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Abstract: 
 
     In numerous transition metal oxides (TMO), competition between the charge, lattice, 
spin, and orbital degrees of freedom lead to emergent phenomena with the insulator-to-
insulator transition (IMT) being one of the most enigmatic from fundamental and applied 
perspectives. Recently, considerable effort has focused on the growth of TMO 
heterostructures with atomic layer precision with a view towards controlling and even 
creating new emergent behavior including the IMT. Simultaneously, ultrafast optical 
spectroscopy (UOS) has become a powerful approach to interrogate emergence, 
probing how interactions and competition between operative degrees of freedom in 
TMOs determine macroscopic properties. In this STIR project an initial foray into non-
equilibrium studies in nickelate superlattices was pursued to investigate IMT dynamics. 
Using time-resolved terahertz spectroscopy we measured the non-equilibrium recovery 
of the initial low-temperature antiferromagnetic insulating phase following a picosecond 
quench to the high temperature paramagnetic metallic phase. Following photo-
excitation, the recovery proceeds through nucleation and growth of the AFI phase at the 
expense of the PM phase following rapid cooling below the IMT transition temperature 
(~150K). These results highlight the importance of 
mesoscopic physics in correlated materials 
revealing new length and timescales that arise 
during the course of a phase transition. 
 
Statement of Problem Investigated:  Complexity 
in transition metal oxides can be understood as a 
delicate balance between competing interactions, 
which gives rise to an energy landscape whose 
details are not easily discerned [1]. An increasingly 
successful approach to tackle this problem is that of 
time resolved experiments, where the fundamental 
timescales of the system properties can be 
investigated through their response to appropriately 
chosen femtosecond photoexcitation [2,3].  
     Ultrafast optical studies of the insulator-to-metal 
transition (IMT) are of particular interest as there are 
interesting fundamental questions beyond trying to 
disentangle the microscopic origin of the IMT in a 
given material.  What are the timescales of the IMT? 
Can photoexcitation effectively collapse the Mott-
Hubbard gap? Are there multiple unique pathways 
to (e.g. mode selective excitation – see [2] [3]) to 
drive the IM transition? Can the metallic state be 
reversibly controlled with photoexcitation? Do 
mesoscale phenomena (e.g. phase separation) 
influence the dynamics of the IMT? Does symmetry 
play a determining role during the course of a non-
equilibrium IMT? Some insight into these questions 

	  
Figure 1: (a) Schematic of 
perovskite SL structure with 2:1 
RE repeat sequence. (b) 
Example repeat sequences for 
ENO/LNO superlattices. 
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has been obtained in studies of the vanadates, with most of the work being on VO2 [4-
10]. VO2 exhibits a transition from a monoclinic insulator to a rutile metal at ~340K. 
Ultrafast studies indicate that, following optical excitation, a finite density of state 
appears at the Fermi level in approximately ~1ps. This transient state appears to 
correspond to an intermediate monoclinic metallic state en route to the full metallic 
phase, which is obtained on a longer timescale (~100ps) through nucleation and growth 
of the rutile structure. Thus, it appears that there are multiple length and timescales 
along with non-equilibrium intermediate states associated with the dynamic IMT in VO2. 
     To address the aforementioned fundamental questions, it is necessary to investigate 
IMT dynamics in other materials. The perovskite nickelates (RE)NiO3 have emerged as 
an important class of IMT materials, exhibiting rich IMT phenomena across the rare 
earth (RE) series that includes La, Pr, Nd, Sm, Eu, Y, and Lu [11,12]. Quite recently, 
growth of digital nickelate superlattices (SL) has been achieved (Prof. Jak Chakhalian, 
University of Arkansas), offering a route to control the IMT by varying the relative 
number of subunits comprising the superlattice (Figure 1(a)). In particular, SL comprised 
of EuNiO3 (ENO) and LaNiO3 (LNO) enable tuning of the IMT by varying the relative 
number ENO/LNO layers as shown in Figure 1(b). Importantly, ENO/LNO superlattices 
range from robust metal exhibiting no IMT (pure LNO) to insulator (ENO) in a quasi-
continuous fashion with a clear evolution from a first-order to near second-order IMT 
upon increasing the relative number of ENO layers in comparison to LNO. This is 
accomplished without the need for multiple substrates (i.e. different strain states) 
simplifying ultrafast experiments and providing a unique level of control, making 
ENO/LNO superlattices of extreme interest to investigate IMT dynamics. 
     The objective of this STIR proposal was to investigate photo-initiated insulator to 
metal transition dynamics in ENO/LNO superlattices. In this project we utilized optical-
pump terahertz-probe spectroscopy (OPTP) to measure a series of ENO/LNO SL where 
the relative number of ENO and LNO units is controlled through epitaxial growth.  

 
Figure 2: a) THz conductivity as a function of temperature for 1ENO/2LNO and 1ENO/1LNO 
superlattices. b) Experimentally determined temperature in 1ENO/2LNO superlattice as a 
function of time at various incident fluences for an initial temperature of 77K.  

Summary of Main Results: An initial foray into non-equilibrium studies in 
heterostructures was enabled this STIR to investigate the dynamics of the insulator-to-
metal transition (IMT) in nickelate superlattices (SL) [13].  
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     Figure 2a plots the THz conductivity (not photoexcited) as a function of temperature 
for 1ENO/2LNO and 1ENO/1LNO superlattices. The samples have a thickness of 36 
unit cells (~15nm) and are grown on NdGaO3 (NGO). While 1ENO/1LNO exhibits a first 
order IMT, 1ENO/2LNO does not exhibit a phase transition, instead exhibiting a 
monotonic decrease in conductivity with increasing temperature. As such, the single 
exponential dynamics (not shown) observed in optical-pump THz-probe studies of 
1ENO/2LNO provide the means to quantitatively track the temperature in these ultrathin 
films. This is shown in Fig. 2b, which plots the evolution of the temperature (after 
electron-phonon equilibration in ~1ps) as a function of time at various incident fluences 
for an initial temperature of 77K. The cooling in these films is quite rapid. Given the 
similarity in the lattice structure and thermal properties of 1ENO/1LNO and 
1ENO/2LNO, the results of Fig. 2b can be utilized to obtain an accurate estimate of the 
temperature in the 1ENO/1LNO films 
that exhibit an IMT. This was crucial to 
obtaining an understanding of the IMT 
dynamics presented in Figure 3. 
     We performed optical-pump THz-
probe studies of the conductivity 
dynamics in 1ENO/1LNO SL, which 
exhibits a first order IMT at 130K from a 
low-temperature antiferromagnetic 
insulating (AFI) phase to a high-
temperature paramagnetic metallic (PM) 
phase. We identified, as shown in 
Figure 3, non-equilibrium recovery of the 
AFI phase following a picosecond 
quench to the high temperature PM 
phase. There is a strong fluence 
dependence of the recovery of the AFI 
ground state. The recovery proceeds 
through nucleation and growth of the 
AFI phase into the PM phase following 
rapid cooling below Tc (cooling 
determined from measurements on 
1ENO/2LNO SL as described above). In 
particular, the dashed lines in Fig. 3 plot 
the expected recovery dynamics if the 
conductivity recovery was solely 
determined by the local temperature. 
Clearly, the experimental recovery 
plotted as solid lines (color coded to 
match the dashed lines for a give 
fluence) exhibits a delayed recovery. The recovery is nonthermal and corresponds to 
nucleation and growth of the AFI phase once the sample has supercooled to below Tc. 
The observed first order kinetics can be described by the Avrami equation for nucleation 
and growth [14,15]. Importantly, without the temporal evolution of the temperature 

	  
Figure 3: Photoinduced conductivity dynamics 
in 1ENO/1LNO SL as a function of time at 
various fluences. The AFIàPM transition 
occurs in ~1ps, with a non-thermal recovery 
exhibiting a marked fluence dependence. This 
recovery corresponds to PMàAFI recovery, 
which proceeds after rapid cooling by growth 
of the AF phase into the PM phase, which is 
by definition a non-equilibrium process. 
Measurements of a 1ENO/2LNO superlattice 
(which doesn’t have an IMT) serve as a 
precise experimental thermometer, allowing 
for the construction of recovery curves 
(dashed lines) assuming a pure thermal 
relaxation. The dashed lines show the actual 
data (solid lines) deviate strongly from a 
thermal recovery. 
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obtained from the 1ENO/2LNO dynamics, it would not have been possible to obtain this 
level of insight into the 1ENO/1LNO IMT recovery dynamics. 
     The dynamics in the 1ENO/1LNO SLs are in marked contrast to the vanadates. For 
the 1ENO/1LNO sample it is observed that upon photoexcitation there is a prompt 
collapse of the antiferromagnetic insulating (AFI) to the paramagnetic metallic phase 
(PM) in ~1ps. In contrast, this takes 10’s of picoseconds in the vanadates. Additionally, 
the conductivity change is larger and requires a considerably lower fluence in 
comparison to the vanadates. The continued increase in the conductivity in Figure 3 
(especially evident in the higher fluence curves – e.g. the blue solid line) arises from 
cooling while still in the PM phase (e.g. see the slope the conductivity of the 
1ENO/1ENO curve above Tc in Fig. 2a). At the peak of the conductivity curve, the 
sample has cooled to Tc at which point a recovery of the insulating phase starts. The 
recovery, while longer than expected for pure thermal relaxation, is quite rapid in 
comparison to the vanadates. This is an interesting point for potential IMT switching 
application and is likely related (in part) to the minor structural changes in the nickelates 
across the IMT in comparison to the vanadates. In summary, our initial investigation of 
nickelate superlattices has revealed novel IMT dynamics associated with nucleation and 
growth associated with the first order phase transition dynamics. Future studies will 
focus of the dynamics of the lattice and magnetic degrees of freedom during the course 
of the transition. 
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