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ABSTRACT 

This thesis proposed a concept of distributed management of littoral operations at 

the tactical level, in which timeliness of information and reduced decision cycles are of 

critical importance. The use of mesh tactical networks augmented by sensor management, 

operational databases, and an appropriate level of automation of target recognition can 

turn the obstacles of land masses in littoral environments into a tactical advantage. 

Ultimately, this thesis concept aimed to enhance situational awareness by enabling the 

timely exploitation and dissemination of imagery data from small satellites and 

unmanned systems at the tactical level. 

Analyses of simulation and field experimentation results that focused on mobile 

ad-hoc networks (MANETs)—which connected dissimilar imaging sensors and enabled 

fusion of captured images—supported this concept. Mesh tactical radios provided an 

adequate range and quality of service (QoS) to enable networking of kinetic and non-

kinetic assets equipped with imaging or data relaying capabilities and to support 

dissemination of imagery data. Additionally, multi-spectral image fusion of thermal and 

visual images for target recognition yielded the best classification performance after the 

use of speeded-up robust features (SURF) and artificial neural networks (ANNs).  
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I. INTRODUCTION 

A. MOTIVATION 

Homeland security and military operations depend heavily on timely, accurate 

recognition of friendly and hostile assets, or contacts of interest (COIs), to increase the 

level of situational awareness (SA) and facilitate decision-making. Generally, 

surveillance, battlefield monitoring, and target recognition are non-stop processes that 

involve several resources. These processes are a major concern throughout all kinds of 

operations and require the engagement of various types of sensors, such as radar, infrared 

(IR), and thermal. The combined use of these sensors is the key for accomplishing this 

highly important process. The platforms participating in such operations often have 

limited capabilities to perform stand-alone recognition of targets under any given 

circumstances. Therefore, collaboration between platforms is necessary. Fusion of 

various data collected from different platforms and a variety of dissimilar sensors enables 

the real or near real-time recognition of COIs. 

Furthermore, the ubiquitous mobility of these platforms raises the challenge of 

uninterrupted and robust communications to facilitate data exchange. The need for 

continuous monitoring of available assets and exploitation of their capabilities in real 

time is more than obvious. Allowing the data value to expire could prove fatal. 

Consequently, we need combinations of flexible communication schemes as part of the 

system of systems. Such a system should exploit data gathered from networked assets in 

a timely manner and allow for the extraction of vital information in real or near real-time. 

Automating specific procedures within short processing times can increase effectiveness, 

especially for cases in which human operators’ performance is not equivalent. Artificial 

intelligence (AI), machine-learning, and data-mining can support this idea, at least 

starting with well-defined procedures concerning structured decisions [1] and database 

exploitation. The more sensors we are able to operate and integrate into automated 

processes, the closer we will be to real-time information that covers any spots that would 

otherwise be blind due to lack of data exchange and exploitation. 
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Databases serve as assisting mechanisms for human decision-making processes. 

Although there are cases in which improper use of data, based on lack of integrity, might 

lead to wrong assumptions, in general, databases facilitate decision-makers. In our case, 

and for the scope of this research, it is impossible for a human operator to remember 

thousands of images of different types of vessels. Previous work from ship companies has 

shown that creating databases from such kinds of data accompanied by the appropriate 

metadata has proven crucial for recognizing COIs. The use of such data during operations 

has demonstrated significant results in the efforts of crews for target recognition by type 

or even by identity. Especially in the case of recognizing targets by type, the effective 

distance of personnel after a six-month period of training was doubled by the use of such 

data [2]. The downside of this process is that it requires significant time, resources, and 

personnel.  

The implementation of an automated process that is specifically focused on the 

recognition of ship types or identities could prove crucial in the effort to increase SA. A 

similar concept that was implemented in the areas of face and fingertip classification and 

matching has proven beneficial. Feineigle, Morris, and Snyder [3] described the need for 

automatic target recognition (ATR) systems using imaging sensors and databases as well 

as the benefits of these systems for maritime domain awareness (MDA) in harbors. Our 

research further expands these ideas and presents the challenges of recognition in larger 

areas of interest (AOIs) through networking kinetic and non-kinetic platforms. In 

addition, we consider the need for extending these capabilities during night operations. 

Another very important aspect of this research is that it considers implementing 

an appropriate level of automation in certain tasks and procedures to increase SA and 

improve the decision-making process. Some crucial features of this process include 

flexible networking solutions and automated asset monitoring to capture and disseminate 

data; these considerations are especially challenging in the littoral environment. 

Emphasis is also given to the automatic exploitation of this data to enable filtering and to 

focus only on targets that demonstrate characteristics of potential COIs. Technological 

advancements in sensor-imaging, processing speed, computer-vision, and machine-

learning seem to support this idea. 



 3 

Based on these concepts, this research—through simulation and experimentation 

in the focus areas of wireless mesh networks (WMNs), computer-vision, and machine-

learning—emphasizes the apparent need for adopting new tactics, techniques, procedures, 

and doctrines in littoral water operations. Proliferation and imaging capabilities of 

unmanned systems (UMSes) and small satellites are factors we need to consider through 

this process. Networking and exploiting data from unmanned assets and dispersed sensors 

as well as adopting ATR procedures with certain levels of automation can increase SA 

and effectiveness in combat. Then, we can support decisions by providing the decision-

maker timely access to the appropriate information. 

B. RESEARCH QUESTIONS 

The overall concept is a vision of a system that through distributed database 

centers aboard main units and wireless mesh technologies enhances SA and reduces 

decision-making cycles. Distributed management of littoral operations at the tactical level 

should provide flexibility and alternatives in this type of operation, in which timeliness of 

information and reduced decision cycles are of critical importance. In cases where 

geography permits, such as in Greece and the Aegean Sea, this concept could prove 

beneficial in a form of a system-of-systems for innovative tactical solutions in all kinds of 

military and homeland security missions. All the participating assets, from humans to 

unmanned systems, could become part of an ad-hoc network that contributes in multiple 

ways to current operations. Some of these solutions could include agile communication 

relays and planning, extension of coverage ranges for sensors, distributed lethality, as 

well as video and image streaming from multiple dissimilar sensors. 

Since the scale of such a concept is beyond the scope of a single thesis, we are 

focusing the research in two main categories of questions that contribute to proving its 

feasibility. The first category of question is related to the capabilities of wireless mesh-

networking and its potential use by maritime units with the additional functionality of 

distributed data centers and network operations centers (NOCs). The following questions 

fall under this category: 
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• Can we achieve flexible and robust wireless network schemes to extend 
sensor networks connecting human or machine agents on terrestrial or 
satellite networks in littoral waters? 

• Is it possible by using mesh radio technology to develop and manage a 
robust, ad-hoc, and seamless network to facilitate near real or real-time 
data dissemination from networked imaging sensors? 

The second category of question involves an automated process that takes 

advantage of distributed imagery databases. Solutions that could provide for ATR and the 

potential benefits of applying multi-sensor image fusion are explored. The following 

questions are relevant to this category: 

• Does image fusion from dissimilar sensors provide better classification 
performance of potential targets than single sensors? 

• What is an appropriate scheme to facilitate ATR through image fusion of 
networked sensors? 

C. HYPOTHESIS AND EXPLANATION 

We attempted to find answers for these questions by performing simulations and 

experiments as well as by capturing data in the field from multiple dissimilar sensors. 

First, wireless mesh networks were simulated. Then, quality of service (QoS) in terms of 

provided throughput, bit error rate (BER), and packet losses was investigated. Next, field 

experiments were analyzed to support our simulation results. These experiments tested 

Wave Relay performance, network-management feasibility, and innovative wireless-

networking solutions for imagery data dissemination. Furthermore, two different 

cameras—both with color-visual and thermal recording capabilities—were used to 

capture images from the field. Although FLIR C2 and FLIR SC640 cameras had similar 

capabilities, the different analysis techniques for the images posed additional challenges, 

similar to those of real situations. Finally, fusion of the acquired images was evaluated in 

our ATR-implemented process. We sought to propose a simulation model that could 

work well, even if characteristics of the images were different. 

Our hypotheses were that 

• QoS provided by WMNs can accommodate imagery data dissemination.  
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• Fusion of images from dissimilar sensors will provide richer features to 
distinguish between different classes of ships in a highly cluttered and 
challenging littoral environment.  

In the case that our hypotheses were proven correct, there would be a high value in 

finding ways to extend sensor networks that could contribute to, among other things, the 

ATR process of COIs in the operational environment of littoral waters. This means that 

we had to prove that this network would be resilient and capable of transferring in a 

timely manner the acquired data from heterogeneous platforms. We attempted to prove 

this concept by simulating the conditions and parameters of equipment that have already 

been tested through field experimentation. We also considered the overall benefits that 

the whole concept could bring to the operational doctrine of littoral waters since the 

proliferation of unmanned systems and small satellites with imaging and networking 

capabilities. 

D.  SCOPE AND LIMITATIONS 

This thesis sought to explore the feasibility and advantages of combining the data 

from similar or dissimilar sensors aboard platforms in and out of mobile ad-hoc networks 

in a littoral environment. In such a challenging environment, the speed and accuracy of 

information obtained plays a vital role in the decision-making process of the various 

missions assigned to military and homeland security forces. Inevitably, we sought for real 

or near real-time data transfer and exploitation by classifying the obtained data from the 

available sensors. Our intention was that the methods and processes should not limit the 

use of certain sensors but help find ways for exploiting the available data for fusion, no 

matter the source. 

Fusion methods can be applied in several ways and in different stages of such 

processes while the sources can be either passive or active sensors. In this thesis, only 

passive means for obtaining images were exploited, specifically for fusion of color-visual 

and thermal sensors in early or late stages of the proposed classification process. 

Additionally, we limited our research to a binary classification problem of distinguishing 

between sailing and power boats by type from the images captured in the field. This 

limitation did not guarantee that the techniques used would be directly applicable for 
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classifying other categories of objects or for using different combinations of sensors. 

However, special care was taken, so the collection of images could address the challenges 

of classifying ships in a littoral environment. 

Although the sensors used for the research were not of the type that will be used 

in a tactical environment, the transferring capability of the images was used to derive 

results for the relative research questions. The simulations of the mesh network were 

conducted with inputs as close as possible to equipment already in use while the Center 

for Network, Innovation and Experimentation (CENETIX) provided the opportunity for 

evaluating and assessing the obtained results. 

E. RELATED WORK 

Recent advancements in technology show that Cebrowski’s vision for network-

centric warfare, which connects not only platforms but also individual fighters, has 

become a reality. This revolution in military affairs (RMA)—combined with the 

proliferation and advancement of UMSes that are replacing human agents in the 

battlefield—has slowly changed not only how but more importantly who fights, as argued 

by Singer [4]. 

This evolution has no meaning if we are unable to support the decision-making 

process in the highly mobile and fluid environment of networks formed by human and 

machine agents. Iapichino et al. proposed a hybrid use of satellites and WMNs to support 

broadband communications in areas with no infrastructure [5]. The proposed scheme 

offered a viable solution for establishing reliable communications between various 

mobile nodes in emergency situations and was based on the IEEE 802.11s standard [6], 

[7], [8]. Additionally, Bordetsky and Dolk introduced the concept of a network decision 

support system (NWDSS) [9], which connected available nodes through wireless ad-hoc 

networks to aid the decision-making process. Gerla, Lau, and Oh [10] built upon the 

same concept by proposing the use of content-centric networking (CCN) when 

emergency wireless ad-hoc networks are needed on the battlefield. A hierarchical 

network structure model in the battlefield is depicted in Figure 1. In this way, efficient 

network resource management—among other crucial characteristics such as security and 
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scalability—was achieved for mobile ad-hoc networks (MANETs). Especially in the 

complex and challenging environment of littoral waters, the aforementioned evolutions 

are providing new insight into updating current doctrine, as mentioned by Bordetsky, 

Benson, and Hughes [11].  

Figure 1.  Structure of a Hierarchical Mesh Network Model in the Battlefield 

 
This structure model shows how group-based mobility can facilitate tactical and 
emergency operations. Source: Oh, Lau, and Gerla, “Content Centric Networking in 
tactical and emergency MANETs,” 2010. 

Distributed network operations centers (NOCs) aboard major units or ground 

stations are considered crucial to efficiently managing these highly kinetic nodes and the 

data acquired in the field. Experience on the battlefield as well as research and 

experiments by CENETIX have proven that using such applications could greatly 

enhance SA. Effort in this direction, including the CodeMettle ecosystem and dashboard 

for network management and monitoring (see Figure 2), has demonstrated very 

promising results [12], [13]. 
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Figure 2.  Network Operations Ecosystem and Dashboard from CodeMettle 

 
The ecosystem and dashboard from CodeMettle demonstrates how network management 
can contribute to decision making by converging vital information in a dashboard and 
applying the necessary level of automation. Source: CodeMettle, LLC, “The CodeMettle 
Ecosystem for Network Management in support of the DOD’s NMS convergence 
efforts,” 2015. 

Given the fluid nature of these formed networks and the need to support 

traditional decision-making models, such as Boyd’s observe-orient-decide-act (OODA) 

loop [14], [15], new challenges have emerged in monitoring systems since the 

proliferation of unmanned airborne systems (UASes) and small satellites. Spitzer, 

Kappes, and Boker [16] recognized this need for interoperability, automatic 

dissemination, and exploitation of data derived from systems deployed in the operational 

theatres. Their proposed model for tasking, collecting, processing, exploiting, and 

disseminating data provides insight into the effective fusion of data obtained from 

intelligence, surveillance, and reconnaissance (ISR) missions and networked assets. Mesh 

networks can be one of the means to achieve this goal as they provide low probability of 

detection, high throughput, the flexibility to override challenges posed in littoral 

environments, distributed lethality [17], and agile emission control (EMCON) [18].  

In such a complex environment as the modern battlefield, automating procedures 

in which computers perform better than humans is necessary. One of the procedures that 

contributes to SA and target allocation is ATR. Research in the field of ATR has 

produced only partial solutions—with certain limitations—because the concept is 

complex and requires application in greatly diversified environments and conditions.  
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Several attempts have been made to design and develop ATR procedures that 

could support classification of COIs. Menon, Boudreau, and Kolodzy [19] introduced 

such a process to classify naval targets from imagery captured by inverse synthetic 

aperture radar. Features were extracted from the images and classified using neural 

networks. Additionally, Alves, Herman, and Rowe [20] tried another approach to classify 

forward-looking infrared (FLIR) images of ships using neural networks that were trained 

with models of ship classes of various aspects and scale-invariant moments as features. In 

other attempts for all-aspect ship recognition using IR images, the importance of role, 

range, and aspect angle was described [21], [22],. Although these works demonstrated 

good results of more than seventy percent of correct classification, image processing 

methods used were not always automated [22], and the training and testing processes 

were time consuming . 

Feineigle, Morris, and Snyder [3] seemed to overcome the aforementioned 

problems by introducing the classification features of scale invariant feature 

transformation (SIFT), local interest point detection, and descriptors of optical imagery. 

In this way, features that compared in the classification process were invariant to scale 

and rotation and partially invariant to illumination and aspect. Furthermore, introduction 

of speeded-up robust features (SURF) [23], which were mainly used in matching 

problems in computer vision, demonstrated better and faster results in the feature-

detection process.  

Our approach in the proposed ATR process tried to take advantage of the SURF 

characteristics for real-time classification of ships. Furthermore, we considered that any 

proposed scheme should be applicable to a system of multiple dissimilar or similar 

sensors. For this reason, different cameras were used for the collection of the images for 

this experiment. The use of fused multi-spectral infrared (IR) and visual images were also 

tested—as previous work has proven that fusion results in images that provide additional 

information even at night [24]. 
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F. SIMULATION AND EXPERIMENTATION STEPS AND TOOLS 

The method we used in this research was quantitative experimentation using 

computer simulations, experiments, and data collection in the field in an attempt to 

simulate the conditions and stages of a conceptual model for ATR through mesh tactical 

networking of participating nodes. Evaluation and analysis of results from field 

experiments conducted under CENETIX were used to support specific parts of the 

concept. The steps in this thesis included the following: 

• Simulating a wireless hybrid mesh network in a littoral environment using 
the Systems Tool Kit (STK); 

• Analyzing the communication links by studying the physical layer of the 
network in STK; 

• Analyzing the network from the MAC layer and above with QualNet; 

• Evaluating the QoS provided by the network to support video streaming 
and imagery data dissemination; 

• Analyzing CENETIX field experiments; 

• Capturing imagery data from multiple dissimilar sensors (visual and 
thermal) in the field; and 

• Evaluating multi-sensor image fusion for ATR by using computer-vision 
and machine-learning techniques. 

Various software tools were employed to meet the objectives and the standards of 

our experiments and simulations. Descriptions and characteristics of STK, QualNet, and 

MATLAB, some of the main tools utilized in this thesis, are described in the next 

subsections. 

1. Systems Tool Kit  

STK is physics-based software released by Analytical Graphics, Inc. (AGI). Its 

simulation capabilities span land, sea, air, and space environments where various assets 

and attached sensors can be modeled and displayed. The software automatically 

calculates spatial relationships, such as line-of-sight (LOS), among the various platforms 

and nodes. The final product after implementing desired properties can be simulated for 
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specified time intervals in both two and three dimensions (2D and 3D). Additionally, 

images and video can be recorded during the simulations with the available tools [25]. 

Figure 3.  Systems Tool Kit 

 
Adapted from “Systems Tool Kit version 10,” http://blogs.agi.com/agi/2012/11/15/
systems-tool-kit-version-10-is-here/, and “System Tool Kit – Because we model more 
than just satellites.,” http://blogs.agi.com/agi/2012/07/25/systems-tool-kit-%E2%80%93-
because-we-model-more-than-just-satellites/ 

The most important advantage of STK is the variety of missions and systems that 

it can simulate. STK can even help the user simulate and evaluate a system-of-systems 

and its desired or researched topology. Some modules that interoperate with STK to 

evaluate the simulations include MATLAB, QualNet, and ArcGIS. These additional 

modules contribute to a more thorough analysis and detailed simulation. After detailed 

parameters or snippets of code are imported into STK, data elevation models (DEMs) and 

maps can be imported, and the network’s performance can be examined beyond link 

budgets. 

http://blogs.agi.com/agi/2012/11/15/systems-tool-kit-version-10-is-here/
http://blogs.agi.com/agi/2012/11/15/systems-tool-kit-version-10-is-here/
http://blogs.agi.com/agi/2012/07/25/systems-tool-kit-%E2%80%93-because-we-model-more-than-just-satellites/
http://blogs.agi.com/agi/2012/07/25/systems-tool-kit-%E2%80%93-because-we-model-more-than-just-satellites/
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Figure 4.  STK Objects 

 
The STK objects available as they appear on the relevant pop-up window when insert of 
a new object is selected. 

STK version 11, whose release is planned for January 2016, could contribute in a 

more thorough analysis for our simulation. Volumetric, EO/IR, and aviator capabilities, 

which will be part of the new version, could provide extra, useful details in our analysis 

above mesh network one. 

2. QualNet 

The QualNet interface is one of the off-the-self products that can interoperate with 

STK as an add-in module. It offers a network-modeling platform to plan and test a 

communication network’s performance while taking advantage of the various kinetic and 

non-kinetic models, linking budget calculations, and augmenting visualization of STK. 

Hence, its use offers a more complete illustration of how network performance affects 

overall mission planning and execution [26], [27]. This interface allows the incorporation 

of all STK constraints, antennas, propagation loss, atmospheric absorption, as well as 

terrestrial and custom models for the purposes of network analysis. The exchange of data 



 13 

between the QualNet and the STK model and objects results in a more thorough analysis 

by combining the advantages of both tools. During the QualNet analysis and whenever a 

communications link is established between the wireless nodes, the combined 

interactions and inputs/outputs are dynamically generated (see Figure 5). 

Figure 5.  QualNet/STK Interaction Flow 

  
Source: “STK 10 Help,” http://www.agi.com/resources/help/online/stk/10.1/ 

The procedure to install and integrate the Qualnet add-in in STK proved rather 

tedious but was finally achieved after following the steps described in QualNet and STK 

communication troubleshooting and installation and in a suggestion by Schlatow and 

Lefherz [28]. The steps to run QualNet and obtain its results after successful integration 

are shown in Figure 6. 

  

http://www.agi.com/resources/help/online/stk/10.1/
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Figure 6.  QualNet/STK Interaction Flow 

 
Source: “STK 10 Help,” http://www.agi.com/resources/help/online/stk/10.1/ 

3. MATLAB 

MATLAB is a high-level language that offers a variety of toolboxes and an 

environment for programming, numerical computation, and visualization of processed 

data. MATLAB’s built-in functions and tools provide support for a wide range of 

domains, from signal processing to aerospace. In this research, image processing, 

computer-vision, as well as the neural network (NN) toolbox were used to build an 

algorithm for the ATR of boat images captured by color-visual and thermal sensors.  

Figure 7.  MATLAB Logo 

 
Source: “Image Analysis with MATLAB,” http://videreanalytics.ca/events/image-
analysis-with-matlab-may-20-2015/ 

http://www.agi.com/resources/help/online/stk/10.1/
http://videreanalytics.ca/events/image-analysis-with-matlab-may-20-2015/
http://videreanalytics.ca/events/image-analysis-with-matlab-may-20-2015/
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G. ORGANIZATION OF THE THESIS  

This thesis is organized in five chapters in an effort to present and tie together 

different experiments and simulations for using mesh tactical networks of sensors 

efficiently for ATR. In Chapter II we present a brief theoretical background on mesh 

networks and relevant technologies, imaging sensors, and digital image representation, as 

well as the techniques and algorithms used in the image classification process. A 

proposed simulation model for the ATR through a hybrid mesh network is proposed in 

Chapter III along with a thorough explanation of the steps that were followed for the 

experiments and the simulations. The results derived from this research and their analysis 

are presented in Chapter IV. In Chapter V, conclusions from the results and potential 

benefits in the modern battlefield are discussed as well as recommendations for future 

work in the area of our research. 
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II. THEORETICAL AND TECHNICAL BACKGROUND 

This chapter provides a brief background of the equipment, concepts, techniques, 

and procedures used in the simulations and experiments for accomplishing this research.  

A. SIMULATING MANET AND MESH NETWORKS IN MARITIME 
 LITTORAL ENVIRONMENT 

Simulation has been proven highly beneficial as it can support and assist in the 

thorough and detailed planning of an exercise or experiment with a profound cost benefit. 

Additionally, while resources are often limited, simulations can provide insight, results, 

and evaluation for large-scale scenarios. In the case of mobile ad-hoc networks 

(MANETs) and wireless mesh networks (WMNs), simulations can be used to predict 

performance. Furthermore, they can calculate or provide insight into the necessary link 

margins or antenna gains needed to improve the performance of certain links. Finally, 

when simulation results are compared with those from actual field experiments or real 

operations, they can provide patterns and insight for further research and development of 

new ideas and techniques. 

1. Wireless Networks 

Wireless networks are based on various technologies regulated by IEEE 

standards. Although they can provide short-distance communications with technologies 

like Bluetooth, wireless networks can also support long-range communications up to 30 

miles or more depending on the antennas used. The most popular wireless technologies 

are Wi-Fi and WiMAX, under IEEE 802.11 and IEEE 802.16 standards, respectively. Via 

mobile WiMAX, kinetic nodes can connect with broadband communication channels 

using spread spectrum techniques, such as orthogonal frequency division multiplexing 

(OFDM), and can achieve data rates of up to one gigabit (Gbit) per second (s) [6]. The 

quality of service (QoS) provided can simultaneously support video streaming and voice 

traffic over the same channel [29]. Under the IEEE 802.11s standard, peer-to-peer nodal 

relationships for mesh networking allow for self-forming and self-healing characteristics 

[8]. In Figure 8, a basic mesh topology is depicted as well as the possible mesh paths. 
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Figure 8.  Basic Mesh Topology 

 
Source: [8] J. Henry and M. Burton, “802.11s Mesh Networking,” CWNP Enterprise Wi-
Fi Whitepaper, November 2011.     

a. MANETs 

MANETs are networks formed by devices that communicate with each other 

within link range and bandwidth constraints, without the underlying need of any 

infrastructure, base stations, or network configuration. Link range depends greatly on the 

frequency used and the rest of the characteristics that form the wireless transmissions, for 

example, RF modulations or power output. Each mobile node of these networks acts as 

both a terminal and a router that forwards any received data to the rest of the nodes 

within range. Obviously, determining which nodes are contributing to the network is a 

highly dynamic procedure as MANETs are decentralized networks. For this reason, all 

network activity, topology discovery, and message delivery are individually controlled by 

each node [7], [30], [6]. Types of nodes that can be networked in specific applications are 

shown in Figure 9. 
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Figure 9.  Assets and Agents 

 
Examples of assets and agents that can be networked through ad-hoc networks in military 
(a) or Humanitarian assistance and disaster relief (HA/DR) applications (b). Source: [31] 
David Munoz, Frantz Bouchereau Lara, and Cesar Vargas, “Ad hoc and Sensor Network 
Scenarios,” 2011, http://www.eetimes.com/document.asp?doc_id=1279149&. 

Different techniques and protocols can be used for forwarding and relaying data 

and packets via MANETs. During routing, the messages propagate along an existing 

determined path, hopping from node to node until they reach the intended destination. In 

case a portion of the path breaks during the hopping process, the network finds a way 

around—illustrating its self-healing characteristic—via the remaining available links. 

Determining viable and robust paths in such networks is, therefore, a great challenge. In 

certain cases, packet losses inevitably occur [31]. A variety of factors influences these 

highly mobile and fluctuating networks, and routing protocols have to compensate for 

any of these issues. Continuous and unpredicted changes in network topology, power 

constraints, wireless link quality, path losses, and interference are some of these  

factors [30]. 

http://www.eetimes.com/document.asp?doc_id=1279149&
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Three categories of routing are used by mobile routers in wireless, multi-hop 

networks such as MANETs and WMNs. These include table-driven, or proactive, 

routing; on-demand, or reactive, routing; and hybrid routing, a combination of the two 

former categories [32]. There is one primary difference between the two main categories 

of routing. In proactive routing, there is a requirement that routing information is stored 

by all routers, even for those that are inactive. Conversely, in reactive routing, only the 

routing information from active nodes requires storing [32], [33], [34]. Because each 

node in mobile ad-hoc networks acts simultaneously as a host and a router and due to the 

continually changing nature of nodes, hybrid protocols often provide better  

performance [35]. 

Despite the problems that these networks face, their use is rapidly proliferating, 

primarily because existing applications offer flexibility and reasonable ranges and 

capacities. Thus, MANETs and WMNs can be used in a variety of cases when the 

underlying infrastructure requires extension, it has been destroyed, or it does not exist at 

all. Humanitarian assistance and disaster relief (HA/DR) as well as military operations 

are such cases. These circumstances, especially military operations, require low 

probability of interception (LPI), high reliability, low latency, and resolution of security 

issues, all need to be achieved [30]. 

b. Wireless Mesh Networks 

WMNs are a specific type of the aforementioned MANETs. Therefore, WMNs 

inherit the MANET attributes of self-discovery, self-organization, self-configuration, and 

self-healing [7]. The difference that appears in WMNs is that part of the nodes can 

remain stationary or carry advanced capabilities. Therefore, there is the potential to 

interconnect with existing networks through gateways that coexist with the mesh routers. 

The mesh in WMNs directly relates to the fully connected topology shown in Figure 10.  
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Figure 10.  Network Topologies 

 
Source: “Network topology,” http://homepages.uel.ac.uk/u0322392/top.html. 

In actual implementation, though, a fully connected mesh is difficult to maintain 

as these networks are characterized by high mobility that involves nodes dynamically 

entering and exiting the network. Nevertheless, the participation of nodes as Internet 

gateways (IGWs) shows great potential for the formation of extendible and highly kinetic 

broadband Internet networks in locations where no infrastructure is present. IGWs can 

provide interconnection among such networks and existing terrestrial, satellite, or mobile 

Internet networks, such as 3G, 4G, or even 5G, and may extend connectivity in areas out 

of coverage (see Figure 11). Moreover, the use of low earth orbit (LEO) satellites in mesh 

networks can reduce latency in medium- and long-distance communications [36]. 

Additionally, connectivity without Internet access can be maintained between the 

networked assets, even when the infrastructure malfunctions or the IGWs are out of 

reach. 

http://homepages.uel.ac.uk/u0322392/top.html
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Figure 11.   Samsung’s Global Internet Access Satellite Network 

 
Samsung’s proposal involving 4,600 low earth orbit (LEO) satellites for global Internet 
coverage. Adapted from D. Borghino, “Samsung’s giant satellite network could enable 
high-speed Internet access across the globe,” 2015, http://www.gizmag.com/samsung-
satellite-network-Internet-access/38971/ 

c. Operational Advantages of Wireless Mesh Tactical Radios 

The operational advantages gained from the use of mesh tactical radios, as proven 

in several CENETIX field experiments, are briefly described below: 

• No infrastructure is needed. 

• Immediate interoperability between platforms of different branches with 
no other equipment is common. 

• High throughput exists to accommodate simultaneous video, data, and 
voice communications. 

• They are easy to transfer in the field. 

http://www.gizmag.com/samsung-satellite-network-internet-access/38971/
http://www.gizmag.com/samsung-satellite-network-internet-access/38971/
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• Versions of man-portable devices allow for human agent nodes as part of 
the network. 

• Security is embedded. 

• They transmit low power and, thus, LPI. 

• They allow for legacy-radio tethering.  

From all the advantages that such systems demonstrate, we see that mesh tactical radios 

are appropriate for teaming up small ad-hoc groups of highly kinetic manned or 

unmanned systems and human agents in the battlefields. Communications of this type can 

facilitate agile EMCON plans and offer ad-hoc solutions when traditional means of 

communication are unavailable or deemed inappropriate for tactical use.  

2. Wave Relay MANET Nodes 

Nodes that are connected through the Wave Relay MANET become part of a 

secure mesh network. The patented wireless networking protocol by Persistent Systems, 

LLC supports the connectivity of kinetic and non-kinetic nodes as well as the exchange 

of real-time data, video, voice, and other applications [37]. The following paragraphs 

present the capabilities of these radios (see Figure 12) as the simulations center on their 

performance in a littoral environment.  

Figure 12.  Wave Relay MANET Radio Solutions 

 
Quad radio router and man portable units Gen3 and Gen 4 Source: “Wave Relay MANET 
RadioSolutions,”http://www.oceanologyinternational.com/en/Exhibitors/191060/Steatite-
Ltd/Products/666963/Wave-Relay-MANET-Radio-Solutions 

http://www.oceanologyinternational.com/en/Exhibitors/191060/Steatite-Ltd/Products/666963/Wave-Relay-MANET-Radio-Solutions
http://www.oceanologyinternational.com/en/Exhibitors/191060/Steatite-Ltd/Products/666963/Wave-Relay-MANET-Radio-Solutions
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a. Wave Relay 

The Wave Relay system is a peer-to-peer wireless MANET network in which no 

server or master node exists. The nodes also serve as routers that establish and maintain 

the network even if one of them fails to communicate. The implemented techniques 

increase multicast reliability, maximize capacity over the RF spectrum under use, and 

minimize network control requirements. Unlimited devices can be part of the resulting 

highly scalable network as there is no hop limit. This rapid self-forming and self-healing 

network operates at the data-link layer, which is the second layer of the Open Systems 

Interconnection (OSI) seven-layer model, as shown in Figure 13 [6].  

Figure 13.  The ISO/OSI Model  

 
Source: “The Open Systems Interconnection (OSI) seven-layer model standardized by the 
International Standardization Organization ISO,” https://commons.wikimedia.org/wiki/
File:Osi-model.png. 

Currently, the fifth generation of Wave Relay radios is ready for release and 

provides more advanced capabilities than the fourth generation that has already been used 

in CENETIX field experiments. For shared access coordination, the random access 

https://commons.wikimedia.org/wiki/File:Osi-model.png
https://commons.wikimedia.org/wiki/File:Osi-model.png
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protocol of carrier-sense multi-access with collision avoidance (CSMA/CA) is used as 

the basis for the wireless networks [6], [37]. Wave Relay uses a 3x3 multiple-input 

multiple-output (MIMO) technology and delivers high throughput of up to 150 

megabytes per second (Mbps) in extended ranges. It is IPv4 and IPv6 compatible and 

includes a server with an integrated dynamic host configuration protocol (DHCP) [6]. 

The embedded cloud-relay technology makes it possible to bridge beyond-line-of-sight 

(BLOS) with line-of-sight (LOS) networks using the network layer, the third layer of the 

OSI seven-layer model, techniques, and protocols. In this way, distributed groups, as 

shown in Figure 14, smoothly participate in the network as if locally connected via 

Internet or private networks. Table 1 presents the basic specifications of Wave Relay 

along with some imported parameters from Systems Tool Kit (STK) to simulate objects. 

Figure 14.  Cloud Relay Groups 

 
Source: “Cloud Relay,” http://www.persistentsystems.com/persistent-systems-cloud-
relay/. 

http://www.persistentsystems.com/persistent-systems-cloud-relay/
http://www.persistentsystems.com/persistent-systems-cloud-relay/
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Table 1.   Wave Relay Specifications 

 
Source: “Wave Relay 5 Integration Unit,” http://www.rugged-systems.com/products/
radio-communications/manet-radio-solutions/wave-relay-5.html. 

http://www.rugged-systems.com/products/radio-communications/manet-radio-solutions/wave-relay-5.html
http://www.rugged-systems.com/products/radio-communications/manet-radio-solutions/wave-relay-5.html
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3. Types of Nodes 

The types of nodes that can be part of a MANET or WMN are numerous and can 

extend from single human agents to unmanned systems and satellites. Some main 

characteristics and capabilities of the most important nodes are described in the following 

paragraphs. Satellites and unmanned systems can prove highly beneficial for these types 

of networks. They can assume multiple roles, acting as relays to extend the network and 

also as platforms for imaging or other types of sensors. 

a. Small Satellites 

In general, depending on their orbits, satellites fall under the categories of low 

earth orbit (LEO), medium earth orbit (MEO), geosynchronous or geostationary earth 

orbit (GEO), and highly elliptical earth orbit (HEO) [38]. Furthermore, if we consider the 

actual size of the spacecraft, satellites are also categorized as large, medium, or small, as 

shown in Table 2. During the last few years, there has been a focus on research and 

development of small satellites. Cube satellites, or Cubesats, usually with a mass of less 

than 100 kilograms (kg), are very promising because of their small size and low 

manufacturing cost. An advantage comes from their potential to be launched in groups 

from platforms other than the traditional rockets—and thus readily available. 

Table 2.   Satellites Categories Based on Size 

 
Satellite categorization according to their net weight and size. Source: A. Bordetsky, 
“Micro and Pico Satellites in Maritime Interdiction Operations,” 15th Int. Command 
Control Res. Technol. Symp. Track 2 Networks Netw, 2010. 
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Cubesats in particular have a volume equal to one liter, or ten cubic centimeters 

(cm3) or 1U. They can also be combined to form bigger satellites by attaching multiple 

units together. In that way, 2U or multiple-U satellites can be constructed. Additionally, 

there are several kits available on the market that allow a do-it-yourself construction, as 

shown in Figure 15. Of course, their small size and, consequently, their payload limit 

their capabilities in terms of power, sensors, or antennas that can be mounted to them. 

Problems such as less precise orbital fidelity, limited orientation control, and imprecise 

pointing also limit their capabilities and make them prone to becoming debris. Since they 

are positioned in LEO, though, they need less power and demonstrate smaller latencies in 

communication. Other factors that should be considered are the revisit time, the coverage, 

the lifetime expectancy, the number and position of the ground stations, and the altitude 

within the range of LEO, which is roughly 200 to 2000 kilometers (km) [38]. 

Figure 15.  Cubesats 

 
In (a) a home kit framework of a Cubesat is shown. Source: “Begin your CubeSat 
Mission with the CubeSat Kit,” http://www.cubesatkit.com/. In (b) a 3U Cubesat and in 
(c) a 6U Cubesat are presented. Source: “CubeSat,” http://space.skyrocket.de/doc_sat/
cubesat.htm. 

http://www.cubesatkit.com/
http://space.skyrocket.de/doc_sat/cubesat.htm
http://space.skyrocket.de/doc_sat/cubesat.htm
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For the purpose of our STK scenario, we simulated the capabilities of an existing 

satellite. A Pico-satellite for Remote-sensing and Innovative Space Missions (PRISM), 

shown in Figure 16, was chosen. Its optical characteristics are presented in Table 3. The 

extensible boom, shown in Figure 17, allows for a ground resolution of 10 meters (m) per 

pixel from the 800 km altitude of its actual orbit. We altered our simulation parameters, 

such as orbit altitude and communication capabilities, to serve our simulation purpose of 

providing imagery data with an adequate ground resolution to detect small boats. 

Figure 16.  PRISM Nanosatellite 

 
Theoretical illustration of the deployed PRISM nanosatellite in LEO and its extensible 
boom before and after it has been deployed Source: “PRISM,” https://directory. 
eoportal.org/web/eoportal/satellite-missions/p/prism 

Figure 17.  PRISM’s Boom 

 

Components of the PRISM’s extensible boom. Source: “PRISM,” https://directory. 
eoportal.org/web/eoportal/satellite-missions/p/prism. 

https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
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Table 3.   PRISM Optics 

 
PRISM optics specifications. Source: “PRISM,” https://directory.eoportal.org/web/ 
eoportal/satellite-missions/p/prism. 

b. Unmanned Systems 

The use of unmanned systems is rapidly expanding in the commercial sector as 

well as in the armed forces. Various missions are assigned to such systems depending on 

their operational environments. Unmanned airborne systems (UASes), in particular, can 

potentially extend the capabilities of their mother platforms when deployed and 

controlled by them. Data that is fed back as well as network extension in the case of 

MANETs provide additional options and capabilities to enhance situational awareness 

(SA) on the battlefield. Furthermore, throwable and expendable nodes can also facilitate 

that purpose.  

c. Other Nodes 

As discussed previously, MANETs and WMNs can network various nodes and 

extend existing terrestrial or satellite networks. This concept can be used as an advantage 

especially in littoral environments to network manned or unmanned platforms, ground 

stations, and distributed link relays. Underwater systems or human agents could also 

become part of the network using floating platforms and wireless technologies as recently 

demonstrated by CENETIX experiments in the San Francisco Bay area in October 2015. 

https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
https://directory.eoportal.org/web/eoportal/satellite-missions/p/prism
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In this way, special and boarding operations can take advantage of MANETs to exchange 

images and messages, even with divers. 

4. Network Operations Centers 

Network operations centers (NOCs) or network management centers are specific 

locations from which management, control, supervision, and monitoring of networks can 

be performed [39]. The goal of this function is to support uninterrupted and robust 

accessibility in networked resources and applications to all subscribed assets by 

efficiently managing the available resources and security issues. Internet service 

providers (ISPs) operate such centers to enable visualization of the controlled and 

monitored networks as well as their statuses.  

a. Network Decision Support Systems  

The concept of a network decision support system (NWDSS) was introduced by 

Bordetsky and Dolk [9] to support agile and collaborative management of decision 

making when heterogeneous nodes are connected through wireless technologies. This 

concept offered a solution for enhanced decision making and SA in the modern 

battlefield. Since the proliferation of unmanned systems over the last fifteen years, this 

idea needs revision to address the challenges of highly kinetic platforms, especially in 

littoral waters. Timeliness in such environments is crucial, and the proposed sense-

analyze-adapt-memory decision-making loop, shown in Figure 18, offers a team-centric 

solution. 
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Figure 18.  NWDSS Decision-making Loop 

 
The Sense – Analyze – Adapt – Memory decision making loop. Source: Bordetsky and 
D. Dolk, “A Conceptual Model for Network Decision Support Systems,” Syst. Sci. 
(HICSS), 2013 46th Hawaii Int. Conf., pp. 1212–1221, 2013. 

B. IMAGING SENSORS 

Imaging sensors are widely used by armed forces in many applications. Various 

platforms as well as individual soldiers have been equipped with sensors covering a wide 

range of the visible and infrared (IR) spectrums. What led to this proliferation was the 

realization that these sensors were beneficial for SA enhancement and target recognition. 

During the day, they extend the capabilities of human eyes as well as support the ability 

of extracting additional information about the state of targets. For example, during 

daylight hours, IR sensors can provide information about operating equipment or 

incoming missiles as they capture thermal signatures otherwise undetectable by sensors 

operating in the visible range of the electromagnetic (EM) spectrum. Furthermore, during 

nighttime hours, IR sensors reveal thermal signatures when color-visual sensors become 

unusable. In the following subsections, we will briefly present the basic concepts and 

technologies used to capture and support the exploitation of that information. 
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1. The Electromagnetic Spectrum 

To provide a better understanding of the differences between visible and IR 

imagery, we begin by investigating the EM spectrum. As Figure 19 shows, the visible 

region is only a small part of it the entire spectrum. Photoreceptors, or cones, of the 

human eye are sensitive only to colors in the visible spectrum [40] covering wavelengths 

380–780 nanometers (nm) [41] .  

While humans can only feel IR radiation in the form of heat, animals such as 

rattlesnakes can actually see that part of the spectrum. Using two different sensor types, 

one operating in the visible and the other in the IR region, it is possible to gather more 

information, depending on the prevailing conditions.  

Figure 19.  The EM Spectrum Showing Visible and IR Bands 

   
Source: “Fundamentals of IR Radiation,” http://theses.ulaval.ca/archimede/fichiers/ 
23016/apb.html 

Based on atmospheric transmittance windows, discussed in the following 

subsection, the IR spectrum is further divided into near (NIR), short-wavelength (SWIR), 

http://theses.ulaval.ca/archimede/fichiers/23016/apb.html
http://theses.ulaval.ca/archimede/fichiers/23016/apb.html
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mid-wavelength (MWIR), long-wavelength (LWIR), and very long-wavelength 

(VLWIR), or far (FIR), infrared. 

2. EM Radiation 

Incident radiation can be transmitted, reflected, scattered, or absorbed, depending 

on the properties of the material it encounters, the frequency of the radiation, and the 

incident angle [42], as illustrated in Figure 20. 

Figure 20.  EM Radiation Interaction with Materials 

 
Source: “Electromagnetic Radiation (EMR)-Matter Interactions (Remote Sensing).” 
http://what-when-how.com/remote-sensing-from-air-and-space/electromagnetic-radiation 
-emr-matter-interactions-remote-sensing/ . 

The distance that EM radiation can penetrate the atmosphere is determined by the 

wavelength. The study of incident radiation absorption is of special interest as it indicates 

the wavelength windows of radiation that can be detected by the appropriate sensors. The 

atmospheric windows from the MWIR of 3 to 5 micrometers (μm) to the LWIR of 8 to 

12 μm, where transmissivity is higher, are the ones exploited by most of the IR sensors 

http://what-when-how.com/remote-sensing-from-air-and-space/electromagnetic-radiation-emr-matter-interactions-remote-sensing/
http://what-when-how.com/remote-sensing-from-air-and-space/electromagnetic-radiation-emr-matter-interactions-remote-sensing/
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(see Figure 21). Different sensors, which operate at distinct regions of the EM spectrum, 

generate signals based on the sensing mechanisms employed. 

Figure 21.  Atmospheric Transmission 

 
Diagram of atmospheric transmission as a function of the wavelength Source: “Remote 
Sensing,” http://earthobservatory.nasa.gov/Features/RemoteSensing/remote_04.php. 

3. Terms and Theory 

In this section, some basic definitions and figures-of-merit are described to offer 

insight into the expected performance of the sensors used in this thesis research.  

• The field-of-view (FOV) is the angle that can be viewed through an 
aperture. 

• The instantaneous field-of-view (IFOV) is the angle that corresponds to 
each pixel of an array and measures the angular resolution of the detector.  

• The noise-equivalent temperature difference (NETD) is a measure of the 
image noise level of an IR camera and represents the temperature change 
that results in a signal equal to the total root-mean-squared (RMS) noise.  

• A blackbody is a totally non-reflective object that does not transmit 
incident radiation. Instead, it absorbs any incident radiation that strikes it 
at any wavelength. It turns out that good absorbers are also good emitters. 
According to Wien’s displacement law [43], the maximum energy is 
observed at a wavelength that is inversely proportional to the temperature 
of the source blackbody. This statement can also be observed in the 
following equation and Figure 22: 

[ ]3

max

2.898 10 m K
T

λ
−× ⋅

=
. 

• Emissivity is defined as the fraction ε of the amount of radiation emitted 
from an object compared to that emitted from a blackbody at a given 

http://earthobservatory.nasa.gov/Features/RemoteSensing/remote_04.php
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temperature. It is given by a number between 0 and 1, in which 1 is the 
emissivity of a blackbody. The various values of ε for different bodies are 
given in tables, and sensors have to be adjusted accordingly before any 
measurements are recorded.  

• Emittance is defined as the amount of energy emitted from an object per 
unit of time and per unit of area (W/m2). 

Figure 22.  Blackbody Spectra for a Set of Temperatures 

  
This graph illustrates blackbody’s spectral radiant emittance according to Wien’s 
displacement law as a function of wavelength λ plotted for different characteristic 
absolute temperatures. The relevant curves for non-blackbodies (gray bodies) would be of 
the same shape but of a different value according to ε. From this graph it becomes 
obvious that missiles will be most evident in 3–5 μm window, while humans in 8–12μm. 
Source: http://how-it-looks.blogspot.com/2010/01/infrared-radiation-black-bodies-and. 
html. 

4. Imaging Sensors 

The imaging sensors fall under two main categories: thermal sensors and photon 

sensors, or photodetectors. All the detectors under these categories respond to absorbed 

radiation.  

http://how-it-looks.blogspot.com/2010/01/infrared-radiation-black-bodies-and.html
http://how-it-looks.blogspot.com/2010/01/infrared-radiation-black-bodies-and.html
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a. Photodetectors 

Photodetectors are further classified into photoconductors and photodiodes. 

Photoconductors, used in IR sensors, are semiconductor devices designed to detect 

radiated photons, the fundamental unit of EM waves. When semiconductors absorb 

photons, electrons in the valence band get excited and move to the conduction band [44], 

[45]. A signature is formed when an object  reflects solar radiance or the object itself 

emits radiance. Figure 23 shows how different materials respond to wavelengths in the IR 

and visible spectra. These materials, based on their spectral characteristics, are used in the 

manufacturing of focal plane arrays  

Figure 23.  Materials Used in Photodetectors 

 
Source: R. Olsen C., “Remote sensing from air and space,” SPIE, 2007. 

b. Thermal Sensors 

Thermal sensors operate based on temperature changes as IR radiation is 

absorbed. The temperature changes are subsequently converted into electric signals. 

Thermal sensors are further classified into thermoelectric, pyroelectric, and bolometric 
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sensors. In bolometers, which are thermally isolated resistors, a change in the temperature 

of the sensor will affect its resistance. The temperature coefficient-of-resistance (TCR) is 

used to quantify the resistance changes [41]. TCR is given in the following equation:  

1 R
R T

α ∆
=

∆ ,  

in which ΔR represents the change of the bolometer resistance triggered by the 

temperature variation ΔT, and R is the bolometer’s resistance. 

c. Focal Plane Arrays 

In focal plane arrays (FPAs), the flux that enters the lens is focused on the plane 

where the array of the sensors is located. For the uncooled infrared imaging sensors, a 2D 

array of microbolometer pixels with  defined spacing, referred to as the pitch, forms the 

thermal detector (see Figure 24). The changes in the resistance of these pixels provide the 

necessary information to produce an image from this thermal camera.  

Figure 24.  Bolometer Pixel 

   
In the schematic drawing of the bolometer pixel, some key materials and parts are 
indicated. Source: F. Forsberg, A. C. Fischer, N. Roxhed, B. Samel, P. Ericsson, G. 
Stemme, and F. Niklaus, “Heterogeneous 3D integration of 17 μm pitch Si/SiGe quantum 
well bolometer arrays for infrared imaging systems,” J. Micromechanics 
Microengineering, vol. 23, no. 4, p. 045017, 2013. 

In visible image sensors, the two main categories for array composition include 

charge-coupled devices (CCDs) and complementary metal-oxide-semiconductors 
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(CMOSes). One of the patterns for generating color images is shown in Figure 25. In a 

CCD, photons accumulate on the sensors while in a CMOS, a photocurrent attracts 

additional electrons to the sensor [46], [44]. The steps involved for the final image by 

sensor type are shown in Figure 26. 

Figure 25.  Bayern Pattern Filtration 

 
Traditional CCD / CMOS sensor. Source: “BayerPatternFiltration,” 
https://commons.wikimedia.org/wiki/File:BayerPatternFiltration.png. 

Figure 26.  Image Sensing Steps 

 
Source: R. Szeliski, Computer Vision : Algorithms and Applications, vol. 5. Springer, 
2010. 

https://commons.wikimedia.org/wiki/File:BayerPatternFiltration.png
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5. Sensors Used 

Two different cameras, a FLIR C2 and a FLIR SC640, were used for collecting 

images, both hosting dual sensors in the IR and visible spectra. Some of their main 

characteristics are presented in Tables 4 and 5, respectively. The IR sensors in both 

cameras comprise uncooled microbolometers in the LWIR region of the IR spectrum. 

The big difference comes from the IFOV of the cameras, in which we see a significant 

difference from 0.33 mrad to 11 mrads and, thus, a big difference in the spatial 

resolution. Additionally, in the thermal sensitivity of the cameras, there was a big 

difference, from 30 to 100 milli-Kelvins (mK). In spatial resolution and in thermal 

sensitivity, FLIR SC 640 demonstrated better characteristics. 

Table 4.   Technical Characteristics of FLIR C2 Camera 

 
Source: “User’s manual – FLIR Cx series,” http://www.farnell.com/datasheets/
1903471.pdf. 

http://www.farnell.com/datasheets/1903471.pdf
http://www.farnell.com/datasheets/1903471.pdf
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Table 5.   Technical Characteristics of FLIR SC640 Camera 

 
Source: “Technical Data – FLIR SC640,” http://support.flir.com/DsDownload/ 
Assets/40402-3601_en_40.pdf. 

6. Digital Image Representation and Data Visualization 

Commission Internationale d’ Eclairage (CIE) has standardized RGB image 

representation using red, green, and blue primary colors, as shown in Figure 27. Under 

this standardization, colors are characterized by a point described by the x and y 

coordinates and luminance Y, which is a measure of intensity [47]. 

Figure 27.  The CIE Chromaticity Diagram 

 
Source: “Anatomy of a CIE Chromaticity Diagram,” http://dot-color.com/ 
category/terminology/. 

http://support.flir.com/DsDownload/Assets/40402-3601_en_40.pdf
http://support.flir.com/DsDownload/Assets/40402-3601_en_40.pdf
http://dot-color.com/category/terminology/
http://dot-color.com/category/terminology/
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The data visualization coming from an image is a grid of numbers that represents 

intensities ranging from 0 to 255. In true color images, each of the pixels will have a set 

of three values that directly associates with the red, green, and blue channels. As a result, 

each true color image will be represented by a three-dimensional array with the size of 

each being the same as the size of the image’s pixels. In grayscale images, only one 

matrix, which represents only brightness information, will be formed out of the 3D array 

[48]. In both cases, 0 represents black and 255 white, as shown in Figure 28. This grid is 

the computer’s view of an image. These are the values that various image-processing 

operators use as inputs to produce desired patterns or as outputs for further analysis and 

modeling [46].  

Figure 28.  Digital Image Data Visualization 

 
Digital image is composed of a rectangular pixel array in (x, y) coordinate with 
corresponding intensity values. 

C. CLASSIFICATION PROCESS 

The classification problem belongs to the category of supervised learning 

problems, in which we attempt to map inputs for specific outputs that represent our 

classes. In general, classification can be roughly described as the process by which 

models created with past data can be used to predict a class of new data with similar 
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attributes. In this way, discriminants are formed as classification rules that can distinguish 

between the examples in the different classes [49]. The following steps were carried out 

during the procedure to form these discriminants in our binary classification problem. 

1. Image Processing 

Image processing is the process through which captured images can be improved 

by enhancing characteristics, such as brightness and contrast, or by removing the noise 

[46], [50]. This step brings the images to a state that is more suitable and assists the 

specific feature-extraction process. 

2. Feature Detection and Description  

Feature detection or extraction is the process by which images are scanned in 

order to extract characteristic locations, or subsets of the image space. Consequently, the 

regions surrounding these locations will be exploited to generate invariant descriptors for 

our feature-description process. These descriptors characterize each image and the set of 

images for each class. The method for extracting these descriptors, and specifically, 

speeded-up robust features (SURF), is analyzed in the following paragraphs. This is a 

very important step as these features will become the inputs to form the discriminants for 

training the neural network. 

a. Speeded-Up Robust Features (SURF) 

Since the targets and platforms in battlefields are kinetic in unpredictable ways, 

we are also interested in the timeliness of the information. SURF features were finally 

selected to provide us the necessary descriptors. These features operate only in grayscale 

images, are rotation and scale invariant, and mainly used for matching applications. Other 

applications in which these features can be used include image registration, 3D 

reconstruction, and object recognition, as indicated by inventors [23]. Additionally, these 

features are rapidly computed, extracted, and compared. In several cases, SURF features 

were used to solve classification problems for facial expression [51], objects and their 

localization [52], automatic image annotation [53], and image-matching problems using 

supervised learning [54].  
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The implementation of the original method involves three steps mainly for 

matching applications, that is correspondence between images [23]. As a first step, 

appropriate interest points should be detected followed by the description of the area 

around these points in the form of a vector. Candidates for the interest points are those 

that represent objects in the image such as blobs, corners, and T-junctions. The metric for 

this step is a Hessian matrix-based detector, called the “Fast-Hessian” detector, that relies 

on integral images [55] for image convolutions. The descriptors have 64 dimensions and 

describe Haar-wavelet responses in the area surrounding the interest points.  

(1) Fast-Hessian Detector 

The detector of the interest points, based on the Hessian matrix, is characterized 

by stability and repeatability. Instead of a Gaussian or a Laplacian of Gaussian filter, an 

approximation of them with a box filter is used, as shown in Figure 29 (a). In this way, a 

scale-space is created, as shown in Figure 29 (d). Because we use integral images, there is 

no need to down-scale the images; instead, the increased dimensions of filters are applied 

to the integral images, as shown in Figure 29 (b). The result is faster performance by 

roughly a factor of three, without a negative effect on the detection of the interest points. 

The points are finally localized after a non-maximal suppression in a three by three by 

three neighborhood [23], [56], [57], as shown in Figure 29 (c). As a result, the detector is 

based on the determinant of the Hessian matrix for both the scale and the location of the 

interest points. Therefore, the Hessian matrix for a specific point  

pi = (x,y) on image Ixy is H (pi, σ) at pi at a scale of σ, defined as follows: 
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in which Lxx(pi,σ) is the convolution of the second order Gaussian derivative of the image 

Ixy at point pi [56]. 
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Figure 29.  SURF Detector  

 
In (a): LoG and box filter approximations. In (b): the way the box filters grow while 
being kept to scale. In (c): the non-maximal suppression that  results in the detection of 
the interest point. In (d): the scale-space pyramids for LoG (left) and box filters (right) 
Adapted from H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust 
Features (SURF),” no. September, 2008 and S. Ili, “Feature Descriptors,” Track. Detect. 
Comput. Vis., 2010. 

(2) Descriptors 

The method to extract the descriptors from the surrounding area of the interest 

points includes two more distinct steps. First, the Haar wavelet [50] responses will have 

to be calculated both in x and y directions within a certain area defined by scale 

parameters to detect the feature direction. In the second step, a square region needs to be 

defined around the interest point and subsequently rotated to match the feature direction, 

as shown in Figure 30 (a). Sub-regions of four by four are further defined, wherein 

simple features are computed in five by five grids inside these sub-regions, as shown in 

Figure 30 (b). The final 64 elements of the descriptor compose a four-element vector 

(Σdx, Σ|dx|, Σdy, Σ|dy|) multiplied by the sixteen sub-regions. 
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Figure 30.  SURF Descriptor 

 
In (a): the scale-based parameters to detect the feature direction. In (b): the sub-regions, 
wherein descriptor elements are calculated. Adapted from D. Schmitt and N. McCoy, 
“Object Classification and Localization Using SURF Descriptors,” Object Classif. 
Localization Using SURF Descriptors, pp. 1–5, 2011, and H. M. Sergieh, E. Egyed-
Zsigmond, M. Doller, D. Coquil, J.-M. Pinon, and H. Kosch, “Improving SURF Image 
Matching Using Supervised Learning,” 2012 Eighth Int. Conf. Signal Image Technol. 
Internet Based Syst., pp. 230–237, 2012 

3. Multi-Sensor Data Fusion 

If we consider the most accurate definitions that exist concerning data fusion, we 

can define multi-sensor data fusion as the collection and combined use of data originating 

from various sources to acquire enhanced information [58], [59]. Data fusion techniques 

and practices have been increasingly used in cases where a variety of sensors and sources 

are available. When such techniques are implemented, the expectation is that the results 

will become more accurate and reliable than data acquired from one source. Furthermore, 
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information fusion, which refers to the fusion of already processed data, can be 

implemented at a later stage or in combination with data fusion.   

Several classification schemes of data and information fusion have been 

proposed, mainly because it is a technique that numerous disciplines can implement. 

Castanedo in his review of the existing data fusion techniques [58] presents and 

categorizes them according to certain criteria. We will use the classification based on 

abstraction levels to better describe the different ways that data fusion techniques have 

been implemented in our experiment. According to Castanedo’s classification criterion, 

we can describe the following categories: 

(1) Low level fusion, in which raw data are fed as an input to the data fusion 

process; 

(2) Medium level fusion, also known as feature or characteristic level, in 

which features or characteristics are used as inputs to the fusion process; 

(3) High level fusion, which is also known as decision fusion; and 

(4) Multiple level fusion, in which data fusion involves some or all of the 

previous mentioned categories [58]. 

4. Machine Learning 

Although machine learning uses data paradigms to form or predict patterns of 

data, it is not limited in finding solutions for database challenges. The main focus of this 

science is to produce the appropriate models that will enable computers to demonstrate a 

self-learning performance based on experience built on past data without being explicitly 

programmed [49], [60]. Artificial intelligence (AI) is a big part of this field. Furthermore, 

artificial neural networks (ANNs) are an attempt to create machine intelligence that can 

mimic human brain performance in the areas that still need development, such as 

computer vision or pattern recognition. In this thesis, ANNs are used to build the 

classifier for a binary classification problem since they are proven excellent classifiers 

when dealing with non-linear problems. 
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a. Artificial Neural Networks 

Neurons are the basic elements of the human brain. Their operation is to 

accumulate input signals and when a certain threshold is reached, they will trigger an 

output signal, as shown in Figure 31. The same concept is the basis of the ANNs, or more 

simply, neural networks (NNs). A network of artificial neurons can in most  cases be 

modeled to  simulate the structure of biological neurons [61]. 

Figure 31.  Neuron Schematic  

 
The input signals may be outputs from other neurons. When sufficient signals are 
accumulated, the neuron will trigger and fire an output signal. Source: S. Raschka, 
“Artificial Neurons and Single-Layer Neural Networks,” 2015, http://sebastianraschka. 
com/Articles/2015_singlelayer_neurons.html. 

The equivalent design of the artificial neuron, which is the basic processing 

element in NNs, is shown in Figure 32. A number of inputs xi is assigned to coefficients 

or weights w1j, which control the impact of the specific connection, plus a bias w0, to 

make the model more general. Each perceptron with the weighted sum of the inputs 

multiplied by the weights defines a hyper-plane.  

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html
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Figure 32.  Artificial Neuron 

 
The weighted sum of the inputs multiplied by the weights plus the bias is fed into the 
activation function in which a threshold determines whether it will fire an output. Source: 
M. Triki, H. Chabchoub, and W. Hachicha, “A neural network-based simulation 
metamodel for a process parameters optimization: A case study,” Logistiqua, 2011 4th 
Int. Conf., pp. 323–328, 2011. 

Neurons are grouped in layers, which are fully connected through communication 

channels called connections. The first layer is the input layer in which the extracted 

outputs from the previous steps will be entered as inputs. Thus, the nodes on the input 

layer are limited by the number of the features that we define. Next, we find the hidden 

layers, which are the layers in between the input and the output layers. Although there are 

no rules to determine the number of hidden or total layers and their respective nodes, 

some empirical norms do exist based on experimentation and previous results from 

various categories of problems. One norm is that usually three layers are enough, but 

additional layers can be added if results are not satisfactory. The input layer is not taken 

into account when referring to the number of layers of a NN. The last layer is the output 

layer, which in our case is going to have two nodes corresponding to the two classes of 

our problem, as shown in Figure 33.  
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Figure 33.  Connections and Layers of ANNs 

     
An example of an ANN topology. Source: “Neural Network Classifier,” https://code. 
google.com/p/nll/wiki/ClassifierNeuralNetwork. 

The two main network topologies are feedforward and feedback, or recurrent, 

neural networks. In the first category, neurons do not back propagate while in the latter, 

they do. One more difference that NNs have is determined by the kind of data that they 

can handle. The main data categories or variables that exist are the categorical and 

quantitative variables. Categorical data needs to be mapped into numbers before they are 

fed into the network [61]. ANNs can be characterized with a set of numbers that 

describes their topology. For example an X-100-2 ANN is a two-layer ANN with X 

inputs, 100 neurons in the hidden layer and two outputs, and it is the characteristic 

topology of the network used in this thesis. 

ANNs usually have one or more hidden layers with neurons. The activation 

function applied on the weighted sums of the neurons can be either linear or non-linear. 

The main functions that can be met in NNs are presented in Figure 34. In classification 

https://code.google.com/p/nll/wiki/ClassifierNeuralNetwork
https://code.google.com/p/nll/wiki/ClassifierNeuralNetwork
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problems, as they are highly non-linear, the equivalent activation functions are used. In 

this classification problem, specifically the logsig(n) is used in the output layer since we 

want to constrain the output between 0 and 1 for the binary classification problem [62]. 

Figure 34.  Transfer Functions of ANNs 

 
The main and most common activation or transfer functions that perform the decision in 
each neuron are depicted in this image: tan-sigmoid (a), log-sigmoid (b) and linear (c). 
Modified versions of them can be also used depending on the type of the ANN. Source: 
“Analysis of Pesticide Mixtures Using Intelligent Biosensors,” http://www.intechopen. 
com/books/intelligent-and-biosensors/analysis-of-pesticide-mixtures-using-intelligent-
biosensors 

b. Training the Neural Network 

For the training process of the ANN, an important parameter that we have to 

consider is the type of the ANN and the training algorithm that it uses. In MATLAB, 

several training algorithms can be implemented in the ANN, and the choice depends on 

factors such as the complexity of the problem or the amount of the available data. In 

classification problems, scale conjugate gradient (SCG), a backpropagation algorithm 

(trainscg), seems to outperform the rest of the available algorithms, especially when large 

number of weights exist [63], [64].  

The typical work flow for the overall training process after selecting the training 

algorithm has the following steps [65]: 

• Collect and prepare the data 

• Create the network  

• Configure the network parameters 

http://www.intechopen.com/books/intelligent-and-biosensors/analysis-of-pesticide-mixtures-using-intelligent-biosensors
http://www.intechopen.com/books/intelligent-and-biosensors/analysis-of-pesticide-mixtures-using-intelligent-biosensors
http://www.intechopen.com/books/intelligent-and-biosensors/analysis-of-pesticide-mixtures-using-intelligent-biosensors
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• Initialize the weights and biases 

• Train the network using the training data 

• Validate the network 

• Use the network to predict the testing data, which has to be separated from 
the training and validation steps. 

c. Classification 

The problem of classification, or in this case, category (class) recognition and 

image classification, can be seen as the task of creating general models or representations 

of attributes from a collection of data that characterizes a specific class then finding any 

existing correspondence between any set of testing data. Today, image classification 

continues to be one of the unresolved problems in the area of computer vision [46]. That 

is not to say solutions do not exist, but they are partial and applicable only to certain areas 

under constraints. The main comparison often used to support this statement is that 

current solutions cannot outperform the capability of a child to recognize and classify 

objects. Over the last fifteen years, it seems that new interest in NNs has made steps 

toward solving this problem [66]. In this thesis, the last step is to evaluate the 

performance of NNs in a binary classification problem of categorizing boats between the 

classes of sailing and power boats. 

The performance measures used for this classification problem are the confusion 

matrix and the receiver operating characteristics (ROC) curves [49]. For a binary 

classification problem like the one investigated in this thesis, the confusion matrix will 

have the form of Table 6, wherein the corresponding definitions are presented. Further 

relevant definitions of performance measures are given in Table 7. 
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Table 6.   Confusion Matrix for Binary Classification Problem 

 
Adapted from E. Alpaydin, “Introduction to Machine Learning,” Thrird Edi. MIT Press, 
2014. 

 

Table 7.   Performance Measures for Binary Classification Problem 

 
Adapted from E. Alpaydin, “Introduction to Machine Learning,” Thrird Edi. MIT Press, 
2014. 

ROC curves give us a graphical representation of the true positive rate (TPR) as a 

function of the false positive rate (FPR). An example of  ROC curves with a rough 

representation based on the expected classifier performances is shown in Figure 35. As 

shown in the depicted curves, the more they shift to the upper left corner, the better the 

classifier is characterized. We can also measure the quality of the classifier with the area 

under the curve (AUC), in which 1 is the value corresponding to an ideal classifier [49]. 
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Figure 35.  Expected ROC Curves 

 
A rough representation of the expected ROC curves according to the performance of the 
used model is given for comparison later with the derived results from our binary 
classification. On the x-axis, FPR is the ratio of false positives over all negatives, and on 
the y-axis, TPR is the ratio of true positive over all positives. Source: “ROC curves,” 
http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/ 
lecture22a.htm. 

Another way to evaluate the performance of an ANN is to use the mean squared 

error (MSE) and the cross-entropy or deviance as a measure of fit [67], [68], [69]. MSE is 

the output to be compared during the training or testing phase of the ANN 

implementation. The error is the difference between the target value representing an 

assigned class of the supervised process and the output value that was predicted from the 

ANN. The MSE and the cross-entropy are given in the following equations: 

 

 

http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22a.htm
http://www.unc.edu/courses/2010fall/ecol/563/001/docs/lectures/lecture22a.htm
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in which N represents the total number of samples, ti the assigned target values, and yi the 

predicted outputs. 

D. USING CENETIX TNT TESTBED FOR EXPERIMENTATION WITH 
SENSORS 

The Center for Network, Innovation and Experimentation (CENETIX) at the 

Naval Postgraduate School (NPS) is focused on extensive experimentation of self-

organizing tactical networking and collaboration. Since it was founded in 2004, many 

experiments have been conducted with a focus on adaptive wireless and mesh networks 

to allow connectivity and collaboration of various manned and unmanned platforms, from 

UAVs to divers and satellites [70]. While the primary focus was on maritime interdiction 

operations (MIO) initially, numerous partners, whose cooperation supported several 

national as well as international-level field experiments, turned it into a leading 

innovative solution for the modern battlefields. Tactical Network Topology (TNT) and 

MIO test-beds allows for cooperation and experimentation with universities, military 

institutions and organizations such as MIT, NMIOTC, and LLNL. One of the latest 

innovative solutions proposed by CENETIX was for network divers; a real-time 

exchange of images and text was tested during the latest experiments in San Francisco 

Bay. Acquired results from this and other experiments will be subject for discussion in 

this thesis. In Figures 36 and 37, the tactical and reachback infrastructure as well as the 

available subnets under TNT-MIO experimentation are presented. 
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Figure 36.  CENETIX Tactical and Reachback Infrastructure 

 
The CENETIX tactical and reachback infrastructure is extended through mesh networks 
to incorporate various heterogeneous nodes. Source: A. Bordetsky, “Maritime Threat 
Countering Networking and Collaboration Testbed.” 2013. 

Figure 37.  Subnets under TNT-MIO experimentation 

 
Source: “TNT-MIO Host IP Configuration,” http://cenetix.nps.edu/SA1/ipconfigmain. 
asp. 

http://cenetix.nps.edu/SA1/ipconfigmain.asp
http://cenetix.nps.edu/SA1/ipconfigmain.asp
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III. SIMULATION MODELING OF ATR THROUGH A MESH 
NETWORK OF IMAGING SENSORS 

Assets operating in an area of interest (AOI) follow certain procedures to classify 

and, if possible, identify contacts of interest (COIs). This process becomes even more 

challenging when only passive sensors are used. Additionally, there are operational 

restrictions for how closely these assets can approach any of these potential COIs. These 

restrictions depend on the type and the capabilities of the assets as well as their overall 

mission. Oftentimes, the presence of other friendly assets in the area that could contribute 

to this effort remains unexploited. The proposed scheme of this thesis aims to detect and 

connect multiple assets through a mesh network and to facilitate the timely dissemination 

of critical information coming from their sensors, in a littoral environment. This scheme 

requires that available distributed database centers be part of the network. Additionally, 

automation should be applied in certain functions and processes. In this way, received 

data will be exploited for evaluation in the decision-making process before their value 

expires. 

In this proposed scheme, we focus on a specific task of classifying image data of 

potential targets coming from the mesh nodes. Some of the challenges that this task poses 

are the need for high throughput as well as the ability to exploit imagery data coming 

from dissimilar sensors. The purpose of the simulations and experiments carried out to 

support the concept of this scheme is twofold. First, this thesis evaluates the feasibility, 

coverage, and quality of service (QoS) of the networked sensors in a maritime littoral 

environment. Second, this thesis evaluates data fusion and classification of images 

coming from dissimilar sensors. In this way, we allow assets that need to be undercover 

to safely operate in the area while other platforms that can take the risk of proximity to 

the target capture images from shorter distances. 

In this chapter, certain steps of the overall conceptual scheme (see Figure 38) are 

explained in more detail. In the first part, the steps and parameters to simulate and 

evaluate a mesh network in a littoral environment are presented to show how existing 

terrestrial and satellite networks can be extended. Additionally, CENETIX’s contribution 
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to the scope of this thesis is described. In the second part, image capture, fusion, training, 

and classification methods used in this thesis are further explained.  

Figure 38.  Proposed Scheme 

 
Proposed scheme for ATR through wireless mesh sensor networks. If and when the 
classified COIs are positively identified, they become part of the image database, and the 
system has to be retrained.  

A. SIMULATION AND EVALUATION OF A WIRELESS MESH NETWORK 

Initially and according to the STK and Qualnet simulation, a mesh network 

should be established with a quality of service (QoS) that could facilitate the timely 

dissemination of the captured images. At least one of the participating assets in the 

network should be a distributed data center with the functionality of a network operating 

center (NOC), capable of monitoring the status of the networked assets. These assets 

could be unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), ground 

stations, ships, air assets, satellites, or even human agents with or without imaging 

capabilities acting as relays to extend the network in the latter case. Figure 39 depicts this 

concept and displays the various assets in a littoral environment. In this challenging 

environment and through the use of the proposed technologies, the geographical obstacles 

are not a problem for the establishment of communications between the assets in the area. 

Instead, the land masses are used in a way that offers an advantage: hosting ground 

stations act as gateways and nodes for the interconnection of the existing subnets of the 

dynamic mesh network. The synthesis of these networks allows for dissemination of the 

images captured by the heterogeneous imaging sensors and their exploitation through the 

proposed scenario in STK. 
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Figure 39.  Terrestrial and Satellite Network 

 
Extension of terrestrial and satellite network through a wireless mesh network (WMN) in 
a littoral environment to connect assets with imaging capabilities  

1. STK Simulation 

The STK simulation is focused in littoral waters and a limited area of interest 

(AOI) (see Figure 40), mainly because of the use of imagery satellites and the need to 

investigate the revisit time for a specific area. The objects inserted in the scenario include 

ships, UAVs, ground vehicles, ground stations, as well as imaging and communications 

relay satellites. 
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Figure 40.  AOI in STK 

 
The AOI used for our simulation as extracted from STK 2D graphics. 

The parameters and configurations of the simulated assets are presented in this 

section. Ground and sea tracks as well as flight orbits are designed for the several assets 

to demonstrate mesh-networking flexibility in the progress of time, as shown in Figure 

41. The ability to replay the scenario offers insight into and rough measurements of the 

link ranges and communications success in the physical layer. The final scenario will be 

saved, along with images and videos from 2D and 3D graphics windows, for future 

evaluation of the fifth generation Wave Relay radios.  
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Figure 41.  Assets Used in the Simulation 

 
Assets used in the simulation and their designed tracks as extracted from STK 2D 
graphics. 

The objects are imported in the simulation by inserting them into the scenario via 

the “Insert STK objects” window. In doing so, sensors, antennas, transmitters, and 

receivers are attached to them. Thereafter, they can be accessed for necessary 

configurations from the “Object Browser,” an instance of which is shown in Figure 42. 
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Figure 42.  Instance of the Object Browser 

 
Instance of the Object Browser where all the objects are listed and can be accessed for 
configuration. 

The imaging and communications relay satellites are shown in Figure 43. The 

integration of imaging cube-satellites into the mesh network is included in this scenario 

to demonstrate capabilities that already exist and to evaluate their potential contribution 

in intelligence, surveillance, and reconnaissance (ISR) missions in littoral waters. These 

satellites can provide imagery information during operations in areas where no assets are 

available or when other reasons prevent the presence of friendly assets. Since we are 

dealing with low earth orbits (LEOs), we expect the revisit times in the specified AOI to 

be small. However, if we can monitor the timeframes that these assets are available, the 

gain becomes obvious. 
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Figure 43.  Satellites in Simulation 

 
The satellites and their low earth orbits as extracted from the STK scenario 3D graphics. 

The orbit parameters that were imported into STK for the imaging satellites are 

presented in Figure 44. The height was set at 300 km, and an inclination of 40 degrees 

was assigned.  

Figure 44.  Orbit Parameters for Imaging Satellites 

 

The basic orbit parameters that were assigned for the three imaging satellites were 
imported in the Orbit window of the Basic menu of the object. 
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The angle at which the sensor is pointing, or the look angle, , was set at nadir, and 

a field-of-regard (FOR) was assigned based on the capabilities of the sensor to alter its 

look angle. FOR sets the boundaries where the field of view (FOV)—the sensor’s cone of 

visibility—can move. Figure 45 shows the FOR and  FOV that were simulated. The 

concept of using these parameters is that the satellite will be tasked to change its look 

angle to acquire images from the desired area based on operational needs during the 

available time slots. 

Figure 45.  FOR and FOV for the Imaging Satellites 

The FOR and FOV projected on the earth’s surface are depicted in this figure. The FOV 
can be assigned a look angle inside the FOR boundaries as the satellite travels in its 
designated orbit. 

Based on the following equation, the height of 300 km was selected to provide the 

desired ground sample distance (GSD) or resolution calculated for a nadir of 3.66 m: 

2.44 hGSD
D
λ× ×

= ,
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in which λ is the wavelength, h the distance between the sensor and the object, and D the 

sensor’s aperture diameter. 

The UAV used for the simulation, an RQ-11B Raven, was extracted from the 

STK database. Its basic parameters are shown in Figure 46. A flight path was designed in 

the basic route menu and the height was set to 200 ft. 

Figure 46.  Basic UAV Parameters 

 
 

The rest of the imported nodes in the simulation were communications relay 

satellites, ships, ground facilities, and ground vehicles. Routes were assigned to all the 

kinetic nodes to demonstrate and study the expected fluid nature of the established links. 

Finally, the Wave Relay radios were simulated with the parameters that are presented in 

Figure 47. These parameters are not the precise parameters with which the actual radios 

may be configured. Since Wave Relay runs proprietary software, these settings were not 

open and, thus, impossible accurately simulate. Care was taken, though, for the 

theoretical performance of the selected settings to be comparable to those presented in 

Chapter II. 
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Figure 47.  Wave Relay Transmission and Antenna Parameters 

Some of the parameters that were inserted for the configuration of the Tx and antenna 
simulating the Wave Relay radios are shown in this figure. 

2. Simulation in QualNet

For the QualNet simulation, the nodes participating in the network were 

configured according to the available Wave Relay radio parameters presented in Table 1. 

A second separate replay was possible through QualNet that gave us metrics to evaluate 

the network QoS from the MAC layer to the application layer of the OSI seven-layer 

model. An instance of the QualNet configuration browser and settings of the channel 

properties window are shown in Figure 48. As previously mentioned, the simulation 

could not be entirely accurate since the exact parameters of Wave Relay have not been 

released. Therefore, what we sought from this simulation was to set the basis that permits 

the comparison of simulation results with the ones obtained in future field experiments 

using fifth generation Wave Relay radios. Consequently, after a fine-tuning of the 

parameters in the simulation, the results will be comparable to the observed results in the 

field. Thus, it will be feasible for future scenarios and experiments to be simulated and 

adjusted accordingly to meet the desired requirements. 
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Figure 48.  Qualnet Nodes Configuration Browser 

 
The participating nodes in the mesh network are listed in the configuration browser. 
Channel properties that were imported are also depicted. 

B. IMAGE FUSION AND CLASSIFICATION SCHEME  

The performed research in this thesis, even though limited due to lack of 

equipment and resources, proposed a scheme for classification of images from potential 

targets. Additionally, one of the main goals was to evaluate the gains from applying a 

fusion step for the images coming from dissimilar sensors in the field. This final proposal 

should also be applicable to littoral environments that pose additional challenges in terms 

of the wide variety of backgrounds that the acquired images usually have. 

All the steps that were finally implemented are illustrated in Figure 49. These 

steps start with capturing  images in the field and end with classifying available targets. 

The methodology used at each of these steps is described in detail to show the challenges 
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that were posed and taken under consideration through the overall process. A MATLAB 

script was developed for this implementation. 

Figure 49.  Image Classification Scheme 

 
Proposed scheme for the image classification of the targets that includes the necessary 
steps from image processing to the final step of image classification. 

1. Image Capture and Collection 

Since the intention of this research was to study all the concepts under the littoral 

environment, the image set had to reflect this case. Furthermore, we had to investigate the 

impact of fusion in the classification process. One of the requirements in the proposed 

scheme, then, was to handle images randomly captured with no control over their aspects, 

distances, background, or lighting conditions. Thus, the image set had to be acquired 

from the field since no images were available that included the same scene captured by 

dissimilar sensors. Both cameras had these capabilities, which were described in Chapter 

II. The final image set included three different categories of images, as shown in Figure 
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50. All categories were directly acquired by the cameras, except for the multispectral 

images from FLIR SC640, which were derived after an image-to-image registration 

process. 

Figure 50.  Categories of Captured Images  

 
The image set included color-visual and thermal images from both cameras and 
additional MSX images from FLIR C2. The multispectral version from FLIR SC 640 was 
derived after registration of the color-visual and thermal images. 

The available targets in the area were powerboats and sailing boats. Hence, the 

images in our experiment were captured to include these targets with various 

backgrounds. The background was selected to be either the sea or combined sea and land 

to simulate the background of images expected in littoral waters (see Figure 51). 

Background extraction of the images, then, became a very complex task, which was not 

accomplished—as different algorithms and methods used were able to extract the 

background from only part of the image set.  
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Figure 51.  Sample Images with Different Background 

 
Images were purposely captured with different backgrounds to pose the challenge of 
classifying boats in such a complex background. 

The total number of the dataset was also a key factor for performance during the 

whole process. The total number of images included in the experiment was 85. A large 

number of images were rejected because of the poor resolution, especially in IR for 

longer distances or when too many targets were in the image. The cameras did not have 

advanced capabilities or zoom features usually met in cameras used for ISR purposes. 

Instead, the acquired images were preprocessed in such a way that zoom was simulated, 

so only one boat, or at least boats only from the same category, would be included in the 

image (see Figure 52). 

Figure 52.  Original and Zoomed Images 

 
Original (a) versus zoomed (b) images in order for the object to cover the majority of the 
image. 
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2. Low Level Image Fusion Implementation 

Data fusion from the two sensors was a process that investigated whether images 

coming from different sensors, either similar or dissimilar, could be handled by one 

system in our proposed scheme for ATR. Additionally, we examined whether fused 

images would result in better classification performance outcomes. Therefore, the fusion 

process was implemented in several stages. Initially, after the images were captured, low-

level fusion had to be applied to the FLIR DSC 640 thermal and visual images to produce 

multispectral ones. For this implementation, ENVI’s image-to-image registration was 

finally used—after many unsuccessful trials using feature-based registration in 

MATLAB. The best result in MATLAB and the final registered image for one pair of 

images are shown in Figure 53. The steps for the final implementation are described in 

the appendix.  

Figure 53.  Fusion Result Comparison from MATLAB and ENVI 

 
In (a): the best derived result after feature-based registration in MATLAB. In (b): the 
final registered image in ENVI.  

Moreover, images from different sources and sensors were fused in sets of images 

falling under the same category, in our case, either color-visual or multispectral (MSX). 

The thermal images from FLIR C2 demonstrated very poor results due to the poor 

resolution, so they were not fused with the other images. The category of MSX images 

involved images already fused in the FLIR C2 and the multispectral products of image 
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registration from the FLIR SC640’s pairs of images. The third case in which fusion was 

implemented was the medium-level fusion after the feature extraction step, which is 

discussed later this chapter. Finally, all the images—MSX, thermal, and visual—were 

fused to investigate whether the classification performance was improving. 

3. Image Processing 

In the image processing step, all images were converted to grayscale, and 

subsequently, histogram equalization was applied as shown in Figure 54. Initially, the 

images were .jpg files, which means they were represented in MATLAB as three-

dimensional matrices with the number of elements equal to the pixels of the images, as 

discussed in Chapter II. This step was mandatory since the feature-extraction method 

works only with grayscale images, which were represented by individual matrices of the 

same size as the original three color channels. The values of the elements of these 

matrices were the intensities on which pixel operations were performed. 

Figure 54.  Image Processing  

 
Preprocessed images were converted to grayscale, and histogram equalization was 
subsequently applied. 

Applying histogram equalization in the images was also necessary after the results 

were derived without taking this step. Because of the limited capabilities to adjust 

brightness and contrast before capturing each image, the extracted SURF features were 

very poor, especially in the lower analysis images. Since histogram equalization is a 

gray-level mapping process and there is no gain when applying it to separate color 

channels, it was applied after the step for changing images to grayscale. This process 

calculated the probability density function (PDF) of the normalized intensities of the 
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images’ pixels, ranging from 0 to 1. Then, cumulative distribution function (CDF) was 

used as a transformation function [50]. The result of the histogram equalization was 

enhancement and uncovering of  details that had been lost due to poor contrast ratios 

[46], [71]; an example is given in Figure 55.  

Figure 55.  Image before and after Histogram Equalization 

 
In (a) and (b), the original image and its histogram are presented while in (c) and (d), the 
corresponding results after histogram equalization was applied. 

4. SURF Features: Detection and Description 

The next step was the extraction of the features to be used as inputs in the 

artificial neural network (ANN). Speeded-up robust features (SURF) were finally 

selected and used for this step as they produce scale and rotation invariant features. These 

characteristics are particularly important in the maritime environment since platforms are 

constantly moving at unpredictable directions. Additionally, the detection of the interest 

points and the extraction of the corresponding descriptors were fast enough to support 

real or near real-time recognition based on these features. The steps that were carried out 

to finalize the features fed into the ANN are presented in Figure 56. 
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Figure 56.  Steps for SURF Features Extraction 

 
After image processing, SURF features were extracted, and the final features to be fed in 
the ANN were extracted after normalization of the ten strongest, as shown in the step-by-
step process. 

When SURF features were extracted for the image set, we noticed that a large 

number of images were formed around interest points from the background, thus creating 

multiple potential outliers that would eventually degrade the classification process. This 

problem could have been avoided if background extraction had been possible in the 

previous steps, and a larger number of the strongest features selected could have been 

possible early in the process. After experimentation with the number of the strongest 

features in each image, we identified the ten strongest. This selection provided enough 

features from various characteristic points of the boats to significantly reduce the outliers 

in the majority of the images. The results of detecting SURF features in one of the images 

are presented in Figures 57 and  58. As shown in these two images, the SURF features 

before and after histogram-equalization was applied differed but, still, no outliers were 

detected. 
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Figure 57.  Total and Ten Strongest SURF Features in an Image 

 
 In (a), all the detected SURF features are displayed while in (b), only the ten strongest. 
All outliers were removed in this image by this reduction of selecting only the ten 
strongest. 

Figure 58.  SURF Features after Histogram Equalization 

 
The ten strongest features detected in an image after histogram equalization. Notice that 
these features are different from the ones detected in Figure 57 (b).  

The final step taken before the final features were formed was the normalization 

step. The maximum value of each feature vector was detected and used to normalize the 

64 values of which each vector was composed. With this step, potential matching and 

scaled patterns of feature vectors could become easier for the ANN to associate. 
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5. Medium Level Image Fusion Implementation 

During this step, feature vectors derived from the pairs of the visual and the 

thermal images were combined to investigate whether better classification performance 

occurred. The way the fusion of the features was applied is depicted in Figure 59,. 

Figure 59.  Medium Level Fusion of SURF Features 

 
The extracted SURF features from the thermal and  visual images were fused to create 
another feed for the ANN. 

6. Image Classification Using an Artificial Neural Network 

The classification process involves training an ANN, extracting the net with its 

weights, and finally, using it to classify the samples of the testing data, which were 

separated to ensure that they were not involved in the previous steps. In the following 

subsections, the procedure that was followed in these steps is further explained. Figure 60 

presents the processes during the classification step. 
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Figure 60.  Steps for Image Classification with ANNs 

 
 

a. Training the Artificial Neural Network 

Initially, the topology of the ANN had to be defined. As we had to deal with a 

binary classification process, as previously discussed, the number of outputs at the output 

layer had to be two. The number of neurons in the input layer was always equal to the 

number of the input features in all the different cases we tested; these sets are presented 

in Table 8. In order to determine the final number of neurons in the hidden layer, several 

tests were conducted that ranged from 20 to 400 neurons. It was important to have 

enough neurons to deal with the complexity of the problem. However, too many neurons 

could result in overfitting [72]. In the latter case, even if results during training appeared 

to be ideal, the results after testing would not be at an acceptable level. As a result, the 

final number of neurons at the hidden layer was set to 100, for which the conducted tests 

presented the best performance for the classification process. Hence, the topology finally 

selected was X-100-2, as shown in Figure 61, in which X was the number of inputs for 

each of the tests. 



 78 

Table 8.   Description of Tests and Number of Inputs 

 
The different sets coming from the corresponding sets of images or their fusion and the 
fusion of features that are tested are presented in this table. The results will be compared 
to drive our conclusions. 

Figure 61.  ANN Topology during Trials 

 
This ANN topology was 640–100-2. There were 640 inputs for the input layer, 100 
neurons for the hidden layer, and two outputs. 

After the images were separated in training and testing, a target class was 

assigned to each one of them as is required for the supervised learning problem of 

classification [49]. In our case, we had a binary classification problem, so the binary 

classes of 01 and 10 were assigned as target labels. The goal for the ANN in the training 

process was to learn to map the inputs to the predefined outputs or targets. 

Additionally, and because of the small number of samples, early stopping was 

applied during the training process to further reduce the possibility of overfitting [72], 
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[73]. In order to implement this step, during each ANN training, the training set was 

further split into training and validation sets. When the performance of the validation set 

during training began to increase for a number of epochs without the same behavior 

detected in the training set, the training stopped. The updated weights of the epoch in 

which the overfitting initiated were stored for the ANN, as shown in Figure 62. 

Whenever early stopping was not selected for the trials, the classification rate during 

training always reached 100 percent, but the testing results obtained were poor and rarely 

exceeded 40 percent, which was a clear indication of overfitting. 

Figure 62.  Early Stopping  

  
During the training process, the validation performance started increasing at epoch 7 
while the same did not happen for training performance. Training stopped at epoch 13, 
but the weights that were stored were from epoch 7. 

b. Classification 

The final step was to obtain the classification output after the test data was used to 

evaluate the network. The techniques implemented in this case to compensate for the 

small number of samples were to retrain multiple times and to retrain multiple networks 

since training sessions started with different initial weights and biases [72]. In the first 
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case, a network was trained 1000 times, and in the second, ten different networks were 

trained 100 times each. The only change in the ten NNs occurred in the different training 

sets, and as a result, testing sets as bootstrap methods were used. The basic concept of 

bootstrapping was to randomly select training datasets with replacements from the total 

set of images that were formed in each case [69]. In both cases, 1,000 values of the mean-

squared-error (MSE), cross-entropy, and classification performance as well as their 

averages were recorded and plotted. These averages were used as a metric to evaluate the 

performance of the network. The ANN that yielded the lowest MSE or cross-entropy or 

the highest classification rate would be the one that best generalized to the test set. 

Finally, the derived results for each of the cases of Table 8 were compared to help us 

evaluate whether any fusion process yielded better results than the cases in which only 

one type of image or feature was used. 

C. CENETIX EXPERIMENTATION MODELING 

CENETIX field experimentation was used in this thesis to test the hypotheses as 

well as support and enhance the conceptual idea of the proposed modeling. Several 

experiments were carried out during the recent constellation experiments that took place 

in San Francisco Bay during the last week of October. The results of the experiments this 

thesis could make use of were the ones involving imagery data dissemination from 

unmanned or manned systems as well as the decision support tools that were tested after 

the appropriate parameters were implemented to support Wave Relay radio monitoring 

[74]. Innovative solutions have always been the aim for CENETIX experimentation. Of 

particular interest for this thesis were the following three aspects of the CENETIX 

experiments: exchanging imagery data between divers and an unmanned underwater 

vehicle (UUV) via two-way communications; streaming video from an unmanned ground 

vehicle (UGV) performing a land search; and integrating CodeMettle network monitoring 

and management tools. 

1. Mesh Networking Implementations for Imagery Data Dissemination 

Mesh networking scenarios were planned during the recent CENETIX 

experimentation and collaboration session in San Francisco Bay that included 
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disseminating imagery data and streaming video. Manned systems, unmanned systems, 

and divers were planned as nodes that would extend the TNT-MIO backbone. Depending 

on the network’s availability Wave Relay, satellite link, and 4G would be used. Previous 

experiments had resulted in successful networking of unmanned systems and swimmers, 

as shown in Figure 63. A step forward was attempted to include divers among the 

networked assets. 

Figure 63.  Networked Swimmers 

 
Swimmers were successfully incorporated in the network in previous experiments. 

2. CodeMettle’s Network Monitoring and Management Tool 

CodeMettle, as it is open source software, was configured to monitor Wave Relay 

mesh-network traffic and performance [75]. This was feasible since Wave Relay could be 

configured and monitored through the supporting application programming interface 

(API). This interface could run over the Wave Relay hypertext transfer protocol over SSL 

or secure (HTTPS) interface, thus allowing communication with programs that submitted 

requests conforming to the hypertext transfer protocol (HTTP) [6], [37]. The data and 

metrics enabled in management interface could be monitored through the Code Mettle 

network management support tool when configured according to the API. As a result, 

signal-to-noise ratio (SNR), traffic load, node status, GPS information, channel usage, 

and other parameters were monitored and graphically analyzed to enhance SA concerning 
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network nodes and enable end-to-end network management. An instance of CodeMettle 

management tool graphics is shown in Figure 64. 

Figure 64.  CodeMettle Management Tool Graphics 

 
 



 83 

IV. SIMULATION AND EXPERIMENTATION RESULTS  

The steps and methods applied for the simulation modeling of automatic target 

recognition (ATR) through a mesh network of imaging sensors described in the previous 

chapters gave us a variety of results that are presented in the following sections. The 

results are separated in three categories. The first category includes the results obtained 

from the mesh network simulation in Systems Tool Kit (STK) and QualNet. Next, the 

relevant Center for Network, Innovation and Experimentation (CENETIX) results from 

field experiments are presented. The third and final category involves the results 

concerning the image fusion and classification process. 

A. STK AND QUALNET SIMULATION 

Several problems were detected and delayed the STK and QualNet simulation of 

the mesh network of multiple heterogeneous nodes through Wave Relay radios. The first 

step of integrating the QualNet interface was successfully resolved after following 

already proposed solutions from previous theses, as already discussed. The problems that 

came up during the replay phase, though, were not solved within the time available for 

this thesis. The results obtained from the overall STK simulation are presented in the 

following subsections. 

1. STK 

The STK simulation was intended to give us an insight into what ranges we 

should expect to establish communications between the several nodes that were imported 

in the scenario. The scenario involved two surface units, an unmanned aerial vehicle 

(UAV), one ground vehicle, and three ground stations. In Figure 65, an instance of the 

simulation is shown. The white lines represent the routes followed by the platforms, and 

the brown lines represent the communication links between the nodes. In this instance, 

the range between the two surface units was the maximum observed in the scenario. The 

height of the antennas was set to 10 meters, and the measured distance was 14.6 km. The 

rest of the ranges that were measured cannot be considered as a basis since they were 

dynamically formed. The altitude and route of the UAV, the height of the ground 



 84 

stations, and the geography were the parameters that affected the various ranges that links 

were closing between the nodes.  

Figure 65.  Wireless Mesh Links of the Participating Nodes  

 
An instance of the wireless mesh network simulation is depicted in this image, as 
extracted from the STK scenario. The various platform-nodes are moving along the 
routes shown in white. The dynamic forming of communication links is represented by 
the brown lines.  

Additionally, results were also derived concerning the availability of the imaging 

satellites. A theoretical field-of-regard (FOR) within which the look angle could be 

tasked is depicted by the brown sector in Figure 66. The time window that the field of 

view (FOV), depicted with a red sector, could be tasked inside the FOR and the area of 

interest (AOI) was calculated to nine minutes over a 24-hour period from the STK tools. 

Small intervals in which imaging sensors were not available were reported as expected 

and can be easily assumed from Figure 66. The scenario, though, did not have as a goal to 

demonstrate continuous access but rather to demonstrate the availability of imaging 
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capabilities for low earth orbit (LEO) cube-satellites. The orbits could be redesigned 

accordingly to give the desired availability of the sensors. 

Figure 66.  Image of Cube-Satellites in STK Scenario 

 
FOR and FOV of the imaging satellites are depicted in this figure as extracted from the 
3D graphics window of the STK simulation. 

The total time that communication links could be established between the imaging 

satellites and the ground stations was calculated to 22 minutes from STK tools. In Figure 

67, an instance from 2D graphics of STK simulation is presented. The brown lines in the 

figure represent the closed links between the ground stations and an imaging satellite. 

Part of the crosslink between the satellites is also shown. The crosslinks make it possible 

for the time window of communications within each orbital period to be continuous. 

While these communication links are available, they contribute to communications 

between the nodes, especially when links between ground stations are broken due to 

range and geographical restrictions. 
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Figure 67.  Image of Cub-Satellite Links 

 
In this instance of 2D graphics extracted from the STK scenario, communication links 
between ground stations and satellites as well as crosslinks are depicted in brown. 

After adding a constellation of communication relay satellites, crosslinks were 

multiplied. The time window that communications with the imaging satellites and thus 

tasking them was possible was then increased to three hours over the 24-hour period of 

the simulation run. In this case, communication intervals were evident and the tasking, 

even if possible at the same time, was not restricted in the specified AOI but instead, in 

the random locations of the imaging satellites. In Figure 68, the communication relay 

satellites and their orbits are depicted in white while the imaging satellites are depicted in 

brown. The purpose for this implementation was, again, to demonstrate the ability to 

increase the available time for communicating with the imaging satellites. Certain 

limitations continue to exist since the availability cannot be continuous. However, the 

benefits are obvious for the mesh networks of the sensor since the contribution of the 

satellite constellation was increased from 22 minutes to 3 hours.  
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Figure 68.  Communications Relay and Imaging Cube Satellite Constellations 

 
In this instance of 3D graphics extracted from the STK scenario, the two satellite 
constellations are depicted. The communications relay satellites and their orbits are 
shown in white and the imaging ones in brown. 

2. QualNet 

The QualNet add-in, although successfully integrated and configured for the 

needs of this scenario, always crashed the STK simulation. Several attempts were made 

to recover it and run the replay of QualNet to evaluate the Wave Relay performance 

under the constraints of the available applications. Unfortunately, there was no success 

and, thus, this task is left for future work in this research area. What we expect from this 

interface is that it can give us a more realistic range than applications over Wave Relay 

could in the field. 

B. CENETIX FIELD EXPERIMENTS 

From the several CENETIX experiments that were carried out in San Francisco 

during the most recent experiments, the extracted results of some of them prove the 

feasibility of this thesis concept. Previous fourth generation Wave Relay performance, 

integration of the CodeMettle network-managing and monitoring tool, as well as 
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incorporation of divers and unmanned ground vehicles (UGVs) into the tactical-network-

topology (TNT) reachback, demonstrate the potential of a system with these capabilities. 

More detailed results for each of these experiments are presented in the following 

subsections. 

1. Wave Relay Performance 

Wave Relay was widely used to network marine units of the TNT testbed. The 

interest of this thesis was to extract a maximum distance at which node to node 

communications link could be closed. As shown in Figure 69, the maximum detected 

range during this scenario was 4.02 km. This range matches what was expected based on 

previous experience and CENETIX field experimentation. The maximum range derived 

from fourth generation Wave Relay radios is obviously shorter since power is one-third 

of what the fifth generation of radios offers. 
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Figure 69.  Wave-Relay Node Tracks Replayed in Google Earth 

 
Tracks of marine boats as Wave-Relay nodes as replayed from SA Replay Control page 
on CENETIX site and displayed in Google Earth. Source: “SA Replay Control,” 
http://cenetix.nps.edu/SA1/SAReplay/# 

2. CodeMettle 

After the successful integration of the CodeMettle hybrid network orchestration 

tool for the monitoring and management of the CENETIX backbone and testbed 

reachback, the visualization of the current status of the nodes and the overall performance 

metrics of the network were possible. As shown in Figure 70, geographic information of 

the nodes and the overall network was possible as well as the capturing of their tracking 

data. Additionally, network traffic and latencies were visualized, which made it possible 

to estimate the source of any detected network downgrades. 

  

http://cenetix.nps.edu/SA1/SAReplay/
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Figure 70.  CENETIX Backbone Network Details via CodeMettle Dashboard 

 
In this extracted instance of the CodeMettle dashboard, several metrics and visualizations 
of the CENETIX backbone and testbed reachback are presented. 

During the monitoring of the wireless mesh network formed by the Wave Relay 

nodes, CodeMettle made it possible to feed the network operations center (NOC) with 

live geo-data that was additionally captured for replay and analysis purposes. As it is 

shown in Figure 71, traffic analysis by node of the mesh network was possible as well as 

access to further details of the nodes such as IP addresses of the nodes, connectivity 

strength, and quality between the nodes. The availability of these visualizations and 

metrics enhanced the situational awareness (SA) of the NOC personnel and assisted in 

decision making processes in terms of corrective actions for a more efficient use of the 

network and its nodes’ capabilities. In this thesis concept, the available information from 

CodeMettle could support the efficient use of the available bandwidth based on the 

operational needs. The capability that CodeMettle demonstrated to perform hybrid-

network orchestration—since it is designed to be network agnostic—makes it a necessary 

tool for future implementation of distributed operations solutions. 
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Figure 71.  CENETIX Wave-Relay Mesh Network Details via CodeMettle 
Dashboard 

 
 

3. Wireless Communication with Divers and UGV 

Both UGV and divers were successfully incorporated into the CENETIX 

reachback. In Figure 72, the components that made possible imagery data dissemination 

to divers are demonstrated. More analytically, in Figure 72 (a), the diver is shown ready 

to dive after configuring his android device, which was encapsulated in a waterproof 

case. Because of the pressure when underwater and, therefore, the inability to activate the 

camera through the touch screen, the solution of a near-field-communication (NFC) tag 

was successfully implemented. In Figure 72 (b), a message is shown on the screen that 

informs the diver that the captured image is ready to be uploaded in the application that 

enables communication with the NOC. The image is captured by activating the camera 

through an NFC tag. In Figure 72 (c), an instance of the application is shown, whereby 

the diver receives in his device an image captured from an unmanned underwater vehicle 
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(UUV) in Keyport (Seatttle) through the CENETIX testbed. In Figure 72 (d), the 

equipment to connect the diver to the CENETIX testbed is shown. The buoy was 

composed of a computer connected to the CENETIX testbed through the 4G network and 

was connected through ethernet cable to an android device. Bluetooth was used for the 

communication between the tethered device and the one that was available to the diver. 

In Figure 72 (e), an instance of the application running in the NOC is presented. Through 

this application, dissemination of messages and images with the diver was possible.  

Figure 72.  Enabling Communications with Divers 

 
In this figure, components of the implementation of incorporating divers in the 
CENETIX reachback are presented. In (a), the diver is ready to dive after configuring his 
android device. In (b), a message is presented that the image the diver captured by 
activating the camera through a near field communication (NFC) tag, and sent to the 
NOC, is ready to be uploaded. In (c), the diver receives in his device an image captured 
from an unmanned underwater vehicle (UUV) in Keyport (Seatttle) through the 
CENETIX testbed. In (d), the equipment to connect the diver to the CENETIX testbed is 
shown. The buoy was comprised by a computer connected to the CENETIX testbed 
through 4G network and was connected through ethernet cable with an android device. 
Bluetooth was used for the communication between the tethered device and the one that 
was available to the diver. In (e), an instance of the application running in the NOC is 
presented. Source: “TNT-MIO Experimentation: Video and snapshots archive” , 
http://cenetix.nps.edu/cenetix/tnt.asp and author’s captured images in the field. 

http://cenetix.nps.edu/cenetix/tnt.asp
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Finally, the UGV was also successfully networked to the CENETIX testbed 

through Wave Relay. A ground station acting as a gateway interconnected the Wave 

Relay mesh network with the TNT testbed via satellite communications. 

Figure 73.  Enabling Communications with a UGV 

 

In (a), the UGV connected through Wave Relay to the TNT testbed is shown. In (b), the 
Wave Relay radio and the application that the UGV runs for the detection of radioactive 
materials is presented. Source: “TNT-MIO Experimentation: Video and snapshots 
archive” , http://cenetix.nps.edu/cenetix/tnt.asp. 

C. IMAGE FUSION AND CLASSIFICATION  

The methodology that was followed for this part of the experiments was described 

step-by-step in the previous chapter. The datasets presented in Table 9 were processed 

twice through the classification procedure using a MATLAB script. The first time, the 

test set was kept the same for 1000 trials. The second time, 10 ANNs were 

simultaneously trained with 10 random test sets, respectively. In an effort to yield 

unbiased results in the first case, the tests comprised the same images for the groups of 

datasets that had the same number of images as in the test set. The final classification 

performance results for each dataset is our final aim to evaluate whether multi-sensor 

image fusion adds value in the classification process. 

http://cenetix.nps.edu/cenetix/tnt.asp
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Table 9.   Datasets for Testing 

 
 

1. Feature Extraction and Training Results 

The MATLAB script used to obtain the results is graphically described in Figure 

74. After the image processing steps, each image set was scanned, so SURF features 

could be extracted. Consequently, the ten strongest features were turned into vectors and 

assigned a binary class of 01 or 10, matching to the classes of powerboats and sailing 

boats, respectively. The descriptors had 640 elements for each image in all datasets, 

except for dataset four in Table 9 in which the fused features resulted in descriptors with 

a doubled size of 1,280 elements. The ANN was then trained, and the extracted weights 

were stored. The test set was finally gone through the stored ANN weights and the 

classification performance, as well as the cross-entropy and the MSE were stored for each 

trial to be used as metrics for the evaluation of the overall results. 
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Figure 74.  Image Classification Steps 

 
 

After comparing the extracted features for each dataset, it was observed that 

SURF features were indeed repeatable but different for the distinct datasets of the images. 

The depiction of this result is presented in Figure 75.  
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Figure 75.  Ten Strongest SURF Features for the Different Image Sets 

 
The ten strongest SURF features were always repeatable but different for visual in (a), 
thermal in (b), and multi-spectral in (c). All the images were in grayscale. 

As discussed in Chapter III, early stopping was applied during all the training 

sessions as the results were better than the ones obtained when it was not applied, even 

though cross-entropy was smaller in the latter cases. This fact was evidence that the 

implementation of early stopping succeeded in avoiding overfitting.  

Furthermore, classification performance during training was constantly monitored 

and, in the case of the multispectral dataset, demonstrated very good results. The 

confusion matrix and the ROC curves from one training session are presented in Figure 

76. From the monitoring of the training processes, it was concluded that the classification 

of the sailing boats class demonstrated constantly higher percentages. The factors that 

possibly contributed to that result were the larger number of sailing boats in the dataset 

compared to that of powerboats, as well as the fact that powerboats had a wide variety of 

shapes and structures. 
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Figure 76.  Confusion Matrix and ROC Curves for Training and Validation 

 
The presented confusion matrices and curves refer to one training session of the 1000 
trials over the 10 NNs. 

2. Testing Classification Results 

After the training process was completed and the parameters and weights of the 

NN were stored, the test set was fed into the NN. The results were also monitored and 

stored. Fourteen sets of plots were derived from the MATLAB code implementation 

concerning the metrics and results relevant to the classification performance of the test 

sets. The set that represents the best results are presented and described to support the 

overall analysis. This set was obtained from the MSX images from dataset 3 of Table 9 

and for the case of the ten different ANNs. Figure 77 shows the results obtained from an 

individual trial. 
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Figure 77.  Confusion Matrix and ROC Curve for One Trial 

 

The presented confusion matrix and ROC curves refer to one testing session of the 1000 
trials over the 10 NNs. 

The stored values of each testing process were plotted to present an overall 

pattern of the classification performance. In Figures 78 and 79, the average classification 

over 100 trials for each of the ten NNs and the individual 1,000 trials are presented. The 

average classification performance of this set was above 62 percent, but the individual 

results per trial demonstrated a wide spread from 0 to 100 percent. The previous 

observation denotes that there were some cases in which the NNs did not generalize well 

on the test set. In the majority of the cases, the powerboat class yielded the worst 

classification rates. Possible reasons for this result could be the smaller number of sample 

images compared to the sailing boats as well as their variety in shape and type. 

Conversely, sailing boats had less varying shapes. 
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Figure 78.  Average Correct Classification Performance for the 10 NNs 

 

Figure 79.  Correct Classification Performance for Each of the 1000 Trials  
of the 10 NNs 

 
Additionally, cross-entropy and mean-squared-error (MSE) were plotted for each 

trial and used as a measure of fit. The lower values represent NNs that better generalized 

to the test dataset. In Figures 80 and 81, the obtained results for these metrics over 1000 

trials are shown.  

 No of NNs

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 C
la

ss
ifi

ca
tio

n 
ov

er
 1

00
 tr

ia
ls

35

40

45

50

55

60

65

70

75

80

avg: 62.3714

Classification Rate per NN and 100 trials %

Average class rate %

average
X: 9

Y: 78.71

X: 3

Y: 38.86

 No of trials

100 200 300 400 500 600 700 800 900 1000

C
la

ss
ifi

ca
tio

n

0

10

20

30

40

50

60

70

80

90

100

avg: 62.3714

Classification Rate %

Class rate %

average

X: 402

Y: 100

X: 270

Y: 0



100 

Figure 80.  MSE over 1000 trials 

Figure 81.  Cross-entropy over 1000 Trials 

As previously discussed, the smaller the derived values of cross-entropy and 

MSE, the better the generalization over the test value as well as the classification rates. 
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3. Summary of Image Classification Results

The classification results for all the datasets and the case of 10 NNs are presented 

in Table 10. The best rates were obtained for the MSX images closely followed by the 

thermal-image sets. In general, when images only from the better camera were used, the 

obtained results were clearly better. Additionally, low-level fusion of the MSX images 

clearly gave better classification results than medium-level fusion of the SURF features 

obtained from the visual and thermal images.  

Table 10.   Overall Classification Results 

Derived results after averaging 100 trials for 10 ANNs trained with 10 random test sets. 
While the test sets were the same in each one of the 100 trials, training and validation sets 
were randomly selected with a ratio of 7:3, respectively. The best classification result was 
obtained from the MSX image set captured with the FLIR DSC 640 camera, which had 
the best resolution. 
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V. CONCLUSIONS  

This thesis demonstrated simulation modeling of the concept of automatic target 

recognition (ATR) via mesh networking of imaging sensors as part of the concept of 

distributed management of littoral operations. Proof of the feasibility for specific parts of 

the overall concept was verified with simulations and field experimentation. The 

parameters for the simulations were based on commercial and already tested solutions 

either in field experiments by CENETIX field experimentation or in published results.  

Initially, different platforms with imaging capabilities were simulated as nodes in 

an ad-hoc mesh tactical network scheme. The quality of service (QoS) of this network 

was then studied. The extracted results from STK, field experiments, and Qualnet showed 

the feasibility of using this type of network for the timely dissemination of critical 

imagery data. Furthermore, images of boats were captured in the field to simulate images 

taken from sensors of the networked platforms, which cover the visible and part of the IR 

spectra. Captured images were selected to have noisy background that is usually met in 

littoral environments. Low- and medium-level fusion were applied on three types of 

imagery data—visual, thermal, multi-spectral (MSX)—and speeded-up robust features 

(SURF) were extracted from them. Results have proven that MSX images from low-level 

fusion contribute to better classification results in this thesis’ binary classification 

problem. Artificial neural networks (ANNs) were used to derive the classification results 

and demonstrated the ability to obtain these results in a timely manner that can 

accommodate near real-time classification of COIs at the tactical level.  

Finally, CENETIX’s latest experimentation results were used to demonstrate not 

only the operational advantages of mesh networks but also the capabilities of managing 

them. Hence, this thesis suggests that major units should have the capability to deploy 

mesh tactical networks augmented by sensor management, operational databases, 

geographic information, and an appropriate level of automation for target recognition, 

especially when assuming the role of mother ships for other platforms. More specific 

conclusions from the research in mesh tactical networking and image fusion and 
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classification, as well as future work recommendations are discussed in the following 

sections of this chapter. 

A. MESH TACTICAL NETWORKING 

The scenario implemented in Systems Tool Kit (STK) demonstrated great 

potential to evaluate equipment capabilities and test them in operational scenarios with 

simulated platforms. The simulated mesh tactical radios demonstrated increased ranges 

from already tested, in-the-field, fourth-generation Wave Relay radios. This result seems 

reasonable since power was three times more than the previous version and technologies, 

such as multiple-input multiple-output (MIMO), had embedded.  

The QualNet add-in was successfully installed, but during the attempts to run its 

replay and test the performance of the network with a simulated application, the STK 

scenario crashed. What would be expected had the scenario run successfully, would be 

that the ranges the actual applications would demonstrate acceptable performance would 

be less than the ones that the communications link were closing. Furthermore, the various 

ranges that the fifth generation of Wave Relay gave as results for establishing 

communication between the assets used in the simulation showed that these ranges are 

highly dependent on the geography and the routes of the assets.  

Additionally, field experimentation demonstrated very promising results both for 

communications with divers and the UGV that could become part of the mesh network. 

Gateways connecting mesh network with 4G and satellite links were used to establish 

communication between the remote platforms and the network operations center (NOC) 

through the CENETIX TNT-MIO testbed. In all the cases, imagery data dissemination 

was successful. Especially in the case of the diver, obtained results revealed new ways 

that could be developed to allow for continuous communication with special forces even 

when underwater. 

Finally, CodeMettle was successfully implemented for management and 

monitoring of the wireless mesh tactical network. Results showed that real time 

monitoring of the performance of the network and the nodes through the dashboard 

supported decision-making. The reasons that the network demonstrated downgrades and 
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reduced performance could be easily recognized. Corrective actions could then be 

determined. An overall implementation would eventually enhance situational awareness 

(SA) by taking into consideration the network parameters for a more effective 

deployment of the available assets.   

B. IMAGE FUSION AND CLASSIFICATION 

Operational experience and previous experiments have proven that operators of 

imaging sensors find beneficial the use and projection of multi-spectral imagery data 

from low-level fusion as they reveal richer combined information. The fusion of thermal 

and visual images in our experiment obviously enhanced the perception of the operator 

by revealing details that allowed for faster identification of specific spots or objects in the 

images. Therefore, current capability of imaging sensors to shift from a visual to IR mode 

is not as efficient as adding a multispectral mode. This thesis has proven that the same 

conclusion holds for the case in which computer-vision methods are implemented in 

automatic target recognition (ATR). Multispectral images gave higher classification 

results than all the other sets of images that were tested, even when classification rates 

were not sufficiently high. However, since several limitations were known from the 

beginning of this research concerning the equipment used as well as the challenges the 

noisy background poses, the low classification rates were expected, and the results seem 

to be promising.  

In contrast, when all the types of images were fused in several ways or medium-

level fusion of extracted features from them was applied, the classification performance 

did not yield better results. The same result occurred even when multi-spectral images of 

the two cameras were tested as one set, as shown in Table 10. Therefore, we can drive the 

conclusion that adding low resolution images results in worse classification performance, 

even for some sets in which the number of images was four times larger than the set that 

yielded the best classification performance.  

Another conclusion derived from the suggested scheme for ATR is the capability 

to exploit the received imagery data in a timely manner. The combination of SURF 

features with NNs proved to be extremely fast and robust. Every time SURF features 
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were extracted from the image sets, results concerning the interest points were always the 

same, proving their repeatability. The subsequent use of NNs did not give the same 

results as initial weights were not the same at each training session. For the testing phase, 

though, and after the weights from training the NN were stored, the use of the same test 

set yielded exactly the same results in all the trials. 

Finally, we can conclude that the combination of descriptors based mainly on 

SURF features and NNs could set the frame for a development of an algorithm that yields 

high classification rates in ATR. Sailing boats demonstrated almost perfect classification 

rates in the majority of the trials, and the main reason behind the fairly low classification 

rates is considered to be the smaller number and variety of types of the powerboats. 

Additionally, the reduction of the number of SURF features to ten, even though it 

removed most of the outliers  generated from the background, did not work as well in all 

the images.  

C. RECOMMENDATIONS FOR FUTURE WORK 

The broad topic of this thesis reveals many challenges for future work and further 

research in the overall concept but also in the specific topics that were more thoroughly 

examined. Specific recommendations for mesh tactical networking and multi-sensor data 

fusion and classification are discussed in the following subsections. 

1. Multi-Sensor Data Fusion and Classification 

The use of only one type of feature in our binary problem yielded acceptable 

classification rates, especially for the sailing boat class. The use of more sophisticated 

imaging sensors and the association with metadata from environmental, motion, and 

relevant-position conditions would filter out not well-matching images for the training 

process and would provide more features. Feeding the NN additional features—such as 

size or shape characteristics extracted from the available metadata—could further 

improve the classification rates. 

Further research could also be carried out to determine the types of imagery or 

other data coming from multiple dissimilar sensors that could be fused to provide richer 
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and more robust features under specific conditions such as rain or darkness. Synthetic 

aperture radars (SARs) or IR sensors in MWIR and LWIR could be some to consider.  

Additionally, since SURF features are very robust, the reverse problem could be 

implemented in potential ATR solutions. Filtering out images of a specific or only a 

small group of COIs, subsequently training an ANN, and performing only a binary 

classification could yield better classification results. This process could even be 

completed at the platform detecting the COIs, so the feedback to the network could 

provide matching data. This type of solution could potentially help intelligence, 

surveillance, and reconnaissance (ISR) operations through the use of swarms of platforms 

with imaging sensors. Monitoring of multiple screens would then be impossible, and 

feedback that would only highlight targets of interest could enhance SA and reduce an 

operator’s work load. 

The training and testing processes could also be improved by researching and 

testing different techniques that could enhance NN performance. Applying deep NN 

techniques or adding more layers in the ANN could result in better generalization and, 

consequently, better classification performance. Finally, background extraction or 

segmentation of the image and application of high-level fusion could potentially improve 

extracted results. 

2. Mesh Tactical Networking 

Even if STK gave results that could be used in simulating scenarios with mesh 

tactical networks through Wave Relay radios, further analysis should be attempted. 

QualNet analysis would eventually give reduced and different ranges for video streaming, 

data, and voice applications. CodeMettle could then be used for the evaluation of the 

results in the field. Finalizing the simulation parameters in STK would then be feasible, 

and extended simulation scenarios could be tested. This process would be highly 

beneficial for the evaluation of future field experiments and operational scenarios in 

different geographic regions. Difficulties and potential problems could then be detected, 

and the final plan could be executed after the appropriate corrections. 
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Finally, the implementation of the proposed concept of distributed management of 

littoral operations in the tactical level could be further tested in the field. Considering the 

overall results of this research it seems that the use of mesh tactical networks would make 

possible the availability of ISR capabilities—UAVs and Cubesats—at the tactical level 

and, thus, the exploitation of available information in a timely manner. One of the 

benefits could be to enhance the capabilities of units without the need of modernizing 

them by adding an appropriate kit and networking appropriate platforms according to the 

missions. This kit could be easily removed and attached to other platforms when 

necessary. Solutions could then be found in communications and ISR limitations in 

littoral operations to enhance SA and timely and independent exploitation of information. 
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APPENDIX. IMAGE TO IMAGE REGISTRATION WITH ENVI 

1. Open ENVI Classic 

 

Figure 82.  ENVI Classic Menu Bar 

 
 
 
 

2. Open the images to be registered by selecting File →Open Image File 
from the ENVI Classic menu bar. 

3. Load the RGB images in different displays 

 

Figure 83.  Images Shown in Different Displays 
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4. Select Map → Registration → Select GCPs: Image to Image from the 
ENVI Classic menu bar and define the displays for the Base and the Warp 
image that pops up.  

 

Figure 84.  Define Displays 

 
 
 
 

5. The Ground Control Point (GCP) selection pops up. After the selection of 
the corresponding points in both images, on the GCP selection window 
select File → Save GCPs to ASCII from the same window. 

 

Figure 85.  Ground Control Point Selection Window 
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Figure 86.  Corresponding Points Selection 

 
 

Figure 87.  Saving GCPs 

  
 

6. Then select Map → Registration → Warp from GCPs: Image to Image 
from the ENVI Classic menu bar and save the output from the pop up 
window after selecting the Warp and the Base image 
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Figure 88.  Select Warp and Base Image  

 
 

Figure 89.  Save the File 
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7. Load the Base original image and the output image on ENVI and try 
moving the indicator in the transparency tool on the menu bar until you 
get the result. 

 

Figure 90.  Registration in ENVI 
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