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ABSTRACT 

The anisotropic ocean environment will lead to variability of ocean 

acoustic travel time. The variability of travel times comes from several ocean 

dynamical processes, including eddies, internal tides, and stochastic internal 

waves. This study analyzes time series of travel time from the Philippine Sea 

2010–2011 experiment conducted by the Scripps Institution of Oceanography. In 

this experiment, a pentagonal array of acoustic transceivers of radius 600-km 

transmitted 250 Hz pulses for the purpose of observing acoustic variability at 

multiple time and space scales. Using filtering methods, this study separates 

variability in travel time in bands associated with eddies, internal tides, and 

stochastic internal waves. The observed fluctuations in the internal wave band 

are compared to a simple theoretical model.  

The result of the research shows that over the year, eddies induce the 

largest amount of variability. Internal tides and internal waves show comparable 

fluctuations. There is some seasonal variability. Eddies and internal waves show 

fluctuations that are fairly isotropic across the array, while internal tides give 

highly anisotropic fluctuations. This anisotropy is related to the 

strong directionality of the internal tides that emanate from the Luzon Strait. 
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I. INTRODUCTION 

Acoustic propagation in the ocean is strongly influenced by the 

characteristics of the sea water and ocean dynamics. The circulation pattern of 

eddies, internal tides and internal waves are a few processes that determine the 

distribution of ocean sound speed and have a substantial impact on acoustic 

propagation.   

Important among these processes are internal waves, which exist due to 

density stratification of the ocean. These waves randomly fill the oceans 

everywhere: there is never an internal calm. Internal waves alter the ocean 

sound speed field by vertically advecting water parcels. The resulting random 

internal-wave sound-speed structure then gives rise to acoustic scattering, 

thereby distorting and randomizing the acoustic field. This issue is common to 

many areas of wave propagation: Seismic propagation through the 

heterogeneous Earth, and optical propagation through the atmosphere (twinkling 

of stars) are two examples. Randomization of ocean acoustic signals can impose 

limitations on systems used for remote sensing, navigation, and communication 

and thus the study of this problem has many useful applications. 

This thesis is concerned with a particular aspect of acoustic propagation 

through internal waves, namely their effects on signal travel time or acoustic 

phase. In this work, observations from the Philippine Sea will be examined, and 

theoretical modeling will be carried out to see if the observed statistics of travel 

time can be accurately predicted. The observed travel time statistics due to 

internal waves will be contrasted with travel time effects caused by internal tides 

and eddy.  

A. NORTH PACIFIC ACOUSTIC LABORATORY (NPAL) IN PHILIPPINE 
SEA  

This experiment is part of a series designed to capture any acoustic 

propagation variability related to oceanic and geographic conditions in the 
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Philippine Sea. The series began with the 2009 NPAL Pilot Study/Engineering 

Test (PhilSea09), and continued with the 2010–2011 NPAL Philippine Sea 

Experiment (PhilSea10) and the Ocean Bottom Seismometer Augmentation of 

2010–2011 NPAL Philippine Sea Experiment (OBSAPS) (Worcester et al. 2013). 

This study concentrated on data from PhilSea10. 

1. Objective of NPAL in Philippine Sea 

The research was designed with several goals: 

1. To learn the impact of eddies, internal tides, and random internal 
waves on acoustic propagation. 

2. To develop better acoustic prediction methods, together with other 
measurements in the area. 

3. To gain better understanding about how internal wave and spice 
affect acoustic propagation. 

4. To characterize the depth and time dependence of ambient noise. 

5. To understand the relationship between acoustics in the water 
column and seismic features of the ocean bottom 

The study will further contribute to understanding of the impact of eddies, 

internal tides and internal waves on acoustic propagation areas. It will describe 

the variability of acoustic propagation travel time as a result of the influence of 

each of these ocean parameters. It will attempt to determine how variability 

changes with respect to seasonal changes and how it differs when the cyclone 

comes. 

2. Research Location 

The research placed a distributed vertical line array (DVLA) receiver 

surrounded by six transceiver stations (T1–T6) at various distances and relative 

directions from the DVLA. Geographical location of each station and the DVLA 

are shown in Figure 1, the coordinates are given by Table 1, and the distances 

between mooring stations are given by Table 2. 
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Figure 1.  Location of Each Mooring during PhilSea10 

 
Transceiver station position calculated using reference WGS84. Adapted from: 
Google, 2015: Philippine Sea, 20°16’11.21” N and 125°30’49.79” E, Google 
Earth, accessed 21 June 2015.  

Table 1.   Location of Each Mooring during PhilSea10 

DVLA 21° 21.7418’ N 126° 00.7867’ E
T1 23° 08.3817’ N 127° 04.0753’ E
T2 20° 49.5130’ N 129° 46.8332’ E
T3 17° 47.2565’ N 128° 03.4890’ E
T4 18° 21.0740’ N 124° 17.3629’ E
T5 21° 21.9914’ N 123° 59.2687’ E
T6 20° 28.0546’ N 126° 48.7610’ E

Location

 
Transceiver station position calculated using reference WGS84. Source: 
Worcester, P. F., Coauthors, 2013: The North Pacific Acoustic Laboratory deep-
water acoustic propagation experiments in the Philippine Sea. J.Acoust.Soc.Am., 
134, 3359–3375, doi:http://dx.doi.org/10.1121/1.4818887.  
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Table 2.   Distance (km) between Stations with Reference WGS84 
during PhilSea10 

T1 T2 T3 T4 T5 T6 DVLA
T1 0 379.66 601.46 603.93 373.28 297.05 224.84
T2 0 381.87 637.82 604.83 311.81 395.94
T3 0 403.81 582.46 324.3 450.13
T4 0 335.29 353.71 379.08
T5 0 310.25 210.06
T6 0 129.36

DVLA 0
 

Rhumb line distance between transceiver stations calculated with reference 
WGS84. Source: Worcester, P. F., Coauthors, 2013: The North Pacific Acoustic 
Laboratory deep-water acoustic propagation experiments in the Philippine Sea. 
J.Acoust.Soc.Am., 134, 3359–3375, doi:http://dx.doi.org/10.1121/1.4818887.  

Figure 2.  Acoustic Propagation Paths that Used in the Study 

 
Ideal acoustic path used in the study. Signals were transmitted from T1, received 
by T2 – T6, transmitted from T2, received by others and continued until T5 
transmission. The study could not use T6 transmission data due to the clock 
failure at T6 (Worcester et al., 2013). Adapted from: Google, 2015: Philippine 
Sea, 20°11’17.69” N and 127°19’18.16” E, Google Earth, accessed 21 June 
2015. 

The study will concentrate on the information related to propagation 

between each transceiver. DVLA information is not necessary to this study. Only 
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the information that transmits from one transceiver station and that is received by 

the other stations is calculated. There should be 30 path combinations (Figure 2), 

but because there was a clock problem at T6, the signal that originated from that 

station could not be processed. As a result, the study only used 25 path 

combinations, which originated from T1–T5.  

3. Equipment Configuration 

The DVLA recorded transmitted signals from all transceivers. It consisted 

of five subarrays. This array functioned to resolve low-order modes and 

characterized acoustic time front and ambient noise (Worcester et al. 2013). 

The transmissions started from a near north position and moved in a 

clockwise direction. Transmission started from T1, followed by T2, through T6. 

The transceivers transmitted a 135-s linear frequency modulated (LFM) with 

bandwidth 100 Hz. Central frequencies that transmitted at every station were 250 

Hz but for T2 the central frequency was 104–205 Hz. To avoid interference the 

transmission from each station was separated by nine minutes every hour (see 

Table 3) (Worcester et al. 2013). This nine-minute separation was chosen to give 

buffer time for the longest travel time calculated to be required for the longest 

distance. The longest distance between stations was 637.818 km, and the 

assumed sound speed in the ocean is 1,500 ms-1 (Pierce 1989); it takes seven 

minutes and five seconds for acoustic signal to travel from T2 to T4, and vice 

versa. 
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Table 3.   Transceiver Bandwidth, Average Power Level and 
Transmission Time of Each Station during PhilSea10 

Source LFM Bandwidth 
(Hz) 

Average Power 
Level 

(dB re 1μPa at 
1m) 

Transmission 
Time 

(min of the hour) 

Source 
Depth 

(m) 

T1 200 - 300 184.4 00 1068.7 

T2 140 - 205 183.8 09 1070.1 

T3 225 - 325 181.9 18 1062.4 

T4 225 - 325 182.7 27 1064.6 

T5 205 - 305 184.0 36 1061.7 

T6 200 - 300 185.8 45 1066.0 

There were four hydrophones installed above each transceiver. These 
hydrophones were installed at interval of nine meters. The hydrophones recorded 
the incoming signal from every transceiver. Even though T6 failed to transmit the 
signal, which affected to data supply for this study, it still recorded an incoming 
signal during the research. Adapted from: Worcester, P. F., Coauthors, 2013: 
The North Pacific Acoustic Laboratory deep-water acoustic propagation 
experiments in the Philippine Sea. J.Acoust.Soc.Am., 134, 3359–3375, 
doi:http://dx.doi.org/10.1121/1.4818887.   

4. Environmental Information 

The important environmental information for acoustic propagation is 

salinity, temperature and sound speed as a result. This section will give general 

information about environmental parameters during the research. 

a. Salinity 

The North Equatorial Current has contributed to establishing the lowest 

salinity near the surface; during summer, it is 34psu at 50m depth, and during 

other seasons, it is 34.2psu. North Pacific Tropical Water contributes to the 

highest salinity, 34.8psu at 150 to 250m depth. North Pacific Intermediate Water 

gives minimum salinity of 24.2psu at the depth of 500 to 650m (Rudnick et al. 
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2011). Weak spice at the depth of 800 to 1600m suggests there is an isopycnals 

layer (Colosi et al. 2013). After that depth, the salinity tends to remain constant 

(Figure 3, middle panel). 

b. Temperature 

Within the first hundred meters of depth, the average temperature in the 

summer in this area is about 30ºC, and during winter, is about 26ºC. The 

isothermal layer starts below 700m with 5ºC (Rudnick et al. 2011). See Figure 3, 

left panel.  

Figure 3.  Annual Average Temperature, Salinity and Sound-Speed 
Profiles at 21.36_N, 126.02_E 

 
Average temperature, salinity and sound speed approximation at the locations of 
the PhilSea10 DVLAs, as derived from the World Ocean Atlas 2005. Source: 
Worcester, P. F., Coauthors, 2013: The North Pacific Acoustic Laboratory deep-
water acoustic propagation experiments in the Philippine Sea. J.Acoust.Soc.Am., 
134, 3359–3375, doi:http://dx.doi.org/10.1121/1.4818887.  
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c. Sounds-Speed Profile 

Sound-speed profiles tend to create a sound channel at an axis depth 

around 1000m (Figure 3, right panel). The depth of the ocean sufficient to locate 

the critical depth above the ocean bottom (Worcester et al. 2013). This makes 

observation easier because boundaries of the ocean do not interfere with the 

propagation of the sound wave.  

B. OBJECTIVE OF STUDY 

This study used data that had been processed by Scripps Institute of 

Oceanography, University of California San Diego. The study concentrated on 

the statistics of acoustic travel time during research periods, and tried to extract 

information about 

• overall travel time variance caused by internal waves, internal tides 
and eddies; 

• scaling of travel time variance with range;  

• changes in travel time variance with season; 

• comparison with acoustic models for travel time variance using the 
Garrett-Munk internal wave spectrum; 

• horizontal anisotropy of travel time variance (e.g., is the variance 
larger in a particular direction?); and 

• effects of Typhoons on travel time variance. 

C. NAVY RELEVANCE 

Knowing acoustic propagation variability can help sonar operators to 

determine sonar detection accuracy. The variability of acoustic propagation can 

describe means and error bars for terms in the sonar equation. Predicting 

acoustic variability required a detailed knowledge of the ocean environment. 
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II. OCEAN ACOUSTIC PROPAGATION 

This chapter will discuss acoustic wave propagation through the ocean 

using ray theory. The focus is to describe wavefront propagation in the ocean 

sound channel and to discuss the variability of ray travel times along different 

sections of the wavefront. 

Because attenuation is weak, low frequency acoustic waves can be 

detected and utilized at very long distances in the ocean. This study will use ray 

theory to describe how acoustic waves behave during their propagation. Ray 

theory is used because of its simple geometric interpretation and because we are 

concerned with the acoustic variable of travel time, which is well described by ray 

theory even in a stochastic environment (Colosi 2015, manuscript submitted for 

publication to Cambridge University Press).  

There are several ways to interpret ray theory both mathematically and 

conceptually. One useful approach is to assume that locally an acoustic wave 

looks like a plane wave. In this approach, the rays are understood as lines that 

run perpendicular to the wave front. These rays will describe the path of the 

acoustic wave during its propagation. The paths are dictated by refraction and 

reflection. There is no diffraction in ray theory. Since reflection only occurs at the 

boundaries, refraction is the key physical process for deep water long range 

propagation through the ocean at low and middle latitudes. Variations in sound 

speed give variation to ray refraction. 

For a plane wave, the wavenumber and frequency are related to the wave 

phase by k θ= ∇


 and 
t
θω ∂

= −
∂

. Taking the divergence of the frequency we 

obtain 

 k k
t k r

ω ω∂ ∂ ∂ = − •∇ − ∂ ∂ ∂ 





    (2.1) 
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Here 
k
ω∂
∂
   is seen to be the group speed, and the total derivative along the 

ray is gc
t
∂
+ •∇

∂
. Rewriting this equation using the total derivative gives the 

refraction equation: 

 dk
dt r

ω∂
= −

∂



   (2.2) 

This equation tells us how the wavenumber changes direction. Identifying 

the group speed as the rate of change of position of the ray, we then also have 

the equation: 

 g
d r c
dt k

ω∂
= =
∂





   (2.3) 

These two vector equations give us six coupled scalar equations for six 

unknowns, which are three components of the wavenumber and three 

components of the position all as a function of time. 

Here we need the dispersion relation for acoustic waves, which is given: 

 ( ) ( ) ( )1
2 2 2 2, x y zr k k k k c rω = + +

  

  (2.4) 

In these equations, kx, ky, kz are the wave numbers along each axis and 

( )c r


 is the three dimensional sound speed. If c is a function of z, the dispersion 

relation becomes ( ) ( )
1

2 2 2
h zk k c zω = + , where kh is constant. In this case Snell’s 

law gives cos cons
c
θ
= . Making x the independent variable and considering a 2-d 

problem in the x-z plane, the ray equations are: 

 
z

dz H
dx p

∂
=
∂

  (2.5) 

 zdp H
dx z

∂
= −

∂
  (2.6) 
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( )

1
2 2 2 2

1 sec
z

z

dT dzL p H
dx dx cc c p

θ
−

= = − = =
−

  (2.7) 

In these equations, the new quantity of sinz
z

kp
c
θ

ω
= =  is the vertical wave 

slowness; ( )
1

2 2 2 cosx
z

kH c p
c
θ

ω
−= − = − − = −  is the Hamiltonian function; and L is 

Lagrangian function. Equation (2.7) simply tells us that the acoustic waves move 

at the local sound speed. 

In this study, we will consider source depths close to the sound channel 

axis, which for the Philippine Sea is about 1000 m depth. Consider first the case 

c=c(z). As rays leave the source, they arrive in an environment, which has higher 

sound speed propagation. As a consequence of Snell’s Law, each ray will bend 

away from the normal line. At some point the ray begins to move in the opposite 

direction from its original direction at the source and the ray starts to bend back 

toward the normal line. This pattern is repeated all along the path of the ray. The 

upper limit at which the ray starts moving downward is known as the upper 

turning point (z+); the other change at the lower limit is called the lower turning 

point (z-). As a result of this process the ray will remain within the corridor 

between the upper limit and the lower limit. In this study, the ray will remain 

within a corridor with an axis at around 1,000 m depth. 

There is a method to differentiate and to identify the ray paths, using the 

grazing angle (θg). θg is the angle that is measured from the axis of acoustic 

propagation to a particular path being identified. Mathematically θg can be 

determined by Snell’s law: 

 cos( ) axis
g

turn

c
c

θ =   (2.8) 

In this equation, caxis is sound speed at the axis of propagation and cturn is 

sound speed at the particular depth of the ray turning point in which we are 

interested (Figure 4).  
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Figure 4.  Sketch Ray Propagation around the Axis 

1,000m θg

 
The left panel of the figure is the vertical sound speed profile from Chapter I, 
Figure 3. The right panel shows that the rays that have a higher grazing angle 
(red line) will reach a higher sound speed depth; the rays that have a lower 
grazing angle cannot reach the same depth. 

Figure 5.  Ray ID15 of T4-T5 

R- R+
R

 
This ray originated from T4 and was received by T5. It was given the ID number 
ID+15 because it left the source (left border of figure) going upward, and it had 8 
upper turning points and 7 lower turning points or a total of 15 turning points. The 
R is the horizontal ray cycle distance. R+ is the horizontal distance of the upper 
loop, and R- is the horizontal distance of the lower loop. 
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Another way to distinguish one ray from another for a given sound speed 

profile and a set receiver depth and range is the ray identification (ID) number. 

Each ray will be given a specific identification number. The number will represent 

how many turning points the ray has before it reaches the receiver. The sign (+ 

or -) of the ID indicates whether the ray went upward (+) or downward (-) from the 

source. For example ID +15 shows us that the ray left the transmitter upward and 

had 15 turning points before it reached the receiver. The ID-15 shows us that the 

ray left the transmitter downward and had 15 turning points (Figure 5). 

Figure 6.  Ray Plotting of Two Rays for the Study 

 
The plotting of the transmission of two rays transmitted from T4 to T5. Red 
represents a ray with ID+12, which has the largest grazing angle and 12 turning 
points. A ray with a smaller grazing angle, represented by blue, had 15 turning 
points, and an ID+15. The red ray traveled a longer distance than the blue ray. 
Any ray with an odd ID number will reach the receiver in the same direction as it 
left the transmitter, while a ray with an even ID number will reach the receiver 
from the opposite direction. 
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Ray loop distances, defined as the horizontal distance traveled by a ray 

over an up/down cycle of the ray, are a function of grazing angle, and for a mid-

latitude profile like the Philippine Sea, ray loop distance increases with grazing 

angle. This means that higher grazing angle rays will be associated with smaller 

IDs.  

The rays that departed from the source and arrive at a fixed receiver depth 

at fixed range are called eigenrays (Figure 6). During propagation, acoustic 

signals follow many different paths or eigenrays. This situation is known as 

multipath propagation. 

Figure 7.  Travel Time of Some Rays from T4-T5 Transmission 

 
Blue represents ID15 and red represents ID12. The horizontal axis shows the 
year day of 2010 and the vertical axis shows the travel time in seconds. The 
research data show that, throughout the research period, rays with higher 
grazing angles (red) had faster travel time than rays with lower grazing angles 
(blue). 
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In mid-latitude sound speed profiles higher grazing angle rays (with 

smaller IDs) have a larger horizontal group speed than low angle rays. The 

research data give some proof of this (Figure 7). The eigenray with a higher 

grazing angle (red ray, ID12) has an earlier travel time than the lower grazing 

angle eigenray (blue ray, ID15). 

A. TIME FRONT 

Wave fronts are difficult to observe because instrumentation would be 

required in the (x,z) plane. An easier observational arrangement is to place a set 

of vertical receivers at a fixed range and record the wavefront sweeping by the 

receivers in time. This is called a time front, yielding data in the (z,t) plane. This is 

the arrangement for the Philippine Sea data. 

Figure 8.  Time Front Illustration 

 
Time front for the Munk canonical profile for range 400km. The x-axis is travel 
time and the y-axis is depth. Source: Colosi, J. A., 2015: Sound propagation 
through the Stochastic Ocean [manuscript submitted for publication]. 
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The previous section gave information about how a ray with a higher 

grazing angle will a have smaller ID number, a shallower upper turning point, and 

a deeper lower turning point. A ray with a lower grazing angle has the opposite. 

As a result, the rays with higher grazing angles will arrive at the receiver first and 

at a wide span of depth, while rays with lower grazing angles will arrive later with 

a narrower span of depth.  

Figure 9.  One of Time Front Plotting Data from the Research 

 
The x-axis shows the travel time from the transmitter to the receiver. The y-axis 
shows the depth where the ray arrived at the receiver. The color gives 
information about the strength of acoustic power in dB. Source: Colosi, J. A., 
2015: Sound Propagation through the Stochastic Ocean [manuscript submitted 
for publication].  

Plotting the travel time from research data, we have the same profile with 

Figure 8. The earlier arrivals are rays with higher grazing angle, and with weak 

acoustic intensity. The later arrivals are rays with smaller grazing angles with 

higher intensity. Figure 9 shows them. 
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B. TRAVEL TIME VARIANCE: RAY THEORY 

This research considers the source and the receiver at a fixed range. The 

rays, therefore, will all travel the same horizontal distance. The eigenrays will 

have different grazing angles and different wavefront IDs. The eigenray paths 

differ and  are therefore influenced by different sound speed structure. Ocean 

structure, due to internal waves, internal tides, and eddies, will cause the 

eigenrays to wander randomly in time. The variance of this wander is a statistic 

of great importance.  

To predict the travel time variance we can use ray theory since diffraction 

has little influence on travel time. 

For a straight line ray, the delay or advance of the travel time due to a 

sound-speed difference ( cδ ) is written using ray theory as: 

 
0 00 0

1 1R R

T dx dx
c c cδ

 
= − + 
∫ ∫   (2.9) 

In Equation (2.9), the 0c  is the background sound speed. Carrying out a 

binomial expansion, the travel time deviation from Equation (2.9) will be: 

 2
00

R cdT dx
c
δ

= −∫   (2.10) 

In Equation (2.10), 
0

c
c
δ  is known as fractional sound speed variance. It has 

symbols µ  and a function of x. The travel time variance is given by: 

 2 2dTτ =   (2.11) 

The travel time variance also can be determined by calculating the ratio of 

log amplitude variance to the sound speed reference square, as shown: 

 
2

2
2
0c
c

τ =   (2.12) 



 18 

In Equation (2.12), the 
22

2
0kc Φ= where Φ  is the phase variance and 0k  

is the wave number of acoustic signal. Furthermore, because the 0k is equal to 

0c
ω , the Equation (2.12) become: 

 
2

2
2τ

ω
Φ

=   (2.13) 

From Munk and Zachariasen (1976) Theory, we have: 

 2 2 2
0 pk ds LµΦ = ∫   (2.14) 

In Equation (2.14), 2µ  is fractional sound speed variance as a function 

of ray depths, which gives information how the sound speed change compare to 

sound speed reference given by
2

2
0

c
c

δ
 ; pL is correlation length of internal 

wave in the direction of acoustic wave as a function of ray grazing angle and 

depth. 

Sound speed distribution in the ocean space is important factor for 

acoustic wave propagation in the ocean. The distribution of the sound speed 

profile is controlled by the dynamic in the ocean. The next chapter will discuss 

some dynamics in the ocean that affect the acoustic propagation in the ocean. 
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III. OCEAN VARIABILITY 

Some of the ocean dynamics that affect acoustic propagation in the ocean 

will be discussed in this chapter. We now take up the question of fluctuations in 

the ocean sound speed field and consider a model in which: 

 ( ) ( ) ( ), , , ,c x y z c z c x y zδ= +   (3.1) 

This study concentrates on internal waves, the gravity waves that are 

supported by the continuous density stratification of the water column.  

Internal waves can be generated at the surface, bottom, and interior of the 

ocean (Garrett and Munk 1975). The surface generation mechanism is 

associated with wind stress (Watson et al. 1976). These types of internal waves 

are categorized as inertial waves because of the strong response near the 

inertial period (Colosi 2015, manuscript submitted for publication to Cambridge 

University Press). 

The bottom generation mechanism occurs when a strong current, like the 

barotropic tide, flows across different bottom topographic features, such as the 

continental shelf, sills, seamounts, and ridges (Bell 1975). Because of the 

common tidal generation force these waves are often called internal tides 

(Garrett and Kunze 2007). Associated with internal tides in shallow water are 

nonlinear internal waves called internal solitary waves (Colosi 2015, manuscript 

submitted for publication to Cambridge University Press). The interior generation 

mechanism is related to shear of currents in the ocean column (Muller 1976). In a 

poorly understood process, all these generation mechanisms in concert with 

nonlinear wave-wave interactions and Doppler smearing, give rise to a rich 

spectrum of random ocean internal waves that are observed virtually everywhere 

in the world oceans (Colosi 2015, manuscript submitted for publication to 

Cambridge University Press). These random waves are critical for acoustic 

propagation. 
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A. INTERNAL WAVE 

Internal waves generate sound speed perturbations by vertical advection 

of the background sound speed structure: 

 ( ) ( ), , , ( ) , , ,
p

dcdc x y z t z x y z t
dz

z =  
 

  (3.2) 

In Equation (3.2), z  is the vertical displacement and dc p
dz

 is the potential 

gradient of sound speed which is needed due to the adiabaticity of the internal-

wave motions. 

The internal wave spectrum was described by Garrett and Munk (1972), 

and since then, many small improvements have been made. The model 

describes the ocean displacements as an integration of all possible internal 

waves (Colosi 2015, manuscript submitted for publication to Cambridge 

University Press). 

 ( ) ( ) ( )( )ˆ, i r tr t e dκ σ κz z κ κ• −= ∫∫∫   (3.3) 

where ẑ  are random internal wave amplitudes, and ( )σ κ  is the dispersion 

relation, as described by Colosi (2015, manuscript submitted for publication to 

Cambridge University Press) the statistic of  is as follows: 

 ( )ˆ 0z κ =   (3.4) 

 ( ) ( ) ( ) ( )*ˆ ˆ Fzz κ z κ κ δ κ κ′ ′= −   (3.5) 

 ( ) ( ) ( ) ( )* *ˆ ˆ ˆ ˆ 0z κ z κ z κ z κ′ ′= =   (3.6) 

In Equation (3.5), the  is the displacement wave number spectrum 

with: 

 ( )2 F dzz κ κ= ∫∫∫   (3.7) 

ẑ

( )Fz κ
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The Garrett Munk spectrum can be written in terms of frequency and 

mode number (Colosi 2015, manuscript submitted for publication to Cambridge 

University Press): 

 ( ) ( ) ( ) ( )2 0
0, NF j B H j

N zz σ z σ=   (3.8) 

In Equation 3.8, ( )B σ and ( )H j can described as follows: 

 ( )
2 2

3

4 f f
B

σ
σ

π σ
−

=   (3.9) 

 ( ) 2 2
*

1 1

j

H j
N j j

=
+

  (3.10) 

This model has slope as a power function of frequency and mode number 

with degree of -2. 

B. INTERNAL TIDE 

The internal tide is a tidally forced internal wave. These waves change the 

ocean sound speed field by vertical displacements, in the same way as random 

internal waves. Because there is no specific model to predict internal tides in the 

Philippine Sea, this thesis will not be able to make internal tide travel time 

estimates. In fact travel time fluctuations are often used to estimate the internal 

tide using the methods of ocean acoustic tomography (Dushaw 2008). Internal 

tides will be estimated from the data by applying least square tidal fits to the 

travel times collected in the time series data set. 

The internal tides are important for the Philippine Sea because there are 

two submarine ridges along the Luzon Strait that generate internal tides. The 

ridges that comprise the Luzon Island Arc (Zhao 2014) have heights that vary, 

which critically affect both diurnal and semidiurnal internal tides (Farmer et al. 

2009). Furthermore, the internal tide that is generated at the Luzon strait 

propagates over 2,500 km into the Philippine Sea (Zhao 2014).  
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The presence of internal tide impact has been observed during research. 

Colosi et al. (2013) using PhilSea09 data, found that strong fluctuations within 

diurnal periods arise in the data, as shown in Figure 10. Colosi’s research used 

four tide harmonic constituents to observe the diurnal frequency, and four 

constituents for the semidiurnal frequency. The tide periodic constituent is the 

value that represents the effect on the tide period and amplitude due to periodic 

variation position of earth, sun and moon.  

Figure 10.  Observed Potential Density during PhilSea09 

 
Observe potential density ( 300σ ) at DVLA. Source: Colosi et al., 2013: 
Observations of sound-speed fluctuations in the western Philippine Sea in the 
spring of 2009. J.Acoust.Soc.Am., 134, 3185–3200, doi:http://dx.doi.org/10.1121 
/1.4818784.  

This study tries to estimate the effects of 13 tide harmonic constituents on 

travel time in order to eliminate the effect of these constituents on travel time 

variation. These harmonic constituents as presented by NOAA (2015) are M2 
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(principal lunar semidiurnal constituent), S2 (principal solar semidiurnal 

constituent), N2 (larger lunar elliptic semidiurnal constituent), K2 (lunisolar 

semidiurnal constituent), L2 (smaller lunar elliptical semidiurnal constituent), O1 

(lunar diurnal constituent), K1 (lunar diurnal constituent), P1 (solar diurnal 

constituent), Q1 (larger lunar elliptic diurnal constituent), J1 (smaller lunar elliptic 

diurnal constituent), M3 (lunar terdiurnal constituent), M4 (shallow water over 

tides of principal lunar constituent)  and M6 (shallow water over tides of principal 

lunar constituent). The period of each constituent is shown in Table 4. 

Table 4.   Periodic Constituents Eliminated from the Data  
NOAA 

# Constituent Darwin 
Symbol 

Period 
(hour) 

Speed 
(°/hour) 

1 principal lunar semidiurnal M2 12.4206012 28.9841042 
2 principal solar semidiurnal constituent S2 12 30 
3 larger lunar elliptic semidiurnal N2 12.65834751 28.4397295 
35 lunisolar semidiurnal K2 11.96723606 30.0821373 
33 smaller lunar elliptical semidiurnal L2 12.19162085 29.5284789 
6 lunar diurnal O1 25.81933871 13.9430356 
4 lunar diurnal K1 23.93447213 15.0410686 
30 solar diurnal P1 24.06588766 14.9589314 
26 larger lunar elliptic diurnal Q1 26.868350 13.3986609 
19 smaller lunar elliptic diurnal J1 23.09848146 15.5854433 
32 lunar terdiurnal M3 8.280400802 43.4761563 
5 shallow water over tides of principal lunar M4 6.120300601 57.9682084 
7 shallow water over tides of principal lunar M6 4.140200401 86.9523127 

Adapted from: NOAA, 2015: Harmonic Constituents for 9410170, San Diego CA. 
Available at http://tidesandcurrents.noaa.gov/harcon.html?id=9410170&type=. 

C. EDDIES 

Eddies become important for this study because typical currents for 

general ocean circulation are about 1 cm/s while for eddies the value is about 10 

cm/s (Flatte 1979). This condition reveals that about 99% of the kinetic energy of 

the ocean is contained in eddies. 

The eddies in the ocean are generally formed by one of two processes: 1) 

instability of a swiftly moving current such as a Western boundary current or, 2) 
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flow over and around topographic features such as points, continental shelf 

breaks, and slopes.  

Eddies have a typical length scale of about 100 km, and a typical time 

scale of about 2 months. In the research area, the Philippine Sea, the eddies can 

extend as deep as 1,000 m and have a dominant time scale of 100 days (Qiu 

and Chen 2010). The strong eddies that move across the sea from east to west 

modulate the sound speed fields in the research area (Qui and Chen 2010).  

Figure 11.  The Presence of Eddies at Study Area 

 
The left panel shows historical altimetry data taken at 14 Apr 2010 and the right 
panel shows historical altimetry data taken at 21 May 2010. The transducer 
station and DVLA station are marked as pink dots. The cold core eddies are 
labeled with c1 to c4, and the warm core eddies are labeled with w1 to w3. 
Source: Ramp, S. R., et al., 2014: Direct observations of the mesoscale 
variability in the western Philippine Sea [manuscript submitted for publication].  

Warm core eddies (anticyclonic) and cold core eddies (cyclonic) both are 

present in the study area. On average the warm eddies are larger and more 

elliptical than the cold eddies. The warm eddies have an average major axis of 

385 km and an average minor axis of 211 km, while the cold eddies have an 

average major axis of 301 km and an average minor axis of 227 km (Ramp et al. 

2014, manuscript submitted for publication to J.Phys.Oceanogr). As shown in 

Figure 11 the presence of eddies during the research was not static; they were 

affected by the general circulation of the ocean. The cold core eddies are 
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supplied from the North Pacific Intermediate Water coming to the research area 

from the northeast as a part of North Pacific Gyre (Nakano et al. 2005); the warm 

core eddies are supplied by North Pacific Tropical Water (Rudnick et al. 2011). 

Ocean dynamics control ocean acoustic travel time variabilities. The 

ocean acoustic travel time variabilities of the Philippine Sea during the research 

period will be explained in the next chapter. 
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IV. OBSERVED TRAVEL TIME STATISTICS

This chapter describes how travel time variability in the Philippine Sea 

during the research period changed with respect to season, dominant direction of 

signal, and typhoon activity. Travel time data that the study received from the 

research reflected the influence of eddies and tide. Observed travel times of the 

signal transmitted from T4 and received by T5 throughout the research period 

clearly show that there is some tidal effect in the travel time data (Figure 12). The 

previous chapter discussed filtering methods for eliminating the effect of tides 

and eddies from the data.  

Figure 12.  Travel Time throughout the Research Period 

Left vertical axis informed travel time in second, right vertical axis informed the ID 
number of the rays, and the horizontal axis is year days of 2010 

Once we eliminated the effect of tide and eddies from acoustic travel time 

from T4 to T5, we could isolate the stochastic internal wave effects on our 
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acoustic signal travel time. We found that there was a small perturbation in travel 

time throughout the research period (Figure 13).  

Figure 13.  Effect of Stochastic Internal Wave on Acoustic Travel Time 

X-axis shows year days of 2010, left y-axis shows the travel time in seconds, and 
right y-axis shows the ID number of the eigenrays.  

By computing the remaining travel time variance of research data, we 

determined that, in the research area, the effects of tides contribute more at 

depths shallower than 500 m. Tide effects become less dominant compared to 

stochastic internal waves at depths deeper than 500 m (Figure 14). The travel 

time variance plotted as a function of the upper turning point’s depth makes it 

easier to understand the spatial dimension of the rays. Because each ray ID has 

its own mean upper turning point, this method keeps the rays distinct.  

This chapter so far has focused on transmissions between T4 and T5. 

However, the study was interested in all possible pairs available through the 

research, including transmissions between T1, T2, T3, and T6.  
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Figure 14.  Travel Time Variance  

 
Mean travel time variance of acoustic propagation from T4 to T5. The red (+) 
shows stochastic internal wave variance, the green (+) shows internal tide 
variance and blue circle with (+) shows total variance. Left y-axis shows depth in 
m, right y-axis shows ID number, and x-axis shows travel time variance in ms-2 

A. OVERALL TRAVEL TIME VARIANCE 

The travel times of the rays that have turning points near the surface have 

lower variance compared to the rays that have deeper turning points. This might 

be because the internal wave was located near the acoustic propagation axis, 

and gave more vertical distribution of sound speed near the propagation axis. As 

a result, we have more variability near the propagation axis than near the surface 

(Figure 15). The average rms travel time is 7.03 ms, which provides an rms 

phase of about 11.04 rad/sec. 

The variability of rays moving between N/NE and S/SW was higher 

compared to other directionalities (Table 5). This can be understood by looking at 

the geographic position, where we have the Luzon Strait West of the research 

area. This channel generated internal waves, which propagated to the east, into 
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the research area. Since the acoustic waves moving between N/NE and S/SW 

propagate perpendicular to the strait-generated internal wave front, the travel 

time variabilities of acoustic propagation with roughly N-S directionality are higher 

compared to other directionalities. 

Figure 15.  Travel Time Variability Due to Random Internal Wave 

 
Y-axis shows depth in meter, x-axis shows travel time variance in ms-2, and color 
map show the direction of the acoustic propagation. The variance is scaled 
linearly to the 200km-range. 

Table 5.   RMS Travel Time and Phase RMS 

Direction in Deg -80.53 -52.11 -42.63 -23.68 -14.21 -4.74 4.74 33.16 61.58 80.53
Rms TT (ms) 6.33 6.77 6.23 7.46 7.01 7.71 7.88 8.09 6.42 6.51
Rms Phase (rad/sec) 9.94 10.63 9.79 11.71 11.01 12.11 12.38 12.70 10.08 10.22

 
The directions are computed relatively from the north. There are 20 classes from 
west to the east, and only 10 classes have data. The highest travel time 
variability occurs in the 33.16° direction of propagation, with an rms travel time of 
8.09 ms. 
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Compared to the random internal wave, the internal tide is dominant near 

the surface and less dominant below 500m depth. The average rms travel time is 

5.24 ms. Looking at the tide variance (Figure 16), it is obvious that the rays 

moving between N/NE and S/SW have much higher variance compared to other 

directionalities. It is confirmed that the source of internal tides in the Philippine 

Sea is the Luzon Strait west of the research area. 

Figure 16.  Travel Time Variability Due to Internal Tide 

Y-axis shows depth in meters, x-axis shows travel time variance in ms-2, and 
color mapping shows the direction of the acoustic propagation. The variance is 
scaled quadratic to the 200km-range. 

The eddies contribution to even higher variability of acoustic wave travel 

time during the research period. There was no dominant directionality of travel 

time variance due to the circulation of eddies (Figure 17). The average rms 

travel times for the eddies were 21.60 ms. 
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Figure 17.  Travel Time Variability Due to Eddies 

Y-axis shows depth in meters, x-axis shows travel time variance in ms-2, and 
color mapping shows the direction of the acoustic propagation. The variance is 
scaled quadratic to the 200km-range 

B. SEASONAL TRAVEL TIME VARIANCE 

During summer the travel time variability becomes lower. The rms travel 

time during this period is about 6.82 ms. This weakening process can be 

understood because the ocean surface receives heat from the sun and pushes 

the surface mixed layer deeper than during other seasons. As the season 

changes to fall the variabilities become stronger and stronger. During fall, the rms 

travel time becomes 6.97 ms; during winter the rms travel time is about 7.37 ms; 

during spring it is about 7.08 ms (Figure 18).  

Even though rms travel time during spring is high compared to fall and 

summer rms travel times, the travel time variability near the surface during spring 

is the lowest compared to all. This low value near the surface in spring is 
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compensated for by variability near the acoustic propagation axis, which is as 

high as travel time variability during winter (Figure 19). 

Figure 18.  Seasonal Travel Time Variance Due to Random Internal 
Wave 

 
 

 
Upper left panel shows internal wave variabilities during Spring 2010, upper right 
panel shows Summer 2010, lower left panel shows Fall 2010, and lower right 
panel shows Winter 2011. For every panel Y-axis shows depth in meter, x-axis 
shows travel time variance in ms-2, and color mapping shows the direction of the 
acoustic propagation. 

Overall the strongest travel time variances are associated with 

directionality of N/NE and S/SW. These patterns also occur during seasonal 

observation. However, during summer the strongest travel time variance tends to 

be associated more strictly with N/S propagation as shown at Table 6. 
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Figure 19.  Seasonal Travel Time Variance Due to Random Internal 
Waves 

 
Y-axis shows depth of upper turning point in meters and x-axis shows travel time 
variance in ms-2. 

Table 6.   Seasonal RMS Travel Time 

Dir -80.53 -52.11 -42.63 -23.68 -14.21 -4.74 4.74 33.16 61.58 80.53
Spring 6.32 7.26 5.93 7.37 7.40 7.21 7.93 8.55 6.32 6.33

Summer 5.94 6.55 6.30 6.63 6.44 7.89 7.58 7.54 6.43 6.20
Fall 6.23 6.10 6.98 7.90 7.06 7.66 7.44 7.92 6.22 6.57

Winter 6.81 7.40 5.57 7.90 7.39 7.87 8.60 8.78 6.73 6.97
 

The directions are computed relatively from the north. There are 20 classes from 
west to the east, and only 10 classes have data. The highest travel time 
variability occurs in class of 33.16° (between N/S to NE/SW) direction of 
propagation, but during summer the highest travel time variability at class of -
4.74 (near N/S direction). 
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C. TYPHOON PERIOD TRAVEL TIME VARIANCE 

The study uses two typhoons to describe how the acoustic signal travel 

time variability responds to typhoon. The first were chosen is Typhoon Basyang 

and the second is Typhoon Juan. These typhoons were chosen because 

Basyang was a Category 1 Typhoon and Juan was a Category 5 Typhoon. 

1. Typhoon Basyang / Conson, July 2010, Category 1 

 The Typhoon Basyang formed 11 July 2010 and dissipated 18 July 2010. 

It travelled south from the research area moving from east to west and hit Luzon 

Island. The typhoon’s speed reached 150 km/h and it was categorized as a 

Typhoon Category 1.  

Figure 20.  Travel Time Variability during Typhoon Basyang  

 
Red line represents the variance trend during Summer 2010 and the black line 
represents the variance trend during the typhoon period. X-axis shows random 
internal waves variability in ms2. Y-axis shows depth in meters and color mapping 
shows the direction of the acoustic propagation. 
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The typhoon did not contribute much to the travel time variabilities near 

the surface. The mean variabilities of travel time during the typhoon period 

remained similar to the mean travel time variabilities of the summer season. 

Nevertheless there was some increasing variance near the acoustic propagation 

axis (Figure 20).  

The variance of travel time was distributed evenly across all 

directionalities. There was not any particular directionality dominant in travel time 

variance. Horizontally, the typhoon’s effect on travel time variables (e.g., salinity, 

temperature) was also evenly distributed. However, we still could still find traces 

of internal waves near a depth of 600 m. 

2. Typhoon Juan / Megi, Oct 2010, Category 5 

Typhoon Juan formed 12 October 2010 and dissipated 24 October 2015. 

It traveled south of the research area, moving from east to west and hit Luzon 

Island. The highest speed of the typhoon was 295 km/h and it was categorized 

as a Typhoon Category 5. 

Similar to Typhoon Basyang, Typhoon Juan did not add any significant 

change to the existing travel time variabilities. The average variability during the 

typhoon period remained similar to average variability during fall 2010. But as 

Typhoon Basyang had done, Typhoon Juan destroyed the horizontal structure of 

sound speed, so it was hard to determine dominant variability based on 

directionality during Typhoon Juan (Figure 21)  

The variability near the acoustic propagation axis slightly reduced during 

the typhoon. This can be understood as the result of typhoon’s strength and 

ability to penetrate into deeper water. As a result sound speed distribution at that 

depth was disrupted and there was lower variability of the acoustic travel time 

during Typhoon Juan. 
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Figure 21.  Travel Time Variabilities during Typhoon Basyang  

 
Blue line represents the variance trend during Fall 2010 and the black line 
represents the variance trend during the typhoon period. X-axis shows random 
internal waves variability in ms2. Y-axis shows depth in meters and color mapping 
shows the direction of the acoustic propagation. 

The travel time variability observed in this chapter will be compared to 

theoretical models in the following chapter. Can the theoretical results be used to 

predict real situations in the Philippine Sea? 
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V. PREDICTED TRAVEL TIME STATISTICS  

The question to be addressed in this chapter is: How accurately can we 

predict travel time variances using the theory from Chapter II and the Garret 

Munk internal waves spectrum? Using standard parameters from the Garret 

Munk model, predictions from the theory are compared to the observations in 

Figure 22. Both the theory and the observations have been scaled to 200-km 

range. 

Figure 22.  Data and Travel Time Variance Using GM Internal Wave 
Spectrum 

 
Scattered dots show the research data travel time variance. The red diamonds 
predict travel time variance using the Garret Munk internal wave spectrum model. 
Theory and observation have been scaled to a 200-km range. 
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The theory’s predictions of travel time variance are low by a factor of 5 or 

more. Changing the internal wave energy by a factor of 2 ( 0z =10.32), and 

reducing the modal bandwidth factor j∗  to 1 yields a better comparison, as seen 

in Figure 23. 

Figure 23.  Data and Travel Time Variance Using Adjusted GM Internal 
Wave Spectrum 

 
Scattered dots show the research data travel time variance. The black diamond 
predicted travel time variance using GM internal wave spectrum model. Theory 
and observation have been scaled to a 200-km range. 

The theory is seen to do a better job predicting deep turning point rays. 

The rays turning near the sea surface are significantly off. Possible explanations 

are as follows. We know that the GM model was formulated based on 

observations in the main thermocline and therefore it is not accurate for 

describing internal waves near the sea surface. Also the theory described in 

Chapter II has approximations. One big approximation is the ray tangent 
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approximation in which the ray is assumed to be locally straight over an internal-

wave correlation length. This approximation is less accurate for higher angle rays 

that have shallower turning depths, and it is a bad approximation near the ray 

turning depth where the ray has maximum curvature. 
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VI. CONCLUSION AND FUTURE DIRECTION 

The overall rms travel times variance caused by eddies, internal tides, and 

internal waves in the Philippine Sea during the research period are roughly 21 

ms, 5 ms, and 7 ms respectively. The research revealed that internal tides were 

more important for acoustic travel time variance at depths shallower than 500 m, 

and random internal waves were more important at depths deeper than 500 m. 

Overall, eddies cause the highest travel time variance. The highest travel time 

variability from internal waves occurs during winter, followed by spring, fall and 

summer. During spring, variability near the surface was lowest compared to all 

other seasons. Horizontal anisotropy was observed during the research period. 

The highest travel time variance can be seen in acoustic propagation with a 

directionality moving between N/NE and S/SW. However, during summer the 

strongest travel time variance tends to be associated more strictly with N/S 

propagation. For typhoons, during the research period, there was not much 

change in the magnitude of travel time variance, but typhoons destroyed the 

horizontal structure of anisotropy. 

Based on the theory from Chapter II and the Garret Munk Internal Wave 

Spectrum Model, the variability in the Philippine Sea during the research period 

can be estimated. As a function of distance, the theory predicts that the internal 

wave travel time variance will grow as the distance between transmitter and 

receiver increases, and this is consistent with the observations of this research. 

The theory also predicts that internal wave travel time variance will be 

horizontally isotropic and this point is also consistent with these research 

observations. However, using standard Garret Munk parameters, the theory 

under-predicts the observed travel time variance by a factor of 5 or more due to it 

was formulated based on observations in the main thermocline and the ray is 

assumed to be locally straight over an internal-wave correlation length.  

In the future we can work on how to estimate travel time variances from 

internal tides, and we can work on improving the internal wave theory. 
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