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EXECUTIVE SUMMARY

Deep convolutional neural networks (CNNs) detect and classify features of interest in sensory
input data. There is a need to investigate how best to implement CNNs for Navy and Department
of Defense (DoD) use in platforms with minimal size, weight, and power (SWaP) capacity, since
much academic research focuses solely on achieving the highest performance on a specific dataset
with minimal concern of compute resources. What are the Pareto-optimal points and trade-offs for an
energy-efficient CNN, when considering both its architecture and underlying implementation?

This report describes a methodology, configuration, and experimental results of a first step in this
study—a baseline for comparison of benchmarking metrics. A baseline is important for quantifying
any further results and to estimate potential benefits of new and more advanced ideas.

An embedded-system development platform (Xilinx® ZC702) was used to implement a CNN and
benchmark its performance. The ZC702 completed the task of classifying a set of 10,000 handwritten
digits in 13,281 ms, compared to a laptop-class computer, which took 841 ms. Additionally, another
CNN configuration took 5007 ms, compared to 341 ms. These results can be summarized in that
the ARM® Cortex®-A9 CPU in the ZC702 takes approximately 15 times longer than the Intel®

i7-4770HQ CPU in the laptop. The estimated power usage of each is 1 W for the Cortex®-A9 CPU
and 15 W for the i7 CPU.

A method of accelerating this computation is by using a customized hardware unit called a field-
programmable gate array (FPGA). The ZC702 contains this logic within its main system-on-chip
(SoC). A rough estimate of performance improvement is also presented in this report. The logic for
neuron-computation was designed and simulated, with the results extrapolated to the larger CNN as
run in the experiment. Based on this estimation, the FPGA accelerates the task such that it completes
it in 7.5% of the time taken by the A9 CPU alone. There is no power estimate at this time, but it is
estimated to reduce consumption by at least 50%, compared to the A9 CPU alone.

The recommended action for implementing low-SWaP CNNs (or other machine-learning tech-
niques) is to accelerate the operation with FPGA hardware, or other specialized hardware compo-
nents, if performance and SWaP are critical to optimize. A corollary to this is that if the task requires
a relatively low computational throughput, a software-only implementation may be sufficient running
directly on the embedded SoC platform.
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1. INTRODUCTION

Artificial neural networks, and specifically deep convolutional neural networks (CNNs), are a top-
performing technology to detect and classify features of interest in sensory input data. The most
common input data is imagery, audio, and text data, with the output providing a descriptive label of
an image [1] or music [2], for example. Defense Advanced Research Project Agency (DARPA) and
other Department of Defense (DoD) agencies have funded research in this field, and private industry
has also heavily invested. Generally, CNNs and related machine learning approaches are a quickly
growing and potentially disruptive technology in many application areas.

CNNs are commonly operated using laptop-sized to supercomputer-class equipment, including
general-purpose graphical processing units (GPGPUs). Many potential Navy use-cases would require
a compute system to have much lower size, weight, and power (SWaP) than traditional approaches
offer, while maintaining a high-performance.

An example could be a watch-sized camera and processor attached to a small unmanned aerial
vehicle that can identify people holding firearms from an overhead view. Or, consider a small, easily-
installable device that detects malicious computer behavior (e.g., a cyber incident) by analyzing
properties of network traffic and operating system function calls.

CNNs operate in two phases or modes: training and testing. The goal of training is to determine
the optimal parameter values in the CNN (these are called synapse weights and neuron biases) such
that the error is minimized performing a given task with a training-only dataset. In test mode, which
we can also call deployed mode, the CNN is operating on data it has not seen before in training. The
parameters values are fixed at this point, from the training phase, and are not altered with the new
data samples. There are methods to update weights in an online fashion, but these details are outside
the scope of this report. The training phase requires a significantly greater amount of computational
power than the deployed phase. This is due to iteratively evaluating the network, adjusting its param-
eters, and repeating the process. While training offers an opportunity for accelerating its computation
through GPGPUs, FPGAs, and high-performance computers, it does not necessarily help the problem
of a deployed CNN in a low-SWaP platform. Thus, we focus this project’s effort on deployed-mode
operation.

1.1 PROJECT GOAL: LOW-SWaP CNN

Much academic research focuses solely on achieving the highest performance on a specific dataset
with minimal concern of compute resources. The trend is for deeper and more complex networks to
be used, consuming as much training time and resources as possible—often on the order of weeks or
months—to eke out a few tenths of a percent accuracy performance.

The research question that follows is mostly unanswered: what are the Pareto-optimal points
and trade-offs for an energy-efficient CNN, when considering both its architecture and underlying
implementation? This report provides the supporting groundwork for this study, and specifically
considers the deployed phase of operation towards the goal of enabling many important DoD-relevant
solutions.
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2. METHODOLOGY AND EXPERIMENT

This report documents a performance comparison between a laptop-class processor and an
embedded-class processor operating a CNN in deployed mode.

Three platforms were evaluated: the laptop system, the embedded system, and the laptop system
emulating the embedded system. Each platform ran the CNN as a software application utilizing its
respective CPU. Additionally, a FPGA design was developed that implements the neuron calculation
in customized hardware. This design was not yet integrated to the CNN design in a way that allows a
direct comparison, but its simulated performance results are used to estimate the gains of a completed
system.

2.1 LAPTOP PLATFORM

The laptop system was a 15 in. Apple® Macbook® with an Intel® i7-4770HQ CPU. This system
does not have a general-purpose graphics processing unit (GPGPU). Development and evaluation of
the CNN took place on a Linux® virtual machine running through Oracle® VirtualBox™. Since this
platform contains commodity hardware and software, it is a good benchmarking baseline.

2.2 SYSTEM-ON-CHIP EMBEDDED PLATFORM

The embedded platform chosen for this work was the Xilinx® ZC702 development kit. This
kit is a single board containing a Xilinx® Zynq®-7000 system-on-chip (SoC) and many interface
peripherals, such as Universal Serial Bus (USB), Secure Digital (SD)-card, and Ethernet. The board
is low power, and the SoC does not have a heat sink. The SoC chip is approximately 2 cm x 2 cm
in dimensions and is low-power enough to not require a heat sink. Note that a final system could be
made much smaller than this development board, which has “wasted” space compared to a board used
in a finished product.

The Zynq®-7000 contains two CPU cores (ARM® Cortex®-A9) with double-precision floating-
point support, and the Artix®-7 FPGA fabric for implementation of custom logic to accelerate com-
putational workloads. This FPGA fabric, in addition to the standard programmable logic, contains
220 DSP (digital signal processing) “slices” that provide fast and energy-efficient mathematical
operations. For this work, the CPU was configured to operate at 667 MHz, which is the default for
the Xilinx®-provided reference design.

This SoC was configured to run a mile®-based operating system called Petalinux. A Linux®

operating system is desirable to provide a familiar and flexible approach to interfacing with the SoC.
This allow common applications to run such as sshd or vi, and easily enable devices such as a
mouse, keyboard, ethernet, or video display.

2.3 LAPTOP EMULATION OF EMBEDDED SYSTEM

A common approach to developing software for an embedded system is to emulate that system
through a virtual-machine. This work utilized the QEMU software to virtualize and emulate a
Zynq-7000 SoC. The advantage of emulation is that the physical hardware is not needed to run the
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application-under-development, which is especially useful during debugging. Emulation is typically
much slower than running an application natively because the emulator must translate the machine
instructions from one instruction set architecture (ISA) to that of the host ISA. Therefore, emulation
may not provide accurate performance estimations of the target embedded system. Nevertheless,
these results are presented to provide an interesting data point for future work.

2.4 CNN CONFIGURATION

A CNN configuration defines the architecture and architectural parameters of the network. Exam-
ples of these parameters include:

• Input data dimensions and channels (e.g., image size and colors)

• Size of convolutional filters

• Number of convolutional filters

• Pooling/downsampling size and method (e.g., max-pool or average)

• Number of convolution and pooling layers

• Size and number of fully connected (dense) layers

• Output representation size and type (e.g., the number of classes of the input dataset and the
predicted class of an input sample)

The CNN configuration for this work was chosen such that it can be experimented with easily
and quickly. This capability is important, since large CNNs are unwieldy to work with, and could
hamper fast iteration of experimentation. For example, a 8-layer network took six days to train on
the ImageNet dataset using two NVIDIA® GTX580 GPUs [3]. Therefore, for this initial work, we
decided to concentrate on small networks and small datasets until the methods are matured.

2.5 CNN ARCHITECTURE

The CNN configuration was specified as follows, and visualized in Figure 1. The input was a one-
dimensional series of 100 values that range between [0, 1.0]. This corresponds to a two-dimensional
input image of 10x10 pixels.

The first convolutional layer uses a filter (also called a neuron or kernel) of size 3x3 pixels, a
stride of 1, and 10 separate filters. Each filter corresponds to a set of weights (3x3 in this case) that
are convolved across the image pixels in both the X and Y dimensions, producing an output value
for every stride. The activation function of this layer is rectified linear, which simply enforces a
lower bound of 0 on the input (no negative outputs); otherwise, it outputs the (positive) value at the
input. Most recent CNN work utilizes this activation function over hyperbolic tangent or sigmoidal
functions since it leads to more rapid training.

The next layer is a pooling layer, configured to average the activations within a 2x2 pixel window.
It effectively subsamples the output, reducing each dimension’s resolution by half.
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The final layer is fully-connected to the pooling layer’s output, producing N outputs, where N
is the number of classes in the dataset. In this example, the number of classes is 10, for the digits 0
through 9, as discussed below. This fully connected layer (FCL), therefore, has 10 neurons, each with
160 inputs and 160 synapse weights. For a given image example at the CNN input layer, the output
will most strongly activate the output neuron in this layer corresponding to the digit it perceives as
the most likely classification, provided proper training has been completed to determine all neuron
weights.

More details of these operations can be found in many textbooks and academic papers [4].
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Figure 1. CNN architecture for custom MNIST dataset classification.

2.6 DATASET

The dataset chosen for this task is derived from the MNIST digit classification data [5]. We resized
each image of the grayscale MNIST dataset to be 10x10 pixels, which was done with the OpenCV
C++ library using the INTER CUBIC method of resampling. The pixel values were normalized
to the range [0, 1.0]. The resized images were stored in the database format LevelDB, which is a
key-value file-based storage method. The format of these keys and values is as follows. Keys are a
8-byte unsigned integer representing the numerical index of a sample. The values are a concatenation
of the 8-byte class label (the true label for a sample) and the pixel intensities (64-bit floating point
value per pixel). Note, this pixel format is not the most space-efficient, since each pixel value can
sufficiently be represented with an 8-bit integer (0–255) but the neural network calculations are done
with floating-point values. As per normal procedure, the dataset is split into test and train partitions
(of sizes 10,000 and 60,000 images, respectively) to avoid testing on already-observed data (data-
snooping), which would artificially inflate the classification performance. Examples from this dataset
are shown in Figure 2.

2.7 CNN FRAMEWORK

Over the past several years, several frameworks for developing, training, and testing CNNs have
arisen. Examples of these frameworks include Keras, Cafe, MatConvNet, Tensorflow™, and others.
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Figure 2. Sample digits from the resized 10x10 pixel MNIST dataset.

Tiny CNN is one such framework that is designed to require minimal external libraries and dependen-
cies, as it relies solely on C++ standard libraries. This makes it ideal for embedded systems, where
libraries are not often readily available. Thus, we have chosen Tiny CNN for this work. For the x86
platform, the GNU C++ compiler (GCC, g++) version 4.8.4 was used to build the CNN executable
from the Tiny CNN framework. For the embedded ARM platform, a GCC-derived commercial
compiler was used: Sourcery™ Codebench Lite v.4.9.2. This compiler is the included default for the
Xilinx® tools.

2.8 CNN TRAINING AND DEPLOYMENT

Training the CNN was done on the laptop platform, and the trained network parameters (e.g., the
neurons’ weights and biases) were saved to a file. As mentioned previously, the train partition of
the dataset was used to optimize the network parameters using stochastic gradient descent (SGD),
with the AdaGrad adaptive gradient extension [6]. SGD is the most commonly used optimization
approach for neural network training, and the AdaGrad approach reduces the need to search for
an optimal learning rate manually. A batch size of 50 images was used, with 50 epochs (complete
passes) through the training set.

The parameter file was then copied to the embedded platform, where it was used to instantiate the
network in a ready-to-use state. This approach is an important aspect of neural networks: a single
network architecture can be used for a variety of tasks by simply changing its parameters, which can
be specified with an easy data file update. The algorithm and executable program do not necessarily
have to change (although the input and output dimensions would need to match, or at least be adapted
to match).

One approach for gaining insight to the trained network is to visualize the filters of the first
convolutional layer, which is done by plotting the filter weights as a square image, corresponding to
the pixel locations of the input. Figure 3 shows this plotting, where lighter colors represent higher
weights. One can see some structure in the filters—notice the two containing light-colored 2x2
squares in the third and sixth column. These neurons are sensitive to an upper left and lower left
corners. Or, consider the filter furthest right that is sensitive to a diagonal-like edge.

Figure 3. Visualization of neuron weights in the convolutional layer.

With such a small filter size (3x3), it is difficult to see the typical Gabor filters that are learned with
larger filters and with a more diverse set of training data (e.g., all natural scenes) [3]. Also note that
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L2 regularization was not used during training, which reduces the overall weight magnitude. For a
simple network, this reduction is generally unnecessary, but it is a commonly used technique to help
reduce overfitting and increase generalization of the learned features.

Deployment was done by copying the following items to the Petalinux filesystem: the CNN
executable application, the custom MNIST dataset in LevelDB format, and the neuron parameter
(weight and bias values) file. The Petalinux filesystem was then written to a SD memory card,
creating a boot disk for the embedded device. Any future additions or modifications can be done
through a variety of methods common to Linux® systems, including the use of SSH to copy files and
access the embedded system, tftp, or even a network or Internet distribution method.
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3. RESULTS

3.1 CNN TASK PERFORMANCE

While not directly important to the overall goal of this study, the CNN described above classified
92% of the test set accurately. No other published work on this resized-MNIST dataset exists, and
this lack of research can certainly be improved by adding additional CNN resources. Qualitatively, it
is a reasonable result, considering the limited size of the CNN and input space.

3.2 CPU COMPARISON

The time taken to run the whole test dataset partition through the CNN on each platform is shown
in Table 1. The rows list the recorded metric (time) in milliseconds, and a fraction comparing the
platform to the i7 baseline platform. The Zynq® platform takes 15.8 times longer for execution than
the i7 platform.

Table 1. Platform execution time of CNN on resized MNIST dataset.

Intel® i7-4770HQ QEMU of Zynq®-7000 Zynq®-7000 Hardware
Time (ms) 841 8385 13281
Time vs. i7 1.0 10.0 15.8

A second experiment was done to validate the results of the first. This CNN architecture was
slightly different: a single (1) filter of size 4x4 pixels, no bias values, and a “stride” of 2. The stride
is the distance in pixels between two filter applications, such that a stride of 2 reduces the input size
by a factor of two. The dataset used for this consists of randomly generated pixel values of 10x10
size, and is termed “synthetic”, in that it doesn’t represent anything particular, but allows for platform
performance evaluation. 100,000 images were used for the test set. Results are listed in Table 2,
and track closely with the first experiment. The slightly smaller performance difference between the
Zynq® and i7 is hypothesized to be caused by the different architecture. The second experiment has
fewer filters and no fully-connected layer, and thus iterates over the input images more often. This
means there is proportionally more sequential code and memory access than arithmetic operations.
The i7 has a compute architecture that is much better at out-of-order execution of instructions than
the ARM® Cortex® A9 architecture. Therefore, the more computationally-intensive first-experiment
favors better performance on the i7.

Table 2. Platform execution time of 2nd CNN architecture on synthetic dataset.

Intel® i7-4770HQ QEMU of Zynq®-7000 Zynq®-7000 Hardware
Time (ms) 341 4522 5007
Time vs. i7 1.0 13.3 14.7

3.3 FPGA ACCELERATION ESTIMATE

The Zynq®-7000 SoC includes a FPGA logic block to provide customizable hardware that can be
used to implement computationally intensive pieces of an application in a more energy- and time-
efficient method, compared to the CPU. The nature of an FPGA makes it especially good at parallel
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operations or stream processing applications. This capability is in contrast to applications with heavy
control-flow or branching operations, where a CPU may be more desirable. A CNN is an ideal use
of FPGA logic, as it contains many parallelizable operations, consisting of mostly multiplies and
additions.

Making use of the FPGA can prove a developmental challenge. An increasingly common method
to move algorithms to the FPGA is the concept of high-level synthesis, which allows software to
be written in common C or C++ languages, simulated and validated for correct operation, and then
synthesized into the hardware description languages of Verilog or VHDL.

We used the Xilinx® development tool suite, Vivado®, to create a sample neuron layer, and
evaluate its potential performance. This neuron layer contained five neurons, each connected to
a 20-element input vector. Each neuron pipelines the vector multiply and sum operation of its
20-element inputs and weights. The layer parallelizes across neurons, so each of the five neurons
executes in parallel. Vivado® estimated the computation interval as 192 cycles at 200 MHz, or in
other words, an output vector is produced from one input vector every 192 cycles.

3.3.1 FPGA Compute Capacity

This neuron layer does not match up in size or configuration with the CNN architecture described
above, but it can be used as a reference point to estimate the expected performance. First, the
compute capacity of the whole FPGA is estimated. The layer above consumes 11% of the FPGA’s
resources, specifically the DSP slices and lookup tables (LUTs). This percentage means we can
increase the number of neurons in the layer by eight times, from 5 to 40, and estimate the FPGA
resources increase to 88%, allowing for overhead from other logic.

For each 20-element input vector (IV), the FPGA can process 800 multiplies and 200 additions per
interval. We can refer to both of these arithmetic operations together as simply neuron operations.
While not identical in computation, it is close enough for this estimation purpose. To find the neural
operations per second:

800 + 200 ops

1 IV
× 1 IV

192 cycles
× 200 cycles

1 µsecond
× 106 µsecond

1 second
= 1.0× 109 ops/second

3.3.2 CNN Compute Requirement

The 10 x 10 pixel MNIST classification requires the arithmetic operations per image shown in
Table 3. Convolutional layers require vector multiplication and an adder-tree that sums the element-
wise products. Pooling layers require comparisons between elements in the “pool”, which is imple-
mented as a subtract operation (which itself is similar to an addition).

Table 3. Number of required arithmetic operations for 10 x 10 MNIST CNN classification.

Layer 1 Layer 2 Layer 3 Total
Mults. 5760 0 1440 7200

Adds or Subtracts 2560 320 72 2952
Grand Total 10152

3.3.3 FPGA Speedup

We can now answer the question of how many images per second the FPGA can process.

FPGA image throughput:
109ops

1 second
× 1 image

10152 ops
= 98500 images/sec
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For comparison, the ARM CPU in the Zynq has the following throughput.

ARM CPU image throughput:
10000 images

13.281 seconds
= 753 images/sec

The final estimated speedup is thus, 98500/753 = 131 times faster.

This is very close to similar work that implemented CNN in a similar Zynq® SoC, sponsored by
Office of Naval Research (ONR) [7], where the authors measured a speedup of 112 times for their
FPGA vs. ARM® CPU comparison.
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4. CONCLUSION AND RECOMMENDATIONS

4.1 ADVANTAGES OF EMBEDDED CNN

Numerous algorithms can be used for any machine learning task. Why is a neural network, and
specifically a CNN desirable, especially for embedded systems? First, the computation requirements
are “embarrassingly parallel,” meaning that energy-efficient custom logic can be utilized for a
massive advantage in the embedded space. Second, CNNs are very adaptable for different sensing
domains. Imagery is often used, but others are equally suitable such as audio [8], text-based event
detection and analysis [9], or language translation as Google, Inc. currently publicly operates [10].
Finally, the engineering development work invested in building such a system is potentially easier to
reuse than other more domain-specific machine learning approaches. For example, the detection task
of a embedded CNN can easily be changed from finding firearms to finding cars, simply by updating
the parameters (weights) with a new file (that can be trained on an external high-performance
computer).

4.2 RECOMMENDATIONS

While academia and industry are pursuing neural network technology with great resources, the
DoD must also continue its focus on specific aspects that are relevant to its needs. This is especially
true of embedded, low-SWaP methods that can be used in situations lacking powerful computers and
reliable network connections. There are two major thrusts to this recommendation: novel techniques
and novel domains.

4.2.1 Novel Techniques

The requirement of limited computational resources on a low-SWaP device should motivate
additional research into techniques that can better use those resources. For example, how can the
convolutional process efficiently identify calculations that won’t greatly inform the end result,
and simply stop the computation? Or, what regularization technique is most efficient for undersea
acoustic monitors utilizing the limited power from seafloor bacteria? These are questions that can be
answered with continued effort into novel and DoD-specific techniques.

4.2.2 Novel Domains

Adapting existing and new techniques to domains of interest to the Navy and DoD is a fruitful
course of research. Adaptation includes defense-specific sensors and intelligence data focusing on
specific needs (e.g., identify a particular underwater acoustic signature), and more general needs (e.g.,
draw conclusions from intelligence reports). A domain of particular interest to SSC Pacific is that
of cyber-related data and analysis. A high-speed, hardware-accelerated CNN may provide an ideal
platform for making intelligence from raw data as it appears from the network, operating system,
or user experience. This idea was initially explored using other machine learning techniques at SSC
Pacific, and published in multiple technical reports [11] and [12].

4.2.3 Dataset Development

A critical aspect to CNN research is that of the dataset, especially when working in novel domains.
Additional work should be invested in to create datasets specific to DoD use-cases. The research and
demonstrations that follow will be much more compelling than the ubiquitous “academic” datasets,
lending credibility of these techniques to produce operationally relevant solutions.
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