
Standard Form 298 (Rev 8/98) 
Prescribed by ANSI  Std. Z39.18

405-325-3721

W911NF-14-1-0488

65848-MA-II.2

Final Report

a. REPORT

14.  ABSTRACT

16.  SECURITY CLASSIFICATION OF:

The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data 
based on several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is 
able to model the rate of occurrence of events (and subsequently, their likelihood of occurrence) based on historical 
evidence of the counts of previous event occurrences. The novel Bayesian kernel methods made use of: (i) the 
Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) the kernel function 
which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 

1. REPORT DATE (DD-MM-YYYY)

4.  TITLE AND SUBTITLE

13.  SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

15.  SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17.  LIMITATION OF 
ABSTRACT

15.  NUMBER 
OF PAGES

5d.  PROJECT NUMBER

5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

5c.  PROGRAM ELEMENT NUMBER

5b.  GRANT NUMBER

5a.  CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

05-01-2016 23-Aug-2014 22-May-2015

Approved for Public Release; Distribution Unlimited

Final Report: Sparse Event Modeling with Hierarchical Bayesian 
Kernel Methods

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

Bayesian statistics, kernel methods,

REPORT DOCUMENTATION PAGE

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S)

10.  SPONSOR/MONITOR'S ACRONYM(S)
    ARO

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER
Kash Barker

Kash Barker

611102

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection 
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Oklahoma
201 Stephenson Parkway
Five Partners Place, Suite 3100
Norman, OK 73019 -9705



22-May-2015



ABSTRACT

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

Final Report: Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

Report Title

The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on several 
predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model, is able to model the rate of occurrence of 
events (and subsequently, their likelihood of occurrence) based on historical evidence of the counts of previous event occurrences. The novel 
Bayesian kernel methods made use of: (i) the Bayesian property of improving predictive accuracy as data are dynamically obtained, and (ii) 
the kernel function which adds specificity to the model and can make nonlinear data more manageable. Early results show that the Poisson 
Bayesian kernel model is more effective than the Poisson generalized linear model at modeling rates of occurrence especially for small data 
sets where regression-based methods often fail. The ability to model sparse data sets represents a positive step in modeling low-likelihood 
events often encountered in risk analysis.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of 
the project to the date of this printing.  List the papers, including journal references, in the 
following categories:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Baroud, H. and K. Barker. 2014. Hierarchical Bayesian Kernel Models Applied to Event Data. INFORMS Annual Meeting, San Francisco, 
CA.

(c) Presentations

Received Paper

TOTAL:

Received Paper

TOTAL:



Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts): 

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts): 

1.00Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received Paper

TOTAL:

Received Paper

TOTAL:

01/05/2016

Received Paper

1.00 Hiba Baroud, Kash Barker. Poisson Bayesian Kernel Methods for Modeling Count Data,
Computational Statistics and Data Analysis (04 2016)

TOTAL: 1



Books

Number of Manuscripts:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Received Book

TOTAL:

Received Book Chapter

TOTAL:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Hiba Baroud 1.00

1.00

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:



Sub Contractors (DD882)

Names of Faculty Supported

Names of Under Graduate students supported

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for 

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work 

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive 

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

0.00

0.00

0.00

0.00

0.00

0.00

0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in 
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue 
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Kash Barker 0.11

0.11

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

NAME

Total Number:

NAME

Total Number:
Hiba Baroud

1

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......



Inventions (DD882)

Scientific Progress

Technology Transfer



1 

Sparse Event Modeling with Hierarchical Bayesian Kernel 

Methods 
Proposal No. 65848MAII 

Kash Barker (PI), University of Oklahoma 

 

Background 

One of the classical approaches used to analyze count data are Generalized 

Linear Models (GLM) [Agresti 2002, Cameron and Trivedi 2013]. The Poisson 

GLM is most commonly used to model count data. The method assumes that 

the rate to be estimated has an exponential relationship with a set of covariates 

representing coefficients for the different attributes, shown in Eq. (1). Under the 

Poisson GLM, the response follows a Poisson distribution, Eq. (2), and the log 

function is the link function that relates the set of covariates and coefficients to 

the response variable. 
 

 �̂� = 𝑒𝛽𝑖𝑋 (1) 
 

 𝑃(𝑦) =
𝜆𝑦𝑒−𝜆 

𝑦!
 (2) 

 

Another type of GLM for modeling count data is the Negative Binomial 

GLM which relaxes the constraints of homoscedasticity imposed by the Poisson 

GLM [Cox 1983]. The Negative Binomial GLM assumes that the marginal 

distribution of the response follows a Negative Binomial distribution, Eq. (3), 

where 𝑘 is the overdispersion parameter and λ is assumed to follow a Gamma 

distribution. The Negative Binomial GLM also assumes a log function for the 

link function and as a result, the response variable has an exponential 

relationship with the covariates.  
 

 𝑃(𝑦) =
Γ (𝑦 +

1
𝑘

)

Γ(𝑦 + 1)Γ (
1
𝑘

)
(

𝑘λ

1 + 𝑘λ
)

𝑦

(
1

1 + 𝑘λ
)

1
𝑘
 (3) 

 

Approach 

The Poisson Bayesian kernel model developed in this research is simple enough 

to avoid expensive computations but detailed enough to overcome issues in 

basic Bayesian modeling approaches, such as the Gamma conjugate prior, and 

in count data regression models, such as the GLM. 

Poisson Bayesian kernel methods estimate the rate of occurrence of the 

event rather than estimating a deterministic value for the number of times the 

event is estimated to occur. A common distribution to model count data within 

a Bayesian framework is the Gamma-Poisson conjugate prior. The development 
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of the Poisson Bayesian kernel method discussed can be found in Floyd et al. 

[2014] and Baroud and Barker [2016]. The approach uses the Gamma conjugate 

prior as the basis of the model. 

It is assumed that the parameter to be estimated is the rate of occurrence, 

𝜆 > 0, which follows a Gamma prior distribution with parameters 𝛼 > 0 and 

𝛽 > 0, as shown in Eq. (4). For the likelihood function, the product of the 

Poisson density function, shown in Eq. (5), is used, since this is a Gamma-

Poisson conjugate prior approach. 
 

 𝑃(𝜆) =
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1e(−𝛽𝜆) (4) 

 

 𝐿 = ∏ 𝑃(𝑦𝑖)

𝑚

𝑖=1

= ∏
(𝜆𝑖

𝑦𝑖𝑒−𝜆𝑖)

𝑦𝑖!

𝑚

𝑖=1

=
𝜆𝑖

∑ 𝑦𝑖
𝑚
𝑖=1 𝑒−𝑚𝜆𝑖

∏ 𝑦𝑖!
𝑚
𝑖=1 

 (5) 

 

Rearranging the product of the likelihood function and the prior 

distribution function results in a Gamma posterior distribution where 𝛼∗ =

∑ 𝑥𝑖
𝑚
𝑖=1 + 𝛼 and 𝛽∗ = 𝑚 + 𝛽. 

 

 

𝑃(𝜆|𝑥) = (
𝛽𝛼

Γ(𝛼)
𝜆𝛼−1𝑒−𝛽𝜆) (𝜆∑ 𝑦𝑖

𝑚
𝑖=1 𝑒−𝑚𝜆) 

=
𝜆(∑ 𝑦𝑖

𝑚
𝑖=1 +𝛼−1) 𝑒−𝜆(𝑚+𝛽)(𝑛 + 𝛽)∑ 𝑦𝑖

𝑚
𝑖=1 +𝛼

Γ(∑ 𝑦𝑖
𝑚
𝑖=1 + 𝛼)

 

= Gamma (𝛼∗,  𝛽∗) 

(6) 

 

This result is the basic Gamma conjugate prior approach used in 

Bayesian analysis. This approach assumes the notion of exchangeability 

meaning that for different sets of training and testing data, the resulting 

posterior parameter will be similar since they are a function of the prior 

parameter, the size of the dataset, and the summation of all the data points. The 

characteristics of each outcome are not taken into consideration in this case, but 

rather the overall property of the dataset [Mackenzie et al. 2014].  

The Poisson Bayesian kernel approach extends the notion of the 

conjugate prior such that the posterior parameters computation not only 

depends on the prior parameters and the historical data but also on the 

attributes through the kernel matrix.  The parameters for the Bayesian kernel 

model for counts are expressed in Eqs. (7) and (8). 𝐊 is the 𝑚 ×  𝑚 kernel 

matrix, 𝐘 is an 𝑚 ×  1 vector containing the output data associated with the 𝑚 

observations of 𝐗, and 𝐕 is an 𝑚 ×  1 vector containing ones. Each entry in the 

kernel matrix represents the similarity measure between the attributes of the 

testing set and the training set. As such, the new data point is compared with 

the training set and according to the similarities of the attributes, new values for 
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the parameter of the posterior distribution are computed. Note that in this case, 

the training and testing sets are assumed to have the same size, 𝑚. However, 

when the model is deployed, the sets can be of different sizes, and in some 

cases, the testing set could include only one data point such as in a leave-one-

out analysis that will be illustrated in the case study.  
 

 𝛼∗ = 𝐊𝐘 + 𝛼 (7) 
 

 𝛽∗ = 𝐊𝐕 + 𝛽 (8) 
 

 As with other statistical and mathematical models, there are a few 

assumptions underlying the deployment of such modeling approach. Even 

though the form of the prior distribution is known from the conjugate prior, the 

model user would still need to identify the values of the prior parameters. 

Oftentimes, the priors are either assumed to be known or are assigned such that 

the prior distribution is non informative.  In other cases, these parameters are 

estimated using data and prior knowledge by matching the sample mean and 

variance to those of the prior distribution [MacKenzie et al 2014, Carlin and 

Louis 2008]. Further discussion on the choice and impact of prior parameters is 

provided in the case study of this chapter. Another assumption to consider is 

the choice of the kernel function which depends on the application and the 

model user. This research uses the most popular kernel function, the radial 

basis function (RBF) in Eq. (9), where 𝑘(𝐱𝑖, 𝐱𝑗) is one entry in the matrix 𝐊 

representing the kernel function between the attributes of the 𝑖𝑡ℎ and 𝑗𝑡ℎ data 

points. 
 

 𝑘(𝐱𝑖, 𝐱𝑗) = exp (−
‖𝐱𝑖 − 𝐱𝑗‖

2

2𝜎2
) (9) 

 

The rate for the new data point follows then a Gamma distribution with 

parameters 𝛼∗ and 𝛽∗.  As a point estimate for this parameter, the expected 

value of the posterior distribution is considered, shown in Eq. (10) as the ratio 

of the Gamma distribution parameters 𝛼∗ and 𝛽∗. Note that a different point 

estimate for the rate can be used such as the median, the mode, or the variance, 

depending on the type of problem and the model users. 
 

 �̂� =
𝛼∗

𝛽∗
 (10) 

 

Goodness of Fit Measures and Prediction Accuracy 

To assess the performance of the model, goodness of fit measures are analyzed 

to identify the capability of the model to capture data patterns. The empirical 

analysis and the case study compare the Poisson Bayesian kernel (PBK) model 
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to other classical methods for modeling count data, the Poisson generalized 

linear model (GLM) and the Negative Binomial GLM. The Poisson and 

Negative Binomial GLM assume that the rate to be estimated has an 

exponential relationship with a set of covariates representing coefficients for the 

different attributes, �̂�𝑃𝐺𝐿𝑀 = 𝑒𝛽𝑖𝑋, while the predicted rate for the PBK is equal 

to the expected value of the posterior probability distribution, �̂�𝑃𝐵𝐾 =
𝐊𝐘+α

𝐊𝐕+β
. 

The functional values of two metrics are used to compare how well the 

models fit the data and are able to explain the variance. The first metric is the 

deviance, which computes the difference in the log-likelihood function between 

the fitted model and the saturated model, Eq. (11), where 𝑦𝑖  is the true value of 

the data point and �̂� is the estimated rate for the particular data point. 
 

 𝐷 = 2 × (𝑙(𝒚|𝒚) − 𝑙(�̂�|𝒚)) (11) 
 

The second metric used is the functional value of the log-likelihood, shown 

in Eq. (12), which is to be maximized. The log-likelihood function represents the 

joint probability of the observed data as a function of the parameter of interest 

which is �̂� in this case. The larger the value of this function, the better the model 

is able to capture the data patterns using the estimated parameters. 
 

 𝑙(�̂�|𝒚) = ∑[𝑦𝑖ln (�̂�𝑖

𝑚

𝑖=1

) − �̂�𝑖 − ln (𝑦𝑖!)]  (12) 

 

The ultimate objective of building the Poisson Bayesian kernel model is 

to deploy it in risk analysis problems, such as predicting the frequency of 

disruptions in a particular network system. While the goodness of fit is 

important to assess whether the model is capturing the pattern and variability 

in the data, is it equally important to analyze the prediction power of a 

statistical model if it is going to be used for forecasting purposes. Prediction 

accuracy is assessed by the out-of-sample error, which accounts for the 

discrepancy between the estimated parameter and the actual observation of 

data points that were not in the set used to train the model.  

Adding complexity to the model will decrease the training error but may 

cause overfitting at some point resulting in a poor prediction accuracy when the 

model is applied to an independent data set. To validate the prediction power 

of the models, several metrics are evaluated to assess the out-of-sample error, 

and they are summarized in Table 1. 

The PBK is applied to several data sets, and its performance is compared 

to the Poisson and Negative Binomial GLM using the goodness of fit and 

prediction accuracy metrics discussed previously. Most of the data sets are 
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similar in terms of the number of predictors and the size of the data. One of the 

sets has a larger number of predictors for a small data set, and another is a large 

data set with a small number of predictors. Note that the number of predictors 

in all the models is held constant across the data sets to ensure consistency in 

the comparison. Also, the parameters of the prior distribution for all data sets 

are assumed to be 𝛼 = β = 1, also in order to maintain consistency in the 

evaluation of the performance of all models. 

A holdout analysis is performed where each data set is randomly split 

into training and testing sets for 100 trials. Traditional holdout analyses would 

train the model on a portion of the data and deploy it on the testing set to make 

predictions and compare them to the actual observations. With the PBK, an 

intermediate step in the training process is added to tune the unknown 

parameter, 𝜎, in the kernel function. This parameter is optimized based on the 

minimum mean square error. As a result, 30% of the data was used for testing 

the model, with 50% of the data used as a training set and 20% as a tuning set. 

The training and the tuning sets were then combined into one training set to 

perform the testing. For each of the three models, the estimated rate of 

occurrence is computed for the testing test and used to evaluate the deviance, 

the log-likelihood functional value, and the four out-of-sample error 

measurements given the observed values. This process is repeated 100 times 

where, at each iteration, random samples of training, tuning, and testing sets 

are chosen. Table 3 contains a summary of the analysis. The performance 

metrics values presented in the table below are the average values of the 

performance measures evaluated over 100 trials. PBK refers to the Poisson 

Bayesian kernel model and PGLM refers to the Poisson GLM, and NBGLM 

refers to the Negative Binomial GLM. Recall that the model with a smaller 

deviance and errors and a larger log-likelihood functional value is a better 

model. 

Overall, there are five out of seven data sets for which the Poisson 

Bayesian kernel model outperforms the Poisson and Negative Binomial GLM in 

terms of the predictive accuracy. In particular, those five cases are all among the 

six small data sets. The RMSE, NRMSEM, NRMSED, and MAE all behave 

similarly for all the datasets and lead to the same conclusion of the model 

performance, except for a minor difference in the Migration to Edinburgh where 

the PBK performs similarly to the NBGLM and slightly worse than the Poisson 

GLM in terms of MAE values. With respect to goodness of fit measures, the 

GLMs perform better than the PBK. Overall, the Negative Binomial fits the best. 

PGLM and NBGLM perform similarly in the two data sets for which the GLM 

outperforms the PBK in the predictive accuracy, Customer and Murder. The 

Poisson Bayesian kernel model appears to be a good model for prediction 
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purposes when the data set is small with a small number of predictors, a 

situation known to cause issues with regression modeling. 

 

Table 1: Prediction error measurement metrics. 

Prediction accuracy metrics Formula 

Root Mean Square Error  𝑅𝑀𝑆𝐸 =
1

𝑛
√∑ (𝑌𝑖 − �̂�𝑖)

2
 𝑛

𝑖=1  

Normalized Root Mean Square Error 
𝑁𝑅𝑀𝑆𝐸𝑀 =

1
𝑛

√∑ (𝑌𝑖 − �̂�𝑖)
2

 𝑛
𝑖=1

𝑌𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑌𝑚𝑖𝑛𝑖𝑚𝑢𝑚

 

Mean Absolute Error   𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖 − �̂�𝑖|

𝑛
𝑖=1  

 

Table 2: Description of data sets in the Poisson Bayesian kernel model validation study. 

Data set Number of 

attributes 

Data 

set size 

Dependent 

variable 

Predictors 

Crime 4 50 Crime rate Race, percentage of high school 

graduates, percentage below poverty 

level, percentage with a single parent 

Murder 4 51 Murder 

rate 

Race, percentage of high school 

graduates, percentage below poverty 

level, percentage with a single parent 

Mussels 8 45 Number of 

species of 

mussels 

Area, number of stepping stones 

(intermediate rivers) to 4 major species-

source river systems, concentration of  

nitrate, solid residue, concentration of 

hydronium 

Customer 5 110 Number of 

customers 

visiting a 

store from 

a particular 

region 

Number of housing units in the region, 

average household income in the region, 

average housing unit age in the region, 

distance to the nearest competitor, 

distance to the store 

West Nile 

virus in 

birds 

4 46 Cases of 

virus in 

birds 

Numbers of farms, area, population, 

human density 

West Nile 

virus in 

equines 

4 46 Cases of 

virus in 

equines 

Numbers of farms, area, population, 

human density 

Migration 

to 

Edinburgh 

4 33 Number of 

apprentices 

migrating 

Distance, population, degree of 

urbanization, direction  

from Edinburgh 
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Table 3: Performance metrics results for the empirical analysis. 

Data Metrics PBK PGLM NBGLM 

Crime 

LL -276.25 -256.56 -155.61 

DEV 352.87 313.49 343.14 

RMSE 26.47 33.15 37.69 

NRMSEM 0.28 0.35 0.39 

NRMSED 0.89 1.13 1.29 

MAE 21.26 21.97 23.19 

Murder 

LL -120.96 -77.79 -77.79 

DEV 107.69 21.38 21.38 

RMSE 9.81 3.85 3.86 

NRMSEM 0.28 0.17 0.17 

NRMSED 0.98 0.58 0.58 

MAE 4.68 2.59 2.59 

Mussels 

LL -97.33 -78.91 -78.72 

DEV 66.55 29.71 26.43 

RMSE 5.60 5.84 5.83 

NRMSEM 0.27 0.31 0.31 

NRMSED 0.96 1.08 1.07 

MAE 4.00 4.32 4.31 

Customer 

LL -230.02 -194.46 -194.46 

DEV 149.15 78.04 77.69 

RMSE 5.13 3.58 3.58 

NRMSEM 0.18 0.13 0.13 

NRMSED 0.77 0.55 0.55 

MAE 3.78 2.75 2.75 

West Nile virus in birds 

LL -135.35 -103.94 -80.76 

DEV 181.74 118.93 36.14 

RMSE 7.78 8.44 9.14 

NRMSEM 28.85 33.47 36.44 

NRMSED 98.22 113.65 123.84 

MAE 4.91 5.09 5.23 

West Nile virus in equines 

LL -40.12 -40.47 -39.42 

DEV 43.42 44.12 32.57 

RMSE 1.75 2.08 2.05 

NRMSEM 0.30 0.41 0.41 

NRMSED 0.95 1.24 1.25 

MAE 1.17 1.33 1.29 

Migration to Edinburgh 

LL -127.98 -106.03 -64.46 

DEV 442.9 146.62 25.78 

RMSE 31.23 32.29 32.45 

NRMSEM 0.43 0.53 0.51 

NRMSED 1.32 1.61 1.55 

MAE 15.98 14.71 15.86 
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Case Study 

With over 200 lock chambers and more than $150 million worth of goods flowing yearly 

[US Army Corps of Engineers 2011], the inland waterway system plays an important 

role in the nation’s economy. Unfortunately, the system’s reliability is declining due to 

the aging components of the network [Grier 2009]. According to the American Society 

of Civil Engineers’ most recent report card on America’s infrastructure, inland 

waterways received a grade of “𝐷−“ while dams received a grade of “𝐷”. Among the 

most common causes for the degrading status of inland waterways are aging 

components. On average, dams in the United States are 52 years old, and by the year 

2020, 70% of the dams will be over 50 years old [ASCE report card 2013]. As a result, 

locks and dams are frequently closed for unscheduled or scheduled maintenance which 

causes delays in the flow of commodities and incurs large economic losses across the 

nation. In 2009, 90% of locks and dams in the US experienced service interruption 

resulting in an average of 52 delays a day. 

The Poisson Bayesian kernel model is applied to analyze the frequency of lock 

closure due to disruptive events on the Mississippi River transportation network. The 

network has 29 locks acting as key connectors between different ports nationwide. The 

navigation system reflects 9,000 miles of navigable waterway with 70.5% of the U.S. 

inland waterway commodity flowing through the network.  

The data, retrieved from the database collected by the U.S. Army Corps of 

Engineers [2011], contains detailed information on each lock’s characteristics including 

the river mile, the total number of vessels passing by the lock, the total tonnage, and the 

frequency and average delay for the vessels and tows experiencing delay time due to 

the lock’s closure. Data is available on the yearly frequency of closure for each lock 

which is considered in this case the outcome to be estimated. A sample of the data is 

represented in Table 4. 

The goal of deploying the Bayesian kernel model is to obtain an accurate 

prediction of the frequency of disruptions to inform preparedness strategies and 

investment decision making. Using the Poisson Bayesian kernel model, decision makers 

are able to produce a probability distribution of the number of times a particular lock 

and dam will close each year. The distribution can be used to improve risk management 

along the inland waterways and make them a more reliable transportation system.  

As a first step, the prediction accuracy of the PBK model is tested in comparison 

with the PGLM and the NBGLM. Similarly to the analysis done in the empirical study, a 
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holdout analysis is performed to assess the goodness of fit and prediction accuracy of 

PBK for the inland waterway, and the results are summarized in Table 5. 

 

 

 

Table 4: Sample of the inland waterway disruption data. 

 𝑌 𝑋1 𝑋2 𝑋3 𝑋4 … 

Lock & 

Dam 

Closure 

Frequency 
River Mile Vessels Tonnage Lockages . . . 

L&D 3 0 797 9,397 6,747 4,406 . . . 

L&D 13 6 523 2,810 14,545 3,155 . . . 

L&D 2 0 815 4,478 6,735 2,893 . . . 

L&D 20 23 343 2,508 20,828 3,582 . . . 

L&D 22 40 301 2,280 22,476 3,486 . . . 

L&D 8 6 679 4,333 10,277 2,620 . . . 

... ...
 

...
 

...
 

...
 

...
 

. . . 

 

Table 5: Performance metrics results for the inland waterway data analysis. 

 Metrics PBK PGLM NBGLM 

Full model 

LL -285.06 -148.06 -75.09 

DEV 486.03 211.65 23.89 

RMSE 32.82 63.94 131.03 

NRMSEM 0.34 0.66 1.24 

NRMSED 0.94 1.88 3.45 

MAE 21.53 33.23 57.15 

Best model - PGLM 

LL -252.25 -146.01  

DEV 420.53 208.06  

RMSE 32.60 42.37  

NRMSEM 0.34 0.46  

NRMSED 0.95 1.34  

MAE 20.76 25.08  

Best model - NBGLM 

LL -238.07  -78.13 

DEV 391.33  24.15 

RMSE 28.46  46.74 

NRMSEM 0.30  0.54 

NRMSED 0.87  1.56 

MAE 18.00  26.01 
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According to the values of the average out-of-sample error expressed in the four 

metrics, RMSE, NRMSEM, NRMSED, and MAE, PBK does a better job at making 

accurate predictions of the average frequency of lock and dam closures even though 

based on the values of the log-likelihood and deviance, GLM, more specifically the 

Negative Binomial GLM is better at fitting the data. One of the reasons a GLM might 

not be providing good prediction errors is overfitting. In order to check whether the 

results obtained, after fitting a full model that includes all covariates, are due to the 

GLM overfitting the data, the analysis is performed given the best version of the GLMs. 

The selection of covariates for each of the Poisson and Negative Binomial GLM is based 

on Akaike’s Information Criterion (AIC) that penalizes additional parameters 

contributing to the model complexity. In terms of goodness of fit measures, both 

reduced GLMs did not express any change in the values of the log-likelihood and 

deviance from the full model. However, the prediction accuracy improved significantly 

for the reduced model with about 60% decrease in the values of RMSE, NRMSEM, 

NRMSED, and MAE for NBGLM and about 30% decrease for PGLM error measurement 

values. The covariates selected for the best models were also included in the PBK 

evaluation for consistency. The PBK still performed better than the best version of both 

GLMs and maintained better predictive error measures even though the reduced 

versions of GLMs significantly improved their prediction accuracy.  

One of the advantages of using Bayesian methods in risk analysis is the flexibility 

of the approach in (i) establishing assumptions, and (ii) interpreting the results. Any 

prior belief about the risk measure to be estimated can be embedded in the prior 

distribution. Determining the prior parameters can be challenging and can result in 

significant implications on the posterior parameters’ estimation. So far, the analysis 

considered the same prior distribution with prior parameters 𝛼 = 𝛽 = 1 to insure 

consistency in the empirical study across the different data sets and models. This 

section examines the implications of changing the priors on the posterior parameters.  

In risk analysis problems, experts in the field can help in assessing any prior 

knowledge about the parameter to be estimated. Ideally, risk managers are interviewed, 

and using probability elicitation techniques, a prior probability distribution is defined. 

Three levels of knowledge are considered in this case that influence the estimation of the 

priors. For each case scenario, the posterior frequency of disruptions is computed and 

compared to results from fitting a PGLM and a NBGLM. The distribution of the RMSE 

across the three models under each case scenario is used to assess the impact of the priors. 

The first approach assumes the experts have a perfect knowledge about the 

frequency of disruptions and the prior parameters are estimated from the data using the 

method of moments, Eq. (13) , where �̅� and 𝑠2 are respectively the mean and variance of 

the historical data. 
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𝛼 =

�̅�2

𝑠2
 

𝛽 =
�̅�

𝑠2
 

(13) 

 

The plot in Figure 1 shows that the distribution of RMSE values is skewed 

towards the smaller values (around 25), while the PGLM and NBGLM distributions of 

RMSE values are spread across larger values with thicker tails. The dashed lines 

correspond to the mean RMSE showing that PBK performs the best in terms of 

prediction accuracy. 

The second case scenario assumes that the risk managers have some prior 

knowledge but it is not perfect like in the first approach. The bias introduced by the risk 

managers is modeled with a random noise and the distribution of RMSE for the three 

models is depicted in Figure 2. The expected value of RMSE and the overall distribution 

of the values are both quite similar to the case where the knowledge is assumed to be 

perfect. Note that the added noise in this case is not very significant. If the risk manager 

expressed a stronger bias, more noise would be added which could impact the prior 

parameters estimation and ultimately the posterior distribution and predicted values of 

the frequency of disruption. 

For the third approach, it is assumed that the risk managers have no prior 

knowledge, or there is no access to a reliable source of information to estimate informed 

prior parameters. Therefore, the priors are arbitrarily determined and the distribution 

of the RMSE values is plotted in Figure 3. The smaller values of RMSE still have the 

highest frequency in the distribution of RMSE for PBK; however this peak is now 

centered around values equal to 50 as opposed to 25 in the first two approaches. The 

overall distribution shifted to the right, towards larger values of the RMSE, and the 

distribution is overlapping with PGLM and NBGLM RMSE distributions. In addition, 

the expected value of RMSE for PBK increased and is approaching the RMSE expected 

value of the PGLM, although it is still significantly smaller. 
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Figure 1: RMSE distribution with perfect prior knowledge. 

 

Figure 2: RMSE distribution with imperfect prior knowledge. 
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Figure 3: RMSE distribution with no prior knowledge. 

 

 The selection of prior parameters has an implication on the form of the posterior 

distribution. A poorly formulated prior distribution can impact the performance of the 

PBK in predicting the frequency of lock and dam closures. On the other hand, a perfect 

prior distribution relying solely on the historical data is unrealistic. Therefore, the 

model user must carefully formulate the prior distribution and prior parameters to 

ensure accurate posterior inferences. 

 The model developed in this chapter can impact the decision making process for 

the protection and rehabilitation of the U.S. inland waterways. As mentioned earlier, 

this critical infrastructure system is suffering from aging components resulting in 

frequent disruptions of the flow of commodities across the nation. The Department of 

Homeland Security announced a set of grant programs to protect and rehabilitate 

critical infrastructure systems. These grants are normally assigned based on the priority 

of the rehabilitation project due to the limited availability of resources. Using the hold-

one-out analysis approach, the PBK is used to produce a rank of the locks and dams of 

the inland waterway network. Such a ranking of an infrastructure system’s components 

is one way to implement data-driven risk analysis into real world decision making. 

Table 6 contains the top five locks & dams with the highest predicted frequency of 

closures per year. 
 

Table 6: Locks/dams with highest frequency of closures 

Ranking Lock/Dam ID 

1 L&D 27 

2 Mel Price L&D 
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3 L&D 19 

4 L&D 21 

5 L&D 22 

 

 Frequent disruptions might be one indication of a component’s reliability and 

urgent need for rehabilitation. As such, the ranking produced in the table above can 

either be used to allocate grants accordingly or it can be integrated into a multiobjective 

decision tool that incorporates other factors into the assessment of a rehabilitation 

project. 

 

Conclusions 

Bayesian kernel methods are powerful tools in forecasting data. These models make use 

of the Bayesian property by relying on historical data and experts’ knowledge, but they 

also add more specificity to the model by using the kernel function. Gaussian Bayesian 

kernel models became very popular recently and were extended and applied to a 

number of classification problems. An important extension to those models is the non-

Gaussian model which gives more flexibility in applying this methodology to all types 

of data set, however, there has been no Bayesian kernel model in the literature that 

addresses count data. 

This chapter introduced count data modeling to the class of Bayesian kernel 

methods. Using the notion of the conjugate prior, the rate of occurrence is assumed to 

follow a Gamma prior and posterior distribution using the Poisson likelihood function. 

The parameters of the posterior distribution are constructed using results from the 

classical Bayesian Gamma conjugate prior and the exchangeability argument. 

The Poisson Bayesian kernel model presented in this chapter is empirically tested 

and compared with the classical Poisson and Negative Binomial GLM. The three 

models were used to fit several datasets having similar characteristics in terms of the 

size of the data and the number of predictors. The evaluation of the performance of 

each model is based on the values of metrics corresponding to the goodness of fit and 

prediction accuracy. Based on the results obtained, the Poisson Bayesian kernel model 

outperforms the Poisson and Negative Binomial GLM in the majority of the sets for 

most of the performance metrics representing the out-of-sample error. Also, the Poisson 

Bayesian kernel model is potentially a better model for small-sized data sets having few 

predictors. Such a result can be very useful in risk analysis applications to estimate the 

rate of occurrence of a certain disruption in transportation systems or power grids. In 

such cases, data can be limited due to the lack of occurrence of the event and the 

possible factors that might cause a disruption. The need for a more accurate estimation 

of the rate of disruption can help save lives and lead to more efficient preparedness and 

recovery investment and allocation. 
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The Poisson Bayesian kernel model is illustrated using waterway transportation 

network data of the frequency of lock closure along the Mississippi river, and compared 

to the classical Poisson and Negative Binomial GLM for the six metrics used in the 

empirical study. While GLMs exhibit a better fit of the data, the Bayesian kernel model 

produces a smaller out-of-sample error suggesting a better prediction power. Accurate 

predictions of the frequency of disruptions are used to rank the locks and dams and 

allocate rehabilitation resources accordingly. Realistically, the rank would be one of 

many criteria used in the decision making process. This chapter addresses the 

prediction of risk of infrastructure disruptions, the second step would be to understand 

and quantify the interdependent economic impacts of a disruptive event and how they 

influence preparedness decision making accordingly. 
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