
Reissued 3 Mar 2015 with corrected degree

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SATELLITE TASKING VIA A TABLET COMPUTER

by

Courtney A. Guy

September 2015

 Thesis Advisor: M. Karpenko
 Second Reader: I. M. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE SATELLITE TASKING VIA A TABLET
COMPUTER

5. FUNDING NUMBERS

6. AUTHOR(S) Guy, Courtney A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Tablet computing has the potential to reshape the scope of situational awareness. This is because application
developers have derived uses for tablet devices that the original inventors did not intend and could not have imagined.
One such application is to provide the ability for the warfighter to directly request aerial images from overhead assets,
including unmanned aerial vehicles or satellites. Advancements in mobile technology and network connectivity have
helped to overcome the challenges of information delivery, but there remains the challenge of real-time information.
This thesis examines the concept of tablet-based information requests for real-time satellite tasking. As a proof-of-
concept, a tablet-based application is developed that enables the user to task a satellite system by interacting with a
map. Requests are sent and processed by a server application and are then routed to the appropriate asset. Real-time
response to the request is emulated using a detailed simulation model of a control moment gyroscope actuated
spacecraft. Simulated images and spacecraft attitude errors are used to mimic the data collection process. This
information is uploaded to the server for retrieval by the tablet application, thereby completing the request cycle and
demonstrating the feasibility of remote satellite tasking using a tablet computer.

14. SUBJECT TERMS tablet applications, Xcode, Objective C, Sencha Touch 2, Cordova, tablet
application development, satellite tasking, imaging satellites, spacecraft model, satellite scheduling,
MUOS, Kestrel Eye, GeoEye, WorldView, Commercial Imagery Team, imaging assets, ORS,
Operationally Responsive Satellites

15. NUMBER OF
PAGES

115

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SATELLITE TASKING VIA A TABLET COMPUTER

Courtney A. Guy

B.S., New Jersey Institute of Technology, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2015

Author: Courtney A. Guy

Approved by: M. Karpenko, PhD
Thesis Advisor

I. M. Ross, PhD
Second Reader

Garth V. Hobson, PhD
Chair, Department of Mechanical and Aerospace Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Tablet computing has the potential to reshape the scope of situational awareness.

This is because application developers have derived uses for tablet devices that the

original inventors did not intend and could not have imagined. One such application is to

provide the ability for the warfighter to directly request aerial images from overhead

assets, including unmanned aerial vehicles or satellites. Advancements in mobile

technology and network connectivity have helped to overcome the challenges of

information delivery, but there remains the challenge of real-time information. This thesis

examines the concept of tablet-based information requests for real-time satellite tasking.

As a proof-of-concept, a tablet-based application is developed that enables the user to

task a simulated satellite system by interacting with a map. Requests are sent and

processed by a server application and are then routed to the appropriate asset. Real-time

response to the request is emulated using a detailed simulation model of a control

moment gyroscope actuated spacecraft, which then provides simulated images to mimic

the data collection process. This imagery product is uploaded to the server for retrieval by

the tablet application, thereby completing the request cycle and demonstrating the

feasibility of remote satellite tasking using a tablet computer.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. BACKGROUND ..1
A. MOTIVATION ..1
B. OVERVIEW ...3
C. IMAGERY TASKING AND DISTRIBUTION ..5
D. IMAGING ASSETS ...8

1. DigitalGlobe Constellation ..9
a. WorldView-3 ..9
b. IKONOS ..9
c. GeoEye 1 ..9
d. WorldView-2 ..10
e. Worldview-1 ...10
f. QuickBird ..10

2. Other Assets ..10
E. FUTURE IMAGING ASSETS ...11

1. Kestrel Eye ..11
2. TINYSCOPE ..11
3. SeeMe ..12

F. COMMUNICATION ASSETS ...12
G. THESIS OUTLINE AND SCOPE ..14

II. TABLET TASKING APPLICATION DEVELOPMENT17
A. INTRODUCTION..17
B. PLATFORM SELECTION ..18

1. Operating System ...23
2. Tablet Hardware ..24
3. Software Architecture ...24

a. Navigation-Based Template ..25
b. OpenGL ES Template ...25
c. SplitView-Based Template ..25
d. Utility Application Template ...26
e. View-based Application Template ..26
f. Window-Based Application Template26
g. Tab Bar Application Template ...26

C. IMPLEMENTATION ...27
1. First Impression ...27
2. Request Structure ..30

a. Email Request ...30
b. Map Request ..36

3. Receiving Data ..38
D. DEVELOPMENT TOOLS ...39

1. Sencha Touch 2 ..39
2. Apache Cordova (formerly PhoneGap) and Plugins41
3. Google API ..42

 viii

4. Server ..43
E. SUMMARY ..43

III. SPACECRAFT MODEL...45
A. OVERVIEW ...45
B. COMMAND PROCESSING ..45
C. TRAJECTORY GENERATION ..47
D. CONTROL LAW ...52
E. CMGS..54
F. SATELLITE ATTITUDE DYNAMICS ..56
G. SATELLITE KINEMATICS ..57
H. MODEL VERIFICATION AND VALIDATION59

1. Command Processing and Trajectory Generation59
2. CMG Model Verification ..60
3. Kinematic Model Verification ..61

I. SUMMARY ..64

IV. DEMONSTRATION OF TABLET TASKING ..65
A. INTRODUCTION..65
B. SAMPLE REQUEST ...65
C. SAMPLE SPACECRAFT SIMULATION ..66
D. OUTPUT DATA...71
E. SUMMARY OF DEMONSTRATION ..73

V. CONCLUSION AND FUTURE WORK ...75
A. CONCLUSION ..75
B. FUTURE WORK ...75

1. Spacecraft Model ...75
2. Tasking Application Architecture ..76
3. Integration with Existing Programs for Access and

Dissemination of Imagery..76
4. Process Automation and Test Bed Application76

APPENDIX ...79
A. LESSONS LEARNED ...79

1. APPLE ..79
2. MATLAB AND SIMULINK ...79

a. MATLAB Function Block Editor ...79
b. The Reshape Block in SIMULINK ..80

B. SIMULINK MODEL PROPERTIES INITFCN ..80
C. LOADING APPLICATION REQUESTS INTO

SIMULINK/MATLAB ..82
D. POSITION, VELOCITY AND ACCELERATION TRAJECTORY87

LIST OF REFERENCES ..89

INITIAL DISTRIBUTION LIST ...95

 ix

LIST OF FIGURES

Figure 1. Tiered approach to enhance responsiveness of space capabilities (from
National Security Space Office 2007). ..3

Figure 2. Possible tablet integration with existing infrastructure.5
Figure 3. MUOS architecture (from Oetting and Jen 2011). ...13
Figure 4. Tablet and application being used while propped on a surface or held in

one hand and operated with the other. ...19
Figure 5. One possible application storyboard. ...21
Figure 6. The final layout with application screen captures showing similarity to the

draft storyboard of Figure 5. ..22
Figure 7. Screenshot of launch icon of the developed TAST application.28
Figure 8. Screenshot of TAST homepage with seven tab-bar buttons.29
Figure 9. Screenshot of TAST email request form. ..31
Figure 10. Screenshots of the TAST email request form field details and keyboard

activation. ...32
Figure 11. Screenshots of the TAST email request success page and tracking page of

GeoEye 1. ...33
Figure 12. Saved form submissions on tasking server. ...34
Figure 13. Screenshot of the TAST map request page with a placed marker (2) and

activated navigation bar button (1). ...37
Figure 14. Screenshot of the TAST request form after a point is selected on the map. ...38
Figure 15. Screenshot of TAST results display. ..39
Figure 16. Flat earth model and slew angle determination. ..46
Figure 17. Command processing schematic. ...50
Figure 18. Index generator to queue four maneuvers. ...51
Figure 19. Example slew trajectory profile ...52
Figure 20. Control block diagram in SIMULINK. ..53
Figure 21. CMG configuration for spacecraft model from Wei, Space Vehicle

Dynamics and Control Second Edition 2008. ..54
Figure 22. CMG schematic from SIMULINK spacecraft model.56
Figure 23. Spacecraft dynamics schematic from SIMULINK spacecraft model56
Figure 24. Spacecraft kinematics schematic from SIMULINK spacecraft model.58
Figure 25. Quaternion and direction cosine matrix SIMULINK diagram.59
Figure 26. Commanded trajectory and the rates of the four gimbals.60
Figure 27. Commanded trajectory and four gimbal angles. ..61
Figure 28. Rotational rate of the spacecraft plotted with the commanded trajectory.62
Figure 29. Quaternion norm for the example maneuver. ..63
Figure 30. Momentum conservation for example maneuver. ...63
Figure 31. Sample points requested for collection. ...65
Figure 32. Output of spacecraft trajectory generator. ...67
Figure 33. Commanded trajectory and rates of the CMG gimbals.68
Figure 34. Commanded trajectory and gimbal angles for four sample maneuvers69
Figure 35. Rotational rate of the spacecraft plotted with the commanded trajectory70

 x

Figure 36. Euler angle error for the four slews with the PD controller.71
Figure 37. MATLAB/SIMULINK data output file. ..73

 xi

LIST OF TABLES

Table 1. NSG capabilities for accessing, disseminating and archiving GEOINT
information (Office of Geospatial-Intelligence Management 2006).7

Table 2. Goals identified for direct tasking of overhead assets.18
Table 3. Downloaded form submissions from server. ...35
Table 4. Sample coordinates and associated target labels for scenario of Figure 31. ...66
Table 5. Desired roll, pitch, and yaw angles for each target. ...67

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ADCS Attitude Determination and Control System

API Application Programming Interface

ARSTRAT Army Forces Strategic Command

BRITE Broadcast Request Imagery Technology Experiment

CIT Commercial Imagery Team

CMG Control Moment Gyroscope

DoD Department of Defense

EVR2EST Eagle Vision/ROVER Responsive Exploitation of Space Products for
Tactical Use

GEOINT Geospatial Intelligence

GPS Global Positioning System

HCI Human Computer Interaction

ISR Intelligence Surveillance Reconnaissance

IRU Inertial Reference Unit

MILSAT Military Satellite

MUOS Mobile User Objective System

NGA National Geospatial Intelligence Agency

NGO Non-Governmental Organization

NIMA National Imaging and Mapping Agency

NPS Naval Postgraduate School

NSG National System of Geospatial Intelligence

SATCOM Satellite Communications

SIPRNET Secret Internet Protocol Routed Network

 xiv

SMDC Space and Missile Defense Command (US Army)

STK Satellite Tool Kit

TASS Three-Axis Satellite Simulator

TINYSCOPE Tactical Imaging Nano-satellite Yielding Small-Cost Operations for
Persistent Earth Coverage

UDID Unique Device Identifier

UI User Interface

URL Uniform Resource Locator

USASMDC United States Army Space and Missile Defense Command

WGS84 World Geodetic System of 1984

 xv

NOMENCLATURE

Bm mass of body B

 AD  rotational derivative of  with respect to frame A

A
Bv velocity vector of point B with respect to frame A

sH angular momentum vector

sH rate of change of angular momentum vector

externalT external torque vector

ω spacecraft angular velocity vector

ω spacecraft angular acceleration vector

h total CMG momentum vector

h total CMG momentum rate vector

δ CMG gimbal angles

δ CMG gimbal rates

 gravitational parameter (m3/s2)

orbh orbit altitude

ER Earth radius

 skew angle of CMGs

,s f latitude, s-subscript for start, f-subscript for finish

,s f longitude, s-subscript for start, f-subscript for finish

 roll angle

 xvi

 pitch angle

 yaw angle

xvii

ACKNOWLEDGMENTS

Thank you to Harry Wong, my manager at Boeing, for his recommendation to this

amazing program and experience at NPS. Thank you to the executives of the Boeing

Company who provided me this incredible opportunity to study at the Naval Postgraduate

School.

Thank you to Dr. I. M. Ross and Dr. M. Karpenko for outlining available thesis

topics and for your enthusiasm to be thesis advisors. The concern for my limited tenure at

Naval Postgraduate School and shared interest in my success made all the difference to

me. Thanks Dr. I. M. Ross for advising me academically and professionally, and for your

support in the development of the application and spacecraft model. Thank you to Dr.

M. Karpenko for keeping me on track but yet allowing me those days of gloating

after a breakthrough.

Thank you to Dr. T. Sands for his help with the spacecraft model. Thank you for

your patience in explaining coordinate transformation systems and spacecraft

disturbance equations multiple times. I learned so many Simulink fixes and from you,

I’m sure there is enough for a book or at least a Simulink for Dummies book. There is not

one published yet, I checked.

Thank you to my classmates for their moral support in the Space Cave. Thank you

especially to Reid Smythe for all the MATLAB assistance, patience and calming

presence.

Thank you to Nick Busey for his Xcode development suggestions, and assistance

in selecting and setting up WordPress on the Amazon EC3 server. Thank you to Jerry

Tung for his Xcode debugging assistance and introduction to Stack Overflow. Thanks to

anonymous forum responders for answering my 3am-questions and for the code

examples on GitHub.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. BACKGROUND

A. MOTIVATION

Recent advancements in mobile technology and network connectivity have helped

to overcome some of the challenges of information delivery and allow for more

information to be disseminated quickly. Furthermore, large amounts of data and

computation power are now portable as a consequence of the miniaturization of

hardware. The convergence of these two separate areas of progress has made tablet

computers and smart phones viable. These devices have changed society primarily

because the two primary mobile operating systems (Andriod from Google and iOS from

Apple) allow any developer to create applications (Mian, Teixeira and Koskivaara 2011).

By allowing application development on the mobile platform, devices like the iPhone and

iPad can be used in ways the original inventors could not have imagined. When a

challenge in everyday life arises, the question is often posed, “Is there an app for that?”

There are numerous applications available for occupational efficiency, personal

organization, and hobbies. For example, while staring at the night sky, there are several

iPhone applications that allow stargazers to point their device in a particular direction and

view a star chart identifying the planets and constellations. SkyView and The Night Sky

are two apps currently available from the iTunes store that provide this function. For

those more interested in satellites than stars, there are applications available that predict

when a satellite, like ISS, or a solar flare from Iridium can be viewed with the naked eye.

One app is named GoSatWatch and another is ISS Dectector Satellite Tracker. With these

examples in mind, it is easy to imagine many other applications for tablets that could aid

the warfighter or emergency personnel in retrieving timely and accurate information. This

thesis examines one such application: the concept of direct satellite tasking within the

context of satellite imagery. If a tablet application can request and receive real-time or

near real-time imagery from a satellite, it will significantly benefit the warfighter or

emergency personnel by providing the time-critical information needed for the success of

their missions.

 2

The importance of overhead imagery has been known for decades. Ever since the

U2 reconnaissance missions and the Corona program in the 1960s aerial images have

provided decision-makers key information about an adversary’s capabilities and

movements (Maathuisa and van Genderena 2004). More recently, during operation

Enduring Freedom a prototype system called BRITE (Broadcast Request Imagery

Technology Experiment) enabled operators to view satellite imagery in near-real time.

The BRITE system was operated on a laptop computer and allowed ground forces to

relay the coordinates of objects of interest (Lambeth 2001, 276). The laptop-based

BRITE system disseminated critical NGA GEOINT data via Military Satellite (MILSAT)

Secret Internet Protocol Routed Network (SIPRNET) to communications-limited tactical

users worldwide (Office of Geospatial-Intelligence Management 2006). Although this

prototype system was useful in providing time critical information, it could have been

more valuable if deployed on a tablet platform. Tablets are more portable and usable;

their longer battery life means they can be transported farther from a power source

(Kukulska-Hulme and Traxler 2005, 45). Their small form factor can be easily carried

around and used without the flat surface required to use a laptop. Additionally, it is more

natural to pass around a tablet to share information vice spinning around a laptop (Gillett

2012). There are aspects of BRITE that can be strengthened to support the warfighter’s

information requirements. For example, the BRITE system requires either that the laptop

have a line of site connection to a UHF radio or a Wi-Fi connection through a similar link

(Air Land Sea Application Center 2004). A tactical user would rely on that additional

link to make the system useful, and also need to transport the laptop. The BRITE system

capabilities demonstrate that there is the infrastructure to support the direct tasking of

satellites by the warfighter. The concept of directly tasking a satellite via a tablet could

improve upon the BRITE system concept by allowing the user a direct connection to the

satellite, and to task the satellite from a more practical device.

From the time when BRITE was first deployed until now, there has been a

congressional mandate to make existing and future space assets more operationally

responsive. This congressional mandate prompted the creation of the Operationally

Responsive Space Office (National Security Space Office 2007). The ORS Office

 3

activities are divided into three tiers as seen in Figure 1. The first tier involves rapidly

exploiting existing capabilities that are net-centric with an open architecture.

Replenishing, augmenting and rebuilding with exiting capabilities are tier two approaches

to enhancing space responsiveness, and tier three involves developing new technologies.

Figure 1. Tiered approach to enhance responsiveness of space capabilities
(from National Security Space Office 2007).

The ORS office tiered approach and stated needs for the tactical use of space

power provided further motivation for the direct tasking concept (McLaughlin 2007).

B. OVERVIEW

It is important to note that there is a difference between commercial satellite

imagery that most people are familiar with and the imagery that the warfighter or

emergency personnel require. Google Maps-based applications allow the user to search

for a location or generate directions from commercial satellite imagery; there are even

advanced settings for downloading the images. This information, although incredibly

useful for the layperson, is not as useful to the tactical user. This is because the

application does not offer information on the image age and there is no guarantee of

accuracy of the image (its location, and visibility). The warfighter and civilian emergency

personnel require recently acquired images and need guaranteed and precise information

on the time and location of the image. In a statement by Mr. Novak, a firefighter and

employee from USASMDC/ ARSTRAT:

 4

It definitely helps out having that imagery and having that oversight for
planners and emergency managers throughout the nation. To have that
near-real-time information and then having the updates come in can be the
difference between life and death. (Cutshaw, SMDC employee helps
nation prepare for emergencies 2012)

Mr. Novak’s statement emphasizes the importance for space-based imagery for tactile

decision making and the importance of real-time information. The difference between the

commercial imagery database available for public consumption and space-based imagery

needed for tactical decisions is near-real-time availability and guaranteed data.

There are numerous assets available that could be integrated into a tablet tasking

application and network. These assets encompass not only the commercial imaging

satellites mentioned earlier, but also include government systems like Airborne

Intelligence Surveillance Reconnaissance (ISR) such as Global Hawk and Predator. The

imaging hardware is not a solution by itself and requires ground stations, distribution

networks, high-bandwidth data communications and worldwide communication

coverage. Nonetheless, it is possible to incorporate these assets into a tablet tasking

paradigm.

Considering the available imaging assets and communication architectures an

overview of how a tablet application could be integrated is depicted in Figure 2. For

example, the tablet can directly send requests through a communication satellite such as

MUOS (Oetting and Jen 2011). Alternatively, the tablet could transmit directly to an

overhead imaging asset through a portable SATCOM terminal like the SurfBeam

portable terminal (ViaSat 2012) or similar. Through a server, the commands could be

routed from a ground station to the imaging asset, and the resulting images downlinked to

its associated ground station. From the ground station, the images can be routed back to

the server and made available for retrieval by the tablet.

 5

Figure 2. Possible tablet integration with existing infrastructure.

The following sections will provide an overview of the current distribution

networks, current commercial imaging resources, future imaging assets and

communication architectures that are available to support the architecture of Figure 2.

The intent is to provide background for the notion that the tablet tasking concept could

conceivably be integrated into existing infrastructure.

C. IMAGERY TASKING AND DISTRIBUTION

The need for space-based imagery on demand became apparent during Desert

Storm when U.S. forces had to wait four to six to weeks for the processing of images and

delivery to theater (Hartmetz 2001). Since then, programs such as Eagle Vision and other

commercial companies have worked to provide time-critical space-based imagery

 6

quickly. The key commercial provider of satellite imagery in the United States,

DigitalGlobe, has many partners that can task their satellites for a particular target or area

(Crampton 2011). These partners use the satellite imagery for geospatial intelligence,

government and business planning, navigation and defense purposes.

Eagle Vision is the compilation of several systems including Eagle Vision I,

National Eagle, Eagle Vision II and others that collect images from national and

commercial assets and also processes the images (Hartmetz 2001). Commercial imagery,

as opposed to imagery from National Assets, improves cycle time to users because it is

unclassified and immediately shareable. Commercial imagery can be marked unclassified

and/or limited distribution and can therefore be easily released to Host Nation personnel,

coalition forces, government agencies and NGOs. The Commercial Imagery Team (CIT),

part of the U.S. Army Space and Missile Defense Command, advertises that their

delivery time for commercial imagery is hours after the satellite has collected the

information (Cutshaw, SMDC employee helps nation prepare for emergencies 2012). The

same team also recently deployed the Eagle Vision/ROVER Responsive Exploitation of

Space Products for Tactical Use (EVR2EST) system. EVR2EST is a system that

distributes space-based imagery and radar products generated by the Eagle Vision

program. The Eagle Vision program is comprised of commercial imagery ground stations

that can downlink imagery directly from satellites and process the images at the same

site. Then, EVR2EST is used by civilian emergency personnel and first responders to

process, web-optimize, and share information with federal, state and local emergency

managers (Cutshaw, SMDC employee helps nation prepare for emergencies 2012).

During the wildfires in Colorado (June 2012), EVR2EST was used to distributed

approximately 37 square miles of satellite imagery to the Colorado fire response

authorities. The images were distributed through a website to local agencies and

firefighters (Cutshaw, EVR2EST helps firefighters during wildfires 2012). If a tablet

application could be integrated into the EVR2EST system, users would be able to task

very specific areas of interest and have the information available in the field, allowing for

quicker updates on the situation.

 7

The National Geospatial Intelligence Agency (NGA) has several programs that

aim to provide access and dissemination of imagery including the programs Eagle Vision

and BRITE programs previously mentioned. The programs and their focus are listed in

Table 1.

Program Focus
Broadcast-Request
Imagery Technology
Environment (BRITE)

NSG program that disseminates critical NGA GEOINT data
via Military Satellite (MILSAT)/Secret Internet Protocol
Routed Network (SIPRNET) to communications-limited
tactical users worldwide.

Command Information
Libraries (CIL)

Intermediate image library between the NIL and IPL; at
command and agency locations.

Commercial Remote
Sensing (CRS)

Ground Receiving/Processing Stations Facilities (e.g., Eagle
Vision) that generate actionable GEOINT from CRS data.
These stations enhance the operational utility of CRS data to
operational commanders.

Distributed Common
Ground/Surface System
(DCGS)

Family of systems designed to provide airborne system-
derived, multi-intelligence discipline, ISR task, post,
process and use capabilities at the theater and tactical levels.

Image Product Libraries
(IPL)

Scaleable, deployable libraries below Command
Information Libraries in complexity and capacity.

Information
Dissemination Services-
Direct Delivery (IDS-D)

NSG program that disseminates time-dominant/time-critical
and near-real time data to operational users worldwide. Also
sends National Technical Means (NTM) data directly to the
NIL for long-term storage.

MC&G Information
Library (MCGIL)

Mapping, Charting, and Geodesy Information Library.

National Information
Library (NIL)

Central repository of national, tactical, and commercial
imagery, imagery products, geospatial information, video
and metadata.

Unclassified National
Imagery Library (UNIL)

Archive and dissemination of commercial imagery. Will
eventually replace the Commercial Satellite Imagery
Library (CSIL) as the hub for this activity.

Web-based Access and
Retrieval Portal (WARP)

NSG program that provides discovery, access and
dissemination of NTM, commercial, airborne, geospatial
intelligence products from the NGA Gateway, and a variety
of specially tailored products to registered operational users
worldwide over Joint Worldwide Intelligence
Communications System (JWICS), SIPRNET and the
internet.

Table 1. NSG capabilities for accessing, disseminating and archiving GEOINT
information (Office of Geospatial-Intelligence Management 2006).

 8

A tablet application could be integrated with the existing capabilities of the NGA

programs listed. These programs are buried within the internet, server and ground station

depictions seen in Figure 2. The following section describes existing imaging assets and

how they could be integrated with the concept of a tablet tasking application.

D. IMAGING ASSETS

The Department of Defense and its subsidiary agencies have dedicated assets for

earth imaging but also heavily utilize commercial imagery. Commercial imagery is

significant in that it has the potential to deliver timely information to soldiers in the field

because of its unclassified nature. The importance of timely commercial imagery to

military operations was recognized in a Defense Daily article from 1999. The author of

the article opens with “High resolution commercial imagery offers the possible benefit of

providing commanders in the field more timely battlefield awareness, a capability that

could drive considerable demand from the military” (Commercial imagery to provide

commanders rapid pictures 1999).

Since 1999, commercial imagery has gained even more prominence. In 2002, the

Senate Armed Services Committee (SASC) and House Armed Services Committee

(HASC) directed the DoD and the intelligence agencies to make more efficient use of the

commercial imagery available (Gildea 2002). The push by lawmakers and the National

Imaging and Mapping Agency (NIMA) to use more commercial imagery for over the

past decade has supported the growth of the commercial imagery industry (Eisler 2008).

Companies like DigitalGlobe have benefitted from government contracts. Since

DigitalGlobe’s merger with GeoEye in January of 2013, DigitalGlobe reports that half its

revenue is government derived (Crampton 2011). A large portion of this revenue comes

from the EnhancedView contract awarded before the merger to both GeoEye and

DigitalGlobe from the National Geospatial-Intelligence Agency (NGA). The

EnhancedView contract was originally a ten-year contract worth over $7.3 billion. The

contract is significant to the commercial satellite industry because it was in response the

failure of Future Imagery Architecture (FIA) program and shifted budget away from

government procured satellites and gave it to commercial imaging companies. This

 9

already intertwined relationship between the government and commercial imagery

supports the idea that these assets could be used in a direct tasking network for the

warfighter. An overview of this merged commercial imagery company is provided as

background for current assets that could be used in a direct tasking network.

1. DigitalGlobe Constellation

The DigitalGlobe, Inc. (formerly EarthWatch, incorporated in 2002) constellation

now consists of six satellites. In 2013, DigitalGlobe merged with GeoEye and added two

satellites to its fleet. These six satellites provide commercial high-resolution earth

imagery to defense and intelligence agencies, civil agencies, oil and gas companies,

academic and research institutions (DigitalGlobe 2015). The six satellites are

WorldView-3 launched in 2014, IKONOS, GeoEye-1, WorldView-2, WorldView-1, and

QuickBird.

a. WorldView-3

WorldView-3 launched in 2014 to a 617 km altitude. The sensors on board

include an imager able to provide 31cm panchromatic resolution, 1.24 meter

multispectral resolution, 3.7 meter short wave infrared resolution, and 30 m CAVIS

resolution. CAVIS (Clouds, Aerosols, Vapors, Ice and Snow) monitors the atmospheric

conditions to provide correction data for images taken through non-ideal atmospheric

conditions, like cloud cover (DigitalGlobe 2015).

b. IKONOS

IKONOS was launched by Space Imaging in 1999 and was the world’s first one-

meter resolution commercial Earth imaging satellite (Gildea 2002). It is also capable of

3.2 m multispectral near-infrared imagery. The orbit is 681 km in a 98.1 sun synchronous

orbit (Satellite Imaging Corporation 2015).

c. GeoEye 1

GeoEye 1 launched in June of 2008 into a 668 kilometer sun-synchronous orbit.

The satellite has three camera modes including simultaneous panchromatic and

 10

multispectral, panchromatic and multispectral. Image resolution is declared to be

0.41 meter in the panchromatic mode and 1.65 meters in the multispectral mode. A single

scene is 225 square kilometers and nominal swath width is 15.2 kilometers (GeoEye

2011).

d. WorldView-2

WorldView-2 was launched in October of 2009 from Vandenburg Air Force Base.

The orbit is sun-synchronous, with an altitude of 770 km. The satellite has a

panchromatic sensor and eight multispectral sensor bands. The attitude determination and

control system uses control moment gyros, star trackers, a solid state IRU and GPS

(DigitalGlobe 2015).

e. Worldview-1

In 2007, WorldView-1 was launched from Vandenburg Air Force Base. It is also

in a sun-synchronous, 495 km altitude orbit. At nadir the ground sample distance GSD is

50 cm, with a swath width of 17.7 km. The attitude determination and control system

uses control moment gyros, star trackers, a solid state IRU and GPS (DigitalGlobe 2015).

f. QuickBird

DigitalGlobe’s Quickbird satellite offers sub-meter resolution imagery (65 cm

panchromatic at nadir), and high geolocational accuracy. The swath width of the sensor is

18.0 km and supports a multitude of geospatial applications. According to the company’s

website Quickbird is still operating at an altitude of 400 km in a gradual decent and its

mission will cease once it reaches 300 km (DigitalGlobe 2015).

2. Other Assets

Aside from the assets mentioned above, there is also commercially available radar

(Canada’s Radarsat), LIDAR and thermal remote sensing systems on airborne and

spaceborne platforms. These assets plus the multispectral, and hyperspectral assets offer

important sources of quality and timely information that can serve the operational needs

of the warfighter (Birk et al. 2003). If these assets and their availabilities could be

 11

centrally scheduled, a tablet application with the ability to task any of these assets could

be an extremely powerful tool in providing exceptional situational awareness. Granted,

centrally scheduling all these assets is a lofty goal; however, if only a few of these assets

provided direct tasking capabilities to support critical missions, warfighters and

emergency personnel could greatly improve their situational awareness.

E. FUTURE IMAGING ASSETS

1. Kestrel Eye

The U.S. Army Kestrel Eye 1 Tactical Imaging Spacecraft is slated to launch in

late 2015 on a Falcon 9 as a Spaceflight Secondary Payload System (Vance 2014). The

Kestrel Eye spacecraft is said to weigh approximately 14 kg and is classified as a nano-

imaging satellite. Steve Fujikawa of IntelliTech Microsystems Inc, says “Kestrel Eye will

be taskable directly by the warfighter under fire and transmit 1.5-meter resolution images

directly to his backpackable ground station” (KMI Media Group 2009). The full

constellation of 30 satellites, once launched, will provide global coverage.

The Kestrel Eye architecture would be a great platform to integrate with a tablet

application for several reasons. Not only does the overarching goal of Kestrel Eye to

provide tactical level space asset control match the objective of tablet tasking, a tablet

application to task a satellite conforms to the operational concept released by SMDC. The

operational concept for Kestrel Eye includes a user selecting a point on a satellite ground

trace of a world map, and receiving the requested images via a data relay network

accessible by the warfighter (USASMDC/ARSTRAT/Public Affairs Office 2010).

2. TINYSCOPE

TINYSCOPE stands for Tactical Imaging Nanosat Yielding Small-Cost

Operations for Persistent Earth-coverage. It is a project at Naval Postgraduate School

intended to demonstrate the utility of small spacecraft for tactical imagery (Blocker

2008). The mission of the project is to provide a densely populated constellation of low-

cost imaging satellites, with a revisit rate of less than 30 minutes to provide tactically

 12

relevant and useful information to warfighter (Litton 2009). A tablet application that

could task the satellites directly would integrate well with the TINYSCOPE.

3. SeeMe

The SeeMe program, Space Enabled Effects for Military Engagements, aims to

provide temporary low cost satellites (less than $500,000) that can be launched quickly to

support military operations (Vance 2014). The SeeMe satellites will provide on-demand

imagery to the lowest-echelon warfighter in the field (Keller 2012). The goal of the

constellation is to provide persistent coverage with no coverage gaps greater than 90

minutes. The Defense Advanced Research Projects Agency, DARPA, awarded Raytheon

$1.5 million in December of 2014 for the development of these satellites (Raytheon

2015). A tablet application that could task these satellites directly would integrate well

with this DARPA project and help meet the project goals.

F. COMMUNICATION ASSETS

There are a number of satellite networks that could conceivably be used to route

the requests from a ground station to an available imaging asset. Platforms like Globalstar

sell a la carte packages for voice, data, and short messaging services. A Globalstar

satellite and voice module could be conceivably integrated into a tablet and then the

device could transmit short request messages through the Globalstar network (Globalstar

2011). It is more interesting, however, to investigate the possibility of using an existing

platform to accept the request directly from a tablet-like device and have the ability to

either forward it directly to an imaging asset or over to a master scheduling facility. The

MUOS platform seems innately adept at being able to support satellite tasking via a

tablet-like device.

The MUOS satellite architecture is designed to support handheld terminals, like

tables. The MUOS satellites have a multibeam antenna and a 14-meter reflector for

transmitting and receiving MUOS UHF WCDMA signals. A diagram of the MUOS

architecture is given in Figure 3. The multibeam antenna forms 16 beams for higher

antenna gains to allow for handheld, and lower transmit power terminals (Oetting and Jen

2011). If future development of MUOS-capable terminals incorporated a tablet computer,

 13

there are endless possibilities for capability improvements. One possible improvement is

the use of a tablet application to request an image. A user with a combined tablet

computer and MUOS-capable terminal could use an application to select a target on a

map and submit a request directly to the CIT or other commercial imagery provider

through the MUOS architecture.

Figure 3. MUOS architecture (from Oetting and Jen 2011).

If the tablet application could interface with the MUOS-capable terminal, the user

would be able to send a request directly to a MUOS satellite network. From the MUOS

network, the task could be sent directly to a small satellite like TINYSCOPE. The

advantage of using the MUOS architecture is that the ground terminals do not need to

have high-powered transmitters, and the MUOS constellation provides near-world-wide

coverage. The MUOS satellites have sensitive receivers that are not necessarily feasible

on small satellites due to the strict mass and power limitations. If communication with

small satellites was feasible from the tablet, then the limitation would be on available

communication windows. The near-world-wide coverage of MUOS means that the user

does not need to wait for a satellite to pass overhead to transmit the task or receive the

 14

data (assuming other internet connections are not available), and that the MUOS capable

terminal does not need a high powered transmitter. This implies that a MUOS capable-

terminal could conceivably be integrated into a tablet with the tasking application.

G. THESIS OUTLINE AND SCOPE

The objective of this thesis is to examine the concept of directly tasking a satellite

from a tablet computer. The thesis reviews existing and future architectures relating to the

direct tasking concept. Programs with similar missions of providing warfighters and

emergency personnel with on-demand overhead imagery are identified in this thesis for

possible future integration.

The proposed tablet application in this thesis, combined with the knowledge of

the existing BRITE system, implies a clean fit into the Tier-1 ORS activities discussed

earlier. The existing dissemination programs, commercial imagery assets, and

communication networks comprise the existing infrastructure that was considered for this

proof of concept. National assets were not discussed because the distribution of

commercial imagery can be done more quickly. There is no time lost in approving and

sanitizing the imagery. The next chapter of the thesis describes the tablet application that

was developed, its platform and implementation. It also discusses some of the design

choices and trades that were made. A cursory study of human computer interaction was

conducted to help start the development of the application on the right track to meet the

end requirement of creating a user-friendly application and interface.

It is impractical to test the tasking ability of a tablet application without first

extensively testing the concept and application on the ground. Satellites are very

expensive assets and stakeholders typically do not take lightly to anyone “experimenting”

on their systems. Therefore, the ability of the developed tablet application to task a

simulated spacecraft is examined. Chapter III described the simulated spacecraft and

chapter IV presents a sample scenario of the application tasking the simulator.

The last chapter of this thesis addresses the next steps required to fully automate

the tasking process, such as testing the application interface using a ground test bed.

 15

There are many suggestions for future work addressed in relation to making the

application properly fit the needs of the warfighter and emergency personnel.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

II. TABLET TASKING APPLICATION DEVELOPMENT

A. INTRODUCTION

This chapter describes the approach taken for building a tablet application for

tasking a satellite and discusses trades made in the development of the application.

During the development process it became clear that there exist many possibilities for

implementing a suitable application. There are different ways for tablets to transmit

information, including Bluetooth, Wi-Fi, and CDMA. Additionally, there are

innumerable ways to design a tablet application. Consequently, the application developed

is simply one instantiation of how to realize the idea of directly tasking a satellite. The

design choices for the developed application were made by the author who is a satellite

systems engineer, and not by a computer programmer or human-computer interaction

specialist. Significant research was conducted to bridge the existing satellite knowledge

base with programming and concepts from human-computer interaction, but research

beyond the scope of this work is likely needed to create the best application for the user.

Nonetheless, the application as designed, is able to transmit the required information to

task a satellite. Moreover, the application was designed with the user in mind and all

ideas for improving the application for the user beyond a proof of concept are addressed

in the future work section. Furthermore, the application was designed to support

continued development. The code is annotated and compartmentalized for follow-on

work to require little start-up effort, and lessons learned are provided in the appendix.

The largest advantage of the developed application is that it exists today for examination

and discussion. As satellite terminals and tablet applications continue to be developed

this thesis will be available to provide a use case and example for direct imagery satellite

tasking.

Following the discussion on design choices (Section B), the actual

implementation of this proof of concept is presented in Section C. The development tools

used are described in Section D and these can be used for future work.

 18

B. PLATFORM SELECTION

The application developed in this thesis is simply one instantiation of how to

allow warfighters or emergency personnel to directly request and task overhead assets.

With that broad objective in mind, certain goals and requirements were developed to

evaluate the design trades. Goals and requirements were identified by the developer after

researching available imagery access and dissemination programs, current human-

computer interaction ideologies, as well as available assets. The goals and requirements

recognized by the developer and thesis advisors during early development are listed in

Table 2. Each goal is addressed in the following trade discussions.

Goals

Portable hardware

User-friendly

Intuitive request process

Transmit request

Receive status

Receive information

Interact with image

Interact with raw image for analysis

Table 2. Goals identified for direct tasking of overhead assets.

Part of the desire to use portable hardware included the ability to use the device

and application while moving or engaged in other activities. The chosen device should be

able to be held in one hand and operated using the other hand. One should not expect that

the warfighter or emergency personnel user would have a surface in the field to place the

device. Whereas laptops typically require a flat surface to comfortably operate, tablets

can be strapped to a forearm and operated by the opposite hand.

Additionally, the user should be able to send a request while holding another

object. One can expect that the user may have other handheld equipment in support of

their mission. For example the warfighter may have a handheld-night-vision scope, or

other tactical gear. The user should not have to put down or away other equipment to use

 19

the application. The application should only require simple one-handed gestures, and the

device should not require a stylus or pen. The experiments conducted in the Manual

Multitasking Test for “ease of juggling” were considered when evaluating hardware

(Oulasvirta and Bergstrom-Lehtovirta 2011). The Manual Multitasking Test asks a

subject to perform a task on a device, for example, send a text message, while being

constrained in one of twelve conditions emulating manual constraints frequent in

everyday activities. Example manual constraints include using the non-preferred hand,

holding another small object, not being able to support the device, or restricted movement

of the shoulder, elbow and wrist. The experiments conducted by Oulasvirta and

Bergstrom-Lehtovirta showed that use of a stylus decreased function while multitasking

more than using a physical qwerty keyboard or touchpad qwerty keyboard. (Oulasvirta

and Bergstrom-Lehtovirta 2011). Their findings support the use of a touchscreen device

if the intent of the application is to be used by a warfighter or emergency personnel in the

field. Either user would be expected to carry other items and could be required to use

their arm or hand to perform a different task. The tablet and application was developed to

be operated while propped on a surface, or held in one hand (see Figure 4). If the user is

entering a request while holding the tablet in one hand some dexterity of the other hand is

required.

Figure 4. Tablet and application being used while propped on a surface or
held in one hand and operated with the other.

 20

Further research and human research approval will be necessary to fully evaluate

the portability of the application developed here using the suggested Manual Multitasking

Test or other industry standard assessments. However, the above cursory evaluation of

the tablet and application’s portability suggest adequate convenience and the capability

for the application to be made more functional if required by the target users.

The goal of user-friendliness and intuitive request process also played into the

trade space of using a touchscreen. The subject of user-friendliness is related to the field

of human computer interaction, or HCI. HCI includes, among other things, the study of

modalities of direct manual input (for example touch and stylus), and indirect manual

input (mouse and cursor). Tablets have typically used two types of direct manual input:

touch and stylus entry. Touch and multi-touch entry has gained a lot of popularity, but

what is an ideal input for some tasks is not necessarily ideal for others. For instance,

using touch entry to turn the page of a book is more convenient than needing to pick up a

stylus, but signing your name with your finger is not as precise as using a stylus. To truly

be user-friendly, the input modality needs to be considered. There are drawbacks to using

only touch input like the moderate precision as compared to using a pen, and the “Midas

Touch Problem” (Hinckley, Pahud and Buston 2010). The “Midas Touch Problem” refers

to the problems that highly responsive interfaces have in discerning deliberate movement

from accidental movement. For a touch interface, common accidental movements are

fingers brushing the screen, fingers on the screen to stabilize the device, or the finger can

be left on the screen for too long (Hinckley, Pahud and Buston 2010). A stylus input may

have a higher precision and fewer false positive inputs, but still has many drawbacks. The

drawbacks include the stylus as a mechanical intermediary which needs time to be

unsheathed and can be lost, as well as limited elementary inputs. The stylus can tap, drag,

and draw a path, but multi-touch allows for other gestures like pinch and swivel

(Hinckley, Pahud and Buston 2010). After a review of the two input modalities it was

obvious that a touch input would be preferred to a stylus input for the direct satellite

tasking application.

Several different application storyboards were considered before the final

application layout was finalized. The end-goal was to decide which flow and layout

 21

provided the most intuitive request process. One possible flow is depicted in Figure 5. In

the sample storyboard the user opens a welcome screen with four tabbed options along

the bottom. The three second views, labeled “Page 1” “Page 2” and “Page 3,” each

correspond to a tab. The fourth tab on the welcome screen may be used to return back to

the home screen, or for settings. The third views, labeled with the page number and lower

case “a,” could be a submit screen or verification screen. Page 1b, for example, would be

a message to the user indicating a successful submission or similar. In this first draft of

the application layout there was a desire to have separate accounts for each user. Once the

account settings were entered, user information could be pre-populated into the request

data. The status of the account, logged in or logged out, was to be indicated by the lock

icon. As different application storyboards were considered, the more intuitive flows were

selected.

Figure 5. One possible application storyboard.

In the implementation section of this chapter the design concepts relating to the

subjects above are addressed. For example, an email request form was created for user

flexibility. It allows the user to enter the request via email instead of using the map

request dialog. The final layout of the developed application can be seen in Figure 6.

 22

Figure 6. The final layout with application screen captures showing similarity
to the draft storyboard of Figure 5.

The first page displays simple instructions and includes icons along the bottom

linked to different pages. The first icon links to a request page that centers a map at the

user’s current location. Once the user drops a pin on the map, the user can hit the submit

request button and a form appears prepopulated with the latitude and longitude of the pin.

The next page is a confirmation page listing the recent requests. In the middle row of the

figure, the user can select an email request button (shown as Page 2 in Figure 5). The

email request allows the user to enter a precise latitude and longitude. In the bottom row

of the figure (shown as Page 3 and Page 3a in Figure 5), the user selects the fulfilled

request icon. This icon brings up a page of recent requests with hyperlinks to the

requested image if the satellite asset was able to fulfill the request. The user selects the

hyperlink to the requested image and once downloaded, it can be manipulated using

standard pinch and scroll controls. This layout of pages was contrived with consideration

 23

of the aforementioned goals. Beyond the application layout, the operating system, tablet

hardware and software architecture were also selected with the goals considered.

1. Operating System

There are two primary mobile platforms available today, Apple’s iOS and

Google’s Android. From the developer’s point of view, there are two very different

programming languages used on each. Apple’s iOS uses Objective-C and Google’s

Android uses Java. Moreover, an application developed for one operating system cannot

be used on the other. There was a choice between developing for a single platform, and

developing native applications for both platforms. There was a third option to develop

a mobile web application which would have minimized the amount of code required, but

it would have also limited the features available for the application. Instead of trying

to develop on multiple platforms, one platform had to be decided upon in the interest

of time.

Several factors were evaluated for each platform; including the programming

environment, development tools available, and hardware available. The programming

environment offered by Apple’s iOS Development Center is the Xcode package. Xcode

includes an Interface Builder, iPad emulator, and development environment. Android

offers the Android Development Tools plug-in for the Eclipse programming

environment. It includes a UI design tool, GUI access to command line SDK tools, Java

editor, and XML editor (Google 2012). These development tools greatly simplify the task

of implementing a mobile application and focus on the individual developer with a goal

to create an application quickly (Wasserman 2010). Objective-C is the high-level object

orientated programming language used by Apple for the iOS operating system. Apple

added many features to the Xcode Code Editor to make the work flow as user friendly as

possible. The Code Editor uses code sense to quickly suggest the arguments for the

function typed, and it has code folding to collapse code not currently being used. There

are also quick help windows and documentation windows. The features of Apple’s

programming environment appeared to provide a better choice for application

development.

 24

Apple’s iOS platform was also chosen for the development tools available,

including best practice guides, and frameworks. Apple’s Developer website includes an

extensive “iOS Human Interface Guidelines” document in the library. This document

includes everything from recommendations to only use approved gestures, to the detailed

specifications required for icons. Apple’s documentation is aimed at providing guidelines

so that the application will be user-friendly. The very existence of this document

evidenced that there is a focus on helping developers create user-friendly applications. By

having these guidelines available for iOS development, there was a set of defined “best

practices” that could be used to develop the interface (Apple Inc. 2012). Future work for

the tasking concept will require additional research into human computer interaction and

its application to the device. However, the proof of concept development done here

followed the usability guidelines to the extent possible while remaining within the scope

of this thesis.

2. Tablet Hardware

There were no trades conducted in the selection of iOS devices as the only device

available is Apple’s iPad. The tablet used for application provisioning was a 32 gigabyte

Apple iPad 2. The installed software version was 5.1.1 (9B206).

The iPad tablet also had to be approved for provisioning. The first step is to have

the team admin create an App ID and configure it with the SSL Certificate and Keys.

Then the provisioning profile can be created by the team admin and installed on the

developer’s machine. With the provisioning profile in place, the developer can request

that a device be approved for provisioning. The unique device identifier, UDID, is

entered into the provisioning profile by the team admin. The provisioning profile can now

be downloaded by the developer and will allow certificate holders to test on the device

(Apple 2012).

3. Software Architecture

Xcode offers templates for different types of iOS applications. The templates

include the necessary code to build and run a basic application. The iOS templates

include options that can create either an iPhone or iPad application, but require a lot of

 25

manual coding and effort to enable them operate on both platforms. The following sub-

sections outline the available templates, and their relevance to the satellite tasking

application.

a. Navigation-Based Template

The Navigation-based template sets up the basic framework to allow the

developer to build menu-like navigation trees. This is done by combining a Navigation

Controller object with table views. The cells of the table are selectable menu-like items.

Navigation is handled by a controller that handles the trees and displays the title and

relative back and forward buttons. The Navigation-based template is for iPhone only

(Wentk 2011). An example application for this style template would be a list of authors

for the user to select and the App would then display information about the author. This

template creates basic menus that the user can select and retrieve information. The

Navigation-based template was not chosen because it is only intended for use with static

data.

b. OpenGL ES Template

The OpenGL ES template uses the OpenGL ES graphics subsystem and is used

for complex custom user interfaces and games. It is intended for specialized high-

performance graphics with complex 3D or 2D animations (Wentk 2011). This template

was not selected for the satellite tasking application because there is not a requirement for

animated graphics.

c. SplitView-Based Template

The SplitView-based template is the iPad equivalent of the Navigation based

template for iPhone. The larger screen of the iPad allows for a larger list view of menu

items. The split view displays differently in portrait orientation and landscape orientation.

In the landscape orientation, the split view appears left. The portrait orientation the split

view floats above the detail view (Wentk 2011). This template was not selected for the

same reason the Navigation template was not used; it is best used for static data and the

satellite tasking application needs to retrieve and display requested data.

 26

d. Utility Application Template

The Utility application template is for the iPhone only and creates and

information button at the bottom right of the screen. When the user taps the information

button, a flip-side view appears with a navigation bar and a done button. There are two

controllers, one for each view. The typical use for this template is for preferences and

other application features. There is no equivalent template for the iPad (Wentk 2011).

This template was not selected because it is iPhone-specific, and the simple navigation

bar lacks a controller needed for the satellite tasking application.

e. View-based Application Template

The View-based application template can be used for the iPad or iPhone, but does

not create a universal template for both applications. The developer must choose either

iPad or iPhone. If iPhone is selected, the designed application will work on the iPad in an

emulator mode that is in a half-size sub-window. The view-based application template is

the most common template used by developers because code can be added immediately

and it includes all the basic features for an app (a window, a view controller and a view

(Wentk 2011). This template was not selected for the satellite tasking application because

of its half-size appearance on the iPad.

f. Window-Based Application Template

The Window-based application template includes only window with a single

label. This iOS template can create a single application that runs on both the iPad and

iPhone platform. The template actually creates two separate applications, with separate

nibs, and application delegates. The application loader on the iPad or IPhone selects the

appropriate nib to run on start-up of the application (Wentk 2011). This template was not

selected for the satellite tasking application because it did not include a view controller

required for the application features.

g. Tab Bar Application Template

The Tab Bar application template can be used on the iPhone or iPad. The user

taps buttons on the bottom tab bar to select different views. The template includes two

 27

view controllers and more can be added by the developer (Wentk 2011). Of the available

templates, a modified version of the tab bar application template was used. The tab bar

application allows the user to tap buttons on the bottom tab bar to select different views.

This template was selected so the user could reach nearly all pages from the introduction

page; this simplifies hierarchies and allows the user to complete their task quickly.

C. IMPLEMENTATION

This section describes the look and feel of the developed application and explains

the user interface. The specific code tools used are described later in Section D.

1. First Impression

On the iPad the user opens the application named “TAST.” TAST is almost a

homophone for the word “task” and is the acronym for “Tablet Application Satellite

Tasker.” When the application first launches, the launch image is displayed, followed by

the initial loading indicator that signifies the application is loading. This is useful

feedback to the developer that scripts are loading correctly, and useful to the user as

positive feedback that the program is actively launching and not frozen. The screenshot

from the application simulator can be seen in Figure 7. The application is configured for

portrait and landscape uses, but figures of the landscape use are not provided because

they offer no additional information.

 28

Figure 7. Screenshot of launch icon of the developed TAST application.

Once the application loads, the home-page is displayed. The home-page includes

a place-holder graphic created using Satellite Took Kit, a software product by Analytical

Graphics, Inc. The graphic is the ground trace of GeoEye-1, Worldview-1, and

Worldview-2 on the 2D map viewer. This graphic has no utility in this iteration of the

TAST application. However, it is included because future work should insert the ability

to show the ground tracks of available imaging assets. The ground tracks should be

animated and show the swath of available targets. This visual tool would help the trained

user assess the likelihood of being able to request an image collection. Below the graphic

and title there are instructions to the user and several tabs for the user to select. The

homepage view can be seen in Figure 8.

 29

Figure 8. Screenshot of TAST homepage with seven tab-bar buttons.

The tab bar navigational model was selected because of its popular use in iPhone

and iPad applications. The iOS Human Interface Guidelines suggest using a toolbar for

controls that perform actions related to the objects in the screen or view. The first button

in the tool bar, marked one in Figure 8, returns the user to the home screen shown. The

second button opens the map for the user to select a location. The buttons marked with a

three open a page in the application with sample pictures from the server. Button four

opens the Safari application to display sample pictures, and button five also opens Safari

to a webpage showing the requests on the server. Button six opens the email request

form. The rule of thumb in application design is no more than five icons on the tab bar.

 30

Function over form was, however, chosen for this application start-up page. It seemed

more important to show the possible implementations in this proof of concept than to

strictly follow the human interface guidelines. Partly because, the rule stems from the

available space on the iPhone, but since this is an iPad application, the extra buttons still

fit on the screen. Additionally, users can see all the available tabs to select from and

avoids the problem of users not finding extra features is avoided. Future work should

focus on HCI aspects and include user testing to garner feedback on icon recognition,

placement, and function.

The following section elaborates on the options the user has to submit a request to

the satellite. The user can request a particular location by entering coordinates, or by

selecting a location on a map. These functions are all available from the tab-bar buttons

on the homepage.

2. Request Structure

a. Email Request

An email request form was created so that the user had the flexibility to enter any

coordinates without having to find the location on the map. This feature could also be

useful if limited bandwidth is available and the map was not previously loaded onto the

device. Having said that, a released version of the tasking software should allow relevant

maps and graphics to be pre-loaded by the user.

For the user to submit an email request, they tap on the compose icon with title

“Email” under it, number six in Figure 8. The form opens for users to input their

information, requested latitudes and longitudes and desired parameters for the image. The

form is shown in Figure 9.

 31

Figure 9. Screenshot of TAST email request form.

The form opens in Safari. The external form, vice a native form, was used for

several reasons. One reason is that the form contents could be easily saved on the server.

Setting up the form externally on the server allowed easy flexibility of the form contents.

As the development of the application progressed and more research on the topic was

conducted, the desired information from the user changed. The current form asks for the

user’s name, email, latitude and longitude of request, the image type/resolution

requirements, and slew start time. There is an additional message field for any special

instructions or to add a name for request. Details of the user interface while entering data

into the input forms can be seen in Figure 10. If the user taps on an input field, they are

 32

given instructions in a pop-up field. The pop-up field is provided for clarification, and so

that description by way of an additional user’s manual would not be necessary. When the

user taps on a pull-down menu, the menu pops-up and allows the user to select what type

of image they are requesting and relative ground sample distance, GSD.

Figure 10. Screenshots of the TAST email request form field details
and keyboard activation.

The current settings on the form input fields do not require any of the fields to be

filled out before submission, and there are only exaggerated limits placed on the

maximum number of characters allowed in each field. Once the user has completed the

form to their satisfaction, they tap the submit button and are taken to another page outside

of the TAST application. The successful submission page includes links to online satellite

trackers and a link to re-launch the application on the iPad. A future version of the

application should integrate this step as part of the application package to avoid having to

switch between applications. The successful submission page and satellite tracking page

of GeoEye 1 are shown in Figure 11. These links are included in the application because

 33

a satellite tracker would be useful if incorporated into the final application. With the

satellite tracker, a trained user would be able to see the available satellite location and

estimate when a pass of the desired location could occur. Ideally, the application could

also automatically calculate the pass times for the user.

Figure 11. Screenshots of the TAST email request success page and
tracking page of GeoEye 1.

Successful requests are emailed to the specified address on the server and are also

stored on the server. A sample of the form submissions appearance is exhibited in Figure

12. The form submissions can also be downloaded in a comma-separated values file

format. The downloaded data can be seen in Table 3. The csv-file format is in plain text

and can be used by many applications. Most applications can support a csv-file import

and this could be useful for future implementation of the application data.

 34

Figure 12. Saved form submissions on tasking server.

 35

Form
Submitted

Date
Image
Type

Email Address
Lat

(degrees)
Long

(degrees)
Request
Name

User Name

Slew
Start
Time
(sec)

DirectEmail
8/27/2012

7:39

Electro‐
Optical
<0.5m

User898@gmail.com 36.59496 ‐121.877

User 898 55

DirectEmail
8/27/2012

6:39

Electro‐
Optical
Any

Resolution

SampleUser 35.59479 ‐120.877 Target E SampleUser 33

DirectEmail
8/27/2012

6:38

Electro‐
Optical
Any

Resolution

SampleUser 35.59479 ‐122.877 Target D SampleUser 25

DirectEmail
8/27/2012

6:38

Electro‐
Optical
Any

Resolution

SampleUser 37.59479 ‐122.877 Target C SampleUser 18

DirectEmail
8/27/2012

6:38

Electro‐
Optical
Any

Resolution

SampleUser 37.59479 ‐120.877 Target B SampleUser 5

DirectEmail
8/27/2012

6:37

Electro‐
Optical
Any

Resolution

SampleUser 36.59496 ‐121.877 NA SampleUser 0

DirectEmail
8/27/2012

6:35

Electro‐
Optical
<1.0m

User592@nps.edu 37 121 NA User 592 5

DirectEmail
8/27/2012

6:19

Electro‐
Optical
<1.0m

User591@nps.edu 37.12121 112.1212

User 591 5

Table 3. Downloaded form submissions from server.

The request data is available for the satellite in two forms, email and data on the

server. Operationally, the emailed form data could be sent anywhere, and parsed out to

generate satellite commands. In this proof of concept the data is downloaded from the

server, and a simple macro is used to parse the data into the text-files required for the

MATLAB spacecraft simulation. Operationally, the macro would be replaced by a

scheduler instead of MATLAB loading the data from the text-files. The scheduler would

push the relevant data to the command buffer in any one of the participating imaging

assets. Before implementation with real satellites, a security feature would have to be

added to check that the request was received correctly and that the user is authorized to

 36

request the image. This and a plethora of other compatibility and security issues would

need to be resolved prior to operationally using the table tasking concept.

b. Map Request

A map request feature was created so that the user has the flexibility to tap on any

location on the map without knowledge of the coordinates. This feature also allows the

user to see existing satellite imagery. If the user does not have a need for more current

data, the existing map may be sufficient to allow for mission execution.

To use the map feature, the user taps on the maps icon with title “Request” under

it, see number 3 in Figure 13. The Google Map opens within the application. Above the

map is a title bar that says “Request Image,” and has a button “Submit Request.” The

“Submit Request” button is disabled until a marker is placed on the map. A marker is

placed on the map when the user taps on a location. An example marker is labeled with

the number 2 in Figure 13. Once the marker position is saved to a variable, the “Submit

Request” button is activated. The “Submit Request” button is labeled 1 in Figure 13.

 37

Figure 13. Screenshot of the TAST map request page with a placed marker
 (2) and activated navigation bar button (1).

When the “Submit Request” button is tapped, the coordinates are pre-loaded into

the request form and the user is asked for additional information. The user is asked for

their name, email, and is given a space to enter any additional parameters. Future

development of this application should collect feedback from users and imaging asset

operators on what parameters should be selectable in the form. In addition an interface

that allows a request to be populated and sent without the need to interact with a form

may be desirable for the user.

 38

Figure 14. Screenshot of the TAST request form after a point is
selected on the map.

3. Receiving Data

Once the request has been processed, the satellite tasked, and an image is made

available, the data is uploaded to the server and the TAST application can retrieve the

data. The user can tap the “Results” tab and the server is pinged for an updated

“results.txt” file. The text file is loaded into a page that the application can display using

hypertext preprocessor scripting. The screen is loaded with the requested coordinates and

slews, the resulting coordinates and slews, and the amount of attitude error during

imaging. The screen can be seen in Figure 15. The display of the results is a

 39

demonstration of data being passed back to the application. The data could be anything,

an image, or a message about the status of the request. The most useful information for

the tactical user would be the image file, along with any analysis if available.

Figure 15. Screenshot of TAST results display.

D. DEVELOPMENT TOOLS

In this section, the software tools used to build the TAST application are

described. A number of modules beyond beyond those native to the Xcode suite had to be

used to achieve the desired functionality.

1. Sencha Touch 2

Sencha Touch 2 is a developer tool for mobile web applications. Specifically it is

an HTML5 mobile application framework. The tool automates a large part of the

application generation and application building process. The files that are included as part

 40

of the free download include a getting started example application. The getting started

application includes a professional looking loading indicator and a basic example of a

main page JavaScript code. The simple application includes a home page, a contact form

and a simple list to fetch recent blog posts (Sencha Inc. 2012). This example application

is the basis for the tablet application created for this proof of concept.

This tool was selected for its ability to meet several of the goals identified. It

aided in creating a user-friendly application, while also being able to submit data through

forms-based infrastructure.

Submitting data through forms partially meets the requirement for transmitting

requests. Form input was chosen for this proof of concept because of its popularity in

systems and applications (Molich and Nielsen 1990). The popularity of forms made their

use rational in two ways. For one, the data transmitted can be easily parsed and then

submitted to existing platforms in any format required. Secondly, it can be assumed that

most tablet users are familiar with forms. In future iterations of the form, it can be made

more error-tolerant and provide more carefully phrased informative messages to the user.

The user requests do not necessarily need to be transmitted through forms. Other

approaches are possible. One alternative approach that was considered was to allow the

user to send a text message with their request. The identified downfalls of allowing a

free-form text message request include incomplete parameters, missing parameters and

more complex algorithms need to parse the information at the receiving side. With forms,

the user receives instantaneous feedback that their request may be incomplete. The

instantaneous feedback results in fewer incomplete requests and retransmissions of

requests. Additionally, the platform receiving the requests needs to be smart enough to

parse data that is not in a uniform format. Form submittal was chosen for the above

reasons; better feedback to the user and easier algorithms for receiving platforms.

There are many other development tools available but Sencha was selected based

on information available at the time and seemed the best fit for requirement fulfillment.

However, using the Sencha tool added a layer of abstraction to application coding. This

 41

abstraction created hurdles in debugging and quite possibly made the coding more

complex than necessary.

2. Apache Cordova (formerly PhoneGap) and Plugins

Apple allows development of applications for their iOS in the programming

language of Objective-C. Typically Apple users, and developers alike, saw learning

Objective C as barrier for many to begin developing. Therefore, a group of attendees at

iPhoneDevCamp (a conference started in 2007 for Apple developers) decided to create a

framework for web developers to easily create applications for iOS devices (Frakes

2009). One of these frameworks was PhoneGap originally created by Rob Ellis and

Andre Charland (LeRoux 2012). Their idea was to embed a webkit into a native

Objective-C application and build a JavaScript API that calls the native iPhone functions

such as geolocation and accelerometer. PhoneGap expanded to include more of the native

iPhone functions and eventually the PhoneGap codebase was donated to Apache

Software Foundation (LeRoux 2012).

In addition to making use of the Cordova development tools, an additional plugin

to the suite called “Childbrowser” was utilized. The requested images are loaded into a

database and uploaded to a server. A simple webpage was created to display the resulting

images, and the intent was to use the PhoneGap plugin “ChildBrowser” open the

webpage within the application. It was confirmed that the .m, .h and .bundle files were all

moved to the Plugins folder of the project. The correct key/value pairs were listed in the

Cordova.plist file, and the server was also added to the external host inputs. However,

there was a deprecation notice in the Cordova JavaScript file that said the plugins will be

removed in the subsequent version. Therefore, the sample webpage could not be loaded

by the TAST application. The assumption is that during the various iOS updates,

PhoneGap/Cordova updates, and ChildBrowswer plugin updates, one version became

incompatible with the other. This is a lesson learned for future application development.

Due to the open-source nature of PhoneGap/Cordova and other developer tools, updates

come out often, version control becomes cumbersome, and documentation of changes

may not exist. Debugging version differences can become very time consuming.

 42

Using the Cordova Child Browser plug in is obviously not the only way to send

information to a webserver. There are server proxies that can handle the marshaling of

data to a server, and there are client proxies that use memory to store data in the

browser’s memory or local storage when available. During the development of the TAST

application many different attempts were made to send the data through proxies.

Roadblocks relating to server permissions were encountered as well as difficulty in

coding the scripts necessary to store and retrieve information. The final solution for this

proof of concept used both a form submit function and the native web browser, Safari, on

the iPad and to send the information, a non-ideal solution at best. The difficulties

encountered with the sample task of integrating a data pipeline into the TAST application

is illustrative of the challenges many developers face in bringing a new concept to

fruition.

3. Google API

One feature of the tablet application is the ability to load a map of the current

position and select a point on the map to request an image of that point. The Google Map

API V3 was integrated into the tablet application to add this feature. A listener function is

loaded to catch the touch event on the tablet. The touch event triggers a function that

places a marker at the touched latitude and longitude. The latitude and longitude of the

marker are saved to a variable (e.latLng) and loaded into the request form. For the map to

load and the functions to work the Google URLs also need to be listed in the

Cordova.plist file in the Resources file. The URLs are added as strings under the

“ExternalHosts” array (Engvall 2012). Once the URLs are added, the scripts are loaded

and the user allows the application to use the current location, the map will load on the

iPad.

A future work suggestion related to the Google Map API is to add a geocoding

feature. Geocoding is the process of turning an address into a geographic point. Adding

this feature to the application would allow the user to type in an address and receive the

coordinates. Geocoding is supported in the Google Maps API, but was not integrated into

the application.

 43

4. Server

The coordinates and form data captured by the application are sent to an Amazon

EC3 Server meant to represent the satellite tasking server. The EC3 server is a free server

offered Amazon Web Services. Installed on the server is an open source content

management system. A content management system was necessary to store the requested

data in a centralized location. Other approaches are possible but not explored. The

content management system used is WordPress. The WordPress plugins made it possible

to submit data to the server and store data on the server. An additional SMTP server is

used to relay the data from the application to an email address. The SMTP relay services

used was SendGrid.

E. SUMMARY

This chapter explained the background for the engineering decisions made to

develop the tablet tasking application. The designed application is for an iPad using a tab-

based template from Sencha-Touch. Design decisions were made to make the application

user-friendly and some research was done to support these decisions. For the actual

implementation more research and input from end-users, the warfighters and emergency

responders, is recommended. The next chapter explains the satellite model that is acting

as the satellite being tasked by the TAST application, followed by a chapter that shows

the integration of the model and the TAST application.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

III. SPACECRAFT MODEL

A. OVERVIEW

A simulation of a CMG spacecraft is used to validate the image collection

segment of the tasking model. It is an important step in proving the concept before it is

tested on a real ground test bed. The outputs and signals of the simulation should be

reviewed to gain confidence that the tasking model will work and will not damage the

real hardware. The simulation trajectory for slewing must be validated to ensure that real

hardware can perform as directed. Other internal values, like torques and angular

momentum should also be observed to validate the model itself. Once the spacecraft

simulation has been fully vetted, the full scope of the tasking model can be tested on test

bed hardware.

The spacecraft model described in this chapter is split up into subsystems and is

described logically from the command processing through the torque command

generation to the control moment gyros, followed by the dynamics and kinematics. The

feedback control and disturbances are described afterward with an explanation of where

they are inserted into the model.

B. COMMAND PROCESSING

A simple MATLAB script retrieves the text files containing the coordinates and

timestamps of the image requests and converts them into slew commands based on the

location of the satellite. The MATLAB script first retrieves the location of the satellite

from a text file containing the latitude and longitude of the satellites nadir pointing

vector. The MATLAB code is available in the Appendix. The satellite’s altitude is pre-

programed into the SIMULINK model in the InitFcn Callbacks. The altitude variable,

horb, is defined as 681,000 meters, simulating the commercial vehicle GeoEye-1 (Miller

2011).

The slew-commands assume a flat earth model, shown in Figure 16. For small

slews (of a low orbiting satellite) from nadir the flat earth approximation is a sufficiently

good estimate for pointing for this application (Zipfel 2000, 368-370). The error in slew

 46

angle and centered coordinates on the ground would be absorbed by the overall swath of

the image detector.

Figure 16. Flat earth model and slew angle determination.

With the sub-satellite location  s s,  , and satellite heading (direction of travel),

the position of the target on a planar Earth is computed using right triangles (Hodgson

and Kar 2008). The equations to approximate the slew angle are shown in Equations (1)–

(4).

  f s 180

      (1)

  f s 180

      (2)

 1

orb

tan
h

   
  

 
 (3)

 1

orb

tan
h

   
  

 
 (4)

 47

The distance from the sub satellite point to the target location can be calculated by

estimating the distance between the two latitudes and longitudes. The initial latitude, s ,

is subtracted from the final latitude f , and converted into radians. The distance, for the

longitude is calculated similarly. The necessary angle of roll, , is calculated by taking

the inverse tangent of the change in longitude divided by the altitude of the satellite, horb.

Then, the necessary angle of pitch,  , is calculated by taking the inverse tangent of the

change in latitude divided by the altitude of the satellite, horb. This flat-earth slew model

introduces some error. The error was analyzed and the model was deemed sufficient for

illustrative purposes of the satellite model.

C. TRAJECTORY GENERATION

After the roll and pitch angles are determined for the requested coordinates, the

slew trajectory is generated. There is a wait time before the maneuver is executed to

observe that the spacecraft model is initially quiescent. The trajectory vector θ ︵t ︶ is

actually made up of three different equations for each maneuver. Each maneuver is six

seconds long and each equation is active for two seconds. A six second maneuver was

chosen based on a maximum 18° slew, which covers approximately two degrees in

longitude. The 18° slew would require a slew rate of three degrees per second.

DigitalGlobe advertises that WorldView-2 can slew at a rate of 3.5 degrees per second

(DigitalGlobe 2015). Therefore, the slew rate is not beyond industry standards and is

reasonable for this proof of concept, but it is significantly faster than the capability of

GeoEye-1. DigitalGlobe advertises that GeoEye-1 can slew 200 km on the ground in

about 20 seconds, versus WorldView-2 that can slew 200 km in half that time

(DigitalGlobe 2015).

In equation (5) max is derived from the maneuvering profile, and the first

equation controlling the first two seconds of the maneuver is shown in equation (6). For

the first two seconds the angular velocity is increased until max is reached. The following

two seconds are at a constant velocity and the remaining two seconds ramp the velocity

down. The equations for stage two and stage three of the each maneuver are seen in

 48

Equations (7) and (8), respectively. Additionally, the MATLAB code is available in the

Appendix.

 max 4


 



 
   
  

 (5)

For  start startt t t 2  

  2max

4 startt t c
    (6)

For    start startt 2 t t 4   

   max max2startt t c       (7)

For    4 6start startt t t   

      2

max start
max start 2

t t 4
t t 4 c c

4


 

 
      (8)

The equation for the velocity vector, , is the derivative of the trajectory vector at

each state of the maneuver. Equations (9), (10), and (11) show the angular velocity

equations used in the model. The calculated angular velocity is used within the model for

feed forward control (Sands 2012). Note that this angular velocity is related to the Euler

angles and not the angular velocity of the spacecraft body frame. Later, this angular

velocity is multiplied by the inertia matrix of the spacecraft and added to the spacecraft

velocity vector to calculate the total angular momentum.

For  start startt t t 2  

  max

2 startt t
   (9)

For    start startt 2 t t 4   

 max  (10)

For    4 6start startt t t   

 49

  max
max4

2 startt t
      (11)

The equation for the acceleration vector, , is the derivative of the velocity vector

at each state of the maneuver. Equations (12), (13), and (14) show the acceleration

equations used in the model. The calculated acceleration is used with angular velocity

vector within the model for feed forward control.

For  start startt t t 2  

 max

2

  (12)

For    2 4start startt t t   

 0  (13)

For    start startt 4 t t 6   

 max

2

   (14)

These equations are modeled in Simulink within a MATLAB function block; the

schematic is shown in Figure 17. The time, Euler angles, and desired slew time enter the

command processing block. Within the command processing block there is the index

generator and the position-velocity-acceleration function block. This function block can

handle an infinite number of consecutive maneuvers, but the index generator that feeds

this function block is designed for four maneuvers followed by a return to the starting

position.

 50

Figure 17. Command processing schematic.

The index generator for the spacecraft model is seen in Figure 18. The index

generator could be expanded to handle more maneuvers if necessary. The challenge in

passing a parameter argument to MATLAB function blocks is that only read-only

constants can be passed; the value cannot come from signals within the Simulink model

and must come from variables defined in the MATLAB base workspace. This presents a

challenge in dynamically setting an index variable to proceed to the next maneuver. It can

be done with data memory blocks and delays on the signal lines but incorporating the

memory blocks and signal delays was not done. However, the ability to carry forward the

position from one maneuver to the next was incorporated into the model through the

calculation of constants in the position equations (6), (7), and (8). The constants (xc) are

calculated using if statements and for-loops during each instantiation of the position

vector calculation. The MATLAB code for the calculation of constants can be found in

the Appendix. Therefore, the model implicitly assumes successful completion of the last

maneuver within the tolerances of the model.

 51

Figure 18. Index generator to queue four maneuvers.

A simple pitch maneuver representing a one degree change in latitude is shown in

Figure 19. The coordinate request (37.594788°, -121.876917°), and nadir position

(36.59496°, -121.876917°) is loaded into MATLAB, along with the start maneuver time

of five seconds. The top plot shows the commanded position versus time. The middle plot

shows the velocity versus time and the bottom plot shows the acceleration history.

 52

Figure 19. Example slew trajectory profile

Trajectory generation for a spacecraft influences the spacecraft slew behavior and

efficiency. The trajectory generator for the spacecraft model used here was designed for

smooth transitions to reduce instantaneous velocity changes for the CMGs (Sands 2012).

Other trajectories, including time-optimal control maneuvers, could be more effective and

efficient for the spacecraft model. Developing a better trajectory generator is discussed in

the future work section and is ultimately very important to the implementation of tablet

tasking. Assuming that the implementation of satellite tasking via a tablet computer

would lead to more imaging requests, the satellite’s efficiency would be penultimate in

providing a high-level of request fulfillment.

D. CONTROL LAW

The spacecraft model uses proportional-plus-derivative (PD) attitude control. PD

control can change the transient response by changing the damping ratio directly (M.

Driels 1996). The Euler angles from the spacecraft are subtracted from the desired Euler

 53

angles and input into the PD controller. The PD controller was tuned to a pK value of 50

and a dK value of 1000. The transfer equation for the PD Controller is from MATLAB,

and is shown in (15). In the compensator formula shown, P is the proportional variable,

D the derivative value, and N is the filter coefficient, where 100N  . The PD controller

selected is labeled with a 1 in Figure 20. The output from the PD controller feeds into the

CMG function block.

 1
1

1

N
P D

N
S

 
 
 

 
 

 (15)

The spacecraft model also uses feedforward control. The feedforward control uses

the commanded trajectory and sends a torque control signal directly to the system. The

feedforward controller is open-loop control and must be used in conjunction with the PD

control. The insertion of the feedforward control is labeled with a 2 in Figure 20. The

primary benefit of the feedforward controller is to reduce the time lag associated with the

feedback controller.

Figure 20. Control block diagram in SIMULINK.

 54

E. CMGS

The spacecraft model includes CMGs because this is the hardware configuration

of available test beds at NPS. The three-axis spacecraft simulator, (TASS2) and the Dark

Mirror testbed both utilize CMGs. Since the next obvious progression in proving this

concept is to use one of these available test beds the spacecraft simulator was designed

with CMGs. A secondary reason is because of the prominent use of CMGs on future

imaging spacecraft, including WorldView-1, WorldView-2 and WorldView-3.

The simulated CMGs are modeled as if they were arranged in a standard pyramid

as shown in Figure 21.

Figure 21. CMG configuration for spacecraft model from Wei, Space Vehicle
Dynamics and Control Second Edition 2008.

The total CMG angular momentum vector, in the spacecraft reference frame is

expressed in Equation (15). The four CMGs each with a skew angle,  , of 54.73

degrees and an initial gimbal angle of 0 degrees so that the angular momentum is zero at

the beginning of the simulation.

 55

1 2 3 4

1 2 3 4

1 2 3 4

cos sin cos cos sin cos

cos cos sin cos cos sin

sin sin sin sin sin sin sin sin

     
     

       

        
                    
              

h (15)

 The desired CMG torque, h , is determined using Equation (16). In this equation,

u is the commanded control torque input (from the control law), and ω the spacecraft

angular velocity vector.

    h u ω h (16)

Next, the gimbal rate command can be determined using the following equation

   1T T  δ A h A AA h   (17)

where

1 2 3 4

1 2 3 4

31 2 4

cos cos cos

sin cos cos cos cos

sin cos sin cos sin cos si

cos sin sin

sin

n cos

 


   
   
    


  

  
     

 

 



h
A

δ
 (18)

The SIMULINK CMG schematic used in the spacecraft model is shown in Figure

22. The function blocks execute the equations for pseudoinverse steering logic. The

Pseudoinverse block takes the matrix A and creates the Moore-Penrose Pseudoinverse,

(+A) that satisfies the identities shown in equation (17). The commanded control torque

input, u , enters the schematic from the left and the CMG torques are output to the

dynamics block of the spacecraft model described in the next section.

 56

Figure 22. CMG schematic from SIMULINK spacecraft model.

F. SATELLITE ATTITUDE DYNAMICS

The spacecraft attitude dynamics and kinematics are modeled to determine the

angular velocity and attitude of the satellite with respect to the earth. A schematic of the

dynamics is found in Figure 23.

Figure 23. Spacecraft dynamics schematic from SIMULINK spacecraft model

 57

Within the dynamics block of the SIMULINK model, the torque vector, T , is

received from the CMG subsystem. It is summed with spacecraft momentum, M , the

cross product of sH and ω , yielding sH , as seen in Equation (19) .

 s s  H H ω T (19)

The derivative of angular momentum vector, sH , is then integrated and multiplied by the

inverse of the inertia matrix invI (see Equation (20) to Equation (22)) (Sidi 2006). The

angular velocity vector is then passed to the kinematics block.

0.0085 0.0008 0.0003

0.0008 0.0069 -0.0014

0.0003 -0.0014 0.0097

 
   
  

invI (20)

x

s inv y

z





 
    
  

H I (21)

 s H Iω (22)

G. SATELLITE KINEMATICS

The rotational rate ,ω ,of the spacecraft (the body with respect to inertial) enters

the kinematics block of the model,  x y z, ,    and the orbitω of the orbit is subtracted

off (Equation (23)). The DCM will be defined later. The result is the angular rate of the

body with respect to orbit  1 2 3, ,    .

  
 3*
R

orbit

E

diagonal
h





ω DCM (23)

From spacecraft ω , with respect to orbit, the quaternions are calculated. The block

diagram of the kinematics can be seen in Figure 24.

 58

Figure 24. Spacecraft kinematics schematic from SIMULINK spacecraft model.

The quaternions are calculated to avoid singular situations (divide by zero errors)

inherent to an Euler angle attitude parameterization. The governing system of equations

for determining the quaternion of the satellite given ω is shown in Equation (24).

4 3 2 1 1

3 4 1 2 2

2 1 4 3 3

1 2 3 4

q q q q

q q q q1
q

q q q q2

q q q q 0





   
      
   
        

 (24)

The equation to convert from the quaternion system to the DCM is given by Equation

(25). Assuming the rotation from an arbitrary body axis to the principle axis is a yaw-

pitch-roll rotation, and the expanded DCM to convert to Euler Angles is given in

Equation (26).

     
     
     

2 2
2 3 1 2 3 4 1 3 2 4

2 2
2 1 3 4 1 3 2 3 1 4

2 2
3 1 2 4 3 2 1 4 1 2

1 2 2 2

2 1 2 2

2 2 1 2

    
 
     
 
     

DCM

q q q q q q q q q q

q q q q q q q q q q

q q q q q q q q q q

 (25)

)))

)))))

)))))

    

           

           



  

 

 
 
 
  

DCM

cos(cos(cos(sin(sin(

sin(sin(cos(cos(sin(sin(sin(sin(cos(cos(sin(cos(

cos(sin(cos(sin(sin(cos(sin(cos(sin(cos(cos(c

))

)))))))

)))) os()))

(26)

 59

The DCM is calculated from the quaternions, and the 3x3 matrix is an output of the

kinematics block. The block diagram of the quaternion calculations and direction cosine

matrix (DCM) can be seen in Figure 25.

Figure 25. Quaternion and direction cosine matrix SIMULINK diagram.

The output of the kinematics block goes into the disturbance blocks and is also

fed back into the controller. The disturbance blocks are selectable and can be turned on or

off. For the purposes of this satellite tasking demonstration the magnetic, aero, solar and

gravity gradient disturbances are turned off.

H. MODEL VERIFICATION AND VALIDATION

1. Command Processing and Trajectory Generation

The first step in verifying the spacecraft model was to compare the input latitudes

and longitudes to the roll and pitch angles. Once satisfied that the attitude vectors

generated by the model matched the hand calculations, they were compared to the

velocity and acceleration vectors. A plot showing this is located previously in Figure 19.

 60

2. CMG Model Verification

The next step was to verify the CMG block in the simulation. The commanded

trajectory was plotted next to the gimbal rates in Figure 26 to see what was happening

over time. The top plot shows the commanded trajectory from the first slew, and the four

plots below show the individual rates for the gimbals. A best effort was made to smooth

the trajectory, there are unrealistic gimbal rate changes seen in this plot. Instantaneous

rate changes occur primarily when the trajectory transitions from a quadratic slope to the

linear slope, approximately two and four seconds after the start of the maneuver (at

approximately 7 and 9 seconds on the plots). This is unrealistic for physical hardware but

the performance is suitable for the purposes of this simulation.

Figure 26. Commanded trajectory and the rates of the four gimbals.

 61

Following the analysis of the rates, the gimbal angles were plotted, see Figure 27. The

gimbal angles change accordingly to the rates seen in Figure 26. This step was to check

for sign errors and for realistic maneuvering of the gimbals.

Figure 27. Commanded trajectory and four gimbal angles.

3. Kinematic Model Verification

The rotational rate of the spacecraft, the body with respect to inertial, is plotted in

Figure 28. This figure shows the relationship between the spacecraft axis and roll pitch

and yaw. Velocity is seen in the x-direction when the spacecraft rolls, and it is seen in the

y-direction when the spacecraft pitches. For the example roll and pitch maneuver,

velocity is seen in x, y and z-directions. The velocity seen in the z-direction are a result of

coupling from the roll and pitch maneuvers.

 62

Figure 28. Rotational rate of the spacecraft plotted with the
commanded trajectory.

As part of verification and validation of the SIMULINK model the values of 1q ,

2q , 3q , and 4q from the dynamics block were squared and summed for each time-step of

the simulation. Plotting the value of this variable for the duration of the simulation

showed that the sum of the quaternions equaled one the entire time. A plot of the

quaternions is provided in Figure 29.

 63

Figure 29. Quaternion norm for the example maneuver.

A second validation and verification of the SIMULINK spacecraft model required

the plotting the simulated spacecraft angular momentum and the CMG angular

momentum. The expected result is that the sum of the angular momentums equals zero

due to conservation of angular momentum as seen in Figure 30.

.

Figure 30. Momentum conservation for example maneuver.

 64

I. SUMMARY

This chapter provided an overview of the spacecraft model used with the satellite

tasking application, details of the implementation, and examples of how the model was

validated. The model takes an input of coordinates from the TAST application and

processes them into roll, pitch and yaw angles. These angles are then made into Euler

angles for the spacecraft trajectory. The trajectory is followed by the spacecraft model as

shown in the plots throughout the chapter. The model also uses a PD and feedforward

control to reduce the time lag of the feedback controller. The validation section of this

chapter shows more plots to visualize how future implementation on the test bed would

appear. Finally, the analysis of the simulation showed that 1|| q || and | 0ω CMG| I + h ||

as required. The following chapter includes a demonstration of the iPad tasking

application (described in Chapter II) interacting with the spacecraft model of the previous

chapter.

 65

IV. DEMONSTRATION OF TABLET TASKING

A. INTRODUCTION

This chapter demonstrates the tasking application with the model spacecraft. The

user selects four sample points on the iPad, and sends a request for imagery products. The

request is processed and the model satellite slews to collect the requested areas. Data

from the slews is returned to the application on the iPad. The data returned is a

placeholder for image products that would be returned from a hardware testbed or actual

satellite.

B. SAMPLE REQUEST

As an example use case, four different points are requested through the TAST

application running on the iPad. A satellite image of the four points (B-E) and the sub-

satellite point (A) is presented in Figure 31. The coordinates and associated target labels

are indicated in Table 4.

Figure 31. Sample points requested for collection.

 66

Table 4. Sample coordinates and associated target labels for scenario
of Figure 31.

The requests are then downloaded from the server and loaded into the

MATLAB/SIMULINK project with an m-file script. The m-script file parses the request

data, calculates the slew angles, and launches the spacecraft simulation.

C. SAMPLE SPACECRAFT SIMULATION

A sample spacecraft simulation of the four requested maneuvers with a return to

the original position can be seen in Figure 32. The top graph in the figure is the

commanded attitude plotted against the time. Roll is represented by a red dashed line,

pitch by a solid green, and yaw with a dashed blue line. The start times for each

maneuver are depicted by the dotted lines seen at times 5, 18, 25, 33, and 44 seconds. At

five seconds the spacecraft position trajectory increases for the first two seconds,

followed by steady movement, and finishing the command with a slow-down leveling

off at the desired position, approximately nine degrees in roll and pitch. This position is

held until the second start time is reached at 18 seconds. At 18 seconds, the spacecraft is

commanded to roll approximately 18 degrees. This process continues for the next two

commands and the return to origin. The middle plot gives the velocity components

plotted verse time. At five seconds, the velocity increases until the maximum angular

velocity for the commanded position is reached. The velocity holds for two seconds and

then declines steadily over the next two seconds. The spacecraft is given time to settle

and is held steady between the requests to emulate imaging. The roll, pitch, and yaw

velocities are seen in the center plot of Figure 32. At around 35 seconds the maneuver

has a rate of five degrees per second, this is greater than the Worldview-2 max rate.

Number Target Label Latitude (deg) Longitude (deg) Slew Start Time (sec)

Starting Location 36.59496 ‐121.876917

1 Target B 37.594788 ‐120.876924 5

2 Target C 37.594788 ‐122.876924 18

3 Target D 35.594788 ‐122.876924 25

4 Target E 35.594788 ‐120.876924 33

 67

Below the velocities, the roll, pitch and yaw accelerations are also plotted. These three

plots depict how the requested coordinates, previously translated into slew angles, are

interpreted into instructions for the spacecraft attitude control system.

Figure 32. Output of spacecraft trajectory generator.

Table 5. Desired roll, pitch, and yaw angles for each target.

The commanded positions enter the CMG subsystem block and the gimbal rates

() for the CMGs are computed as per the feedback/feedforward logic described in

Chapter III. The commanded gimbal rates are shown in Figure 33. The top plot is the

commanded trajectory for reference, and the four plots below it are the rates for each one

of the four CMGs.

Number Target Label Roll (deg) Pitch (deg) Yaw (deg)

Starting Location 0 0 0

1 Target B 7.3797 9.2835 0

2 Target C ‐7.1427 9.2835 0

3 Target D ‐7.1427 ‐9.2202 0

4 Target E 7.3797 ‐9.2202 0

 68

Figure 33. Commanded trajectory and rates of the CMG gimbals.

Related to the gimbal rates are the gimbal angles. The gimbal angles for the four

maneuvers are shown in Figure 34. Again, the attitude command trajectory is shown in

the top plot for reference and the angles of the four CMGs are plotted below. The gimbal

angles are shown to demonstrate the gimbal angles exercised for these example

maneuvers. The angles seen in these maneuvers could serve as a starting point for the

development of hardware requirements if future work of incorporating a test bed is

executed.

 69

Figure 34. Commanded trajectory and gimbal angles for
four sample maneuvers

The rotational rate of the spacecraft, the rotation of the body with respect to the

inertial frame, is plotted in Figure 35. The figure shows the relationship between the

spacecraft axis and roll pitch and yaw. Velocity is seen in the x-direction when the

spacecraft rolls, and it is seen in the y-direction when the spacecraft pitches. When the

spacecraft rolls and pitches simultaneously coupling is seen is the z-direction. In this

simulation when the spacecraft is executing a large pitch maneuver a significant rate is

seen in the z-direction at about 28 seconds. This happens because the example spacecraft

has a dense inertia tensor, similar to the testbed. The spacecraft’s initial axis of rotation is

not entirely quiescent and when a large pitch maneuver is executed angular momentum is

conserved causing some rotation about the z-direction.

 70

Figure 35. Rotational rate of the spacecraft plotted with the
commanded trajectory

The Euler angle error is plotted in degrees in Figure 36. It is the commanded trajectory

with the feedback Euler angles from the dynamics block subtracted from it. The PD

controller drives the steady state error to zero after the slews complete and before the

imaging phase. The Euler angle errors demonstrate the accuracy of the slew maneuvers

and are related to the overall pointing error of the spacecraft. The next section discusses

the output of the spacecraft simulation.

 71

Figure 36. Euler angle error for the four slews with the PD controller.

D. OUTPUT DATA

Once the simulated image has been taken by the satellite, the data must be

downlinked to a terrestrial server or routed through communication satellites to the tablet.

In this proof of concept, the error associated with pointing is returned to the server

instead of images. The MATLAB code outputs the error values to a text file and the text

file is uploaded to the server so that it can be retrieved by the tablet application.

The first step in computing the pointing error in the simulation is to find the index

associated with the end of the maneuver. One needs to judge when a practical time would

be for the sensor to take the image; either immediately after the slew is completed or

sometime afterward. In this example, the slew is given six seconds to complete, and then

an additional two seconds of settling time. The reference trajectory and Euler angles are

compared at the selected index time. The pointing error is reported in both the Euler

angle error and the associated latitude and longitude coordinates. The latitude and

longitude coordinates are calculated according to Equations (27) and (28).

 tan()* orbh   (27)

 tan()* orbh   (28)

 72

The resulting coordinates are then compared the desired coordinates and using the

Haversine formula the distance between the two points on Earth is calculated, Equations

(29)-(32). The formula does not take into account the oblate shape of the Earth and uses a

value for the Earth’s radius of 6378 km (Robusto 1957). The oblate shape of the earth

affects the latitude more than the longitude. Most references use the geodetic latitude, and

since the difference between the geocentric latitude is slight it is also used in this thesis

(Bate, Mueller and White 1971).

 
 

f s

f s

  

  

  

  
 (29)

2 2

s fa sin cos *cos *sin
2 2

          
   

 (30)

a

c 2*arctan
1 a

 
    

 (31)

 Ed R *c (32)

This data is output to a text file named results.txt. A screenshot of the output file

is shown in Figure 37. The folder on the laptop is setup to be synched with the folder on

the server http://184.169.151.216/results/results.txt. From that location on the server the

PHP-script automatically pulls the current data into the file that the iPad application can

access and load for the user to view. This output file from MATLAB is analogous to the

image data that the spacecraft would actually send back to the user. The pointing error

comes from several sources, but the biggest contributor is from the model’s estimation of

distances and angles between the coordinates.

 73

Figure 37. MATLAB/SIMULINK data output file.

E. SUMMARY OF DEMONSTRATION

This chapter demonstrated an example request from the TAST application, the

processing of the request into commands for a model spacecraft, the execution of the

maneuvers on the simulated spacecraft and the return of data back to the user (in terms of

a data file that reports the imaging attitude errors). The four example image requests of

the user were chosen to represent a practical request to view the terrain (from satellite

imagery) in different directions. The scenario was meant to depict a user that wanted

near-real-time satellite imagery of the surrounding area. The locations were not

particularly far apart and show a reasonable use case. However, in running through the

scenario, the slew rates were in excess of the capabilities of commercial satellites

currently in orbit. This issue has many solutions. One solution would be to increase slew

times of the model, or put limits on the user requests. A more expansive solution would

be to increase the slew rate capabilities of future satellites. Either way this demonstration

of the TAST application provides a basis for pursuing the concept of giving the

warfighter a near-real-time view of enemies behind the hill at their request.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This presented a proof of concept application for a tablet tasking of a satellite.

The tablet application called TAST was coded to first submit requests to a server. Once

on the server, the requests are downloaded and the spacecraft simulation in SIMULINK

executes the requests. Once the imaging process is complete, a text file with error metrics

is created and uploaded back to the server for the application to retrieve. The text file is

intended to be analogous to the image file sent from the spacecraft back to the user.

Throughout the thesis there are areas of research and development that were only

cursorily addressed as they did not relate directly to proving the concept. The following

sections address areas that could be follow-on work in support of further developing the

tablet application.

B. FUTURE WORK

1. Spacecraft Model

There are many spacecraft models available in the public domain and for students.

The spacecraft model used to evaluate the tablet application was the best model that

could be created in the given timeframe. Improvements could be made to the model

created for this proof of concept, or the tablet application’s outputs could be input into

another tasking and spacecraft model.

One particular area that could be improved is the trajectory generation for the roll,

pitch and yaw commands. Different trajectories could be used to improve the

performance and reduce error. The trajectories used here were not optimized.

The SIMULINK model included coding for magnetic torque disturbances, along

with aero and solar disturbances. The torque created by the gravity gradient of the

spacecraft is also included. These disturbances would not have had an effect on the model

for the short period of time that the simulation was run to demonstrate the tasking

capabilities of the tablet. Therefore, the disturbances model was disabled. However,

 76

activating these disturbances could be useful for longer demonstrations and in providing a

higher fidelity model of the spacecraft dynamics.

The model also assumed perfect observers for the spacecraft Euler angles, but the

SIMULINK model includes switches to insert noisy sensors and a Luenberger Observer

if desired. Again, these additions to the model could be useful in future work and in

creating a higher fidelity, longer running model.

2. Tasking Application Architecture

The subject of human computer interaction is very broad and this thesis only

scratched the surface on the applicability of this topic to a satellite tasking application for

the warfighter. Further application development needs input from the end users and to be

tested for user-friendliness. Chapter II mentions that geocoding is supported in the

Google Maps API. Geocoding should be integrated into the application.

3. Integration with Existing Programs for Access and Dissemination of
Imagery

In Section C of Chapter I, there is a brief discussion of the existing NGA

programs that provide access and dissemination of imagery. These programs were

discussed for their possible integration with a tablet application. Further research into

these programs is needed to fully assess the prospect of providing a tablet user interface

into these systems.

4. Process Automation and Test Bed Application

This proof of concept worked from request to received data only with some

human intervention. The request data needed to be synched with the MATLAB directory

on the laptop. This was done with a FTP program called “Cyberduck.” This process could

probably be easily automated but did not need to be for this thesis. Additional

intervention was needed to synch the MATLAB output file with the server. Again, this

process could probably be easily automated, but was not necessary for this project. When

a tablet application is fully interfaced to a test bed there may no longer be a desire for

 77

complete automation. As in the operation of a real spacecraft system, a human-in-the-

loop may be warranted to double check the commands before applying them to real

hardware.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

APPENDIX

A. LESSONS LEARNED

1. APPLE

The iOS, Apple’s Mobile Operating system, is updated frequently; check

developer resources before updating software on the device used for development. Xcode

needs to have the proper SDKs to build and install the application on the device used for

development. Example: If Xcode 4.2.1 is installed on the Mac, and the iPad used for

development has software version 5.0, everything may work fine. However, iTunes may

be set to automatically download and update the iPad software. In this example situation,

the iPad is updated to version 5.1.1. Xcode 4.2.1 is able to build the application, but

cannot install the application on the iPad. The next version of Xcode may not be released

for a while and the best solution is to restore the iPad back to version 5.0. System updates

may take a long time to download and install. Alternatively, once the patch for the iOS

simulator comes out for XCode, it can be downloaded via the App Store. Even if the App

Store says the latest version is installed, check the XCode about information. The App

Store will say that it is installed on the computer, but if you check XCode preferences it

can be found in the Downloads tab and still needs to be installed in XCode.

2. MATLAB AND SIMULINK

For MATLAB 7.12.0 (R2011a) to properly compile SIMULINK in 64-bit

Windows one needs to enter “mbuild –setup” in the command window and “mex –setup”

in the command window. Microsoft Visual C++ 2010 Express ENU Setup, and Microsoft

Windows SDK 7.1 for Windows Setup must be installed.

a. MATLAB Function Block Editor

Many issues can arise when using vectors in MATLAB function blocks within

SIMULINK. One error states “Data 'variableName' (#83) is inferred as a variable size

matrix, while its specified type is something else.” If the function block is opened and

Edit Data/Ports is selected from the pull-down menu options for inheriting the data type

 80

or specifying the data type are available. Another way to adjust the size of a signal is to

use the “Reshape” block available in SIMULINK.

b. The Reshape Block in SIMULINK

Coding in SIMULINK can create problems with vector sizing. A couple of

“Reshape-Blocks” were used in order to force the data into the desired format for the next

operation. An example of this block can be found in the CMG subsystem after the

summation of u with the cross product of the integrated feedback and ω .

B. SIMULINK MODEL PROPERTIES INITFCN

% Simulation run parameters
SlewTime=6;

roll1=roll1*(pi/180); pitch1=pitch1*(pi/180); yaw1=yaw1*(pi/180);
%(radians)
roll2=roll2*(pi/180); pitch2=pitch2*(pi/180); yaw2=yaw2*(pi/180);
%(radians)
roll3=roll3*(pi/180); pitch3=pitch3*(pi/180); yaw3=yaw3*(pi/180);
%(radians)
roll4=roll4*(pi/180); pitch4=pitch4*(pi/180); yaw4=yaw4*(pi/180);
%(radians)
roll5=roll5*(pi/180); pitch5=pitch5*(pi/180); yaw5=yaw5*(pi/180);
%(radians)

%Constants
Re=6378e3; % Earth Radius (m)
mu=398601.2e9; % Product of the gravitational constant and the mass of
earth (m^3/s^2)
we=0.000072921158553; % Earth's angular velocity rad/solar sec
(Vallado)

% Spacecraft orbit
h=681000; % Orbit altitude meters
R=Re+h; % Orbit radius from center of earth
wo=sqrt(mu/(Re+h)^3); % Orbit angular velocity
incln=98*pi/180; % GeoEye Inclination
epsilon=12*pi/180;
alphao=0;
uo=0; nuo=0; % Start S/C beneath subsolar point
betasun=60; gamma=1.5;
a=0.545491852; b=0.314939867; c=0.704226952;
Area=[b*c a*c a*b]; % projected area~m^2 in body x,y,z directions
density=4.39e-14;
kpre=-9.9639/24/3600/180*pi*0; % nodal precession constant assumed zero
here

 81

wn=kpre*(Re/(Re+h))^3.5*cos(incln); % nodal precession (zero
eccentricity)
V=wo*(Re+h);
rho=asin(Re/(h+Re)); % earth angular radius
Cd=2.5; psun=4.5E-6; % Drag coefficient and solar pressure
constant~N/m^2
Kaero=-0.5*Cd*V^2; Psolar=2*psun; % constants for aero and solar torque
calculation
dL=[0.002 0.002 0.008]; % predicted distance between cp and cg
Kme=2.3390e-005;
mresid=[0 0 0.01]; % Spacecraft residual magnetic moment
M=mresid; % Magnetic unit dipole vector
K=7.943e15;

%Spacecraft Inertia conditions
Imo=[119.1259 -15.7678 -6.5486;
 -15.7678 150.6615 22.3164;
 -6.5486 22.3164 106.0288];

Iinv=inv(Imo); % Moment of inertia inverse goes in dynamics block

%Spacecraft initial Euler state angles and rates
phio=0;thetao=0;psio=0; %Initial Euler Angles
phidoto=0;thetadoto=0;psidoto=0; %Initial Euler Rates

%Calculation of initial quaternion (qo) and angular momentum (Ho)
s1=sin(phio/2);s2=sin(thetao/2);s3=sin(psio/2);c1=cos(phio/2);c2=cos(th
etao/2);c3=cos(psio/2);
q1o=s1*c2*c3-c1*s2*s3;
q2o=c1*s2*c3+s1*c2*s3; %Wie pg. 321
q3o=c1*c2*s3-s1*s2*c3;
q4o=c1*c2*c3+s1*s2*s3;
S1=sin(phio);S2=sin(thetao);S3=sin(psio);C1=cos(phio);C2=cos(thetao);C3
=cos(psio);
wxo=phidoto-psidoto*S2-wo*S3*C2;
wyo=thetadoto*C1+psidoto*C2*S1-wo*(C3*C1+S3*S2*S1);
wzo=psidoto*C2*C1-thetadoto*S1-wo*(S3*S2*C1-C3*S1);
 qo=[q1o q2o q3o q4o];
 Ho=Imo*[wxo wyo wzo]';
 norm(Ho)*1000;

% CMG Properties (in degrees)
SaturationHi=pi; %was originall pi
SaturationLo=-pi;
beta=[54.73,54.73,54.73]; beta=beta.*pi/180; % Skew angle in degrees
Gimbal0=[-30;90;-30]*pi/180; % Initial Gimbal angles for 0 H spin-up
w_wheel=2800*(2*pi/60); % Wheel Speed in RPM Converted to rad/s
Iwheel=0.0614*1.3558179483314;% Wheel Inertia in slug-ft^2 Converted
(exact) to kg.m^2
h_wheel=Iwheel*w_wheel; % CMG Wheel Angular Momentum

 82

C. LOADING APPLICATION REQUESTS INTO SIMULINK/MATLAB

% Courtney Guy
% Sample Maneuver

close all; clear all; clc;

Re=6378000; %m Earth Radius
h1=681000; %m altitude of GeoEye-1 (make sure this matches Callbacks)
Ce=2*pi*Re; %m Earth Circumference

coord=importdata('StartA.txt', ',');
lat=coord(1);
long=coord(2);
targetLat0=lat;
targetLong0=long;

target=importdata('TargetB.txt', ',');
targetLat=target(1);
targetLong=target(2);

targetLatrad=targetLat*(pi/180);
latrad=lat*(pi/180);

deltaLat=(targetLat-lat)*(pi/180);
deltaLatMeters=deltaLat*Re;
deltaLong=(targetLong-long)*(pi/180)
deltaLongMeters=deltaLong*(Re*cos(pi*targetLat/180));

vara=sin(deltaLat/2)*sin(deltaLat/2)+cos(latrad)*cos(targetLatrad)*sin(
deltaLong/2)*sin(deltaLong/2);
varc=2*atan2(sqrt(vara), sqrt(1-vara));
distance=Re*varc;

reach=sqrt(distance^2+h1^2);

rollrad=atan(deltaLongMeters/h1);
rolldeg=rollrad*(180/pi);

pitchrad=atan(deltaLatMeters/h1);
pitchdeg=pitchrad*(180/pi)

roll1=rolldeg;
pitch1=pitchdeg;
yaw1=0;
targettime1=target(3);
targetLat1=targetLat;
targetLong1=targetLong;

lat=targetLat; % assign last target to new
long=targetLong;

 83

% Import the next target and assign
target=importdata('TargetC.txt', ',');
targetLat=target(1);
targetLong=target(2);

targetLatrad=targetLat*(pi/180);
latrad=lat*(pi/180);

deltaLat=(targetLat-lat)*(pi/180);
deltaLatMeters=deltaLat*Re;
deltaLong=(targetLong-long)*(pi/180)
deltaLongMeters=deltaLong*(Re*cos(pi*targetLat/180));

vara=sin(deltaLat/2)*sin(deltaLat/2)+cos(latrad)*cos(targetLatrad)*sin(
deltaLong/2)*sin(deltaLong/2);
varc=2*atan2(sqrt(vara), sqrt(1-vara));
distance=Re*varc;

reach=sqrt(distance^2+h1^2);

rollrad=atan(deltaLongMeters/h1);
rolldeg=rollrad*(180/pi);

pitchrad=atan(deltaLatMeters/h1);
pitchdeg=pitchrad*(180/pi)

roll2=rolldeg;
pitch2=pitchdeg;
yaw2=0;
targettime2=target(3);
targetLat2=targetLat;
targetLong2=targetLong;

lat=targetLat; % assign last target to new
long=targetLong;

target=importdata('TargetD.txt', ',');
targetLat=target(1);
targetLong=target(2);

targetLatrad=targetLat*(pi/180);
latrad=lat*(pi/180);

deltaLat=(targetLat-lat)*(pi/180);
deltaLatMeters=deltaLat*Re;
deltaLong=(targetLong-long)*(pi/180)
deltaLongMeters=deltaLong*(Re*cos(pi*targetLat/180));

 84

vara=sin(deltaLat/2)*sin(deltaLat/2)+cos(latrad)*cos(targetLatrad)*sin(
deltaLong/2)*sin(deltaLong/2);
varc=2*atan2(sqrt(vara), sqrt(1-vara));
distance=Re*varc;

reach=sqrt(distance^2+h1^2);

rollrad=atan(deltaLongMeters/h1);
rolldeg=rollrad*(180/pi);

pitchrad=atan(deltaLatMeters/h1);
pitchdeg=pitchrad*(180/pi)

roll3=rolldeg;
pitch3=pitchdeg;
yaw3=0;
targettime3=target(3);
targetLat3=targetLat;
targetLong3=targetLong;

lat=targetLat; % assign last target to new
long=targetLong;

% Import the next target and assign
target=importdata('TargetE.txt', ',');
targetLat=target(1);
targetLong=target(2);

targetLatrad=targetLat*(pi/180);
latrad=lat*(pi/180);

deltaLat=(targetLat-lat)*(pi/180);
deltaLatMeters=deltaLat*Re;
deltaLong=(targetLong-long)*(pi/180)
deltaLongMeters=deltaLong*(Re*cos(pi*targetLat/180));

vara=sin(deltaLat/2)*sin(deltaLat/2)+cos(latrad)*cos(targetLatrad)*sin(
deltaLong/2)*sin(deltaLong/2);
varc=2*atan2(sqrt(vara), sqrt(1-vara));
distance=Re*varc;

reach=sqrt(distance^2+h1^2);

rollrad=atan(deltaLongMeters/h1);
rolldeg=rollrad*(180/pi);

pitchrad=atan(deltaLatMeters/h1);
pitchdeg=pitchrad*(180/pi)

roll4=rolldeg;

 85

pitch4=pitchdeg;
yaw4=0;
targettime4=target(3)
targetLat4=targetLat;
targetLong4=targetLong;

lat=targetLat; % assign last target to new
long=targetLong;

% Return to Start
target=importdata('StartA.txt', ',');
targetLat=target(1);
targetLong=target(2);

targetLatrad=targetLat*(pi/180);
latrad=lat*(pi/180);

deltaLat=(targetLat-lat)*(pi/180);
deltaLatMeters=deltaLat*Re;
deltaLong=(targetLong-long)*(pi/180)
deltaLongMeters=deltaLong*(Re*cos(pi*targetLat/180));

vara=sin(deltaLat/2)*sin(deltaLat/2)+cos(latrad)*cos(targetLatrad)*sin(
deltaLong/2)*sin(deltaLong/2);
varc=2*atan2(sqrt(vara), sqrt(1-vara));
distance=Re*varc;

reach=sqrt(distance^2+h1^2);

rollrad=atan(deltaLongMeters/h1);
rolldeg=rollrad*(180/pi);

pitchrad=atan(deltaLatMeters/h1);
pitchdeg=pitchrad*(180/pi)

roll5=rolldeg;
pitch5=pitchdeg;
yaw5=0;
targettime5=targettime4+6+10;
targetLat5=targetLat;
targetLong5=targetLong;

lat=targetLat; % assign last target to new
long=targetLong;

%%
rpyt=[roll1, roll2, roll3, roll4, roll5; pitch1 pitch2, pitch3, ...
 pitch4, pitch5; yaw1, yaw2, yaw3, yaw4, yaw5; targettime1, ...
 targettime2, targettime3, targettime4, targettime5];

rpyt(1:3,5) = -sum(rpyt(1:3,1:4),2);
%Corrects "rounding error"

 86

rpytc=[0,roll1, roll2, roll3, roll4, roll5; 0,pitch1 pitch2, pitch3,
...
 pitch4, pitch5; 0, yaw1, yaw2, yaw3, yaw4, yaw5; 0, targettime1,
...
 targettime2, targettime3, targettime4, targettime5;
 targetLat0, targetLat1,targetLat2,targetLat3,targetLat4,targetLat5;
 targetLong0,
targetLong1,targetLong2,targetLong3,targetLong4,targetLong5];
rpytc(1:3,6) = rpyt(1:3,5);
rpytc
%%

 87

D. POSITION, VELOCITY AND ACCELERATION TRAJECTORY

function [tVec, wVec, w_dotVec] = fcn(tVecOld, time, rpy, ~, index)

wVec=zeros(3,1);
w_dotVec=zeros(3,1);
tVec=zeros(3,1);
constant=zeros(3,1);

if time < rpy(4, 1)
 tVec=[0;0;0];
 wVec=[0;0;0];
 w_dotVec=[0;0;0];
end

if time >= rpy(4, index) && time < (rpy(4, index)+2)
 if index > 1
 for index2=1:1:index-1;
 constant=(rpy(1:3, index-index2))+constant;
 end
 end
 wmax=(rpy(1:3, index))./4;
 tVec=(wmax./4).*(time-rpy(4, index)).^2+constant;
 wVec=(wmax./2).*(time-rpy(4, index));
 w_dotVec=wmax./2;
 if wmax(1)==0
 tVec(1)=constant(1);
 end
 if wmax(2)==0
 tVec(2)=constant(2);
 end
end

if time >= (rpy(4, index)+2) && time < (rpy(4, index)+4)
 if index > 1
 for index2=1:1:index-1
 constant=(rpy(1:3, index-index2))+constant;
 %constant=(rpy(1:3, index-index2))./2+constant;
 end
 end
 wmax=(rpy(1:3, index))./4;
% tVec=2.*wmax.*(time-(rpy(4, index)+2))+constant;
 tVec=wmax.*(time-(rpy(4, index)+2))+wmax+constant;
 wVec=wmax;
 w_dotVec=[0;0;0];
 if wmax(1)==0
 tVec(1)=constant(1);
 end
 if wmax(2)==0
 tVec(2)=constant(2);
 end
end

 88

if time >= (rpy(4, index)+4) && time < (rpy(4, index)+6)
 if index > 1
 for index2=1:1:index-1
 constant=(rpy(1:3, index-index2))+constant;
 end
 end
 wmax=(rpy(1:3, index))./4;
% tVec=(wmax./2).*(time-(rpy(4, index)+4)).^2+2*wmax+constant; % This
% one works but is not the integral of the velocity vector.
% tVec=wmax.*(2*(time-(rpy(4, index)+4)))-(((wmax.*(time-(rpy(4,
index)+4))).^2)/2)+constant;
% tVec=wmax.*(2*(time-(rpy(4, index)+4)))-(((wmax.*(time-(rpy(4,
index)+4))).^2)/2)+2.*wmax+constant;
% tVec=wmax.*(2*(time-(rpy(4, index)+4)))-(((wmax.*(time-(rpy(4,
index)+4))).^2)/2)+2.*wmax
% tVec=2.*(time-(rpy(4, index)+4)).*wmax-((((time-(rpy(4,
index)+4)).^2).*wmax)./(4))+2.*wmax+constant;
 constant2=3.*wmax;
 tVec=(time-(rpy(4, index)+4)).*wmax-((((time-(rpy(4,
index)+4)).^2).*wmax)./(4))+constant+constant2;
 wVec=-(wmax./2).*(time-(rpy(4, index)+4))+wmax;
 w_dotVec=-wmax./2;
 if wmax(1)==0
 tVec(1)=constant(1);
 end
 if wmax(2)==0
 tVec(2)=constant(2);
 end
end

if index >1 && time < rpy(4, index)
 for index2=1:1:index-1
 constant=(rpy(1:3, index-index2))+constant;
 end
 tVec=constant;
end

 89

LIST OF REFERENCES

Access Intelligence LLC. 2010. “DigitalGlobe Issues WorldView-3 Development Deals
to Ball Aerospace, ITT.” Satellite Today, September 2.

———. 2011. “NGA Expands DigitalGlobe EnhancedView Contract.” Satellite Today,
October 06.

Air Land Sea Application Center. 2004. UHF TACSAT/DAMA. Multi-Service Tactics
Techniques and Procedures, Fort Monroe, Virgina: U.S. Army Training and
Doctrine Command.

Apple. 2012. Developer–iOS Provisioning Portal. September 7.
https://developer.apple.com/ios/my/provision/index.action.

Apple Inc. 2012. “iOS Developer Library.” iOS Human Interface Guidelines. August 31.
http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptu
al/MobileHIG/Introduction/Introduction.html#//apple_ref/doc/uid/TP40006556.

Bate, Roger R., Donald D. Mueller, and Jerry E. White. 1971. Fundamentals of
Astrodynamics. Mineola, NY: Dover Publications.

Bergin, Chris. 2012. NASA Spaceflight. August 9, 2012.
http://www.nasaspaceflight.com/2012/08/usaf-kestrel-eye-1-spacecraft-falcon-9-
2013.

Birk, Ronald J, Thomas Stanley, Gregory I. Snyder, Thomas A. Hennig, Matthew M.
Fladeland, and Fritz Policelli. 2003. “Government programs for research and
operational uses of commercial remote sensing data.” Remote Sensing of
Environment 88: 3–16.

Blocker, Allen, Chance Litton, Jason Hall, and Marcello Romano. 2008. “TINYSCOPE -
The Feasibility of 3-Axis Stabilized Earth Imaging CubeSat from LEO.”

Crampton, Jeremy W., Susan M. Roberts, and Ate Poorthuis. 2011.”The New Political
Economy of Geographical Intelligence.” Annals of the Association of American
Geographers. 196–21.

Cutshaw, Jason B. 2012. EVR2EST helps firefighters during wildfires. Redstone Arsenal,
Ala.

Cutshaw, Jason B. 2012. SMDC employee helps nation prepare for emergencies.
Redstone Arsenal, Ala.

Defense Daily. 1999. “Commercial imagery to provide commanders rapid pictures.” 1.

 90

DigitalGlobe. 2015. “QuickBird Data Sheet.” DigitalGlobe. June 1.
http://www.digitalglobe.com.

———. 2015. Satellite Imagery and Geospatial Information Products. March 23.
www.digitalglobe.com.

Driels, M. 1996. Linear Control Systems Engineering. San Francisco: McGraw-Hill.

Eisler, Peter. 2008. “Google Earth Helps Yet Worries Government.” USA Today,
November 7.

Engvall, Christian. 2012 Christian Engvall Blog.
http://www.christianengvall.se/phonegap-and-google-maps.

Frakes, Dan. 2012. Macworld. August 5.
http://www.macworld.com/article/1142125/iphonedevcamp3.

GeoEye. 2012 “GeoEye.” GeoEye. March 1.
http://www.geoeye.com/CorpSite/assets/docs/brochures/GeoEye-
1_Fact_Sheet.pdf.

Gildea, Kerry. 2002. “Lawmakers put pressure on DoD to devise commercial imagery
strategy.” June 6. C4I News.

Gillett, Frank. 2012. “Why Tablets Will Become Our Primary Computing Device.”
Forrestor Blog. April 23. Cambridge, Massachusetts.

Globalstar. 2011. “GSP-1720 satellite data and voice module.” Globalstar. August 29.
http://www.globalstar.com/shop/index.php?main_page=product_info&cPath=23
&products_id=81.

Google. 2012. Android Developer Tools | Android Developers. September 9.
http://developer.android.com/tools/help/adt.html.

———. 2012. Google Earth projection - Google Earth Help. June 2.
http://support.google.com/earth/bin/answer.py?hl=en&answer=148110.

Hartmetz, James A. 2001. “Eagle Vision - Exploiting Commercial Satellite Imagery.”
The DISAM Journal, 22–25.

Hinckley, Ken, Michel Pahud, and Bill Buston. 2010 “Direct Display Interaction via
Simultaneous Pen and Multi-touch Input.” Society for Information Display (SID)
Symposium Digest of Technical Papers 41, no. 1: 537–540.

Hodgson, Micheal E., and Bandana Kar. 2008. “Modeling the Potential Swath Coverage
of Nadir and Off-Nadir Pointable Remote Sensing Satellite-Sensor Systems.”
Cartography and Geographic Information Science 35, no. 3: 147–156.

 91

Keller, John. 2012. “DARPA Seeks to Develop Small Reconnaissance Satellites That are
Cheaper to Build than UAVs.” Military and Aerospace Electronics. June: 6–8.

KMI Media Group. 2009 “Kestrel Eye Update.” Military Space & Missile Forum 2, no.
5.

Krebs, Gunter. 2012 Gunter's Space Page. June 10.
http://space.skyrocket.de/doc_sdat/orbview-3.htm.

Kukulska-Hulme, Agnes, and John Traxler. 2005. Mobile Learning: A Handbook For
Educators and Trainers. New York: Taylor and Francis, Inc.

Lambeth, Benjamin. 2001. Air Power Against Terror: America's Conduct of Operation
Enduring Freedom. Santa Monica: RAND Corporation.

LeRoux, Brian. 2012. PhoneGap Blog. March 19.
http://phonegap.com/2012/03/19/phonegap-cordova-and-what%E2%80%99s-in-
a-name.

Litton, C. Chance. 2009. “TINYSCOPE: The Feasiblity of a Tactically Useful Earth-
Imaging Nanosatellite and a Preliminary Design of the Optical Payload.” Master's
thesis. Monterey, CA: Naval Postgraduate School.

Maathuisa, B. H. P., and J.L. van Genderena. 2004. “A review of satellite and airborne
sensors for remote sensing based detection of minefields and landmines.”
International Journal of Remote Sensing. 5201–5245.

McLaughlin, Col. K. 2007. “Operationaly Responsive Space Office - Director's Brief.”
Responsive Space. July.
http://www.responsivespace.com/ors/reference/McLaughlin.pdf.

Mian, Salman, Jose Teixeira, and Eija Koskivaara. 2011. “Open-Source Software
Implications in the Competitive Mobile Platforms Market.” Building the e-World
Ecosystem, 110-128. Boston: Springer.

Miller, Steve. 2011. “GeoEye Presentation to The National Guard Space & Missile
Defense Symposium.” Fourth Annual National Guard Space & Missile Defense
Symposium. Colorado Springs: Colorade National Guard. 1–40.

Molich, Rolf, and Jakob Nielsen. 1990. “Improving a Human-Computer Dialogue.”
Communications of the ACM 33, no. 3: 338-348.

National Security Space Office. 2007. Plan for Operationally Responsive Space. Report
to Congressional Defense, Washington, DC: Department of Defense.

Oetting, John D., and Tao Jen. 2011. “The Mobile User Objective System.” Johns
Hopkins APL Technical Digest: 103–112.

 92

Office of Geospatial-Intelligence Management. 2006. Geospatial Intelligence (GEOINT)
Basic Doctrine. Doctrine, Bethesda, MD: National Geospatial-Intelligence
Agency.

Oulasvirta, Antti, and Joanna Bergstrom-Lehtovirta. 2011. “Ease of Juggling: Studying
the Effects of Manual Multitasking.” Proceedings of the 2011 Annual Conference
on Human factors in Computing Systems. New York, NY: ACM. 3103–3112.

Raytheon. 2015. Raytheon. February 4.
http://www.raytheon.com/news/feature/rms13_seeme.html.

Robusto, C. C. 1957. “The Cosine-Haversine Formula.” The American Mathematical
Monthly 64, no. 1: 38–40.

Sands, Timothy. 2012. “Lecture 7.” February 14. AE4901 Spacecraft Attitude DYnamics
and Control. Monterey, CA: Sakai CLE.

Satellite Imaging Corporation. 2015. IKONOS Satellite Sensor. January 22.
http://www.satimagingcorp.com/satellite-sensors/.

Sencha Inc. 2012. “Building your First App.” Sencha Incorporated. August 14.
http://docs.sencha.com/touch/2-0/#!/guide/first_app.

Shankland, Shankland. 2008. Google to buy GeoEye satellite imagery. August 29.
http://news.cnet.com/8301-1023_3-10028842-
93.html?part=rss&subj=news&tag=2547-1023_3-0-5.

Sidi, Marcel J. 2006. Spacecraft Dynamics & Control. New York: Cambridge University
Press.

USASMDC/ARSTRAT/Public Affairs Office. 2010. “Kestrel Eye Fact Sheet.” U.S.
Army Space & Missile Defense Command. February 2.
http://www.smdc.army.mil/FactSheets/KestrelEye.pdf.

Vance, Leonard, Rigel Woida, and Chad Spalt. 2014. “Adaptation of Manufacturing to
Mass Production of Nanosatellites.” Small Satellite Conference. Utah.

ViaSat. 2012. “ViaSat.” SurfBeam 2 Pro Portable Terminal.
https://www.viasat.com/sites/default/files/legacy/survbeam2_ProPortable_Datash
eet_019_web.

Wasserman, Anthony I. 2010. “Software engineering issues for mobile application
development.” FoSER '10 Proceedings of the FSE/SDP workshop on Future of
software engineering research. New York: ACM. 397–400.

 93

Wei, Bong. 2008. “Rotational Maneuvers and Attitude Control.” In Space Vehicle
Dynamics and Control Second Edition, by Bong Wei, 403-482. Blacksburg, VA:
American Institute of Aeronautics and Astronautics, Inc.

Weisstein, Eric W. 2012. Hermitian Matrix. March 5.
http://mathworld.wolfram.com/HermitianMatrix.html.

Wentk, Richard. 2011. Xcode 4. Indianapolis: Wiley Publishing, Inc.

Zhon, Jinghua. 2012. “PID Controller Tuning, a Short Tutorial.” June.
http://wwwdsa.uqac.ca/~rbeguena/Systemes_Asservis/PID.

Zipfel, Peter H. 2000. Modeling and Simulatio of Aerospace Vehicle Dynamics. Reston:
American Institute of Aeronautics and Astronautics, Inc.

 94

THIS PAGE INTENTIONALLY LEFT BLANK

 95

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

