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Summary 

Under existing detection pipelines, seismic event hypotheses are formed from a parametric 
description of the waveform data obtained from a single pass over the incoming data stream. 
The full potential of signal processing algorithms is not being exploited due to simplistic 
assumptions made about the background against which signals are being detected. A vast 
improvement in the available computational resources allows the possibility of more sensitive 
and more robust context-based detection pipelines which glean progressively more information 
from multiple passes over the data. Under this contract we have evaluated iterative 
components at different levels of the pipeline hierarchy. At the level of the raw waveforms, we 
have evaluated schemes for the detection and cancellation of noise transients which can both 
reduce the detection capability of a station and supply the parametric datastreams with phase 
detections which may result in spurious event hypotheses. At the single array level, the 
sensitivity to sites of monitoring interest can be diminished by energy arriving from other 
directions, for example from ongoing aftershock sequences. We demonstrate how energy from 
the direction of interest can be enhanced at the expense of the nuisance energy using adaptive 
beamforming and empirical matched field processing. The aftershock scenario can have 
significant consequences for the generation of near real-time bulletins both due to the 
increased number of events and the deterioration of fully automatic event bulletins due to 
spurious phase association. We provide proof-of-concept of a system for spawning a targeted 
process for accurate aftershock characterization in a given source region such that all associated 
phases are removed from the parametric datastreams. New iterations of Global Association, or 
equivalent algorithms, would then read in pre-screened detection lists and have a lower 
likelihood of generating false events. Empirical signal detectors for multiple repeating sources 
could eliminate associated signals from the parametric datastreams.  

Approved for public release; distribution is unlimited.
1



1 Introduction 

Seismological data centers attempt to provide accurate and rapid characterization of global 
seismicity. This is true of the International Data Center (IDC) in Vienna, a part of the verification 
regime for the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and also at National Data 
Centers such as the US NDC. The processing pipeline currently employed at such data centers 
dates back to the 1980s and 1990s and consists of a transformation of continuous waveform 
data from multiple stations into streams of parametric information describing discrete detected 
arrivals. The limited computing resources available at that time demanded that critical event-
building functions (association, location and identification) are performed subsequently on the 
parametric data, since very intensive signal processing operations were computationally 
prohibitive. Expensive signal processing operations were minimized in such systems by 
performing only a single pass over the waveform data.  

In such an architecture, only very simple assumptions are possible about ambient background 
conditions in the selection and development of signal processing algorithms. Key assumptions 
are that events occur in isolation and that the background consists of white noise, usually 
uncorrelated and of uniform power among array sensors. These assumptions are clearly false in 
important and not-infrequent circumstances. Pipelines do have procedures to disentangle 
overlapped and interleaved seismic arrivals, but these usually are confined to association 
algorithms operating on the parametric representation of detected arrivals. Such procedures 
also fail demonstrably in cases such as extensive aftershock sequences. After being reduced to 
its parametric description, waveform data is generally not revisited in the processing pipeline -
except to allow analysts to re-examine or relocate events, deleting false events or adding new 
events as necessary. 

The single-pass architecture imposes significant limitations on the signal processing algorithms 
used for detection and phase characterization. Among these is the inability to adapt algorithms 
to suppress or cancel interfering signals with known characteristics. Future pipelines could allow 
waveform data to be revisited by detection and characterization algorithms that exploit some 
understanding or model of the context in which they operate. We consider how a context-based 
processing pipeline could operate with iterative elements at different levels of the hierarchy. 
For example, at a single station, the incoming waveforms may contain repetitive transient 
signals from nuisance sources; examples include the generation of icequake signals in the 
glaciers surrounding the SPITS array, or Rg phases generated by industrial activity near the KSRS 
array. We envisage central data collection systems with autonomous components to 
characterize local sources of interfering signals near each station and remove or suppress those 

Approved for public release; distribution is unlimited.
2



signals from the data stream before it is passed to the main pipeline for detection and 
subsequent processing. Such a subsystem would generalize existing masking functions that 
handle dropouts and data spikes to handle interfering, propagating transients from local 
nuisance sources. Such a signal-cancellation system is displayed in Figure 1. Further along in the 
processing pipeline, we may be attempting to associate phases globally from an extensive 
aftershock sequence in a limited geographical region. If a semi-autonomous sub-process were 
able to characterize this sequence accurately using a specially targeted signal processing 
strategy, we may be able to exclude all of the associated phases from the parametric 
datastreams that the association algorithms take as input - reducing the likelihood of false 
associations. 

Figure 1: Block diagram of a system component to remove local transients from a station’s data stream. 

Another assumption about future pipelines is that they would maintain constantly-refined 
models (i.e. world views) of seismic activity around the globe, and use those models to adapt 
the signal processing functions of the pipeline to optimize detection and characterization 
functions. In such architectures, model state might be determined initially by pipeline processes 
not very different from those used currently. However, waveform data could be extensively 
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reprocessed with algorithms conditioned on hypotheses about the current state of seismic 
activity (e.g. large aftershock sequence in progress, mid-day mining explosions anticipated, etc.). 
A mature picture of activity may emerge after several iterations of model-driven signal 
processing on the continuous data stream. It is not that this picture of activity is of direct 
monitoring interest, but rather that it may allow more effective screening of interference in the 
continuous data stream.  

Context-driven signal processing operations might include beamforming algorithms that search 
for events of interest among strong transient interference. Current beamforming algorithms are 
designed for very benign, white, uncorrelated noise background conditions. They are not well 
suited to detection among events in an aftershock sequence, for example. However, it should 
be possible to configure beamforming and related (for example, matched field processing) 
operations in second passes over data to make use of knowledge of interfering events gleaned 
from an initial pass. In this proposal, we give an example of such an algorithm: a data-adaptive, 
empirical matched field processor that substantially suppresses aftershock signals while 
remaining sensitive to signals from a known test site. The capability of this algorithm to 
suppress interference is significantly beyond the ability of a conventional beamforming 
algorithm because it is specifically designed to reject events with known characteristics. We 
here test this and related algorithms on a substantial fraction of a network with data recorded 
during an aftershock sequence. 

The model-building supervisory function of future pipeline architectures also could instigate 
signal processing operations to support or refute hypotheses being formed or tested. For 
example, having formed a marginally-supported event hypothesis with a minimum of phase 
detections, the supervisor could direct special beams to search for phases predicted to exist at 
stations without detections. Current architectures have some capability to perform this 
function. For example, the IDC system performs associations, forms and locates events based on 
early-arriving seismic and hydroacoustic data (forming the SEL1 bulletin). The system 
automatically requests data from auxiliary stations based upon event hypotheses reported in 
that bulletin, and performs detections and measurements on those new data. However, this 
function can be substantially enhanced to direct re-examination of all waveform data, both to 
search for missing phases as noted and to confirm detections in the context of an hypothesized 
event (with location and magnitude estimates). An overview of the proposed pipeline 
architecture is displayed in Figure 2. 
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Figure 2: High level sketch of possible future pipeline functions that would drive context-based signal 
processing algorithms. Functions highlighted with an orange backdrop are ones that are prototyped 
as part of this project.  

This report describes possible iterative approaches to several components of the processing 
pipeline. Each is considered as a separate subtopic under the Methods and Results sections. 
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2 Methods, Assumptions, and Procedures 

Each of the following subsections describes a study of how a component of a modern 
processing pipeline could be implemented to provide an iterative approach to event detection 
and location.  

Section 2.1 describes an evaluation of 2 different approaches for the removal of high amplitude 
nuisance transients from the incoming datastreams: a discrete, detection, signal cancellor and a 
continuous signal cancellation algorithm. The problem is highlighted for a case study of 
icequakes near to the SPITS array on Svalbard. 

Section 2.2 examines the effects that the implementation of such a cancellor can have on 
operations of the detection framework. 

Section 2.3 describes the application of empirical matched field processing and adaptive 
beamforming as a form for contextual signal processing to improve detection and association 
functions without the need for the “white noise” background assumptions on which current 
pipelines are run. 

Section 2.4 examines the possibilities for evaluating the validity of event hypotheses with the 
use of targeted signal processing. Under current pipeline processes, association algorithms only 
have streams of parametric data available. The event hypotheses generated are currently 
evaluated only by an analyst, and we take a look at the steps that could be taken in an 
automatic system to eliminate false event hypotheses prior to analyst review. 

Section 2.5 considers the scenario of an extensive aftershock sequence which generates a rapid 
succession of seismic phases globally which overwhelms existing phase association algorithms. 
We consider a solution whereby a separate offline sub-process is spawned to do a source-region 
specific search of the aftershock zone. With as many as possible of the largest aftershocks well-
located, we can then remove all associated phases from the incoming data-streams. 
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2.1 Cancellation of Repetitive Transients in Seismic Array Data Streams 

Highly repetitive local seismic interference often complicates operations at key stations in 
earthquake and verification monitoring networks. In some applications it may be desirable to 
remove interference transients from the continuous data streams of seismic arrays as a 
preprocessing step before normal detection, phase identification and event formation 
functions. We present several algorithms for transient interference suppression based on 
empirical models for interference sources. The general approach these embody is a dual of the 
traditional Widrow-Hoff noise canceller. Cancellers assume that a separate recording of an 
interference source time history is available and that this time history is correlated with 
components of unwanted noise in a primary data stream. The objective of traditional cancellers 
is to estimate a transfer function – in seismic applications, a Green’s function – relating the 
continuous source to interference in the primary stream, allowing the interference to be 
estimated and removed from the stream. By contrast, our application assumes that the Green’s 
function is known – through past observations of repetitive transients – leaving the source time 
history to be estimated. This is a more ambitious, but feasible, cancellation operation. We 
examine two algorithms, one which makes a continuous estimate of the interference source 
time history and a second which models the source as producing a relatively sparse set of 
discrete, impulsive events. In the latter case, correlation detectors find these discrete 
excitations to build an impulse-train representation for the source.  

We give an example of icequake cancellation at the SPITS array in Svalbard and find that the 
continuous-source estimator is highly effective at removing interference transients at the cost 
of distorting desired signals. Distortion is reduced as the number of array channels is increased, 
but would require an unrealistic number of channels for high-fidelity preservation of desired 
signals. The intermittent source algorithm largely avoids distortion of desired signals but is not 
completely effective in removing interference. It is sufficiently effective, as we demonstrate, for 
significant improvements to pipeline operations. We also developed a post-processing 
correction to the continuous-source canceller that appears to be very effective in mitigating the 
distortion problem. The corrected continuous canceller would be the algorithm of choice for 
this application, were it not for its very high computational cost. 

2.1.1 Introduction 

Often it is the case that key seismic stations, otherwise ideally placed for some monitoring 
function, are located close to sources of seismic interference. This observation is true, in 
particular, for stations located in polar regions, in which the movement of glaciers and sea ice 
can generate thousands of small “icequake” events in a day. These events can cause major 
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difficulties for monitoring pipelines, particularly in the detection and association phases of 
operation. A particularly clear example is seen in the SPITS array located in the European arctic 
(Figure 3). SPITS is a key station for monitoring the Arctic region, including the former nuclear 
test sites on Novaya Zemlya. For events in the Novaya Zemlya region, SPITS has, during normal 
background noise conditions, the capability to detect events down to magnitude 2.0 [Gibbons et 
al., 2011].  

Figure 3. Location of the SPITS array in relation to Novaya Zemlya, the former Soviet nuclear test sites, 
and seismicity in the European Arctic. The blue symbols indicate location estimates of seismic 
events from the NORSAR-reviewed regional event bulletin between 1998 and 2008. The red/white 
squares indicate the approximate locations of north and south Soviet nuclear test sites on Novaya 
Zemlya. The orange symbols refer to events on or close to Novaya Zemlya in the time period 1992-
2010. Symbol size relates to event magnitude. 

However, the area around the SPITS array is characterized by permafrost and several 
neighboring glaciers which regularly generate seismic disturbances. During certain time 
intervals, e.g. in melting or freezing periods, these transients can dominate the seismic data and 
significantly reduce the detection capability of the seismic array. An example is shown in Figure 
4 in the form of a helicorder type plot for 1 June 2011. The time interval between 15:00 and 
18:00 UTC contains a large number of such transients. 
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Figure 4. Mock helicorder plot for the central element vertical sensor of the SPITS array for 1 June 2011. 
(See http://www.norsardata.no/cgi-bin/spdatashow.cgi?year=2011&doy=152&sta=SPI). Signals from 
events at regional distances have wavetrains up to several minutes in duration. The vertical scale is 
dominated by very short duration signals (duration 5-10 seconds) of which many thousand are 
detected in this 24 hour period. 

Frequently undesirable local transient waveforms are repetitive, being produced by a relatively 
small number of sources of recurrent events. When this situation obtains, a pre-processing 
strategy for “tagging” or removal of nuisance transients based on waveform correlation 
techniques is feasible. This strategy could take the form of detection and marking for transients, 
much like glitch or dropout detection and marking is implemented with a masking channel in 
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some systems. A more ambitious approach might remove nuisance transients by waveform 
estimation and subtraction. This paper examines this latter possibility. 

Waveform estimation and subtraction closely resembles noise cancellation approaches used to 
remove continuous interference (e.g. noise from rotating machines); we choose to frame the 
problem in a mathematical structure close this formulation (Figure 5).  

Figure 5. Block diagram of the classical cancellation algorithm. 

Noise cancellers, such as the adaptive Widrow-Hoff [1960] algorithm, model the observed 

waveform as a sum of a desired signal, , undesired interference, , and possibly uncorrelated 

background noise, . The methods require an independent observation, , of the interference 

process which is free of the signal one wishes to observe. This independent reference must be 
correlated with the interference in the primary signal channel. Cancellers, then, estimate a 

finite-duration transfer function, , to “shape” the reference interference measurement to 

match (as ) the interference in the primary channel. The estimate  is subtracted from the 

primary waveform to suppress . This kind of interference suppression can be highly effective 

and simple to apply, provided it is possible to identify and instrument the sources of 
interference with separate, dedicated sensors [for a geophysical application, see e.g. Harris et 
al., 1991]. It is possible to apply cancellation against multiple sources of interference 
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simultaneously with a suite of reference observations targeting all of the sources. This extension 
of the process leads to a multichannel variant of the simple canceller shown in Figure 5. 

In the application we contemplate in this paper, an independent observation of the noise source 
is not available, but an estimate of the transfer function is known, being measured from past 
observations. Our application is the more difficult dual of the common cancellation problem, in 
that we propose to swap the roles of r and w, estimating an interference source of effectively 
unbounded duration. 

We consider two approaches to the problem of estimating the interference source. In the first 
we treat the source as a completely general waveform, solving a least-square problem for 
estimating the discretized samples of the interference source. This approach, though completely 
general, has two principal disadvantages: the first is that its computational cost is huge, and the 
second is that it biases estimates of the desired signal. The second approach makes a simplifying 
assumption that the interference consists of highly repetitive transient waveforms, so that the 
source consists of a series of delta functions and the transfer function is identical to the 
repetitive waveform that we seek to remove from the data. This approach first performs a 
detection step, using a generalized correlation detector to identify the number and times of the 
impulsive events that constitute the interference source. A cancellation step follows detection, 
scaling the impulses to match amplitudes of predicted and observed occurrences of the 
interfering transients. 

In fact, our model for the interference transfer function is somewhat more nuanced. We 
generalize the transfer function with a subspace representation to allow a range of variation in 
signals being targeted for cancellation. In principle, this generalization allows some variation in 
source location, mechanism or time history [Harris, 1989]. Although we have described the 
source time history as largely quiescent but punctuated by bursts of impulsive activity, in fact 
the source may be characterized by a near continuous range of activity with occasional very 
large excitations subsiding to a range of smaller excitations grading to an indistinct rumble. 
Because the detection step requires that we choose a threshold for detection, the smaller 
occurrences of interfering transients will not be removed from the data. The advantages of this 
approach are that it is comparatively much faster than the first method and, for desired signals, 
largely distortion free. Its disadvantage is that it removes less interference, particularly low-level 
interference. We observe that as the threshold is reduced the second method asymptotically 
approaches the first. 

We also describe a post-processing technique for reducing bias in desired signals in the first 
cancellation method, based on a heuristic for identifying when the method is attempting to 
cancel a transient that is not a copy of the interference waveform. 
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This application and its solutions have much in common with finite fault decomposition (source 
slip estimation) using empirical Green’s functions. The difference is that we consider problems 
with just a few source locations and continuous streams, rather than finite duration waveforms 
decomposed to hundreds of source locations gridding a fault surface. In addition our objective is 
not directly estimation of the source, which is responsible for unwanted interference in our 
application, but removal of the consequent transient interference in the continuous stream 
data. 

The data we consider are multichannel: array data. In fact, the number of available channels 
controls a tradeoff between desired removal of transient interference and undesired distortion 
of waveforms from events of interest. The larger the number of data channels, the more reliably 
interference can suppressed while simultaneously minimizing distortion of desired waveforms. 

The paper is organized as follows: in the next section (2.1.2) we present our mathematical 
model of transient interference intermixed with waveforms from events of interest. In section 
2.1.3, we derive the two principal solutions to the source estimation problem, discussing 
practical algorithms and the heuristic for suppressing bias in the continuous-source cancellation 
method. Following that, in section 2.1.4 we apply the methods to data from the Spitsbergen 
array, comparing results. 

2.1.2 Mathematical Formulation 

We assume the seismic observations are multichannel, with  channels, and represent the 

sampled continuous signals as a vector sequence: 

(1) 

Streams from the individual channels are designated by  with time index . 

We use italic characters to indicate scalar quantities and bold characters to indicate vectors or 
matrices. The observations consist of three components: unmodeled waveforms from events of 

interest, , undesired interference transients, , and background noise, . We assume 

each of possibly several interference components to have the form: 
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(2) 

The  are finite duration transfer functions (Green’s functions or sums of Green’s functions) 

relating forcing functions  at the interference sources to the resulting transients observed in 

the data.  is the duration of the transfer functions in seconds. In equation (2)  is assumed 

to be  for values of its index outside of the interval . Taking into account the 

possibility of  independent interference sources, the complete representation for the data 

sequence is: 

(3) 

As mentioned in the introduction, interfering transients often are repetitive. We use this fact to 
form empirical estimates of the transfer functions for groups of related interference events. 
Following [Harris, 2006], we use a 5 step process: 

1. Construct a pool of events of all by running a power (STA/LTA) detector over a period of data 

when interference sources are active. Extract event data segments of duration . 

2. Cross-correlate waveforms from all events in the pool. 

3. Cluster the events using a hierarchical agglomerative algorithm using waveform correlation 
as a distance measure. The clustering threshold determines the number of clusters. Select 
clusters which have more than some minimum number of events. The number of such clusters 
is an estimate of the number of discrete sources producing interfering transients. We expect 
such sources to be prolific; in fact, it is this characteristic which distinguishes nuisance transients 
from events of interest. 

4. For each significant cluster, align the corresponding waveforms using delays estimated from 
peaks in the cross-correlation functions, then construct a data matrix of aligned waveforms with 
one column for each event.  
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5. For each significant cluster, construct an orthonormal representation for the column space 
by performing a singular value decomposition (SVD) of the data matrix and retaining the left 
singular vectors corresponding to the top singular values of the decomposition. We determine 

the dimension  (rank) of the representation by finding the  largest singular values with 

cumulative energy greater than some specified fraction of the total energy in all singular values. 
The matrix of left singular vectors is orthonormal by construction and constitutes the 
representation of the transfer function for a particular source. 

Step 4 requires some elaboration. Since the data are multichannel, we multiplex the waveforms 
for a single event in channel-sequential form to form a column of the data matrix. This produces 
a consistent packed representation for a vector waveform (referring to equation 1): 

(4) 

that preserves moveout among the waveforms across an array. The dimension of  is 

. With  events, the complete data matrix has the form: 

(5) 

It is common to normalize the event data so that  for all events, so that no single 

event or subset of events comes to dominate the data matrix and the corresponding SVD. 

The SVD of step 5 produces the decomposition: 

(6) 

with diagonal singular value matrix and orthonormal left  and right  matrices of singular 

vectors: 
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(7) 

We select the dimension of the representation  as the smallest integer that satisfies: 

(8) 

where  is called the fractional energy capture threshold. Here the singular values are assumed 

to be sorted into descending order. The partition of  that we retain as a representation for 

the collection of related waveforms is: 

(9) 

The dimension of  is  and it is an orthonormal matrix: 

(10) 

Referring to (2), our working hypothesis is that  spans the matrix of Green’s functions: 

(11) 

so that . 
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The representation matrix  can be partitioned into separate time steps: 

(12) 

which aids in the construction of a model for the continuous stream with embedded transients. 
Using this sequential form, our model for the interference component of equation (3) becomes: 

(13) 

For values of the indices of  outside of the interval , we consider . Our 

objective in cancelling the interference is to estimate the weight sequences  so as to 

minimize the energy in the residual sequence: 

(14) 

over some suitably chosen interval . 

2.1.3 Algorithms 

Our algorithms operate on finite time intervals. In this section, we define as  a segment of 

continuous data consisting of  time steps and beginning at time : 
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(15) 

The convolution operation defining our model of interference (from one source) then can be 
described by a matrix product: 

(16) 

which simplifies the description of our first algorithm. 

For a succinct description, we define the weight vector: 

(17) 

of dimension  and the model matrix: 

(18) 
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of dimension . With these definitions our estimate of the 

interference is: 

(19) 

Under the simplifying assumption that  and  can be modeled as a uniform, independent, 

white Gaussian processes, a solution to the estimation problem can be found by choosing  to 

minimize the squared residual norm:  

(20) 

Continuous-source algorithm 

Our first algorithm minimizes (20) directly, with the solution: 

(21) 

This least-squares problem minimization is well-posed, provided the matrix: 

(22) 

is full-rank. Note that  is banded, and, in fact, block Toeplitz: 

(23) 
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Where, for : 

(24) 

Note that the are dimensioned  and, by construction, . Also,  is 

symmetric, with: 

(25) 

The core calculation is the evaluation of equation (21), which we break into two parts. The first 

is evaluation of , which, by inspection, is a matrix convolution operation, and can be 

accomplished efficiently with overlap-add algorithms [Oppenheim and Shafer (1975)]. Given the 

result of this operation, the second part is evaluation of . Since  is block Toeplitz, 

there is an efficient Levinson-Durbin recursion for the solution of this problem, which does not 

require construction of the full  matrix or its inverse. For the reader who is not familiar with 

the Levinson-Durbin recursion, a derivation is provided for convenience in Appendix A. 

A note about implementation: the matrices of (18) and (23) are enormous in any realistic 
problem and cannot be constructed explicitly. Consequently, the block Toeplitz structure must 
be exploited with the Levinson-Durbin recursion or some similar algorithm. Even exploiting that 
structure, the solution is computationally intensive on today’s servers. For example, for a rank-3 
subspace representation and a data block size of 3 minutes at 40 samples per second, a 
template size of 10 seconds, the system to be solved is 

. For continuous stream processing we found it 

necessary to break the data into overlapping blocks, process each block separately and piece 
the results back together. We use three minute blocks, with one minute overlaps on each end, 
retaining the residual only for the central minute of each block. With this much overlap we do 
not notice any discontinuities in the processed residual segments when the continuous result is 
assembled. Although this method of processing contains a significant number of redundant 
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calculations, processing larger blocks to reduce redundancy (say 7 minute blocks with the same 
overlap) is not more efficient, because the cost of solution by Levinson-Durbin recursion is 

. 

Another point regarding the continuous source algorithm is that when more than one source of 

interference is present, with model matrices , we simply concatenate the model matrices to 

form a combined model . 

Intermittent-source algorithm 

As noted in the introduction, a much faster solution is possible by approximating the excitation 
at each interfering source as a collection of discrete events. Instead of estimating the entire 
source time history as a continuous stream, we treat it as an intermittent, sparse sequence of 
excitations. We then perform a waveform fit and subtraction for distinct excitation events. 

Referring to the data model of equation (3), we represent each of the continuous sources 

as a superposition of  impulsive forcing functions (corresponding to discrete interfering 

events) at distinct time indices : 

(26) 

In our empirical representation for the interference (equation 13) we treat each weight 
sequence as a similar superposition of delta functions: 

(27) 

The consequent interference model due to one source ( ) is: 
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(28) 

The interference over all  sources is: 

(29) 

Under this formulation, our cancellation objective is to find the collections of indices  and 

weights  that minimize the functional: 

(30) 

We solve this problem with a type of alternation approach. We first estimate the indices, then 
the weights, then iterate the process. To estimate the indices, we perform a detection step, 
running a subspace detector [Harris, 2006; Harris and Dodge, 2011] over the continuous 
multichannel stream for each distinct interference source. Subspace detectors generate 
continuous detection statistics that range between 0 and 1, much like correlation coefficients. 

Each detector operates by running a sliding window of length  over the continuous stream 

sample-by-sample, projecting the data in each successive window position into the subspace 

defined by the interference model representation . The detection statistic for a given time 

step is the energy of the projection normalized by the energy of the data in the window. The 
maximum possible projected energy is the energy in the data itself, so the maximum value of 
the ratio is one and equals one only when the data fall completely within the subspace (i.e. the 
trace in the window is a target interference waveform). We note, that if the model 
representation has rank one (i.e., if the representation consists of a single waveform), then the 
subspace detection statistic is exactly the square of the sample correlation coefficient between 
the data and the interference waveform. 
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The indices are estimated as the points at which the detection statistics exceed some threshold 
value. When several interference sources are in play, the detection process may be complicated 
by near simultaneous detections of an interference event by two or more detectors. The 
solution to this problem is to collect near-simultaneous triggers from all detectors and promote 
the one with the maximum statistic as the single detection. This reconciliation process 

determines the value of  in . 

Once the indices of interference events are determined, the weights  are estimated by 

minimizing the functional of equation (30). This process is simple if interfering events are sparse 
and do not overlap. In this case, interference events can be treated independently; the weights 
are obtained by a simple projection of the waveform data in the trigger window onto the 
subspace: 

(31) 

For very active interference sources, such as the ones shown in Figure 4, interference 
waveforms frequently are superimposed. Then the estimation procedure is complicated by the 
need to estimate several weight vectors simultaneously over the union of time intervals of the 
interference events. In addition, with overlapped events, the subspace detection statistics may 
fall below the detection threshold for at least one of the events. Interference transients, even 
those well-characterized by one of the interference models, can be missed in the detection 
step. It is this effect which forces an iterative approach. 

Our complete algorithm consists of estimating the indices  and weights  in each 

iteration incrementally from the cancellation residual of the previous iteration. It often happens 
that cancellation of an interference transient in one pass of the algorithm exposes a new 
interference waveform to be detected in the next pass. In each pass, we add the indices of new 
detections to the accumulating set of indices for all events and re-estimate the weights for all 
detections. This process continues until no new detections are obtained. In the examples we 
consider, as many as four iterations produce usable detections. 

Post-Processing Correction to the Continuous-Source Canceller 
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In the above, we have described two procedures for obtaining an estimate of the interference, 

, resulting from a set of repeating transient noise sources: a continuous source algorithm 

and an intermittent source algorithm. Figure 6 displays a schematic picture of the behavior 
typically observed by the two algorithms in our case study of the SPITS icequakes. In the top 
trace (a) we see an original waveform containing a signal of interest in addition to background 
noise and high amplitude transients that we would like to remove from the data stream. In 

trace (b) we see the model for generated by the intermittent source estimator. This 

estimate is zero for all time samples except for those immediately following subspace 
detections; it is non-zero wherever there are sufficiently good matches with the interference 
source templates. Only two of the three unwanted transient signals are modelled in this 
example. While the subspace detector allows some variability in the source-time function, the 
sequence of multiple events which led to the superposition seen here results in a detection 
statistic lower than our predetermined threshold. As a consequence, the composite signal is 

ignored. Trace (c) is the residual, , obtained from our observation  by 

subtracting the interference estimate, i.e.: 

(32) 

The two transients present in (b) are cancelled with the rest of the waveform unchanged. As 
noted in the previous section, sometimes composite signals can be partially cancelled in one 
pass of the intermittent source algorithm, with further cancellation in subsequent iterations. 

Trace (d) shows the estimate of  from the continuous source model. The algorithm assumes 

that the interference source is always present. As a consequence, this estimate generally is non-
zero. All three of the interference transients are well represented in the model, even the one 

resulting from the composite event. However, the amplitude of  is a significant fraction of 

the amplitude of the desired signal such that when the subtraction is performed (trace e) 

that signal has been corrupted. Observation of long durations of data indicate that the 

amplitude of  is a relatively constant fraction of the amplitude of  for a given 

interference template (with characteristics controlled by, for example, time-bandwidth product 
of the interference waveform, number of channels observing). A greater number of channels 
(e.g. with a 3-component array rather than a vertical-only array) or a more complex transient 
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signal will match windows of unrelated data less well, reducing this fraction. Distortion of the 
original waveform is particularly prominent when a sharp contrast in amplitudes occurs over a 
time-window that is short in comparison with the length of the interference template. This is 
particularly problematic since it is prone to occur exactly at the onset of high SNR seismic phase 
arrivals. 

Fortunately, it is relatively easy to identify the data segments for which it is beneficial to 

subtract  from . If the transient model  represents the observation well at a 

given time, the match is good both in form and in amplitude. As a post-processing correction to 

the continuous source cancellation algorithm, we seek a scalar windowing function, , such 

that 
(33) 

with  where cancellation should be performed and where the original 

waveform should be preserved. We begin by setting for all samples n and we 

evaluate the instantaneous envelope functions and using the data traces and the 

corresponding Hilbert transforms. For any sample n where either ratio or 

 falls below a nominal threshold (e.g. 0.9) we set  which results in a 

binary trace which is predominantly unity over data windows containing a nuisance signal and 
predominantly zero elsewhere. There are small clusters of exceptions due to waveform 
variability and coincidental similarity over very short windows. Applying a median filter with a 
length of a few seconds eliminates these, resulting in a rectangular function that is unity over 
durations comparable to those of the interference transients and zero elsewhere. Adding a 
short-duration cosine taper to each of the zero-to-unity and unity-to-zero jumps in this function 

provides a windowing function  that does not result in discontinuities (Figure 6, trace f). 

The lower two traces in Figure 6 display the windowed continuous source model and the 
resulting residual, in the interference transients are removed with no distortion of the signal at 
other times. 
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Figure 6 .Schematic depiction of transient signal cancellation using intermittent and continuous source 
models of the interference. 
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2.1.4 Spitsbergen Array Example 

As an example of the application of the algorithms described in the previous section, we apply 
both to the continuous stream from the SPITS array during a period of prolific icequake 
occurrence. As described in the introduction, icequakes in the region surrounding the SPITS 
array dominate observations during periods of melting and freezing. P, S and Rg phases from 
these very local events are observed at the SPITS array and are, in many cases, reported by the 
automatic detection processor. Low propagation velocities, often in the range 1.3-2.0 km/s, are 
quite diagnostic for the Rg phases. However, for such nuisance P and S phases, the apparent 
velocities observed are indistinguishable from those estimated for P and S arrivals from regional 
events of monitoring interest. These nuisance detections cannot be eliminated from the 
detection stream without applying rigorous diagnostics to other properties of the signals (e.g. 
duration). Nuisance phases can constitute a very large fraction of all SPITS detections; failure to 
remove them from the processing pipeline can lead to spurious event hypotheses that slow the 
generation of seismic bulletins. For the year 2011 about 25% of SPITS detections appear to be 
slowly-propagating Rg phases. Figure 7 shows the azimuthal distribution of the 195,000 Rg-type 
phases reported in 2011, plotted at the geographical location of the SPITS array. We observe 
that the peaks of the azimuthal distribution coincide with the main directions towards 
neighboring glaciers.  

During periods with high local event activity we often observe that “interesting” signals from 
regional or teleseismic distances are missed by the automatic detector because of data 
contamination by local signals. Even if nuisance transients do not overlap signals of interest, 
they may interfere with detection statistics, for example by reducing the Signal-to-Noise Ratio 
(SNR) for STA/LTA type detectors. 
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Figure 7. The rose diagram (red) shows the azimuthal distribution of 195,000 Rg-type phases reported in 
the SPITS detection lists for 2011. The rose diagram is centered at the location of the SPITS array. 

As an example of cancellation performance, we apply both algorithms to continuous data from 
day 152 (June 1) of 2011. The SPITS array consists of 9 elements, a central element surrounded 
by a ring of 3 elements, with both surrounded by a larger concentric ring of 5 elements. The 
central element and the elements of the outer ring are three-component sensors. Elements of 
the inner ring are vertical sensors only. The data at this array are sampled at a rate of 80 
samples per second. We apply the cancellers to two array configurations: the first consists of 
just the 9 vertical components, and the second consists of all 21 components. 

The 5-step prescription described in section II was followed to identify the number of 
interference sources and to construct subspace representations for the waveforms they 
produce. In order to make a consistent comparison between the vertical and three-component 
data sets, the clustering and energy capture thresholds were manipulated in the design process 
to produce two clusters in each case, with a dimension of 3 for the subspace representing 
waveforms from the first cluster and dimension of 2 for the second subspace. 

Results for the 21-channel cancellation example are shown in Figure 8 in a helicorder-style 
plotting format. At left in the figure is the original record from channel SPA1 BHZ for day 152 
filtered into the 2 to 8 Hz band. It is clear from this panel that the amplitudes in the filtered 
waveform data are dominated by very large interference transients, such that events of interest 
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are difficult to identify visually. The middle panel of the figure shows the cancellation residual 
obtained with the continuous algorithm and appears to show a very substantial reduction in the 
total energy of interference events in the recording. Regional events of interest, unrelated to 
the interference transients now are the dominant signals in the display. The data were 
decimated to 40 samples per second prior to applying the continuous canceller. The continuous 
canceller is quite slow, completing cancellation of 24 hours of data in perhaps 6 hours on a 12-
core Xeon server. This slow speed occurs despite the fact that the Java implementation is 
concurrent, making use of all 12 cores of the server. 

Figure 8. Helicorder type record of one channel (SPA1 BHZ) of the SPITS array (left), and cancellation 
residuals for the continuous canceller algorithm (middle) and the detecting canceller algorithm 
(right). Icequake removal is more thorough with the continuous algorithm, but at the price of 
greater computational cost. 

The panel at right displays the residual obtained with the intermittent-source canceller after 
four iterations. The detection threshold was set to 0.6 in this case. Cancellation of the 
interference transients is not quite as thorough as for the continuous canceller, particularly for 
two rather large events and numerous small events. The small interference events probably 
were not detected, due to low SNR. The two large interference events may have been 
superimposed on regional waveforms. While cancellation may not have been quite as complete 
with this algorithm, it nonetheless has two distinct advantages: it is orders of magnitude faster 
than the continuous canceller and it has significantly less distortion of the remaining waveforms 
from regional events of interest. However, this latter advantage is eliminated by the post-
processing correction to the continuous-source canceller. 
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For the intermittent-source canceller, it is illustrative to examine what is actually removed from 
the data stream in each iteration (Figure 9, bottom panels). It is clear that each iteration 
removes progressively fewer transients, and with lower amplitudes, than the previous iteration. 
However, since the computational cost of executing a single iteration of the detector is 
insignificant compared to the cost of the complete process, it is worth iterating the procedure 
until no subsequent change occurs in the waveform. In this example, this termination condition 
occurred after 4 iterations – the 5th iteration produced no further detections or cancellations. 

Figure 9. Composite of cancellation residuals for four iterations of the detection algorithm (top) and 
differences between the residuals from successive iterations (bottom). As anticipated, cancellation is 
subject to diminishing returns with iteration. The first two iterations produce significant numbers of 
detections and cancellations. There are no further cancellations after four iterations. 

The advantages of the continuous source canceller are apparent in Figure 10, which compares 
details of the intermittent and continuous cancellation residuals over a 3-minute data segment. 
There are two clear icequake events in this time window. The intermittent source canceller 
reduces the amplitude of the first signal by an order of magnitude but fails to eliminate it to the 
point where it would not result in a detection subsequently with an STA/LTA detector. The 
second of the icequake signals is simply missed by the detector in the intermittent-source 
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algorithm. By contrast, both of the signals are reduced to the level of the background noise by 
the continuous-source canceller. The continuous-source cancellation residual has been modified 
by the post-processor designed to preserve desired signals. With the tapered window function, 
no changes are made to the waveform outside of the time intervals covering the icequake 
signals. 

Figure 10. A 3-minute long data segment from the SPA0_BHZ channel. The top trace shows the full 
dynamic range of the filtered data and the lower 3 traces are all displayed to the same vertical 
scale. Traces 2, 3, and 4 from the top show respectively the original filtered data at higher gain, the 
cancellation residual from the intermittent-source algorithm, and the residual from the continuous-
source algorithm. 

The next 3 figures provide additional information on the necessity of the post-processing 
correction to the continuous-source canceller. These figures show a detailed section (1200 
seconds) of the stream and various cancellation residuals. Figure 11 displays the results of 
cancellation using the 9 vertical elements of the SPITS array. The design process for the 
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cancellation algorithms resulted in two clusters of interference waveforms; one was 
represented with a subspace template of dimension 2 and the other of dimension 3. The top 
trace of the figure displays the original data from channel SPA0 BHZ. It contains a number of 
icequakes and a large regional event waveform. 

Figure 11. Cancellation options for the 9-element array of SPITS vertical sensors show that it is possible to 
suppress icequakes without distorting desired regional signals. The top trace is an original filtered 
signal. The second and third traces are cancellation residuals for the intermittent-source and 
continuous-source algorithms respectively. The fourth trace is the gating function generated by the 
post-processor, and the last trace is the result of correcting the continuous-source residual with the 
gating function. 

The second trace is the residual from the intermittent-source canceller (also called detection 
canceller) using the two interference source representations of dimensions 2 and 3. It largely 
eliminates or suppresses the icequakes without distorting the regional waveform. The third 
trace is the residual from the continuous-source canceller, which is better at suppressing the 
icequakes, but at the cost of distorting the regional waveform. At this scale, the distortion is 
most obvious in the loss of amplitude of the P and S phases. The fourth trace is the gating 
function generated by the post-processor indicating where the cancellation residual should be 
stitched into the original stream. The final trace is the corrected continuous-source residual, 
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showing that the gating function preserves the regional waveform while allowing cancellation of 
the icequakes. This residual is the cleanest of the cancellation options. 

Figure 12. Cancellation residuals for the full array of 21 vertical and horizontal elements of the SPITS array 
show that larger numbers of channels mitigate distortion. The traces are the equivalents of those in 
Figure 11 for cancellation performed on 21 channels instead of 9. 

Figure 12 provides cancellation residuals from the full 21-element SPITS array for comparison 
with Figure 11. In this case the cancellers also used two sources with 2- and 3-dimension 
subspace representations. Since the total number of degrees of freedom in the cancellers is that 
same as the prior example, but the number of channels is greater, it may be anticipated that 
constraints on distortion of the regional signal are improved. This is the case, as can be seen in 
the third trace of the Figure 12. Amplitude loss in the regional event is less pronounced in this 
figure. It also is apparent that the icequakes are suppressed less effectively by the intermittent-
source algorithm (trace 2) when 21 channels are used instead of 9. This effect is a consequence 
of the larger number of constraints that have to be met in fitting 21 channels of data with 5 
degrees of freedom instead of 9 channels. As before, the continuous-source cancellation 
residual is the best among the three cancellation options. 

Detail of the distortion created by the continuous canceller and corrected by the gating function 
of the post-processor is displayed in Figure 13. The top trace is again the original filtered data 
from station SPA0 BHZ. The next two traces are the residuals from the continuous-source 
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cancellers acting on 9 channels and 21 channels of data respectively. This distortion manifests 
itself in amplitude reduction in the waveforms, but more disturbingly in P-wave precursor 
artifacts. Distortion definitely is reduced with the addition of more channels to the processed 
data stream (comparing trace 3 to trace 2). However, the post-processing algorithm restores the 
regional signal (bottom trace) without adding noticeable artifacts to the rest of the stream. With 
this observation, the continuous-source canceller, corrected by the post processor appears 
would be the algorithm of choice were it not for the fact that the continuous canceller is several 
(~3) orders of magnitude slower than the intermittent-source algorithm. 

Figure 13. Details of cancellation residuals for the three algorithms around the regional waveform shown 
in Figures 11 and 12. The top trace is the original SPA0 BHZ data, filtered. The next two traces are 
the residuals from the continuous-source cancellers using 9 and 21 channels of the SPITS array, 
respectively. The bottom trace is the residual from the continuous-source canceller corrected by 
the post-processor. Waveform distortion is avoided in this case. 

2.1.5 Summary 

In this chapter we have proposed a collection of algorithms for removing repetitive nuisance 
transients from array data streams. The algorithms are applicable whenever an array is 
surrounded by sources producing highly correlated, short-duration transient waveforms. At the 
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moment, we have identified one practical algorithm, the intermittent-source canceller, which 
can be applied to a fairly large number of sources surrounding an array and is sufficiently fast to 
be embedded in a monitoring pipeline. We have, in addition, examined a continuous-source 
canceller, which appears to be more effective in removing nuisance transients, but is more 
computationally demanding and requires a post-processing step to prevent it from distorting 
signals from events of interest. The intermittent-source canceller is asymptotically equivalent to 
the continuous-source algorithm in the sense that it tends to the latter algorithm as the 
threshold in the detection step is reduced to zero. 

We will report separately (next chapter) on a study quantifying the performance of the 
intermittent-source canceller, but state here that it appears to be highly effective in reducing 
the number of interference detections that currently create bottlenecks in pipeline associators. 
Our expectation is that next-generation pipelines could include adaptive cancellers for each 
array that would clean the array data streams of locally-generated transient interference. We 
envision hierarchical adaptive pipelines that would contain, at their base levels, adaptive mini-
pipelines designed to detect repetitive nuisance events at each array and generate, then apply, 
cancellers automatically. The research that remains to be done in order to achieve this vision is 
for the autonomous identification of repetitive transients in a continuously adapting pipeline 
preprocessor or lower-level component of the hierarchy. What we have done here is to 
demonstrate that cancellation is technically feasible given a set of templates that represent a 
majority of interfering transients. 
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2.2 A Revised Detection Framework Architecture 

2.2.1 Introduction 

We significantly revised the data handling architecture in adapting the detection framework 
[Harris and Dodge, 2011; Kværna et al., 2014] to perform signal cancellation, as described in the 
previous section. In part this was because the previous strategy of sharing data buffers among 
multiple objects made it more difficult to implement a process that would be modifying those 
data buffers. More importantly, as we move towards development of a detection framework 
that can scale out a cluster of computers, we can no longer take advantage of shared memory. 
In the new architecture, the various computational units no longer have any shared state. 
Instead, they pass data messages to one another. 

Figure 14 shows the flow of data through the current architecture. Data is produced by the 
StreamServer which is responsible for assembling data into blocks of the required size. The 
StreamServer produces objects of type StreamSegment which contain the time series data, and 
the necessary metadata to allow correct routing. In the current architecture, the 
StreamSegment objects are passed through a BlockingQueue to an object called the 
StreamProcessor. Within the StreamProcessor 0-N StreamModifier objects may consume a 
StreamSegment and emit a different StreamSegment. Currently, there are two possible 
StreamModifiers (DownSampler and SegmentedCancellor). The final modified StreamSegment 
is passed to a StreamTransformer which emits a TransformedStreamSegment. This is a 
StreamSegment that contains in addition a DFT of itself. 

At this point, a parallel section is entered. Within this section, for each Detector: 

1. The TransformedStreamSegment is used to create a DetectionStatistic

2. The DetectionStatistic is consumed by a DetectionStatisticScanner which emits

3. A Collection of TriggerData.

At this point, the threads join and all the TriggerData is ingested by a TriggerProcessor. The 
TriggerProcessor archives the triggers and produces a collection of Trigger objects which contain 
additional state created by the TriggerProcessor. 

The Triggers are then passed to the DetectionProcessor which applies the necessary rules to 
promote some triggers to Detections. Any such Detections are then handed off to a 
DetectorCreator and to a DetectionArchiver. 
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Figure 14. Flow of data through the revised detection framework architecture. 
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2.2.2 Test of the Signal Cancellation Component in the Detection Framework 

To test the cancellation option, the framework was run against a 3-day segment (day 2011151 
through day 2011153) of vertical-component data from the SPITS array. During this time interval 
intense icequake activity had occurred, with hundreds of such signals visible at SPITS. Figure 15 
shows the SPA0-BHZ channel for the time period with an inset showing the form of a typical 
signal. 

Figure 15. 3 days of SPAO-BHZ data which is dominated by signals from nearby icequakes. 

For reference, we first ran the detection framework without cancellation enabled. The 
framework was configured to use all the vertical-component channels filtered into the band 2-8 
Hz and with a single STA/LTA spawning detector. New templates created by the framework 
were constrained to be between 10 and 30 seconds in length, and the detection threshold of 
the correlation detectors was 0.6. 

This run produced 49 correlation detectors and a total of 291 detections. Two of the correlators 
accounted for 242 of the detections, and all of those signals appear to be due to icequakes. 
These detections are shown in Figure 16. 
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Figure 16. (Top) 94 detections produced by detector 92532 and (bottom) 148 detections from detector 
92541 produced during the first run of the framework. 
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The remaining detections are distributed among the other detectors, with most having only a 
single detection. These appear to be mostly local earthquakes although a few apparent 
icequake signals are present as well. Figure 17 shows all these detections. 

Figure 17. The 49 detections produced by the remaining detectors. The blue-shaded signals also appear to 
be icequake detections, but, perhaps because of interfering signals, were assigned to unique 
detectors. 

Cancellation run (RUNID 365) 

The discrete segmented cancellation processor provided by Deschutes Signal processing uses a 
two-step algorithm. First the signals to be cancelled are detected using subspace detectors. At 
each detection point, a best-fit to the templates is constructed and then subtracted from the 
signal. This process is iterated until no more detections are found. The detectors used by the 
canceller are produced by the cancellation software given an input set of nuisance signals. This 
processing is controlled by a number of parameters, some of which are shown below. 
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Table 1. Parameters controlling detector creation and 
cancellation behavior as they were set for this experiment. 

templateLength 6.0 
maxOffset 0.5 
clusteringThreshold 0.9 
minNumEvents 10 
energyCapture 0.9 
detectionThreshold 0.4 
peakHalfWidth 0.2 
simultaneityThreshold  2.0 
numberOfIterations 5 

For the execution of RUNID 365 the framework was configured identically to that of its previous 
run, except that the cancellation flag was set, and a group of 272 icequake signals was provided 
to serve as input for the signal canceller. From these, the software created two cancellation 
detectors. The effect of the cancellation can be seen by visual inspection of the signals pre- and 
post-cancellation. This is shown in Figure 18 below. 

Figure 18. 3 days of SPA0-BHZ data prior to cancellation (top) and after cancellation (bottom). The traces 
are plotted at the same scale. 

Comparison of Results 

In total, the canceller performed 2047 signal cancellation operations. However, because the 
cancellation process is iterative, the number of independent icequake signals is smaller. To the 
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nearest second, there were 952 distinct signals cancelled, and to the nearest 10-seconds there 
were 817 distinct cancellations.  

In contrast to the first run of the framework, RUNID 365 produced only 71 detections. Of these 
17 were detected by two detectors (92584 and 92594) and are icequake signals. Table 2 shows 
these detections grouped by detector and associated by time with detections from the first run. 
All 17 are associated with detections by (RUNID 364) detectors 92541 and 92532, both of which 
were formed on icequake signals. Visual inspection of the detection segments confirms the 
signal type. 

Table 2. The 17 detections from RUNID 365 that match (nearly) in time with 
icequake detections from RUNID 364. 

364 detectorid 364 detectionid 365 detectorid 365 detectionid Time difference 
92541 195546 92584 195804 -6.6625 
92541 195537 92584 195802 -6.6615 
92532 195649 92584 195822 5.775 
92541 195611 92584 195819 -6.675 
92541 195654 92584 195824 -6.6625 
92532 195514 92584 195795 5.769445 
92541 195550 92584 195806 -6.6615 
92541 195567 92584 195811 -6.6625 

92541 195763 92594 195842 -4.9 
92541 195685 92594 195829 -4.9 
92541 195661 92594 195825 -4.8865 
92541 195598 92594 195815 -4.9125 
92541 195606 92594 195818 -4.9 
92541 195604 92594 195816 -4.9 
92532 195564 92594 195810 7.526389 
92541 195651 92594 195823 -4.9125 
92541 195582 92594 195813 -4.9 

The cyan-shaded group is by detector 92584 and the green-shaded group is by detector 92594. 
The first two columns are the detector number and detection-id from the first run. The third 
and fourth columns show the corresponding information from the second run, and the last 
column is the difference in detection times. 

Given the success of the signal canceller in removing so many other nuisance signals it was 
curious that these detections still remained. Also, why are the detection time differences so 
large? Both of these groups of detections were formed by detectors whose template included 
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small icequake signals followed by a very much larger icequake signal near the end of the 
template. The residual from the canceller was still a detectable signal, but the detailed structure 
was sufficiently different to change the point at which the STA/LTA detector could exceed its 
threshold. Figure 19 shows an example from the template event for detector 92584. In this 
example, two icequake signals are present. In run 1, the detection is declared at the onset of the 
first signal. But, after cancellation, the first signal is almost entirely removed, so the detection 
point shifts by several seconds. 

Figure 19. This figure shows how partial cancellation can cause changes in detection time for cases when 
multiple instances of the nuisance signal are present in close proximity. 

Of the remaining 54 detections in RUNID 365, 39 are exact matches in time to non-icequake 
detections from RUNID 364. There are 11 detections from RUNID 364 that were not seen in 
RUNID 365. Another 8 of the detections in RUNID 365 are on partially-cancelled signals. There 
are also 8 detections in RUNID 365 that were not seen in RUNID 364. The complete comparison 
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of the detection results between runs 364 and 365 is presented in Table 3 below. The unshaded 
rows summarize the exact matches showing the detectorid and detectionid from each run as 
well as the detection time. 

Table 3. Accounting of all detections in RUNID 364 and RUNID 365 excepting 242 known icequake 
detections from RUNID 364 detectors 92532 and 92541 and 17 icequake detections from RUNID 365 

detectors 92584 and 92594. 
92517 195486 92567 195777 2011/05/31 (151) 

06:06:14.000 
92518 195487 92568 195778 2011/05/31 (151) 

07:26:22.000 
92519 195488 92569 195779 2011/05/31 (151) 

17:36:25.000 
92520 195489 92570 195780 2011/05/31 (151) 

17:46:47.000 
92521 195490 92571 195781 2011/05/31 (151) 

17:57:37.000 
92522 195491 92572 195782 2011/05/31 (151) 

18:25:17.000 
92523 195492 92573 195783 2011/05/31 (151) 

19:30:49.000 
92524 195493 92574 195784 2011/05/31 (151) 

21:14:12.000 
92525 195494 92575 195785 2011/05/31 (151) 

21:47:19.000 
92526 195495 92576 195786 2011/06/01 (152) 

01:13:47.000 
92527 195496 92577 195787 2011/06/01 (152) 

01:32:20.000 
92528 195497 92578 195788 2011/06/01 (152) 

02:11:27.000 
92529 195498 92579 195789 2011/06/01 (152) 

02:29:58.000 
92530 195499 92580 195790 2011/06/01 (152) 

04:30:49.000 
92531 195500 92581 195791 2011/06/01 (152) 

05:54:13.000 
92529 195501 92579 195792 2011/06/01 (152) 

06:31:23.000 
92533 195505 CANCELLED 2011/06/01 (152) 

07:34:35.000 
Detection on partial cancellation 92582 195793 2011/06/01 (152) 

07:38:15.000 
92534 195508 CANCELLED 2011/06/01 (152) 

07:47:02.000 
Detection on partial cancellation 92583 195794 2011/06/01 (152) 
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07:50:42.000 
92535 195522 92585 195796 2011/06/01 (152) 

08:56:50.000 
92536 195523 92586 195797 2011/06/01 (152) 

09:15:11.000 
92537 195524 92587 195798 2011/06/01 (152) 

09:16:42.000 
92538 195525 92588 195799 2011/06/01 (152) 

09:25:31.000 
92539 195527 92589 195800 2011/06/01 (152) 

09:34:06.000 
92540 195528 92590 195801 2011/06/01 (152) 

10:00:19.000 
Correlation detection 2 of 3 (Large icequake signal 
masked it in run 1.) 

92585 195803 2011/06/01 (152) 
11:07:52.000 

92542 195549 92591 195805 2011/06/01 (152) 
12:09:55.000 

Detection on partial cancellation 92592 195807 2011/06/01 (152) 
12:28:16.000 

Detection on partial cancellation 92593 195809 2011/06/01 (152) 
12:37:06.000 

Correlation detection based on partially-cancelled 
signal 

92592 195808 2011/06/01 (152) 
12:37:52.000 

Detection of signal masked by icequake signal? 92595 195812 2011/06/01 (152) 
13:00:06.000 

92543 195586 92596 195814 2011/06/01 (152) 
14:23:09.000 

92544 195587 CANCELLED 2011/06/01 (152) 
14:26:39.000 

92545 195594 CANCELLED 2011/06/01 (152) 
15:01:28.000 

92546 195596 CANCELLED 2011/06/01 (152) 
15:04:19.000 

92547 195599 CANCELLED 2011/06/01 (152) 
15:16:56.000 

Detection on partial cancellation 92597 195817 2011/06/01 (152) 
15:28:38.000 

Detection on partial cancellation 92598 195820 2011/06/01 (152) 
15:33:58.000 

92548 195624 CANCELLED 2011/06/01 (152) 
15:44:04.000 

Signal onset masked by icequake signal 92599 195821 2011/06/01 (152) 
16:35:34.000 

92549 195659 CANCELLED 2011/06/01 (152) 
16:58:31.000 

92550 195668 92600 195826 2011/06/01 (152) 
17:22:20.000 

92551 195670 This is a 2nd detection on the same 
signal that only occurred in run 1 

2011/06/01 (152) 
17:22:21.000 

92552 195671 92601 195827 2011/06/01 (152) 
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17:26:45.000 
Detection on partial cancellation 92602 195828 2011/06/01 (152) 

17:35:34.000 
Signal preceded by partially-cancelled icequake 
signal 

92603 195830 2011/06/01 (152) 
18:04:15.000 

92553 195704 CANCELLED 2011/06/01 (152) 
19:57:35.000 

92554 195708 92604 195831 2011/06/01 (152) 
21:08:40.000 

Correlation detection 3 of 3 (Large icequake signal 
in coda caused correlation to fail in run 1) 

92579 195832 2011/06/01 (152) 
21:45:08.000 

92555 195719 92605 195833 2011/06/01 (152) 
23:35:32.000 

Detection of signal masked by icequake signal? 92606 195834 2011/06/02 (153) 
01:05:27.000 

Signal preceded by partially-cancelled icequake 
signal 

92607 195835 2011/06/02 (153) 
01:17:51.000 

92556 195740 CANCELLED 2011/06/02 (153) 
07:44:20.000 

92557 195746 92608 195836 2011/06/02 (153) 
10:00:17.000 

Detection of signal masked by icequake signal? 92609 195837 2011/06/02 (153) 
12:35:06.000 

92558 195752 92611 195839 2011/06/02 (153) 
12:39:49.000 

92559 195754 92612 195840 2011/06/02 (153) 
13:08:28.000 

92560 195759 92613 195841 2011/06/02 (153) 
16:39:04.000 

92561 195765 92614 195843 2011/06/02 (153) 
20:30:03.000 

92535 195769 92585 195844 2011/06/02 (153) 
21:25:06.000 

92562 195771 92615 195845 2011/06/02 (153) 
22:18:27.000 

92563 195772 92616 195846 2011/06/02 (153) 
22:25:35.000 

92564 195773 92617 195847 2011/06/02 (153) 
22:44:32.000 

92565 195776 In Last Buffer. Not seen for 
detection 

2011/06/03 (154) 
00:02:06.000 

The yellow shaded rows present information for cases when a detection occurred in run 364 but 
there was no corresponding detection in run 365. The green-shaded rows show information for 
cases when there was a detection in run 365 but no corresponding detection in run 364 and 
which are probably valid non-icequake signals. The pink-shaded rows are for cases when a 
detection was produced on a partially-cancelled icequake signal. The cyan-shaded rows are new 
detections of questionable validity. 
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Missing Detections in RUNID 365 

There were 11 detections produced in RUNID 364 that were not seen in RUNID 365 and that 
were not in the two groups of known icequake signals. These are shown in yellow in Table 3 and 
the (un-cancelled) signals are shown below in Figure 20. All but the last of these signals are 
visually similar to the icequake signal shown in Figure 15, but they appear to have higher noise 
or other changes in structure sufficient that they did not correlate well enough with the 
templates of detectors 92532 or 92541 to be included in their detections. However, the multi-
rank subspace detectors used by the cancellation processor were able to detect these signals, so 
they were cancelled sufficiently to not be detected in run 365. 

The last signal is a special case. The time stamp of this detection is 2011/06/03 (154) 
00:02:06.000. This is 2 minutes past the latest data the framework was requested to process, so 
it is almost certainly the last buffer of data pushed into the canceller. The framework simply 
shut down before this buffer was retrieved from the canceller. Although this is a missed 
detection in the context of this experimental run, in a continuously-operating system there is no 
“last buffer”, so this situation could not arise in practice. 

 
Figure 20. Signals that were detected in the first run of the framework, but which were not detected in the 

run with cancelling turned on. The numbers are respectively the detector number and detection-id 
from run1. In all but the last case, the signals appear to be from icequakes, and were removed by 
the canceller. The last signal was not detected because it occurred in the very last data buffer 
processed by the system. 
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Detections on Partial Signal Cancellations 

There are 8 cases of unwanted detections in run 365. In these cases, a detection occurred in run 
365 with no corresponding detection in run 364, and the detection was on a partially-cancelled 
icequake signal. These cases are shown in Table 3 as the pink-shaded rows. Figure 21 shows the 
signals involved. (Only 7 signals are shown. The 8th was a correlation detection on the template 
of detector 92592.) Figure 21 shows the original signals in light gray and the cancelled signals on 
which the detections were made in magenta. The residual signals are likely to be from icequake 
sources since they maintain the same phase structure as the un-cancelled signals and have very 
little energy outside the bounds of the un-cancelled signals. 

What makes these detections a little problematic is that the cancellation process and mixing of 
signals can produce residuals that have some resemblance to local earthquake seismograms. 
Clearly, an operational system that included cancellation would have to make it very easy for 
analysts to be able to observe the un-cancelled signal in context to help sort out these 
(hopefully rare) occurrences. 
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Figure 21. Instances in which the framework produced detections on incompletely cancelled icequake 

signals. The magenta traces are the post-cancellation signals, and the light gray shows the original 
signal. The detection time is indicated by the vertical black line. 
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New detections 

There are also 5 cases where a detection was made in run 365 with no corresponding detection 
in run 364 and in which the detection is likely to be for a valid non-icequake signal. These are 
shown in Table 3 in green. In the cases shown in Figure 22 (detections 195821, 195830, 195835) 
a signal failed to be detected in run 364 because it fell within the blackout interval following an 
icequake signal detection. 

Figure 22. The three cases where a valid signal was not detected in run 365 because the signal onset was 
in the blackout interval for an icequake detection. 

After cancellation, in two cases the detection is still at the onset of the icequake signal, but the 
detection is by the STA/LTA detector instead of by one of the correlators. In the third case, the 
cancelled icequake signal trigger was discarded in favor of the trigger on the new signal. In two 
cases (detections 195803 and 195832) a potential correlation detection failed because of the 
presence of a much larger icequake signal. These are shown in Figure 23. 
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Figure 23. The two cases where a signal failed to be detected by correlation detectors because of the 
presence of a strong icequake signal. 

In both cases, the signals shown in blue were detected by correlators in run 364, but the third 
signal was missed. In run 365, the cancelled icequake signal was sufficiently attenuated that the 
third signal was detected. Finally, there are three possible “new” detections (see Figure 24). The 
residual signals may be the remnants of the cancelled icequake signal, but they do have a shape 
very consistent with that of a local earthquake signal. Also, the first (detection 195812) begins 
shortly before the start of the cancelled icequake signal. 
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Figure 24. The three cases where a valid earthquake signal buried within an icequake signal may have 
been detected. 

2.2.3 Summary 

The intermittent-source cancellation algorithm has been implemented into the so-called 
Detection Framework. In order to facilitate the implementation of new methods and outscaling 
data processing to a cluster of computers, the Detection Framework was successfully upgraded 
with a new architecture.  

The performance of the revised Detection Framework with respect to cancellation of local 
icequake signals was evaluated using data from the SPITS array. For a three day period the 
cancellation provided a factor 10 reduction in nuisance icequake signals. The data “cleaned” 
from nuisance signals again provide for improvements in both manual and automatic data 
analysis. 

We conducted an experiment with automatic reprocessing of the “cleaned” SPITS data within 
the revised Detection framework. This demonstrated improvements in detection performance, 
but also revealed some issues to be resolved regarding partial-only signal cancellation of time-
overlapping nuisance signals. 
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2.3 Empirical Matched Field Processing and Adaptive Beamforming 

2.3.1 Introduction 

The principal thrust of this project is to examine the potential for contextual signal processing to 
improve detection and association functions in processing pipelines. The idea is to adapt the 
signal processing algorithms – which today make unrealistically simple assumptions about the 
seismic background context in which they operate – to make more sophisticated use of present 
knowledge of context. In support of this idea, one of our objectives is to take a fresh look at 
adaptive beamforming algorithms for suppression of signals and noise that compete with 
signals of interest. Adaptive beamforming techniques use estimates of the structure 
(covariance) of background interference to suppress that interference. These techniques 
operate by reducing the response of arrays at wavenumbers where interference is strong, while 
simultaneously maintaining a fixed gain at wavenumbers from which desired (target) signals 
arrive. These techniques were developed for verification seismology in the 1970s, but were 
largely abandoned due to their sensitivity to signal model error. They assume that the spatial 
structures of target signals adhere closely to a plane wave model. Because the spatial structures 
of incident waves often are significantly non-planar (resulting from unmodeled refraction and 
scattering), adaptive techniques often suppress target signals as well as interference. In a sense, 
adaptive methods need to know what signal structure they are protecting as they aggressively 
configure an array’s wavenumber response to suppress interference. 

Recent developments in empirical detection methods, especially empirical matched field 
processing, suggest that signal models may be made sufficiently accurate to allow adaptive 
beamforming to function as intended. The approach, in keeping with modern trends of large 
scale waveform archival, is to use past events to provide target waveform calibrations. Empirical 
matched field processing estimates the spatial structure of target phases from prior 
observations in a large collection of narrow frequency bands. The quasi-frequency domain 
calibration that results minimizes sensitivity to variable or unknown source time histories. 

As used here, matched field processing is closely related to frequency-domain beamforming, 
and, in fact, can be viewed as a calibrated form of beamforming. To describe the technique, we 
first examine a narrowband approximation to frequency-domain beamforming, then generalize 

the result. We start with the discrete-time samples  of the wavefield observed by an array: 
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(34) 

We treat the observed array signal as a vector process: quantities indicated in bold lower case 
are vectors and in bold upper case, matrices. Scalar quantities are indicated with an italic font. 

The vectors  represent the locations of the sensors.  is the number of sensors in the array, 

and each of the  sensors observes the ground motion sequence . The sampling 

interval is denoted by . 

We take a quasi-frequency domain approach in which the data are partitioned into a large 

number  of narrow frequency bands through a bank of bandpass filters: 

(35) 

The frequency-domain response of each of the filters is approximately one in a band centered at 

frequency  with bandwidth and is zero at all other frequencies. The impulse 

responses of the filters are related to a baseband lowpass filter  by complex exponential 

modulations: 

 ; ; (36) 

Defining as  the frequency response (discrete Fourier transform) of the baseband filter: 

(37) 

then the choice of (3) for the family of filterbank impulse responses produces a collection of 
filters that are frequency translations of the baseband filter: 
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(38) 

It is possible to choose the baseband impulse response in such a way that the summed response 
of the filters is 1 across the frequency band of interest: 

 

 

(39) 

which allows exact reconstruction of the original signal from its narrowband components. The 

filters  are one sided in the frequency domain, hence complex. Consequently, the 

narrowband waveforms  are complex analytic signals. 

In the time domain the beamforming operation consists of shifting operations on each 
waveform channel followed by summation of the results. In the frequency domain, the 
operation corresponding to a shift is multiplication of the Fourier transform of the ith waveform 
by a frequency-dependent complex exponential phase factor 

 

 

(40) 

In the plane wave model of propagation, the delay , where  is the slowness vector 

defining (reciprocal) speed and the direction of propagation. The narrowband approximation to 
the frequency-domain phase shifting product consists of multiplication of each channels 
complex analytic representation by a phase factor: 

 

 

(41) 

which is constant in band . The validity of this approximation depends on the bandwidth  of 

the filters being sufficiently small. Sufficiently small is defined by 

  

 

(42) 

so that phase changes over the width of each filter band are insignificant. With this condition, it 
can be shown that the beam is well-approximated by: 
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(43) 

where the complex weight vector  assembles the phase delay factors for all channels: 

(44) 

The scale factor  is chosen to assure that . The vector  is known as the 

steering vector for band , and the inner product  in (43) implements the narrowband 

equivalent of the shift and sum operation in that band. 

Matched field processing generalizes beamforming by replacing the plane-wave steering vectors 
of beamforming with steering vectors estimated from prior observations of events at a target 
location. The estimation procedure consists of performing the narrowband decomposition of 
the prior observations, then computing covariance matrices for the vector waveforms in each 
band: 

(45) 

If more than one event is available as a prior observation, these covariance matrices can be 

averaged over events. The steering vector for band  is obtained as the top eigenvector in the 

eigendecomposition: 
(46) 

Assuming  is the eigenvector corresponding to the largest eigenvalue , then we choose 

(47) 

In the event that the design data consist of a noiseless observation of a pure plane wave, this 
procedure will reproduce the beamforming steering vector of equation (44). However, if the 
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observed signal departs significantly from a plane wave arriving along the great circle path from 
source to array, the principal eigenvector or eigenvectors will capture the scattering and 
refraction details not modeled by a plane wave. 

We are examining two options for constructing a statistic  for purposes of declaring detections. The 
first is an incoherent stack over the narrow bands: 

 

(48) 

This statistic is the classical wideband detection statistic of matched field processing from the 
underwater sound community. It estimates the power separately in each band and stacks these 
estimates incoherently over frequency. Its advantage is that it does not require the steering 
vectors to correctly preserve phase in the beam across frequencies. Its disadvantage is that it 
has very poor temporal resolution, roughly the resolution of the impulse response of a single 

narrowband filter, approximately  seconds. 

The second option is a coherent detection statistic, consisting of the squared magnitude of the 
wideband beam (equation 43): 

 

(49) 

The advantage of this detection statistic is that it potentially has the temporal resolution of a 
conventional beam. Its disadvantage is that it does require the steering vectors to preserve 
phase in the beam across the array. In principle, this requirement may be met by referencing 
the beam to one particular sensor by normalizing the steering vectors to have purely real 
components for that sensor. In practice, normalization may be hard to achieve if the signal is 
low or absent in a particular band for that sensor. 

We digress at this point to give an example of steering vector calibration. The setting for the 
example is shown in Figure 25. We examine the use of one Myanmar event (2007 5/16 
8:56:16.0, Mw 6.3; 20.47°N 100.69°E) as a calibration for a second event occurring nearly 4 years 
later (2011 3/24 13:55:12, Mw 6.9; 20.69°N 99.82°E). Both events are large and were recorded 
by the ILAR array with high SNR at many frequencies (see waveforms in Figure 26). We followed 
the design procedure just outlined for estimating steering vectors from waveforms of the 2007 

event, using  bands. Since the data are real, only 257 of these bands are independent, 
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and it suffices to estimate steering vector in just the bands with indices . The 

bandwidth for the narrowband filters in this analysis is 20/512 = 0.003904 Hz (the data are 
sampled at 20 sps). The covariance matrices were computed over windows containing the first 
25 seconds of the P arrival, for both the design event and the later target event. 

Figure 25. Teleseismic paths from earthquakes in Myanmar to three North American arrays. The path 
length to ILAR (the nearest array) is about 8950 kilometers. Tohoku aftershock cloud shown in 
yellow. 

Approved for public release; distribution is unlimited.
57



 

Figure 26. Waveforms of Myanmar calibration event (left) and target event (right), recorded at ILAR. 
Waveforms from nine stations (IL01-IL09) are shown. Note that the second event is closely 
preceded by a smaller event, perhaps a Tohoku aftershock. The signals have been filtered into the 
1-3 Hz band. 
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Figure 27. Comparison of empirical matched field processing (black) and plane wave (red) power for the 
2011 3/24 Mw 6.9 event. 

A comparison of beamforming performance for plane wave and empirical matched field 
steering vectors is shown in Figure 27. The measurements shown in this figure is the normalized 
power: 

(50) 

The plane-wave steering vectors (equation 44) were determined by the great-circle backazimuth 
(299.2 degrees) from the array to the source and by the P velocity predicted by IASP-91 for the 
epicentral distance 8950 km. We see that below 2 Hz, the plane wave and the empirical steering 
vectors are performing nearly equally well – sometimes one is better, sometimes the other; 
values are comparable. Except in the vicinity of 1 Hz, where the empirical steering vectors 
appear to have a distinct advantage. Above 2 Hz, the empirical steering vectors perform 
substantially better than the theoretical plane wave vectors. This observation is consistent with 
expectations that scattering and refraction – driven by heterogeneities in the propagation 
medium – should increase with increasing frequency. 

Beamforming and matched field processing are optimum estimators of the signal (and optimum 
detectors) in the case that the background noise is white, uncorrelated among sensors and of 
equal power on all sensors. In the event that the noise is correlated among sensors, the 
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optimum choice for steering vectors is the adaptive beamformer weighting [Capon et al., 1967] 
also known as the minimum variance, distortionless receiver (MVDR):  

 

 

(51) 

To obtain these weights, an estimate of the noise covariance  is required, which means that 

a separate sample of noise data must be available for estimating covariance. In the example we 
show later, the “noise” will, in reality be non-stationary aftershock observations. The theory of 
adaptive beamforming was developed for stationary processes, but our example shows that it 
works to a degree for strongly non-stationary processes such as interfering aftershocks. In any 
case, the MVDR weighting has the effect of altering the wavenumber response of the array to 
suppress wavenumbers corresponding to strong noise components, while passing a desired 

signal with spatial structure defined by the steering vector . 
 

2.3.2 Application: Detection of Signals of Monitoring Interest During an Ongoing 
Aftershock Sequence 

In this section, we give an example of plane wave and matched field processing for the 
incoherent case (equation 48), both for the “conventional” (47) and adaptive (51) processors. 
The objective is to demonstrate improvements in beamforming performance in a spotlight 
situation during a major aftershock sequence. The example is contrived by burying the 2006 
North Korean nuclear test among aftershocks of the 2008 Sichuan (Wenchuan) earthquake at a 
1:1 ratio using data from the 19-channel ASAR (Alice Springs) array. Figure 28 shows the 
geographic configuration of the example. Figure 29 shows two channels of the superimposed 
ASAR data (sampling frequency: 20 sps). At its natural amplitude, the signal from the test is 
much smaller than many of the aftershock signals. 
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Figure 28. Geographic configuration of the test with superimposed Wenchuan aftershocks and the 2006 
DPRK nuclear test. The North Korean test site is shown with the black outlined star and the 
observing array (ASAR) is shown with the red outlined star. The Wenchuan sequence aftershocks for 
the first day (May 12, 2008) are shown in white. 

The results of processing the array data with four different matched field processing algorithms 
is shown in Figure 30. The figure shows detection statistics for 19,000 seconds of data, starting 
6,000 seconds from a reference point (the main Sichuan event); signals from the North Korean 
test were buried approximately 18,000 seconds into the record from the main shock.  
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Figure 29.  2006 DPRK test superimposed at natural amplitude among aftershocks of the 2008 Wenchuan 
sequence. Waveforms from two channels (AS01, AS10) of the 19-channel ASAR array are depicted. 
The signal from the test appears at 6000 seconds in this plot. The data have been filtered into the 1-
3 Hz band. 

The top trace in Figure 30 displays the power output (equation 48) of an empirical matched field 
processor operating in the 1-3 Hz band (all four examples are in this band and all traces are 
plotted to the same scale). Waveforms from the 2009 North Korean tests observed at ASAR 
were used to obtain the signal model. The second trace shows the power output of a matched 
field processor which used the best plane-wave model for the wavefield incident from the North 
Korean test site. Comparing these two traces it is apparent that the empirical processor 
captures about twice the power from the desired signal as that captured by the plane wave 
processor. The empirical processor also suppresses the aftershocks slightly better than the 
plane wave processor. 

The bottom two traces show the corresponding power traces for the empirical (third trace) and 
plane-wave (fourth trace) MVDR matched field processors. MVDR processors require an 
estimate of the background noise covariance, which in this case was supplied by aftershocks in 
the first 6,000 seconds of data (prior to the displayed traces). Both processors have done an 
impressive job suppressing aftershock power, but the empirical processor again has captured 
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about twice the energy from the North Korean test compared to the plane-wave processor. 
Although it is less apparent, the empirical processor has done substantially more to suppress 
aftershock power than the plane-wave processor with reference to the non-MVDR case. 

Figure 30. Detection statistics for four matched field processors operating on data from the ASAR array 
show that empirical matched field processing with MVDR sidelobe suppression improves 
detectability of a weak signal among strong aftershocks from a different location. 

We anticipate that more dramatic improvements (comparing empirical MVDR to plane-wave 
MVDR matched field processing) will be obtained with regional observations in higher frequency 
bands than shown here. The effects of heterogeneities on the signal model are more severe at 
regional distances. 
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2.3.3 Application: Detection of Signals of Monitoring Interest in the Coda of a Large 
Earthquake 

In this section, we give a second example of matched field processing for the incoherent 
(equation 48) and coherent (equation 49) cases, both for the “conventional” (47) and adaptive 
(51) processors. In this scenario, we consider detection of the 2016 DPRK explosion in the coda 
of the second Nepal earthquake of May 12, 2015 (Mw 7.3, 12:50:19, 27.837N 86.077E) at the 
Alaskan array ILAR using waveforms of the 2013 DPRK explosion as the template (Figure 31). 
Our objective in constructing this scenario is to demonstrate the superiority of adaptive 
beamforming in detecting an event of monitoring interest for which signals are masked by 
arrivals from a larger earthquake. 

Figure 31. Great circle paths from the DPRK nuclear test site (red) and the Nepal earthquake sequence 
(white) to the ILAR array in Alaska. 
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Figure 32 shows, on a large scale, the construction of the test waveforms obtained by 
embedding the ILAR observations of the 6 January 2016 DPRK nuclear test in the coda of the 
second Nepal earthquake. Although nineteen ILAR channels were used to create the scenario 
data stream, only IL02 is shown in the figure. All data were processed in a teleseismic frequency 
band (1.5-3.5 Hz). 

Figure 32. Scenario waveforms obtained by superposition of signals (S1) recorded at ILAR for the 12 May 
2015 Nepal earthquake and the P wave observations (S2) also recorded at ILAR for the 6 January 
2016 DPRK nuclear test. The signals are superimposed at a 1:1 amplitude ratio (true amplitude). 

Detail of the superposition is shown in Figure 33. In this plot, the third trace shows that the 
embedded explosion P waveform, while visible, is not distinguishable by eye from scattered 
energy bursts in the coda (it presumably would be distinct in a plot of the distribution of 
waveform energy in time and azimuth). 
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Figure 33 Detailed plot of the superposition of the target waveform (S2) in coda of the Nepal earthquake 

(S1). The embedded explosion P wave is unremarkable, being similar in size to bursts of scattered 
energy from the earthquake. 

The next figure (34) shows the power output from two frequency-incoherent matched field 
processors (equation 48) using the conventional (47) steering vector (black in the figure) and the 
adaptive weights (51, red in the figure). The conventional beam power is dominated by 
earthquake P and P coda; a small peak corresponding to the explosion P wave exists, but is 
indistinguishable from secondary peaks due to the earthquake coda. The MVDR weights in this 
example were constructed from a “noise” covariance matrix estimated from the entire data 
window of the superimposed signals (third trace of Figure 32). Because the signals from the 
Nepal earthquake are so much more energetic than the explosion P wave, the covariance 
estimate is dominated by the P and P coda of the earthquake, the portion of the stream that we 
wish to suppress. 

The red trace of Figure 34 demonstrates that adaptive beamforming does indeed effectively 
suppress the earthquake wavetrain. The bottom half of the figure compares the two power 
traces expanded vertically and cropped to show greater detail. In this bottom part of the figure, 
the adaptive processor power trace has a clear peak due to the explosion P phase. This peak is 
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now the largest feature of the trace, indicating that adaptive processing is effective in allowing 
the smaller event to be observed. 

Figure 34. Power traces (with square root scaling) for frequency-incoherent matched field processors. The 
black trace shows the power output by a "conventional" processor and the red trace shows power 
output by the adaptive processor. A peak corresponding to the embedded P phase from the DPRK 
event is clear in the adaptive beam power trace, but is a minor feature in the earthquake coda in 
the conventional beam power trace. 

Not all of the energy from the earthquake arrivals is suppressed, leaving a pedestal on which the 
peak from the target signal is superimposed. But enough is removed to allow the presence of an 
event of interest to be inferred. 

Figure 35 compares power output traces for the frequency-coherent (49) matched field 
counterparts of incoherent processors just discussed. The coherent processors are the direct 
matched field equivalents of shift and sum beamforming. The result is quite similar to the 
incoherent case: the conventional matched field processor power does not show a 

Approved for public release; distribution is unlimited.
67



distinguishable peak identifying the embedded explosion signal, but the adaptive processor 
does. The coherent processor results are remarkable for two characteristics: resolution of peaks 
in the time domain is improved, and the SNR of the target peak is increased. 

Figure 35. Power traces (with square root scaling) for frequency-coherent matched field processors also 
demonstrate that adaptive processing is effective in suppressing unwanted interference, allowing 
the existence of a target signal to be inferred. Here, as in the last figure, the black trace represents 
the power output of a “conventional” matched field processor and the red trace represents the 
power output of an adaptive processor. A clear peak in the red trace in the bottom expanded view 
marks the arrival of the embedded explosion P wave. 

The slightly increased performance of the coherent processor comes at the expense of greater 
algorithmic complexity, but a fast algorithm for synthesizing the wideband beam from its 
narrowband components is available, making this approach computationally attractive. 
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2.3.4 Application: Detection of Signals of Monitoring Interest Among Mining 
Explosions and Earthquakes 

As our final example of adaptive beamforming, we examine the problem of detecting a nuclear 
explosion in a heterogeneous assemblage of regional and teleseismic events with conventional 
and adaptive matched field processors. One channel of the data stream we examine in shown in 
Figure 36. The stream consists of 12 channels from the Wyoming array PDAR, beginning at 
2015:132:11:00:00.000 and continuing for 51,400 seconds. During this period, the array 
recorded mining explosions from the Powder River Basin and at least one teleseism ( the second 
large signal about ¾ of the way through the record). The waveforms from the 12 February 2013 
DPRK explosion were embedded in this record about 12,000 seconds from the start (making it 
the second obvious event), at a 1:1 amplitude ratio. The objective of this test was to examine 
how far adaptive processing suppresses regional signals when searching for a target teleseism. 

Figure 36. Superposition of continuous stream data from station PD01 and the 2013 DPRK explosion. The 
target DPRK event is the second obvious event about 12,000 seconds into the record. 

In this case, the 6 January 2016 DPRK test waveforms recorded at PDAR were used to provide 
the multichannel template for matched field processing. The results of processing the data with 
incoherent matched field processors in a teleseismic band (1-3 Hz) is shown in Figure 37. The 
top trace is output from the conventional matched field processor and the bottom is output 
from the adaptive processor. In this test, the adaptation took place over the interval from 5,000 
seconds to 45,000 seconds, i.e. the noise covariance estimate was made over almost the entire 
data interval. The resulting adaptive processor is more effective at suppressing the regional and 
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teleseismic events in the record, but the results are not as dramatic as the suppression of the P 
and P coda arrivals from the Nepal earthquake at ILAR. This outcome probably arises from two 
factors: the collection of events is far more heterogeneous than the interference in the last 
example, and the array has fewer elements (12 vs. 19).  

Figure 37. Frequency-incoherent power traces (with square-root scaling) for conventional (top) and 
adaptive (bottom) matched field processors. The adaptive processor more effectively suppresses 
competing events. 

The array has fewer degrees of freedom to throw at the interference suppression problem and 
the events exhibit more wavenumber spectrum diversity. Interference energy in the ILAR 
example of the last section was dominated by the main shock of the Nepal sequence; most 
subsequent events were aftershocks. Consequently, the events present in that example 
occupied a much smaller patch of wavenumber space, allowing the array response to be 
adjusted by the adaptive processor to suppress that small region more effectively. This 
observation suggests that a processor that adapts continuously over much shorter time 
horizons would be required to obtain better suppression of diverse interference. In addition, 
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arrays with larger numbers of elements will have the degrees of freedom to provide better 
interference suppression. 

In the last figure (38), the amplitude envelope of a single array channel is compared to the 
square root of the beam power trace for an adaptive coherent processor. This comparison gives 
an idea of the overall gain of the best array processing. By comparison with Figure 37, we see 
that performance of the coherent processor is only marginally better than that of the 
incoherent processor in this case. 

Figure 38. Amplitude envelope of a single raw data channel (top) compared to the power output (with 
square-root scaling) of the frequency-coherent matched field processor (bottom). This figure 
indicates overall processing gain. The two traces have been scaled so that the peak due to the DPRK 
explosion (second from left) has approximately the same amplitude in both plots. 
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2.3.5 Summary 

We sought to improve the sensitivity of signal detectors using empirical matched field 
processing (EMFP) and adaptive beamforming. Matched Field Processing can be considered to 
be a form of frequency domain beamforming and EMFP is a calibrated form where the applied 
phase shifts are calculated by the observations of previous signals from the direction of interest. 
EMFP provides the optimal estimator of the signal under the assumption of white background 
noise. In the case of correlated noise, the optimal choice for steering vectors is the adaptive 
beamformer weighting – or minimum variance distortionless receiver (MVDR). 

To demonstrate, signals from confirmed nuclear tests in the DPRK were submerged into 
aftershock sequences recorded on medium aperture seismic arrays (with aperture of the order 
10 km) with the noise covariance structure for MVDR estimated from a time average of the 
ongoing aftershock sequence. Relative to the standard matched field estimator, adaptive 
processors reduce, often dramatically, the contribution of interfering events to detection 
statistics traces targeted on the DPRK test. 

We draw two conclusions from the examples provided in this section: (1) the use of calibrated 
steering vectors with empirical matched field processing appears to allow adaptive 
beamforming techniques (heretofore largely abandoned in seismology) to be used successfully, 
and (2) adaptive beamforming may be used to advantage in several stages of iteration in an 
advanced pipeline. It may support more sensitive initial event detection in the pipeline – the 
example of section 2.3.2 was of this type. In this case the adaptive beamforming weights were 
constructed from observations of interference prior to the occurrence of the signal of interest. 
In addition, adaptive beamforming may support context-driven reprocessing of a stream at a 
station which failed to make a detection when observations at other stations in a network 
indicate that it should have had a trigger. The example of section 2.3.3 was of this type; in this 
case, the adaptive weights were constructed from interference correlation measurements made 
in a window that included the target signal. 
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2.4 Evaluation of Event Hypotheses 

A context-driven processing framework will attempt to evaluate how consistent candidate event 
hypotheses are with the observations. Subsequent reprocessing of the data stream(s) will 
depend upon the event hypotheses which are considered by the previous iteration to best 
represent the true event history. For this we need an empirical (or semi-empirical) means of 
predicting the likely observations from a given hypothetical event history. We need realistic 
estimates of the likelihood of a set of observations from a given event hypothesis. 

An event hypothesis may be based on a small number of arrivals which, although technically 
consistent with an event hypothesis at a given location and a given time, would not be expected 
to be the only observations seen. If an event hypothesis is missing detections from key stations 
which would be expected to detect signals, and yet includes phases at stations for which the 
likelihood of detection is very low, the hypothesis likely to be incorrect. To address this issue, 
NORSAR has over some time assessed detection capabilities for IMS stations for application to 
the global phase association process (Kværna and Ringdal, 2013). The basis for this work is the 
events and phase readings reported in the IDC reviewed Event Bulletin (REB), as well as the 
corresponding lists of non-detecting stations. One type of result from this study is a map of 
regionalized capability estimates for each IMS station (see Figure 39). To provide station 
detection capability estimates for regions with no, or very few, calibration events, a standard 
amplitude-distance curve (e.g. Murphy and Barker, 2003) is fitted to regionalized estimates. 
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Figure 39. P-phase detection capability estimates for the ARCES array in 2°x2° bins. The red stippled 
curves denote distances of 20, 95 and 144 degrees from ARCES. The blue bins denote “bright spots” 
where the ARCES detection capability is particularly good ( ). 

2.4.1 Estimation of Detection Thresholds for Specific Source Regions 

Taking the North Korea test site as an example, we can, based on several years of REB bulletin 
data, estimate the likely detection capability at a given set of stations using the approach of 
Kværna and Ringdal (2013). Figure 40 displays the 44 best-case detection capability estimates 
for this test site for IMS stations (with arrays and 3-component stations differentiated) and 
Figure 41 displays the detection capability estimates for this set of stations as a function of 
epicentral distance. We find that these station detection capability estimates are in good 
agreement with the distribution of signal-to-noise ratios reported in the REB for the North 
Korean underground tests. 
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Figure 40. Predicted detection thresholds in units of magnitudes for the 44 IMS stations (both array and 3-
component, primary and auxiliary) with best predicted detection capability for the North Korea 
nuclear test site. (Assumed location 41.28oN, 129.07oE). Array stations (both primary and auxiliary) 
are displayed in red and 3-component stations (both primary and auxiliary) are displayed in blue. 
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Figure 41. Predicted detection thresholds in units of magnitudes for the North Korea nuclear test site 
(assumed location 41.28oN, 129.07oE) as a function of epicentral distance for the 44 IMS stations 
displayed in Figure 3. The array stations are displayed using red circles and the 3-component 
stations are displayed using blue triangles. 

Any event hypothesis resulting from a global association of phases from the parametric 
datastream should show a certain consistency with these two displays. This is to say that 
detection of an event at a station with low detection probability and non-detection at stations 
with high event probability should immediately flag an event hypothesis as questionable. In the 
design of optimal beams/detection statistic traces to evaluate the validity of event hypotheses, 
such detection capability plots should form the basis of all detectors spawned for hypothesis 
confirmation. 

The locations of the stations displayed in the previous two figures are shown in Figure 42. 
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Figure 42. Locations of the stations displayed in the previous two figures. The most sensitive stations for 
this source region have the station codes shaded. 

The primary goal of this study is to assess the consistency of the automatic phase associations of 
the IDC SEL’s, and to improve the performance of the phase association algorithm. However, 
the information about the station detection capabilities, as shown in Figure 40, can equally well 
be used as a tool for recall data processing of stations having a high likelihood of observing 
signals from a hypothesized event. Similarly, recall data processing can be done to reject 
incorrectly associated phases at stations having a low probability of detecting the event.  

It is the intention to exploit this information in several ways: 

1) to predict the stations that should be severely affected by a developing aftershock
sequence, 

2) to identify the stations that should observe certain phases for an hypothesized event, but
failed to do so, and 
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3) to identify situations where stations reported defining phase detections (those used to
build an event), but were unlikely to observe phases for the hypothesized event. 

These are all situations where supervisory function in a future pipeline might initiate tailored 
processing or reprocessing of waveform data. In the first case, beamforming algorithms might 
be replaced for the duration of the aftershock sequence with adaptive methods suitable for 
suppressing aftershock waveforms. In the second case, specialized beams might be deployed to 
search for the missing phases. And in the third case, specialized beams might be used to confirm 
or refute the existence of defining phases at the reporting stations. This last process would 
serve as a check on improperly associated phase detections. In all three cases, adaptive 
beamforming algorithms might be used to improve on results obtained by conventional (recipe) 
beamforming algorithms in a first pass over the data. 

A context-driven processing framework will attempt to evaluate how consistent candidate event 
hypotheses are with the observations. Subsequent reprocessing of the data stream(s) will 
depend upon the event hypotheses which are considered by the previous iteration to best 
represent the true event history. For this we need an empirical (or semi-empirical) means of 
predicting the likely observations from a given hypothetical event history. 

2.4.2 Evaluating Automatically Generated Event Hypotheses 

A significant component of the design of iterative processing pipelines is to evaluate approaches 
for accepting or rejecting the association of phases that contribute to a given event hypothesis. 
Comparing the (fully automatic) SL3 event bulletin and the (reviewed) REB from the 
International Data Center (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization 
(CTBTO) indicates a number of circumstances in which false event hypotheses have been 
formed from genuine phase detections and true events which have had to be built manually. 

Figure 43 shows an example of such a case. Two events in central Asia have generated 
waveforms at stations globally that overlap. The result is that the first event, a deep earthquake 
in the Hindu Kush region of Afghanistan, is well classified automatically with a qualitatively 
correct solution in the automatic SL3 bulletin. The second event, a shallow earthquake close to 
the epicenter of the M=7.6 October 8, 2005, Kashmir event, generates signals which are 
associated with a spurious event hypothesis. 
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Figure 43. Extract from SL3 automatic event bulletin from the International Data Center (IDC) from 
November 5, 2005. 

The analyst-reviewed location estimates (Figure 44) indicate that the Kashmir event has been 
reconstructed manually entirely from the Warramunga P-detection (no other detections in the 
SL3 event hypothesis are now associated with the REB event). The overlapping waveforms are 
displayed for a number of stations in Figure 45. It is demonstrated in Figure 46 how a fully 
automatic event location is possible by taking the WRA P-detection as a trigger and projecting 
this back over a source region and creating multiple event hypotheses and analyzing which 
event hypotheses can associate the greatest number of phases and the smallest time residuals. 
We note in this case that, even on optimal traces targeted towards the source region of the 
second event, accurate automatic determinations of the arrival times are exceptionally difficult. 
Automatic rejection of the corresponding SL3 event hypothesis is far simpler. 
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Figure 44. Extract from Reviewed Event Bulletin (REB) from the International Data Center (IDC). The first 

of these events was well predicted automatically (see the SL3 page displayed in Figure 43), and the 
second of these events was built manually from a single phase extracted from a false event 
hypothesis. The relocated events are separated by approximately 350 km, although the first event is 
in addition over 250 km deep. 
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Figure 45. Waveforms for selected stations (optimized for given phases from the Kashmir region) with 
arrivals from the events listed in Figure 44 labelled. 
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Figure 46. Source-scan for triggering WRA P-phase at time 2005-309:23.37.43. A geographical grid was 
searched with origin times determined by the theoretical traveltime to WRA and the number of 
automatic phase detections from other stations consistent with each of these event hypotheses 
was counted. Of all of the event hypotheses with the maximum number of phases (8), the 
hypocenter with the minimum traveltime residual was 2005-309:23.25.40 at 34.46oN, 73.60oE and 
20 km deep. The colors in this plot indicate the 1-norm traveltime residual for this set of phases 
over a far denser grid of trial hypocenters. The optimal epicenter is at 34.477oN 73.524oE. 

This is a pathological example of completely unrelated overlapping events which are likely to 
provide a challenge to a context-based detection framework. These events will appear very 
closely in slowness space for almost all global arrays and may expose limiting factors for a 
number of the techniques proposed here. 
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2.5 Iterative Schemes for Automatic Event Bulletins: Coping with Aftershock 
Sequences 

An obvious application of iterative pipeline processing is the event of large earthquakes 
followed by extensive aftershock sequences. The rapidly unfolding sequences of phase arrivals 
at the stations in a regional or global network can present significant challenges to automatic 
procedures for phase association and the creation of event hypotheses. On May 25, 2015, an 
earthquake of magnitude 7.8 struck Nepal and was followed by several hundreds of aftershocks 
which were recorded globally. Figure 47 displays the event hypotheses in the fully automatic 
SL3 bulletin of the International Data Center (IDC) in the first six days of this aftershock 
sequence, together with the final analyst-reviewed solutions for the same time interval. This 
figure illustrates at a glance the problem faced by automatic algorithms in constructing an 
accurate representation of the sequence of seismic events. 

Figure 47. Event location estimates from the fully automatic SL3 bulletin from the International Data 
Center (IDC) in Vienna for April 25 to April 30, 2015, and (b) event locations from the analyst-
reviewed Reviewed Event Bulletin (REB) for the same time period. 

In the classical single-pass approach to processing pipelines, a sequence of detections with 
associated parametric data is forwarded from each station in the network to an association 
algorithm which attempts to form a preliminary automatic event bulletin. In the aftershock 
sequence scenario, we have issues such as the overlap of signals (where first arrivals at key 
stations may be buried in the coda of signals from earlier events) and a succession of events 
that is so rapid that qualitatively incorrect solutions with spuriously associated arrivals will often 
score more highly in automatic evaluations than the often incomplete sets of detections that 
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correspond to the true origin time and source location. This is what leads to a scatter of 
preliminary event location estimates over continental distance scales (Figure 47 a). It is the 
enormous human effort involved in producing the result displayed in Figure 47 b) from the 
starting point displayed in Figure 47 a) that we seek to assist. While there may be many 
strategies for improving the association algorithms (e.g. Arora et al., 2013), we wish to explore 
context-based iterative solutions where new passes over the raw waveform data are performed 
using techniques which are optimized for the understood state of seismicity.  

The principles of existing processing pipelines which lead to the event distributions displayed in 
Figure 47 are illustrated in Figure 48. The datastreams (a) are present for many stations in a 
regional or global network. While only one stream is displayed here for each station, in practice 
many different detection statistic traces are formed for each station. For 3-component stations, 
detection processes can be run independently on different rotations of the orthogonal 
components to seek P- and S- phases from different directions, and processed in multiple 
frequency bands in order to optimize the signal-to-noise ratio (SNR) for a broad range of 
anticipated signals. For seismic arrays, the situation is even more complicated with an extensive 
beam deployment steering numerous beams with carefully selected combinations of 
parameters for optimizing the detection of signals from all anticipated seismic sources. For all 
stations, a detection reduction and parameter estimation process will result in parametric 
datastreams (Figure 48 b) whereby, for a given trigger time, we have a set of parameters 
describing the nature of the detection. These parameters include typically SNR, apparent 
velocity, backazimuth, frequency content, and amplitude. A Global Association algorithm will 
determine a set of event hypotheses which best explain the sets of parametric data, an 
automatic event bulletin (Figure 48 c). Four events have been formed from the parametric data 
streams in this illustrative example. Three events, the red, the blue and the green, come from 
essentially the same geographical location but are placed at some distance from each other due 
to inaccuracies in the parametric data and/or a deficiency in the phase association algorithm. 
This situation depicted here is what leads to the complicated real-life example shown in Figure 
47 a). The analyst goes through the available sets of automatic bulletins, with access to the 
waveform data (e), and relocates events to form the reviewed bulletin (d). Event hypotheses 
that are clearly false are deleted and new events that were not identified by the automatic 
processing are added if the analyst sees sufficient evidence. Panels c) and d) of Figure 48 
correspond to panels a) and b) of Figure 47. 
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Figure 48. The classical processing pipeline displayed schematically for the case of an aftershock sequence 
recorded on a global network. See text for details. 
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We consider a situation in which it is understood that an aftershock sequence is developing. We 
define a geographic region of interest in which events are anticipated and have the aim of 
extracting as much information as possible about the evolving sequence in this target region. 
We could then strip the parametric detection lists of phases associated with well-defined 
aftershocks, therefore reducing the likelihood of false associations. In aftershock sequences 
from moderately sized earthquakes (e.g. up to magnitude 6.5), correlation and subspace 
detectors may perform exceptionally well in characterizing events with a relatively limited 
number of templates covering the entire source region effectively (e.g. Harris and Dodge, 2011; 
Junek et al., 2015). For larger events, such as the M=7.8 Nepal earthquake, the source regions 
are many times larger with apertures up to and exceeding 100 km. The waveform similarity 
between one event and the next decreases both with differences in source mechanism and with 
increasing hypocentral distances and it has been demonstrated for several large aftershock 
sequences that correlation methods are relatively ineffective at characterizing the seismicity, 
with only a very small proportion of detected events showing significant signal similarity to 
other events (Slinkard et al., 2013). 

Figure 49 illustrates how we may attempt to construct a timeline for event hypotheses within 
the geographical region of the ongoing aftershock sequences using some form of signal 
processing optimized for that particular source region on the available stations (a). It is not 
specified in the figure which algorithm we employ for this purpose – we could be using 
correlators or subspace detectors (Harris and Dodge, 2011) or some form of grid search 
method. With an accurate list of hypocenters and origin times, we may predict with 
considerable accuracy the sequence of phases anticipated at the different stations and these 
times can be used to mask out the corresponding phases (detected or not) from the parametric 
data streams (b). The reduced parametric data streams can then be sent again to the phase 
association process (c.f. Figure 48 b and c). While we may not guarantee a more accurate 
association of the remaining detections, we are likely to have reduced significantly the number 
of false event hypotheses involving significant events from the aftershock region. We will later 
consider procedures for evaluating offline the validity of event hypotheses formed and an 
iterative process could be conceived whereby the parametric datastream is reduced repeatedly 
until no further changes can be achieved. 
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Figure 49. The scenario whereby the processing pipeline understands that an aftershock sequence is 
developing in a limited geographical region and spawns an offline process to detect and locate 
aftershocks accurately such that the detection parameters associated with well-characterized events 
can be removed from the parametric data stream provided to the phase association algorithm. 

2.6  An Autoregressive and Grid Search Approach to Aftershock Classification 

When it becomes clear that an aftershock sequence is underway, we should be able to evaluate 
rapidly which stations are likely to provide optimal detection capability for the given source 
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region (e.g. Kværna and Ringdal, 2013). New array beams, additional to those present in the 
initial detection beam deployment, may be formed. The uppermost trace in Figure 50 displays a 
beam on the ARCES array optimized for detecting teleseismic P-phases from the Nepal region 
(ARCES being determined to be one of the most sensitive of the IMS seismic arrays for signals 
from this part of the world). The lowermost trace in Figure 50 is a continuous AR-AIC function, 
synthesized as a summation of AR-AIC traces calculated in relatively short overlapping windows 
(see e.g. Leonard and Kennett, 1999) for which signal onsets are readily identified as significant 
local maxima. The AR-AIC trace makes it easier to observe the sequence of arrivals given the 
enormous dynamic range of the waveforms but, more significantly, provides far more accurate 
estimates of the signal onset times than is possible using trigger times from classical STA:LTA 
traces. 

Figure 50. ARCES array beam aimed at teleseismic P-arrivals from the Nepal earthquake, together with 
the continuous AR-AIC function for this particular beam. 

If the procedure displayed in Figure 50 is carried out on each of several of the most sensitive 
stations for the source region in question, with as great an azimuthal coverage as possible, then 
we can form preliminary event hypotheses in this source region alone, simply be finding local 
minima in the AR-AIC traces that propagate back to a common origin time. The most effective 
way of doing this in practice is to pre-calculate P-wave traveltimes from each point on the 
geographical grid covering the aftershock region to each of the stations selected. Given that this 
calculation is only performed once for the entire sequence, the best results are anticipated 
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when using a fully 3-dimensional P-wave velocity model (e.g. Simmons et al., 2012). An 
empirical threshold on the AR-AIC traces is set and every local AR-AIC maximum which exceeds 
this threshold is selected as a trigger. For a given trigger, we loop around every node on the 
geographical grid and define the origin time for a hypothetical event at that grid node. Given 
this candidate hypocenter, we then calculate the anticipated arrival times at each of the 
observing stations and seek local maxima in the AR-AIC traces close to this time. For the 
majority of the trial hypocenters, we will only find a significant local maximum at the time of the 
trigger detection. Trial hypocenters for which several local maxima fall very close to the 
predicted arrival times are considered to be likely candidates and are stored. The candidate 
hypocenter for which the greatest number of arrivals match the local maxima of the AR-AIC 
traces is selected as a preliminary event hypothesis. If many candidate event hypotheses predict 
the same number of arrivals, then the location with the smallest traveltime residual is selected. 
Once an event hypothesis is selected, all of the corresponding local maxima in the AR-AIC traces 
are set to zero and the procedure is repeated until all of the event hypotheses which are 
supported by a minimum number of observations (4 for example) are exhausted. While this 
method operates with a certain degree of brute force, the reliability of the arrival time 
estimates in the AR-AIC traces, coupled with the fact that all traveltimes are pre-calculated, 
means that the procedure runs very rapidly when only a modest number of observing stations 
are used. 

If possible, local maxima in the AR-AIC traces that are not related to the aftershock sequence 
can be screened out using, for example, f-k analysis. This will reduce the number of triggers to 
loop around and will reduce the risk of generating spurious event hypotheses. We do not of 
course eliminate the risk of generating false event hypotheses, and neither do we eliminate the 
risk of corrupting otherwise valid event hypotheses. However, we appear to reduce the 
likelihood that high SNR phase arrivals corresponding to events in the aftershock sequence are 
associated spuriously to form event hypotheses far from the aftershock source region. Figure 51 
displays the fixed depth hypocenters obtained over the first 3 days of the Nepal sequence using 
this method. There are 180 preliminary event hypotheses displayed here, each without a 
magnitude estimate. In comparison, 345 events are found in the Reviewed Event Bulletin of the 
IDC in this region and over the same time interval. 
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Figure 51. Fully automatic event location estimates obtained in the first 3 days of the Nepal sequence 
using an iterative grid search method based upon local maxima of the AR-AIC functions and pre-
calculated traveltimes. Numerous event hypotheses are formed and, on each iteration, those 
hypotheses which best satisfy an optimum number of phase arrivals on different stations are 
accepted. 180 event hypotheses are displayed here, compared with 345 events in the REB in the 
same time period in the same region. Note that the size of the symbols relates only to the number 
of local maxima on the AR-AIC traces are included and is not necessarily indicative of the event 
magnitude. 
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Figure 52 displays detection lists from four of the selected arrays. In the lowermost of the two 
traces for each station, a vertical line is drawn for each detection for which the indicated 
conditions on backazimuth and apparent velocity are met and where the height of the line is 
proportional to the signal to noise ratio. In the uppermost traces, we display the set of 
detections where each arrival associated with one of the event hypotheses in Figure 3 has been 
removed. The number of arrivals satisfying the stated conditions has been approximately halved 
for each station. Significantly, all of the detections with high signal to noise ratio have been 
associated with one of our event hypotheses. This source region-specific feature would then 
either repeat with a lower detection threshold, or would simply send the unassociated 
detections back to the Global Association algorithm for a new iteration. This demonstrates a 
proof of concept of a context-based procedure for improving the processing pipeline in the 
large earthquake aftershock scenario. 

The Nepal example illustrated here includes only teleseismic P phases since no open data from 
near regional distances was available for this sequence. In many circumstances, regional phases 
may be available and, especially within regions with dense networks, are likely to dominate the 
data streams. Figure 53 displays waveforms from 3 stations within 10 degrees of the magnitude 
7.6 Kashmir earthquake of October 8, 2005. For all stations, one trace is optimized for the 
regional P phase and one for the regional S phase. (For the NIL station at a distance of 
approximately 1 degree, this is likely to be a crustal Pg/Sg-type phase, whereas for the more 
distant DEBE and KKAR stations, we are looking at Pn/Sn.) Most of the regional arrivals are 
visible both on traces optimized for P and traces optimized for S. 
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Figure 52. For each of the four array stations listed, the lowermost trace displays detections (SNR as a 
function of time) for which the velocity and azimuth constraints hold. The traces above display the 
detections remaining after phases that can be associated with the preliminary events displayed in 
Figure 3 are removed. All detections with the highest SNR measurements are removed from the 
input. The number of detections for each station is approximately halved. 
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Figure 53. Traces optimized for the detection of regional P and regional S at 3 stations within 10 degrees 
of the October 8, 2005, Kashmir earthquake. For the KKAR array, both of these traces are beams 
steered with parameters chosen to optimize the SNR for the sought-after phases. For the 3-
component stations NIL and DEBE, we use the vertical component only for the P-phases and the 
transverse horizontal rotation for the S-phases. The frequency bands used are generally higher for 
the P-phases than for the S-phases. Note that the NIL waveforms are clipped for the largest events 
meaning that only the P-arrival is usually seen for these events. 

Figure 54 displays the AR-AIC functions for the optimal waveforms displayed in Figure 53. As 
with the teleseismic case displayed in Figure 50, we see that the enormous dynamic range of 
the waveform amplitudes is reduced considerably in the AR-AIC traces, with the significance of 
the arrivals from the smaller amplitude events far more comparable to that of the much larger 
events. 
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Figure 54. Continuous AR-AIC functions for the traces displayed in Figure 53. 

If we look more closely at the AIC traces in Figure 54 we see a significant peak for both P and S 
phases for each arrival (Figure 55). However, for every identified P phase, the peak value of the 
AR-AIC trace for the P-optimized waveform is almost guaranteed to exceed the peak value of 
the AR-AIC trace for the S-optimized waveform for that time. Similarly, for every identified S 
phase, the peak value of the AR-AIC trace for the S-optimized waveform is almost guaranteed to 
exceed the corresponding peak value of the AR-AIC trace for the S-optimized waveform. Figure 
55 provides optimism that a relatively simple detection reduction scheme, where the AR-AIC 
trace is set to zero for the time surrounding any trigger at that station for all AR-AIC traces that 
do not provide the maximum value, is likely to identify most phases correctly and therefore 
reduce the likelihood of spurious event hypotheses. 
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Figure 55. Close-up of the traces displayed in Figure 54 in original form (upper panel) and in reduced form 
(lower panel). 

Approved for public release; distribution is unlimited.
95



3 Results and Discussions 

In this section we provide a brief overview of the results from each of the studies described in 
the previous section. 

3.1 Cancellation of Repetitive Transients in Seismic Array Data Streams 

We have highlighted the problem caused by repeating high amplitude transient signals from 
very local sources on key monitoring stations. These signals are usually genuine responses to 
ground motion (as opposed to artefacts in the data) but caused by sources that are not of 
monitoring interest. Examples are ice-quake signals generated in the glaciers surrounding the 
SPITS array on Svalbard and Rg-type phases generated by industrial events in the vicinity of 
several other stations. 

Two types of algorithm are proposed: an intermittent-source algorithm and a continuous-source 
algorithm. The intermittent-source algorithm fails in some cases where a complicated source-
time function results in the superposition of nuisance signals. The continuous-source cancellor 
works well in these situations. However, for practical implementation, the intermittent-source 
algorithm is currently recommended given the tradeoff between effectiveness and speed. 

3.2 A Revised Detection Framework Architecture 

The intermittent-source cancellation algorithm has been implemented into the so-called 
Detection Framework. In order to facilitate the implementation of new methods and outscaling 
data processing to a cluster of computers, the Detection Framework was successfully upgraded 
with a new architecture.  

The performance of the revised Detection Framework with respect to cancellation of local 
icequake signals was evaluated using data from the SPITS array. For a three day period the 
cancellation provided a factor 10 reduction in nuisance icequake signals. The data “cleaned” 
from nuisance signals again provide for improvements in both manual and automatic data 
analysis. 

We conducted an experiment with automatic reprocessing of the “cleaned” SPITS data within 
the revised Detection framework. This demonstrated improvements in detection performance, 
but also revealed some issues to be resolved regarding partial-only signal cancellation of time-
overlapping nuisance signals. 
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3.3 Empirical Matched Field Processing and Adaptive Beamforming 

We sought to improve the sensitivity of signal detectors using empirical matched field 
processing (EMFP) and adaptive beamforming. Matched Field Processing can be considered to 
be a form of frequency domain beamforming and EMFP is a calibrated form where the applied 
phase shifts are calculated by the observations of previous signals from the direction of interest. 
EMFP provides the optimal estimator of the signal under the assumption of white background 
noise. In the case of correlated noise, the optimal choice for steering vectors is the adaptive 
beamformer weighting – or minimum variance distortionless receiver (MVDR). 

To demonstrate, signals from confirmed nuclear tests in the DPRK were submerged into 
aftershock sequences recorded on medium aperture seismic arrays (with aperture of the order 
10 km) with the noise covariance structure for MVDR estimated from a time average of the 
ongoing aftershock sequence. Relative to the standard matched field estimator, adaptive 
processors reduce, often dramatically, the contribution of interfering events to detection 
statistics traces targeted on the DPRK test. 

We draw two conclusions from the examples provided: (1) the use of calibrated steering vectors 
with empirical matched field processing appears to allow adaptive beamforming techniques to 
be used successfully, and (2) adaptive beamforming may be used to advantage in several stages 
of iteration in an advanced pipeline. It may support more sensitive initial event detection in the 
pipeline. In addition, adaptive beamforming may support context-driven reprocessing of a 
stream at a station which failed to make a detection when observations at other stations in a 
network indicate that it should have had a trigger.  

3.4 Evaluation of Event Hypotheses 

Fully automatic phase association algorithms form the basis for the seismic event bulletins 
generated by data centers. Phase detections from single stations are grouped together from the 
parametric datastreams by algorithms such as GA (Global Association) or NetVISA. Under 
current operations, only at the analyst review stage is it possible to evaluate these hypotheses 
and revise them. 

In an iterative processing pipeline, we should have the means by which to evaluate event 
hypotheses automatically using processes operating on the waveform data. Using historical 
observations, recorded on permanent networks, it is usually possible to obtain a reasonable 
estimate of the detectability for an event of a given size, in a given location, and recorded on a 
given station. The absence of evidence of a signal at a time at which an arrival is predicted from 
an event hypothesis should alert an automatic procedure to a likely incorrect hypothesis once 
explanations such as data dropouts or abnormal background noise have been eliminated. 

Approved for public release; distribution is unlimited.
97



We discuss the limitations of fully automatic hypothesis evaluation with a test case of two 
events in Central Asia – a deep Hindu Kush earthquake and a shallow earthquake in Kashmir 
approximately a minute later. Almost all of the arrivals from the Kashmir event are buried in the 
coda of the Hindu Kush event. Automatic processes can readily identify the false automatic 
event hypothesis which includes phases from the Kashmir event but would struggle to identify 
the buried arrivals with sufficiently high confidence. It is exactly such a scenario for which the 
adaptive beamforming/MVDR process described in the previous section is envisaged. 

3.5 Iterative Schemes for Automatic Event Bulletins: Coping with Aftershock 
Sequences 

Aftershock sequences following very large earthquakes present enormous challenges to near-
realtime generation of seismic bulletins. The increase in analyst resources needed to relocate an 
inflated number of events is compounded by failures of phase association algorithms and a 
significant deterioration in the quality of underlying fully automatic event bulletins. We consider 
the scenario where a large earthquake has occurred and propose to define a region of likely 
aftershock activity in which events are detected and accurately located using a separate 
specially targeted semi-automatic process. This effort may focus on so-called pattern detectors, 
but here we demonstrate a more general grid search algorithm which may cover wider source 
regions without requiring waveform similarity. Given many well-located aftershocks within our 
source region, we may remove all associated phases from the original detection lists prior to a 
new iteration of the phase association algorithm.  

We provide a proof-of-concept example for the 2015 Gorkha sequence, Nepal, recorded on 
seismic arrays of the International Monitoring System. Even with very conservative conditions 
for defining event hypotheses within the aftershock source region, we can automatically 
remove about half of the original detections which could have been generated by Nepal 
earthquakes and reduce the likelihood of false associations and spurious event hypotheses. 
Further reductions in the number of detections in the parametric data streams are likely using 
correlation and subspace detectors and/or empirical matched field processing. 
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4 Conclusions 

The objectives of this study were to explore some of the opportunities for more sophisticated 
detection algorithms we believe are feasible in an architecture allowing reprocessing of the 
seismic data stream. In existing processing pipelines, the stages of the automatic processing 
pipelines which consider the waveform data perform only a single pass of the waveforms before 
supplying later stages of the pipeline with parametric data from which hypotheses of seismic 
events are generated. Only at the final stage, where a human analyst considers the list of event 
hypotheses, is it currently possible for a re-evaluation of the incoming waveform data stream. 
We believe that a much more accurate and realistic interpretation of the incoming data can be 
made far earlier, in the automatic processing, with contextual signal processing performed 
iteratively to optimize detection and characterization of seismic events. 

In this study we contemplate future pipelines that, in addition to implementing contextual 
signal processing, could profit from a geographically hierarchical structure organized to have a 
clean distributed implementation exploiting data locality. We imagine at least two levels to the 
hierarchy: a base level of collections of sub-pipelines processing data from individual stations, 
and a top level global pipeline integrating results from the base level. Whether a third, 
intermediate level processing regional station aggregations would add significantly to overall 
effectiveness has not been addressed. The value of the local level is that adaptive, contextual 
processing to reject local interference can take place independent of other stations, without the 
overall system needing to form hypotheses about or conduct processing to suppress 
interference observed only at one station. This is not to say that the global level of the hierarchy 
would not provide contextual hints to local sub-pipelines regarding events or interference 
expected to be observed widely. 

At the single station level, detection and estimation capability may be compromised significantly 
by the occurrence of high amplitude transients from local sources. We prototype an 
architectural element to detect, and subtract from the stream, local nuisance transient signals 
that plague critical monitoring arrays. In addition, we test means to suppress aftershocks with 
adaptive beamforming algorithms given information about numerous signals present in the 
current analysis window, for example from ongoing aftershock sequences. This is an example 
where global context would inform local signal processing adaptations. 

At the global level, we consider how recognition of ongoing aftershock sequences could affect 
contextual event association. Aftershock sequences following very large earthquakes present 
enormous challenges to near-real-time generation of seismic bulletins both due to the increased 
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numbers of events and a decrease in the quality of automatic bulletins. We consider the 
scenario where a large earthquake has occurred and propose to define a region of likely 
aftershock activity in which events are detected and accurately located using a separate 
specially targeted semi-automatic process. Given many well-located aftershocks within our 
source region, we may remove all associated phases from the original detection lists prior to a 
new iteration of the phase association algorithm. We provide a proof-of-concept example for 
the 2015 Gorkha sequence, Nepal, recorded on seismic arrays of the International Monitoring 
System. Even with very conservative conditions for defining event hypotheses within the 
aftershock source region, we can automatically remove about half of the original detections 
which could have been generated by Nepal earthquakes and reduce the likelihood of false 
associations and spurious event hypotheses. Further reductions in the number of detections in 
the parametric data streams are likely using correlation and subspace detectors and/or 
empirical matched field processing. 
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Appendix:  Levinson-Durbin Algorithm for Solution of Block Toeplitz 
Matrix Equation 

The system of equations requiring solution involves a block Toeplitz matrix: 

(A-1) 

The solution proceeds by recursion. Suppose we have the solution for the  order 

problem: 

(A-2) 

We construct the solution to the  order problem given that of the  order problem. 

Note that: 

(A-3) 

and: 

(A-4) 

where: 
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(A-5) 

The solution proceeds by carrying along recursions for two special cases in addition to the main 
problem of (A.1): 

(A-6) 

and: 

(A-7) 

By inspection, from (54) and (57) we have: 

(A-8) 

with: 

(A-9) 

From (55) and (58), we have a similar relation: 

(A-10) 

with: 
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(A-11) 

We need to find matrices  and  s.t. 

(A-12) 

There are two non-trivial constraints in (63): 

(A-13) 

Solving for : 

(A-14) 

(A-15) 

Solving for : 

(A-16) 

Thus: 

(A-17) 
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Similarly, for the , we need to find matrices  and  s.t. 

(A-18) 

Again there are two non-trivial constraints: 

(A-19) 

With the result: 

(A-20) 

(A-21) 

Thus: 

(A-22) 

Returning to the solution of the original problem, we try: 

(A-23) 

where: 

Approved for public release; distribution is unlimited.
106



(A-24) 

To update the , we need: 

(A-25) 

By inspection: 

(A-26) 
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Abbreviations 

AFTAC  – Air Force Technical Applications Center 

CTBT – Comprehensive Nuclear-Test-Ban Treaty

CTBTO  – Comprehensive Nuclear-Test-Ban Treaty Organization 

EMFP – Empirical Matched Field Processing

IDC  – International Data Center

IMS  – International Monitoring System

ISC  – International Seismological Center

LLNL – Lawrence Livermore National Laboratory

REB  – Reviewed Event Bulletin

SNR  – Signal-to-Noise Ratio

sps  – Samples Per Second
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