network is 15. The classification 

performance on the first two combinations is 100%, while that of the remaining 

combinations is 90%.  

b. Three-Class Classification 

In this case, the training and testing samples consist of ten images and five images 

from each of three different shapes (triangles, squares, and circles), respectively. The 

images of the triangles, squares, and circles are assigned a class of 1, 2 and 3, 

respectively. The best performance of 86.7% is obtained by using six peaks extracted 

from the Hough features map size of 20 × 20 and the hidden layer size of 15 hidden 
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neurons. The scheme can classify all triangles and squares correctly, but two of the 

circles are misclassified as a triangle and a square.                            

This ambiguity is possibly caused by some distortion introduced in some circles 

when drawn, and circles of very small size can be very similar to some triangles and 

squares.  

c. Four-Class Classification 

This classification case is analyzed like the previous case. The only difference is 

that images of stars are included in an equal amount and assigned a class of 4. The best 

confusion matrix is shown in Figure 25. 

 

 
Figure 25.  The best confusion matrix of four perfect shapes  

 

According to Figure 25, we find that the most correctly classified shapes are 

triangles and circles with a classification performance of 80% (the first and third columns 

of the confusion matrix). There is ambiguity between squares and circles; therefore, only 

three out of five squares are correctly classified as indicated in the green cell of the 

second column.  
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Classification performances of all perfect shape cases are summarized as in Table 

3. Note that as the number of objects to be classified increases, the classification 

performance decreases.  

 

Table 3.   Classification performances of all perfect shape cases 

Cases Performance 
(%) 

Triangle versus Square 100 
Triangle versus Circle 100 
Triangle versus Star 90 
Circle versus Square 90 

Circle versus Star 90 
Square versus Star 90 

Triangle, Square, Circle 86.7 
Four shapes 70 

 
 

2. Classification of Maritime Domain Images 

How distinct Hough features can be used by the neural network to differentiate 

typical objects in maritime domain images, such as ships, aircraft and clouds, is 

investigated in this section. Four cases are investigated: three binary classification cases 

and one three-class classification case. 

Sixty-four images consisting of 23 ships, 25 aircraft, and 16 clouds are used for 

training. The test images comprise 12 ships, 12 aircraft, and 11 clouds. All images are 

chosen from the set of online images collected for the implementation of the scheme. 

Some samples of the images used in this classification are shown in Figure 26.  
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Figure 26.  Some samples of maritime domain images  

 

a. Binary Classification  

Three combinations are tested: ships versus clouds, ships versus aircraft, and 

ships versus the other two. The highest classification results are obtained by using six 

dominant peaks extracted from the Hough-features map size of 20 × 20 and a hidden- 

layer size of 15 hidden neurons.  

The scheme’s classification results for the three cases are 87% and 79.2% and 

82.9%, respectively.  This indicates that aircraft are more similar to ships than clouds. 

Lastly, a binary classification case between ships and the others is tested. Aircraft and 

clouds are treated as a non-ship class. The performance to classify ships was found to be 

82.9%.  

Further tests are conducted to investigate the effects of denoising filter sizes, the 

number of features (peaks), the number of hidden neurons and the size of Hough-features 

map on classification performance and to determine the desirable settings for the 

proposed classification scheme.  

To determine an optimal Hough-features map size, nine different map sizes (18 × 

18, 20 × 20, 24 × 24, 30 × 30, 36 × 36, 45 × 45, 60 × 60, 90 × 90 and 180 × 180) were 
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tested. The number of hidden neurons was fixed at 15. The classification results were 

averaged over 1000 trials. In each run, the NN_Trial.m function randomly initialized a 

new hidden layer so that the initial weighting function in the hidden layer was different 

from the previous run. This randomness enabled the neural network to generate a diverse 

set of prediction models. The classification performance results based on averaging 

results of 1000 trials for different map sizes are shown in Figure 27. For each map size, 

the scheme was tested with a different number of peaks up to a maximum of eight peaks.  

According to Figure 27, the best average performance occurs when the size of the 

map is 20 × 20 and the number of peaks is six. Such a setting yields a classification 

performance of 77.8 %. Note that these results are an average and only useful for 

performance comparisons. The best prediction model can be decided based on the run 

that produces the highest classification percentage.  

Using six peaks from the map size of 20 × 20 and varying the number of hidden 

neurons from 3 to 30, we found the highest average performance occurred when the 

number of hidden neurons was 15, as shown in Figure 28.  
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Figure 27.  An average performance plot of the proposed classification scheme 

with 15 hidden neurons for different sizes of Hough-features map. Each 
map size is color coded as shown in the legend    

 
 

 
Figure 28.  An average performance plot of the proposed scheme with 

different numbers of hidden neurons 
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To determine the effective sizes of denoising filters for the maritime domain 

images used in this work, five sets of denoising filters were tested. In this experiment, the 

number of neurons was set to 15. The number of peaks was six, and the map size 

was 20 × 20 . The filter sets were as follows: 

 Set 1: 40 × 40, 60 × 60, 80 × 80, 100 × 100 and 120 × 120 

 Set 2: 50 × 50, 70 × 70, 90 × 90, 110 × 110 and 130 × 130 

 Set 3: 60 × 60, 80 × 80, 100 × 100, 120 × 120 and 140 × 140 

  Set 4: 80 × 80, 100 × 100, 120 × 120, 140 × 140, and 160 × 160 

 Set 5: 100 × 100, 120 × 120, 140 × 140, 160 × 160, and 180 × 180. 

The classification results for each filter set were averaged over 1000 trials. The 

average performance is depicted in Figure 29. 

 

 
Figure 29.  Scheme’s performance for different denoising filter sets  

 

According to Figure 29, we see that the fourth set yielded the best average 

performance. This makes sense because the smaller the filter size, the more likely the loss 

of edge points, resulting in the poor quality of features. In contrast, the larger the filter 
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size, the more background noise remains after filtering. The unwanted edge points caused 

by noise results in false peaks.   

b. Three-Class Classification 

This part is to investigate the capability of the classification scheme for 

classifying three objects: ships, clouds, and aircraft. The same 64 maritime images and 

the optimal settings of the classification scheme were used for testing. Ships, aircraft, and 

clouds were assigned classes 1, 2, and 3, respectively. The best confusion matrix for this 

classification case is shown in Figure 30. 

 

 
Figure 30.  The best confusion matrix of the classification of ships, aircraft, 

and clouds 

 

According to Figure 30, the correct classification percentages for ships, aircraft 

and clouds are 75 %, 50 % and 72.7 %, respectively. In the first column of the matrix, the 

results show that scheme misclassifies three ships as aircraft and is not confused by the 

clouds at all. Four aircraft are misclassified as ships as indicated in the first red cell of the 

second column.  The high similarity of aircraft to ships and clouds results in an overall 

performance of 65.7 %.  
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The best performance of all maritime-domain image cases is summarized as in 

Table 4. Note that the performance of the classification scheme degrades as the number 

of objects to be classified increases.  

 

Table 4.   Classification performances of all maritime domain image cases 

Cases Performance 
(%) 

Ships versus Clouds 87.0 
Ships versus Aircraft 79.2 

Ships versus Aircraft & Clouds 82.9 
Ships, Aircraft, Clouds 65.7 

 

 In this chapter, implementation and partial testing of all modules of the proposed 

classification scheme were elaborated. The scheme was tested with two sets of images: 

perfect shapes and aerial maritime images. Some parameters, such as the number of 

neurons, number of peaks, and Hough features map size, were varied to determine 

effective setting for this classification scheme. The most effective setting found was the 

following: 15 neurons, six peaks, and a map size of 20 × 20; however, the scheme 

yielded poor classification results for higher-order classifications. In the next chapter, 

some feasible approaches to improve the scheme’s performance are recommended in the 

future work section.  
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V. CONCLUSIONS 

A Generalized Hough Transform-based classification scheme for maritime 

domain objects-of-interest was developed to improve maritime domain situational 

awareness. The classification scheme performs three important tasks: edge detection of 

the object contained in the imagery, feature extraction by using the GHT algorithm, and 

classification by using a neural network.  

Edge detection of an object-of-interest in noisy aerial imagery was improved by 

using a denoising filter prior to the GHT based feature extraction. The GHT algorithm 

was used to form an R-table representing the object shape. To account for the scale and 

orientation variance of the shape, the conventional R-table was reformatted to a contour 

map, or a Hough-features map, where coordinates of dominant peaks, or Hough features, 

were extracted. These features are likely to be scale-invariant and exhibit an inconsistent 

pattern for an object with different orientations. This inconsistency could be overcome by 

the use of a neural network classifier. 

A feed-forward, back-propagation neural network is an effective tool for building 

prediction models based on the Hough features for classifying two perfect shapes or  two 

different object classes contained in maritime domain images; however, the classification 

performance of the neural network decreases as the number of classes of the object to be 

classified increases.  

A. SIGNIFICANT CONTRIBUTIONS 

The most significant contribution of this thesis is the proposed GHT-based feature 

selection method used to reformat the R-table into the Hough features map. A small set of 

features produced by this method are found to be effective for differentiating between 

two object classes. In maritime domain awareness, this method can be applied to improve 

the processing time and memory storage requirements of automatic classification systems 

onboard surveillance and reconnaissance platforms and at control stations.  
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The second contribution is the application of the DCT for denoising images to 

improve edge detection. Empirical filter sizes were determined based on the energy 

distribution of the DCT coefficients.  

The third contribution is application of a neural network for classification. The 

network performed best when the number of hidden neurons was 15 and the percentage 

of training, validating and testing images was 90, five and five, respectively. This setting 

can be used as a baseline for classification. 

B. RECOMMENDATIONS FOR FUTURE WORK 

There are several possibilities for future work to improve the classification 

performance of the proposed scheme. In this thesis, due to variation in image sizes and 

background noise, an empirical DCT filter configuration as outlined in Table 2 was used 

for denoising images prior to edge detection. The DCT filtering technique was found to 

reduce background noise. A future effort can automate the DCT filtering process so that 

background noise can be minimized regardless of image size or background noise.  

In this thesis, the Sobel operator was used for edge detection of an object of 

interest. Other edge detection approaches might be considered to replace the Sobel 

operator for better edge detection. This could increase feature accuracy. 

The proposed GHT-based feature extraction does not account for variation in 

scale and rotation angle of an object-of-interest. In general, the GHT works better when 

scaling factor and rotation angle are accounted for. In future work, robust scaling factor 

and rotation angle estimators can be developed to de-scale and de-rotate each input image 

with respect to a reference model. This calibration could enhance the quality of the 

Hough features (dominant peaks) in the Hough-features map. 

The feed-forward, back-propagation neural network with a single hidden layer 

was effective for most binary classification cases; however, its ability to build a 

prediction model decreases as the number of objects to be classified increases.  This 

problem could be improved by using multiple hidden layers [31].  
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APPENDIX A. MATLAB SCRIPT FOR HOUGH FEATURES MAP 
GENERATION 

 

The MATLAB script Hough_Features.m is used for generating a Hough- 

features map as described in Chapter IV. Comments are in green text. The code in 

Section A is developed by the author. The code in Section B is obtained from [30] and 

modified by the author. 

A. Hough_Features.m 

% This Hough_Feautes function takes two arguments: a color image (ImRGB) and a user  
% input (n) to create a Hough features map so that Hough features can be  
% further extracted by using SearchPeaks.m.  
% The ModelHough code is borrowed from reference [30] and modified 
% by the author for gerneration of the R-table. 
  
function Y = Hough_Features(ImRGB,n) 
  
% find R-Table (H) 
   H = ModelHough(ImRGB); 
  
  [r c] = size(H(:,:,2));  
  
   % make all the distance not equal to zero = 1 
   A = H(:,:,2); 
   ind = find(A~=0); 
   A(ind)=1; 
   H(:,:,2)=A; 
  
   % Create Hough features map (HF) 
   HF = zeros(361,361); 
  
   for i= 1:r 
       for j = 1:c 
           if H(i,j,2) == 1 
              new_cols = H(i,j,1)+1; % base angle + 1 
              if HF(i,new_cols) == 0 
                 HF(i,new_cols) = 1; 
              else 
                 HF(i,new_cols) = HF(i,new_cols)+1; 
              end 
           end 
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       end 
   end 
   
  % Average values in block size of n x n to reduce map size. 
  if n > 1 
      r = 1; 
      for q = 1:n:361-n 
          M1(r,:) = sum(HF(q:q+n-1,:));    
          r=r+1;       
      end 
      M2 = M1'; 
      k=0; 
      for p = 1:n:361-n 
          k=k+1; 
          M3(k,:) = sum(M2(p:p+n-1,:));   
      end 
     Y = M3'; 
  else 
     Y = HF; 
  end 
  
 B. ModelHough.m 
 
% Source: J. Pinquier. Practical: Generalized Hough Transform from 
% http://www.irit.fr/~Julien.Pinquier/Docs/Hough_transform.html[30] 
% Modified by: Pornrerk Rerkngamsanga, 10 DEC 2015 
% This function takes two inputs: Im_BW and Gradient from SangaEdge.m 
 
function [H step]=ModelHough(ImRGB) 
 
% find edge points of the model 
[Im_BW Gradi] = SangaEdge2(ImRGB); 
  
% extract edge points   
C = contourSanga(Im_BW,Gradi); %generates edge points (x,y), M-by-3 matrix 
  
% Model initialization: 
    % row = Gradi+90 
    % column = number of the couple (alpha, distance) 
    % 3rd dimension: 1 = alpha, 2 = distance 
N = length(C(:,1)); 
H=  zeros(361,N,2); % initialization of Hough Table 
Alpha = SangaAlpha(C,Im_BW); 
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Beta = SangaBeta(C); 
[xc,yc]=barycenterSanga(Im_BW); % find the object centroid   
  
% for each edge point 
for index=1:N 
  
     k=1; 
      
     while H(Beta(index),k,2)~=0 
        k=k+1; 
     end 
      
     % Fill out alpha values to the H-Table 
     H(Beta(index),k,1)= Alpha(index); 
  
     % compute ans fill out the distance values 
     H(Beta(index),k,2)= distance(xc,yc,C(index,1),C(index,2));  
 
end 
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APPENDIX B.  MATLAB SCRIPT FOR HOUGH FEATURES 
EXTRACTION 

 

The MATLAB script SearchPeaks.m is used for Hough-feature extraction as 

described in Chapter IV. Comments are in green text. This code is developed by the 

author by leveraging findpeaks.m function provided in MATLAB for peak 

localization. 

% this code is an example of SearchPeak.m function that takes an input (Hough features 
map)  
% and extracts co-ordinates of the three tallest peaks. More  peaks can be extracted by 
increasing % a number of if-statements. 
 
function [Final_Pks_Select] = SearchPeaks(HF) 
[s1 s2] = size(HF); 
%find co-ordinates (x,y) of peaks in each row 
A = reshape(HF',1,numel(HF)); 
[Val_Peaks_H Loc_H] = findpeaks(A); 
Peaks_Loc_H = zeros(length(Loc_H),2); 
 
for i=1:length(Loc_H) 
    r = floor(Loc_H(i)/s1)+1; 
    c = Loc_H(i)-s1*floor(Loc_H(i)/s1); 
    if c == 0 
       Peaks_Loc_H(i,:) = [r-1 s1]; 
    else 
       Peaks_Loc_H(i,:) = [r c]; 
    end 
end 
Peaks_Loc_H = [Peaks_Loc_H(:,2) Peaks_Loc_H(:,1)]; 
  
%find co-ordinates (x,y) of peaks in each column 
B = reshape(HF,1,numel(HF)); 
[Val_Peaks_V Loc_V] = findpeaks(B); 
Peaks_Loc_V = zeros(length(Loc_V),2); 
for i=1:length(Loc_V) 
    r = floor(Loc_V(i)/s1)+1; 
    c = Loc_V(i)-s1*floor(Loc_V(i)/s1); 
    if c == 0 
       Peaks_Loc_V(i,:) = [r-1 s1]; 
    else 
       Peaks_Loc_V(i,:) = [r c]; 
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    end 
end 
   
% extract only co-ordinates (x,y) and their value that occur in both search above 
Common_Pks = []; 
Val = []; 
counter = 1; 
  
for i = 1:length(Peaks_Loc_H(:,1)) 
    for j = 1:length(Peaks_Loc_V(:,1)) 
        if Peaks_Loc_H(i,:) == Peaks_Loc_V(j,:)  
           Common_Pks(counter,:) = Peaks_Loc_V(j,:); 
           Val(counter,:) = Val_Peaks_V(j); 
           counter = counter+1; 
        end 
    end 
end 
  
% Select only the first three tallest peaks 
Pks_Select = []; 
First = find(Val == max(Val)); % first peak 
First_Pks_Select = Common_Pks(First,:); 
  
Dummy = Val; 
Dummy(First)=0; 
Second = find(Val == max(Dummy)); % second peak 
  
if length(First)==0 
      Final_Pks_Select = [0 0 0 0 0 0];       
elseif length(First)== 1 
   if length(Second)==0 
      Final_Pks_Select = [First_Pks_Select 0 0 0 0];   
   elseif length(Second)==1 
      Second_Pks_Select = Common_Pks(Second,:); 
      % find third peak 
      Dummy(Second)=0; 
      Third = find(Val == max(Dummy)); % thrid peak 
      Third_Pks_Select = Common_Pks(Third,:); 
      if length(Third)==0 
         Pks_Select = [First_Pks_Select;Second_Pks_Select;Third_Pks_Select]; 
         Final_Pks_Select = [Pks_Select(1,:) Pks_Select(2,:) 0 0];   
      else 
         Pks_Select = [First_Pks_Select;Second_Pks_Select;Third_Pks_Select]; 
         Final_Pks_Select = [Pks_Select(1,:) Pks_Select(2,:) 
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Pks_Select(3,:)];   
      end 
   else 
      Second_Pks_Select = Common_Pks(Second,:); 
      Pks_Select = [First_Pks_Select;Second_Pks_Select]; 
      Final_Pks_Select = [Pks_Select(1,:) Pks_Select(2,:) Pks_Select(3,:)];     
   end  
elseif length(First)== 2 
   if length(Second)==0 
       Final_Pks_Select = [First_Pks_Select(1,:) First_Pks_Select(2,:) 0 0]; 
   else 
       Second_Pks_Select = Common_Pks(Second,:); 
       Pks_Select = [First_Pks_Select;Second_Pks_Select]; 
       Final_Pks_Select = [Pks_Select(1,:) Pks_Select(2,:) Pks_Select(3,:)];  
   end 
else 
     Final_Pks_Select = [First_Pks_Select(1,:) First_Pks_Select(2,:) First_Pks_Select(3,:)];   
end 
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APPENDIX C. MATLAB SCRIPT FOR NEURAL NETWORK  
 

The MATLAB script NN_Trial.m is used for all classification cases presented 

in Chapter IV. Comments are in green text. This code is modified from a neural network 

script provided in neural pattern recognition application. 

 

% Solve a Pattern Recognition Problem with a Neural Network 
% Script generated by Neural Pattern Recognition app 
% Created Sat Oct 17 14:51:39 PDT 2015 and modified to train and test data 
% N times and to calculate the average percentage or performance of N runs. 
% 
% This script assumes these variables are defined: 
% 
%   train_x18_6Pks - train data. 
%   train_label - target data. 
clear 
clc 
 
%Start Training Process 
load('train_x18_6Pks'); 
load('train_label'); 
x = train_x18_6Pks'; 
t = train_label'; 
  
N = 1000; 
holder = []; 
for i = 1:N 
% Create a Pattern Recognition Network 
hiddenLayerSize = 15; 
net = patternnet(hiddenLayerSize); 
  
% Setup Division of Data for train2ing, Validation, test2ing 
net.divideParam.trainRatio = 90/100; 
net.divideParam.valRatio = 5/100; 
net.divideParam.testRatio = 5/100; 
  
% train the Network 
[net,tr] = train(net,x,t); 
  
% test the Network 
y = net(x); 
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e = gsubtract(t,y); 
tind = vec2ind(t); 
yind = vec2ind(y); 
percentErrors = sum(tind ~= yind)/numel(tind); 
performance = perform(net,t,y); 
% Plots 
% Uncomment these lines to enable various plots. 
% figure, plotperform(tr); 
% figure, plottrain2state(tr); 
% figure, plotconfusion(t,y) 
% figure, plotroc(t,y); 
% figure, ploterrhist(e) 
 
% Start Testing Process 
% test_x18_6Pks - test data. 
% test_label - target data. 
load('test_x18_6Pks'); 
load('test_label'); 
x2 = test_x18_6Pks'; 
t2 = test_label'; 
  
y_test = net(x2); 
tind2 = vec2ind(t2); 
yind2 = vec2ind(y_test); 
percentErrors2 = sum(tind2 ~= yind2)/numel(tind2) 
  
% Plot confusion matrix when classification percentage is greater or equal to 80% 
if percentErrors2 < 0.2 
figure, plotconfusion(t2,y_test) 
end 
holder(i) = percentErrors2; % keep all test results produced by each trained net 
end 
%  
Final_Percent = 100-(sum(holder)*100/N) % calculate the performance or average 
percentage of a thousand runs 
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