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ABSTRACT
Designing and controlling simple collective robot behaviors
often requires complex range and bearing sensors and peer-
to-peer communication strategies. Recent work studying
swarms robots that have no computational power has shown
that complex behaviors such as aggregation and clustering
items can be produced from extremely simple control poli-
cies and sensing capability. We extend previous work on
computation-free swarm behaviors and show that it is pos-
sible to evolve simple control policies to form a perimeter
around a target, rendezvous to a specific location, and per-
form foraging. We also demonstrate that simple manipula-
tions of the environment provide a form of stigmergic con-
trol, whereby these collective behavior can be controlled.
The robustness and expressiveness of these behaviors, com-
bined with the simple requirements for control and sensing,
demonstrate the feasibility of implementing swarm behav-
iors at small scales or in extreme environments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems, coherence and coordination;
I.2.9 [Artificial Intelligence]: Robotics—intelligent vehi-
cles

Keywords
swarm robotics, evolutionary algorithms, computation-free
robot, controlling collective behaviors

1. INTRODUCTION
Flocks of birds, schools of fish, and colonies of ants, bees,

termites exhibit a remarkable robustness and resilience, de-
spite the limited capabilities of each individual. Recently
research into bio-inspired swarm robotics has been gaining
popularity due to the low-cost, robust, redundant, and dis-
tributed nature of swarms [3]. Potential applications for
robot swarms include, search and rescue, construction, and
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chemical spill clean-up, as well as nano-medical applica-
tions such as finding tumors [10]. Many of these applica-
tions would benefit from simple, cheap, disposable swarms
of robots that can accomplish these tasks quickly and with-
out much human supervision.

While there has been a lot of work on different swarm-
ing algorithms and technologies, many still require localiza-
tion, mapping, complex coordination algorithms, and pre-
cise identification of neighboring robots’ orientations and
relative positions. This often results in swarm behaviors
that are interesting but extremely difficult to implement
on actual robotic platforms. For swarm applications in the
nano-medical field, developing collective behaviors that use
extremely simple controllers and sensors is especially impor-
tant if these behaviors have an hope of being implemented
on nano-robots[11].

Recently, Gauci et al. have shown that swarms of robots
so dumb that they have no computational power–they can’t
even add or subtract, and have no memory can still collec-
tively solve canonical multi-robot problems such as aggre-
gation [6], and simple object clustering[5]. There are sev-
eral key benefits to researching the capabilities of extremely
dumb robot swarms: (1)the dumber the robot, the cheaper
and more disposable it is, (2) the simpler the control algo-
rithm the easier to implement on real robots[8, 6], and (3)
even teams of smart robots may need a “Plan B” consisting
of simple robust algorithms that require only the most basic
capabilities in case of malfunctions and failure.

We extend the work of Gauci et al. by showing that many
other interesting behaviors can be achieved using swarms of
computation-free robots. Our work starts with the simple
robot model proposed in [6] and adds a form of stigmergic
control by changing the environment to expand the possi-
ble behaviors and control collective behaviors. We investi-
gate what behaviors are possible given limited control over
the placement of a small number of objects in the swarm’s
environment. We use a genetic algorithm approach to de-
sign these swarm behaviors by first defining a fitness func-
tion that describes a desired collective behavior, and then
searching the space of simple controllers that best achieve
this behavior. This approach allows us to evolve succes-
sively better controllers using a robot simulator to evaluate
potential controllers. We present successful results on three
behaviors that are possible using very simple sensors and
controllers: forming a perimeter, rendezvous, and foraging.
We additionally show that simple manipulations of the en-
vironment allow these behaviors to be controlled.
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2. RELATED WORK
Trianni et al. evolved a neural network based controller

that performs aggregation using swarms of S-bots [13]. How-
ever, each S-bot uses eight infrared proximity sensors, three
microphones, three sensors for detecting connections on the
body and a gripper sensor. Baldassarre et al. evolved a
controller that aggregates a group of robots and then moves
them towards a light source [1]. Their controller utilizes a
neural network that takes in eight infrared proximity sensors
readings, four directional light source sensors readings, and
four directional sound sensors readings as control inputs.
Gauci et al. introduced the concept of robots that can’t
compute [4]. They showed that a simple reactive controller
could be used to allow a swarm of computation-free robots
with a single line-of-sight sensor to perform aggregation [6]
and clustering [5].

Other work has looked at controlling collective behaviors.
Rubenstein et al. [12] studied how to collectively transport
items using a simple control signals and behaviors. Others
have looked at controlling more complex collective transport
problems [2] or using termite-inspired stigmergic control to
build complex structures [14]. However, none of this work
considers the extreme conditions of a single line-of-sight sen-
sor and zero computation.

3. PROBLEM FORMULATION
This paper investigates what collective behaviors are pos-

sible given a swarm of extremely simple robots operating
in a simple environment. For our experiments we consider
a circularly bounded 2D environment that is homogeneous
and contains no obstacles. Throughout this space n circular
robots are randomly distributed and randomly rotated such
that each robot faces a random direction. Robots learn to
interact with immovable targets, movable objects, and other
robots to achieve global behaviors. All entities (robots, tar-
gets, and objects) are rigid such that no two entities can
occupy the space at the same time.

We define simple robots as agents that are memoryless,
cannot perform computations and have limited input/output
capabilities. Specifically we look at robots that are only
equipped with a line of sight sensor and two wheels for dif-
ferential drive. The line of sight sensor can only detect the
presence or absence of objects and outputs a trinary value
where s = 2 corresponds to a target or object in line of
sight, s = 1 corresponds to a robot in line of sight, and
s = 0 corresponds to nothing in line of sight.

Simple robots are reactive in nature because they cannot
remember past input or actions. As a result simple robot
controllers can be to a sequential series of if-statements that
assign left and right wheel velocities based on current sensor
readings. This controller can be represented as a set of six
wheel velocities

V = [vl0, vr0, vl1, vr1, vl2, vr2]

where vl0/vr0 are the velocities of the left/right wheel when
there is no robot in the sensors current line of sight, vl1/vr1
are the respective velocities when a robot is within the line of
sight of the sensor and vl2/vr2 are the respective velocities
when a target or object is within the line of sight of the
sensor. Velocities are normalized such that v = [−1, 1] where
1 corresponds to a wheel spinning forward at full speed and
-1 corresponds to a wheel spinning backwards at full speed.

Figure 1: Robot representation and corresponding
controller.

4. BEHAVIORS
This section explores several global behaviors learned us-

ing evolutionary optimization techniques. We discover global
behaviors by optimizing a universal robotic controller ac-
cording to a behavior dependent fitness function. Each po-
tential robot controller is evaluated by running a swarm sim-
ulation and calculating the fitness function at every time
step to generate a fitness score, which is given by

U (V ) =

T−1∑
t=0

tu(t)

where T is the number of time steps in the simulation and
u(t) is the fitness function. Multiplying the fitness function
by the time step rewards controllers that achieve desired
behavior quickly. The robot controllers are optimized using
the average fitness score over multiple simulations to reduce
the effect of noise.

All simulations are run on the Enki 2.0 robot simulator,
which is able simulate hundreds of robots in a 2D environ-
ment in faster than real time [9]. For our experiments the
simulation physics are updated 100 times per second and the
robot controller is updated 10 times per second. Robots are
simulated using Enki’s Epuck model which have a diameter
of 7.4 cm, inter-wheel distance of 5.1 cm, and weight of 152
g. Targets and objects are simulated as cylinders with a di-
ameter of 10 cm using Enki’s physical object model. Objects
have a mass of 35g and a coefficient of friction of 0.58. Tar-
gets have a sufficiently large mass and coefficient of friction
to ensure that are immobile.

Robot controllers are optimized using the Covariance Ma-
trix Adaption Evolution Strategy (CMA-ES) [7]. This ge-
netic optimization technique uses the variance of each gene
to generate mutations between generation. Earlier work by
Gauci et al. has shown that CMA-ES can effectively op-
timize simple robotic controllers [5]. CMA-ES optimizes
across all real numbers, which can result in genes out of
normalized range. To avoid this we constrain genes by ap-
plying the following sigmoid function

v =
1− e−x

1 + e−x

where x is a gene optimized by CMA-ES. For our experi-
ments we utilized the following CMA-ES parameters: pop-
ulation size of 13, initial step size, σ(0) = 0.72, and starting
controller of V = [0, 0, 0, 0, 0, 0].

4.1 Aggregating to a Target
We first investigate what is possible when a single station-

ary target is placed in the environment. In this behavior
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(a) (b) (c)

(d) (e) (f)

Figure 2: Perimeter formation around a dynamic
target.

robots are initially distributed randomly throughout an en-
vironment and over time form a group around a randomly
positioned target. Our fitness function rewards global be-
haviors that minimize the total distance between each robot
and the target. Let pi (t) represent the position of robot i at
time step t and ptarget represent the position of the target.
Then the rendezvous fitness function is given by

urendezvous(t) = −
n−1∑
i=0

‖pi (t)− ptarget‖2

where ‖·‖ is the Euclidean norm. This fitness function re-
wards solutions where the robots are close to the objects
locations.

4.1.1 Perimeter Formation
The resulting controller that is evolved forms a perimeter

around the target. The evolved controller is

V = [1.0, 0.37, 1.0, 1.0,−1.0, 0.83].

This solution results in the robots aggregating to the tar-
get and forming a perimeter around the target. We also
experimented with changing the location of the target mid-
simulation. The results are shown in Figure 2. The robots
converge to the target and form a perimeter. When the tar-
get is placed in a new location, the entire swarm quickly
moves to the new location and reforms the perimeter. This
behavior is very robust and is automatic—the robots are
purely reactive so they can be controlled simply by changing
the environment, removing the need to broadcast informa-
tion to the swarm or have additional control logic.

4.1.2 Rendezvous
We are also interested in having every member of the

swarm gather as close as possible to the target, rather than
just circle around it. Rendezvous is an important behavior
for swarms because it sets the stage for more complicated be-
haviors by assembling a group of robots to a specific desired
location. We first tried to find a controller for the rendezvous
problem using the fitness function described above; however,
all trials resulted in controllers in which robots would form
a circle around a target.

To solve this problem we seeded the starting controller
with an aggregation solution from Gauci’s et al. earlier work

(a) (b) (c)

(d) (e) (f)

Figure 3: Rendezvous to dynamic target.

[6]. Using the seeded optimization strategy we evolved the
following controller

V = [−0.72,−1.00, 1.00,−1.00, 0.99, 1.00]

which results in the rendezvous behavior. Using this con-
troller robots closest to the target move towards it with a
slightly elliptical path, while other robots form clusters else-
where. Over time the cluster of robots around the target
pulls the extra clusters toward the target cluster. When the
clusters are close enough they merge into a single cluster
around the target. Snapshots of the resulting behavior are
shown in Figure 3. Similar to the perimeter formation, this
behavior can also be controlled by simply moving the target.

4.2 Foraging
In this behavior objects and robots are distributed ran-

domly throughout the environment and the robots must
gather the objects to a specified target location. Earlier
work by Gauci et al. found an optimal controller for clus-
tering objects, we extend there work by showing that this
controller can be used for foraging [5]. The clustering fit-
ness function rewards global behaviors that minimize the
total distance between each object and center of the clus-
ter of objects. Let oi (t) represent the position of object i
at time step t and o (t) represent the center of the object
cluster. Then the fitness function is given by

uclustering(t) = −
m−1∑
i=0

‖oi (t)− o‖2

where m is the number of objects. Using the clustering
fitness function we evolved the following controller

V = [0.72, 1.00, 0.40, 0.31, 0.53,−1.00]

which causes the robots to circle around the objects and
slowly nudge them into a central point as they pass.

The foraging behavior occurs when we place one or several
fixed targets in the environment. Figure 4 shows the classic
foraging problem where there is a “nest” location (shown in
green) where all of the items must be gathered. Figure 5
shows an alternative foraging scheme where multiple sta-
tionary targets are placed in the environment. The convex
hull of these targets defines the region into which the ob-
jects will be harvested. Similar to the previous behaviors,
the foraging behavior can be controlled simply by changing
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(a) (b)

(c) (d)

Figure 4: Foraging

(a) (b)

(c) (d)

Figure 5: Dynamic foraging into specified convex
hull.

the location of the targets. The robots will then move the
items to the new desired location, as shown in Figure 5.

5. CONCLUSIONS AND FUTURE WORK
A large amount of research has been dedicated to devel-

oping multi-agent systems that perform complex behaviors.
We show that swarms of robots that can’t compute can per-
form complex behaviors such as rendezvous to a desired lo-
cation, simple perimeter monitoring of a desired location,
and foraging in changing environments. Our results demon-
strate that complex behaviors can be evolved from simple
interactions between agents and that these behaviors can
be controlled during execution by simply changing the en-
vironment. We also note that these behaviors are so simple
that they could simply be hardwired, requiring no compu-
tational capabilities. We believe that this research is an
important step towards swarm behaviors that can be eas-
ily implemented in hardware and produced at small, maybe
even nano-scale. In the future we plan to apply these be-
haviors to actual robots, explore virtual targets and other

forms of stigmergic control, and more rigorously explore the
space of possible behaviors given our computation-free as-
sumptions.
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