

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ROBOTIC ARM MANIPULATION LABORATORY
WITH A SIX DEGREE OF FREEDOM JACO ARM

by

Ronald H. Palacios

December 2015

Thesis Advisor: Richard M. Harkins
Second Reader: Peter Crooker

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
December 2015

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
ROBOTIC ARM MANIPULATION LABORATORY WITH A SIX DEGREE
OF FREEDOM JACO ARM

5. FUNDING NUMBERS

6. AUTHOR(S) Ronald H. Palacios

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The JACO six degree of freedom robotic arm and associated software is characterized for use
by students in a Robotic Manipulation Laboratory. The lab was implemented to help students understand
tele-operation techniques with a sophisticated Kinova JACO robotic arm. The purpose of the research
was to follow up on Jacinto’s work and expose students to forward kinematics via Denavit-
Hartenberg (DH) parameters for robotic arm manipulation in a lab environment for various
experiments. Jacinto demonstrated the viability of resistive glove control via simulation through the Robot
Operating System (ROS) interface. He was not able to demonstrate real-time glove control. Here, we
take an intermediate approach and introduce a virtual joystick. Manipulation experiments with
various effector loads and Cartesian trajectories indicate a 1.0 kg load limit in the fully extended mode
and 1.5 kg limit in a midrange mode. This verifies vendor specifications for the arm and is acceptable
for light-load daily mobility requirements.

14. SUBJECT TERMS
robotic arm, lagrangian dynamics, kinematics, inverse kinematics, DH parameters

15. NUMBER OF
PAGES

75
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)

Prescribed by ANSI Std. 239–18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ROBOTIC ARM MANIPULATION LABORATORY WITH A SIX DEGREE OF
FREEDOM JACO ARM

Ronald H. Palacios
Lieutenant Junior Grade, Peruvian Navy

B.S., Escuela Naval del Peru, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2015

Approved by: Richard M. Harkins
Thesis Advisor

Peter Crooker
Second Reader

Kevin Smith
Chair, Department of Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

The JACO six degree of freedom robotic arm and associated software is

characterized for use by students in a Robotic Manipulation Laboratory. The lab was

implemented to help students understand tele-operation techniques with a sophisticated

Kinova JACO robotic arm. The purpose of the research was to follow up on Jacinto’s

work and expose students to forward kinematics via Denavit-Hartenberg (DH)

parameters for robotic arm manipulation in a lab environment for various experiments.

Jacinto demonstrated the viability of resistive glove control via simulation through the

Robot Operating System (ROS) interface. He was not able to demonstrate real-time glove

control. Here, we take an intermediate approach and introduce a virtual joystick.

Manipulation experiments with various effector loads and Cartesian trajectories indicate a

1.0 kg load limit in the fully extended mode and 1.5 kg limit in a midrange mode. This

verifies vendor specifications for the arm and is acceptable for light-load daily mobility

requirements.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION AND OBJECTIVES..1

II. THEORY ..3
A. INTRODUCTION..3
B. DENAVIT-HARTENBERG PARAMETERS ..4
C. INVERSE KINEMATICS...8
D. CARTESIAN TRAJECTORY PLANNING ...8
E. LAGRANGIAN DYNAMICS ...9

III. EXPERIMENTAL SETUP ...11
A. 6-DOF JACO ARM ...11
B. JACOSOFT ..15
C. JOYSTICK TRAJECTORY DEMO ...18
D. VIRTUAL JOYSTICK DEMO ..20

IV. EXPERIMENTAL RESULTS ..25
A. TRAJECTORY AND VIRTUAL JOYSTICK DEMO25
B. JACO ARM LOAD CHARACTERIZATION27

V. CONCLUSIONS AND RECOMMENDATIONS ...33
A. CONCLUSIONS ..33
B. RECOMMENDATIONS ...33

APPENDIX A ...35

APPENDIX B ...43

APPENDIX C ...51

LIST OF REFERENCES ..55

INITIAL DISTRIBUTION LIST ...57

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Classic DH parameters frame position. ...4

Figure 2. Link coordinate frame and joint parameters. ...5

Figure 3. JACO arm lifting a bottle. ..11

Figure 4. The three stages for grasping with an Underactuated Gripper.12

Figure 5. JACO arm actuators. ..14

Figure 6. Kinova’s joystick possible commands. ..15

Figure 7. Configurations/Positioning tab. ...16

Figure 8. Configurations/Control tab. ...17

Figure 9. Trajectory tab from. ...18

Figure 10. JACO arm with equipment implemented for Joystick trajectory
demo. ..19

Figure 11. Initial position of objects. ..20

Figure 12. Final position of the objects. ..20

Figure 13. JACO arm with equipment implemented for Virtual Joystick demo.21

Figure 14. C# code for Virtual Joysticks buttons. ...22

Figure 15. Virtual Joystick (GUI). ..23

Figure 16. Virtual Joystick (GUI). ..25

Figure 17. JACO arm lifting a pyramid. ...27

Figure 18. Weights to be lifted by the JACO arm. ..27

Figure 19. JACO arm to lift weights implementation. ..28

Figure 20. Weight vs. torque for arm joints 2 and 3 for lifts of 0.5m.30

Figure 21. Weight vs. current for arm joints 2 and 3 for lifts of at 0.5m.31

Figure 22. Weight vs. torque for JACO arm joints 2 and 3 for lifts at 1m..................31

Figure 23. Weight vs. current for JACO arm joints 2 and 3 for lifts at 1m.32

Figure 24. General Information tab. JACOSOFT ready to use.35

Figure 25. Cartesian mode active. Switch to angular button in Trajectory tab.36

Figure 26. Enable Fingers box. ...36

Figure 27. GET and ADD button. ...36

Figure 28. Trajectory list box in Trajectory tab. ...37

Figure 29. X button. ..37

 x

Figure 30. Loop trajectory box. ...38

Figure 31. SEND button. ...38

Figure 32. Import and Export buttons. ..38

Figure 33. Initial position of objects. ..39

Figure 34. Manipulating cube inside cylinder. ..39

Figure 35. Covering the cylinder. ..40

Figure 36. Manipulating pyramid on the cube. ...40

Figure 37. Final position of the objects. ..41

Figure 38. Mapping info button. ...43

Figure 39. ApiInterface option. ...43

Figure 40. Command/State. Associated functionality. ..44

Figure 41. Associated functionality/motion. ...44

Figure 42. Control stick events..45

Figure 43. Associated functionality/Configuration. ..45

Figure 44. Control button events. ..46

Figure 45. Default mapping box..46

Figure 46. Question dialog box. ..47

Figure 47. Information dialog box. ...47

Figure 48. Information dialog box. ...47

Figure 49. JACO Controller GUI. ...48

Figure 50. JACO manipulating a cylinder...49

Figure 51. JACO arm manipulating a cube ...49

Figure 52. JACO arm manipulating a wheg. ...50

Figure 53. JACO arm manipulating a pyramid ...50

 xi

LIST OF TABLES

Table 1. Robot length values (meters). ..7

Table 2. DH parameters. ..8

Table 3. JACO arm specifications. ..13

Table 4. Attempts to observe variations moving a cube from a specific
position to an alternate position. ..26

Table 5. Joint 2 torque and current for lifts of 0.5m. ...28

Table 6. Joint 3 torque and current for lifts of 0.5m. ...29

Table 7. Joint 2 torque and current for lifts of 1.0m. ...29

Table 8. Joint 3 torque and current for lifts of 1.0m. ...29

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

API Application Program Interface

DOF Degrees of Freedom

DH Denavit-Hartenberg

GUI Graphical User Interface

PC Personal Computer

RML Robotic Manipulation Laboratory

USB Universal Serial Bus

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

I would like to thank my thesis advisor and second reader for their guidance and support.

 I would like to acknowledge my family for their support of this thesis work.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION AND OBJECTIVES

A robotic manipulation laboratory (RML) was implemented to help students

understand tele-operation techniques with a sophisticated Kinova JACO robotic arm. The

purpose of the research was to follow up on Jacinto’s [1] work and expose students to the

kinematics of robotic arm manipulation in a lab environment for various experiments.

Jacinto demonstrated the viability of resistive glove control via simulation through the

Robot Operating System (ROS) interface. He was not able to demonstrate real time glove

control. Here we take an intermediate approach and introduce a virtual joystick.

The six degree of freedom JACO robotic arm is designed for both commercial

and research applications. It enables users to interact with their environment in an

intuitive and effective manner [2]. Our purpose was to characterize the arm

performance under joystick control and then improve that with the development

and demonstration of a virtual joystick. This required detailed knowledge of the 6-

DOF Kinova JACO Arm link parameters and algorithms. Improvement in accuracy and

smoothness of arm motion was the objective. These performance improvements are

demonstrated by implementation of a block-stacking pyramid demonstration.

2

THIS PAGE INTENTIONALLY LEFT BLANK

3

II. THEORY

A time tested methodology to determine equations of motion for forward

kinematic motion is to use Denavit-Hartenberg (DH) parameters to model robotic

behavior. Here we review DH parameters as they apply JACO arm motion.

A. INTRODUCTION

By definition, DH parameters describe “the position and orientation of the links

and joints that make up the robotic arm” [3].

Kinova provides DH parameters to the end user, as a means to move the end

effector to a specific known position. Kinematics allows us to ignore forces, torques and

inertias and simply concentrate on the position of the manipulator in space, regardless of

the load of the manipulated object or the inertia of the arm while in motion [4].

The DH parameters are applied to the arm kinematic chain, where links are

connected to joints and are driven by actuators. Each coupled joint-link establishes a

degree of freedom (DOF). Consequently, with a 6-DOF arm, we find six links and six

joints. The joints are numbered sequentially from the base to the end effector. The base

(link 0) is excluded as a degree of freedom. Because the links keep a fixed relationship

between the joints, frames of reference are used joint to joint to position the manipulator

at a desired position by application of DH parameters and coordinate transformations (see

Figure 1) [4].

4

Figure 1. Classic DH parameters frame position.

Source: [5] JACO DH Parameters of JACO R&D, V1.1.5, Kinova, Boisbriand, Canada,
2013.

B. DENAVIT-HARTENBERG PARAMETERS

The DH link coordinates and joint parameters are shown in Figure 2

and described as follows:

 For the link structure:

• ia (length of the link)

• iα (twist of the link).

 For relative position between links:

• id (distance between the two x-z normals)

• iθ (angle between the two x normals) [4].

5

Figure 2. Link coordinate frame and joint parameters.

Source: [4] R. D. Klafter, T. A. Chmielewski and M. Negin, Robotic Engineering:
An Integrated Approach, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1989.

The DH parameters are used to relate each link with neighboring links and to

identify each link-joint pair. After the reference frames for each link are fixed, these

parameters are used in a transformation matrix to connect successive frames [4].

To establish the link coordinate frames:

• The first rule is “the zi-1 axis lies along the axis of motion of the ith joint”

[4].

• The second rule is “the xi axis is normal to the zi-1 axis directed toward the

zi axis” [4].

• The third is that “the yi axis is defined by the cross product of zi and xi,

then the three axis form a right-handed system” [4].

Once the link parameters and references frames are determined, we can relate

consecutives frames (i-1) to i, via translations and rotations, to correlate the two reference

frames [4]. For example, see Equation 1 in [4].

6

() , , , ,1 ,

cos sin 0 0 1 0 0 0 1 0 0 1 0 0 0
sin cos 0 0 0 1 0 0 0 1 0 0 0 cos sin 0

0 0 1 0 0 0 1 0 0 1 0 0 sin cos 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

co

i i i iz z d x a xi i

i i i

i i i i

i i i

A Rot Trans Trans Rot

a

d

θ α

θ θ
θ θ α α

α α

− =

−
 − =

=

s sin cos sin sin cos
sin cos cos cos sin sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i i

i i i

a
a

d

θ θ α θ α θ
θ θ α θ α θ

α α

−
 −

 (1)

The matrix A is the transform from one joint to another via

• A rotation around z,

• A translation along d ,

• Another translation along a

• And finally a rotation around x.

In the matrix, ia and iα are constant whereas id and iθ are joint variables. The

submatrix in blue depicts rotation, the submatrix in orange depicts translation, the

perspective transform in red and the scaling factor is in green [4].

As discussed by Klafert section 8.3 of [4]:

The elements of the first column of the submatrix in blue are the
components of the unit vector defining the x axis of frame 2, written in
terms of the three unit vectors defining the axes of frame 1. The second
column defines the y axis of frame 2 and the third column defines the
direction of the z axis. The submatrix in orange is the location of the
origin of frame 2 with respect to 1 and may be thought of as a vector
drawn from the origin of frame 1 to the point defining the origin of 2. [4]

7

Finally, once the coordinate frames are established and the values for the DH

matrices are known, we can determine the position of the JACO arm end effector with

respect to the base via following transform [4].

0 01 12 23 (1)...n n nT A A A A A −= =
(2)

Since the Kinova JACO arm is a 6-DOF manipulator, the expression is given by:

01 12 23 34 45 56T A A A A A A= (3)

To determine the final position of the end effector, the T matrix operates on the initial

position vector as shown in equation 4 [1].

Final Position P P P 1
T

x y zT = (4)

The following Tables 1 and 2 show the DH parameters of the Kinova JACO arm:

Table 1. Robot length values (meters).

Source: [5] JACO DH Parameters of JACO R&D, V1.1.5, Kinova, Boisbriand, Canada, 2013.

D1 0.2755 Base to elbow

D2 0.4100 Arm length

D3 0.2073 Front arm length

D4 0.0743 First wrist length

D5 0.0743 Second wrist length

D6 0.1687 Wrist to center of the hand

e2 0.0098 Joint 3–4 lateral offset

8

Table 2. DH parameters.

i 1iα − 1ia − id iθ

1 / 2π 0 D1 q1
2 π D2 0 q2
3 / 2π 0 -e2 q3
4 2*aa 0 -d4b q4
5 2*aa 0 -d5b q5
6 π 0 -d6b q6

Source: [5] JACO DH Parameters of JACO R&D, V1.1.5, Kinova, Boisbriand, Canada,
2013.

With the forward kinematic solution established, as represented in equation 4, we

can locate the end effector in space given the values of “θ ” and “α ,” since “ d ” and “ a ”

are known.

C. INVERSE KINEMATICS

With knowledge of the Forward Kinematic Transform, we can place the robotic

arm at a predetermined position. To do this, we look to the Inverse Kinematic Solution.

This will tell us how to position each joint angle to get to the desired position and

orientation. This calculation requires the multiplication of the forward Kinematic

Transform with its inverse and then solving for the required joint angles. It is an iterative

process and, for a 6 DOF system, will yield six equations that can be analytically solved

for the required joint angles. For complex systems this is best handled with computer

algorithms. For details on the process refer to Niku [6].

D. CARTESIAN TRAJECTORY PLANNING

Cartesian space trajectories are determined by repeatedly calculating the Inverse

Kinematic Equations of the Robot and applying them iteratively to a chosen trajectory in

Cartesian Coordinates. Niku indicates that this process is easily handled by computer

code. His procedure is quoted as follows:

 9

1. Increment the time by delta t.

2. Calculate the position and orientation of the hand based on selected
function for the trajectory.

3. Calculate the joint values for the position and orientation through the
inverse kinematic equations of the robot.

4. Send the joint information to the controller.

5. Go to the beginning of the loop. [6]

E. LAGRANGIAN DYNAMICS

When an understanding of forces, masses, loads and inertias are required to

determine actuator performance requirements, it is quite natural to invoke Lagrangian

Mechanics to understand the dynamics of the system.

 L T U= − (5)

In this equation L is the Lagrangian, T is the kinetic energy and U is the potential

energy of the system. With the proper selection of generalized coordinates, the kinetic

and potential energies can be determined. The equations of motion are derived via

i i

L d L
q dt q
∂ ∂

=
∂ ∂

 (6)

The q’s are the generalized coordinates for our problem.

With the dynamic equations of motion, it is possible to predict the torques and

forces on the arm for various arm trajectories under different loads. This information

helps to determine actuator specifications for the robot arm.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. EXPERIMENTAL SETUP

In this chapter we characterize the JACO robotic arm and review the JACOSOFT

software used to manipulate the robotic arm. User interaction with the lab is realized via a

trajectory tab and a controller GUI with an API interface. Figures printed in 3D were

used as manipulation objects throughout the experiment.

A. 6-DOF JACO ARM

The JACO robotic arm is useful in various research applications. It is “a robotic

manipulator that enables users to interact with their environment with safety, freedom,

and effectiveness” [2]. The weight of the robotic arm is 5.6 kg with a maximum speed of

15 cm/s. The arm can be extended 90 cm in all directions while transporting weights up

to 1.5 Kg [2] (see Figure 3).

Figure 3. JACO arm lifting a bottle.

 12

The JACO Hand is an “Underactuated” gripper as opposed to a standard 2 finger

industrial gripper. Underactuated grippers allow the finger joints to curl naturally like a

human finger. This is accomplished by the arrangements of joint pins, “tendons” and

return springs (see Figure 4).

Figure 4. The three stages for grasping with an Underactuated Gripper.

Stage one shown in part (a) is the initial stage. Stage two, part (b) is the pre-shaping stage
and Stage Three, part (c) is the closing stage. Poorly tuned underactuated grippers can
have difficulty grasping complex objects from. Source: [7] Long Wang, Joseph DelPetro
et al. “Highly-underactuated robotic hand with force and joint angle sensors.”

The JACO arm has environmental, electrical, mechanical and firmware

specifications, as shown in Table 3.

 13

Table 3. JACO arm specifications.

SPECIFICATIONS

ENVIRONMENT
GENERAL
Ambient temperature from 0 to 30 C degrees.

Can be used under light rainfall for limited period.

Can be used under normal atmospheric pressure conditions.

STORAGE
Ambient temperature from 0 to 50 C degrees.

Relative Humidity: 55 % max.

ELECTRICAL
INPUT POWER
Voltage: 18V to 29V d.c.

Current: 2A in normal use, 10A max.

Powered by the external power supply.

OUTPUT POWER (controller port)
Voltage: 24V +/- 20% d.c.

Current: 1.5A continuous, 3A max.

POWER SUPPLY
Input power: 100V to 240V a.c., 50Hz to 60 Hz, 2.0A

Output power: 24 d.c, 5.0A

MECHANICAL
GENERAL
Total weight: 5.6 Kg +/- 5%

Maximum Load: 1.5 Kg at mid-range (45 cm)

Maximum Load: 1.0 Kg at end-range (90 cm)

Reach: 90 cm

Maximum linear arm speed: 15 cm/s

HAND AND FINGERS
3 or 2 fingers simultaneous utilization.

Independent control available for each finger.

 14

Finger force limited to 7N (1.54 lbf).
Flexible fingers for durability.

FIRMWARE
Each axis controlled independently.

Redundant security on each axis/fingers.

Redundant error check in joints and in control system.

Position and error calculation every 0.01 second.

Automatic recovery on system fault.

Source: [2] JACO Research Edition User Guide, V1.0.0. Kinova, Boisbriand, Canada,
2011–2012.

The six arm joints have limitless rotation. Each joint has an “actuator that

integrates DC brushless motors, a harmonic drive, slip rings, a microcontroller, and

sensors for torque, current, position, temperature, and acceleration” (see Figure 5) [8].

Six DC geared servomotors drive each joint. Joints 1 to 3 work with large motor modules

while joints 4 to 6 are driven with small motor modules. An individual motor drive is

mapped to each finger of the end-effector [9].

Figure 5. JACO arm actuators.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

 15

The robotic arm comes with a 3-axes joystick. Modes of operation include:

1) Incline left/right,

2) Incline front/back,

3) Rotation of the lever clockwise/counter-clockwise (see Figure 6) [2].

Figure 6. Kinova’s joystick possible commands.

Source: [2] JACO Research Edition User Guide, V1.0.0. Kinova, Boisbriand, Canada,
2011–2012.

B. JACOSOFT

JACOSOFT software allows the user to monitor robot arm device information

and to set various arm use configurations. This section describes the Configurations and

Trajectory tabs.

1. Configurations Tab

The Configurations tab includes two sub tabs: Positioning and Control.

a. Positioning

The Positioning tab allows the user to set the following parameters:

• Laterality, left or right handedness [10].

 16

• Retracted angle, the retracted angle of the RETRACT position [10].

• Retracted trajectory, the HOME position, the RETRACT position and the
trajectory between those positions [10].

Figure 7 shows the Configurations/Positioning tab [10].

Figure 7. Configurations/Positioning tab.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

b. Control

The Control tab gives the user the ability to set the following parameters:

• The joystick sensitivity between values of 0 to 100% [10].

• The linear arm speed between 4 and 20 cm/s [10].

• Drinking mode. The drinking mode parameters include the Height of the
glass/bottle (up to 10 cm) and the Radius of the glass/bottle (up to 6 cm)
[10].

• Spasm filter. This filter is used to reduce or eliminate involuntary
commands sent to the arm. Filters can be set to values from 0 to 4. (0-Not
activated, 1-Very low filter, 2-Low filter, 3-Medium filter, 4-High filter).
[10].

 17

• Controller setting configuration Map. See JACOSOFT User Guide [10]
for detailed information.

Figure 8 shows the Configurations/Control tab [10].

Figure 8. Configurations/Control tab.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

3. Trajectory

The trajectory tab allows the user to configure, save and load a trajectory. The

trajectory is invoked in either Cartesian or Angular control [10]. Saved trajectories move

the arm, point to point, for the planned path of the JACO Arm.

In the Trajectory tab, the user sets the following parameters:

• Trajectory mode: Cartesian or Angular [10].

• Speed limitations [10].

• Enable Fingers: Set for finger manipulation in a trajectory [10].

• Trajectory delay. [10].

 18

• Loop trajectory mode: on/off. [10].

• Get, add, stop, update, reach and delete trajectories from the trajectory list
[10].

• Import and export trajectories [10].

Figure 9 shows the Trajectory tab [10].

Figure 9. Trajectory tab from.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

C. JOYSTICK TRAJECTORY DEMO

The joystick demonstration included the steps to plan, save and load a Cartesian

trajectory. The objective was to move objects from specified positions to alternate

positions within the grasping length of the arm.

For this demonstration we used the JACO Kinova arm, the Kinova joystick, a

laptop, the JACOSOFT software and 3D printed figures such as: a hollow cylinder with a

cap, two cubes, a pyramid and a mini-wheg. The JACO arm was fastened to a portable

table. An electric bus attached to the table was used to power the arm, the laptop and

additional equipment as necessary (see Figure 10).

 19

Figure 10. JACO arm with equipment implemented for Joystick trajectory
demo.

The Kinova JACO arm has various external connectors including: a Power

Connector, a Control Port and an USB Port. The Kinova joystick was connected to the

JACO arm by the Control Port with a serial cable. The arm was connected to the laptop

via a USB cable as shown in Figure 9.

The 3D printed objects were placed on the table in specific positions (see Figure

11). To build the trajectory, the joystick was used to move the arm. This was saved as a

file via the Trajectory tab. For the demonstration, this trajectory was replayed as a

pyramid block stacking routine by grasping and moving objects in a preplanned fashion

(see Figure 12).

 20

Figure 11. Initial position of objects.

Figure 12. Final position of the objects.

Once saved, the trajectory can be replayed at will without the use of the joystick.

This is very similar to a robotic arm used in an assembly line. For details on how to load

and save a given trajectory, see Appendix A.

D. VIRTUAL JOYSTICK DEMO

To eliminate the need for a mechanical Joystick, a Virtual Joystick was developed

using the JACO Controller GUI with an API interface written in C# [11]. The GUI was

 21

modified with added buttons so the user can grasp and move objects from specific

positions to required positions by a Virtual Joystick.

The lab setup included the JACO Kinova arm, a laptop, the JACOSOFT software,

the JACO controller GUI and 3D printed figures. The figures were made up of

• a hollow cylinder with a cap,

• two cubes,

• a pyramid, and

• a wheg.

The equipment was implemented as shown in Figure 13.

Figure 13. JACO arm with equipment implemented for Virtual Joystick
demo.

The JACO arm interfaces with the laptop via JACOSOFT software. Here the user

is able to set the conditions for arm manipulation with the JACO Controller. The

 22

“Mapping Info Window” in the API makes it possible to interface with the arm and the

laptop using Visual Studio C#.

The C# code generates a Virtual Joystick (see Figure 14), a GUI that allows the

user to manipulate the arm. To conduct the experiment, the 3D printed objects were

placed in specific positions (see Figure 10) and were grasped by the arm and moved to a

block stacking pyramid (see Figure 14).

Figure 14. C# code for Virtual Joysticks buttons.

The Virtual Joystick is a graphical user interface used to manipulate the JACO

arm in all directions (see Figure 15). The GUI is divided into three zones: Arm, Hand and

Wrist. In the arm zone the buttons allow the user to move the arm from retract to home

position, up/down, left/right and front and back. The buttons in the hand zone are used to

 23

open/close the hand and rotate it in the clockwise or counterclockwise direction. The

wrist zone allows the user to point the hand up or down. The detailed process for JACO

Arm manipulation is located in Appendix B.

Figure 15. Virtual Joystick (GUI).

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

IV. EXPERIMENTAL RESULTS

This section describes the results from the Joystick Trajectory Lab, the Virtual

Joystick Lab and the performance of the JACO Arm as related to the force and current

requirements to lift objects of different weight.

A. TRAJECTORY AND VIRTUAL JOYSTICK DEMO

Arm performance was demonstrated under Joystick and Virtual Joystick control

for a predetermined Cartesian trajectory. The objective was to pick up and manipulate

objects with varying degrees of complexity to test load and dexterity performance.

• Qualitatively the trajectory path performance was smooth for both

experiments.

• The robotic arm was accurate over several block stacking runs. Small

variations in placement position were observed as indicated by Figure 16.

Figure 16. Virtual Joystick (GUI).

 26

• A test moving a cube from a specific position to an alternate position was

realized 10 times, showing the following data (see Table 4) from the

distance between positions. The standard deviation for these attempts was

0.036 cm. It demonstrates the accuracy but with small variations in

placement positions on the block stacking pyramid.

Table 4. Attempts to observe variations moving a cube from a specific
position to an alternate position.

ATTEMPTS DISTANCE (cm)

A1 32.512

A2 32.512

A3 32.461

A4 32.537

A5 32.461

A6 32.563

A7 32.461

A8 32.537

A9 32.487

A10 32.461

• Joystick operation was intuitive for what would be considered normal

human actions. Primarily the movement of objects.

• Pyramid shapes, as shown in Figure 17, were difficult to manage with the

current version of the three-finger end effector. This is attributed to a

poorly tuned “underactuated” grasp technique.

 27

Figure 17. JACO arm lifting a pyramid.

B. JACO ARM LOAD CHARACTERIZATION

To verify the capability of the arm to lift various loads, tests were conducted with

the following weights: 0Kg, 0.5Kg, 1Kg, 1.5Kg and 2Kg (see Figures 18 and 19). Using

the Virtual Joystick and the Health Center window, data was collected on torques and

currents associated with the joint actuators for joints 2 and 3. These data were collected

for arm lifts of 1/2 meter and 1 meter, respectively. Results are shown in Tables 4–7 and

Figures 20–23.

Figure 18. Weights to be lifted by the JACO arm.

 28

Figure 19. JACO arm to lift weights implementation.

Tables 2 through 5 display the data for JACO arm joints 2 and 3 for various

weights for lift heights of 1/2m and 1m.

Table 5. Joint 2 torque and current for lifts of 0.5m.

WEIGHTS (kg) TORQUE (Nm) CURRENT (A)

0 12.6049 1.1459

0.5 16.4844 1.4986

1 19.5445 1.7768

1.5 22.4098 2.0373

2 25.8586 2.3508

 29

Table 6. Joint 3 torque and current for lifts of 0.5m.

WEIGHTS (kg) TORQUE (Nm) CURRENT (A)

0 0 0

0.5 0 0

1 0.7052 0.0683

1.5 1.2046 0.1095

2 6.1390 0.5581

Table 7. Joint 2 torque and current for lifts of 1.0m.

WEIGHTS (kg) TORQUE (Nm) CURRENT (A)

0 11.4093 1.0372

0.5 13.5412 1.2310

1 17.7383 1.6126

1.5 22.4553 2.0414

2 30.2264 2.7479

Table 8. Joint 3 torque and current for lifts of 1.0m.

WEIGHTS (kg) TORQUE (Nm) CURRENT (A)

0 4.0103 0.3646

0.5 4.3014 0.3853

1 4.5775 0.4161

1.5 14.2720 1.2975

2 17.6919 1.6084

 30

The experiment was designed to isolate joints 2 and 3 for the lift. The data is

plotted in Figures 16 through 19. We notice that for the both the intermediate (0.5m) lift

and the high (1.0m) lift, joint 2 is fully engaged for the duration of the lift for both

heights with torque values ranging from 12–30 Newton meters. However, joint 3 did not

engage until the load weight increased to over 1 kg. Current and torque loads were much

lower for joint 3 in all cases. This is attributed to the geometry of the joint positions for

the experiment. The conclusion is that torque values are definitely a function of joint

starting position but load weights have a much more significant effect. Furthermore,

current limits were exceeded on joint 2 for both the intermediate and high lift when the

load weight exceeded 1.5 kg. The arm handled the load successfully but the long term

risk is damage to the actuator.

Figure 20. Weight vs. torque for arm joints 2 and 3 for lifts of 0.5m.

 31

Figure 21. Weight vs. current for arm joints 2 and 3 for lifts of at 0.5m.

Figure 22. Weight vs. torque for JACO arm joints 2 and 3 for lifts at 1m.

 32

Figure 23. Weight vs. current for JACO arm joints 2 and 3 for lifts at 1m.

 33

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Based on observations with regard to JACO Arm performance under Joystick and

Virtual Joystick and upon experimental load lift data the following summarizes our

conclusions:

• Arm interaction with the Virtual Joystick, as opposed to the manual

Joystick, is a preferred method primarily because it is simpler to handle

repetitive actions and it is easier to load preplanned trajectories.

• The Visual Studio API interface is a viable intermediate step for future

external interface capabilities with the JACO arm.

• Maximum lift capabilities, as listed in the technical specifications for the

arm, were validated by experiment. For most lifting requirements, loads

should never exceed 1.5 kg.

B. RECOMMENDATIONS

The JACO arm-API-Visual Studio-Virtual Joystick interface is the gateway to a

new device interaction. This is because the API is grounded in Visual Studio. Many

sophisticated motion capture devices are supported by Visual Studio. This includes

Kinect for Windows, the Leap Motion Controller and the Myo Gesture Control Armband

for devices supported by Arduino. The follow-on work should include an exploration of

the integration of these devices with the JACO Arm.

Finally, the NPS AXV lab will explore future options to deploy this arm on an

autonomous platform.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

APPENDIX A

This section will describe the steps to save and load a specific trajectory in order

to grasp and move objects from a specific position to another required position. This will

help to facilitate student’s experiments in a robotic manipulation laboratory (RML).

Once the arm is powered and connected via USB with a computer, based on [10],

the steps are made, for saving and loading a specific trajectory for grasping and moving

the 3D printed objects, are:

Open the JACOSOFT software. Once it loads the Client ID, Client Name
and Client Organization in the General Information tab, it will be ready to
use (see Figure 24).

Figure 24. General Information tab. JACOSOFT ready to use.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

 36

Figure 25. Cartesian mode active. Switch to angular button in
Trajectory tab.

Click on Trajectory tab.

Choose a Cartesian or Angular mode. The software is set by default in
Cartesian mode. User can switch the mode by clicking the button Switch
to angular (see Figure 25). For this lab setup the JACO arm will work in
Cartesian mode. Cartesian mode active will be showed on the window.

Click on the box Enable Fingers. It will allow the software get the
position of the fingers in order to open and close it to grasp and move
objects (see Figure 26).

Figure 26. Enable Fingers box.

Figure 27. GET and ADD button.

Move the arm to the HOME position using the joystick, in order to start
to save the trajectory from an established position.

Click the GET and ADD button in order to save the trajectory (see Figure
27). The HOME position will be the first saved trajectory. The first
trajectory will appear in the Trajectory list box as [0] Cartesian (see
Figure 28).

 37

Using the joystick, go to the next position of the arm and fingers to grasp
the first object and then click on the button GET and ADD to save the
trajectory. Move the object to the required position using the joystick and
save the new trajectory. The user will repeat the process until all the
objects are moved to the required positions. The list of trajectories will
appear in the Trajectory list window (see Figure 28).

Figure 28. Trajectory list box in Trajectory tab.

To delete a trajectory, the user should select one such as [3] Cartesian and
click on the X button (see Figure 29).

Figure 29. X button.

 38

Click on the box Loop trajectory for repeat the whole trajectory
indefinite times (see Figure 30).

Figure 30. Loop trajectory box.

Click on SEND button to start the trajectory (see Figure 31).

Figure 31. SEND button.

To save the trajectory, click on Export button. Click on Import button to
load a saved trajectory (see Figure 32).

Figure 32. Import and Export buttons.

This lab setup to grasp and move objects based on joystick and trajectory tab used

97 trajectories to achieve the final specific position for all the objects. The following

figures show the initial position of the objects (see Figure 33), some intermediate

positions (see Figure 34 to 36) and the final position (see Figure 37).

 39

Figure 33. Initial position of objects.

Figure 34. Manipulating cube inside cylinder.

 40

Figure 35. Covering the cylinder.

Figure 36. Manipulating pyramid on the cube.

 41

Figure 37. Final position of the objects.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX B

The steps to follow in order to manipulate the JACO arm with the GUI are:

Once the arm is powered and connected via USB with a computer, based on [10],

the steps to follow in order to manipulate the JACO arm with the GUI for grasp and

move the printed objects, are:

Open the JACOSOFT software.

Click on Configurations tab.

Click on Control sub tab.

Click on button Mapping Info (see Figure 38).

Figure 38. Mapping info button.

On Mapping window, in Charts select ApiInterface (see Figure 39).

Figure 39. ApiInterface option.

 44

Set the controller’s functionalities (see Figure 40).

Figure 40. Command/State. Associated functionality.

Source: [10] JACO JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–
2014.

Select an Associated functionality/Motion for each Control Stick Event
(Command/State) (see Figures 40 and 41).

Figure 41. Associated functionality/motion.

 45

Figure 42 shows the Associated functionalities/Motion selected for this lab
setup.

Figure 42. Control stick events.

Select an Associated functionality/Configuration for each Control Button
Event (Command/State) (see Figure 43).

Figure 43. Associated functionality/Configuration.

 46

Figure 44 shows the Associated functionalities/Configuration selected for
this lab setup.

Figure 44. Control button events.

Click on Default Mapping box. (see Figure 45).

Figure 45. Default mapping box.

Click on SEND button to save the configuration and information.

Click on YES in the Question dialog box to save the information in JACO
(see Figure 46).

 47

Figure 46. Question dialog box.

Click OK in Information dialog box for Operation succeeded (see Figure
47).

Figure 47. Information dialog box.

Click OK information box for Reboot your JACO (see Figure 48).

Figure 48. Information dialog box.

 48

Close the Mapping window.

Close the JACOSOFT software.

Open the JACO Controller project solution (see Appendix C) in Visual
Studio/C#. Build it and Run it. Figure 49 will show the JACO Controller
GUI.

Figure 49. JACO Controller GUI.

This lab setup allows the user to grasp and move objects using the JACO

Controller GUI. The following figures show the manipulation of objects printed in a 3D

printer by the JACO Controller GUI (see Figures 50 to 53).

 49

Figure 50. JACO manipulating a cylinder.

Figure 51. JACO arm manipulating a cube.

 50

Figure 52. JACO arm manipulating a wheg.

Figure 53. JACO arm manipulating a pyramid.

 51

APPENDIX C

Based on Kinova C# [11] open source, were added the buttons required in order

to have a GUI that allows the user to grasp and move objects from specific positions to

required positions by a Virtual Joystick.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.Threading;
using Kinova.DLL.Data.JACO;
using Kinova.API.JACO;
using Kinova.DLL.SafeGate;

namespace KinovaExample_Control
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 //The thread that will send button functionnality
 Thread m_WorkThread;

 //Delegate method for the thread
 private delegate void DoWorkDelegate();
 ManualResetEvent mre = new ManualResetEvent(false);

 //The password provided by Kinova
 private const string m_APIpass = "C6H12O6h2so4";

 //Your JACO
 private CJACOArm JACO;

 //Constructor of the window
 public MainWindow()
 {
 //Window xaml component init
 InitializeComponent();

 try
 {

 52

 //Initialize JACO Object with an encrypted valid password
 JACO = new CJACOArm(Crypto.GetInstance().Encrypt(m_APIpass));

 //Take control of JACO
 JACO.ControlManager.StartControlAPI();
 }
 catch (Exception ex)
 {
 System.Console.WriteLine("Cannot connect to JACO");
 }

 //Check if JACO is connected
 if(JACO.JACOIsReady())
 {
 ((Label)m_Grid.Children[12]).Foreground = Brushes.Green;
 ((Label)m_Grid.Children[12]).Content = "JACO is online";
 }

 //Start the thread that will send joystick data to JACO
 m_WorkThread = new Thread(new ThreadStart(DoWork));
 m_WorkThread.Priority = ThreadPriority.BelowNormal;
 m_WorkThread.IsBackground = true;
 m_WorkThread.Start();
 mre.Set();
 }

 //Closing the window EVENT
 private void Window_Closing(object sender,
 System.ComponentModel.CancelEventArgs e)
 {
 m_WorkThread.Abort();
 JACO.ControlManager.StopControlAPI();
 }

 //Thread's work
 [STAThread]
 private void DoWork()
 {

 System.Windows.Threading.DispatcherOperation stdo = null;
 DoWorkDelegate updateJoystickDelegate = new
 DoWorkDelegate(UpdateJoystick);

 mre.WaitOne();

 while (m_WorkThread != null && m_WorkThread.IsAlive)
 {
 //Execute the UpdateJoystick method
 stdo = this.Dispatcher.BeginInvoke(System.Windows.Threading.
 DispatcherPriority.Normal, updateJoystickDelegate);
 Thread.Sleep(5);
 }
 if (stdo != null)
 {
 stdo.Dispatcher.InvokeShutdown();

 53

 }
 }
 private void UpdateJoystick()
 {

 //Declare and initialize a CJoystickValue that will emulate a
 GeneralJoystick
 CJoystickValue value = new CJoystickValue();

 // X UP
 if (((Button)m_Grid.Children[4]).IsPressed)
 {
 value.InclineLR = -1f;
 }

 // Y UP
 if (((Button)m_Grid.Children[5]).IsPressed)
 {
 value.InclineFB = -1f;
 }

 // Z UP
 if (((Button)m_Grid.Children[6]).IsPressed)
 {
 value.Rotate = 1f;
 }

 // X DOWN
 if (((Button)m_Grid.Children[7]).IsPressed)
 {
 value.InclineLR = 1f;
 }

 // Y DOWN
 if (((Button)m_Grid.Children[8]).IsPressed)
 {
 value.InclineFB = 1f;
 }

 // Z DOWN
 if (((Button)m_Grid.Children[9]).IsPressed)
 {
 value.Rotate = -1f;
 }

 // Store Position
 if (((Button)m_Grid.Children[10]).IsPressed)
 {
 value.ButtonValue[2] = 1;
 }

 // Go To Position

 54

 if (((Button)m_Grid.Children[11]).IsPressed)
 {
 value.ButtonValue[7] = 1;
 }

 // OPEN
 if (((Button)m_Grid.Children[13]).IsPressed)
 {
 value.MoveLR = 1f;
 }

 // CLOSE
 if (((Button)m_Grid.Children[14]).IsPressed)
 {
 value.MoveLR = -1f;
 }

 // ROTATE CLOCKWISE
 if (((Button)m_Grid.Children[15]).IsPressed)
 {
 value.PushPull = 1f;
 }

 // ROTATE COUNTERCLOCKWISE
 if (((Button)m_Grid.Children[18]).IsPressed)
 {
 value.PushPull = -1f;
 }

 // XTHETAMINUS
 if (((Button)m_Grid.Children[19]).IsPressed)
 {
 value.MoveFB = 1f;
 }

 // XTHETAPLUS
 if (((Button)m_Grid.Children[20]).IsPressed)
 {
 value.MoveFB = -1f;
 }

 //We update JACO with the new data.
 JACO.ControlManager.SendJoystickFunctionality(value);
 }

 //If we click the Record button
 private void button1_Click(object sender, RoutedEventArgs e)
 private void OPEN_Click(object sender, RoutedEventArgs e)
 {
 }
 private void ROTATE_Click(object sender, RoutedEventArgs e)
 {

 }
 }
}

 55

LIST OF REFERENCES

[1] A. Jacinto, “Unmanned systems: A lab-based robotic arm for grasping,” M.S.
thesis, Dept. Physics, Naval Postgraduate School, Monterey, CA, 2015.

[2] JACO Research Edition User Guide, V1.0.0. Kinova, Boisbriand, Canada, 2011–
2012.

[3] Craig, John J. Introduction to Robotics Mechanics and Control. 3rd ed. Upper
Saddle River: Pearson Prentice Hall, 2005.

[4] R. D. Klafter, T. A. Chmielewski and M. Negin, Robotic Engineering: An
Integrated Approach, 1st ed. Englewood Cliffs, NJ: Prentice Hall, 1989.

[5] JACO DH Parameters of JACO R&D, V1.1.5, Kinova, Boisbriand, Canada, 2013.

[6] Saeed B. Niku, Introduction to Robotics, Analysis, Control, Applications. 2nd
ed. Hoboken New Jersey: John Wiley & Sons, 2011.

[7] Long Wang, Joseph DelPetro et al. “Highly-underactuated robotic hand with force
and joint angle sensors.”

[8] F. Boucher. (2015, Sep.). “From need to innovation,” IEE Robotics & Automation
Magazine. [Online].ieeexplore.ieee.org

[9] J. Capille, “Kinematic and experimental evaluation of commercial wheelchair-
Mounted robotic arms,” M.S. thesis, Dept. Mechanical Eng., University of South
Florida, Tampa, FL, 2010.

[10] JACOSOFT User Guide, V1.4.2, Kinova, Boisbriand, Canada, 2011–2014.

[11] Kinova. Kinova USB. (n.d.). [Online]. Available: Kinova/Documentation/API/
Examples/Windows/CSharp/KinovaExemple_Control.

 56

THIS PAGE INTENTIONALLY LEFT BLANK

 57

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION and objectives
	II. THEORY
	A. INTRODUCTION
	B. DENAVIT-HARTENBERG PARAMETERS
	C. Inverse Kinematics
	D. Cartesian Trajectory Planning
	E. Lagrangian Dynamics

	III. EXPERIMENTAL SETUP
	A. 6-DOF JACO ARM
	B. JACOSOFT
	1. Configurations Tab
	a. Positioning
	b. Control

	3. Trajectory

	C. JOystick trajectory demo
	D. VIRTUAL JOYSTICK DEMO

	IV. EXPERIMENTAL RESULTS
	A. TRAjECTORY and virtual joyStick DEMO
	B. JACO ARM Load Characterization

	V. CONCLUSIONS AND RECommendations
	A. CONCLUSIONS
	B. RECOMMENDATIONS

	apPendix A
	APPENDIX B
	Figure 44 shows the Associated functionalities/Configuration selected for this lab setup.

	APPENDIX C
	List of References
	initial distribution list

