
Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 



 

1 

 

  

June 2015 

DSE-R-1501 

Illuminating Tradespace Decisions Using Efficient 
Experimental Space-Filling Designs for the 
Engineered Resilient System Architecture 

OPERATIONS RESEARCH CENTER 

United States Military Academy 

West Point, New York 10996 

Prepared For 

US Army Engineered Research Development Center 
Vicksburg, Mississippi  

Prepared By 

LTC Alex MacCalman, PhD 

2LT Hyangshim Kwak 
Ms. Mary McDonald 

Mr. Steve Upton 
CDT Coleman Grider 

CDT Robert Hill 
CDT Hunter Wood 

LTC Paul Evangelista, PhD 
 

Approved for public release; distribution is unlimited. 



 

2 

Contents 
Executive Summary ....................................................................................................................................... 5 

1. Introduction 8 

2. Technical Report Organization .................................................................................................................. 9 

3. Background 10 

3.1. Process versus Data Driven Approach ............................................................................................. 10 

3.2. Engineered Resilient System Architecture ....................................................................................... 12 

4. Research Contributions ........................................................................................................................... 14 

5. Representative Use Case Description ...................................................................................................... 15 

5.1. Agent-Based Model Overview .......................................................................................................... 15 

5.2. Simulation Scenarios ......................................................................................................................... 18 

5.3. Model Inputs ..................................................................................................................................... 19 

5.4. Model Outputs .................................................................................................................................. 21 

6. Model Based System Engineering Approach ........................................................................................... 22 

6.1. System Modeling Language (SysML) ................................................................................................ 23 

6.2. External Model Integration .............................................................................................................. 31 

7. Building Statistical Metamodels using Simulation Experimental Designs ............................................... 34 

7.1. Statistical Design of Experiments Introduction ................................................................................ 35 

7.2. Understanding Complex Behavior ................................................................................................... 36 

7.2.1. Design Drivers ............................................................................................................................... 38 

7.2.2. Synergies/Interactions .................................................................................................................. 39 

7.2.3. Diminishing or Increasing Rates of Change ................................................................................... 40 

7.2.4. Identifying Thresholds with Partition Trees .................................................................................. 41 

7.3. Predicting Simulation Model Outputs ............................................................................................. 42 

7.3.1. Stepwise Regression ..................................................................................................................... 42 

7.3.2. Neural Nets ................................................................................................................................... 43 

7.3.3. Boosted Trees ............................................................................................................................... 44 

7.3.4. Bootstrap Forest ........................................................................................................................... 44 

7.3.5. Model Comparison ........................................................................................................................ 45 

7.4. Experimental Design Types .............................................................................................................. 48 

7.5. Correlation and space-filling design characteristics ........................................................................ 49 

7.6. Traditional and Space-Filling Designs ............................................................................................... 51 



 

3 

7.7. State-of-the-art space-filling designs ............................................................................................... 53 

7.8. Use Case Experimental Design ......................................................................................................... 54 

8. Technical Requirements for High Performance Computing Clustering ................................................... 54 

8.1. Select System Model Element Design Variables .............................................................................. 55 

8.2. Select Analytical Models, Develop Baseline Scenarios, and Map Design Variables to Model Inputs

 ................................................................................................................................................................ 56 

8.3. Create Experimental Design ............................................................................................................. 57 

8.4. Generate a Study File that Specifies which Model Input Parameters to Change ............................ 58 

8.5. Generate Excursion Files for Each Experiment (row in the design matrix). .................................... 58 

8.6. Execute HPC Simulation Runs .......................................................................................................... 59 

8.7. Post-Process Output Files ................................................................................................................ 59 

8.8. Perform Statistical Metamodeling ................................................................................................... 60 

8.9. ERS Tradespace Visualization ........................................................................................................... 60 

9. Simulation Analysis and Tradespace Visualization .................................................................................. 61 

9.1. Exploratory Analysis ......................................................................................................................... 61 

9.2. Dashboard Tradespace Visualization ............................................................................................... 70 

9.2.1. Prediction Profiler Dashboard Component .................................................................................. 71 

9.2.2. Contour Profiler Dashboard Component ...................................................................................... 74 

9.2.3. Monte Carlo Filtering Component ................................................................................................ 75 

9.2.4. Viable Variant Exploration ............................................................................................................ 76 

10. Multiple Objective Decision Analysis ............................................................................................. 84 

10.1. Qualitative Functional Objective Value Hierarchy .......................................................................... 85 

10.2. Quantitative Functional Objective Value Model ............................................................................ 87 

10.2.1. Natural Single-Dimensional Value Functions............................................................................... 88 

10.2.2. Constructed Single Dimensional Value Function ......................................................................... 89 

10.2.3. Swing Weights for Value Measure Tradeoffs .............................................................................. 91 

10.2.4. Multi-Objective Value Function ................................................................................................... 93 

10.3. Value and Cost Tradeoff Analysis ....................................................................................................... 94 

11. Conclusions and Future Work ............................................................................................................. 102 

11.1. MBSE Methodology Review .......................................................................................................... 102 

11.2. Technical Gap Bridges ................................................................................................................... 104 

11.3. Concluding Remarks ..................................................................................................................... 106 



 

4 

11.4. Future Research ............................................................................................................................ 106 

References …………………………………………………………………………………………………………………………………..108 

Appendix A: Data Farming Instrictional Manual ....................................................................................... 111 

Appendix B: Design Creator Front-End User Manual ............................................................................... 167 

Appendix C: JMP Dashboard Building Instructions ……………………………………………………………………………174 

 

  



 

5 

Executive Summary 
This technical report proposes an experimental design Model-Based System Engineering 

methodology that illuminates system design trade decisions in order to clearly identify key tradable 

variables and narrow the selection of viable system variants.  

In today’s complex environment, the DoD needs systems that are resilient to change and are 

effective across a wide variety of uncertain futures. The current Department of Defense (DoD) 

Acquisition lifecycle is a process driven approach that impedes the ability to rapidly develop resilient 

systems. The work-force is stove-piped, the data used to inform design decisions are lost in the process, 

and there is a lack of flexibility to adapt to changing requirements and mission contexts. Requirements 

are generally frozen early in the process making the difficult to change that result in inefficient use of 

time, resources and money. To address the resiliency challenge, the US Army Engineer Development 

Center (ERDC) is developing an Engineered Resilient System (ERS) Architecture that will leverage 

information technology to inform better manufacturing options during all stages of the lifecycle. The 

intent is to develop an open architecture that connects existing tools, information, and data in a 

common framework that is non-proprietary, platform agnostics, compatible with legacy systems, and 

can be shared among a wide variety of users.  The ERS architecture provides the means to incorporate 

previous design successes, integrate models, generate the data needed to visualize the tradespace, and 

create a shared digital thread of design decisions accessible to a community of users throughout the 

system lifecycle.  

A system design involves hundreds of tradable variables that must be balanced in order to develop a 

viable system solution that meets the demands of the stakeholders and performs effectively. 

Understanding the key tradable variables that have the most influence on a system design problem is 

critical during the conceptual design of a system. A tradeoff is a compromise between objectives such 

that improving one requires that we degrade another. Tradeoff decisions are based on data, 

information, and knowledge acquired from simulation model outputs, developmental and operational 

testing, subject matter expertise, and legacy system architectures. Therefore, in order to effectively 

make quality decisions while minimizing the impact of requirement changes, DoD needs a data driven 

rather than a process driven approach to design new systems. The end result will be better informed 

decisions, faster engineering, less rework, and allow for a wider range of alternative solutions to 

progress through the phases without freezing the requirements too early.  

An effective way to manage the design of a system is to use the Model-Based System Engineering 

(MBSE) approach. MBSE is a new paradigm that supports the specification, analysis, design, and 

verification of a complex system while using an integrated system model with a dedicated tool. MBSE is 

gaining popularity and is expected to become a common state of practice in the near future. The 

integrated system model effectively manages auditable records of a system design by defining a system 

element once to be used throughout the model.  As a result, once a change is made to an element in the 

integrated system model, the dedicated tool will instantly identify how the change will impact the 

system. The MBSE approach uses a system modeling language (SysML) to express the structural and 

behavior elements of a system. A system’s structure is defined as a set of structural blocks with value 

properties that define the system’s configurations. The settings of the collection of value properties 

characterize each system alternative. A limitation of SysML is that they only provide static diagrams. In 
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order to conduct sophisticated engineering analysis, we must incorporate external models and 

simulations. 

During the system lifecycle we use a variety a models and simulations that represent different 

domains; these domains include operational effectiveness, physical feasibility, life-cycle costing, 

manufacturability, reliability and many more. The inputs to these models and simulations represent the 

system value properties that define the alternative configurations. The value properties that have the 

highest impact on the model output performance are the system design drivers we are most interested 

in. Currently, there is a technical gap with regard to our ability to untangle the system design drivers 

when there is a high volume of multi-dimensional data.  The general state-of-practice is to perform 

brute force simulation runs on a small set of baseline and excursions that do not effectively explore the 

system alternative design space. There is a lot of time, money, and resources devoted to building 

complicated simulation models and we do not use them to the maximum extent possible if we only 

compare a few excursions from the baseline. The most effective way to determine the system design 

drivers is to leverage the method of statistical experimental design. The field of design of experiments 

(DOE) allows the analyst to identify which model inputs effects the outputs of interest. DOE provides a 

number of benefits that can assist in the design of a system. We can clearly identify the model inputs 

that affect the output responses, identify interactions that may exist between model inputs, uncover 

detailed insight into the model’s behavior, examine the modeling assumption implications, frame the 

questions when we do not know what to ask, challenge or confirm our expectation of directional model 

input effects and their relative importance, and uncover problems with simulation program logic.  

In order to untangle the system design drivers across several different domain models, our 

methodology uses statistical metamodeling to approximate the simulations’ behavior. A statistical 

metamodel is an empirical model developed from either observational or experimental design data that 

relates a set of inputs to an output. We build metamodels using a number of statistical methods that 

include stepwise regression, boosted trees, neural nets, and bootstrap forest. Generally, regression 

metamodels are excellent at describing individual model input impacts on model outputs while the 

other metamodeling methods are better able to predict effectiveness by interpolating in-between 

simulated points.  Ultimately, the analyst must understand which methods to apply for either 

understanding or predicting model behavior.   

To generate the data needed to fit a metamodel, we advocate using a new class of space-filling 

experimental designs known as the Nearly Orthogonal Latin hypercube and nearly balanced design. 

These designs are efficient, minimize the correlations between columns, can handle continuous, 

discrete, and categorical data, and effectively explore the interior of the experimental design region. 

These new designs allow us to determine the driving factors, detect interactions between input 

variables, identify points of diminishing or increasing rates of return, and find thresholds or change 

points in localized areas.  These insights can be incorporated within the system integrated model as 

derived requirements or rationale for design decisions. 

We create a dynamic dashboard using the collection of metamodels to help visualize multi-

dimensional model output landscape using horizontal and vertical cross sections. These cross sections 

allow us to clearly identify the tradable variables and find viable system variants that met the desired 

capabilities across multiple viewpoints and are physically feasible. We can easily visualize the model 

output landscape with a surface plot when there are only three dimensions.  Because there are often 
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several more dimensions in a systems design problem we developed a dashboard that visualizes 

horizontal and vertical cross sections of the multi-dimensional model output landscape. We use a 

contour profiler which is a two dimensional projection that shows a horizontal cross section of a model 

output landscape within the experimental design region. Visualizing the selected projections allows the 

user to interactively explore how multiple model outputs depend on two selected model inputs.  The 

contour profiler allows us to set limits on the model outputs to help define infeasible and feasible 

regions; the shape of these shaded regions is dependent on the functional form of the multi-

dimensional metamodel.  We can also visualize the model output landscape using prediction profilers 

that show vertical cross sections. These vertical projections show each model input’s impact of the 

model output.  

The dashboard colors each vertical cross section such that green indicates a positive impact to the 

model output, red indicates a negative impact, white indicates a model output with a target value, and 

black indicates no impact. Additionally, there is a color gradient applied so the cells with a higher impact 

are darker and the cells with a lower impact are lighter. These colors allow us to clearly identify the key 

tradable variables; when there is a color contrast between green and red within a model input’s vertical 

cross section, we must make a trade by accepting an improvement in one model output while accepting 

a degradation in another. Because the model input vertical cross sections are sorted from left to right 

based on their overall impact across all model outputs, we can clearly identify which model inputs have 

the highest impact on the design problem.  

In addition to identifying the key tradable variables, our dashboard provides an optimization 

algorithm to find a solution that balances the established model output limits with a weighted 

desirability function; the desirability function normalizes the model output scale  When our solution 

does not meet one or more of the model output limits, we then can look to the vertical projections to 

identify the model inputs that have the highest impact on the unfeasible model outputs; changing these 

model inputs may result in a feasible solution. If we cannot change a model input to find a feasible 

solution we then must trade off infeasible model outputs limits in order to arrive at a viable system 

variant. We can arrive at a variety of viable system variants by setting different model output limits and 

weights to each of them. 

Once we identify a reduced set of viable system variants, we then use multi-objective decision 

analysis (MODA) to help inform the design decision. We use an additive value model that incorporates a 

composite perspective of multiple stakeholders and competing objectives. We use the philosophy of 

value-focused thinking and the mathematics of MODA to arrive at a final design decision.     

Currently, there is a technical gap with regard to our ability to untangle the system design drivers 

when there is a high volume of multi-dimensional data. This technical report outlines the procedural 

workflow of our proposed MBSE methodology. We address the technical gap by leveraging the methods 

of experimental design in order to clearly identify tradable variables and narrow the search for viable 

system variants. 
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1. Introduction 
Our future operational environment will require the Department of Defense to acquire Engineered 

Resilient Systems (ERS) that will adapt to continuously changing demands.  To address this challenge, the 

Engineer Research Development Center (ERDC) is developing an ERS Architecture that will construct and 

maintain a data thread of architectural decisions that will break the barriers between the operators, 

engineers, logisticians, acquisition experts and others allowing multiple communities of interest to 

collaborate during a system’s lifecycle. Narrowing in on the key system drivers and critical trade decisions 

during Pre-Milestone A is a daunting task given the high number of design variables, system complexity, 

and uncertain future.  First-order engineering models provide engineers insight into design feasibility but 

without analyzing system concepts within a mission context we have no way of understanding the 

effectiveness of a system design variant.  In order to understand a system’s operational effectiveness 

during the conceptual design phase we must rely on combat models and simulations; depending on the 

model fidelity, these simulations can take days or weeks to run.  During a simulation study, the general 

state of practice is to do brute force simulation runs by leveraging High Performance Computer Clusters 

(HPC) to generate data for tradespace exploration. Despite recent breakthroughs in computation 

capabilities, a petaflop computer cannot effectively explore a high-dimensional tradespace study (Sanchez 

et al. 2009). For example, if we wanted to explore 100 factors at a high and low setting, assuming that a 

simulation runs as fast as a single operation, it would take 40 million years to complete one replication of 

the experiment.  To overcome these challenges, we must leverage the statistical methods of experimental 

design.  

The field of Design of Experiments (DOE) allows us to efficiently explore a high-dimensional 

tradespace problem in a feasible amount of time.  Recent developments in DOE allow analysts to 

efficiently explore a large number of input factors; for example, we are now able to study 100 continuous 

factors with only 101 experiments (MacCalman 2013).  After performing an efficient experiment, we can 

develop statistical metamodels, or mathematical equations that approximate the input output behavior 

of a simulation model; the metamodel then becomes a surrogate of the simulation. These surrogate 

metamodels allow the analyst to explore a wide range of input factors in order to identify the ones that 

drive system behavior and reveal the critical tradespace decisions.  In addition, the metamodels provide 

the analyst a means to display a dynamic visualization dashboard that can illuminate the key trade 

decisions.  Tradespace dashboards facilitate operational commanders and domain specific engineers to 

collectively make trade decisions by revealing the impact of system design configurations on multiple 

measures of effectiveness across different scenarios. 

Recently, a new approach called Model-Based Systems Engineering (MBSE) is gaining popularity and 

is expected to become a common state of practice in the near future (Friedenthal et al. 2011).  According 

to the International Council of Systems Engineering (INCOSE), MBSE is a methodology characterized by a 

collection of processes, methods, and tools used to support systems engineering design in a “model-

based” context (INCOSE 2015). The System Modeling Language (SysML) is a visual language with a 

common semantic and notation standard that facilitates MBSE to support specification, analysis, design, 

and verification of a complex system. The practice of MBSE is emerging in different domains and uses. 

One of these areas examines the linkages of the SysML diagrams to external models. Because our primary 

interest is to leverage operational simulations that analyze system configurations in different mission 
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contexts, we need to explore the linkages between system elements within the SysML diagrams and the 

simulation model input parameters. By mapping SysML system component configurations to model input 

parameters, we can perform DOE to explore a high-dimensional problem to identify which input 

parameters affect the simulation output measures. Additionally, metamodeling dynamic dashboard 

exploration can influence design decisions and reveal where they satisfy the system engineering 

requirements.  

ERDC has a number of technical thrust areas that support the development of the ERS Architecture; 

one of them is the tradespace analytics thrust area that seeks to increase the effective coverage of trade 

considerations within the ERS Architecture.  The objective of our research is to derive an MBSE 

methodology that leverages DOE in order to illuminate the tradeoffs for a complicated system design 

problem. To demonstrate the methodology, we will use a notional representative use case involving new 

technologies that will enhance the Infantry Squad to overmatch current and future adversaries. The squad 

enhancement technology system provides us with a complex high-dimensional system design problem 

involving sensors, weapons, radios, body armor, exoskeletons, unmanned aerial vehicles, and robots that 

must operate in a variety of environments with several feasibility and life-cycle considerations that conflict 

with each other.  

Our procedural demonstration starts with a defined system design problem that has an MBSE 

integrated model expressed in the SysML language. Simulations from various domains are selected to 

measure effectiveness and performance related to different aspects of the problem. An experimental 

design is performed for each model using a High Performance Computing Cluster (HPC). Once the output 

data is post-processed, the analyst performs exploratory analysis and fits surrogate metamodels that 

approximate the simulation model’s behavior. These metamodels are then used to create a dynamic 

dashboard that allows the user to explore a high-dimensional complex problem to illuminate key tradable 

variables and identify a narrow set of viable system alternatives.   The set of alternatives are then analyzed 

using multi-objective decision analysis (MODA) models to help inform design decisions when there are 

multiple stakeholders and competing objectives.  Figure 1.1 is a visual depiction overview of the 

procedural workflow that each section in the technical report will expand on. 

 
Figure 1.1 Procedural workflow of the proposed MBSE methodology. 

2. Technical Report Organization 
This technical report is organized into eleven sections with three appendices that outline the details 

of our proposed methodology. Section 3 provides a background of the Engineered Resilient System 

Architecture and describes the differences between a process-driven approach versus a data-driven 

approach. Section 4 discusses the major research contributions our methodology provides to fill the 

technical gaps identified by ERDC. In order to demonstrate our methodology, we introduce in Section 5 

Future ERS 
Techs

SysML Simulations HPC
Explore 
Analyze

Fit 
Metamodels

Visualize 
Tradespace MODADOE
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our representative use case and the operational simulation models we use to explore the mission 

context space. Section 6 discusses the benefits and limitations of the Model-Based Systems Engineering 

Approach and includes a discussion of the need to integrate external models. Section 7 describes how 

we can approximate simulation model behavior with statistical metamodels and use them to gain 

insights that can inform system design decisions; additionally, it provides an overview of the field of 

design of experiments and the types of designs used for experimental studies.  Section 8 provides a 

functional flow description of the technical requirements necessary to facilitate our methodology. 

Section 9 discusses the types of analysis and insights we can gain from the experimental design study as 

well as introduce a visual dashboard that can identify the key tradable variables and narrow down the 

search for viable system variants. Once we arrive at our narrow set of viable variants, we then discuss 

multiple-objective decision analysis methods that assist stakeholders with alternative decisions using a 

functional objective value hierarchy model. Section 11 concludes the technical report and discusses 

future research endeavors. Appendix A provides a detailed step-by-step manual that describes how to 

perform data farming of the MANA simulation models on a cluster of computers. Appendix B is a user 

manual on how to use a custom experimental design creator that is especially suited for system design 

studies.  Finally, Appendix C provides a user manual that contains the instructions needed to build our 

dashboard described in Section 9 in JMPTM 12.  

3. Background 
 “A resilient system is trusted and effective out of the box in a wide range of contexts, easily adapted 

to others through reconfiguration or replacement, with graceful and detectable degradation of 

function” (Neches 2011). The need to engineer resilient systems is becoming more prevalent in today’s 

operational environment. The Department of Defense (DoD) will continue to rely on material solutions 

to address critical capabilities in response to our Nation’s threats, especially in an environment where 

our potential adversaries have global availability of rapidly developed technology.  Engineering resilient 

system solutions that have a broad capability to perform in a wide variety of mission contexts against 

several potential enemies and uncertain futures is essential to protecting our Nation. In the FY13-17 

Program Objective Memorandum, the Secretary of Defense designated Engineered Resilient Systems 

(ERS) as a Science and Technology (S&T) priority and tasked the Assistant Secretary of Defense for 

Research and Engineering to oversee the development and implementation of the ERS roadmap.   

3.1. Process versus Data Driven Approach 
Currently the acquisition community uses a process driven approach to develop capability 

requirements and mature technological solutions through multiple phases. Within the DoD community, 

the capabilities process is known as the Joint Capabilities Integration Development System (JCIDS). 

Figure 3.1 shows the interactions between the JCIDS process and the acquisition process phases.   
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Figure 3.1. Interaction between the DoD JCIDS and Acquisition process (retrieved from 

http://acqnotes.com/acqnote/acquisitions/jcids-overview). 

The current process driven approach impedes DoD’s ability to rapidly develop systems that are 

resilient to uncertain futures. The work-force is stove-piped, the data used to inform design decisions 

are lost in the process, and there is a lack of flexibility to adapt to changing requirements and mission 

contexts. Requirements are generally frozen early in the process making them difficult to change 

resulting in inefficient use of time, resources and money. Figure 3.2 shows in red the implications of a 

requirements change downstream of the process and the need for the types of data to redesign and 

rework the system. 

 

 
Figure 3.2. Illustration of the redesign and rework resulting in a requirements change downstream of the process. 

Ensuring that systems are resilient to changing environments poses significant challenges to the 

Acquisition community. These challenges involve multiple competing objectives involving several 

different domains. The types of domains include operational effectiveness, physical feasibility, life-cycle 

costing, manufacturability, reliability and many more.  During the design of a system there are several 

key stakeholders involved with design decisions that all have different perspectives across each domain. 

Some of the stakeholders include program managers, operational users, modelers, system certifiers, 

testers, concept design engineers, detailed design domain engineers, and cost estimators to name a 

http://acqnotes.com/acqnote/acquisitions/jcids-overview
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few. All of these multiple competing objectives and stakeholder needs require tradeoffs that balance a 

wide range of different domain considerations when designing a system.  

A tradeoff is a compromise between objectives such that improving one requires that we degrade 

another. A classic example is the tradeoff between force protection and maneuverability. Increasing the 

force protection of a vehicle may require additional armor that weighs down the platform making it less 

maneuverable. In order to increase force protection we must tradeoff our ability to move fast over 

various terrains due to the increased load required. A system design involves hundreds of tradable 

variables that must be balanced in order to develop a viable system solution that meets the demands of 

the stakeholders and performs effectively. Understanding the key tradable variables that have the most 

influence on a system design problem is critical during the conceptual design of a system. Tradeoff 

decisions are based on data, information, and knowledge. Therefore, in order to effectively make quality 

decisions while minimizing the impact of requirement changes, DoD needs a data driven rather than a 

process driven approach to design new systems. The end result will be better informed decisions, faster 

engineering, less rework, and allow for a wider range of alternative solutions to progress through the 

phases without freezing the requirements too early.  Figure 3.3 shows a data driven approach that 

begins with millions of possible designs and leverages conceptual modeling to configure systems before 

analyzing alternatives. This approach allows the designers to easily redesign and rework alternatives 

with the conceptual model, data, information, and knowledge that is available.   

 

 
Figure 3.3. Data driven approach. 

3.2. Engineered Resilient System Architecture 
With today’s increased computational power and availability we are now able to explore data and 

collaborate effectively across several different domains with multiple stakeholders. In response to the 

Assistant Secretary of Defense for Research and Engineering priority to engineer resilient systems, the 
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US Army Engineer Research and Development Center (ERDC) is developing an Architecture that 

leverages information technology to help Acquisition teams make better informed design decisions 

throughout the system lifecycle. The intent is to develop an open architecture that connects existing 

tools, information, and data in a common framework that is non-proprietary, platform agnostics, 

compatible with legacy systems, and can be shared among a wide variety of users. Figure 3.4 is an 

Operational View -1 Diagram that depicts the ERS architecture as a computational cloud that integrates 

multiple domain models, simulations, and data to develop a digital thread accessible to several 

communities of interest for collaboration during the system design.  

 

 

Figure 3.4. ERS Architecture Operational View – 1 Diagram. 

Inputs to the ERS Architecture are common core platform information from previously designed 

successful systems. These inputs constitute the data, information, and knowledge that contain the 

functional, logical, and physical architectural concepts from several different domains. These domains 

include physics-based high and low fidelity codes, life-cycle costs, mission contexts, and all the life-cycle 

consideration needs (-ilities). Models and simulations are used to explore several system designs with 

respect to each of the domains the models represent. The ERS Architecture uses High Performance 

Computing Resources to run simulation experiments to generate the data needed to create a 

tradespace environment that highlights the key tradable variables within a design decision.  The data 

and tradeoff environment is available through a portal for the wider community to collaborate on design 

decisions throughout the system lifecycle. 

Understanding the linkages between the conceptual architectural information, the simulations that 

model different domains, and the data that is generated to create the tradeoff environment is an 

ongoing research effort. In order to enable these linkages ERDC has organized the ERS Architecture 

development into the following five technical thrust areas: 
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1. System representation and conceptual modeling. The development of the functional, logical, 

and physical architectures that model the system’s element structure, behavior, relations 

between elements and their interoperability. The approach that enables this trust area is the 

Model Based System Engineering (MBSE) approach which is the subject of Section 6 of this 

report. The MBSE approach reduces the impact of requirement changes and allows for 

alternatives to be kept longer and explored deeper. 

2. Characterizing changing operational contexts. Constructing, verifying, and validating simulation 

model scenarios that represent a wide range of mission contexts. Provides a deeper 

understanding of the warfighter needs and allows designers to refine the operational context of 

changing mission requirements. 

3. Cross-Domain coupling. The coupling between the simulation models that will enable designers 

to better understand the linkages between the domains each model represents. Model 

designers must understand the model interchange requirements and the impact of fidelity 

differences between models. 

4. Data driven tradespace exploration and analysis. The generation of the tradespace 

environment that allows for the exploration of a multi-dimensional design problem that 

illuminates the key tradable variables and helps narrow down the viable system variants. 

5. Collaborative design and decision support. Enables well-informed, low-overhead discussion, 

analysis, and assessment among engineers and decision makers. Provides collaborative analysis 

of engineering issues and impacts. 

ERDC has established the following envisioned end state over the next few years: 

 Improved engineering and design capabilities: more environmental and mission context, more 

alternatives developed, evaluated and maintained, better trades: managing interactions, 

choices, and consequences. 

 Improved systems: highly effective: better performance, greater mission effectiveness, easier to 

adapt reconfigure or replace, confidence in graceful degradation of function. 

 Improved engineering process: fewer rework cycles, faster cycle completion, better managed 

requirements shifts. 

4. Research Contributions 
Brute force simulation experiments that focus on a limited set of system alternatives do not allow 

Systems Engineers to effectively explore a wide variety of design alternatives early in the conceptual 

design. Incorporating DOE methods within a MBSE design methodology allows for the exploration of a 

wider range of alternatives. In addition, surrogate metamodels that approximate a simulation’s behavior 

provide valuable insights into the design problem by identifying the most critical drivers for key measures 

and form the basis to build a dynamic dashboard that can explore a high-dimensional design problem. 

Our proposed MBSE methodology addresses several technical tradespace analytic gaps identified by 

ERDC. Table 4.1 summarizes the technical gaps and the research contributions that address each of these 

gaps. In Section 11, we conclude with a more detailed explanation of how we address these technical gaps 

by proposing our MBSE methodology.  
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Table 4.1. Research contributions to tradespace gap mitigations. 

 

5. Representative Use Case Description 
To demonstrate our MBSE methodology we chose a representative use case that involves an 

opportunity to invest in new technologies that will increase the capabilities of the Infantry Squad. The 

system is the collection of integrated technologies that enhance the squad’s effectiveness (sensors, 

weapons, exoskeletons, radios, UAVs, robots, body armor).  This use case provides a lot of opportunities 

to highlight tradeoffs across multiple types of costs, performance, schedule, and risk considerations. It 

also allows for a wide variety of solutions/alternatives that are comprised of different combinations of 

the seven system components. In order to illustrate our methodology clearly, we use two versions of 

our squad enhancement use case. We refer to the first one as the large squad problem that includes 38 

model inputs and over 40 outputs. Our second version is referred as the small squad problem that only 

includes 4 inputs and 6 outputs. During our technical report, we interchange between these use cases 

while demonstrating our methodology.  

5.1. Agent-Based Model Overview 
In order to evaluate the system in an operational context, we use an agent-based simulation called 

Map Aware Nonuniform Automata (MANA).  MANA is a stochastic, agent-based, time-stepped 
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simulation modeling environment, developed by the New Zealand Defense Technology Agency 

(McIntosh et al. 2007).  MANA is a low-resolution simulation of combat, intended to “capture only 

enough physics as is necessary.”  For example, range-probability pairs are used to capture sensor, 

weapon and communication device effectiveness, vice attempting to explicitly simulate the physics 

involved.  MANA has been used for numerous studies, including many Masters theses, at the Naval 

Postgraduate School, see https://harvest.nps.edu/.  Additionally, we are aware of its use in studies at 

the RAND Corporation, Office of Naval Research, Marine Corps Operations Analysis Division, Marine 

Corps Warfighting Lab, and Army G-8.   

The basic entity in MANA is an agent, which can be made to represent a soldier, group of 

soldiers, or major combat platform or vehicle, as desired.  Agents can see, shoot, move, communicate 

according to the properties given to them.  These entities (agents) interact with each other, as well as 

the environment in which they operate, and make decisions based on their movement goals and their 

situational awareness.  A “squad” is the MANA term for a group of agents who share the same physical 

and behavioral properties.  The squad can have any number of member agents, so depending upon how 

the user has set it up, it may translate directly to an entire Infantry Squad, or to homogeneous members 

of an Infantry Squad, e.g. Grenadiers. 

Agents attempt to see other agents on the battlefield with their organic sensors.  If an agent is 

able to classify another agent with one or more of its sensors then it knows whether the sensed agent is 

a Friend, Neutral, or Enemy.  Depending on the properties of its sensors, it’s possible that that an agent 

could detect another agent but not classify it, in which case the detected agent is treated as an 

“unknown.”  An agent must be classified as enemy in order to be targeted with a weapon.  Agents 

within the same squad post their contacts to a Squad Situational Awareness (SA) Map.  Additionally, 

agents can pass contact information to other agent squads, using user-defined communication links, 

which can have properties such as reliability, capacity, latency, etc.  Contacts that are passed to a squad 

over a communication link are posted to the Squad Inorganic Situational Awareness Map.  Agents can be 

made to act upon contact information, for a user-specified period of time, from their Squad SA Map, 

their Inorganic SA Map, or both.  Figure 5.1 contains a screen shot of the Graphical User Interface (GUI) 

for the Defense scenario. 

 

https://harvest.nps.edu/
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Figure 5.1: Screen Shot of the Defense Scenario 

 

In MANA, the user has the option to create a terrain map, where each pixel color determines 

which type of terrain it represents.  Each type of terrain is given properties of Going, Cover, and 

Concealment which defines how trafficable the terrain is, how much protection it provides, and how 

much concealment from view it provides, respectively.  MANA comes with a few default terrain types 

(such as road, dense brush, hill, etc.) but the user can also define their own. Figure 5.2 contains a screen 

shot of the Scenario Map Editor, displaying the Terrain Map. 
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Figure 5.2: Screen Shot of the Scenario Map Editor, Displaying the Terrain Map 

 

Although MANA is a very low resolution model, it has the capability of developing very interactive 

scenarios that reveal interesting emergent behavior. Agents are assigned weapon, sensor, and 

protection capabilities along with simple behavior propensities the agents execute based on what is in 

their situational awareness maps. When multiple agents have simple behaviors that interact with other 

agents, often times there are interesting results that emerge from these interactions.  For our squad 

enhancement use case we developed four scenarios and focused primarily on the squad’s capabilities 

without exploring behavior propensities. Our intent was to evaluate technologies without changing the 

squad behavior propensities so that they do not confound our analysis. 

5.2. Simulation Scenarios 
In every system design situation we are faced with multiple operational environments that the 

system is expected to achieve effects in. For our squad enhancement use case, we develop four 

scenarios to model the wide variety of mission contexts the squad is expected to operate in. The four 

scenarios are the attack, cordon and search, movement to contact, and defense missions; a description 

of each scenario follows: 

 

Attack: Squad conducts an attack to seize terrain and destroy the enemy.  Blue Force is equipped with 

only organic Squad technologies and communicates with their company HQ element to call for indirect 

fire. Squad moves towards the objective with their robot in front and UAV flying overhead. Blue Force 

calls indirect fire on the objective as they approach. Red Force is positioned on high ground with IEDs 

around the perimeter. Blue Force establishes a support by fire position with the SAW and Grenadiers 

while the rifleman assault the objective. Red Force calls for another enemy element to reinforce their 
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position. Blue Force calls indirect fire on the reinforcements once they identify their location. Scenario 

ends when all Blue or Red Forces are killed. 

 

Cordon and Search: Squad patrols a village populated with several civilians. The cordon and search 

scenario will last for 72 hours.  Blue Force is equipped with only organic Squad technologies and 

communicates with their company HQ element to call for indirect fire. Enemy insurgents initiate direct 

fire within the village and retreat within the civilian population. Initial, the Blue Force cannot distinguish 

between the civilians and the enemy insurgents.  Snipers from a long distance outside the village fire on 

the Blue Force. Civilians flee out of the village in all directions.  Enemy opens fire with a crew served 

weapon from a long distance and approaches the village from multiple directions to close with and 

destroy the Blue Force.  Blue force positions robot in a position outside the village perimeter to provide 

security and will return to the Blue Force position for power recharging and return to the COP to refuel 

when necessary. UAV loiters about the village. Scenario ends when all Blue or Red Forces are killed. 

 

Movement to Contact: Squad moves along a road with their robot in front and UAV in the air as they 

approach an enemy ambush position.  Blue Force is equipped with only organic Squad technologies and 

communicates with their company HQ element to call for indirect fire. Enemy has multiple IEDs 

emplaced to initiate a complex L-shaped ambush. After the enemy initiates the ambush, another enemy 

element approaches from a distance to reinforce. Blue force reacts to the ambush, calls for indirect fire 

after identifying enemy reinforcements, and continues to close with and destroy the enemy. Scenario 

ends when all Blue or Red Forces are killed. 

 

Defense: Squad is in a defensive position with a combat outpost with 10 foot walls, two gate entry 

points and fighting positions around their perimeter. The defensive scenario will last for 72 hours. Blue 

Force is equipped with only organic Squad technologies and communicates with their company HQ 

element to call for indirect fire; robots are positioned outside the perimeter to act as forward sensors 

and will return to the Combat Outpost (COP) for power recharging. Six enemy insurgents approach the 

COP wearing suicide vests and attempt to detonate at the gate to breach into the COP, make entry, and 

detonate additional suicide vest within the perimeter. The enemy then calls for indirect fire from a 

mortar position that is beyond line of friendly sight.  Enemy crew served weapons open fire on the COP 

from a long range distance while the enemy approaches COP from three different directions. Blue force 

calls for indirect fire once they identify enemy force locations beyond line of sight.  A UAV will loiter over 

the area of operations and return to the COP to refuel when necessary.  Scenario ends when all Blue or 

Red Forces are killed. 

5.3. Model Inputs 
Table 5.1 shows the decision space for the squad enhancement system. To the left are the system 

and sub-system components that each has a number of local properties. For each local property, there is 

a stakeholder need that defines the property’s desired improvement. These local properties are the 

decision variables that define the system characteristics of an alternative. We mapped each of the local 
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properties in Table 5.1 to a MANA model input and established their low and high settings that define 

the experimental region. 

 

Table 5.1. System value property mapping to stakeholder needs and MANA inputs. 

 
 

In some cases, the model input was implemented as a multiplier on the current capability of the 

squad.  For example, the Grenadier’s Weapon Range factor varying between 1 and 2 meant that the 

Grenadier’s Weapon Range was (at the low end) as it was defined in the scenario base case, and (at the 

high end) increased up to twice its current capability.  Figure 5.3 contains a screen shot of the properties 

of the Grenadier’s weapon.  For example, if the Grenadier Weapon Range input is 1.5 for a system 

alternative then each of the 7 ranges listed in the range table is multiplied by 1.5 and therefore, 

represents a 50 percent increase in capability.  

 

Decision Factors Stakeholder Needs (Local Properties) Simulation Input Model Description (MANA) Low High

SDR Detection Range Increase the soldier's detection range. Distance a solider can detect a target. 1.5 2.5

SDR AVG Time Between Det Reduce the time needed for the soldier to detect a target. For a discrete set of distances, the time it takes for the soldier to detect a target. 2 2

SDR Classification Range Increase the range that a soldier can classify a target as a threat, friendly, or neutral Distance a soldier can classify something as a threat, friendly, or neutral. 1 2

SDR Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral. The probability a soldier can classify a target correctly. 1 2

SDR FOV Increase the soldier's field of view. The soldier field of view. 50 180

SDR Speed Increase the soldier's mobility with an increased load carrying capacity. Soldier speed. 3 7

SDR No. Hits to Kill Increase the body armor protection of the soldier. The number of hits to kill a soldier agent. 3 5

SDR M4 Range Increase the range of the soldier's Rifle Range of the soldier's Rifle 1 2

SDR M4 Rate of fire Increase the rate of fire of the soldier's Rifle The soldier's Rifle shots per second 1 3

SDR M4 Hit rate Increase the soldier's Rifle accuracy. For a discrete set of distances, the probability of hitting a target. 1 2

SDR M249 Range Increase the range of the soldier's Automatic Weapon Range of the soldier's Automatic  Weapon 1 2

SDR M249 Rate of fire Increase the rate of fire of the soldier's Automatic Weapon The soldier's Automatic Weapon shots per second 3 8

SDR M249 Hit rate Increase the soldier's Automatic Weapon accuracy. For a discrete set of distances, the probability of hitting a target. 1 2

SDR 40mm Range Increase the range of the Grenadier Weapons' range Grenadier Weapon's range. 1 2

SDR 40mm Hit Rate Increase the Grenadier Weapon accuracy. The Grenadier Weapon's accuracy. 1 2

SDR 40mm shot radius Increase the shot radius of the Grenadier Weapon round. The Grenadier Weapon's shot radius on impact. 5 20

Comms Delay Decrease the time it takes for a solider to interpret incoming information from squad members. The number of seconds between internal squad radio transmissions. 0 15

Inorganic SA - Latency Decrease the time it takes to call for indirect fire and interpret information from UAV and Robots. The number of seconds between external radio transmissions. 0 15

Inorganic SA - Reliability Improve the soldier's ability to send, receive, and interpret information to external assets. The probability of the sending and receiving an external radio transmission. 0.7 1

No. UAVs Provide an organic UAV to the squad. Number of squad organic UAVs 0 2

UAV Speed Ensure the UAV has enough speed to maintain flight stability. The speed of the UAV. 50 100

UAV Detection Range Increase the detection range of the UAV. Distance the UAV can detect a target. 1.5 2.5

UAV AVG Time Between Det Reduce the time needed for the UAV to detect a target. For a discrete set of distances, the time it takes for the UAV to detect a target. 1 2

UAV Classification Range Increase the range that a soldier can classify a target as a threat, friendly, or neutral with a UAV. Distance the UAV can classify something as a threat, friendly, or neutral. 1 2

UAV Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral with a UAV. The probability the UAV can classify a target correctly. 1 2

No. UAV Missiles Provide a kinetic munitions to destroy threats. Number of missiles on one UAV. 0 2

UAV Missile Shot Radius Increase the shot radius of the UAV munitions without increasing collateral damage. The UAV missile shot radius on impact. 10 50

UAV Missile Hit rate (Prob of Hit) Increase the accuracy of the UAV munitions. The probability of the UAV missile hitting a target. 0.3 1

No. Robots Provide an organic Robot to the squad. Number of squad organic Robots. 0 2

Robot Speed Ensure Robot can traverse in a variety of terrain types. The speed of the Robot. 3 10

Robot Detection Range Increase the detection range of the Robot. Distance the Robot can detect a target. 1.5 2.5

Robot Classification Range Reduce the time needed for the Robot to detect a target. Distance the Robot can classify something as a threat, friendly, or neutral. 1 2

Robot AVG Time Between Det Increase the range that a soldier can classify a target as a threat, friendly, or neutral with a Robot. For a discrete set of distances, the time it takes for the Robot to detect a target. 1 2

Robot Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral with a Robot. The probability the Robot can classify a target correctly. 1 2

Robot IED Sensor Class Prob Increase the ability for a robot to detect and classify an IED. The probability a Robot can detect and IED. 1 2

Robot No. Hits to Kill Increase the Robot protection from kinetic fire. The number of hits to kill a Robot agent. 4 6

Robot FOV Increase the Robots field of view. The Robot's field of view. 50 180

Robot Stealth Reduce the size of the Robot in order to decrease the ability to detect the Robot. The enemy's probability of detecting the Robot. 0.3 1
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Figure 5.3: Screen Shot of the Weapons Properties of the Grenadier 

The collection of MANA model inputs allows us to define a wide range of system alternatives that 

constitute the experimental region. In Section 7, we will discuss how we use an experimental design to 

explore the experimental region defined by the low and high settings sown in Table 5.1. 

5.4. Model Outputs 
The MANA simulation provides a wide range of output measures that allow us to evaluate system 

alternatives. These model outputs represent the measures we use to evaluate the operational domain 

within different mission contexts. Our squad enhancement use case uses the following model outputs 

for each scenario: 

Protect: calculated as the total number of hits taken by Blue forces during the simulation run.   

 

Aware: a metric that represents the time-weighted average of the number of Red classifications made by 

Blue forces during the simulation run. As the simulation progresses, the total number of enemy that the 

Blue force is aware of can be viewed as a state trajectory. Over time, the state trajectory increases or 

decreases based on the total number of Red Forces that the Blue Force is aware of. The Aware measure 

is calculated by finding the area under the state trajectory and dividing it by the total time of the 

simulation run. The measure represents the proportion of time the squad was aware of the enemy; the 

higher the proportion the more situationally aware the squad was during the simulation run. 
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Lethal: a measure that represents the time-weighted average of the number of enemy agent entities killed 

in action (RedKIA) during the run.  It is calculated as the area under the state trajectory curve of RedKIA 

versus time.  A high score (area under the curve) could be achieved by killing all Reds early in the 

simulation run.  A lower score could be the result of killing a few Reds early, or by killing more Reds but 

much later in the run. The lowest score would be achieved by killing very few reds, late in the simulation.  

After dividing the total area under the RedKIA-versus-time curve by the total simulation time multiplied 

by the number of Red entities, we will get a metric that ranges between 0 and 1. 

 

IEDProtect: a Binary measure of whether the squad avoided all Improvised Explosive Devises (IEDs), 1 

means yes, 0 means no. 

 

BlueKIA: Total number of squad members killed during the simulation run. 

 

BLOS: Proportion of detections discovered beyond line of sight (from UAVs and robots) compared with 

those detect by line of sight. 

 

LOS: Average Classification Distance of the soldier agents that evaluates the line of sight capability. 

 

Sustain: Total number of rounds fired by the squad during the simulation. 

 

In addition to the MANA model outputs that represent the operational domain, we incorporated other 

notional model outputs for other domains. These outputs include a manufacturability readiness level 

(levels 1-9, where higher levels indicate higher levels of manufacturability maturity), weight, cost, and 

time schedules that represent the maximum time along the system alternative’s critical path.    

6. Model Based System Engineering Approach 
MBSE is a new paradigm that supports the specification, analysis, design, and verification of a 

complex system using an integrated system model with a dedicated tool. According to the International 

Council of Systems Engineering (INCOSE), MBSE is a methodology characterized by a collection of 

processes, methods, and tools used to support systems engineering design in a “model-based” context 

(NDIA 2011). The MBSE approach is gaining popularity and is expected to become a common state of 

practice in the near future (NDIA 2011).  Some of the key benefits to the MBSE approach include 

investigating requirement compliance to system elements within the architecture, change impact 

assessments on requirement changes, and conducting trade space analysis for alternative architectural 

configurations during the conceptual design phase (Kim et al. 2013). The integrated system model 

effectively manages auditable records of a system design by defining a system element once to be used 

throughout the model.  As a result, once a change is made to an element in the integrated system 

model, the dedicated tool will instantly identify how the change will impact the system. Applying the 

MBSE approach within the ERS Architecture is an important aspect for the systems representation and 

modeling technical thrust area. Some might say that the ERS Architecture is a means to apply the MBSE 

approach for systems design.   
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The three pillars of MBSE involve a modeling language, a methodology, and modeling tool (Delligatti 

2013). A common language used by system engineers is the System Modeling Language (SysML); SysML 

is a visual language with a common semantic and notation standard that facilitates MBSE (Friedenthal et 

al. 2011). An MBSE methodology is a road map of design tasks that is applied to a specific domain or 

organization. A modeling tool is a software application that conforms to one or more modeling language 

and integrates all modeling artifacts into a cohesive system reference model.  Our research proposes a 

MBSE methodology that incorporates design of experiments as a means to capture insights into a 

complex system design problem.  

6.1. System Modeling Language (SysML) 
The MBSE approach utilizes an integrated system model that contains a set of elements and 

relationships between them. The SysML language, defines several types of elements that represent 

different aspects of the system. The most commonly used structural and behavior elements are blocks 

that define elements of structure, activities that express a sequence of behavioral actions, interactions 

between elements, state machines that classify a block’s state behavior and the event occurrences that 

trigger transitions to other states, requirements, use cases that define a system’s context boundary and 

constraint blocks that bind value properties to mathematical expressions.  SysML uses nine diagram 

types to depict different views of the system model. The following provides a brief description and 

examples from the large and small squad enhancement use case (defined in Section 5) for each diagram 

type: 

 

Block Definition Diagrams (bdd): Bdds are diagrams that show blocks that have structural and 

behavioral features. A block is a type of structure that may exist within a system. The types of structural 

features include properties that represent parts, references to other external elements, values that 

represent instances of quantities, or textual descriptions, ports that represent the interaction points at 

the boundary of the block, and constraints that can be either mathematical expression that binds the 

value properties or external simulation models that define behavior.  Bdds show the arrangement of 

blocks that represent elements of definition; these elements are the types of structural blocks that could 

exist within the system. Bdds are used often during several system engineering activities including 

stakeholder needs analysis, requirements definition, architectural design, tradeoff analysis, test and 

evaluation, and system integration. Figure 6.1 shows and example of a bdd from the large squad 

enhancement use case; the figure shows the part and value properties within each block. 

 

 



 

24 

 

Figure 6.1. Block definition diagram from the large squad enhancement use case. 

Internal Block Diagrams (ibd): Ibds display the internal structure of a block or group of blocks. 

Specifically, they show the type of connections between part and reference properties, the type of 

matter, energy, or data that flow across connections and the services that are provided and required 

across the connections. Because the large and small squad enhancement use cases are an example 

within the conceptual stage, we do not have internal block diagrams for them. 

 

Use Case Diagrams (uc). The purpose of the use case diagram is to show the externally visible 

services that a system performs or provides. They are used to show a system boundary context 

diagram that reveals the external actors or elements that interface with the system. Figure 6.2 

shows the uc diagram that shows the attack, cordon and search, movement to contact, and defense 

uses cases. The four use cases represent the services the system performs. The lines in the diagram 

indicate which external actors interact with the squad enhancement system during each use case.  

 

 

Figure 6.2. Use case diagram. 
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Activity Diagram (act). Activity diagrams express the dynamic behavior by showing the sequence of 

actions that flow in a specified order over a period of time. The diagrams are equivalent to the 

functional flow block diagrams system engineers use to express functional architectures.  The 

diagrams consist of a series of actions, object nodes, and control nodes connected by edges that 

represent object and control flows. The purpose of the activity diagram is to convey the system’s 

complex behavioral narratives for stakeholders to agree on; typically, they are nested under a Use 

Case model element. Figure 6.3 shows four Activity diagrams for each of the use cases shown in 

Figure 6.2. The diagram includes the actions that will provide the opportunities for all the squad 

enhancement system components to perform their functions. Not only do they allow stakeholders 

to agree on the system’s intended behavior, they also provide valuable input to the simulation 

model builder by providing the sequence of behaviors needed to build the scenario.  Additionally, 

the activity diagram in Figure 6.2 shows the actions that are allocated to block elements. These 

allocations are what constitute the functional allocation of the behavior elements to the system 

structure elements.  
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Figure 6.3. Activity diagrams for the attack, defense, movement to contact, and cordon and search use cases. 

Sequence Diagrams (sd). Sequence diagrams reveal how part properties of a block or the blocks 

themselves interact with one another with operational calls and signals to produce emergent 

behavior. Unlike activity diagrams, the sequence diagrams indicate which blocks are invoking 

behavior by the types of messages they exchange. Lifelines are used to convey a participant in the 

interaction that corresponds to a part property or block. Each sequence diagram represents a type 

of interaction consisting of a collection of event occurrences that either send or receive messages or 
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start and terminate behavior. Figure 6.4 shows a Sequence diagram from the squad enhancement 

system example. Specifically, it shows the agent block elements of the agent-based simulation as 

lifelines at the top and the messages that are sent and received horizontally across lifelines; the 

arrows represent these messages. The event occurrences are labeled above each message arrow. 

The sequence of event occurrences executes from top to bottom; the vertical dotted lines represent 

the lifetime of the part or block during the interaction. Two types of combined fragments are shown 

within the diagram, par and loop. The par fragment is a subset of interactions separated by the 

dotted line that occur in parallel while the loop fragment occurs iteratively during a single execution 

of the interaction.  

 

 

Figure 6.4. Sequence diagram showing the interactions between agents within the simulation model. 
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State Machine Diagrams (sm). The state machine diagram is a third type of behavioral diagram that 

displays how an instance of a block transitions between states in response to event occurrences. 

Systems and sub-components often have a defined set of states that it can exist in during the system 

operation. State machines diagrams allow modelers to express how event occurrences trigger a 

system to change from one state to another; only one state can be active at any one time. These 

diagrams are especially useful during the construction of an agent-based simulation model. Figure 

6.5 shows a State Machine diagram for the blue infantry agents that represents the squad in the 

agent-based simulation model. The diagram classifies the behavior of the blue infantry agent within 

the simulation. The ovals represent states and the arrows represent the transitions with triggers 

that instantiate the state change. The large rectangle labeled “Combat States” represents a 

composite State Machine. When the composite state is active, then exactly one of its internal states 

is active; when the composite state is inactive, all of the internal states are inactive.  

 

 

Figure 6.5 State machine diagram that classifies the behavior of an agent within the simulation model. 

Parametric Diagrams (par). Modelers use parametric diagrams to express information about the 

system’s constraints. We can define constraint blocks to represent model equations and inequities 

that constrain or bind value properties of the structural system. Binding value properties allows 

systems engineers to impose fixed mathematical relationships on value properties that constrain the 

feasible system configuration. These constraints allow modelers to perform trade studies by 

comparing alternatives and identifying when system configurations become infeasible by violating 

the binding constraints. Constraints can also represent external models. Instead of a mathematical 

expression, the external model calculates the output results as another type of value property. 

Figure 6.6 shows a parametric diagram from the small squad enhancement system example. The 

diagram at the bottom left is a bdd that defines the constraint block for the weight and cost 

constraints. Each constraint has parameters that are binned to value properties in the parametric 
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diagram shown in the upper right of Figure 6.6; the dashed boxes represent blocks containing value 

properties binded by the constraint parameters.  

 

 

Figure 6.6. Parametric and block definition diagram of constraints. 

Package Diagram (pkg). Packages are used to organize the integrated system model into different 

namespaces that nest different structural blocks and behavioral elements within a hierarchy of 

packages. Package diagrams convey the organizational structure of the integrated system model. 

Figure 6.7 shows an example of a Package diagram from the squad enhancement system example. 
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Figure 6.7. Package diagram for the squad enhancement system example. 

Requirements Diagram (req). Requirements diagrams allow modelers to show text based 

requirements and the relationships between them and the system elements. The types of 

relationships include containment, trace, derived requirement, satisfy, and verify. The requirement 

diagrams allow modelers to show the requirements traceability to the system elements that depend 

on them. Figure 6.8 shows a requirements diagram for the emergent properties that our external 

simulation models evaluate.  
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Figure 6.8. Requirements diagram for the squad enhancement emergent properties. 

MBSE provides the way to perform conceptual modeling and allows system engineers to develop a 

wide variety of alternatives. The MBSE integrated system model is the conceptual model referred to in 

the data-driven approach illustrated in Figure 3.3. By expressing the conceptual model using the nine 

SysML diagrams, system engineers can configure systems before analyzing alternatives allowing them to 

easily redesign and rework new alternatives before they are frozen during the system lifecycle. The ERS 

architecture is a means for a community of users to perform conceptual modeling using the MBSE 

approach in order to engineer resilient systems that are flexible to change. 

6.2.  External Model Integration 
A key limitation of SysML is that it is only descriptive in nature and cannot produce analytical results 

to inform system effectiveness. The parametric diagrams allow the modeler to incorporate 

mathematical equations that a tool can solve as a system of equations but they are limited to simple 

expressions. In order to achieve the full benefit of the MBSE approach the systems engineering 

community must also rely on external models that capture more sophisticated analysis across a wide 

variety of domains.   

The types of domain models range from simple analytical equations and spreadsheet models to 

simulation models that capture the dynamic complexities of a system over time. Each model is an 

abstraction of reality that represents a unique viewpoint of the system within a domain of interest. 

Examples of these model domains include simulations that measure operational effectiveness, life cycle 

costing models, physics-based computational simulations, manufacturing models, and many more. 

Generally, the common state-of-practice is to analyze these models separately to gain insight into the 

domains or viewpoints they represent. In order to effectively analyze the trade-offs between these 
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various domains, we must integrate the models so that we understand the interrelations between the 

domains. Every model has unique inputs and outputs. In order to discuss how to integrate models, we 

must first understand how these inputs and outputs relate to a system design problem. 

Model inputs can be categorized into two types. The first type represents the design parameters of 

the system; if the system is a vehicle, examples may include the fuel capacity, number of wheels, or 

weight. The Physical Architecture Design section of the Guide to the Systems Engineering Body of 

knowledge (SEBoK) defines these design parameters as local properties that are located in a single 

system element (BKCASE Editorial Board, 2015). The settings of the local properties define the system 

alternative configuration and are typically under the control of the systems engineer. The second type of 

model input is known as noise variables that represent threat or environmental uncertainties and are 

not under the control of the systems engineer; examples may include enemy force size and type, 

weather, terrain, or road conditions.  The design parameters and noise variables are defined as value 

properties of a block element within the SysML integrated system model.  

 Systems engineers use model outputs to measure a system's performance, effectiveness, feasibility 

or any other life cycle consideration that pertains to the model's domain. Model outputs are generally 

used to understand what the SEBoK defines as properties which are meaningful only when attributed to 

the whole, not to its parts, otherwise known as emergent properties (BKCASE Editorial Board 2015). 

Properties that emerge from the arrangement and interactions of system elements can only 

be truly assessed during operational testing. During the early stages of design, system engineers rely 

heavily on simulation models when operational testing is not feasible because the system does not 

exist.  An example of an emergent property for a cargo transport vehicle may be the time it takes to 

arrive at a destination in different terrain and weather environments. The time it takes a vehicle to 

reach a destination cannot simply be analyzed with a local property such as the vehicle speed. We must 

evaluate the vehicle configuration with all its local properties specified in order to evaluate its 

effectiveness in an environmental setting. Identifying the vehicle that has the shortest time of arrival will 

generally never be the desired alternative due to the multiple competing objectives involved with its 

design. Systems engineers must also consider the physical feasibility constraints, costs, human factors, 

manufacturability, and development schedules, just to name a few. Integrating model inputs and 

outputs that capture each of these previously mentioned considerations or domains will allow system 

engineers to effectively explore tradeoffs among the multiple objectives. For example, an operational 

simulation can inform designers of the system alternative effectiveness within a particular scenario 

context while a physics-based computational model can inform the alternative configuration 

performance or feasibility. 

  In order to evaluate a system alternative across multiple model domains, the system engineer must 

link the local properties of the system elements to the collection of model inputs for each domain 

model. The mapping of these system local properties to model inputs is often not direct. For example, 

an operational simulation may have an input parameter that represents the speed of a vehicle while 

a physics-based computational model may have inputs that represent the number and type of 

engines.  In order to effectively integrate these models, we must understand how the number and type 

of engines affect speed. To establish these relationships we can collect data, develop look up tables, 

build other models, or make assumptions based on subject matter expertise. Translating system 

local/value properties to model inputs allows the systems engineer to evaluate alternatives across 
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multiple domains. Once the system local/value properties are mapped to model inputs properly, we can 

then explore ways at understanding their effects on model outputs. 

The concept of a translator is shown in Figure 6.9. To the left of the diagram, value properties within 

the blocks (shown as dotted boxes) that have a direct mapping to a simulation model input have a 

binding connector that is directly linked to the external model constraint block. The value properties 

that are not directly mapped have a translator constraint block. The translator constraint block 

transforms value properties into the model input value that will represent the system configuration 

setting during the agent-based simulation model run.  The right of the diagram shows a value model 

constraint block with binding connectors that link external models outputs to the inputs of the value 

model. See Section 10 for a discussion of the value model development and use. 

 

 
Figure 6.9. Parametric diagram of the agent-based simulation model and the translators. 

 

  The most effective way to determine the relationships between the local properties (model 

inputs) and emergent properties (model outputs) is to leverage the method of statistical experimental 

design. The field of design of experiments allows the analyst to identify which experimental factors or 

local properties effects an output of interest that represents an emergent property. Incorporating DOE 

methods within a MBSE design methodology allows for the exploration of a wider range of alternatives. 

As systems become more complex, incorporating DOE methods within the MBSE approach is a natural 

merger that can reveal key insights during the design of a system.  Figure 6.10 shows an illustration of 

our MBSE methodology. In the center is the MBSE integrated system model. Each corner represents the 

DOE analysis for different domains; system element value properties are mapped to experimental 

design factors, experiments are performed on high performance computing clusters, an analysis is 

conducted to capture insights that are fed back into the integrated system model.  
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Figure 6.10. Experimental design insights that refine the integrated MBSE system model. 

The insights we developed from DOE are primarily a result of fitting statistical metamodels that 

approximate the external models’ behavior by acting as a surrogate to these models. Our next section 

discusses the concept of a metamodel and how we develop and use them to gain insights. 

7. Building Statistical Metamodels using Simulation Experimental 

Designs 
A statistical metamodel is an empirical model developed from either observational or experimental 

design data that relates a set of inputs to an output. (Grayson and Gardner 2015; Hastie et al. 2009).  

The model has the following general form: 

𝑌 = 𝑓(𝑋) + 𝐸,                                                                                       (1) 

where Y is the outcome of the simulation model output, otherwise known as the response, X are the 

inputs, f(X) describes the predictable or explainable variation of Y, and E describes the non-predictable 

or non-explainable variation of Y, otherwise known as the residual error. There are a wide variety of 

methods that fit metamodels that generally are suited for one of two purposes (Grayson and Gardner, 

2015; Hastie et al. 2009; Kuhn and Johnson, 2013.) The first purpose is to understand the behavior of a 

process, system, or model by interpreting the effects of the inputs on the outputs (responses). In this 

case, we place a higher emphasis on estimating the parameters of the metamodel and its functional 

form. The second purpose is to predict the outcome (response) of a process, system, or model by using 

the metamodel as a function. In this case, we focus more on how the metamodel predicts and are less 

concerned about the form of the model. Finding the true model that fully characterizes a process, 

system, or model can be very difficult if not impossible. By building simpler models we can describe the 



 

35 

process, system, or model with functional forms that are useful for understanding or predicting 

behavior.  

Fitting metamodels using observational data imposes problems that degrade the ability to fit a 

useful model; these problems include correlations in the input data, missing data, and not having 

enough data. The most preferred way to fit a metamodel is to use an experimental design that specifies 

the inputs and eliminates these problems. (Kleijnen, 2015; Kleijnen et al. 2005) In this section, we 

introduce the methods of design of experiments (DOE) with an emphasis on simulation experiments and 

discuss the types of metamodel methods used to understand and predict behavior. Our goal is to 

highlight the power of DOE and describe how it fits into our MBSE methodology.  

7.1. Statistical Design of Experiments Introduction 
 

A common state-of-practice when performing tradeoff analysis is to start with a baseline system 

alternative of a system configuration. Two typical methods for experimentation are to vary one factor at 

a time or to develop excursions from the baseline to see what happens. Varying one factor at a time 

does not allow us to identify system interactions or synergies. In the context of simulation experiments, 

an interaction is when a model input’s impact on the output depends on the setting or value of another 

model input; this definition is different from the interactions associated with the system element 

interfaces. A positive interaction implies that model inputs complement each other and a negative 

interaction implies that model inputs substitute each other. Most complicated systems contain multiple 

synergies and understanding model input interaction translates into where these interactions may exist 

between the system elements. Examining excursions from the baseline usually means that the model 

inputs may be varied simultaneously; this may result in confounding effects, thus making it impossible to 

identify which model input caused the observed impact on the model output. To address these 

concerns, analysts use the methods of experimental design to untangle the effects of model inputs by 

eliminating the confounding between them and allow the opportunity to identify influential interactions 

(Sanchez and Wan 2009) 

The statistical concepts of experimental design date back to the 1920s within the agricultural 

domain (Fisher, 1925) and since then have had applications in all areas of science. Analysts use DOE to 

help understand how the world works and have applied DOE principles primarily on physical 

experiments. As computers progressively became more powerful and accessible, experimental designs 

for computer simulations have become an active research area (Kleijnen 2015). A common goal when 

performing DOE is to identify a short list of influential experimental factors from a long list of many.  In 

the context of system engineering and SysML, these experimental factors are considered value 

properties that are mapped to simulation model input parameters. In the previous section, we defined 

these model inputs as either design parameters or noise variables. Identifying which model inputs are 

the key design drivers and understanding how they affect the measures of effectiveness allow the 

systems engineer to make better design decisions. When there is a clear linkage between the model 

input parameters and the value properties in the MBSE integrated system model, we can gain insights 

into how each of the structural blocks of the system affects the performance of the emergent 

properties. 
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Performing a simulation DOE involves selecting an experimental design, running computational 

experiments, and fitting a statistical metamodel that approximates the behavior of the model. The 

experimental design, otherwise known as the design matrix, is the complete specification of the model 

input settings over a set of model runs; the columns in the matrix represent each model input and the 

rows are the settings for each experiment. At a minimum, the number of experiments must be greater 

than the number of design parameters. Additional experiments provide more data within the design 

space and capture more system configurations. (Kleijnen 2015) 

After performing the experiments and assembling the output data, the engineer has a wide variety 

of metamodeling methods to choose from. The most common metamodeling method used to quantify 

the relationships between the model inputs and outputs is to fit a parametric polynomial function using 

statistical regression (Barton 1998).  Other methods include neural networks, non-linear regression, 

Gaussian processing, sequential bifurcation, partition trees, boosted trees, bootstrap forests, and many 

more. (Grayson and Gardner 2015; Hastie et al. 2009; Kuhn and Johnson 2013) Generally, polynomial 

regression metamodels are excellent at describing individual model input impacts on model outputs 

while the other metamodeling methods mentioned earlier are better able to predict effectiveness by 

interpolating in-between simulated points.  Ultimately, the analyst must understand which methods to 

apply for either understanding or predicting model behavior.   

Developing a basic understanding spans across two extremes; on the one end, we want to gain 

insight into the mechanisms of a vague, ill-defined, or not-well-understood problem with limited, real-

world data. On the other end, we want to perform detailed analysis on a verified and validated 

simulation model.  No matter where we are in between these two extremes, there are a number of 

benefits of performing DOE that can help us understand a simulation model. These benefits include 

uncovering  detailed insight into the model’s behavior, allowing us to examine the modeling 

assumption implications, helping us frame the questions when we do not know what to ask, 

challenging or confirming expectation of directional model input effects and their relative 

importance, and uncovering problems of program logic. It is important to note that a model input’s 

importance depends on the context of the simulation experiment; a model input may be influential in 

one mission context, but not in another. Our next section will focus on how we can gain insights into 

understanding the behavior of simulations using the polynomial regression metamodel and partition 

tree methods. 

7.2. Understanding Complex Behavior 
 In order to reveal the benefits of using regression, we must first define the functional form of the 

polynomial regression metamodel.  According to (Myers and Montgomery 2009), the second order 

polynomial model is the most common metamodel used to model real-world problems and has the 

following form: 

𝑦 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 + ∑ 𝛽𝑗𝑗𝑋𝑗

2𝑘
𝑗=1 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑘
𝑗>𝑖

𝑘−1
𝑖=1 + 𝜀,                                          (2) 

where 𝛽0 is the intercept term representing the mean of the data; 𝛽𝑗 is the coefficient of the 𝑋𝑗 term 

and represents a model input’s rate of change or effect on the model outputs 𝑦 when all other model 

inputs are held constant; 𝑋𝑗
2 is the quadratic term for the jth model input, 𝛽𝑗𝑗 is the quadratic term’s 
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coefficient; 𝑋𝑖𝑋𝑗 is the two-way interaction between the ith and jth model input, and 𝛽𝑖𝑗 is the coefficient 

of 𝑋𝑖𝑋𝑗. The error term 𝜀 represents other sources of variation not accounted for by the model inputs. 

 The polynomial regression model provides readily interpretable parameter 𝛽 coefficients that 

provide key insights into the model’s behavior. The magnitude and sign of 𝛽𝑗 ,𝛽𝑖𝑗, and 𝛽𝑗𝑗, express the 

nature of the model input’s effect on the model outputs. The functional form of the metamodel is 

known as the response surface that we can visualize in two or three dimensions. For higher dimensions, 

we must view cross-sections of two model input parameters at a time of the response surface. In order 

to fit a second order polynomial metamodel, we must expand the design matrix into what is known as 

the regression matrix that includes columns representing the quadratic and two-way interaction effects. 

Figure 7.1 a design matrix expansion into a regression matrix. 

 

Figure 7.1. Design and second order regression matrix with three model input design columns. 

The expanded regression matrix allows us to fit a second order polynomial metamodel using the method 

of least squares (Montgomery 2012). Figure 7.2 shows an illustration of how we can learn about the real 

world by performing simulation experimental designs and fitting polynomial metamodels that represent 

the response surface landscape.  
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Figure 7.2. Metamodel development from a simulation experimental design. 

Each of the linear, non-linear quadratic, and interaction effects have a unique interpretation that 

translates into insights the systems engineer can use to understand what influences a design decision.  

7.2.1. Design Drivers  
Understanding which 𝑋𝑗 model inputs have an effect on the 𝑦 model outputs provides key 

insights into which design parameters or noise variables drive the system’s performance. We can 

identify these insights by examining the linear effects that estimate the slope or range of change on the 

𝑦 when we increase 𝑋𝑗 . If the coefficient 𝛽𝑗 ≠ 0 then the jth model input has an effect on the model 

output. These insights translate to the most important design parameters or noise variables that affect 

the emergent behavior. In a high-dimensional design problem, identifying the design parameters that 

are insignificant, where 𝛽𝑗 = 0, is as important as finding the ones that are. These design drivers are 

responsible for determining the effectiveness of the system and should be carefully assessed during the 

design decisions. As we increase the level of the model input, a positive coefficient sign means that the 

model output will increase while a negative sign means that the model output will decrease. Figure 7.3 

illustrates a positive linear effect. 
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Figure 7.3. Positive linear effect. 

7.2.2. Synergies/Interactions 
Identifying where there are interactions between system elements is an important endeavor 

while designing a system. These interactions are difficult if not impossible to find unless the system is 

evaluated in a mission context. Haphazardly selecting system alternatives or varying one model input at 

a time to evaluate performance provides the system engineer no way at clearly identifying where the 

interactions exist. Experimental design provides the means to identify interactions by specifying the 

model input settings for each experiment in order to clearly interpret each coefficient in the polynomial 

metamodel. The interaction term coefficient, 𝛽𝑖𝑗 , reveals a model input effect’s dependence on the 

setting or level of another model input; a positive 𝛽𝑖𝑗  sign indicates that the two model inputs 

complement each other, while a negative 𝛽𝑖𝑗 sign indicates that they reverse each other. For example, 

the presence of a sensor and weapon type in a defense system may together result in vastly different 

effectiveness than the presence of each of them separately. Figure 7.4 shows the effect of an interaction 

term on the model output. 
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Figure 7.4. Interaction effect where X1 and X2 negatively reinforce each other. 

7.2.3. Diminishing or Increasing Rates of Change 
The 𝛽𝑗𝑗 coefficient describes a nonlinear trend that indicates a model input’s diminishing or 

increasing rate of change on the model output. For example, as we increase a continuous model input 

we may identify a “knee in the curve” that indicates a point of diminishing returns with respect to a 

model output. These insights can save significant resources when we find model input settings where 

the return on the model output levels off. The effect on the model output is a result of the combination 

of the linear effect 𝛽𝑗  and the quadratic effect 𝛽𝑗𝑗 . Figure 7.5 illustrates the quadratic effect and shows 

the four combinations of quadratic effect types that result from the coefficient signs. 



 

41 

 

Figure 7.5. (a) Quadratic effect that reveals a “knee in the curve.” (b) Four types of quadratic effects defined by the 

combination of linear and quadratic effect coefficient signs. 

7.2.4. Identifying Thresholds with Partition Trees 
A significant limitation of the polynomial metamodel is that it can only approximate a smooth, 

nonlinear form and cannot identify a discontinuous step function that may exist within the response 

surface landscape.  A step function or threshold is an area where the model output performance is 

vastly different from another area. Identifying the presence of a step function can lead to important 

insights when analyzing a system. For example, during the test and evaluation of the maximum 

allowable weight of a cargo parachute, the rate of decent may increase linearly or nonlinearly as the 

weight increases, up until a weight threshold. Once we exceed this threshold, the parachute will collapse 

and increase, or step up, the rate of decent by a significant amount. Identifying the weight threshold for 

a cargo parachute is, therefore, critical for those involved with its use. 

 Effective statistical methods that can identify thresholds are classification and regression trees, 

otherwise known as partition trees. A partition tree finds the optimal split in a data set where the 

distance between the two group means is the greatest (Loh 2011). Each split occurs at a model input 

setting that separates the model output data into two groups, one below and one above the split. The 

split occurs where the mean difference between the two groups is maximized. As a result, we can 

identify a model input threshold that has the highest impact on the model output. These splits can be 

interpreted as the minimum or maximum design parameter thresholds that achieve a desired level of 

effectiveness. Figure 7.6 shows a partition split of a notional response surface with an indicator function 

that steps up the response when x is greater than 0.5.  
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Figure 7.6. Partition tree split of a response surface with a step function where the model output performance is vastly 

different from another area. 

7.3. Predicting Simulation Model Outputs 
There are a number of methods that can fit predictive models where our primary focus is to 

accurately predict the outcome of a response given a set of inputs. Predictive models are more of a 

“black box” rather than a model with easily interpretable model parameters like the linear regression 

metamodel described in the previous section. In this section we focus on four methods, Stepwise 

Regression, Neural Nets, Boosted Trees, and Bootstrap Forest.  We refer to (Grayson and Gardner 2015) 

for details on how these methods were implemented with the JMP© statistical software 

(www.jmp.com). 

7.3.1. Stepwise Regression 
Stepwise regression is way to find reasonably good linear regression models without having to 

examine all possible metamodels for a given set of inputs. Equation 2 from Section 7.2 shows the 

functional form of the second order polynomial metamodel. Because of the two-way interaction terms, 

the number of total terms increases exponentially as the number of inputs increases. As a result, fitting 

all possible combinations of models from an experiment with a large number of input columns becomes 

infeasible. Two types of stepwise regression methods are the forward and backward selection methods. 

The forward stepwise regression method starts out with a base model with only the intercept and adds 

the term not already included that explains the most variation. The algorithm continues to add terms 

until it reaches a stopping criterion. We use the cross validation criterion that compares the R2 from the 

training set with the validation set. When the R2 difference between the training set and the validation 

set begins to increase, the stepwise regression algorithm stops adding terms (see Section 7.3.5 for the 

definition of R2).  The backward stepwise regression algorithm works the same way as the forward 

http://www.jmp.com/
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selection except that it starts with the full model and subtracts the terms that explain the least amount 

of variation. 

 

7.3.2. Neural Nets 
Neural networks are flexible non-linear models used for predicting complicated response behavior.  

The neural network is constructed using a series of hidden layers that have transfer functions as nodes. 

Figure 7.7 shows a diagram of two inputs, two hidden layers each with three nodes, and one output. 

 

 

Figure 7.7. Neural net with two hidden layers. 

Neural nets take a linear combination of the inputs into a single node to transform them to a value in 

accordance with a function (hyperbolic tangent functions, linear function, or Gaussian function). From 

the second hidden node layer shown in Figure 7.7 we get new values and take linear combinations of 

them into the first hidden node layer. The last step is to make a prediction by taking a final linear 

combination from the first hidden node layer. Each line segment and node in Figure 7.7 represents a 

different parameter in the model that results in a highly complicated non-linear equation developed 

using numerical optimization algorithms. Before running the Neural Net algorithm, the user must decide 

the number of nodes, layers, and transformation function types; the more nodes and layers there are, 
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the more time intensive and complicated the model becomes. Neural nets can be viewed as a weighted 

sum of nonlinear functions represented by the nodes in Figure 7.7. We can model a wide variety of 

relationships with complicated response surfaces; however, these models are very prone to over-fitting 

the data. 

7.3.3. Boosted Trees 
Boosted Trees is another predictive metamodeling method that uses a weighted combination of 

partition tree layers. These layers are models of nested if statements that split the data into branches in 

the same way as the partition tree method described in Section 7.2.4; each branch slit occurs where the 

average response between branches is maximized. The first layer builds a small simple partition tree 

model from the data that explains as much variation as possible. The next layer uses the residuals from 

the first layer as the data to fit a second simple partition tree model; the residuals are the error 

difference between the data and the simple partition tree model predictions. The algorithm continues 

to fit simple partition models on the residuals from the previous layer for a specified number of 

iterations. The final model becomes a weighted sum of the individual models. Figure 7.8 is an illustration 

of 50 layer iterations, the final layer being the weighted accumulation of all model layers. 

 

Figure 7.8. Boosted tree layers. 

7.3.4. Bootstrap Forest 
The Bootstrap Forest method is similar to the Boosted Trees method in that it uses multiple 

partition trees to develop a predictive metamodel. For each tree, the Bootstrap Forest method takes a 

random sample of the inputs and builds a partition tree from this subset. The algorithm continues to 

build partition trees by resampling from the inputs for a specified number of iterations. The final model 

becomes the average of all the models. The benefits of the Bootstrap Forest method is that it allows the 

dominant input variables to be excluded from some of the partition tree iterations. In this way, all input 
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variables have a chance for selection. Figure 7.9 illustrates the Bootstrap Forest method of the average 

of 100 sampled partition trees. 

 

 

Figure 7.9. Bootstrap Forest method. 

7.3.5. Model Comparison 
A key concern when fitting predictive models is over-fitting the metamodel to the data. A metamodel 

may predict very well with the data used to fit the model but when we use other data to predict an 

outcome, the metamodel performs poorly.  An effective way to test the accuracy of a metamodel is to 

hold data from the model building process and validate and test the metamodel with the other subset of 

data; this is known as the cross validation method. The data is partitioned into three sets, a training, 

validation, and test set. The training set fits the predictive metamodel. The validation set is used to 

select the size and complexity of the metamodel. The test set is used to evaluate how well the 

metamodel predicts data not used to fit or select the metamodel; this allows us to assess how well the 

metamodel will perform with a new set of input data.  

It is important to fit a variety of metamodeling methods in order to find the best performing predictive 

metamodel. We applied the four methods descried in the previous sections for each of our responses in 

the squad enhancement use case. We used two metrics to compare the metamodels in order to select 

the best performing model. The Root mean squared error (RMSE) and the R2 metrics. To obtain the 

RMSE, we take the average of all the squared differences between the data and the predicted outcome. 

These squared differences are also known as the sum of the squared residuals.  We then take the square 

root in order to get the average error in the metamodel. We derived R2 using the following formula: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
                                                                                      (3) 

where SEE is the sum of the squares of the residuals and TSS is the total sum of the squared differences 

between the data and the mean. R2 is a number between 0 and 1, 1 means that the metamodel predicts 

the data perfectly and 0 means that the metamodel is no better than the mean of the response. We can 

interpret the R2 metric as the percent of the data variation that is explained by the metamodel. 
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Generally, the R2 metric is primarily used for linear regression models but in practice show similar results 

as the RMSE. Figure 7.10 shows the cross validation of the actual data versus the stepwise regression 

prediction plots for the ATK_Aware response. 

 

 

Figure 7.10. Cross validation comparison of the ATK_Aware stepwise regression training, validation, and test data sets. 

Table 7.1 shows the RMSE results for all metamodeling methods we used to find the best predicting 

metamodel that pertain to the Attack scenario. The lowest RMSE determines the best performing 

metamodel. The Neural(1,1,1) is a Neural Net with one layer of three nodes, with a hyperbolic tangent, 

linear, and Gaussian function. The Neural(3,3,3) is a Neural Net with two layers of nine nodes with three 

hyperbolic tangent, three linear, and three Gaussian functions. For the ATK_Aware response, there is a 

tie between the Stepwise regression and Neural(3,3,3) RMSEs. We selected the stepwise regression 

metamodel because it is less complicated than the Neural Net metamodel. The R2 metric shows the 

same results as the RMSE. 
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Table 7.1. The Root Means Squared Error (RMSE) comparison for the five predictive metamodels. Best performing RMSE are 

highlighted in bold. 

Response 
Boosted Tree 

RMSE 

Bootstrap 

Forest RMSE 

Fit Least 

Squares RMSE 

Neural(1,1,1) 

RMSE 

Neural(3,3,3) 

RMSE 

ATK_LOS 20.1201 106.7295 23.2483 28.1781 25.8704 

ATK_BLOS 0.0862 0.1878 0.0984 0.1756 0.1705 

ATK_Survive 1.406 1.8606 1.4118 1.8377 1.8329 

ATK_Protect 6.8189 8.4911 6.4104 8.8473 8.4804 

ATK_Sustain 251.8785 285.4452 311.3128 263.8386 270.5063 

ATK_Lethal 0.0437 0.0633 0.0471 0.0515 0.0473 

ATK_Aware 0.013 0.0246 0.0122 0.0113 0.0112 

 

To illustrate the forms of the metamodeling methods described above, Figure 7.11 shows each 

metamodel type for the Awareness response from the small squad enhancement use case. The stepwise 

regression metamodel shows a smooth polynomial function without any quadratic terms. We can clearly 

identify the highest impact model input as the SensorClassifyRNG due to the magnitude of the slope. 

The Boosted Tree and Bootstrap Forest methods show a jagged form that result from the nested if 

statements. The Neural Nets have a highly complicated non-linear form that can fit through the data 

very effectively. The Boosted Tree metamodel has the lowest RMSE and is therefore the best performing 

predictive metamodel. 
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Figure 7.11. Vertical cross sections of the Stepwise Regression, Boosted Tree, Booststrap Forest, and Neural Net metamodels 

and their Root Means Square Error (RMSE) values. 

Comparing the metamodels in Figure 7.11 allows us to understand each method’s individual benefits. 

The Stepwise Regression metamodel provides coefficients we can interpret to include two-way 

interactions, when they are present, to help our understanding of the model’s behavior. The Boosted 

Trees, Booststrap Forest, and Neural Nets are better suited for predicting as we can see by their forms 

shown in Figure 7.11.  Now that we have an understanding of the metamodeling concept, we now will 

discuss the types of experimental designs available to perform simulation experiments. 

7.4. Experimental Design Types 
There are many types of experimental designs used for different purposes. The type of design 

used depends on a number of different considerations; some of these include: the number of potential 

model inputs, the number of experiments in the design matrix, the types of metamodels that will be 

fit, and the assumptions about the form of response surface; for example, if we experiment using only 

the low and high setting of the model inputs we have no idea what happens in-between and therefore 

must assume that there are no existing non-linear quadratic effects.  The number of factors and the 

response surface complexity assumptions may be the two most important considerations. If we have a 

small number of potential model inputs and we can assume that there are no higher-order terms (i.e. 

the response surface is linear), then we can use full-factorial, two-level designs to identify which of 

the potential factors are important. The number of design points needed to perform a full-factorial 

design increase exponentially as the number of potential factors increase; therefore, we may need to 

use other types of designs that require fewer design points.  (Sanchez 2015; Sanchez et al. 2014; 

Sanchez and Wan 2012) 

DOE is particularly useful in simulation studies because of the large number of potential factors, the 

complex response surfaces that are involved, and the user can control the experiments without the 

need to block confounding effects typically required during physical experiments. Some of the 

differences between physical and simulation experiments are listed in Table 7.2. 

 
Table7.2 . Differences between physical and simulation experiments. 

Characteristic Physical Simulation 

Number of factors Few Many 

Number of levels Few Many 

Number of responses Single Multiple 

Error variance Homogeneous Heterogeneous 

Presence of interactions Negligible or limited Important and complex 

Error structure Independent, identically distributed Normal Complex structure 

Response surface form Linear Nonlinear 
 

Because of the complicated nature of simulations, there are a number of newly created 

experimental designs that allow for the analysis of these types of problems. Before we discuss the types 

of experimental designs within the field of DOE, we first will explain two key design characteristics that 

are relevant to analyzing simulations—correlation and space-filling characteristics.  
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7.5. Correlation and space-filling design characteristics 
Least  squares  estimation  is  the  most  common  method  used to  estimate  the β coefficients. The 

precision of these estimates depends upon the correlations among columns of the regression matrix. In 

order to ensure that model input effects are not confounded with other effects, the design should 

minimize the correlations among the columns within the regression matrix. If a model input correlates 

well with a model output but has a high correlation with another model input, then we cannot tell for 

certain which model input contributes to the observed change in the model output variable. To 

demonstrate the impact of correlation of the coefficient estimates, Figure 7.12 illustrates a design with 

two columns and its correlation matrix that includes the expanded quadratic and two-way interaction 

term. The figure shows a notional “true model” of the response surface landscape in the upper right 

that in reality we never know with complete certainty.  Because there are correlations between the 

higher order effects (quadratics and two-way interactions) the coefficient estimates of the model terms 

are significantly different than the true coefficients for the majority of the polynomial models fitted (as 

noted in the red color).  

 

 

Figure 7.12. Impact of high correlations on the metamodel estimates. Within the fitted model matrix, red indicates a 

deviation from the true model coefficient, green indicates an accurate estimate. 

In the example shown in Figure 7.12, a design that has no correlation among the columns will result in 

coefficient estimates that equal the true model coefficients.  In a high dimensional simulation 

experiment, the number of polynomial terms will be significantly high. Therefore, in order to guarantee 

that our coefficient estimates are not confounded we desire to utilize experimental designs that 

minimize correlations among the columns in the regression matrix. 

Correlation also impacts the length of the confidence interval around 𝛽𝑗 , making it harder to 
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identify the true impact of a model input on the model output. Figure 7.13 demonstrates how 

correlation inflates the variance of the estimates by varying the angle between two vectors, X1 and X2, 

from 1 to 90 degrees (a correlation of 0 is analogous to two vectors that are orthogonal, with 90 degrees 

between them). Each of the vectors has a unit length of 1 and is anchored at the origin. Assuming that 

the variance of the response (𝜎2) is constant, the variance of the estimates can be determined 

analytically (Montgomery 2012). We created the graph in Figure X by rotating X1 from 1 to 90 degrees 

and evaluating var(β). We can see from Figure 7.13 that when the angle between two vectors is less 

than 50 degrees, the variance of the estimates is inflated significantly. 

 

 

Figure 7.13. Impact on the coefficient estimate variance as the angle between vectors increases. The variance is inflated 

as the angle between vectors approaches zero. A 90 degree angle between vectors is analogous to 0 correlation. 

 Space-filling is another design characteristic that is important during simulation experiment studies. 

The amount of coverage in between the low and high settings across all model input dimensions is what 

defines a design’s space-filling characteristic. Figure 7.14 shows a comparison between a traditional 

design that only experiments at the low, middle, and high setting and a space-filling design that covers 

the entire design space.   Both designs have zero correlation between model term coefficients but the 

traditional designs do not explore the interior of the design region as well as the space-filling design. 
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Figure 7.14. Two-dimensional projections of a traditional and space-filling designs, overlaid onto a contour plot of a true 

response surface with threshold. 

 

7.6. Traditional and Space-Filling Designs 
There are a number of traditional experimental designs that experimenters use for physical 

experiments. Two-level full-factorials designs are used when there are a reasonable amount of design 

columns and we can assume that there are no interesting behavior that occurs in-between the low and 

high setting of the design region. The number of experiments needed to perform a full-factorial design is 

2k where k is he number of experimental factors. To alleviate the burden of the high number of 

experiments, we can use fractional factorial designs but as a result, we cannot understand fully the 

impact of all the two-way interactions that may exist. When we need to understand how something 

behaves in the interior of the design region we can use Central Composite Designs (CCD) that 

supplement fractional factorial experiments with additional “star” points and a center point. The 

number of CCD experiments grows by a factor of 2k+2k+k and very quickly becomes inefficient.  

Computer-generated optimal designs are often used when traditional designs are not 

applicable. For example, when there is an irregular experimental region that has factor constraints, 

qualitative factors, and/or if we want to fit a nonstandard model that excludes a subset of quadratics or 

interactions (Myers et al. 2009). Two of the most common types of optimal designs are the D-Optimal 

that minimizes the determinant of the covariance matrix and the I-Optimal design that minimizes the 

average prediction variance; both for a pre-specified metamodel (usually a main effects model, with 

constant variance). 

Space-filling designs are better suited for identifying unknown response surfaces, where 

multiple complex forms and thresholds are possible (Myers et al. 2009). The most common type of 

space-filling designs is the Random Latin hypercube (RLH). Figure 7.15 defines the RLH where n is the 
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number of experiments or design points, k is the number of experimental factors and f(x) is the 

response.  

 
Figure 7.15. Definition of the Random Latin Hypercube. 

As indicated by Figure 7.15, a significant limitation with the RLH is that they generally do not 

minimize the correlations between the columns in the regression matrix and as a result, the coefficient 

estimates of the polynomial metamodel are confounded. (Hernandez et al. 2012) addressed the RLH 

correlation problem by constructing a nearly-orthogonal Latin hypercube (NOLH) with a mixed integer 

program optimization algorithm were the maximum absolute pairwise correlation between columns is 

less the 0.05.   

Simulation experiments often have a mix of model input types. Continuous model inputs range 

between a low and a high setting, while discrete and categorical model inputs have a predetermined 

number of levels. The discrete levels have a numeric meaning, while each categorical level represents 

qualitative categories. LH designs are useful for the exploration of continuous factors because they 

provide insight throughout the experimental region but by themselves cannot effectively handle 

discrete or categorical experimental factors, because of the increase to the correlations due to rounding 

Experimenters use orthogonal arrays when exploring discrete and categorical factors. (Rao 1945) 

introduced orthogonal arrays in order to ensure that qualitative factors are not confounded with each 

other. A significant limitation of orthogonal arrays is that the number of experiments needed for a 

moderate number of experimental factors is too large. For example, an orthogonal, full-factorial design, 

with 10 discrete factors, each with 10 levels, requires 10 billion experiments, making them extremely 

inefficient. To address the inefficiencies of orthogonal arrays, (Vieira, Jr. et al. 2011) developed known as 

Nearly Orthogonal/Balanced (NO/B) designs in order to explore all types of factors simultaneously  
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(continuous,  discrete,  and  categorical)  in  a  reasonable  amount of experiments. For an in-depth 

review of the different types of experimental designs used for simulation studies, see (Kleijnen 2005). 

7.7. State-of-the-art space-filling designs 
In order to understand the complex nature of a system design problem, we must be able to 

detect the system drivers and understand how they impact the system effectiveness. Computer 

simulations and DOE enable us to model a system by simultaneously exploring numerous model inputs 

that may affect the complex nature of multiple simulation model outputs. When these model inputs are 

mapped to system design parameters and noise variables we can identify the ones responsible for 

determining the effectiveness of the system. These experiments are critical in the early phases of the 

system design process, when there is little information and no existing system. Simulation model 

outputs often have complicated, high-order, response surfaces that may include thresholds or step 

functions in different regions of the experimental space. The simulation analyst needs experimental 

designs that can best capture the significant system drivers, thresholds, synergies/interactions, and the 

model input’s diminishing or increasing rates of return with respect to multiple model outputs. 

A new class of space-filling designs, known as the 2nd Order NOLH and NO/B designs developed using 

a genetic algorithm combines the benefits of near orthogonality (minimal correlations), the space-filling 

characteristic, and the ability to experiment with continuous, discrete, and categorical experimental 

factors simultaneously (MacCalman 2013). Figure 7.16 illustrates how these new state-of-the-art designs 

contribute to the body of knowledge of the space-filling and second order design domains.  

 

 

Figure 7.16. Space-filling and second-order design domain convergence; see (MacCalman 2013) for the embedded citations. 
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(MacCalman 2013) developed a freely available custom design generator to construct 2nd Order NOLH 

and NO/B designs for simulation studies that can be downloaded at 

http://harvest.nps.edu/software.html; Appendix B contains the custom design creator user manual. 

7.8. Use Case Experimental Design 
To perform the experiment, we utilized three custom built space-filling designs with 38 columns that 

represent each of the MANA model inputs. The design used for the training set had 300 rows, while the 

design used for the validation and test sets had 100 rows; each row represented the model input settings 

for one simulation experiment. Because the MANA simulation is stochastic, we performed 100 

replications for each simulation experiment, for a total of 50,000 runs. After performing the experiments 

on a high performance computing cluster and post-processing the output data, the design matrix and 

model output columns were imported into a statistical package to fit our surrogate metamodels. 

8. Technical Requirements for High Performance Computing Clustering 
In order to outline the technical requirements necessary to perform simulation experimental designs, 

we developed an IDEF0 functional diagram that highlights the nine major activities with each of their input 

and output requirements. An IDEF0 diagram shows a box for each activity with arrows representing the 

inputs (left arrow), outputs (right arrow), mechanisms (bottom arrow) that perform the activity, and the 

controls (top arrow) that set the conditions, such as guidelines, procedures, or standards. Figure 8.1 shows 

the major activities starting with identifying the tradable/decision variables from our SysML diagrams and 

ending with the simulation output data and statistical metamodels that are imported into the ERS 

tradespace visualization environment.  

 

http://harvest.nps.edu/software.html
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Figure 8.1. IDEF0 Functional Diagram outlining the activities and input/output requirements necessary to perform a 

simulation experimental design study. 

The next subsections describe in more detail each of the nine activities depicted in Figure 8.1. 

 

8.1. Select System Model Element Design Variables 
A principle artifact of the MBSE paradigm is the “System or Reference Model” that represents the 

system of interest, implemented using an MBSE Tool. This model captures all design specifications 

throughout the system lifecycle and uses a language to express different views of the system.  We assume 

that the Conceptual Model within the ERS Architecture will be what MBSE practitioners refer to as the 

“System Model,” that uses the nine diagram types of the System Modeling Language (SysML). Our first 

activity involves selecting the design variables from the conceptual model and defining the experimental 

design region we intend to explore with our external models. The inputs to this activity are the value 

properties from the structural block diagrams of the integrated system model. The controls that govern 

the activity are the SysML syntax and semantics, the research questions, and the problem domain. The 
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mechanism to perform this activity is the MBSE modeling tool and the outputs are the value properties 

representing the tradable variables to explore in the experimental design study. 

 

Select Design Variables: Once the Conceptual Model is built in ERS, the analyst may want to analyze the 

performance/effectiveness of the system and identify the most important design variables, otherwise 

known as tradable variables. These variables can be structural and behavioral system model elements 

defined in the conceptual model and viewed in different SysML diagrams. Structural elements are 

viewed using the Block Definition and Internal Block Diagrams while the behavioral elements are viewed 

using the Use Case, Activity, Sequence, and State Transition Diagrams.  

 

Define Design Region: Each variable should be classified as either a continuous, discrete, or categorical 

type.  The analyst must define the experimental design region by selecting the low and high settings for 

the continuous variables, the number of levels for the discrete variables, and the number of categories 

for the categorical variables.   

 

8.2.  Select Analytical Models, Develop Baseline Scenarios, and Map Design 

Variables to Model Inputs 
The inputs to this activity are the tradable variables that will be investigated during the experimental 

design study. The controls that govern the model selection are the problem domain and the research 

problem. The mechanisms that perform this activity are the models and simulations that will be used in 

the study. The outputs of the activity are the model inputs and the baseline simulation scenario. In order 

to effectively perform a simulation experimental design, all models must have the ability to modify their 

input parameters programmatically and execute an instance via a command-line without a Graphical 

User Interface (GUI) or human in the loop. 

 

Select Analytical Models: We assume that the analyst wants to analyze the system using 

different external operational simulation models and first-order engineering models. Each 

model examines a different aspect of the system and has their own unique set of input 

parameters and output measures. Generally, the operational simulations inform the system 

effectiveness within different mission contexts while the first-order engineering models define 

feasible system configurations. 

 

Construct Baseline Scenario Models: For each model selected, the analytical team must 

construct operational mission context scenarios that are verified and validated for each aspect 

of the problem the model represents. These scenarios may be reused from previous studies but 

generally, the models will require some redesign to meet the needs of the intended research 

questions. These models will have baseline input parameter settings that will eventually get 

modified during the high performance computer cluster runs.  

 

Map Design Variables to Model Input Parameters: After selecting the external models that will 

inform the system’s effectiveness and feasibility, the analyst must map design variables derived 
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from the Conceptual Model (elements from the SysML Diagrams) to the model input 

parameters; each model will have their own set of elements that map to their own set of inputs. 

 

8.3. Create Experimental Design 
The inputs to this activity are the model inputs that will represent each of the factors in the 

experimental design and the number of simulation replication runs. The mechanisms to create an 

experimental design are a statistical software package or a custom design builder. The controls are the 

DOE principles and the output is the experimental design matrix that will be used to perform the 

experiments.  

 

Select Experimental Design Type: After mapping the design variables to model input 

parameters, the analyst must now select the type of experimental design. This decision is based 

on the model run time, the available computational resources, the number and type of design 

variables (continuous, discrete, or categorical), and the desired complexity to capture in the 

analysis.  For example, a screening design can analyze over 100 model inputs but not clearly 

capture the higher order complicated behavior in the form of synergies between variables or 

non-linearities. After identifying the most important system elements that drive the output 

behavior, we can then perform subsequent experiments on a reduced set of variables to further 

identify complicated behavior.  The field of DOE has several types of experimental designs to 

choose from, each with their own set of properties and purposes. Space-filling designs are 

particularly useful for simulation studies where the analyst can expect to find interesting 

behavior anywhere within the experimental design region.  In addition, designs that allow for a 

mix of continuous, discrete, and categorical factors are important for system simulation studies 

due to the large number and type of design variables. 

 

Determine the Number of Experiments: An experiment is referred to as a design point within 

the DOE literature. At a minimum, the number of design points must at least be greater than the 

number of design variables. Additional design points provide more data within the design region 

and capture more system configurations.  Performing brute force simulation runs on all possible 

configurations of a high dimensional system problem quickly becomes infeasible due to the run 

time requirements of a simulation model. A key benefit in doing DOE is to leverage efficient 

experimental designs that sample at the right system configuration settings within the design 

region in order to get as much information as possible from your experiments. 

 

Generate Experimental Designs Using a Statistical Package or Custom Design Builder: Once the 

analyst selects the type of design with the required number and type of variables, design points 

(experiments), and defines the design region, he/she must now either generate a custom design 

or select an existing cataloged design from the literature. The analyst can generate the design 

either with a custom design builder or an external statistical package. The end result is a matrix 

with columns that represent design variables, and rows that are the input parameter 

specifications for each model experiment. We should expect that there be a unique 
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experimental design for each external model with unique input parameters and output 

measures. 

 

8.4. Generate a Study File that Specifies which Model Input Parameters to 

Change  
The controls that govern this activity are the simulation model input formats. In order to perform a 

simulation experimental design study, we need a mechanism for changing the base case scenario input 

parameters to the settings specified in the design matrix. The two inputs to this activity are (1) a base 

case simulation scenario typically created using a GUI that forms the basis for modification by the 

experimental design matrix and (2) an experimental design, which are a set of model input parameters 

and the values for each experiment. The mechanism is software that finds, selects, and modifies the 

model input parameters of the base case scenario to create a set of excursions, one for each experiment 

or row in the design matrix. The mechanism used to set the values depends on the model input format.  

Input formats for simulation models can range from one or more plain-text files, such as CSV 

(comma separated values) files, to structured text files, like XML, YAML, or JSON, to entries in a database 

table, or combinations thereof. Each of these formats present different challenges in the task of 

modifying model input (NATO Science and Technology Organization 2014). The format must have a 

structured way of defining data and at the same time provide meta-information describing the 

semantics of the contained data. The XML structure allows for the navigation through the input file 

programmatically to identify various sections of the inputs easily, e.g., with the help of XPath (Bray et al. 

2008). This is greatly advantageous over plain text files, as parsing XML is also, due to the organized 

structure of such a file, a fairly standard task which does not need to be implemented by hand from the 

ground up. The software mechanism that will perform this activity should have a graphical user interface 

that allows the user to map model input parameters to the experimental design columns and save these 

mappings into a specification study file. The output of this activity is a specification study file that 

specifies which model input parameters to change. 

 

8.5. Generate Excursion Files for Each Experiment (row in the design 

matrix). 
 Once we generate the specification study file, we now need a means to create individual excursion 

files with the new model input parameters set to the values specified in the design matrix. For each 

experiment or design point in the design matrix, there should be one excursion file. The mechanism that 

performs this activity is a software solution that accepts the design matrix and specification study file as 

an input and produces the set of excursions needed to perform the simulation experiments. If we are 

using stochastic simulations, we must perform replications of each excursion in order to analyze the 

output measures. 
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8.6. Execute HPC Simulation Runs 
 To execute the simulation excursion runs on an HPC we need a job queuing mechanism that enforces 

a scheduling policy and priority scheme while monitoring the computer resources that will complete the 

jobs. A job is one or more runs of the simulation model excursion. The mechanism is a software 

management system that interfaces with the HPC and excursion files and distributes jobs across 

available computer resources while managing the transfer of files. The software we used for this 

research was HTCondor (see https://research.cs.wisc.edu/htcondor/).  Once an excursion run is 

complete, the simulation output files are stored in a specified location.  

 

8.7. Post-Process Output Files 
 There are three necessary requirements to post-process output for operational simulation data that 

involve extracting, aggregating, and appending data to the experimental design. The controls that 

govern this activity are the model output data log formats. Figure 8.2 shows visually each of these sub-

activities. 

Extract Data: A post-processing script is necessary to extract the desired measure from one or 

more data log files. Typically operational simulation model outputs are saved as data logs of 

events that occurred during the run of the scenario.  These files may contain 1000s of records 

for target acquisitions, state variables changes, or event occurrences. Although there may be 

common output measures used often for a wide variety of studies, there will always be unique 

measures that require a script to extract from the data log. For example, one output measure 

for an operational simulation may be the number of civilians killed by indirect fire and is 

something that the model does not provide directly to the user.  The output data log may record 

data fields that include the entity status at different time steps. A post-processing script must 

iterate through the data log to tally the number of civilians that were killed during the model 

run.  

 

Aggregate Data: The second post-processing requirement is to aggregate the individual output 

data log files into one file. Generally, simulations save data as individual output files for each 

experiment and each replication.  

 

Append Data to Experimental Design: The final step is to append the output measure data to 

the experimental design. The final artifact should be a matrix with each experimental design 

column and output measure columns appended to the right.  The matrix should have each 

experiment or row repeated for each replication.  

 

https://research.cs.wisc.edu/htcondor/
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Figure 8.2. Post-Processing Activities. The figure visually shows each of the activities necessary to produce the final data file 

that is passed to the subsequent activities. 

The output of this activity is an experimental design matrix with the model outputs appended to the 

right of the design. 

8.8. Perform Statistical Metamodeling 
Once we produce the data file with the model outputs or MOEs appended to the design matrix, we 

can then perform the statistical analysis that was described in the previous chapter. The controls that 

govern this activity are the statistical principles and metamodeling methods. The mechanisms that 

perform this activity are the statistical packages available to fit metamodels; examples include R, SPSS, 

Minitab, Stata, JMP, MATLAB, Microsoft Excel, and several others.  The outputs to this activity are the 

collection of surrogate metamodels for each of the model outputs that will be analyzed in the 

tradespace study. 

 

8.9. ERS Tradespace Visualization 
Our next chapter will describe in detail how we perform this activity by analyzing and visualizing trade 

decisions. The mechanism to perform this activity is an ERS visualization dashboard that can illuminate 

trade decisions. The purpose of this chapter is to reveal the requirements needed to develop the 

metamodel approximations that are used to help illuminate the trade decisions. The functional form of 

the metamodels provide a way to explore changes in multiple design variables to help narrow in on 
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interesting system configurations with respect to multiple output measures; exploring the functional form 

of the metamodels helps illuminate the viable system variants. Our purposed methodology is tool agnostic 

but in order to demonstrate it we must select the tools for each activities listed in Figure 8.1.  Table 8.1 

shows the tools we intend to use for each of the nine activities. The hyperlinks in the table provide 

additional information for each of the tools listed. 

 
Table 8.1. Software tools used for each functional activity. 

Functional Activity Tool Link 

1.0 Select System Model Element Design Variables MagicDraw SysML Plugin 

2.0 Select Analytical Models, Develop Baseline 

Scenarios, and Map Design Variables to Model 

Inputs 

Map Aware Non-uniform Automata Simulation 

3.0 Create Experimental Design Custom Space-Filling Design Creator 

4.0 Generate a study file that specifies which 

model input parameters to change 

XStudy Data Farming Tool 

5.0 Generate excursion files for each experiment 

(row in the design matrix). 

OldMcData Data Farming Tool 

6.0 Execute HPC Simulation Runs HTCondor 

7.0 Post-process Output Files Post-Processing Script written in R 

8.0 Perform Statistical Metamodeling JMP 

9.0 ERS Tradespace Visualization JMP 

9.  Simulation Analysis and Tradespace Visualization 
Despite our efficient selection of experimental design variable setting there is still a high volume of 

multi-dimensional data that requires sophisticated analytical techniques to gain insights. Some of these 

techniques include descriptive statistics, visualizing distributions to understand the spread of the output 

measures and identify outliers, visualizing scatter and contour plots to understand the output measure 

landscape, and many more. To demonstrate how we can apply these statistical techniques we will use a 

small use case example that explores a soldier enhancement system that includes a radio, sensor and a 

rifle. Our demonstration will include the following three measures of effectiveness (MOEs): ATK_Aware, 

ATK_Lethal, and ATK_Protect; see Section 5.4 for the description of these MOE responses. We will first 

discuss the exploratory analysis techniques and then describe the dashboard used to identify key tradable 

variables and viable system variants. In this section, we refer to the term model input as a factor and to a 

model output as a response.  

9.1. Exploratory Analysis 
Before fitting meta-models, we begin by examining the distributions of our three MOEs of interest 

and the pairwise correlations between them.  Figure 9.1 contains the set of histograms and statistical 

summaries of the MOEs, produced with the JMP© statistical software (www.jmp.com).  The data set upon 

which these are based represents the mean of each of the 500 design points, hence N=500 for each of 

http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html
http://harvest.nps.edu/scythe/Issue1/IDFW13-Scythe-Mana.pdf
http://harvest.nps.edu/software.html
http://harvest.nps.edu/software.html
http://harvest.nps.edu/software.html
http://research.cs.wisc.edu/htcondor/
http://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_scrpt.html
http://www.jmp.com/software/jmp/
http://www.jmp.com/software/jmp/
http://www.jmp.com/
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these.  From these histograms, we note a couple of things: (1) there is reasonable variation across the 

design point, meaning that at least one factor had a significant impact on each MOE, and (2) some MOEs 

are closer to being normally distributed than others.  For example, ATK_Lethal appears bi-modal, a fact 

we’ll seek to explain with the metamodeling approaches. 

 

 
Figure 9.1: Histograms and Summary Statistics for the 3 MOEs 

 

Figure 9.2 contains the set of scatterplots and pairwise correlations for our MOEs. ATK_Aware and 

ATK_Lethal have a moderate positive correlation (approximately .37), which makes sense, since one 

would expect that an increase in awareness of Red would lead to an increase in being able to kill more 

Red, earlier.  ATK_Aware and ATK_Protect have a moderate negative correlation (approximately -.35), 

which also makes sense, in that an increase of awareness of Red should lead to an improved ability for 

Blue to protect itself, thus leading to a lower total number of hits taken.  The strongest correlation, 

between ATK_Lethal and ATK_Protect (approximately -.83), confirms intuition that killing more red, 

earlier, leads to a dramatic decrease in the total number of Blue hits taken by Red.  The fact that the two 

‘moderate’ correlations are not stronger simply means that there is more to the story, which we seek to 

uncover with the metamodels. Another insight we can gain from examining correlations is whether or not 

MOEs “trade off” with each other, or, whether we can simultaneously improve all MOEs together.  The 

latter is the case for these 3 MOEs, they do not trade off with each other.  
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Figure 9.2: Scatterplots and Correlations 

 

 

ATK_Aware Metamodels: Figure 9.3a depicts the sorted parameter estimates for the ATK_Aware 

regression model (with R2 of .92). This particular model contains only main effects, no interaction or 

quadratic effects.  Included in the list of most significant main effects are the design parameters for 

number of UAV (NoUAV), soldier classification range (SDRClassRng), number of robots (NoRobots), and 

internal communication delay between squad members (InCommDelay).  An effective way to show how 

each design parameter impacts an MOE is with a prediction profiler, shown in Figure 9.3b.  A prediction 

profiler displays the partial derivatives for each design parameter in a metamodel. These profilers show 

how changes in each design parameter or design driver impact the MOE, while the other design 

parameters are held constant.  From both a. and b. we can see that InCommDelay has a negative effect 

on overall awareness, while the other three design parameters have a positive effect.  Figure 9.3c contains 

a partition tree with splits in the experimental data that show thresholds for the 3 of the 4 design 

parameters that appeared in the regression model.  
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Figure 9.3: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Partition Tree. 

 

A summary of the insights captured from the polynomial metamodel coefficients are summarized in 

Table 9.1.  These insights are based on the assumptions behind the agent-based simulation model, the 

scenario, and the established ranges of the design parameters. We must remember that when a design 

parameter is insignificant according to the metamodel it does not mean it is not important within a 

different scenario or outside these established ranges. All models are abstractions of reality and must be 

verified and validated. Like the simulations themselves, the metamodels are also models that must be 

validated in order to provide valuable insights that help understand a complex system design problem.  
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Table 9.1. DOE insights from the ATK_Aware MOE from the attack scenario. 
Type of 

Insight 
Design Parameter 

Coefficient 

Sign 
Description 

Design 

Drivers 

NoUAV Positive 
Increasing the number of UAVs improves awareness. 

 

SDRClassRNG Positive 
Increasing the soldier classification range improves awareness. 

 

NoRobots Positive 
Increasing the number of robots improves awareness. 

 

 InCommDelay Negative 
Increasing the delay between internal squad communications degrades 

awareness. 

Synergies / 

Interactions 
N/A N/A 

 

 

Diminishing 

rate of change 
N/A N/A  

Thresholds 

NoUAV N/A 
Solider system shall incorporate at least one Unmanned Aerial System. 

 

SDRClassRNG N/A 
Solider classification range multiplier shall be at least 1.5. 

 

NoRobots N/A 
Solider system shall incorporate at least one Robot. 

 

  

ATK_Lethal Metamodels: Figure 9.4a depicts the sorted parameter estimates for the ATK_Lethal 

regression model (with R2 of .88). This model contains main effects, one interaction effect, and one 

quadratic effect.  Included in the list of most significant main effects are the design parameters for soldier 

M4 weapon range (M4RNG), soldier classification range (SDRClassRng), number of UAV (NoUAV), and 

soldier detection range (SDRDetRNG). Figure 9.4b contains the prediction profiler, indicating that M4RNG 

has the strongest impact on this MOE.  Figure 9.4c is an interaction matrix where each plot shows the 

synergies between two design parameters, one in a row and the other in a column. The design parameters 

in the columns show its effect on the MOE when the design parameter in the row is set at the low and 

high levels.  The line segments represent the low and high settings of the row design parameter; when 

the slopes of these lines are different, this means that the effect of the column design parameter depends 

on the setting of the row design parameter (23).  Figure 4d contains the partition tree, with R2 of .83. 
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Figure 9.4: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Interaction Profiler. (d) Partition Tree. 

 

A summary of the insights captured from the polynomial metamodel coefficients are summarized in Table 

x.  As before, these insights are based on the assumptions behind the agent-based simulation model, the 

scenario, and the established ranges of the design parameters.  

 
Table 9.2. DOE insights from the ATK_Lethal MOE, using the attack scenario. 

Type of 

Insight 
Design Parameter 

Coefficient 

Sign 
Description 

Design 

Drivers 

M4RNG Positive 
Increasing the soldier’s M4 weapons range improves lethality. 

 

SDRClassRng Positive 
Increasing the soldier’s classification range improves lethality. 

 

SDRDetRng Positive 
Increasing the soldier’s detection range improves lethality. 

 

 NoUAV Positive Increasing the number of UASs improves lethality. 

    

Synergies / 

Interactions 
SDRClassRng / M4Rng Negative 

The soldier’s classification range interacts with his M4 weapon range. Increasing 

the M4 weapon range has more of an impact when the classification range is low.  

(This is a mild to moderate interaction effect.) 

 

Diminishing 

rate of change 
SDRClassRng Negative 

Analysis indicates that there is a point of diminishing returns beyond a class 

range multiplier of 1.5.  

 

Thresholds 

M4RNG N/A 
Soldier M4Rng multiplier shall be at least 1.4. 

 

SDRClassRng N/A 
Solider classification range multiplier shall be at least 1.06. 

 

SDRDetRng N/A 
Solider detection range multiplier shall be at least 2. 

 

    

 NoUAV N/A 
Solider system shall incorporate at least one Unmanned Aerial System. 
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ATK_Protect Metamodels: Figure 9.5a depicts the sorted parameter estimates for the ATK_Protect 

regression model (with R2 of .92). This model contains main effects, interaction effects, and one quadratic 

effect.  Included in the list of most significant main effects are the design parameters for soldier M4 

weapon range (M4RNG), soldier classification range (SDRClassRng), soldier detection range (SDRDetRNG), 

internal squad communications delay (InCommDelay), and soldier field of view (SDRFOV). Figure 9.5b 

contains the prediction profiler and Figure 9.5c is the interaction matrix.  A strong interaction between 

SDRClassRng and InCommDelay indicates that increasing InCommDelay over these ranges has no effect 

when classification range is high, but does significantly increase the number of blue hits taken when 

classification is low.  This indicates that increased classification range can mitigate the negative effect of 

increased internal squad communications delay.  Figure 9.5d contains the partition tree, with R2 of .68. 

 

 
Figure 9.4: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Interaction Profiler. (d) Partition Tree. 

 

A summary of the insights captured from the polynomial metamodel coefficients are summarized in Table 

9.3.  As before, these insights are based on the assumptions behind the agent-based simulation model, 

the scenario, and the established ranges of the design parameters.  
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Table 9.3. DOE insights from the ATK_Protect MOE, using the attack scenario. 

Type of 

Insight 
Design Parameter 

Coefficient 

Sign 
Description 

Design 

Drivers 

M4RNG Negative 

Increasing the soldier’s M4 weapons range improves the ability of the squad to 

protect itself. 

 

SDRClassRng Negative 

Increasing the soldier’s classification range improves the ability of the squad to 

protect itself. 

 

SDRDetRng Negative 
Increasing the soldier’s detection range improves the ability of the squad to 

protect itself. 

    

 InCommDelay Positive 
Increasing the delay between internal squad communications degrades the ability 

of the squad to protect itself. 

    

 SDRFOV Negative 
Increasing the soldier’s field of view improves the ability of the squad to protect 

itself. 

    

    

Synergies / 

Interactions 

SDRClassRng / 

InCommDelay 
Negative 

The soldier’s classification range interacts with the squad’s delay in internal 

communications. Increasing InCommDelay has no effect when classification 

range is high, but does significantly increase the number of blue hits taken when 

classification is low.   

 

Diminishing 

rate of change 
SDRClassRng Negative 

Analysis indicates that there is a point of diminishing returns beyond a class 

range multiplier of 1.5.  

 

Thresholds 

SDRClassRng N/A 
Solider classification range multiplier shall be at least 1.3. 

 

M4RNG N/A 
Solider M4 weapon range multiplier shall be at least 1.2. 

 

    

 SDRFOV N/A 
Solider field of view shall be at least 70 degrees. 

 

 InCommDelay N/A Internal squad communications delay shall be less than 6 seconds. 

 

After acquiring the insights derived from our DOE analysis we can now capture them within our MBSE 

system integrated model. Figure 9.6 shows a number of SysML relationship elements that convey the 

insights captured. The figure shows two requirement containment structures for the emergent and local 

properties. Analyzing simulation model output results are one way a systems engineer can validate a 

system requirement. The system drivers identified above can reveal which value properties or structural 

blocks satisfy the requirements classified as emergent properties. Figure 9.6 shows these satisfy 

relationships between value properties and emergent property requirements. The threshold and 

interaction insights derived new requirements that provide more specific requirement statements. Below 

the emergent properties in Figure 9.6 are derived requirement relationships for the local properties of 

the system. Additionally, the rationale comments highlight the interactions that exist between these local 

property requirements.  
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Figure 9.6. DOE insights captured within the MBSE system integrated model. 
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9.2. Dashboard Tradespace Visualization  
We can easily visualize the response surface landscape with a surface plot when there are only three 

dimensions.  Because there are often several more dimensions in a systems design problem we must 

visualize cross sections of the response surface with respect to only two model inputs at a time. A 

contour profiler is a two dimensional projection that is a horizontal cross section of a response surface 

within the experimental design region.  We define this region when we scale and translate the design 

matrix to the desired high and low settings for each model input prior to performing the simulation 

experiments.  Visualizing the selected projections allows the user to interactively explore how multiple 

responses depend on two selected model inputs.  The contour profiler allows us to set limits on the 

responses to help define infeasible and feasible regions in the response surface; the shape of these 

shaded regions is dependent on the functional form of the multi-dimensional metamodel. For analytical 

and technical details on the profilers used in this section, see (SAS Institute 2015). 

Figure 9.7 illustrates how a contour profiler is a horizontal cross section of a notional response 

surface. The crosshairs within the contour profilers indicate the model input settings depicted along 

each axis.  If the user changes the setting of a model input other than the ones shown in each axes, the 

shape of current projection will change; this is because the change reflects a movement to a different 

area of the response surface. The differences in Figure 9.7a and 9.7b are a result of changing the model 

input not shown in the contour profiler. We also note that the response surface with respect to X1 and 

X2 is much different than X1 and X3. 

 

 
Figure 9.7. Contour profilers showing horizontal cross sections of the response surface. 
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The red arrows in Figure 9.7a that point from the contour profilers to the surface plots show that the 

contour line is where the horizontal grid plane intersects the response surface while the shaded region 

indicates everything underneath the horizontal grid plane. 

In addition to the contour profilers that show horizontal cross sections we can also visualize the 

response surface landscape using prediction profilers that show vertical cross sections. Figure 9.8 shows 

the vertical cross section for the same notional response surface from Figure 9.7 for each of the model 

inputs, X1, X2, and X3. The prediction profilers allow us to understand which model inputs are most 

significant and how they affect the responses. 

 

 
Figure 9.8. Prediction profilers showing vertical cross-sections of the response surface. 

 

Each graph within the prediction profiler shows how changing the model input from the low to high 

setting affects the response on the y-axis when all other model inputs are held constant. The shapes of 

these effects are a function of the metamodel fit using linear regression.  

We created a dashboard that incorporates the horizontal and vertical cross-section profilers for 

multiple responses in order to accomplish two objectives. First, we want to easily identify where the 

tradeable variables are and second, we need an efficient way to identify a reduced set of viable system 

variants that will span the solution space. The dashboard consists of three components, the contour 

profiler, prediction profiler and the Monte Carlo filtering components. Our next sections will describe 

each of these components and how they are used to identify tradable variables and viable system 

variants.  

9.2.1. Prediction Profiler Dashboard Component 
The predication profiler component shows a matrix where each column represents a model input 

and each row a model output (response). Each cell in the matrix shows the vertical cross section of the 
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row’s response. The horizontal cross sections reveal the impact of the model input on each of the 

responses. There are two key features that the Prediction profiler provides; first, it identifies tradable 

variables with the color profiler algorithm and second, it optimizes solutions to find model input settings 

that perform well across multiple responses. We will now describe each of these features in more detail. 

  

Color Profiler Algorithm. The matrix cells in the Prediction profiler are colored such that green indicates 

a positive impact to the response, red indicates a negative impact, white indicates a response with a 

target value, and black indicates no impact. Additionally, there is a color gradient applied so the cells 

with a higher impact are darker and the cells with a lower impact are lighter. The algorithm colors these 

gradients based on the magnitude of the response change between the low and high settings of the 

model input. The dashboard allows the user to specify whether we want to maximize, minimize, or 

achieve a specified target of the response. The coloring algorithm uses these specifications to color the 

cells appropriately. Figure 9.9 shows a screenshot of the prediction profiler dashboard component. 

 

 
Figure 9.9. Prediction profiler dashboard component showing vertical cross sections. 
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Within each column in the matrix, the responses that have opposite green and red colors show where 

the key tradable variables are with respect to each model input. For example, in Figure 9.9, the column 

that represents RifleRNG (a model input representing the range of the rifle) has a red cell for Rifle 

Weight and green cells for the Casualties and Lethality responses. We can interpret these cells to mean 

that as we increase the rifle range, we improve our ability to reduce casualties and provide lethal fire 

but we degrade our goal of reducing the rifle weight. Increasing the rifle range has a positive impact on 

our operational measures (Casualties and Lethality) but has a negative impact on a physical 

consideration (weight). Therefore, we must tradeoff weight to achieve a higher operational 

effectiveness. The model input columns are ordered such that the ones that have the highest impact 

across all responses are ordered from left to right. In this way, we can easily identify the highest 

impacting model inputs across all responses. 

 

Multiple Response Optimization. The prediction profiler component has an optimization feature that 

allows the user to specify a weighted desirability function for each response and find a balanced 

solution. The desirability function translates the response scale to a value between 0 and 1; 0 indicates 

the least desirable value and 1 indicates the most desirable value. The user specifies a response goal to 

maximize, minimize, or achieve a specified target value for each response. Figure 9.10 shows the three 

types of desirability functions that translate response values along the vertical axis to desirability values 

along the horizontal axis. 

 

 
Figure 9.10. Desirability function types. Red line indicates the response outcome for the current model input settings. 

The purpose of desirability transformation is to allow the user to specify the returns to scale along 

the range of response outcomes and to establish a common scale across all responses. The common 

scale allows us to aggregate all responses using a weighted total desirability function. The total 

desirability function is based on the average of the natural logs of the desirabilities, otherwise known as 

the geometric mean, and has the following form: 
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𝐷∗ =  
1

𝑘
[𝑤1𝑙𝑛(𝑑1) + 𝑤2𝑙𝑛(𝑑2) + ⋯ + 𝑤𝑘𝑙𝑛(𝑑𝑘)],                                             (4) 

 

where k is the number of responses, dk is the desirability function for response k, wk is the importance 

weight for response k, and D* is the optimal total desirability. Equation 4 is the objective function for 

the optimization algorithm that finds desirable solutions across multiple responses.  

9.2.2. Contour Profiler Dashboard Component 
The contour profiler dashboard component shows a collection of contour profilers categorized 

within different domains. Each contour profiler has one or more responses that pertain to each domain 

category. The profilers show a two-dimensional projection of the response. The two dimensions are 

displayed along the vertical and horizontal axis and represent two model inputs. The cross hair inside 

the profiler indicates the settings for each of the model inputs. A slider bar above each contour profiler 

allows the user to set low and high limits on the response. These limits represent desired effectiveness 

and constraints that shade the profilers to indicate infeasible areas of the design space. If the cross hairs 

fall within a response’s shaded region, then the current model input settings will not satisfy the desired 

effectiveness or constraint for that response. Figure 9.11 shows a screenshot of the contour profiler 

dashboard component. Also shown in Figure 9.11 is a floating control panel that allows the user to set 

the two model inputs that are shown in each of the contour profilers. By selecting different model 

inputs, we can see different parts of the multi-dimensional response surfaces.  
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Figure 9.11. Contour profiler dashboard component. 

9.2.3. Monte Carlo Filtering Component 
The purpose of the Monte Carlo Filtering component is to find a collection of feasible alternatives 

that satisfy all response limits specified in the contour profiler component. A powerful benefit of the 

response metamodels is that they act as surrogates to the simulation. Rather than having to run a 

lengthy simulation to obtain the results of a new system configuration, we can leverage the metamodels 

to obtain a result in a matter of seconds instead of hours, days or weeks. These approximations can save 

a tremendous amount of time, especially for a system design problem with several complex models with 

lengthy run times. The Monte Carlo Filtering dashboard component allows the user to generate 

thousands of system design configurations using a Monte Carlo simulation. Each simulation run creates 

a unique system design alternative by drawing a uniform random variate between the low and high 

settings of each model input. Within the Prediction profiler dashboard component, the user enters the 

number of simulations and presses the “Simulate” button. A scatter plot matrix appears with a floating 

response data filter. Each dot in the scatter plot matrix represents a single system alternative. The user 

can apply the data filters to the responses in order to eliminate alternatives (dots) from the scatter plot. 

In addition, the user can import and export the response limits set in the contour profiler. After 

exporting the response limits from the contour profiler to the scatter plot, the alternatives that remain 
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become the feasible set that resides within the white region of the contour profilers. The more Monte 

Carlo simulations the user specifies, the more solutions there will be within the white region. The end 

result is a reduced set of viable system variants that satisfy all desired effectiveness constraints. Figure 

9.12 shows a screen shot of the Monte Carlo Filtering component along with the prediction profiler and 

floating panels.  

 

 

Figure 9.12. Monte Carlo Filtering Component. 

9.2.4. Viable Variant Exploration 
We will now walk through the steps to find viable system variants that meet our desired 

effectiveness and are feasible. 

 

Step 1: Set constraints and minimum acceptable response levels. Initially, our contour profilers have no 

limits set. When using the dashboard to find viable variants, we first set the constraints of the responses 

that we cannot violate and the minimum acceptable response settings for our desired effectiveness. We 

then return to the Prediction profiler component and press the “Set Desirability Functions” button. This 

button changes the shape of the desirability function so that we only obtain value within the limits that 

were set in the Contour profiler component. For example, in Figure 9.11, the high limit for the Casualties 

response in the contour profiler is set to 2. In Figure 9.13, the high setting for the Casualties desirability 

function in the Prediction profiler is also set to 2. Redefining the desirability functions to match the 

limits set in the Contour profiler allows us to optimize the weighted desirability function to achieve a 

solution as close to the limits as possible.  
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Figure 9.13. Prediction profiler optimization algorithm. 

Step 2: Set response importance weights and run the optimization algorithm. To the left of the 

Prediction profiler component in Figure 9.13, there is an area to specify the importance weights for each 

response. A system design problem has several stakeholder views and scenarios that prioritize the 

responses differently. The dashboard allows the user to explore system design solutions with different 

response prioritization schemes to account for different stakeholder views and scenarios. To run the 

optimization algorithm, the user clicks the red triangle at the top next to the Prediction Profiler title and 

selects “Maximize Desirability.” After the optimization algorithm completes, the dashboard displays the 

model input settings of the solution. 

 

Step 3: Explore changes to model input settings to find feasible solutions. Because the contour 

profilers are linked to the prediction profilers, we can examine the contour profilers to identify where 

the optimized solution does not meet the desired effectiveness or feasibility constraints; this occurs 

where the contour profiler crosshairs are in a shaded region.  Figure 9.14 shows the contour profiler 

dashboard component with the optimized solution from Figure 9.13. The cross hairs are positioned over 
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two shaded regions indicating that the solution does not satisfy the Radio Weight and Sensor Weight 

responses.  

 

 
Figure 9.14. Contour profiler dashboard component showing an infeasible solution. 

The prediction profiler identifies the model inputs that have the highest impact on the responses; 

therefore, we can use it to decide which model input to change. Model inputs represent value 

properties of a system block. As a result, we must consider the practical design implications of changing 

the value properties that coincide with a model input change. We may find that the highest impacting 

model input represents a value property that is too costly or infeasible to change.  

The Prediction profiler in Figure 9.13 indicates that RadioDelay is the model input that has the 

highest impact on Radio Weight. The floating window shown in Figure 9.14 allows us to change the two-

dimensions shown in the contour profilers. Changing the vertical axis to RadioDelay and moving the 

slider bar in the floating window allows us to find a feasible solution that meets the Radio Weight limit. 

Figure 9.15 shows the contour profiler after changing the RadioDelay. 
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Figure 9.15. Contour profiler dashboard component after manipulating the Radiodelay. 

The Prediction Profiler indicates that the SensorDetectRNG model input has the highest impact on 

Sensor Weight followed by SensorClassifyRNG. The contour profiler for the Weight domain indicates that 

increasing the SensorDetectRNG has no impact on the Sensor Weight. Changing the SenosrClssifyRNG to 

1.7 satisfies the Sensor Weight limit. Figure 9.16 shows these model input changes in the Contour 

Profiler dashboard component.  
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Figure 9.16. Contour profiler dashboard component after manipulating the SensorClassifyRNG. 

Step 4: Tradeoff infeasible response limits. When no viable variant solution is found by changing model 

inputs, decide which shaded region response must be traded off to achieve a feasible solution where all 

contour profiler cross hairs are in the white region. Figure 9.16 shows a feasible solution and therefore 

we do not need to tradeoff responses. The end result is a white region within each contour profiler 

domain that represents a set of viable system variants that satisfy all desired effectiveness and 

constraints.  

 

Step 5: Generate viable variant solution candidates using the Monte Carlo Filtering. In order to acquire 

the set of viable variants within the white region of the contour profilers we use the Monte Carlo 

Filtering component. Figure 9.17 shows two scatter plots, the one at the left shows the alternatives 

generated by the Monte Carlo simulations and the one to the right has the contour profiler response 

limits exported to the data filter.  
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Figure 9.17. Monte Carlo Filtering component with response limit filters applied. 

 

Out of the 5,000 simulations shown in Figure 9.17, 4 alternatives remain when the filters are 

applied. When we ran 100,000 simulations with the same response limits, 69 alternatives remained 

after applying the filters. The filtered set of alternative solutions provides the user a reduced set of 

viable system variants that satisfy the specified desired effectiveness and constraints of the responses. 

In order to narrow down the reduced set of solutions further, we can select the most affordable 

solution, the solution with the least amount of variation, or the original optimized solution that was 

modified to satisfy the response limits. 

After completing the above five steps, the dashboard user found a solution based on the response 

limits and importance weights that were set in Step 1 and 2. In order to acquire additional viable 

variants, repeat steps 1-5 with a different set of response limits and importance weights from different 

stakeholder view perspectives and scenarios. 

Figure 9.18 shows a screenshot of the Prediction Profiler dashboard component for the large squad 

enhancement use case. The Figure shows 38 model inputs and 43 responses. Because the model inputs 

are ordered from left to right based on their collective impact of all the responses, we can easily identify 

the ones that have the highest impact on the system design. The example shown in Figure 9.18 indicates 

that the rifle range of the soldier’s weapon (M4RNG), the number of UAVs (NOUAV), and the senor 

classification distance (SDRClassRNG) have the highest impact across all responses.  
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Figure 9.18. Prediction profiler dashboard component for the large squad enhancement uses case. 

Identifying the model inputs that have the highest impact across several model domains provides 

important insights to the system stakeholders. Because model inputs are mapped to value properties, 

identifying the high impact model inputs help focus our system decisions on the most critical value 

properties. 

The contour profiler dashboard component shown in Figure 9.19 allows decision makers to 

understand where a system alternative satisfies desired capabilities and constraints on a larger scale. 

Organizing each response within domains allows users to better understand where they need to make 

tradeoffs across domains. In addition, the contour profilers show where the system has room to improve 

the responses; when the cross hair does not reside along a shaded region’s edge, there is an opportunity 

to improve a response. 
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Figure 9.19. Contour profiler dashboard component for the large squad enhancement use case. 

 Figure 9.20 shows a screenshot of the Monte Carlo filtering dashboard component. The scatter plot 

matrix is capable of displaying a large number of responses with data filters that narrow in on viable sets 

of system variants. 
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Figure 9.20. Monte Carlo filtering dashboard component for the large squad enhancement use case. 

10. Multiple Objective Decision Analysis 
In this section, we discuss the importance of evaluating the set of viable variants when there are 

multiple competing objectives and several different stakeholders. For the squad enhancement use case, 

we assume that there are seven viable variants found by the dashboard described in the previous 

section. Depending on where our system is in the lifecycle and who the key stakeholders are, the 

measures of effectiveness that will evaluate our viable variants will typically not solely rely on simulation 

model outputs. Our methodology advocates the use of multi-objective decision analysis (MODA) to 

evaluate each variant; we will refer to these viable variants as alternatives. Specifically, we use the 

mathematics of MODA and the philosophy of Value Focused Thinking (VFT) (Keeney 1992). The seven 

alternatives for our use case are shown in Table 10.1. The system features are the value properties for 

each of the blocks that are labeled as subsystems. 
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Table 10.1 Notional Viable Variant Alternatives. 

 
 

An important assumption we note is that our value model is developed prior to selecting our 

alternatives using the dashboard so that we do not bias the value model’s development.  

Too often when we are faced with a decision problem, we first develop a list of alternatives and limit 

ourselves to this set of choices; Keeney defines this as alternative focused thinking.  Using alternative 

focused thinking causes us not to think about what we truly value.  As a result, we may miss alternatives 

or we may not discover new decision opportunities that result in a better outcome. VFT emphasizes 

value development.  Rather than focus on alternatives, VFT focuses on structuring the decision problem 

as a well-defined objective hierarchy that represents what is most important to decision makers. This 

objective hierarchy is known as the fundamental objective hierarchy, and is the foundation upon which 

all decisions are based; it is the most essential part of VFT because without a well-defined fundamental 

objective hierarchy, the results are meaningless (Keeney 1992).  

10.1. Qualitative Functional Objective Value Hierarchy 
For a systems design problem we use a modified form of the hierarchy known as the functional 

objective value hierarchy (Parnell et al. 2011). The functional objective value hierarchy has three 
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elements: the functions the system will perform, the fundamental objectives that define what the 

system tries to achieve, and the value measures that quantifies each objective.  Keeney defines a 

fundamental objective as an objective that expresses what the decision maker values and qualitatively 

states what is important.  We start with an over-arching fundamental objective and then decompose the 

objective into the functions and sub-functions that will accomplish the system purpose.  We then 

decompose the functions into objectives that define value until we find a value measure that informs 

the decision maker how well an alternative achieves the associated objective.  The value measure is the 

criteria used to measure the degree to which an objective is achieved.  There is one or more value 

measure associated with each lowest-level objective.  Therefore, the set of value measures comprise the 

evaluation criterion that measures how we value an alternative. 

VFT makes a clear distinction between a fundamental and a means objective.  Means objectives 

explain how we accomplish something essential to the problem.  It is important that we emphasize the 

difference between these two types of objectives to fully understand what the fundamental objectives 

should be and how we determine them.  To test whether an objective is a fundamental or a means 

objective we must ask the question “why is this important?’  If the answer is because it helps us 

accomplish something fundamental to the problem then it is a means objective.  If the answer is 

because it is one of the essential reasons why we care about this decision, then it is a fundamental 

objective.  Identifying means objectives can help determine fundamental objectives because if the 

means objective helps accomplish something essential, this “something” could be a potential 

fundamental objective. 

A well-defined functional objective value hierarchy has desirable properties that ensure our value 

measures can measure how we value alternatives. According to Kirkwood, these desirable properties 

are completeness, non-redundancy, independence, operability, and minimal size (Kirkwood 1997).  This 

section discusses these properties and indicates the consequences of their violations.  It is important to 

note that if we use fundamental objectives to structure our hierarchies then there is less chance that we 

violate any of the desired properties.   

1. Completeness: In order for a functional objective value hierarchy to be complete, all the 

functions and objectives must exhaustively characterize every aspect of the higher-level 

function/objective.  If we miss identifying a critical characteristic then we do not account for an 

important aspect of the problem; this leads to faulty results. 

 

2. Non-redundancy: A non-redundant value model avoids double counting an alternative’s value.  

Double counting can occur when redundant functions/objectives or value measures exist.  For 

example, if we include a value measure that is not a critical characteristic of an objective, then 

we have a redundant value measure that may over-emphasize an alternative.  A non-redundant 

functional objective value hierarchy ensures that there are no unnecessary functions/objectives 

or value measures that may cause an alternative to be scored higher than intended.  

 

3. Independence: An alternative’s achievement level obtained by one value measure must be 

independent from all the other value measure achievement levels.  Specifically, if an 

alternative’s value score achieved by one value measure depends on the achievement level of 
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another value measure, then there is a violation of the independence property.  Typically when 

we encounter a problem with independence, we have a means objective in our hierarchy or we 

have interactions between value measures.  To fix this we must redefine the objective as a 

fundamental objective, or use a multi-dimensional value measure (Ewing et al. 2006).   

 

4. Operability: An operable objective has the ability to obtain the data needed to assess an 

alternative’s value. There may be a clear, well defined value measure that measures the 

achievement level of an objective but if the data are not available, we cannot use this value 

measure in the model.   

 

5. Minimal Size: There is a balance between a high-resolution model with a large set of objectives 

and value measures and a low resolution, more compact model that only includes the most 

essential functions/objectives needed to evaluate an alternative.  A smaller model can be 

communicated more easily to senior level decision makers and it is easier to obtain the 

necessary data to evaluate the alternatives (Kirkwood 1997). The decision regarding how far we 

should decompose the hierarchy depends on the availability of operable data that can inform 

the decision.  The more we expand the size of the hierarchy, the more detailed the analysis 

becomes.  A larger detailed model can provide meaningful insight but only if these details are 

available.  The hierarchy must stop at the point where there are data available.  Typically, a 

detailed hierarchy includes natural data value measures that have a measurable scale in terms 

of a quantitative number.  When a natural value measure is not available, we use constructed 

value measures that aggregate categorical information to represent a qualitative measure. 

The functional objective value model we used to assess our viable variant alternatives is shown in 

Figure 10.1. The model has functions, objectives, and value measures that capture every important 

aspect of the squad enhancement design problem. 

 

 

Figure 10.1. Functional Objective Value Hierarchy for the squad enhancement technology use case. 

10.2. Quantitative Functional Objective Value Model 
Once our functional objective value hierarchy is complete, we then develop our quantitative model 

by selecting the value measure types, developing value functions, and assigning swing weights to each 

measure.   For each value measure we must transform the measurable scale into a value score.  The 
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measurable scale is the value measure’s quantitative unit of measure (miles per hour or probability of 

detection, for example).  The value score is a number between 0 and 10 (which we choose arbitrarily) 

that represents the attribute’s achievement of its associated objective (10 being the best and 0 being 

the worst).  The single-dimensional value function transforms a value measure’s scale into a value score.  

Because there are tradeoffs amongst the value measures, we must weigh their importance against each 

other.  We use swing weights to assess these tradeoffs. Once we formulate both the single-dimensional 

value functions and assess the value measure tradeoffs, we utilize a multi-objective value function to 

determine the overall value of an alternative.  The multi-objective value function outputs a total value 

that is a weighted sum of the value scores determined by each single-dimensional value function and 

swing weights.  The total value indicates how much value each alternative attains with respect to the 

functional objective value hierarchy. 

There are two types of value measures, natural and constructed.  A natural value measure uses a 

number that has a common interpretation.  A constructed value measure is a description of distinct 

impact levels that directly indicate the degree to which the associated objective is achieved.  Each 

impact level has a unique category that an alternative can be classified.  The development of both value 

measure types requires military judgments that convey what is important to the decision makers.  One 

is not necessarily better (or worse) than the other.  In practice, there are more constructed value 

measures in a well-defined functional value hierarchy then there are natural value measures. 

Inexperienced modelers typically place too many natural value measures that are ineffective at clearly 

measuring the impact level of on objective in the model. Our next two sections describe in more detail 

the construction of the natural and constructed value functions. 

10.2.1. Natural Single-Dimensional Value Functions 
Earlier we defined a value measure as the criteria used to measure an impact level.  We use the 

term impact level to mean the degree to which an objective is achieved.  Each attribute has a preferred 

direction of improvement; this usually means “more is better” or “less is better” (Kirkwood 1997).  We 

associate the impact level with a measurable scale that represents the range of numerical values a value 

measure can assume from its worst to best impact levels.  The numerical values typically have different 

units and ranges within the measurable scale.  To ensure that we can compare these value measures 

relative to each other, we transform the different measurable scales into a common unit of measure 

called the value scale.  The value scale range from 0 to 10, which we choose arbitrarily; we could have 

just as easily used value scales ranging from 0 to 1 or 0 to 100. The value scale of 0 and 10 represent the 

worst and best impact levels, respectively.  We then examine how the impact level varies between its 

worst and best levels.  Figure 10.2 shows a number of different types of value function shapes that 

define the returns to scale (RTS) in a number of different ways. 
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Figure 10.2 Value function curves that define the returns to scale (RTS). 

The shape of the value function is often dictated by the requirements defined by the systems engineer 

as either a desired capability or a constraint. The constraints are what set the minimal acceptable level 

or walk away point while the desired capabilities help determine the threshold and objective value 

levels. The threshold level is the point along the value measure scale that we at least want to achieve 

but will accept a lower level when making trade-off decisions. The objective level is the point where we 

would hope to realistically achieve. 

10.2.2. Constructed Single Dimensional Value Function 
This section explains how to formulate and assess a constructed single-dimensional value function.  

Unlike natural value measure, constructed value measures do not have numbers with a common 

interpretation.  Because there are no numbers that define the measurable scale, we develop categories 

to construct this scale.  Each category has a narrative description of the impact level which indicates the 

achievement of an objective.  These categories should contain all that we value with respect to the 

associated value measure and they should range between the worst and best cases.   

Unlike the natural value measure, where we may have sets of ranges within a measurable scale with 

different value increments, constructed value measures have value increments between categories.  To 

find the value increment between each category, we list them from worst to best.  We assess the 
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constructed value function by finding the smallest value increment between any two neighboring 

categories.  For example, in Table 10.2, categories 1 and 2 are neighbors, as are categories 2 and 3.  We 

assign the smallest value increment to 1 and use this as a unit of measure to assess how much more we 

value any other two neighboring categories. 

Table 10.2. Value increments and value scores for categories. 

Category 

Number 

Category 

Description 

Value 

Increment 

Value 

Score 

1 Category 1  0 

  1  

2 Category 2  3.33 

  2  

3 Category 3  10.00 

 

Among all neighboring categories in Table 10.2, the smallest value increment is between Category 1 and 

Category 2.  The value increment between Category 2 and Category 3 is two times more valuable than 

the smallest value increment.  The value scores are a function of the established value increments.  

To demonstrate how to calculate the value scores as a function of the value increments, we add the 

products of each value increment and a variable v, set the expression equal to 10 and solve for v (v +2v = 

10). We use the value of v to calculate the value score for each category.  The term Score(Categoryn) 

represents the value score for category n where n ranges from 1 to the total number of categories.  

Score(Category1), the worst case category, always equals 0.  The remaining attribute values are the 

cumulative sum product of the value increment between a category’s preceding neighbor and the 

current category, and v.  Equations 5 through 7 shows the value score calculations for the example in 

Table 10.2. 

 

Score(Category1)= 0.00                                                                                                      (5) 

Score(Categorty2) = Score(Categoriy1) + v = 0.00 + 3.33 = 3.33                                                        (6) 

Score(Category3) = Score(Category2) + 2v = 3.33 + 3(3.33) = 10.00                                            (7) 

 

While developing the categories for each of the constructed value measures we ensure that each 

alternative can only be classified into one of the existing categories.  If we use ambiguous definitions 

then the value model may return inconsistent results because different people may categorize an 

alternative differently.  Clear category definitions ensure reproducible results because they eliminate 

ambiguity.  The two possible pitfalls that arise from ambiguous definitions are the following: 

1. An alternative receives no value towards an objective because the constructed value measure’s 

categories are not an exhaustive representation of all significant impacts.   

2. The constructed value measure categories are not mutually exclusive.  Therefore, an alternative 

may fit into more than one category.  
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For the squad enhancement use case we developed 13 value measures with a mix of natural and 

constructed value functions. Table 10.3 lists each of the value measures and their types. 

Table 10.3. Value measures for the squad enhancement problem. 

Function Objective Value Measure Type 

Minimal 

Acceptable 

Value 

Ideal 

Value 

Maintain situational 

awareness 

Increase beyond line of 

sight awareness 

Beyond LOS (% 

detected) 
Natural 0 1 

Increase line of sight 

range 

Detection Distance 

(meters) 
Natural 300 1500 

Maintain networked 

communications 

Maximize range 

Communication 

Range in Various 

Terrain 

Constructed 1 5 

Maximize bandwidth Bandwidth (mbps) Natural 3 15 

Provide secured 

connectivity 
Secured Connectivity Constructed 1 8 

Maneuver the 

Squad 
Increase soldier mobility Weighted Mobility 

Multi-Dimensional 

Constructed 
1 8 

Protect the Squad 

Protect against kinetic 

threats 
Kinetic Protection Constructed 1 9 

Protect against chemical, 

biological, radiological, 

nuclear threats 

Chemical Biological 

Protection 
Constructed 1 9 

Nuclear Radiological 

Protection 
Constructed 1 7 

Achieve mission 

effects 

Maximize kinetic effects 
Lethality (% enemy 

killed) 
Natural 0 1 

Minimize lateral damage Lethal Mitigation Constructed 1 5 

Sustain the Squad 

Maximize power 

efficiency 
Power (kw/h) Natural 300 100 

Minimize logistical 

footprint 

Logistical Impact   

(rounds fired) 
Natural 6000 1000 

10.2.3. Swing Weights for Value Measure Tradeoffs 
Because we have multiple and competing objectives, each assessed by one or more value measures, 

we must determine the tradeoffs between these value measures.  We do this by assigning global 

weights to each value measure so that we can utilize the multi-objective value function.  There are 

several weight-assessment approaches available to determine the tradeoffs between value measures.  

We use an approach called the Swing Weight Matrix  (Parnell, Bresnick, Tani, & Johnson, 2013). 

We assign weights to each value measure by using swing weights.  A swing weight assesses a value 

measure based on how important it is to swing from the measure’s worst impact level to its best impact 

level along the measurable scale (Clemens 2001).  Our selection has nothing to do with the magnitude of 

the scales; we base our choice on a subjective determination that considers swinging from the worst to 

the best impact levels. The swing weight we assign is based on where it is placed inside the swing weight 

matrix. The columns in the matrix allow us to define categories of subjective importance that express 

the impact on the overall fundamental objective. The rows of the matrix classify the value measure’s 

impact on capability and are based on the range of the value measure scale (large, medium, or small 
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capability gap between the walkaway and the ideal levels). For the squad enhancement use case, the 

subjective importance depends on whether the value measure assesses an objective that is mission 

critical, enables, or enhances the system’s capabilities. Typically, we prioritize value measures differently 

depending on the scenario the system is used in. For example, we would prioritize value measures that 

assess mobility and lethality more for an attack scenario than we would for a defense scenario. Tables 

10.4 and 10.5 show the swing weight matrices for the squad enhancement attack and defense scenarios 

where the columns categorize the importance while the rows bin the impact on the capability increase 

based on the value measure’s range from the minimum acceptable level and the ideal level. 

Table 10.4. Swing weight matrix for the attack scenario. 

 Mission Critical Enables Capability Enhances Capability 

Capability 

Impact 
 

Matrix 

Weight 

Swing 

Weight 
 

Matrix 

Weight 

Swing 

Weight 
 

Matrix 

Weight 

Swing 

Weight 

Significant 

Impact 

Lethality 100 0.14 
Weighted 

Mobility 
70 0.10 Power 20 0.03 

Lethal 

Mitigation 
90 0.13    

Logistical 

Impact 
20 0.03 

Beyond LOS 90 0.13       

 
Kinetic 

Protection 
70 0.10       

Medium 

Impact 

   Bandwidth 50 0.07 

Chemical 

Bio 

Protection 

15 0.02 

Secured 

Connectivity 
65 0.09       

 
Communication 

Range 
60 0.09 

Detection 

Distance 
50 0.06    

Minimal 

Impact 
      

Nuclear 

Radio 

Protection 

5 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

93 

Table 10.5. Swing weight matrix for the defense scenario. 

 Mission Critical Enables Capability Enhances Capability 

Capability 

Impact 
 

Matrix 

Weight 

Swing 

Weight 
 

Matric 

Weight 

Swing 

Weight 
 

Matrix 

Weight 

Swing 

Weight 

Significant 

Impact 

Kinetic 

Protection  
100 0.15 Beyond LOS 70 0.11 Lethality  30 0.05 

Lethal 

Mitigation 
90 0.14 Lethality   Power 20 0.03 

Detection 

Distance 
90 0.14    

Weighted 

Mobility 
20 0.03 

       
Logistical 

Impact 
20 .03 

Medium 

Impact 

Chemical Bio 

Protection 
65 0.10 

Secured 

Connectivity 
50 0.08 

Communication 

Range 
10 0.02 

   Bandwidth 40 0.06    

Minimal 

Impact 

Nuclear 

Radio 

Protection 

60 .09       

 

To obtain the value matrix swing weights, we first use matrix weights that are placed in each cell of 

the swing weight matrix.  To ensure there is a proper range of weights between the highest and lowest 

value measure, we use matrix weights that range from 5 to 100.  The lowest weight is placed in the 

lower right cell and the highest weight is placed in the upper left cell.  The value measures that are 

placed in a cell get assigned the matrix weight in that cell. We use these matrix weights to calculate a 

value measure’s global weight. Global weights represent the importance of a value measure relative to 

the others and are values between 0 and 1; the sum of all the global weights is 1.  After placing the value 

measures inside the matrix, we now can calculate the global weights by dividing a value measure’s 

matrix weight by the sum of all the value measures’ matrix weights.   

10.2.4. Multi-Objective Value Function 
To obtain the total value score of an alternative, we use the additive value model (Equations 8 and 

9). Each single dimensional value function can be normalized and then weighted by each swing weight 

contribution, wi.  The total value is the weighted sum of the single dimensional value.   The swing 

weights sum to 1.  

 

 

 

 

 

 

 

 

 



 

94 

𝑣(𝒙𝑗) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑣𝑖(𝑥𝑖𝑗)                                                                         (8) 

∑ 𝑤𝑖 = 1𝑛
𝑖=1                                                                                        (9) 

 

i = index on the value measures,  1…..,n 

j = index on the alternatives, 1,….,m 

v(xj) = the multidimensional value of value measure i 

xji = alternative’s score in the ith value measure 

vi(xji) = normalized single-dimensional value of the score of xji 

wi = normalized swing weight of ith value measure 

 

The multi-objective value function is an additive function because it has no multiplicative terms in 

the expression. The independence property of the functional objective value hierarchy allows us to use 

an additive function.  There are other functional forms in decision theory that try to account for 

dependence between value measures.  These functions are difficult to implement and rarely used in 

practice.  Therefore, to ensure we have an additive model, we use functional objective values 

hierarchies that we measure with independent value measures.  Because of the independence property, 

we can sum the weighted attribute values to find the total value of an alternative (Keeney 1992).  

10.3. Value and Cost Tradeoff Analysis 
Our next section discusses how to integrate the alternative total value analysis with cost analysis. 

We first will describe how trade-off analysis is normally conducted deterministically and then discuss the 

importance of incorporating uncertainties. Prior to our analysis, we assumed that we have already 

performed additional simulation runs on the viable variant alternatives found using the dashboard in the 

previous section. These additional runs allow us to confirm the results obtained from the surrogate 

metamodels and provide the distribution of alternative outcomes for the value measures that use 

simulation data. 

One way to understand how each alternative achieves each of the objectives in the value hierarchy 

is to use a value component chart. Figure 10.3 shows the value components of each alternative as a 

stacked bar chart. To the right we see the Ideal alternative that represents the maximum possible value 

score, derived from the swing weights for each value measure. The Hypothetical Best alternative is the 

maximum value achieved for each value measure in the set of alternatives.  The difference between the 

Ideal and Hypothetical Best is the value gap that the set of alternatives cannot achieve with existing 

technologies. Depending on its size, we may want to consider including other new alternatives that close 

the gap. In addition, we may have an opportunity to combine components from the existing alternatives 

to create new alternative. When we reconfigure system components to create new alternatives we must 

consider the system integration challenges that may result. 



 

95 

 

Figure 10.3. Value component chart. 

Because lifecycle cost is such an important aspect of any systems decision, we often exclude cost as a 

value measure and treat it as an independent variable. An effective way to understand the trade-offs 

between value and cost is to use a Pareto chart. The Pareto chart is a scatter plot with cost on the 

horizontal axis and value on the vertical axis; each dot represents an alternative’s total lifecycle cost and 

total value score.  Figure 10.4 shows a deterministic cost versus value Pareto chart using the average 

costs and value scores. We can see that the Sustainable and Survivable alternatives are deterministically 

dominated by all the others. It makes no sense to select a dominated alternative when we can select 

non-dominated alternative with a higher value for less cost.   
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Figure 10.4. Value component charts for the attack and defense scenarios. 

However, Figure 10.4 does not consider the uncertainty associated with each alternative’s value and 

cost and does show the risk, the probability of a lower value. The majority of value trade-off studies in 

the literature are deterministic. Eliminating deterministically dominated alternatives without 

considering risk may lead to the wrong decision. Cost estimation techniques already incorporate 

uncertainties using Monte Carlo simulations and other methods.  A major contribution of our approach 

is that we simultaneously integrate value trade-off uncertainties and cost uncertainties in order to 

facilitate better value and risk identification. If we do not consider how much variation there is in the 

consequences of our decision, we may end up making the wrong decision. 

When faced with an uncertain system decision, we can leverage three types of analytical charts that 

help the systems engineer understand the risk associated with a decision and identify what drives the 

uncertainties in each alternative. First, stochastic Pareto charts identify non-stochastically dominated 

alternatives with respect to value and cost; second, cumulative distribution function charts (S-curves) 

compares the alternative risk profiles; and third, tornado charts identify the value measures and cost 

components that have the highest impact on the alternative uncertainties. We will now describe each of 

these charts separately and use the squad enhancement problem to provide examples of the insights we 

can obtain from them with respect to value and cost. 

 

Stochastic Pareto Chart.  In order to address the limitations of the deterministic Pareto chart, we create 

a stochatic Pareto chart, shown in Figure 10.5, by displaying a two dimensioinal box plot for each 

alternative’s cost and value. The boxes along each axis represents the 2nd and 3rd quartiles while the 
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lines represent the 1st and 4th quartiles of the vector output data from the value and cost models. We 

can create these box plots in Microsoft Excel using a scatter plot with a combination of four data series 

for each alternative, two for the cost axis and two for the value axis. The lines, otherwise known as 

whiskers, are created from the vector data using the maximum and minimum data points. The boxes are 

created using the 3rd quartile, mean, and 1st quartile; to create the box, increase the line style width of 

the data series. The box plots allow us to understand the uncertainty associated with each alternaitve’s 

cost and value simultaneously.  

 

Figure 10.5. Stochastic Pareto Chart 

The stochastic Pareto chart allows us to consider value, risk, and dominance simultaneously. In addition, 

it provides important information for affordability analyses. We can see in Figure 10.5 that Sustainable is 

stochastically dominated by all other alternatives and can be eliminated from consideration. If 

Performance or Defendable are affordable we then focus on understanding what drives their 

uncertainty to mitigate risk. If Defendable is not affordable, we then consider either LongRange or 

Survivable. If we used the deterministic Pareto chart from Figure 10.4 to eliminate the Survivable 

alternative as a dominated solution, we would have missed an important trade-off consideration. We 
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can see in Figure 10.5 that LongRange has a higher risk in value (probability of lower value) compared to 

Survivable.  We may want to accept a higher cost by choosing Survivable to mitigate the risk associated 

with LongRange. Of course, an alternative is to choose LongRange to reduce the risk. In order to better 

understand the risk implications, we can use cumulative distribution function charts to compare 

alternative risk profiles. 

 

Cumulative Distribution Function (S-Curve) Charts.  The cumulative distribution function (cdf) chart 

displays an alternative’s potential outcomes by accumulating the area under the outcome’s probability 

mass functions for discrete data and the probability density functions for continuous data. Typically, the 

shape of the line in the chart is an S-curve that depicts the probability that the outcome will be at or 

below a given value. The horizontal axis has the outcome scale, either value or cost, while the vertical 

axis has the probability. Figure 10.6 shows a cdf chart with six S-curves that represents the uncertain 

alternative value outcomes, otherwise known as the risk profiles. Sustainable is deterministically 

dominated by the other five alternatives.  Attack is deterministically dominated by LongRange, 

Defendable, and Performance.  Survivable is deterministically dominated by Defendable and 

Performance. The Performance and Defendable alternatives stochastically dominate all others because 

their S-curves are positioned completely to the right of all others. The risk profiles of Survivable and 

LongRange value cross indicating that there is no clear winner between the two; we may want to accept 

a higher cost by choosing Survivable to mitigate the risk associated with LongRange. The cdf chart tells 

us that there is a 43 percent chance Survivable will outperform LongRange and that Survivable has less 

risk due to its steeper risk profile. In general, when the risk profiles of alternatives cross we then 

consider risk preference (risk averse, neutral, or risk taking) during our system decision. A risk adverse 

decision would spend more for Survivable to guarantee a higher value while a risk taking decision would 

select LongRange to save money with the risk of achieving less value.  
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Figure 10.6. Value cumulative distribution chart. 

When we want to understand how to best mitigate an alternative’s risk, we can use tornado diagrams to 

identify the value measures and cost components that have the highest impact on value and cost 

respectively. 

 

Tornado Diagrams. An effective way to identify the impact of uncertainty is to perform sensitivity 

analysis using tornado diagrams. Tornado diagrams allow us to compare the relative importance of each 

uncertain input variable with horizontal bars; the longer the bar the higher the impact on the output 

variable’s variation. The bars are sorted so that the longest bars are at the top; sorting the bars in this 

way makes the diagram look like a tornado. The length of the bars depends on the type of tornado 

diagram. Deterministic tornado diagrams vary each input variable using low, base, and high settings 

while all other input variables are held constant. A stochastic tornado diagram uses the vectors of input 

and output variable trials from a Monte Carlo simulation (Parnell, Bresnick, Tani, & Johnson, 2013). The 

low end of the bar is the average output variable from the subset of trials where the input is less than a 

specified lower percentile. Similarly, the high end of the bar is the average output variable from the 

subset of trials where the input is greater than a specified higher percentile. For the squad enhancement 

problem, we use stochastic tornado diagrams with a low percentile of 0.3 and a high percentile of 0.7. 

Figure 10.7 shows the value and cost tornado diagrams for the Performance alternative. The input 
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variables for value are the value measures and the input variables for cost are the cost components. The 

horizontal axis shows each input variable’s impact on the total variation for the value and cost. We can 

see in Figure 10.7 that the LethalMitigation value measure has the highest impact on the value’s 

variation while the Lenses cost component has the highest impact on the cost’s variation.  

 

Figure 10.7 Tornado diagrams. 

Prior to performing the integrated trade-off analysis, we allocated functions and cost components to 

subsystems.  Our value hierarchy contains objectives that assess the performance of functions and value 

measures that define how well an alternative achieves the objectives. As a result, the value measures 

are indirectly allocated to system features through the objectives and functions. Cost components are 

generally allocated directly to subsystems. Because of these indirect and direct allocations, we can use 

tornado diagrams to identify the system features that have the highest impact on the system decision. 

Figure 10.8 illustrates how we use tornado diagrams to trace high impact value measures and cost 

components to system features. 
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Figure 10.8 Value measure and cost component linkage to system features.  

As we learned from our stochastic Pareto chart and cdf charts, we do not have a clear winner 

between the Survivable and LongRange alternatives.  To help understand how these alternative 

uncertainties impact the system decision, we can use tornado diagrams to identify the system features 

that are driving risk. Figure 10.9 shows the value measures and cost components’ indirect and direct 

allocations to the subsystems and their system features. 
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Figure 10.9. Example of value measure and cost component linkages to system features. 

We can see from the top bar of the tornado diagrams in Figure 10.9 that the radio drives the 

majority of the risk for the LongRange value while soldier sensor drives the majority of its cost. The 

protective suit drives the majority of the risk for the Survivable value while the soldier sensor drives the 

majority of its cost. These subsystems and the system features that characterize them have the highest 

impact on the system decision. These insights provide a clearer understanding of what drives the 

alternatives’ risk and how to prioritize system feature refinements. For example, the systems engineer 

can reduce the risk of the LongRange alternative by investing more resources into improving the radio’s 

range, security, and bandwidth features.    

11. Conclusions and Future Work 
Our final section reviews the steps in our proposed MBSE methodology and how it fills the ERDC 

tradespace technical gaps. We conclude with some closing remarks and propose future research that 

will further advance how we can illuminate trade decisions within the ERS Architecture. 

11.1. MBSE Methodology Review 
The pre-existing models needed prior to starting the procedural workflow of the methodology is an 

MBSE integrated system model, a collection of external models and simulations that the systems 

engineers will use to analyze a system across multiple domain, and a value model that will evaluate the 

system’s effectiveness. The following outlines the procedural steps of our proposed MBSE methodology 

and the sections within the technical report that describes their details:  
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1. Select system model element design variables (Sections 5 and 6). Based on the problem 

domain and research questions, select the structural elements and design variables from the 

MBSE integrated model and define the experimental design region that will be explored with 

the external models. 

2. Select models, develop basecase scenarios, map design variables to model inputs (Section 6s 

and 8). Select the collection of external models that evaluate systems within the variety of 

domains that are relevant to the stakeholders. For each external model, develop a baseline 

scenario with the desired model input settings that represent the system baseline. Map the 

value properties from structural blocks of the system model to the simulation model inputs that 

directly represent them. When necessary, use translators that link value properties to a model 

input when there is not a direct mapping. These linkages are established with either lookup 

tables, analytical equations, or other models. 

3. Create the experimental design (Sections 7 and 8). Select the experimental design type that will 

explore each model and decide the appropriate amount of experimental runs needed to 

perform the analysis.  Create three experimental designs with a mix of continuous, discrete, and 

categorical columns that will represent each of the simulation model inputs using the custom 

design builder. The data from the first design will be the training set that fits the surrogate 

metamodels. The second will be the validation set used to select the metamodel complexity and 

size. The third design will test the predictive performance of the metamodel with a new set of 

data not used during the training and validation. 

4. Generate the study file that specifies which model input parameters to change (Section 8). Use 

a software mechanism to find, select, and modify the model input parameters of the basecase 

scenario to create a set of excursions, one for each experiment or row in the design matrix. 

5. Generate excursion files for each experiment (row) in the design matrix (Section 8). Use a 

software mechanism that generates the excursion files for each experimental run (row in the 

design matrix). For stochastic simulations, ensure that an adequate number of replications are 

performed. 

6. Execute HPC simulation runs (Section 8). Perform a design of experiment on each of the 

external simulation models using High Performance Computing Clusters. Use a software 

simulation run queuing mechanism that enforces a scheduling policy and priority scheme while 

monitoring the computer resources that will complete the simulation runs. 

7. Post-process output files to extract MOEs (Section 8). Post-process the output data in order to 

acquire the desired output measure responses needed to gain insights and populate the value 

model. These responses are also known as measures of effectiveness. Extract, aggregate and 

append the responses to the experimental design.  

8. Perform statistical metamodeling (Sections 7 and 9). Use a statistical software package and the 

experimental design with response model output columns appended, to perform the following 

tasks: 

a. Fit polynomial regression models to identify the model inputs that are the system 

drivers, where synergies/interactions exist, and where there are points of diminishing or 

increasing rates of return. Populate the MBSE system model with derived requirements 

developed from these experimental design insights. 
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b. Fit a variety of surrogate metamodels of different types using the cross validation 

technique. Compare metamodel fits and select the highest performing model for each 

simulation output. 

9. ERS tradespace visualization (Sections 9 and 10). Use a Prediction Profiler dashboard 

component to identify the key tradeable variables that have the highest impact on the system 

design decisions. To identify and analyze a set of viable system variants, perform the following 

steps:  

a. Set the minimum desired effectiveness and feasibility constraints to the contour 

profilers as low and high limits as needed.  

b. Set the importance weights for each simulation model output and run the optimization 

algorithm to find a system alternative.  

c. Explore changes to model input settings to find feasible solutions. Examine the contour 

profilers to identify where the alternative does not meet the desired effectiveness or 

feasibility constraints; this occurs where the contour profiler crosshair is in a shaded 

region.   Examine the prediction profilers to find the model inputs that have the highest 

impact on the shaded regions that represent the model output limits. Explore changes 

to these model inputs to find a viable alternative. When appropriate, increase the 

desired effectiveness for all responses so that the shaded region is positioned at the 

edge of the cross hair. 

d. Tradeoff infeasible response limits. If no viable alternative is found, decide which 

shaded region model output must be traded off to achieve a feasible solution where all 

contour profiler cross hairs are in the white region. Name the alternative. 

e. Generate viable variant solution candidates using the Monte Carlo Filtering. To acquire a 

reduced collection of viable system variants that satisfy the desired effectiveness and 

constraints set in the contour profilers, use the Monte Carlo Filtering component to fill 

the contour profiler white region with feasible solutions. In order to narrow down the 

reduced set of solutions further, we can select the most affordable solution, the solution 

with the least amount of variation, or the original optimized solution that was modified 

to satisfy the response limits. 

f. Change the importance weights of the model outputs to represent different stakeholder 

views and repeat the previous steps until there are enough viable system variants. 

g. Rerun the simulation models for each of the selected viable variants to confirm the 

surrogate metamodel results and generate the data needed to populate the measures 

in the value model. 

h. Utilize the value model to evaluate the alternatives. 

11.2. Technical Gap Bridges 
Section 4 outlines the technical gaps within the ERS tradespace areas. This section reviews these 

gaps and discusses how our methodology addresses them. 
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Tradespace analytics. Current computational tools limit the exploration to only a few variables and 

produce static visualization diagrams. Our methodology leverages experimental space-filling designs 

suited for complex simulation models that allow the analyst to explore a high-dimensional problem. 

Traditional designs used for physical experiments were limited to only a few variables at a time. The new 

state-of-the-art nearly-orthogonal Latin hypercubes combined with nearly balanced designs allow 

system engineers to explore the interior of the experimental region while minimizing correlations 

between columns; in the past, experimenters had to choose a design that had only one of these 

properties. In addition, we can construct custom made space-filling designs for a very large dimension 

problem that have all experimental factor types (continuous, discrete, and categorical). These designs 

allow us to create surrogate metamodels that approximate the input/output behavior of the simulation 

models. We can use these metamodels to illuminate the key tradable variables with a dynamic 

dashboard created in JMP that combines statistical analytic artifacts with visualization features. 

 

Decompose tradespace. The set of design driving variables is often unknown when designing a system. 

Additionally, current methods for conceptualizing design alternatives overlook or prematurely eliminate 

feasible designs. To address these technical gaps, we demonstrated an MBSE methodology that maps 

SysML elements to experimental design factors and incorporated the DOE analytical insights as derived 

requirements within our MBSE integrated system model. SysML allows us to express the conceptual 

model of a design with a wide variety of value properties that define the structural system 

characteristics. We can explore a several design alternatives by establishing an experimental region 

defined by the low and high setting of the value properties that define the system alternative.  In order 

to identify the most significant design drivers we can use the polynomial linear regression metamodel 

with easily interpretable model coefficients that express the nature of the model input’s impact on the 

response and the synergies that exist between them. 

 

Tradespace search. Methods of searching the tradespace are slow due to the increase in system 

complexity, the growth of the number of potential tradable variables, and the need for high fidelity 

models for more accurate results. We can address these challenges by leveraging state-of-the-art space-

filling experimental designs that efficiently span the entire design space region for a large number of 

variables. Because we can effectively explore the interior of the design space, we can analyze highly 

complicated response surface landscapes. In order to identify a narrow set of viable system alternatives 

we can use the collection of metamodels that we fit after executing the experiments to create a 

dynamic dashboard. The dashboard visualizes the multi-dimensional response surface using horizontal 

and vertical cross sections. We use the JMPTM 12 optimization heuristic to find solutions that balance 

multiple competing output responses and refine them when they are not feasible. 

 

Evaluating tradespace results. Every system design problem has multiple stakeholders with different 

perspectives. In addition, attribute weighing schemes are often subjective making it difficult to build 

consensus. We address these gaps by integrating the philosophy of value focused thinking and the 

mathematics of multi-objective decision analysis to incorporate multiple stakeholder viewpoints. We 

create a functional objective value model that represents the composite perspective of multiple 
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stakeholders. We use the swing weight matrix to simultaneously incorporate subjective importance and 

objective levels of capability impacts. 

11.3. Concluding Remarks 
In today’s complex environment, the DoD needs systems that are resilient to change and are 

effective across a wide variety of uncertain futures. The ERS architecture provides the means to apply a 

data driven approach using MBSE, incorporate previous design successes, integrate models, generate 

the data needed to visualize the tradespace, and create a shared digital thread of design decisions 

accessible to a community of users throughout the system lifecycle. Currently, there is a technical gap 

with regard to our ability to untangle the system design drivers when there is a high volume of multi-

dimensional data. We propose an MBSE methodology that addresses this gap by leveraging the methods 

of experimental design in order to clearly identify tradable variables and narrow the search for viable 

system variants.  

The general state-of-practice is to perform brute force simulation runs on a small set of baseline and 

excursions that do not effectively explore the system alternative design space. There is a lot of time, 

money, and resources devoted to building complicated simulation models and we do not use them to 

the maximum extent possible if we only compare a few excursions from the baseline. DOE provides a 

number of benefits that can assist in the design of a system. We can clearly identify the model inputs 

that affect the output responses, identify interactions that may exist between model inputs, uncover 

detailed insight into the model’s behavior, examine the modeling assumption implications, frame the 

questions when we do not know what to ask, challenge or confirm expectation of directional model 

input effects and their relative importance, and uncover problems with simulation program logic.  

In order to untangle the system design drivers across several different domain models, our 

methodology uses statistical metamodeling to approximate the simulations’ behavior. We use these 

metamodels to capture insights as derived requirements that further refine a local property 

requirement and as satisfy relationships that identify value properties and structural blocks that satisfy 

emergent property requirements.  In addition, we create a dynamic dashboard using the collection of 

metamodels to help visualize multi-dimensional response surfaces using horizontal and vertical cross 

sections. These cross sections allow us to clearly identify the tradable variables and find viable system 

variants that met the desired capabilities across multiple viewpoints and are physically feasible. 

11.4. Future Research 
The model integration challenge is a significant limitation that needs further research in order to 

effectively execute our proposed MBSE methodology. Translating system element value properties to 

simulation model inputs is a research area that is very specific to each domain and the types of models 

we use. The MBSE paradigm provides a means of managing the model integration requirements. Model 

fidelity differences create an even more challenging problem when we want to integrate a collection of 

models that represent one system design alternative. Addressing the model integration challenge will 

require additional modeling and practical application of system modeling efforts that are cross-coupled 

across different domains. 
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The statistical metamodels we created were fit using the mean of the response data. Therefore, the 

functional form of the metamodel only approximated the mean performance.  The dashboard steps we 

proposed in Section 9 that identify viable variants are completing based on mean performance without 

regard to the alternative variability. We address this limitation by rerunning the selected viable system 

variant alternatives and using the vector of outcomes within our multiple-objective decision analysis 

model. Further research is necessary to apply our proposed methodology on the variance of the 

response data. Additionally, we can apply the methods of robust design in order to incorporate both the 

mean and variance using a loss function. Analyzing these loss functions allows us to directly incorporate 

noise variables along with our decision variables in order to find robust solutions that perform well 

across an uncertain environment. Finding robust solutions aligns very well with the ERS effort to identify 

resilient systems that are effective in a wide variety of uncertain environments. Rather than optimizing 

on the mean decision space, we can find robust solutions that provide a new class of viable system 

variants.    

A final area of research is to create the physical architecture within the MBSE integrated model of 

the viable system variants identified using our dashboard. This task involves translating the model input 

settings of the identified solution back into the value properties of the system elements. 

  



 

108 

References 

Barton R. (1998). Simulation metamodels (D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan, 
Eds.). Proc 1998 Winter Simul Conf Piscataway NJ IEEE. 1:167–74. 

BKCASE Editorial Board. (2015). The Guide to the Systems Engineering Body of Knowledge (SEBoK), v. 

1.3.2 R.D.Adcock (EIC). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed May 

15, 2015. www.sebokwiki.org.  

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. and Yergeau, F. (2008), Extensible Markup 

Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008. 

Clemen, R. T., & Reilly, T. (2001). Making hard decision with decision tools. South-Western Cengage 

Learning, Mason, Ohio. 

Delligatti L. (2013) SysML Distilled: A Brief Guide to the Systems Modeling Language. 1st edition. Upper 
Saddle River, NJ: Addison-Wesley Professional.  

Ewing Jr, P. L., Tarantino, W., & Parnell, G. S. (2006). Use of decision analysis in the army base 
realignment and closure (BRAC) 2005 military value analysis. Decision Analysis, 3(1), 33-49. 

Fisher RA. (1925) Statistical Methods for Research Workers. Biol Monogr Man Ser Edinb Scotl Oliver 
Boyd.  

Friedenthal S, Moore A, Steiner R. (2011) A Practical Guide to SysML, Second Edition: The Systems 
Modeling Language. 2nd ed. Morgan Kaufmann. 

Grayson, J., and S. Gardner. (2015).  Building Better Models with JMP Pro. Cary, North Carolina:  SAS 
Institute Inc. 

Hastie, T., R. Tibshirani, and J. Friedman. (2009). The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. 2nd ed.  New York: Springer-Verlag. 

INCOSE. (2015). Systems Engineering Handbook, A Guide for System Life Cycle Processes and Activities. 
4th edition. San Diego, CA: Wiley.  

Keeney, R. L. (1992). Value-Focused Thinking: A Path to Creative Decision Making. Cambridge, MA: 

Harvard University Press. 

Kim H, Fried D, Menegay P, Soremekun G, Oster C. (2013) Application of Integrated Modeling and 
Analysis to Development of Complex Systems.  Conf Syst Eng Res. 2013;16(0):98–107.  

Kirkwood, C. W. (1996). Strategic decision making. Wadsworth Publ. Co. 

Kleijnen JP., Sanchez SM, Lucas TW, Cioppa TM. (2005) A user’s guide to the brave new world of 
designing simulation experiments. Inf J Comput;17(3):263–89. 

 

 

http://www.sebokwiki.org/


 

109 

Kleijnen, J. P. C. (2015). Design and Analysis of Simulation Experiments. 2nd ed. New York: Springer-
Verlag. 

Kuhn, M., and K. Johnson. (2013). Applied Predictive Modeling. New York: Springer-Verlag. 

Hernandez, A. S., T. W. LUCAS, AND M. CARLYLE. (2012).  Constructing nearly orthogonal Latin hypercubes 
for any nonsaturated run-variable combination.  ACM Transactions on Modeling and Computer 
Simulation, 22, 4, No. 20. 

Loh W-Y. (2011) Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov. Jan; 
1(1):14–23. 

MacCalman, A. D. (2013). Flexible space-filling designs for complex system simulations. Doctoral 
dissertation. Naval Postgraduate School, Monterey, CA. DTIC Document; 2013. Available from: 

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA585718 

McIntosh, G.C., Galligan, D.P., Anderson, M.A., & Lauren, M.K. (2007).  MANA (Map Aware  Non-
Uniform Automata) Version 4 User’s Manual, Defense Technology Agency, New  Zealand. 

Montgomery DC. (2012). Design and Analysis of Experiments. 7th ed. Wiley. 

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook.  (2009). Response surface methodology:  
Process and product optimization using designed experiments. 3rd ed. Wiley, January 14. 

NATO Science and Technology Organization. (2014). Data Farming in Support of NATO. STO Technical 
Report TR-MSG-088. 

NDIA Systems Engineering Division. (2011) Final Report of the Model Based Engineering (MBE) 
Subcommittee. Arlington, VA: NDIA.  

Neches, R. (2011) Engineered Resilient Systems (ERS), S&T Priority Description and Roadmap. 

Rao, C. R. (1945). Finite geometries and certain derived results in number theory. Proceedings of the 
National Institute of Sciences of India, 11, 136–149. 

Sanchez, S.M. and H. Wan. (2009). Better than a petaflop: The power of efficient experimental 
design. Proceedings of the 2009 Winter Simulation Conference, 60–74. 

Sanchez, S. M. (2015). “Simulation experiments: Better Data, Not Just Big Data.” In Proceedings of the 
2015 Winter Simulation Conference, edited by L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal, 
and M. D. Rossetti.  Piscataway, New Jersey: Institute of Electrical and Electronic Engineers, Inc., 
 
Sanchez, S. M., P. J. Sanchez, and H. Wan. (2014). “Simulation Experiments: Better Insights by Design.” In 
Proceedings of the 2014 Summer Simulation Conference. San Diego, California: The Society for Modeling 
& Simulation International. 
 
Sanchez, S. M., and H. Wan. (2012). “Work Smarter, Not Harder: A Tutorial on Designing and Conducting 
Simulation Experiments.” In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, 
J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Urmacher, 1929–1943. Piscataway, New Jersey: Institute 
of Electrical and Electronic Engineers, Inc 

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA585718
https://harvest.nps.edu/papers/SanchezWan2009WSC.pdf
https://harvest.nps.edu/papers/SanchezWan2009WSC.pdf


 

110 

SAS Institute. 2015. JMP 12 Profilers. Cary, North Carolina:  SAS Institute Inc. 

Vieira, Jr., H., Sanchez, S., Kienitz, K. H., & Belderrain, M. C. N. (2011). Generating and improving 
orthogonal designs by using mixed integer programming. European Journal of Operational Research, 
215(3), 629–638. 

 

 

 

 

 



Appendix A: MANA Data Farming Manual 

 

 

UNITED STATES MILITARY ACADEMY 

ORCEN, Department of  Systems Engineering 

MANA Data 
Farming Manual



 

O P E R A T I O N S  R E S E A R C H  C E N T E R ,  D S E  

MANA Data Farming Manual 

2LT Hyangshim Kwak 
LTC Alexander MacCalman 

February 2015 
 



 

 

Table of Contents

Introduction ........................................................................ 112 

1.1 Required Programs ............................................................... 112 

1.2 HPC Labs in the DSE ............................................................ 113 

1.3 Overview ............................................................................... 113 

Design of Experiments .......................................................... 4 

2.1 Scenario File ............................................................................. 5 

2.2 Analysis File .............................................................................. 6 

2.3 Translation File........................................................................ 10 

2.4 Executable File ....................................................................... 11 

Generate Study File ............................................................ 123 

3.1 Map Parameters.................................................................... 123 

3.2 Navigating the Structured Tree ............................................. 126 

3.3 Designate the XPath ............................................................. 128 

Execute Cluster Runs .......................................................... 23 

4.1 Folder Hierarchy Orientation ................................................... 23 

4.2 Cluster Running Prerequisities ................................................ 33 

4.3 Launch OldMcData ................................................................. 36 
4.4 Monitor Progress using Condor .............................................. 37 

Post-Process Output ............................................................ 38 

5.1 Create Summary File .............................................................. 38 

5.2 Post-Processing Setup ............................................................ 39 

5.3 Concurrent Processing of Design Points ................................. 47 

5.4 Sequential Processing of Design Points ................................. 48 

5.5 Contents of Output Folder ....................................................... 49 

Appendices ........................................................................... 50 
Appendix A: References ............................................................... 50 

Appendix B: Glossary.................................................................... 51 

Appendix C: OldMcData Folder Organization Layout ................... 52 

Appendix D: Installing XStudy ....................................................... 53 

Appendix E: Downloading Condor ................................................ 53 

Appendix F: OldMcData Troubleshooting Options ........................ 54 

Appendix G: Modifying the “condor_config” file ............................. 56 

Appendix H: Points of Contact for Additional Help ........................ 57 

 

 



 

114 

Introduction 

his manual provides instruction on how to setup, start, and manage data 
farming runs on the West Point server. It outlines the steps for creating a 
design of experiment, running simulations on a local distributed computer 
cluster, and post-processing data. The process was first used in a Tradespace 

Exploration project headed by LTC Alexander MacCalman at the Operations Research 
Center within the Department of Systems Engineering. 

 

1.1 Required Programs 

The following instructions document the data 
farming procedures as was carried out in the 
Tradespace Exploration project. In this case, the 

analysts used the Map Aware Non-Uniform Automata as the simulation program and 
the “Design Creator” tool for the Design of Experiments portion; however, all 
programs can be substituted with other software that is better suited for the project at 
hand as long as it fulfills the required functionalities. The list below is a set of programs 
that have been implemented in the Tradespace Exploration project for data farming 
purposes. The ensuing instructions will be geared towards the following programs: 

 Map Aware Non-Uniform Automata (MANA): Operational simulation 

 “Design Creator” tool: Custom design creator or statistical package 

 Microsoft Office Excel 

 XStudy: A software mechanism with a graphical front-end to map model input 
parameter settings to columns in a design matrix 

 Microsoft Visual Studio: an XML reading program 

 OldMcData: A software that accepts the design matrix and specification study 
file as an input and produces the set of excursions needed to perform the 
simulation experiments  

Chapter 

1 

T 

I C O N  K E Y  

 [[key]]: Button on the keyboard 

Command invoked in Command Prompt 
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 Condor: A software management system that interfaces with the HPC and 
excursion files and distributes jobs across available computer resources while 
managing the transfer of files  

 RStudio: A statistical software 

 

1.2 HPC Labs in the DSE 

Data cluster runs are implemented using High Performance Computer (HPC) 
cluster systems, which is a series of mapped computers that communicate with one 
another. Usually, HPCs are organized so that one master computer communicates 
with other remote machines. There are two labs in the Department of Systems 
Engineering that have HPC cluster capabilities. The table below lists the location 
of the labs and the associated master computer of the cluster. 

Table 1. HPC Labs in USMA, DSE 

Chapters 2 and 3 can be completed with any logon credentials in your personal 
computer. However, you will need to log in to the master computer of a lab as a 
student in order to use the data farming and post-processing capabilities of 
Condor. When executing chapters 4 and 5, make sure you work in the lab.  

To login to the master computer, enter the following credentials: 

ID: cadet1se 

Password: G0Systems123456 

1.3   Overview 

The Data Farming methodology can be broken down into the six steps listed below. 

Step 1. Create a Scenario file (.xml) on MANA 

Step 2. Create the analysis matrix using the “Design Creator” tool. Then, 
create the Analysis (.csv, Translation (.csv) and Executable (.csv) files on 

Microsoft Excel that designate the design variables and their values for the design of 
experiment (DOE). 

Step 3. Use XStudy to map the design variables of the Executable file (.csv) and the elements of a 
MANA Scenario file. The output is an Experiment Study file (.xml). 

Lab Name Location Computer ID 

The Cave Room 406a 08 

Information Visualization (IV) Lab Room 408 001 

D A T A  

F A R M I N G  

M E T H O D O L -

O G Y  
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Step 4. Launch OldMcData to create individual scenario excursion files (.xml) for each design point. 
OldMcData also submits the runs to Condor, which distributes the simulation over a local 
distributed computer cluster. 

Step 5. Monitor the progress of the runs using Condor commands. 

Step 6. Post-process the output. Either invoke the standard MANA post-processor to create a 
Summary file (manaPP.bat) that concatenates all the MANA outputs, or invoke the manaminer 
post-processor that allows for personalized outputs. 

 

 

 

 

 

 

 

 

 

 

Ensure that ALL file names (scenario, 
excursion, image, etc. files) do not contain 
spaces or special characters 
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Design of Experiments 

Creating Analysis, Translation, and Executable files. 

his section provides instruction on the Design of Experiments (DOE) portion of the project. The field of 
DOE allows us to efficiently explore a high-dimensional tradespace problem at the right system 
configuration settings within the design region in a feasible amount of time.  
 

When using MANA models, there is a need to create three matrices, as manifested in the Analysis, Translation, 
and Executable files. Matrices are formed so that columns represent design variables and rows represent the input 
parameter specifications for each model experiment. Often times, MANA input parameters have multiple entries 
(see Figure 8). Therefore, lone design variables are not directly importable as MANA input parameters. Instead, 
the entries of the input parameter must be scaled by a single factor, which necessitates the creation of multiple 
files.  
 
To create the executable matrix, there must be an intermediary file, known as the Translation file, to translate the 
analysis matrix into an execution matrix. The translation matrix scales all of the elements according to the desired 
amount based on the experimental design.  
 
An overview of the four types of files is as follows: 

 Scenario File (.xml): A MANA file that contains the baseline parameters for all variables that will be 
manipulated in the design of experiments. It contains all the details for the scenario.  

 Analysis File (.csv): The experimental design the analysts will use to perform linear regression after 
appending the output data to it. 

 Translation File (.csv): An intermediary file that translates the Analysis file into the Executable file.  

 Executable File (.csv): A Microsoft Excel file where each column is a variable in the design of 
experiment and each row is a design point. The file is uploaded on XStudy to map the variables in the 
design and the elements of a MANA Scenario file. 

2.1 Scenario File 

Construct the baseline scenario model on MANA, which is the file that contains the baseline parameter settings 
for all the design variables that will get modified during the HPC cluster runs. 

Chapter 

2 

T 
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Step 1. Open MANA 
a. See “MANA (Map Aware Non-Uniform Automata) Version 4 User Manual” (May 2007) by 

McIntosh, Calligan, Anderson, and Lauren and “MANA-V (Map Aware Non-Uniform 

Automata- Vector) Supplementary Manual” (September 2009) by McIntosh for guidance on 

how to navigate and create a Scenario file (.xml).  

Step 2. Establish baseline values for all parameters in the “Edit Squad” window, as shown in Figure 1. These 
values will later be manipulated in the Executable file (.csv). 

 

FIGURE 1. “Edit Squad Properties” window in MANA 

Step 3. Check the desired output options in the “Data Outputs” tab. If you will be using the unique post-
processor as instructed in Chapter 5, ensure that the following options are checked (see Figure 2): 

 Record Casualty Location Data 

 Record Agent State Data 

 Record Multi-Contact Detections 
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FIGURE 2. “Data Outputs” tab in MANA 

Step 4. Save the file. Do not include spaces in the file name. In the manual, this MANA file will be referred 
to as the Scenario file (.xml). 

 

2.2 Analysis File 

The Analysis file (.csv) is the initial compilation of input parameters that lays out the individual MANA runs, 
otherwise referred to as design points, for the DOE. The Translation file (.csv) is derived from the Analysis file 
(.csv).  

The “Design Creator” VBA file uses an algorithm that creates the experimental design. This manual will provide 
step by step instructions for creating an Analysis file through a use case. For more specific directions, reference 
the “Design Creator User Manual.” 

Step 1. Open the “Design Creator” on Microsoft Excel and enable Macros.  
Step 2. In the “Front End” tab, enter the number of factors and other required information in the blue cells. 

In the example scenario, there are five continuous factors. The number of levels is set to “39” in 
order to match the “Number of Design Points” parameter in the green-colored entry area: 
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FIGURE 3. “Front End” tab of the “Design Creator” tool 

Step 3. After entering all of the factors, select the “Run Algorithm” button. A 
command window will open that shows the running processes. Once the 
algorithm is complete, an output design will be generated in Microsoft Excel. 
The total number of columns pertains to the total number of factors. Excluding 
the first four rows of headers, there should also be 39 rows of design points (see 
Figure 4). 

Step 4. Next, copy the entire content of the output design in Microsoft Excel.  

Step 5. Toggle back to the “Design Creator” and select the “Start Design” tab. 
If there is another design already inputted, select the “Clear Design Area” 
button to delete the previous work.  

Step 6. Paste the contents of the design output in cell B1. (See Figure 3 for a 
screenshot of the “Start Design” tab). Ensure that the content is aligned with its 
respective label in column A. 

Step 7. Press the “Create Translation Worksheet” button (see Figure 5). The 
“Design Creator” will then open the “Translated Design” tab, as shown in 
Figure 6. 

 

FIGURE 4. Output Design generated in Microsoft Excel 
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FIGURE 5. Press the “Create Translation Worksheet” button 

 

Step 8. Update the “factor name” in row 7. 

Step 9. Enter the low and high levels for each 
individual design variable in rows 4 and 5.  

Step 10.  Specify the desired number of digits in 
which to round the values in row 6. The 
“Design Creator” will automatically adjust the 
values accordingly. The image in Figure 7 
shows the updated “Translated Design.” 
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Step 11.  Copy the “factor names” and design points (from cell B7 
onwards).  

Step 12.  Open a new Microsoft Excel file and select cell A1.  

 

Step 13.  Press [[Alt]], [[Ctrl]], and [[v]] 
simultaneously to special paste the design 

points.  

Step 14.  Label the tab as “Analysis.” This is 
your Analysis file. Continue reading below for 
further orientation on the Analysis file and 
formatting suggestions. See Figure 9 for an 
example of a formatted Analysis file.  

 

 

 

FIGURE 8. “Sensor” tab in the “Edit Squad 

Properties” window on MANA 

 

 The first row lists each design variable 
that will be altered in the DOE. 
o Each design variable pertains to a 

setting on the MANA input 
parameters that will be manipulated 
in the DOE 

o Ensure that variable headings do not 
contain spaces 

o Choose headings that are easily 
recognizable and unique to the 
setting 

 Formatting:  
o Suggested background color: yellow 
o Bold the variables that require 

exactly one input. 

FIGURE 6. “Translated Design” tab within the Design Creator 

Input 2 

Corresponds to the 
multi-input variable 
“SDRDetRange” 

Input 1 

Input 4 

Input 3 

Input 5 
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 For example, bold all the variables in the use case except for “SDRDetRange” 
 
 
 

2.3 Translation File 

Create a Translation file. 

As seen in Figure 6, an input parameter may need a scaling factor to apply to multiple inputs. The Translation 
file (.csv) is an expanded version of the Analysis file that lays out each component that will be manipulated in the 
DOE. As such, the Translation file is necessary to create the Executable file (.csv).  

Step 1. Copy and paste the variable headings and values in the second row of the newly created “Translation” 
tab. 

Step 2. For the headings that are not bolded, note the number of inputs for the corresponding parameter in 
MANA and create additional headings as necessary.  

 Bold the newly created headings and color the corresponding columns gray. 

 Do not reformat the unbolted variable headings. 
* Note: The bolded variable headings contain the values that will be directly inputted into MANA when running each simulation. 

Step 3. Fill in the values for the unbolted variable headings. Unlike the values for the bolded variable 
headings, the values for the unbolded headings are NOT the figures that will be inputted into 
MANA. Instead, they are the numbers that will be multiplied with the baseline value already 
determined in the scenario file (.xml) 
a. In row 1, write the baseline values as designated in the Scenario file (.xml) above each 

corresponding variable heading. 
b. Multiply the baseline values with the design points for each respective row to obtain the number 

which will be inputted. 
 

 

 

 

 

 

 

 

 

 

FIGURE 9. Final “Analysis File” on Microsoft Excel 

Baseline values of the 
“Soldier Detection Range” 
parameter. Correspond to 
values in Fig. 8 

 Multiply the baseline value 
(cell F1) with the scalable 
factor (cell E3) 
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2.4 Executable File 

The Executable file (.csv) is derived from the Translation file (.csv) and will be uploaded in XStudy. 

Step 1. Open the Translation file (.csv) 

Step 2. Copy the bolded variable headings and the corresponding values. These are the design points that will 
be manipulated within MANA. These are the bolded variable headings in the Translation file. In 
other words, omit the columns that pertain to the scaling factors.  

Step 3. Press [[Alt]], [[Ctrl]], and [[v]] simultaneously to special paste the values in a new sheet.  

Step 4. Save the file as your Executable file (.csv) in csv format (see Figure 11). 

 

FIGURE 11. “Executable File” in Microsoft Excel 
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Generate Study File 

Use XStudy to generate an Experiment Study file that specifies the model input parameters 
within MANA to change 

3.1 Map Parameters 

XStudy is a mechanism that finds, selects, and modifies the model input parameters of the base case scenario to 
create a set of excursions, one for each experiment or row in the design matrix. We will use the software to map 
the input parameters of a MANA Scenario file to the columns in the Executable file.  

Ensure that the xstudy.bat file is saved in your C drive. 
Step 1. Navigate to the C directory and locate the XStudy folder: 

 

Chapter 
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FIGURE 12. “XStudy” folder 
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Step 2. Open the XStudy folder (Path: C drive → “XStudy” folder) and locate the xstudy.bat file (see 
Figure 13).  

 
FIGURE 13. “xstudy.bat” file within the “XStudy” folder 

Step 3. Double click the xstudy.bat file then load the MANA Scenario file (.xml) by navigating to its file 
location. 

 

Step 4. In 
the “Load Scenario 
File” tab, select 
“Next” as depicted 
in Figure 14. 

Step 5. In 
the “Load DOE 
File” tab, load the 
Executable file (.csv) 
by clicking on 
“browse” then 
navigating to its file 
location. Check to 
see that the proper 
file name has 
appeared as the 
“DOE File Name.” 
Then select “Load 
DOE”: 

FIGURE 14. “Load Scenario File” tab in XStudy 



 

 125 

 

FIGURE 15. “Load DOE File” tab in XStudy 

Step 6. After loading the Executable file (.csv), confirm the correct number of lines to skip. Then check to 
ensure the column headings are properly identified by using the drop-down arrow: 

 

Step 7. Select “Next.” You will be taken to the “Map 
Parameters” tab as shown below. The structured tree on the left corresponds to the MANA Scenario 
file (.xml) input parameters. The items under “Parameter Groups” are the column headings of the 
Executable file (.csv). 

FIGURE 16. Checking the Headings in the “Load DOE File” tab 

1 

2 

1 

2 
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FIGURE 17. “Map Parameters” tab in XStudy 

In this tab of XStudy, you will need to link all the column headings of the executable file (.csv) to its respective 
input parameter in the MANA scenario file (.xml). Before we describe the details on mapping the two items, we 
will learn how to locate the input parameters within the structured tree in the next section, entitled “Navigating 
the Structured Tree.” 

 

3.2 Navigating the Structured Tree 

 It may be difficult to identify the input parameter that you need to 
reference in the “Map Parameters” tab of XStudy, especially if you have an 
extensive and complex Scenario file (.xml). In this section, we will 
demonstrate two methods on how to locate the specific parameter more 
effectively through an example use case. 

Use case: We want to locate the “Stealth” MANA parameter that 

pertains to the heading “SDR Stealth” for a friendly Bradley Infantry 

squad. 

Method 1: Browse the XML text file of the Scenario file. 

Step 1. Open up the MANA Scenario file (.xml) on any XML 
viewer.  

Step 2. Locate the input parameter in the file using the search function by 
pressing [[Control]] + [[F]].  The key aspect to keep in mind is if whether 

Column 
Headings Input 

Parameters 
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the input parameter is a state-dependent or state-invariant parameter. If the 
property is the former, make sure to look for it in the appropriate <state> section. 
Some key elements to record are the squad number and state name which contain 
the parameter. It may be easier to print out a hard copy or screen capture selected 
parts of the scenario file (.xml) to manually number the ranges, which XStudy 
does not label. 

         By viewing the XML script of the Scenario file (.xml), we can see that the 
“Stealth” MANA parameter lies within the “Default” state with a value of 95 (see 
Figure 18). 

Step 3. Navigate back to the XStudy GUI. Count the number of squads to find the 
desired squad name. Then locate the state name. Finally, find the desired input 
parameter within the structured tree.  

Step 4. Check to make sure the value of the input parameter is consistent with what is 
inputted on MANA to ensure that you have selected the correct one. 

 
Method 2: Locate the input parameter in the MANA dashboard. 

Another method of narrowing the location of the input parameter of interest is to look within your MANA 
dashboard.  

Step 1. Open the MANA dashboard 

Step 2. Toggle to the location of the input parameter in MANA and notes the states to which the parameter 
is applied. For example, the “Stealth” parameter, designated as “Personal Concealment per Detection 
Event” in MANA is located in the “Tangibles” tab and applies to the “Default,” “Taken Shot,” and 
“Shot At” states. It also is consistent with a value of 95 (see Figure 19) 

Step 3. Navigate back to the XStudy GUI and find the corresponding location of the MANA input 
parameter by choosing the appropriate squad number and state.  
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Step 4. Check to make sure the value of the input parameter is consistent with what is inputted on MANA to 
ensure that you have selected the correct one. In this case, “Stealth” was given a value of 95 in 
MANA. The selected input parameter entitled “Stealth” in XStudy has the same value. This is one 
more check to ensure correct mapping.  

 

 

 

 

 

3.3 

Designate 

the XPath 

Now that we are 
familiar with how to 
navigate the 
structured tree in 
XStudy, we will 
proceed with 
instructions on how 
to map the MANA 
input parameters with 

the column headings of the 
Executable file (.csv).  

Step 1. Select a column heading in the “Parameter Groups” section: 

FIGURE 19. “Tangibles” tab in “Edit Squad Properties” Window of MANA (Method 2) 
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FIGURE 20. “Map Parameters” tab in XStudy 

Step 2. Navigate to and select the corresponding MANA input parameter in the structured tree. (Refer to the 
previous section for guidance on how to navigate the structured tree) Once selected, the path to the 
input parameter will appear as the “XPath,” as shown below: 

 

FIGURE 21. Selecting the XPath 
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Step 3. Click on “Add Current Selection” and check that the XPath has appeared in the “Items in Selected 
Group” block and the appropriate input parameter is highlighted. Populate the XPath(s) for all the input 
parameters: 

 

 

Step 4. For the column headings that have multiple inputs, map each individual input. Once all the input 
parameters are mapped, select “Next” to proceed to the “Study Info” tab. See the following screenshot 
depicting the XStudy GUI: 

 

FIGURE 22. Populating XPaths 

FIGURE 23. Mapping an Parameter with Multiple Inputs 

1 

3 
4 
5 

2 

1 
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Step 5. In the “Study Info” tab, enter the “user” and “study” information. In addition, edit the model 
information so that it matches your version of MANA. Finally, select “Next” to proceed to the 
“Summary” tab. See the snapshot of the XStudy GUI below: 

 
Step 6. In the “Summary” 

tab, look over the 
XPaths to ensure proper mapping. The visual below shows one XPath per input parameter but there 
can be multiple XPaths. Finally, click “Make Study .xml File” to generate the Experiment Study file 
(.xml)”: 

 
*Note: There can be multiple linkages for each 
heading. I.e. The heading “SDRStealth” can 

pertain to the “Stealth” parameter for multiple squads and will therefore be linked with multiple paths. 

FIGURE 24. “Study Info” tab in XStudy 

FIGURE 25. “Summary” tab in XStudy 

Edit the model information so that it 
matches your version of MANA. It can 
also be changed in an XML viewer (see 
???) 
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Step 7. Finally, exit XStudy by selecting “Exit,” as shown in the image below: 

 

FIGURE 26. Exiting out of XStudy 
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Execute HPC Simulation Runs 

Launch OldMcData to create individual scenario excursion files (.xml) for each 
design point. OldMcData also submits the runs to Condor, which distributes the tasks 
amongst the computers in the cluster. 

OldMcData is a mechanism that accepts the Executable file and Experiment Study file as an input and produces 
the set of excursions needed to perform the simulation experiments. It creates individual excursion files with the 
new model input parameters set to the values specified in the design matrix. For each experiment or design point 
in the design matrix, there should be one excursion file. 

Condor is a job queuing mechanism that enforces a scheduling policy and priority scheme while monitoring the 
computer resources that will complete the jobs. A job is one or more runs of the simulation model excursion. 
Condor interfaces with the HPC and excursion files and distributes jobs across available computer resources while 
managing the transfer of files. 

OldMcData and Condor in conjunction allow for the HPC cluster runs of a simulation.  

4.1 Folder Hierarchy Orientation 

For the data farming procedure to properly execute, certain files must be saved in specific folders within the 
C drive, otherwise known as the C directory. As such, it is crucial to gain a firm understanding of the folder 
hierarchy for navigational and organizational purposes. In the following steps, we will orient ourselves to 
the layout of the omd1.1 folder within the C directory and create obsolete folders. 

First, log in to the master computer of a lab. 

Step 1. For West Point analysts, log in to the master computer of a lab with the following credentials: 

ID: cadet1se 
Password: G0Systems123456 

We must use the student ID to bypass the Condor 
credentials constraint. Condor requires new users to 
store their credentials in the system for security 
purposes; however, the procedure necessitates 
administrative privileges. Unlike individual accounts, the 

Chapter 

4 

West Point analysts must log in using the 
Student ID in the computer labs. 
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student ID account is already recognized by Condor. 

Become familiar with the folder hierarchy. 

Step 2. Open up “My Computer” and locate the C directory, as shown in the image below: 

 
FIGURE 27. Locate the C Directory in “My Computer” 

 
Step 3. Open up the C directory and locate the “omd1.1” folder, as shown in Figure 28. 
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FIGURE 28. Locate the “omd1.1” folder in the C drive 

The “omd1.1” folder pertains to the OldMcData program and is the central folder that contains all the folders of 
interest. An overview of the folder layout is shown below: 

 

Chart 1. “omd1.1” folder in Folder Hierarchy 

Step 4. Open the “omd1.1” folder and locate the “models” folder as seen in the image below: 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy
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FIGURE 29. Locate the “models” folder in the “omd1.1” folder 

Step 5. Create a new “MANA” folder within the “models” folder. Each simulation program requires a 
unique folder.  

 

FIGURE 30. Locate the “MANA” folder in the “models” folder 

Chart 2 highlights the newly created “MANA” folder in the folder hierarchy. 
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Chart 2. “MANA” folder in Folder Hierarchy 

 
Create a new bat. file and save it to the “MANA” folder. 

Step 6. Open up Notepad. Type in:  

MANAC.exe –f%1 –n%2 –m%3 –e%4 (See Figure 31) 

 
FIGURE 31. “condoromana.bat” file in Notepad 

 

Step 7. Save the file as “condormana.bat” in the newly created “MANA” 
folder.  

Copy two files into the “MANA” folder: “mana.reg” and “MANAC.exe” 

Step 8. Right click on the “MANA.exe” shortcut on your desktop and select 
“Open file location” as seen in Figure 32. 

 

Step 9. Copy and paste the “mana.reg” and “MANAC.exe” files 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

FIGURE 32. Open MANA file location 
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from their original location into the “MANA” folder (Path: C drive → “omd1.1” folder → 
“models” folder → “MANA” folder). The “MANA” folder should now contain three files, as 
shown in Figure 33. 

 

FIGURE 33. Contents of “MANA” folder. 

 

 Create a folder that contains the files necessary to post-processes the output.  

First, check to see if the manaminer folder already exists in the C drive. The path to 
the folder is: C drive → “omd1.1” folder → “tools” folder → “mana” folder → 
“manaminer” folder. If the “manaminer” folder is absent, follow the directions in this 
section. Otherwise, skip to “Create the ‘Study Name’ Folder” section.  

Step 1. Navigate back to the “omd1.1” folder. Create a new “tools” folder, as shown below: 

 
FIGURE 34. Locate “tools” folder within “omd1.1” folder 

 

Step 2. Open the “tools” folder and create a “mana” folder within it (see Figure 35). 

S E T T I N G  U P  

T H E  

M A N A M I N E R  

P O S T -

P R O C E S S O R  
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FIGURE 35. Create a “mana” folder within the “tools” folder 

The chart below highlights the newly created “mana” folder in the folder hierarchy: 

 

Chart 3. “mana” folder in Folder Hierarchy 

 

We will now copy the ManaMiner post-processing folder into the newly created “mana” folder. 

Step 3. Locate the “manaminer” folder. You may have to attach the files from another computer to 
transfer the files. 

Step 4. Copy the “manaminer” folder and all of its contents into the “mana” folder, as shown 
below: 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy
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FIGURE 36. Paste the “manaminer” folder into the “mana” folder 

The chart below highlights the newly created “mana” folder in the folder hierarchy: 

 

Chart 4. “manaminer” folder in Folder Hierarchy 

 

Create the “Study Name” folder that contains the files specific to your project. 

Step 1. Toggle back to the “omd1.1” folder and locate the “studies” folder: 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

C R E A T E  T H E  

“ S T U D Y  

N A M E ”  

F O L D E R  
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FIGURE 37. Locate the “studies” folder in the “omd1.1” folder 

 

The chart below points out the location “studies” folder in the folder hierarchy: 

 

Chart 5. “studies” folder in Folder Hierarchy 

Step 2. Open the “studies” folder and create a new folder. This is the “Study Name” folder. Label it as 
your project name. Ensure the label does not have spaces. In the example below, the Study 
Name is “Test10DEC.” 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy
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FIGURE 38. Create the “Study Name” folder 

Step 3. Navigate to the following files and copy them into your newly created “Study Name” folder: 

a. MANA Scenario file (.xml) 
b. MANA terrain and/or elevation maps (if being used) (.bmp).   

*Note: it is not necessary to transfer the background map. 
c. Executable file (.csv) 
d. Analysis file (.csv) 
e. Experiment Study file (.xml)  
f. moes.dat file 

i. Path: C drive → “omd1.1” folder → “tools” folder → “mana” folder → “manaminer” 
folder 

 
The completed “Study Name” folder should resemble the figure below: 

 

FIGURE 39. Contents of the “Study Name” folder 
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4.2 Cluster Running Prerequisites 

The following is a checklist that should be completed before initiating cluster runs on Condor: 
 

 Ensure the “MANA” folder (Path to “models” folder: C drive → “omd1.1” → “models” → “MANA”) has 
the following files: 

o mana.reg 
o MANAC.exe 
o condormana.bat 

 Configure the oldmcdata.config.xml file in Microsoft Visual Studio or another XML viewer 
Step 1. Navigate to the “omd1.1” folder (Path: C drive → “omd1.1”) and locate the “oldmcdata.config.xml” 

file as shown below: 

 
FIGURE 40. Locate the “oldmcdata.config.xml” file within the “omd1.1” folder 

 
Step 2. Open the “oldmcdata.config.xml” file in Microsoft Visual Studio or any XML viewer. Change the 

“oldmcdata.config.xml” file in the areas depicted in Figure 41. The file is case sensitive so be sure to 
check the information is replicated exactly Ensure the major and minor model versions correspond to 
the versions specified in the Experiment Study file.. Additionally, the slashes in the path location must 
be forward facing.  

 
 
 

The slashes in the path location must be 
forward slashes. 
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FIGURE 41. “oldmcdata.config.xml” file on Microsoft Visual Studio 

 

 Configure the Experiment Study file (.xml) to ensure mapping, references, and verbiage mirrors the 
“oldmcdata.config.xml” file 

Step 1. Navigate to the “Study Name” folder (Path: C drive → “omd1.1” → “studies” → “Study Name”) 
and locate the Experiment Study file (.xml). See the figure below: 

 

FIGURE 42. Locate the “Experiment Study file” within the “Study Name” folder 

 

Corresponds to MANA version 5.01.05 

Path to “condormana.bat” file 

4 arguments required 

Path to MANAC.exe file 

(see “Setup” of Step 3) 

Path to mana.reg file (should be in same 

location as MANAC.exe file) 
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Step 2. Open the Experiment Study file (.xml) in an XML viewer. Within your XStudy file, ensure it is linked 
to the correct version of MANA. The Experiment Study file (.xml) is case sensitive. See the example 
executable to the right for MANA version 5.01.05. The “Major” pertains to the first portion of the 
version number. The “Minor” pertains to the last two portions of the version number. 

 

 

 

 

 

 

 Check the connectivity of the remote computers to the 
master computers. 

Step 1. Open Command Prompt in the master computer from the “omd1.1” folder (see Section 4.2 for 
further instruction) 

Step 2. Issue the following command: condor_status (see Figure 43). 

 
FIGURE 43. Invoking “condor_status” in Command Prompt 

The “central host machine” is the master computer. The “client machines” corresponds to the remote 
computers. In Figure 43, we have 16 remote machines connected to the master computer. They are 
currently in an “idle” state. 

- If an error message appears, turn to Appendix F 

FIGURE 43. “Experiment Study file” XML Script 
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4.3 Launch OldMcData 

Step 1. Open the OldMcData Command Prompt. Use one of the 2 methods listed below: 
a) Method 1: 

1. Locate the “omd1.1” folder within the C drive.  
2. Press the [[Shift]] key while simultaneously right clicking the “omd1.1” folder. 
3. Left click on “Open Command Prompt from Here” (see Figure 44) 

 
FIGURE 44. Opening Command Prompt from the “omd1.1” folder 

b) Method 2: 
1. Click on the Start menu and type in “Command Prompt in the search bar 
2. Open Command Prompt 
3. Issue the following command: cd \om* (see Figure 45) 

 
FIGURE 45. Command Prompt 

Step 2. Initiate OldMcData  
o Issue the following command into the Command Prompt:  

oldmcdata.start.bat [full path to “Study Name” folder] [name of Experiment Study file] 

 The path to the “Study Name” folder should resemble: C:\omd1.1\studdies\StudyName 

 Ex. oldmcdata.start.bat C:\omd1.1\studdies\Test10DEC StudyFile.xml 
o For troubleshooting options, see Appendix C 
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Step 3. OldMcData Outputs are saved in the “Study Name” folder (Path: C drive → “omd1.1” folder → 
“studies” folder → “Study Name” folder). The four folders that are created after executing the cluster 
run are listed below: 

o “Excursions” folder 

 Contains the MANA .xml files for each individual design point of the experiment. 
o “Output” folder 

 .err and .log files are from Condor 

 .out file records the scripts from Command Prompt 

 Caslocs .csv files: contain the casualty location results. It lists the coordinates of the victims at 
the time of the incident, squad information, the weapon used, shooter information, and more.  

 Agentstate data: contains casualty results, the number of hits each agent took, and the number 
of rounds that left each weapon used. 

 Multicontactdetection data: Contains data on which agents killed which agents at what time and 
with which weapon. 

 

 

 

4.4 Monitor Progress using Condor 

Enter the following commands in the command prompt to regulate the runs: 

Command Function 

condor_status     Shows how many processors are ‘up’ and available 

condor_q Checks how many jobs are still running 

condor_rm –all Kills all jobs running 

condor_rm -<IDnumber>   IDnumber is the job ID number you want to kill 

condor_submit submit-X.dat   Submits a particular excursion, where X is the excursion number 

condor_restart – all 

condor_master 

Restarts Condor. Issue these two commands if none of the jobs are 

running. 

condor_store_cred Stores a password that is necessary for accessing Condor 

Table 2. Condor Commands 
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Post-Process Output 

Invoke the MANA post-processor, manaMiner, to extract and concatenate output data.  

5.1 Create Summary File 

The Summary file is an aggregation of the MANA output files. It is limited by MANA functionalities in that it 
only captures the items that are checked in the “Data Output” drop down menu (see Figure 2) when initially 
creating the Scenario file (.xml). This step is optional and should only be used when post-processing is not needed. 

Step 1. Open Command Prompt from “omd1.1” folder 

Step 2. Issue the following command: 

manaPP.bat [full path to “Study Name” folder] [name of Experiment Study file] [Summary File Name].csv 5      

 The path of the “Study Name” folder is: C drive → “omd1.1” folder → “studies” folder → “Study 
Name” folder) 

 Summary File Name: For the third input of the command, create a title that the Summary file will be 
called. 

 Ex. manaPP.bat C:\omd1.1\studies\Test10DEC StudyFile.xml TestOutput.csv 5 

 

FIGURE 46. Summary File Script on Command Prompt 

Step 3. Check the “Study Name” folder to see if 
the Summary file has been generated. The screenshot 
below is an example of a Summary file: 

Chapter 

5 

All slashes in Command Prompt must be 
backwards facing 
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FIGURE 47. Summary File on Microsoft Excel 

5.2 Post-Processing Setup 

The following is a checklist that should be completed before post-processing output: 

 Ensure the “Output” folder (Path: C drive → “omd1.1” folder → “studies” 
folder → “Study Name” folder → “Output” folder) includes agtendstates, caslocs, and mdet csv files. 
(See Figure 48) These three files pertain to the options checked under the “Data Output” tab: “Record 
casualty location data,” “Record agent state data,” and “Record multi-contact detection.” 

 

FIGURE 48. Output Folder in the omd1.1 folder 

P R E -

C O N D I T I O N S  

Agtendstates files 

Mdet files 

Caslocs files 
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 Check to ensure your “Study Name” folder (Path: C drive → “omd1.1” folder → “studies” folder → 
“Study Name” folder) has the following files: 

- MANA Scenario file [.xml] 

- Experiment Study file [.xml] 

- Analysis file [.csv]: This is the original DOE matrix created before the Translation and Execution 
files. 

- moes.dat file: copy and paste from the “manaminer” folder (Path: C drive → “omd1.1” folder → 
“tools” folder → “mana” folder → “manaminer” folder) to the “Study Name” folder. 

 
FIGURE 49. Check contents of the “Study Name” folder 

 

 Personalize the moes.dat file (Path: C drive → “omd1.1” folder → “studies” folder → “Study Name” 
folder). The moes.dat file contains all the measures of effectiveness that are of interest. The following is a 
list of MOEs available: 

MOE Description 

TWA_SA Time weighted average of the Blue forces’ situational 
awareness 

TWA_REDKIA Time weighted average of the Red forces killed 

ClassDist  

RedKIA Tracks the number of Red forces killed. 

BlueKIA Tracks the number of Blue forces killed. 

CivKIA Tracks the number of civilians killed. 

IED_Det Tracks the number of IEDs detonated 

ATK_Complete  
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RedKillTime,0.5  

NoHits Tracks the number of hits taken by the Blue force 

IDFCivKill  

NoRounds Tracks the number of rounds expelled 

BLOSDet Tracks the number of beyond line of sight detection for 
the Blue forces 

BlueForceFratricide Tracks fratricide incidents amongst the Blue forces 

AllMultiRunMOEs  

Table 3. Measures of Effectiveness 

 Open the run.manaminer.bat file in the “manaminer” folder (Path: C drive → “omd1.1” folder → 
“tools” folder → “mana” folder → “manaminer” folder) to ensure it is mapped to the 
manaminer.singleDR.R file path, which is also located in the “manaminer” folder. In the example below, 
the path to the manaminer.singleDR.R file is underlined. 
 

 

FIGURE 50. “run.manaminer.bat” file opened in Notepad 

 

 

 

 

For the customized ManaMiner post-processing script to work, the following 
requirements must be met: 

1. R packages must be installed in the R system library. 
2. ManaMiner and R environment variables must be created. 

Find the path to the R System Library 

Step 1. Open “RStudio” 

Step 2. Input the following command in the R console: .libPaths(), as shown in Figure 51. 

M A N A M I N E R  

R E Q U I R E -

M E N T S  

I N S T A L L  “ R ”  

P A C K A G E S  
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FIGURE 51. R Studio Console 

Step 3. Two paths will appear (see Figure 52). The first path is usually the personal library. The second path is 
usually the system library path. 
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FIGURE 52. Example output script from invoking the “.libPaths()” command in R 

 

Install R Packages into the R System Library 

*Note: West Point users require administrative privileges to install packages. 

The following R packages must be installed in the R system library: 

 dplyr 

 reshape2 

 plyr 

 stringr 

 XML 

Step 1. Input the following command in the R console: 

install.packages(c(list of packages),lib=“<path to R system library>”) 

 For the “list of packages” segment of the command, place quotation marks around the package names 
and separate them by a comma.  
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 The “path to R system library” segment should resemble: C:/Program Files/R/R-3.1.1/library 

ex. install.packages(c(“dplyr”,“reshape2”,“plyr”,“stringr”,“XML”),lib=“C:/Program Files/R/R-3.1.1/library”) 

Create manaminer and R environment variables 

*Note: West Point users require administrative privileges to create 
environment variables. 

Step 1. Right click on the Computer icon on your Desktop and click on “Properties.”  
Step 2. In the “Properties” window select the “Advanced System Settings” button on the left column. 

 

FIGURE 53. “Properties” window 

 

 

 

Step 3. In the “System Properties” window select “Advanced” tab and click 
on “Environment Variables…” button given at the bottom of the 
window 

 

E N V I R O N M E N T  

V A R I A B L E S  
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Step 4. Add a new variable by clicking on “New…” button. In the 
New User Variable dialog box type in the following Variable 
names and Variable values and click “OK” 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

a. MANAminer Environment Variable (Figure 56) 

i. Variable name: MANAMINER_HOME 
ii. Variable value: <path to manaminer folder> 

 

 

FIGURE 54. “System Properties” window 

FIGURE 55. “Environment Variables” window 

FIGURE 56. “New System Variable” Window with ManaMiner variable 
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b. R Environment Variable (Figure 57) 

i. Variable name: R_HOME 
ii. Variable value: <path to location of where R is stored> 

 

 

 

Step 5. Edit Path Environment Variable: Locate the Path variable and type in %R_HOME%\bin after 

the existing string. Separate the inputted string from the previous with a “;” (See Figure 58). 

 

 

 

 

 

 

Step 6. Check the “shim-ppsubmit-template.dat” file (Path: C drive → “omd1.1” folder → “tools” folder → 
“mana” folder → “manaminer” folder) to ensure that the “MANAMINER_HOME” environment 
variable is mapped to the correct path and the “executable” line is mapped to the location of the 
“run.manaminer.bat” file (Path: C drive → “omd1.1” folder → “tools” folder → “mana” folder → 
“manaminer” folder). 

 

FIGURE 59. “shim-ppsubmit-template.dat” file on Microsoft Visual Studio 

 

FIGURE 57. “New System Variable” Window with R Environment variable 

FIGURE 58. “Edit System Variable” window 
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5.3 Concurrent Processing of Design Points 

Concurrent Processing relies on two tasks, each run sequentially. The first task, or script (run.manaminer.jobs.R), 
takes the following inputs: Scenario file (.xml), the Analysis file, the “moes.dat” file, and the “shim-ppsubmit-

template.dat” file. The second task or script 
(concat.manaminer.jobs.R), is run after you have completed the first 
task and each post-processing job is complete.  

Step 1. Open the MANAminer directory in Command Window 
(Figure 60) 

Step 2. Invoke the following command (see Figure 61): 

Rscript run.manaminer.jobs.R <full path to “Study Name” folder> <name of your Scenario file> <name 
of your moes.dat file> <name of your Analysis file> shim-ppsubmit-template.dat 

 The path to the “Study Name” folder should resemble: C:/omd1.1/studies/StudyName 

 The “moes.dat” file is located in your “Study Name” folder 

 Ex. Rscript run.manaminer.jobs.R C:\omd1.1\studies\Test10DEC Attack.xml moes.dat 
Analysis.csv shim-ppsubmit-template.dat 

 
FIGURE 61. Example invocation of run.manaminer.jobs.R script 

After that set of post-processing jobs is complete, you will need to run the second script that concatenates all the 
data and merges the DOE with that output. It writes the completed output to a file called "<your "Study Name" 
folder>-allOutput.csv", where it takes the name of your study folder. 

Step 3. Invoke the following command in the MANAminer directory: 

Rscript concat.manaminer.jobs.R <full path to “Study Name” folder> <name of Executable file> 

 Ex. Rscript concat.manaminer.jobs.R C:\omd1.1\studies\Test10DEC Execution.csv 

 

FIGURE 62. Example invocation of “concat.manaminer.jobs.R” script 

 

FIGURE 60. Manaminer command prompt window 
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5.4 Sequential Processing of Design Points 

This is a backup method should the concurrent processing of design points (section 5.3) fail. This script post-
processes each design point in order, and hence, can be really slow for lots of output. It calls the 
manaminer.singleDP.R script for each design point, concatenates the results when complete, and puts the 
concatenated output in your “Study Name” folder, with a file name called "allDP.output.csv". 

Within the manaminer command prompt window, invoke the following command: 

Rscript manaminer.allDP.R <full path to “Study Name” folder> <name of your Scenario file> <name of your 
Executable file> moes.dat 

 
FIGURE 63. Example invocation of “manaminer.allDP.R” script 

 

 

5.5 Contents of Output Folder 

The “Output” folder is located within the “Study Name” folder. The path is as follows: C drive → “omd1.1” 
folder → “studies” folder → “Study Name” folder → “Output” folder 

Within the “Output” folder are several types of files: 

ManaPP-#.out file shows the MOEs and the directory of the output files. 
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FIGURE 36. Example ManaPP-#.out file 

ManaPP-#.err file shows any errors or warnings that were encountered 
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Appendix B: Glossary 

 Analysis File (.csv): The experimental design the analysts will use to perform linear regression after 
appending the output data to it. 

 Design of Experiment (DOE): The field of DOE allows us to efficiently explore a high-dimensional 
tradespace problem in a feasible amount of time. 

 Design Point (DP): An individual row on the executable file (.csv). Each row represents a different set of 
settings to run. We sometimes refer to a DP as an excursion. 

 Excursion: See “Design Point” 

 Executable File (.csv): A Microsoft Excel file where each column is a variable in the design of 
experiment and each row is a design point. The file is uploaded on XStudy to map the variables in the 
design and the elements of a MANA scenario file. 

 Experiment Study File (.xml): This file is created using the XStudy program. It creates the mapping 
between the variables in the design and the elements of a MANA scenario file.  It also specifies version of 
MANA that is being used and the number of random replications to run for each design point. 

 Scenario File (.xml): A MANA file that contains the baseline parameters for all variables that will be 
manipulated in the DOE. It contains all the details for the scenario. 

 Summary File (manaPP.bat): A summary file is created after all simulations in the DOE have been run. 
The file is a compilation of the outputs from every simulation. It concatenates the casualty data, number 
of steps run, and whether or not Blue/Red/Neutral reached their final goal.  

 Translation File (.csv): An intermediary file created in Microsoft Excel that translates the analysis file 
into the executable file. 
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Appendix C: OldMcData Folder Organization Layout 

OldMcData automatically creates folders. Knowing the location and contents of each folder is critical for 
successful cluster runs and efficient data abstraction. 

 

 

Folder Name Description and Contents 

Excursions Contains the MANA .xml files for each individual design point of the 
experiment. 

MANA Contains “condormana.bat” file 

models Contains individual folders of each program that Condor and 
OldMcData will run simulations on 

omd1.1 Contains all folders required and data processed through OldMcData 

Output Contains .err and .log files from Condor, .out files from Command 
Prompt, and output data from MANA.  

playback Did not use folder 

Post processor Did not use folder 

studies Contains individual folders for each study 

Study name Contains the MANA Scenario (.xml) and Executable (.csv) files. 

submit Did not use folder 

tools Contains post processing folder 

mana Contains “manaminer” folder 

manaminer Contains files required for post-processing 

XStudy Contains “xstudy.bat” file 

 

C Drive

omd1.1

models

MANA

Other possible 
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy
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Appendix D: Installing XStudy 

 Requires JAVA versions greater than 6.0 

 Installer places a xstudy.bat file into the directory 

 Install XStudy into the C drive 

 Double-clicking the xstudy.bat file should start the XStudy application 

Appendix E: Downloading Condor 

Download Condor only if completely necessary. The procedure for downloading Condor is complicated because 
Condor requires supplemental programs. If possible, opt to use a master computer that already has Condor 
installed.  

If you do download Condor, ensure you download Cygwin and GoPearl as well. Although you install Condor, 
you will not be able to farm any simulations out to remote computers because they do not recognize your 
computer.  

Appendix F: OldMcData Troubleshooting Options 

If you are unable to farm out to other client machines 

Step 1. Open Command Prompt on the master computer from the “omd1.1” folder 

Step 2. Issue condor_restart -all  

Step 3. In the remote computers, issue the following command: condor_master  

Step 4. In the master computer, press [[control]], [[alt]], and [[delete]] simultaneously. 

Step 5. Select “Start Task Manager” 

Step 6. Click on the “Services” tab and select the “Services” button. 

The following requires administrative 
privileges 
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Step 7. The “Services” window will appear, as shown below: 

 

Step 8. Locate “condor” under the “Name” column and select “Restart.”  
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Step 9. Navigate back to the “Windows Task Manager.” 

Step 10. Check task manager to ensure Condor demons are running in “All Users” folder 

Step 11. Look up start and master log on remote machines 

 

Appendix G: Modifying the “condor_config” file 

The “condor_config” path location is: C drive → “condor” folder  

 The following steps must be taken every time you modify the condor_config file: 

o Open up the “Computer Management” window 

 [[Start menu]] → Right Click on “Computer” → Left Click on “Manage” 

o Stop Condor 

 Double click on “Services and Applications” → “Services” → “Condor” → “Stop” 

o Check to see if Condor is alive by inputting condor_status in Command Prompt. 
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Appendix H: Points of Contact for Additional Help 

Mary McDonald: MANA expert 

Research Associate at SEED (Simulation Experiments & Efficient Designs) Center for Data Farming 
Operations Research Department Naval Postgraduate School 

Email: mlmcdona@nps.edu 

 

Stephen Upton: Data Farming Expert 

Research Associate at SEED (Simulation Experiments & Efficient Designs) Center for Data Farming 
Operations Research Department Naval Postgraduate School 

Email: scupton@nps.edu 

 

John Melendez: SE Department Technical Expert (for USMA DSE only) 

Simulation Warfighter Manager at the Department of Systems Engineering at West Point 

Email: john.melendez@usma.edu 

Business Phone: 845)938-5872 
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Appendix B: Design Creator Front-End User Manual 

 

Note: This user manual is a modified excerpt from the appendix in MacCalman (2013) and refers to 

chapters in this dissertation:   

MacCalman, A. D. 2013. Flexible Space-Filling Designs for Complex System Simulations.  Doctoral 

dissertation. Monterey, CA, Naval Postgraduate School. This dissertation can be found at: 

http://calhoun.nps.edu/bitstream/handle/10945/34701/13Jun_MacCalman_Alexander.pdf?sequence=1. 

Any references to Chapters refer to the dissertation. 
 

 

This appendix is a user manual of the Front-End Tool in the DesignCreator_32bit_Version.xlsm 

and the DesignCreator_64bit_Version.xlsm files used to run a genetic algorithm that creates a design. 

The purpose of the tool is to allow the user to create a custom design, with a specified number of design 

points and number of factors, by type, number of levels with the desired balance, and the model terms 

included in the regression matrix. In addition, the user can start the algorithm with an existing design 

and add columns to it; this allows us to leverage the cataloged 2nd Order NOLH designs that are 

included in the workbook by adding columns to them. Once the algorithm creates the design, there are 

some utilities available that will create a spreadsheet to translate a design, create higher-order terms, 

calculate the maximum absolute pairwise correlation, and create dummy variables for categorical 

factors. 

 The algorithm was written in JavaTM 2 and requires the user to ensure that the Java Platform 

(JDK) is downloaded on their computer; visit the Oracle website at 

http://www.oracle.com/technetwork/java/javase/downloads/index.html to download. You can download 

the tool from the SEED Center website at http://harvest.nps.edu/software.html. Once downloaded, there 

will be two files:  DesignCreator.xlsm (containing the Front-End Tool with utilities) and DOE.jar (the 

executable .jar file written in Java). Ensure that these files are saved to the same folder. If you are on a 

shared network computer we do not recommend that you save the files to the desktop. When opening 

the DesignCreator.xlsm file, the user must enable the macros in order to utilize the buttons throughout 

the workbook. The Front-End Tool will create an input.csv file and a runit.bat file (for Windows 

computers) or runit.txt file (for Macintosh computers) and save them to the same folder; these are the 

files the DOE.jar file needs to execute the algorithm from the Windows computer Command line or the 

Macintosh computer Terminal window. 

 Once the algorithm is complete, the output design will be saved as a .csv file in the same folder 

the DOE.jar file is in. The output file title name will have the number of rows, columns, the 𝜌𝑚𝑎𝑝, 𝑀𝐿2, 

and the initial seed used for the random number generator (see Chapter II for the definition of 𝜌𝑚𝑎𝑝 and 

𝑀𝐿2). In the .csv file, the first four rows will contain the following, respectively:  the factor type, the 

number of levels, the model terms included in the regression matrix, and the factor name, xi, where i is 

the column number. If there are discrete or categorical factors in the design, the last row, separated by 

the word “balance,” will have the factor’s balance metric indicating the spread of the levels across the 

design points; see Chapter VI for the definition of balance. As a general rule, the user should never 

delete or change any of the worksheet names in the DesignCreator.xlsm file. Each section in this 

appendix describes the worksheets in the DesignCreator.xlsm file and provides instructions where 

appropriate. 

 

 

http://calhoun.nps.edu/bitstream/handle/10945/34701/13Jun_MacCalman_Alexander.pdf?sequence=1
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readme 
The readme worksheet provides the purpose of the tool, explains how to create designs and use 

the utilities. In addition, it references literature that pertains to the designs created by the genetic 

algorithm. 

glpl 
The worksheet describes the terms of the GNU Lesser General Public License as published by 

the Free Software Foundation, either version 2.1 of the License or (at your option) any later version. 

This license ensures that the algorithm is distributed in the hope that it will be useful, but WITHOUT 

ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS FOR A 

PARTICULAR PURPOSE. 

Front End 

 
Input Parameter Settings 

The Front End worksheet allows the user to enter the genetic algorithm input parameters. The 

blue-colored cells are the factor entry area used to specify the number of factors, by type, number of 

levels, and the model terms included in the regression matrix for the 𝜌𝑚𝑎𝑝 calculation. The four types of 

factors are:  continuous, discrete, categorical, and binary. For continuous factors, the number of levels 

must be equal to whatever is set as the “Number of Design Points” parameter in the green-colored entry 

area. For categorical and binary factors, only the main (linear) terms can be added to the regression 

matrix (model terms must be set to “M.”) Binary factors can only have the number of levels set to 2. 

Generally, the user should set the highest-order model terms in the first set of rows. The model term 

designations are the following:  M for main effects; MQ for main and quadratic effects; MI for main and 

two-way interactions; and MQI for main, quadratics, and two-way interactions. The model terms order, 

from highest to lowest, are MQI, MI, MQ, and M. The model term designations significantly impact the 

algorithm run time. The Column labeled “Minimum Feasible Imbalance” shows the minimum 

analytically achievable imbalance for all discrete and categorical factors. To see these imbalance values, 

press the “Calculate Balance Feasibility” button.  See the Balance Check worksheet for guidance on the 

number of design points needed to achieve a desired imbalance amount for a given number of levels. 

Figure B1 shows a snapshot of the factor entry area in the Front End worksheet. 
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Figure B1. Factor entry area in the Front End worksheet. 

 

The red-colored cells are the algorithm’s internal input parameters that will not be of interest to 

the general user of the design creator. Chapter IV discusses the experimental designs we performed to 

determine the appropriate input parameter settings for design searches. The user can change these input 

settings, if desired (see Chapter III for the algorithm steps and definitions of input parameters), and can 

restore the default settings by pressing the macro button underneath the red-colored cell area. Changing 

these internal input parameter settings will impact the algorithm’s performance and run-time length; see 

Chapter IV for guidance on the performance and run-time length for different number of design points 

and columns with the default internal parameter settings. For designs that are not difficult to minimize 

the 𝜌𝑚𝑎𝑝, we recommend setting the number of trials (numTrials) equal to 1 in order to speed up the 

algorithm’s run time. 

 The green-colored cells are the input parameters the general users will need to set each time they 

run the algorithm. Because the algorithm is run as a batch file from the Command or Terminal window, 

the user may decide to increase the number of algorithm instantiations that will be executed. Setting the 

“Number of Batch Replications” parameter to greater than 1 will allow the user to send a batch file to a 

computer cluster to perform multiple replications of the algorithm. Because of the stochastic nature of 

the algorithm, we recommend performing multiple replications when searching for efficient designs and 

then selecting the design with the smallest 𝜌𝑚𝑎𝑝. If the user does not intend to send a batch file to a 

computer cluster, he/she can run the algorithm multiple times in separate Command/Terminal windows. 

The “Number of Design Points” parameter is the number of experiments or rows in the desired output 

design matrix. The “Start With Design” boolean parameter lets the algorithm know whether to add the 

desired factors entered in the blue-colored cell area to an existing design located in the Start Design 

worksheet. When the “Start With Design” parameter is set to TRUE, ensure that the “Number of Design 

Points” parameter is set to the same number of rows in the design that is pasted into the Start Design 

worksheet. The “Jiggle Operations” boolean parameter lets the algorithm know whether to perform the 

jiggle operations on the continuous factors (see Chapter III for a description of the jiggle operations). If 

the algorithm starts with an existing design, the jiggle operation will only be performed on the newly 

added continuous columns. The “Show Comments” boolean parameter lets the algorithm know whether 
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to show the comments in the Command/Terminal window during the algorithm’s execution. When 

sending a batch file to a computer cluster, the “Show Comments” parameter should be set to FALSE. 

Figure B2 shows a snapshot of the input parameter entry area in the Front End worksheet. 

 
Figure B2. Input parameter entry area in the Front End worksheet. 

 

Algorithm Execution 

Once the input parameters are set, the steps to execute the algorithm will depend on the type of 

operating system on your computer (Windows or Macintosh). For Windows computers, simply press the 

“Run Algorithm” macro button; each time you press this button, a new Command line window will 

open and run a different instantiation of the algorithm. Macintosh computers must run the algorithm 

from the Terminal window, with the current directory set to the file location where the 

DesignCreator.xlsm and DOE.jar files are saved. The first step is to press the “Create Flat Files” macros 

button. Then, open the Terminal window and change the directory to where the algorithm is saved. At 

the Terminal Command prompt, type the following: 

. ./runit.txt 

To run additional algorithm instantiations simultaneously, open a new Terminal window and repeat the 

above steps. To open the Terminal window from the Finder, the user can go to System Preferences and 

click on “Keyboard,” select the “Keyboard Shortcuts” tab and click “Services” from the left menu; 

scroll down on the right and check the box next to “New Terminal at Folder.”  Setting this preference 

will allow the user to right click on a folder in the Finder and click “New Terminal at Folder” to open 

the Terminal at the desired folder. This preference setting will save the user from having to change the 

directory manually to where the algorithm is located each time you open the Terminal window. 

 When the “Show Comments” parameter is set to TRUE, the comments shown in the Command 

or Terminal window reveal the progress of the algorithm. Figure A3 shows a Command line window 

that searched for a three continuous factor 2nd order design with 20 design points. The algorithm 

performed three exploration trials (numExploreGen = 3) and three jiggle generation passes (jigglePasses 

= 3). The final time shown at the bottom of Figure B3 is in hours. 

Input Parameter Setting Description

Number of Batch Replications 1 The number of command line batch replications written to the batch file.

Number of Design Points 20 The number of rows in the design matrix. Each row designates the factor settings for each experiment.

Start With Design FALSE
TRUE means that the algorithm will add columns to the design that is pasted into the Start Design 

worksheet. FALSE means that the algorithm will create a new design.

Perform Jiggle Operations TRUE
TRUE means that the algorithm will perform the jiggle operation, FALSE means that it will not.  The 

jiggle operation will not be performed on columns in the Start Design worksheet.

Show Comments TRUE
TRUE means that the algorithm comments will be displayed in the command/termainal window. Set to 

FALSE when sending batch files to a high performance computer cluster.

numExploreGen 100 Number of exploration generations.

numExploitGen 200 Number of exploitation generations.

popSize 100 Size of the population of candidate columns.

copyPortion 0.1 Portion of candidate columns copy into the next generation.

halfWidth 0.5 The bounded distance that prevents the jiggle operator for perturbing outside a range.

numJigGen 100 Number of jiggle generations.

numTrials 3
Number of exploration trials each consisting of a set of exploration generations with its own initial 

population of candidate columns.

swapPortion 0.2 Portion of design points swapped during a swap operation.

poolSize 100 Size of the pool that contains a set of candidate columns. 

genExitCriteria 20 Number of generations performed without improvement of the fitness function.

jigglePortion 0.2 Portion of design point jiggled during a jiggle operation.

colAttempts 3
Number of attempts to find a column with a new initial population of solutions if an attempt did not 

meet the maximum correlation threshold.

jigglePasses 3 Number of times the jiggle operator is performed on the columns.

corrThreshold 0.05
The maximum correlation a column threshold must be before added to the design.  The algorithm will 

continue to find a column to add to the design for a set number of attempts (colAttempts ).
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Figure B3. Command line window during the algorithm execution. 

 

Balance Check 
 This worksheet calculates the minimum analytically achievable imbalance for a given number of 

discrete or categorical factor levels.  Use this worksheet to help decide how many design points you 

need to ensure the design's imbalance is minimized.  The algorithms will attempt to find discrete or 

categorical factors with an imbalance < 0.1.  After 50 attempts, if the algorithm did not find a column, 

then it will return the column with the lowest imbalance.  There are some design point and level 

combinations that cannot achieve a 0.1 balance.  This worksheet will help guide which design points are 

feasible for a given number of factor levels. 

Cataloged Designs 
This worksheet has hyperlinks that will navigate the user to other worksheets that contain the 

cataloged 2nd Order NOLH design. Once there, the user can press the macro button to automatically 

copy the design into the Start Design worksheet. We recommend using these cataloged designs for up to 

12 continuous factors when you can afford to perform the number of experiments needed for each 

design. When the user desires to add discrete factors to a set of continuous factors (up to 12), with the 

model terms set to “MQI” (for a full second-order model), we recommend copying a cataloged design to 

the Start Design worksheet and then deleting two continuous columns for every one discrete factor (this 

is only a rule of thumb). Adding additional columns (of any type) to the cataloged designs, with the 

model terms set to “M” or “MQ” do not require that you delete continuous columns. 
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Start Design 
If the user desires to add additional columns to an existing design, paste the design into this 

worksheet and set the “Start Design” parameter to TRUE in the Front End worksheet. The first row 

designates the factor type. Ensure one of the following text entries is in each column in the first row:  

continuous, discrete, binary, or categorical. Specify the number of levels for the factor in the second 

row. For continuous factors, the algorithm does not care what is entered because the number of levels 

for a continuous factor is always the number of design points. The third row contains the model terms 

(M, MI, MQ, and MQI). These entries have no impact to the algorithm. The fourth row is reserved for 

the factor name. Ensure that the design (with the first four rows) is pasted into cell B1. 

Coded Design 
Paste a design with the first four row entries as indicated in the Start Design worksheet 

instructions into cell B1. If there are discrete or categorical factors in the original .csv output file, be 

sure not to paste the word “balance” and the balance metric into this worksheet. Also, avoid pasting 

empty cells that may get highlighted after selecting the current region in the .csv output file. Press the 

“Create Translation Worksheet” macro button to create a formula worksheet that will allow the user to 

translate the coded design point levels to the factors range desired for the experiments. To calculate the 

𝑀𝐿2 and 𝜌𝑚𝑎𝑝 metrics, press the “Insert Design into Design Tools Worksheet” macro button. If the 

design has categorical factors and the user wants to examine the first-order correlations of the design 

with the categorical dummy variables, press the “Insert Design into Categorical Design Worksheet.” 

Translated Design 
After pressing the “Create Translation Design” macro button in the Coded Design worksheet, the 

macro will insert the formulas into the cells that will allow the user to translate the design to the desire 

factor ranges. The blue-colored cells are copies of the first three rows from the Coded Design worksheet 

(factor type, number of levels, and model terms). For continuous factors, enter the low and high setting 

for each factor. Users have the option to round the continuous factor to a discrete factor; however, we do 

not recommend doing this. Rounding a continuous factor is an old technique to create discrete factors 

but can severely impact the 𝜌𝑚𝑎𝑝 of the original design (especially the 2nd Order 𝜌𝑚𝑎𝑝). We should not 

have to round a continuous factor anymore because our algorithm is capable of creating designs with 

discrete factors for a specified number of levels. If the factor column is discrete, the sixth row allows the 

user to scale the column instead of rounding. Scaling a discrete factor to a number greater than 1 will 

spread the discrete levels over a wider range of values. If the factor type is either discrete or categorical, 

the high level will be protected and will add the number of levels to the  

low-level setting. The yellow-colored cells are protected to ensure the user does not change the 

translation formulas. After establishing the low and high levels and naming the factors, the user can 

copy and paste special values the translated design into another spreadsheet for their experiment. 

Design Tools 
After pressing the “Insert Design into Design Tools Worksheet” macro button in the Coded 

Design worksheet, the design will appear (with the factor names only in the first row) in cell B1. The 

available macro buttons allow the user to calculate the 𝑀𝐿2  space-filling metric; center the design by 

subtracting the mean; create the quadratic terms; the second-, third-, and fourth-order terms; calculate 

the 𝜌𝑚𝑎𝑝, and calculate the distribution of all absolute pairwise correlations. Before you create the 

higher-order terms, you must ensure that you center the design first; otherwise, the main factors will be 

highly correlated with its own quadratic. Be sure to only press the higher-order macros button once; 

otherwise, the macro will expand out the terms with whatever is currently in the worksheet. Delete the 
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high-order terms in the worksheet if you desire to recreate a different set of higher-order terms. When 

the user presses the “Collect and Sort Abs Corr Distribution” macro button, the distribution of all 

absolute pairwise correlations of whatever design is currently in the worksheet will get pasted and 

sorted into the Abs Corr Distro worksheet. 

Abs Corr Distro 
After pressing the “Collect and Sort Abs Corr Distribution” macro button, the absolute pairwise 

correlation distribution will get pasted and sorted into this worksheet. 

Categorical Design 
After pressing the “Insert Design into Categorical Design Worksheet” macro button in the 

Coded Design worksheet, the design will appear in cell B1. From here, the user can designate the 

dummy variable convention before creating the dummy variables (see Chapter VI for a description of 

the different dummy variable conventions). After pressing the “Create Dummies” macro button, a new 

design will get pasted into the Dummy Variables worksheet with all the categorical factors converted 

into the set of dummy variables determined by the number of levels. 

 

Dummy Variables 
This worksheet will contain the design with dummy variables after pressing the “Create 

Dummies” macro button in the Categorical Design worksheet. Pressing the “Find First-Order 

Correlation Distro with Dummy Variables” macro button will paste and sort the absolute pairwise 

correlation distribution into the Abs Dummy Corr Distro worksheet. 
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Appendix C: JMP Dashboard Building Instructions 

 

The appendix outlines the details on how to use and build the dashboard in JMP.  The first section provides a 
brief introduction to the dashboard and how it is used. The second section walks through each step needed to 
build the dashboard. There are two videos that accompany these instructions split into two parts. Below are the 
links to each part; if prompted for a password, use “dashboard.” 
Part 1 
http://adsurgo.adobeconnect.com/p5a1vt8zd7f/ 
Part 2 
http://adsurgo.adobeconnect.com/p857bf84cxe/ 
 

Dashboard Introduction 
1. Run the application (use the correct data table with the added columns). This example uses the file 

MeanATK_Samplev4_expanded_formulas.jmp 

2. The dashboard appears in three windows: factor settings, contour dashboard, and prediction profiler 

dashboard. 
 

Expand the column formulas to depend on all of the inputs 

1. Open the source JMP data table. In this example, we use MeanATK_Sample4.jmp. 

2. Right click on a new column header (at the far-right side of the data table) and click New Column. 

 

3. Enter “zero.coef” for the name and click OK. 

4. Right click on column header “zero. coef” and click on Formula to open the formula editor for column 

zero.coef. 

5. Click the “no formula” box and type 0*sum(). 

6. Press Enter 

http://adsurgo.adobeconnect.com/p5a1vt8zd7f/
http://adsurgo.adobeconnect.com/p857bf84cxe/
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7. Click on the box inside the parenthesis in order to enter arguments to Sum. 

8. Select all of the table columns that are used as predictors. In the “Table Columns” pane, click and 

release SensorDetectRNG. Scroll down, hold Shift and click RadioDelay. This will also include all of the 

columns that lie in-between. 

 

9. Click OK. 

10. Open and run “add zero coef.jsl”. This script will add the newly created formula to the formulas of the 

continuous columns. This will allow the contour profilers to display correctly, since the contour profiler 

axes can only use factors upon which at least one of the responses depends. Note: Make sure that 

MeanATK_Samplev4 is the current data table before running this script (it will be as long as it is the only 

table open, or if it the last table you were working with). 
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11. You can verify that the script worked by looking at one of the formulas of the response columns. For 

example, click the  sign next to Awareness in the Columns pane on the left side of the data table 

window to view the formula. 

 
We can see that the 0*Sum() value was indeed added to this formula. 

 

12. Close the open formula editor from the previous step. 

13. Save the JMP file as “MeanATK_SampleV4_expanded_formulas.jmp”. 
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Build the Contour Profiler Dashboard 

1. Create a Contour profiler using any one of the responses that will be used for its factor setting sliders. 

Here, we will use the Awareness column. Select Graph > Contour Profiler (from the top JMP menu bar).  

 

2. Select Awareness. 

3.  Click Y, Prediction Formula. 

 

4. Click OK. 



 

 178 

 

5. Double click the “Contour Profiler” option box title and change the name to “Factor Settings.” 

 

 

6. Click the red triangle that appears next to Factor Settings in order to select the following options. Leave 

the other options in the Factor Settings menu as they are if they are not mentioned here. 

a. Select Factor Settings > Link Profilers 
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b. De-select Surface Plot. 

c. De-select Arrange X-controls left (may already be de-selected). 

d. Select Hide Y Controls 

The contour plot (the graph at the bottom of the window) is removed with a line of code inserted at a later step. Only the factor setting sliders from 
this particular window are needed.  

 

In order to see which area in the display contains the unnecessary graph, right-click the grey triangle 

next to Factor Settings and select Edit > Show Tree Structure. 
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Hovering the mouse over ListBox(4) reveals that this is the name of the graph that needs to be deleted 

(leaving only the factor settings that appear above the graph). This is already hard-coded below, and 

nothing needs to be done here. The purpose of this step is to explain why ListBox(4) appears in the code 

below. 

 

7. Close the “Show Tree Structure” window, but leave the contour profiler window open.  The contour 

profiler must remain open in order to add it to the application builder later. 

Next, create Contour Profiles for each of the groups of responses (survivability, lethality, casualties, and weight). The groups that the manual uses for the 
MeanATK data set are defined in the next step. Three of these groups consist of a single response, while three responses are grouped in the Weight group. 
When developing a dashboard for your own application, you may place the responses into as many or as few groups as you think makes sense. At one 
extreme, you could produce a contour profiler for each response, making each response its own group. At the other extreme, you could place all of the 
responses into a single contour profiler. However, placing all of the responses in a single profiler will make it more difficult to see how changes in the factor 
settings impact the responses. Going forward, the manual will make use of the four groups defined in the next step: if you change the number of groups, 
there are a few places in the JSL code embedded later in the manual where you will need to change the upper index of a “for-loop” from 4 to the number of 
contour profilers you have chosen: these instances are highlighted. 

8. In this data table, there are 4 different groups we will use. Note that 3 of these groups contain only a 

single response. Also note that the different Cost columns and the Desirability column are not currently 

used anywhere in this manual. 

a. Awareness 

i. Awareness. 

b. Lethality 

i. Lethality 

c. Casualties 

i. Casualties 

d. Weight 

i. Sensory Weight 

ii. Rifle Weight 

iii. Radio Weight 

9. Click Graph > Contour Profiler. 

10. Select Awareness for Y, Prediction Formula. We already used Awareness for the previous contour 

profiler we built: that was in order to harvest the factor settings sliders. We will leave that existing 
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profiler open, and will format this new one in a different way. From the new window we create here, we 

will be using the contour plot in the dashboard. See the next two screenshots. 

 
Figure 1 Screenshot from final dashboard. These factor settings were produced from the first Awareness Contour Profiler. 

 
Figure 2 Screenshot from final dashboard. This plot was produced from the second Awareness Contour Profiler. 

11. Click OK.  

12. Click the red triangle next to Contour Profiler and 

a. Select Hide X Controls 

b. De-select Surface Plot 
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13. Double click the Contour Profiler option box title, and rename it to the group name, “Awareness”. 

 

14. Leave this contour profiler open in the background. 

15. Click Graph > Contour Profiler. 

16. Select Lethality for Y, Prediction Formula. 

17. Click OK.  

18. Click the red triangle next to Contour Profiler and 

c. Select Hide X Controls 

d. De-select Surface Plot 

19. Double click the Contour Profiler option box title, and rename it to the group name, “Lethality”. 
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20. Leave this contour profiler open in the background. 

21. Click Graph > Contour Profiler. 

22. Select Casualties for Y, Prediction Formula. 

23. Click OK.  

24. Click the red triangle next to Contour Profiler and 

e. Select Hide X Controls 

f. De-select Surface Plot 

25. Double click the Contour Profiler option box title, and rename it to the group name, “Casualties”. 

 

26. Leave this contour profiler open in the background. 

27. Click Graph > Contour Profiler. 

28. Select Sensory Weight, Rifle Weight, and Radio Weight for Y, Prediction Formula. 
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29. Click OK.  

30. Click the red triangle next to Contour Profiler and 

g. Select Hide X Controls 

h. De-select Surface Plot 

31. Double click the Contour Profiler option box title, and rename it to the group name, “Weight”. 

32. Leave this contour profiler open in the background. 

 
We will now begin to create the dashboard (in JMP, called and Application) and pull all of these contour profilers into the dashboard. 

33. Select File > New > Application (from the top JMP menu bar, which may be hidden until the mouse 

scrolls over it) to open the application builder. 
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34. Click the “Add Module” tab (the icon next to “Module 1” in the top-middle of the screen) twice to 

create Module2 and Module3. 

 

 

35. Select Module1 from the Objects pane (which is located at the top right of the Application Builder 

window, see the screenshots below.) and change its Title to Factor Settings (in the properties pane on 

the bottom right of the Application Builder window, see the following screenshots). Note: the Objects 

Pane shows a hierarchical tree of all of the objects included in the Application Builder (dashboard). You 

can click on the objects here to select them or right-click on them to modify them (adding parent 

container objects, etc). In a couple cases later in this manual, it is easier to select some of the objects of 

interest in the Objects pane rather than in the center pane of the Application Builder (under the Module 
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tabs) due to a GUI (graphical user interface) limitation of JMP in the center pane. These later cases 

include explicit instructions to use the Objects pane. 

 

 

          



 

 187 

36. Likewise, select Module2 from the Objects pane and change its Title to Contour Dashboard in the 

Properties Pane. 

37. Likewise, select Module3 from the Objects pane and change its Title to Profiler Dashboard in the 

Properties Pane. 

38. Select the Factor Settings tab (which is still titled Module1. Note that throughout the instructions, these 

tabs are still labeled Module1, Module2, and Model3. These values are set in the Properties pane after 

selecting one of the Module tabs. Step 35 of this section changes the Titles of the modules, not the 

Variable Names. The titles are what appear in the window title bar at the top of the screen when the 

module opens, and the variable name is the keyword the JSL code uses to reference the module. While 

it makes sense in future applications to assign the modules more specific names, the manual keeps their 

default variable names throughout, so it's important to keep them as they are). 

 

39. Drag a V list Box to the top left corner of Module1 (the Factor Settings module). (Just place it in Module 

1, right-click and select Move to Corner). 
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40. Drag the profiler with the factor settings into the V List Box. This will be the bottom Contour Profiler 

listed in the Reports pane of the Application Builder (see the screenshot below). The Contour Profilers 

are shown from newest created to oldest created. 
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41. You may then close the original Contour Profiler window containing the factor settings. Doing so will 

remove it from the Reports Pane in the Application Builder as well (but it will leave the copy that you 

dragged into Module 1 there), meaning you can just work your way up from the bottom of the Reports 

pane in the following steps. Be careful to close the correct window. 

 

42. Click and drag a “Button Box” (from the left side of the Application Builder) to the top side of the V List 

Box containing created earlier. You will see a blue line when dragging the Button Box to show where it 

will be placed. 
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43. Click the Button1 box and change its Title in the Properties Pane to “Update Factors.”  

 

 
 

44. Select the Scripts tab (next to the Module1 tab, which contains the factor settings). 
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45. Below the existing code in this area, enter the code. When copying code from this manual to JMP, be 

careful to check if the code block continues onto the next page. The highlighted code blocks are 

pieces of code that need to be changed if you build the dashboard using a different data table. If re-

building the dashboard for the MeanATKSamplev4 data set, nothing needs to be changed. 

Report1[ListBox(4)]<<delete; 

factor.settings.profiler<<Link Profilers( 1 ); 

factor.group.label={"Sensory","",”Weapon”,”Como”}; 

Report1[string col box(1)]<<sib prepend(string col 

box("Group",factor.group.label),horizontal); 

mat.min=[]; 

mat.max=[]; 

factor.names=Report1[string col box(2)]<<get; 

for (i=1,i<=n items (factor.names),i++, 

 Eval(eval expr(mat.min=v concat(mat.min,round(col 

min(column(Expr(factor.names[i]))),3)))); 

 Eval(eval expr(mat.max=v concat(mat.max,round(col 

max(column(Expr(factor.names[i]))),3)))); 

); 

Report1[number col edit box(1)]<<sib prepend(Number Col Box( 

"Min",mat.min),horizontal); 

Report1[number col edit box(1)]<<sib append( Number Col Box( 

"Max",mat.max),horizontal); 

 

 

The first line deletes the graph whenever the script runs. The second line ensures that all of the profilers 
are linked. In the next step, we will manually assign references to the profilers (such as 
factor.settings.profiler, used above).Note how the factor.group.label list is manually constructed by first 
examining the factor list in the contour dashboard. This could be automated somewhat by extracting 
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the group name for each factor; however, this manual method allows us to only indicate the first 
column in each group, making the table a bit less cluttered. 

 

46. Save your current progress. Recommendation: as you build the dashboard, save a new file each time. In 

case you make a mistake in a later step that you cannot retrace, you will not lose all of your work. 

47. Select DataTable1 from the objects pane. In the Properties pane, change the selection for Location from 

Current Data Table to Prompt. 
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48. Drag a Lineup Box into Module 2. . Right-click the new lineup box and select Move 

to Corner. 

 

49. Drag the rest of the open contour profilers from the Reports Pane into the lineup box. Put them in a 

single row across the screen. We will change the underlying code to make them appear in a 2x2 grid. 

(You can also create a 2x2 grid of contour profilers by clicking and dragging a report to the bottom side 

of the lineup box. However, the sequence we follow makes things more manageable when building 

larger dashboards). 
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50. Close all of the open Contour Profiler windows (you can either close them one at a time after adding 
them to the Application Builder, or all at once afterward). 

51. Click the red triangle next to Application Builder, hover over “Script”, and select Save Script to Script 
Window. (Make sure you don’t already have an open Script Window first). This script contains the 
commands to open an Application Builder with the reports and settings we have added. The following 
steps insert references to the contour profilers.  
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In order to make the code more readable, right click in the Script Window and select Reformat Script. 
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52. Scroll through the code of the Module1 area 

 
The report of the factor settings profiler is named Report1 since it was the first (and only) report added 
to Module1. WARNING: each module will have its own Report1, Report2, etc. Make sure you are in the 
correct module. 

53. Next to the first instance of “Contour Profiler” under Report1 (in Module1), type 
“factor.settings.profiler=”. 
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Make sure that you have applied the factor.settings.profiler name to the first instance of “Contour 

Profiler(“, not the second instance that appears two lines later. 

In the Module2 area of the script tab, reports 1 through 4 contain the contour profilers that are visible 
in the Lineup Box. The following steps add a reference to these contour profilers so that we can extract 
the factor selections from the profiler in Report1 (in Module1) and then send them to the other 
profilers. 

 

54. Each of the profilers in Module 2 need to be named “::profiler#”, with # replaced by the corresponding 
report number. For example, scroll to the next report in the code (in this case, Report4) and name the 
Contour Profiler “::profiler4”. The “::” indicates that the variable should be scoped globally, making it 
available to other modules. 
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55. Scroll through the code until you find  

 
56. The Lineup1 << N Col(4) commands control the number of columns in the lineup boxes. To make the 

Contour Plots appear in two columns, change the 4 to a 2. 

 
 

57. After naming each of the profilers and updating the width of the Lineup Box, click the Run Script button 
to bring up a new application builder. It will look the same as before, but now contains the references 
that we just built in.  
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58. After clicking run and opening a new Application Builder, close the Script Window without saving. 
59. Save the new application builder as a new file (e.g. Dashboard_pt2). 
60. Close the original Application Builder window (not the new one that you just opened). 
61. Navigate to the Scripts tab of the Application Builder for Module 2 and paste the following code to the 

bottom of the script. The highlighted value of 4 would need to be changed when building the dashboard 

for different data sets. 
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//loop over the contour profilers 1 to 4 

//set the hi and lo limits to the response column max/min 

For( j = 1, j <= 4, j++, 

 Eval( Eval Expr( report.names = Expr( Parse( "Report" || Char( j ) ) )[String 

Col Box( 1 )] << get ) ); 

 Eval( Eval Expr( r2.ncb.lower = Expr( Parse( "Report" || Char( j ) ) )[Number 

Col Edit Box( 2 )] << get as matrix ) ); 

 Eval( Eval Expr( r2.ncb.upper = Expr( Parse( "Report" || Char( j ) ) )[Number 

Col Edit Box( 3 )] << get as matrix ) ); 

 For( i = 1, i <= N Items( report.names ), i++, 

   r2.ncb.lower[i] = Eval(eval expr(round(col 

min(column(Expr(report.names[i]))),3))); 

   r2.ncb.upper[i] = Eval(eval expr(round(col 

max(column(Expr(report.names[i]))),3))); 

 ); 

 //update the hi and low limits in the contour profilers 

 //make sure to use "set values" and not "set" 

 Eval( Eval Expr( Expr( Parse( "Report" || Char( j ) ) )[Number Col Edit Box( 

2 )] << set values( r2.ncb.lower ) ) ); 

 Eval( Eval Expr( Expr( Parse( "Report" || Char( j ) ) )[Number Col Edit Box( 

3 )] << set values( r2.ncb.upper ) ) ); 

); 

//delete contours 

mat=[.]; 

for(j=2,j<=1000,j++, 

 mat=v concat(mat,[.]); 

); 

 

//clear the contours from the profilers 

//and delete the top "Profiler" (grey) outline boxes 

for(i=1,i<=4,i++, 

Eval( Eval Expr( Expr( Parse( "Report" || Char( i )))[Number Col Edit Box( 1 )] << 

set values( mat)))); 

 

62. Click the Module 1 tab. (The application cannot be launched from the Scripts tab). 

63. Run the script to verify that the modules open correctly and that there have been no errors to this 

point. 

 

64. After clicking Run Script, a prompt will appear asking which data table to use. Select 

MeanATK_SampleV4_expanded_formuas, click the button labeled 

MeanATK_SampleV4_expanded_formuas, and click OK. 



 

 203 

 
The following 3 windows should open. 
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65. Close the 3 new windows that appeared, and return to the Application Builder. 
66. Return to Module 1. 
67. Click on the Update Factors button to select it. 

 

68. Click the Press edit area (for the Update Factors button) to enter a script that will be run when the 

button is pressed. Note: click the grey button  to paste in the script. If you paste it into the white 
text box next to that button, it will only save the last line of the script. 
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69. Enter the following script 
 
horiz=Report1[RadioBox(1)]<<get ; 

vert=Report1[RadioBox(2)]<<get ; 

var.list=Report1[StringColBox(2)]<<get ; 

print(var.list[horiz]); 

print(var.list[vert]); 

for(i=1, i<=4,i++, 

Eval(Eval Expr(Expr(parse("profiler"||char(i)))<<Horizontal Factor( 

Expr(var.list[horiz])))); 

Eval(Eval Expr(Expr(parse("profiler"||char(i)))<<Vertical Factor( 

Expr(var.list[vert])))); 

); 

 

The upper value of the loop (i<=4) should be set to the number of reports in the Contour Profiler. 
RadioBox(1) contains the selection for the horizontal factor in Report1 (this can be found using the tree 
structure as shown above).  

 

70. Click OK. 
71. Click the Run Script button to run the dashboard again. The Update Factors button should now 

broadcast the factor selections to all of the profilers. 
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a. For example, select RifleRNG for Horiz in the Factor settings window. 

 
b. Click the Update Factors button. 

 
c. Notice how the x-axis in the Contour Profilers in the Contour Dashboard window has been 

changed to RifleRNG 

 
72. Save the application (preferably as a new file). Saving with a .jmpappsource extension will save the 

Application Builder in its current state, allowing it to be edited later. Saving with a .jmpapp extension 
will create a file that brings up the dashboard immediately when run. 

Profiler Dashboard 

1. Navigate to Module3 in the Application Builder. 
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2. From the JMP menu, select Graph > Profiler.  

3. Select all of the responses (columns Awareness through Radio Weight) for Y, Prediction Formula. 

4. Click OK. 
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5. Click the red triangle next to Prediction Profiler and ensure that Desirability Functions is selected.  

 

6. Click the red triangle next to Prediction Profiler and select Assess Variable Importance > Independent 

Uniform Inputs. Click “Accept Current Indices” when the button appears (do not need to let it run to 

completion). 

7.  
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8. Click the red triangle next to Variable Importance: Independent Uniform Inputs and select Reorder 

factors by total importance.  

 

9. Click the red triangle next to Prediction Profiler and de-select Assess Variable Importance > 

Independent Uniform Inputs. This will keep new factor ordering without requiring the simulation to be 

run each time the dashboard is run. 
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10. Click the red triangle next to Profiler and select Custom Profiler. 

 

11. Right-click they grey triangle next to Custom Profiler and select Edit > Show Tree Structure. 
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12. The Custom Profiler display area is named “Custom Profiler”. We will use this later on to extract this 

part of the dashboard display. 

 

13. By hovering the mouse over parts of the tree structure, we can highlight corresponding display boxes in 

the Profiler to see that the column of response names resides in StringColBox(2). We will later use the 

fact that this is the second StringColBox in the Custom Profiler display box to extract the response 

column names. 

 

14. Click the red triangle next to Profiler and de-select Custom Profiler. 
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15. Return to the application builder and drag the newly created profiler into Module 3. 

16. Right-click the profiler and select Move to Corner. 

17. Close the open Profiler window after importing it into the Application Window. Also close the Display 

Tree window that was created. 

 
Next, the Application Builder source code is modified to insert references to the profiler we added. (We cannot simply reference, .e.g, Report1, since this object 
refers to the display window that contains the profiler). 

18. If you still have a JMP scripting file named Script Window open, close it. 

19. Click the red triangle next to Application Builder and select Script  >  Save Script to Script Window. 
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20. Right-click in the Script Window and select Reformat Script. 

21. Scroll down to the definition of Report1 in Module3 (Warning: Make sure you don’t modify Report1 of 

Module1 or Module2). 

 

22. Add “pred.prof1=” to name the profiler object in Report1 as shown below. 
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Make sure that this name applies to the first instance of “Profiler(“, and not the one that appears two lines below it. 

23. Click the Run button to reopen the application builder with the new references built in. You may close 

the previous instance of the application builder, and save the new Application Builder (as a new file, to 

be safe). 

 

24. Close the “Script Window”. 

25. Close the old Application Builder window (not the one that was just created). 

26. In Module3 (the prediction profiler), right-click on Report1 in the objects pane and select Add Container 

> H List Box. 

 

 

27. Drag a V List Box (from the left panel of the Application Builder window) into the new H List Box to the 

left of the profiler 
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28. Drag three Text Boxes (from the left panel of the Application Builder window) into the new V List Box 

and fill them out as shown after setting both Width and Wrap to 200 for each of the boxes in the 

Properties Pane (on the bottom right of the Application Builder window). 
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Enter the following text in the Text area of the properties pane. Selecting the Bullet box in the Properties pane creates a bullet. 
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29. Drag a Table Box into the V List Box under the Text Boxes. 

 

 

30. Insert a String Col Box, a Number Col Edit Box, a Number Col Box, and a String Col Edit Box into Table1 

(the newly created Table Box). 



 

 218 

 

31. Click on the StringCol1 box. 

32. In the Properties pane for StringCol1, change the Title to Response and remove the items a and b from 

the list by selecting them and clicking the minus button. 

 

 

33. Click the NumberEditCol1 box. 
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34. In the Properties pane for NumberEditCol1, change the Title to Weight and remove the items 1 and 2 

from the list. 

 

35. Click on the NumberCol1 box.  

36. In the Properties pane for NumberCol1, change the Title to Proportion and remove the items 1 and 2 

from the list.  

37. Set Variable Name to weight.prop. 

 

38. Click on the StringEditCol1 box. 

39. In the Properties Pane for StringEditCol1, change the Title to Goal and remove the items a and b from 

the list. 

 

40. Click on the Scripts tab and select Module3 to add code that will be run when the dashboard is first 

opened. 
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41. Enter the following code below the existing code and comments. This is the point at which we use the 

fact that the response names are contained in String Col Box (2) of the custom profiler (found in an 

earlier step). 
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//Link the factor settings across profilers 

pred.prof1 << Link Profilers(1); 

 

//extract the response names from the Custom Profiler 

pred.prof1<< custom profiler( 1 ); 

domain1.resp = Report(pred.prof1)["Custom Profiler"][String Col Box( 2 )] << get; 

pred.prof1<< custom profiler( 0 ); 

//Grab the list of response names from the custom profiler 

 

domain1.num = N Items( domain1.resp ); 

//Initially give equal weight to each response 

//And set the default goal to max 

For( i = 1, i <= domain1.num, i++, 

 NumberEditCol1 << add element( 1); 

 weight.prop<<add element(1/domain1.num); 

if(contains(char(Column(domain1.resp[i])<<get property("Response 

Limits")),"Minimize")==0, 

 StringEditCol1 << add element("max"), 

 StringEditCol1 << add element("min"); 

); 

); 

//record the current weights 

NEC1.current = NumberEditCol1 << get; 

//pouplate the response names 

StringCol1 << set( domain1.resp ); 

//records whether the Simulate button has been pressed 

sim.indicator=0; 

//resize the prediction profiler graphs and 
//set the response labels to horizontal 
pred.prof1<<Dispatch( {"Prediction Profiler"}, "Profiler", FrameBox( 1 ), {Frame Size( 35, 
24 )} ); 
for(i=1, i<=domain1.num, i++, 
 Eval(Eval Expr(pred.prof1<<Dispatch({"Prediction 
Profiler"},Expr(domain1.resp[i]),TextEditBox,{Rotate Text( "Horizontal" ), Set Wrap( 130 
)}))); 
); 
Function( {this, which}, 

 changed.value = StringEditCol1 << Get( which ); 

 window = Expr( 

  New Window( "Error", 

   <<Modal, 

   Text Box( "Goal should be one of {max, min, middle}" ), 

   Button Box( "OK" ) 

  ) 

 ); 

 If( 

  changed.value != "max" & changed.value != "min" & changed.value 

   != "middle", 

  Eval( window ); 

  Stop(); 

 ); 

 //update the desirability functions 

 //set.des1 is a button that will be created 

 set.des1 << click(); 

); 
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42. Return to the Module3 tab. 

43. Select the StringEditCol box titled Goal. For some reason, this is difficult to do. You may need to just 

select StringEditCol1from the Objects pane on the top right of the Application Builder window. 
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44. Add a Button Box below the Text Boxes in Module 3. This button will contain the code for maximizing 

the desirability function.  

 

45. In the properties pane, set the Variable Name of the box to set.des1  

46. Set the title to Set Desirability Functions. 
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47. Enter the following in the Press area of the Properties pane for the set.des1 button. Note: click the grey 

button  to paste in the script. If you paste it into the white text box next to that button, it will only 

save the last line of the script. 

 

names = StringCol1 << get; 

upper.lim = {}; 

lower.lim = {}; 

For( i = 1, i <= N Items( names ), i++, 

 lower.lim = Insert( lower.lim, 0 ); 

 upper.lim = Insert( upper.lim, 0 ); 

); 

 

//loop over the contour profilers 1 through 4  

//get the hi and lo limits and the corresponding response names from each Report 

For( j = 1, j <= 4, j++, 

 Eval( Eval Expr( report.names = Expr( Parse( "report(profiler" || Char( j ) 

|| ")" ) )[String Col Box( 1 )] << get ) ); 

 Eval( 

  Eval Expr( 

   r2.ncb.lower = Expr( Parse( "report(profiler" || Char( j ) || ")" 

) )[Number Col Edit Box( 2 )] << get as matrix 

  ) 

 ); 

 Eval( 

  Eval Expr( 

   r2.ncb.upper = Expr( Parse( "report(profiler" || Char( j ) || ")" 

) )[Number Col Edit Box( 3 )] << get as matrix 

  ) 

 ); 

 For( i = 1, i <= N Items( names ), i++, 

  Eval( Eval Expr( loc = Contains( report.names, Expr(names[i] ) ) ) ); 

  //when a match is found, the data filter is updated 

  //the appropriate command for the data filter depends on whether there 

are missing values 

  //for the Hi or Lo Limits in the contour profiler.  

  //Note: due to lack of readability of if-then statements in JMP, the 

three conditions are 

  //listed separately in three if-statements 
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  If( loc > 0, 

   lower.lim[i] = r2.ncb.lower[loc]; 

   upper.lim[i] = r2.ncb.upper[loc]; 

  ); 

  

 ); 

 

 

); 

 

For( i = 1, i <= N Items( StringCol1 << get ), i++, 

 var.name = StringCol1 << get( i ); 

 max = upper.lim[i]; 

 min = lower.lim[i]; 

 delta = 1e-6; 

 goal = StringEditCol1 << get( i ); 

 If( goal == "max", 

  Eval( 

   Eval Expr( 

    pred.prof1 << (Expr( var.name ) << Response Limits( 

     {Lower( min, 0.1 ), Middle( max, 1 ), Upper( max + 

delta, 0.1 )} 

    )) 

   ) 

  ) 

 ); 

 If( goal == "min", 

  Eval( 

   Eval Expr( 

    pred.prof1 << (Expr( var.name ) << Response Limits( 

     {Lower( min - delta, 0.1 ), Middle( min, 1 ), Upper( 

max, 0.1 )} 

    )) 

   ) 

  ) 

 ); 

 If( goal == "middle", 

  Eval( 

   Eval Expr( 

    pred.prof1 << (Expr( var.name ) << Response Limits( 

     {Lower( min, 0.1 ), Middle( (min + max) / 2, 1 ), 

Upper( max, 0.1 )} 

    )) 

   ) 

  ) 

 ); 

); 

Report1[PictureBox(1)]<<reshow; 

 

48. Insert a Text Box below the Set Desirability Functions button.  
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49. Set the width and wrap of the new Text Box to 150 in the Properties pane, and set the text to “Goal may 

be set to one of {min, max, middle}” 

 

 

50. Select the Weight column. Again, this may be easier to do by selecting NumberEditCol1 from the Objects 

pane at the top right of the Application Builder.  
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51. In the Script area (in the properties pane for Weight), click the grey button to enter the following code 

that will automatically run whenever the weights are changed. 

 Print( input.values = NumberEditCol1 << Get() ); 

 Print( "Old Values" ); 

 Print( old.values = NEC1.current ); 

 window = Expr( 

  New Window( "Error", 

   <<Modal, 

   Text Box( "Weights should be >0" ), 

   Button Box( "OK" ) 

  ) 

 ); 

 neg.ind=0; 

 For( i = 1, i <= N Items( input.values ), i++, 

 if(input.values[i]<0,neg.ind=1); 

   

 ); 

 If( neg.ind==1, 

  Eval( window ); 

  NumberEditCol1 << Set( old.values ); 

  Stop(); 

 ); 

  

 NEC1.current = input.values; 

 For( i = 1, i <= N Items( input.values ), i++, 

  var.name = StringCol1 << get( i ); 

  var.value = input.values[i]; 

  Eval( 

   Eval Expr( 

    pred.prof1 << (Expr( var.name ) << 

    Response Limits( {Importance( Expr( var.value ) )} )) 

   ) 

  ); 

 ); 

  

 weight.matrix=NumberEditCol1 << Get as matrix; 

 weight.sum = sum(weight.matrix); 

 weight.scale=weight.matrix/weight.sum; 

 weight.prop<<set values(weight.scale); 

   

52. Save the dashboard. Run it to make sure that there are no errors. 
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Monte Carlo 

1. Add a Button Box to Module3 just above the Response column. 

 

2. In the Properties pane for this button, change the title to “Simulate” 

 
 

3. In the Properties pane of the Simulate Button Box, select the grey button next to the Press option to 

enter the following script. Note that some of the referenced variables (e.g. ::importlimitsbutton1) are 

created in later steps. 
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//Enable the buttons in the Contour Profiler Dashboard 

::importlimitsbutton1 << enable( 1 ); 

::exportlimitsbutton1 << enable( 1 ); 

//record that the button has been pressed 

sim.indicator=1; 

//Turn on the custom profiler 

pred.prof1 << custom profiler( 1 ); 

//Extract the factor names from the custom profiler display tree 

domain1.factors = Report( pred.prof1 )["Custom Profiler"][String Col Box( 1 )] << get; 

//save the responses (as a global variable, as indicated by ::) 

::domain1.resp = Report( pred.prof1 )["Custom Profiler"][String Col Box( 2 )] << get; 

//turn off the custom profiler 

pred.prof1 << custom profiler( 0 ); 

//enable the Profiler Simulator 

pred.prof1 << Simulator; 

//Select a uniform distribution for each factor 

For( i = 1, i <= N Items( domain1.factors ), i++, 

 Eval( Eval Expr( (pred.prof1 << Simulator( Factors( Expr( domain1.factors[i] ) 

  << Random( Uniform())))))) 

); 

     

n.runs=number.of.runs<<get;     

//Click the simulate Button     

pred.prof1 << Simulator( Automatic Histogram Update( 1 ), N Runs( n.runs ), Simulate ); 

/* Click the Make Table button */ Report1["Simulate to Table"][Button Box( 1 )] << Click( 1 

); 

  

/* Assign a handle and a (global) name to the resulting table */  

::dt.sim1 = Data Table( 1 ); 

//select all of the response columns 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( Eval Expr( Column( ::dt.sim1, Expr( ::domain1.resp[i] ) ) << Set Selected( 1 ) ) 

) 

); 

dt.sim.selected1 = ::dt.sim1 << get selected columns; 

::dt.sim1 << Set Name( "Simulated Table" ); 

//create the scatterplot matrix 

Eval( Eval Expr( ::spm1 = ::dt.sim1 << Scatterplot Matrix( Y( Expr( dt.sim.selected1 ) ), 

Nonpar Density( 1 ) ) ) ); 

//create a data filter for the simulated table 

::dt.sim.filter1 = ::dt.sim1 << data filter; 

::dt.sim.filter1 << set Show( 1 ); 

//reference the report (display tree) of the data filter 

::dt.sim.filter.report1 = ::dt.sim.filter1 << report; 

//no JSL analog to the Add button, so just click it virtually 

::dt.sim.filter.report1[Button Box( 4 )] << Click( 1 ); 

//update the new data filter with the current contour plot limits 

::exportlimitsbutton1 << click( 1 ); 

//wait for the previous commands to finish 

wait(0); 

//hide the simulated data table 

::dt.sim1<<show window(0); 

//disable the Profiler Simulator 

pred.prof1 << Simulator(0); 

//record that the button has been turned off 

sim.indicator=0; 

 

 

4. Right-click the Simulate button and select Add Container > H List Box. 
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5. Drag a Text Box into the H List Box to the right of the Simulate button. 

 

6. Change the Text entry of the Text Box in the Properties pane to “Number of runs:”. 

 

7. Drag a Number Edit Box into the H List Box to the right of the text box. 

 

8. In the Properties pane of the Number Edit Box, set Variable Name to number.of.runs, Number to 5000, 

set Minimum to 100, and select Integer Only. 
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9. Click the Module2 tab. 

 

10. Under the Update Factors button, drag two new Button Boxes into the Lineup Box above the contour 

profilers. 

 

11. Set the title of the top box to “Import Contour Limits from Data Filter” in the Properties pane. 

12. Set the title of the bottom box to “Export Contour Limits to Data Filter” in the Properties pane. 
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13. Select the Import Contour Limits from Data Filter Button Box. 

14. In the Properties pane for the Import Contour Limits from Data Filter Button Box, select the grey button 

in the Press area and enter the following script. 
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//Extract the upper limits from the data filter 

upper.lim = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( Eval Expr( upper.lim = Insert( upper.lim, 

::dt.sim.filter.report1[Number Edit Box( Expr( 2 * i ) )] << get ) ) ) 

); 

//Extract the lower limits from the data filter 

lower.lim = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( Eval Expr( lower.lim = Insert( lower.lim, 

::dt.sim.filter.report1[Number Edit Box( Expr( 2 * i - 1 ) )] << get ) ) ) 

); 

//Extract the response names from the data filter 

names = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( Eval Expr( names = Insert( names, ::dt.sim.filter.report1[Text Box( 

Expr( 3 * i ) )] << get text ) ) ) 

); 

//loop over the contour profilers 1 through 4 (profiler1 simply contains the factor 

settings) 

//get the hi and lo limits and the corresponding response names from each Report 

For( j = 1, j <= 4, j++, 

 Eval( Eval Expr( report.names = Expr( Parse( "report(profiler" || Char( j 

)||")"  ) )[String Col Box( 1 )] << get ) ); 

 Eval( Eval Expr( r2.ncb.lower = Expr( Parse( "report(profiler" || Char( j 

)||")"  ) )[Number Col Edit Box( 2 )] << get as matrix ) ); 

 Eval( Eval Expr( r2.ncb.upper = Expr( Parse( "report(profiler" || Char( j 

)||")"  ) )[Number Col Edit Box( 3 )] << get as matrix ) ); 

 For( i = 1, i <= N Items( names ), i++, 

  Eval( Eval Expr( loc = Contains( report.names, Expr( names[i] ) ) ) ); 

  //update the corresponding values in lower.lim and upper.lim 

  If( loc > 0, 

   r2.ncb.lower[loc] = lower.lim[i]; 

   r2.ncb.upper[loc] = upper.lim[i]; 

  ); 

 ); 

 //update the hi and low limits in the contour profilers 

 //make sure to use "set values" and not "set" 

 Eval( Eval Expr( Expr( Parse("report(profiler" || Char( j )||")" ) )[Number 

Col Edit Box( 2 )] << set values( r2.ncb.lower ) ) ); 

 Eval( Eval Expr( Expr( Parse( "report(profiler" || Char( j )||")"  ) )[Number 

Col Edit Box( 3 )] << set values( r2.ncb.upper ) ) ); 

 

); 

 

15. Click OK. 

16. In the Properties pane for the Export Contour Limits to Data Filter Button Box, select the Press area and 

enter the following script. 

//Extract the current upper limits from the data filter 

upper.lim = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( 

  Eval Expr( 
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   upper.lim = Insert( 

    upper.lim, 

    ::dt.sim.filter.report1[ 

    Number Edit Box( Expr( 2 * i ) )] << get 

   ) 

  ) 

 ) 

); 

//Extract the current lower limits from the data filter 

lower.lim = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( 

  Eval Expr( 

   lower.lim = Insert( 

    lower.lim, 

    ::dt.sim.filter.report1[ 

    Number Edit Box( Expr( 2 * i - 1 ) )] << get 

   ) 

  ) 

 ) 

); 

//extract the response names from the data filter 

names = {}; 

For( i = 1, i <= N Items( ::domain1.resp ), i++, 

 Eval( 

  Eval Expr( 

   names = Insert( 

    names, 

    ::dt.sim.filter.report1[Text Box( Expr( 3 * i ) )] << 

    get text 

   ) 

  ) 

 ) 

); 

//loop over the contour profilers 2 through 5 (profiler1 simply contains the  

//factor settings) 

//get the hi and lo limits and the corresponding response names from each  

//Report 

For( j = 1, j <= 4, j++, 

 Eval( 

  Eval Expr( 

   report.names = Expr( Parse( "report(profiler" || Char( j )||")" ) 

)[ 

   String Col Box( 1 )] << get 

  ) 

 ); 

 Eval( 

  Eval Expr( 

   r2.ncb.lower = Expr( Parse( "report(profiler" || Char( j )||")" ) 

)[ 

   Number Col Edit Box( 2 )] << get as matrix 

  ) 

 ); 

 Eval( 

  Eval Expr( 
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   r2.ncb.upper = Expr( Parse("report(profiler" || Char( j )||")"  ) 

)[ 

   Number Col Edit Box( 3 )] << get as matrix 

  ) 

 ); 

 For( i = 1, i <= N Items(names ), i++, 

  Eval( 

   Eval Expr( 

    loc = Contains( 

     report.names, 

     Expr(names[i] ) 

    ) 

   ) 

  ); 

  //when a match is found, the data filter is updated 

  //the appropriate command for the data filter depends on whether                   

            //there are missing values 

  //for the Hi or Lo Limits in the contour profiler.  

  //Note: due to lack of readability of if-then statements in JMP,  

            //the three conditions are 

  //listed separately in three if-statements 

  If( 

   loc > 0 & !(Is Missing( r2.ncb.lower[loc] )) & 

   Is Missing( r2.ncb.upper[loc] ), 

   lower.lim[i] = r2.ncb.lower[loc]; 

   

   Eval( 

    Eval Expr( 

     ::dt.sim.filter1 << ( 

     Filter Column( 

      Column( ::dt.sim1, Expr( names[i] ) ) 

     ) << Where( 

      Column( ::dt.sim1, Expr( names[i] ) ) >= 

      lower.lim[i] 

     )) 

    ) 

   ); 

  ); 

  If( 

   loc > 0 & !(Is Missing( r2.ncb.upper[loc] )) & 

   Is Missing( r2.ncb.lower[loc] ), 

   upper.lim[i] = r2.ncb.upper[loc]; 

    

   Eval( 

    Eval Expr( 

     ::dt.sim.filter1 << ( 

     Filter Column( 

      Column( ::dt.sim1, Expr( names[i] ) ) 

     ) << Where( 

      Column( ::dt.sim1, Expr( names[i] ) ) <= 

      upper.lim[i] 

     )) 

    ) 

   ); 

  ); 
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  If( 

   loc > 0 & !(Is Missing( r2.ncb.upper[loc] )) & !( 

   Is Missing( r2.ncb.lower[loc] )), 

   lower.lim[i] = r2.ncb.lower[loc]; 

   upper.lim[i] = r2.ncb.upper[loc]; 

   Eval( 

    Eval Expr( 

     ::dt.sim.filter1 << ( 

     Filter Column( 

      Column( ::dt.sim1, Expr( names[i] ) ) 

     ) << Where( 

      Column( ::dt.sim1, Expr( names[i] ) ) <= 

      upper.lim[i] & 

      Column( ::dt.sim1, Expr( names[i] ) ) >= 

      lower.lim[i] 

     )) 

    ) 

   ); 

  ); 

  

 ); 

); 

 

17. Click on the Scripts tab. 

18. Select Module1 from the namespace dropdown.  

 

19. Paste the following code at the bottom of the script. 

::importlimitsbutton1=Button2; 

::importlimitsbutton1<<enable(0); 

::exportlimitsbutton1=Button3; 

::exportlimitsbutton1<<enable(0); 

 

 

Color Profilers 

 

1. Return to the Module 3 tab. 

2. In Module 3, drag a new Button Box below the Simulate button.  
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3. Rename the Button Box “Color Profiler” in the Properties pane. 

 

4. The next steps involving the Script Window are optional if the dashboard is being re-built for the 

MeanATKSamplev4 data set. They show how the code should be changed if building the dashboard for a 

new data set. Make sure that the Script Window is not currently open. Click the red triangle next to 

Application Builder and select Script > Save Script to Script Window. Unlike in previous steps where we 

referenced the script source of the application, we will not be clicking the run button this time to open a 

new Application Builder environment: we simply need to extract some of the code from the dashboard 

source. 

 
5. Search for the string “pred.prof1 =” (without quotes, note the space before the equal sign). 
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6. The list of columns in the Y() section will be pasted into the resp.list variable in the code block below 

(step 12). 

7. The list of columns in the Reorder X Variables() section will be pasted into the factor.list variable below. 

 
8. Close the Script Window without saving. Nothing was modified. 

9. Return to Module 3. 

10. Select the Color Profiler button. 

11. Click the grey button next to Press in the Properties pane (for the Color Profiler button). 

12. Enter the following script. When building the dashboard for a different dataset, the highlighted code 

defining res.list and factor.list needs to be changed. These values can be found in the source of the 

Application Builder file (described in the previous steps). 
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//need to manually copy these column names from the pred.prof1 profiler in the 

//application builder script 

resp.list = { :Awareness, 
       :Lethality, 
       :Casualties, 
       :Sensory Weight, 
       :Rifle Weight, 
       :Radio Weight}; 
//convert the column references to string column names 

resp.name.list = {}; 

For( i = 1, i <= N Items( resp.list ), i++, 

 resp.name.list = Insert( resp.name.list, resp.list[i] << get name ) 

); 

//need to manually copy these column names from the pred.prof1 profiler in the 

//application builder script 

factor.list = {  :SensorClassifyRNG, 
        :RifleRNG, 
        :RadioDelay, 
        :SensorDetectRNG}; 
//convert the column references to string column names 

factor.name.list = {}; 

For( i = 1, i <= N Items( factor.list ), i++, 

 factor.name.list = Insert( factor.name.list, factor.list[i] << get name ) 

); 

wait.window = New Window( "Running", Text Box( "Running. Please wait. 
This window will close automatically when the coloring is complete. 
Expected wait is "||char(ceiling(N Items( factor.name.list )*0.25+3))||" seconds." ) ); 
//create a temporary, invisible table that will be used to hold the modified factor 

//settings. The forumlas in the response columns are used to calculate the slope of 

the  

//line connecting the endpoints in each frame box. 

dt2 = DataTable1 << Subset( invisible, Suppress formula evaluation( 0 ), Selected 

Rows( 0 ), Rows( [1] ), Selected columns only( 0 ) ); 

wait(.1); 

//add rows. There are two rows for each factor 

dt2 << add rows( 2 * N Items( factor.list ) - 1 ); 

//wait(0) tells JMP to wait until the previous operation has completed before 

moving on 

Wait( .1 ); 

//extract the current factor settings from the profiler 

factor.settings = {}; 

For( i = 1, i <= N Items( factor.list ), i++, 

 factor.settings = Insert( factor.settings, Report1[Number Edit Box( i )] << 

get ); 

 wait(0); 

); 

//print the current factor settings to the log file 

Print( "factor settings" ); 

Print( factor.settings ); 

//make sure the factor columns are unlocked, and set all of the rows 

//in the temporary data table to the current factor settings 

For( i = 1, i <= N Items( factor.list ) * 2, i++, 

 For( j = 1, j <= N Items( factor.name.list ), j++, 

  Column( dt2, factor.name.list[j] ) << lock( 0 ); 
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  Column( dt2, factor.name.list[j] )[i] = factor.settings[j]; 

  wait(0); 

 ) 

); 

 

factor.min = []; 

factor.max = []; 

//slope.matrix will hold the slopes of the lines connecting the endpoints 

//of response profiles in the matrix of graphs displayed by the profiler 

slope.matrix = J( N Items( resp.list ), N Items( factor.list ), 0 ); 

wait(0); 

//extract the minimum/maxium factor values 

For( i = 1, i <= N Items( factor.name.list ), i++, 

 factor.min = V Concat( factor.min, Round( Col Min( Column( DataTable1, 

factor.name.list[i] ) ), 3 ) ); 

 factor.max = V Concat( factor.max, Round( Col Max( Column( DataTable1, 

factor.name.list[i] ) ), 3 ) ); 

 wait(0); 

); 

Print( "factor min" ); 

Print( factor.min ); 

Print( "factor max" ); 

Print( factor.max ); 

//each subsequent pair of rows in the temporary table is set to the 

//current factor levels, with one of the factors set at its minimum/maximum 

//values 

For( j = 1, j <= N Items( factor.name.list ), j++, 

 Column( dt2, factor.name.list[j] )[2 * j - 1] = factor.min[j]; 

 Column( dt2, factor.name.list[j] )[2 * j] = factor.max[j]; 

 wait(0.25); 

); 

//the wait function is necessary to make sure that the data table has time to 

update the 

//formulas for the response columns 

Wait( 3 ); 

//calculate the slopes of the lines in each frame box, and save to the 

corresponding 

//location in slope.matrix 

For( i = 1, i <= N Items( factor.name.list ), i++, 

 For( j = 1, j <= N Items( resp.name.list ), j++, 

  slope.matrix[j, i] = Column( dt2, resp.name.list[j] )[2 * i] - Column( 

dt2, resp.name.list[j] )[2 * i - 1]; 

  wait(0); 

 ) 

); 

Print( "slope.matrix" ); 

Print( slope.matrix ); 

//nr and nc are the number of rows and columns in the matrix of graphs in the 

profiler 

//(the +1 corresponds to the desirability function graphs) 

nr = N Items( resp.list ) + 1; 

nc = N Items( factor.list ) + 1; 

//the frameboxes are numbered down the columns in the profiler 

//this matrix key tells us which frame box correponds to which 

//component of the slope matrix 
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if(sim.indicator==0,framebox.key = Transpose( Shape( 1 :: (nr * nc), nc, nr ) 

);wait(0)); 

if(sim.indicator==1,framebox.key = Transpose( Shape( 1 :: ((nr+1) * nc), nc, nr+1 ) 

)); 

//shading.mat will be a scaled version of slope.matrix 

//shading values of .99 produce a color that is light/transparent, while  

//shading values around .45 are dark/opaque 

shading.mat = J( nr - 1, nc - 1, 0 ); 

wait(0); 

//within each row (within each response), the factors with the biggest slopes 

//are shaded darker, while those with smaller slopes are lighter 

For( i = 1, i <= (nr - 1), i++, 

 max.in.row = Max( Abs( slope.matrix[i, 0] ) ); 

 Eval( Eval Expr( shading.mat[i, 0] = Expr( 0.99 - (Abs( slope.matrix[i, 0] ) 

/ max.in.row) * .55 ) ) ); 

 wait(0); 

); 

Print( shading.mat ); 

//the next loop colors the frameboxes 

//the "goal" variable checks whether the goal is to maximize/minimize 

//each response. Factors with positive (negative) slopes that are being maximized 

(minimized) 

//are colored green. Factors with negative (positive) slopes that are  

//being maximized (minimized) are colored red. Zero slopes are colored black. 

//If "goal" is set to "middle", the frame boxes for that response are white 

For( i = 1, i <= (nr - 1), i++, 

 For( j = 1, j <= (nc - 1), j++, 

  goal = StringEditCol1 << get( i ); 

  wait(0); 

  If( slope.matrix[i, j] < 0 & goal == "max" | slope.matrix[i, j] > 0 & 

goal == "min", 

   Eval( 

    Eval Expr( Report1[framebox( Expr( framebox.key[i, j] ) )] 

<< set background color( HLS Color( 0, Expr( shading.mat[i, j] ), 1 ) ) ) 

   ) 

  ); 

  If( slope.matrix[i, j] > 0 & goal == "max" | slope.matrix[i, j] < 0 & 

goal == "min", 

   Eval( 

    Eval Expr( 

     Report1[framebox( Expr( framebox.key[i, j] ) )] << 

set background color( HLS Color( .346, Expr( shading.mat[i, j] ), 1 ) ) 

    ) 

   ) 

  ); 

  If( slope.matrix[i, j] == 0, 

   Eval( Eval Expr( Report1[framebox( Expr( framebox.key[i, j] ) )] 

<< set background color( HLS Color( 0, 0 ) ) ) ) 

  ); 

  If( goal == "middle"&slope.matrix[i, j] != 0, 

   Eval( Eval Expr( Report1[framebox( Expr( framebox.key[i, j] ) )] 

<< set background color( "white" ) ) ) 

  ); 

 ) 

); 
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close(dt2,nosave); 

wait.window << closewindow; 

13. Save the Application Builder environment with a .jmpappsource extension to preserve the Application 

Builder environment, or with a .jmpapp extension for distribution. 
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