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1. Introduction 

Since the discovery of carbon nanotubes (CNTs) by Iijima,1 considerable research 
aimed at understanding and processing CNTs has been undertaken due to their 
outstanding physical properties. CNT properties make them an attractive candidate 
as a reinforcement in polymer matrix composites. Inclusion of CNTs into the 
polymer matrix generally increases the composite material stiffness and strength 
but typically decreases the fracture toughness and strain to failure.2–8 However, the 
structural improvement in polymer composites gained through the addition of 
CNTs is below the expected value as predicted by either the rule of mixtures or the 
Halpin-Tsai model.5 The discrepancy between the predictions and experimental 
results is due to non-uniform dispersion of the CNTs in the polymer matrix. 
Consequently, a key requirement for realizing improved structural properties is that 
the CNT reinforcement be uniformly dispersed. Due to their small volumes 
compared to their large surface areas, CNTs are strongly affected by intermolecular 
forces that result in the formation of agglomerations of CNTs and thereby make 
uniform distribution difficult. The formation of aggregates significantly reduces the 
benefit of adding CNTs to the polymer and makes dispersion difficult.5, 8–9  

A relatively new CNT system referred to as a carbon nanostructure (CNS) is 
fabricated by growing multiwalled CNTs on the surface of a fiber to create a 
network or CNT “forest”.10–12 The fiber has a “fuzzy” appearance due to the CNT 
forest, and the combination is referred to as a carbon-enhanced reinforcement 
(CER). Further, the CNT forest of multiple “host” fibers becomes entangled as 
multiple fibers become proximally close as notionally shown in Fig. 1. These CER 
systems are subsequently enveloped in a polymer matrix to form a masterbatch 
CER pellet. In this embodiment, the CNTs are grown from, and therefore fixed to, 
the host fiber and as a result, CNT agglomeration is largely avoided. The CER 
material is largely being studied for use in multifunctional applications such as 
structural-electromagnetic shielding but increases in mechanical properties have 
been also noted.12 The CER material used in electromagnetic shielding applications 
are reported to contain nanotubes in excess of 8 weight percent (wt%).12 
Mechanical testing revealed that polycarbonate (PC) with approximately 4.4 wt% 
CNS (i.e., CNT network using 30 wt% PC-CER pellet loading) resulted in a tensile 
modulus increase of approximately 400%, a tensile strength increase of 
approximately 50%, and the tensile strain to failure reduction of approximately 
300% compared to neat PC.12  
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Fig. 1 Fuzzy fiber reinforcement consisting of entangled CNT forest grown from multiple 
fiber surfaces 

In this work, we mechanically evaluate the structural benefit of adding nylon-CER 
to nylon (PA-6,6) using tension test specimens fabricated by injection molding. The 
concentration of the CER is varied to determine the relationship between CER wt% 
and enhanced mechanical properties. The CER/nylon dispersion is characterized 
using scanning electron microscopy (SEM), and the tensile properties of the 
prepared composite materials are evaluated. 

2. Experimental 

2.1 Materials 

Both the nylon (PA-6,6) and CER thermoplastic pellet material was supplied by 
Owens Corning (USA). Two pellets of CER and nylon are shown in Fig. 2. 
According to the manufacturer, the CER pellet is 59.7 wt% nylon and 40.3 wt% 
CER, the latter of which is approximately 10.5 wt% CNS and approximately 
29.8 wt% glass fiber assuming a ratio of approximately 0.26 wt% CNS per wt% 
CER for the specified CER pellet loading. The nylon of a few of the CER pellets is 
dissolved in a gently shaken bath of hexa-fluoro isopropanol to reveal the glass 
fibers and CNTs; a slide of the dissolved mixture is shown in Fig. 3. From this 
dissolved mixture it is determined that the glass fiber has an approximate diameter 
of 10 µm and ranges in length from 0.2 to 0.5 mm. It is also shown in Fig. 3 that 
the CNT network did not remain attached to the glass fiber surface as we had 
theorized, but instead had detached from the fiber surface and agglomerated upon 
dissolving the CER nylon matrix.
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Fig. 2 As-received CER pellets (left) and neat nylon pellets (right) 

 

 

Fig. 3 Optical image of exposed short glass fibers and CNT network resulting from 
dissolving nylon in acid bath 

To view the original orientation of the glass fibers in the CER pellet, the CER pellet 
is cooled in liquid nitrogen and then carefully fractured by mechanical force. The 
fracture surface is examined by SEM to evaluate the dispersion and orientation of 
the glass fibers. The SEM image of the fracture surface shows that the glass fibers 
are fairly well dispersed and predominantly aligned with the length of the CER 
pellet as shown in Fig. 4. The presence of numerous exposed glass fiber ends in  

 

1 mm 

 

0.1 mm 
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Fig. 4 indicates that these fibers were pulled out from the nylon matrix; 
consequently, it can be inferred that the glass fibers (and possibly the CNTs) do no 
not adhere well to the nylon matrix. Lau and Hui13 identify poor adhesion between 
the matrix and CNT as the critical issue for using nanotubes in advanced structural 
composites where interfacial bonding of the matrix and CNT is required for 
maximum strength composites materials.  

 

Fig. 4 SEM image of CER pellet fracture surface 

2.2 Fabrication 

Before processing the material, the nylon and CER pellet materials were placed in 
a vacuum oven for 8 h to remove any water absorbed by the pellets. Once dried, all 
material was kept in a desiccator throughout the fabrication process. Five composite 
mixtures were chosen, starting with pure nylon and increasing weight percentage 
of CER pellet material in 25 wt% increments (i.e., 0, 25, 50, 75, and 100 wt% CER 
pellet). Note that these mixtures correspond to approximate CER concentrations of 
0.0, 10.1, 20.2, 30.2, and 40.3 wt%, respectively. The pellets are heated and 
compounded in a twin-screw microcompounder where the mixture is recirculated 
at 100 rpm for 3 min. To produce a sufficiently melted mixture with low viscosity 
for molding purposes, it was necessary to increase the recirculating temperature 
with increasing concentration of CER as indicated by the following Table.
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Table Compounder conditions of CER/nylon composite mix compositions 

Mix composition 
Mix temperature 

(°C) CER 
(wt%) 

Nylon 
(wt%) 

0.0  100 230 

10.1 89.9 235 

20.2 79.8 240 

30.2 69.8 260 

40.3 59.7 275 

 
Once mixed, the composite material was fed into the chamber of a microinjection 
molder. All material compositions, excluding the 40.3 wt% CER material, were 
processed with the chamber and mold heated to 150 and 70 °C, respectively, and 
used a 10 s at 8 bar (0.8 MPa) injection mold process to fabricate the test specimens. 
For the 40.3 wt% CER material, the chamber and mold were heated to 275 and 
150 °C, respectively, and used a 10 s at 12 bar (1.2 MPa) injection molding process 
due to the higher viscosity of the composite material. 

2.3 Characterization 

The tensile mechanical properties for the 5 compositions are assessed using the 
ASTM D-63814 test standard. Specimens were injection molded to the ASTM 
D-63814 Type V geometry as shown in Fig. 5 and subsequently painted with a 
speckle-pattern for full-field strain measurement using digital image correlation 
(DIC).15 Tensile test specimens were secured with pneumatic grips and pulled at a 
rate of 5 mm/min. The mechanical values reported are the average of 10 samples. 
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Fig. 5 Injection-molded tensile specimens with DIC speckle pattern applied to gage section 
(0 wt% CER on left and 40.3 wt% CER on right) 

3. Results and Discussion 

Typical engineering stress-strain curves for each of the compositions are shown in 
Fig. 6. The tensile testing results show that the axial strength and modulus generally 
increase with increasing CER content and that elongation decreases. We report the 
average tensile elastic modulus and standard deviation as the average slope of 10 
engineering stress-strain curves near 0.5%–1.5% strain for each of the 5 CER 
compositions. The increase in average tensile modulus as a function of CER content 
is approximately linear as shown in Fig. 7. The tensile modulus of the 40.3 wt% 
CER composite is 520% greater than the 0 wt% CER composite (i.e., neat nylon) 
tensile modulus. The average yield strength is set using the 0.2% strain-offset 
method; the yield strength as a function of CER content is shown in Fig. 8. The 
yield strength increases nearly linearly with increasing CER content. The tensile 
yield strength of 40.3 wt% CER composite is 125% greater than the 0 wt% CER 
composite yield strength. Lastly, as indicated by the engineering stress-strain 
curves shown in Fig. 9, the fracture strain decreases significantly with the addition 
of CER. Generally, the drop in elongation to failure is significant between the 
0 wt% CER and 10.1 wt% CER compositions as shown in Fig. 9 where the fracture 
strain for 0 wt% CER is over 100% and the fracture strain for 10.1 wt% CER is 
approximately 3%. However, the reduction in elongation at failure is less sensitive 
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to further increases in CER content in the compositional range of 10.1–40.3 wt% 
CER as the fracture strain is shown in Fig. 9 to decrease from approximately 3% 
for the 10.1 wt% CER to approximately 1.4% for the 40.3 wt% CER.  

 

Fig. 6 Tensile stress-strain relation for the 5 compositions of CER/nylon 

 

 

Fig. 7 Average and standard deviation in elastic modulus as a function of composition 
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Fig. 8 Average and standard deviation in yield strength as a function of CER composition 

 

 

Fig. 9 Average strain and standard deviation in failure strain as a function of composition 
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SEM images of the tensile fracture surfaces belonging to the 40.3 wt% CER and a 
neat nylon test specimens are shown in Fig. 10. The fracture surface of the 
40.3 wt% CER specimen is much rougher than the neat nylon specimen is and is 
an indication of embrittlement of the material with increasing amounts of the glass 
fiber and CNS. Fig. 10b shows that the glass fibers are well aligned with the test 
specimen gauge axis and are also well dispersed due to the effectively one-
dimensional flow of the injection modeling process. Additionally, glass fiber 
pullout is observed in the CER specimens as shown in Fig. 10b so it may be 
concluded that the adhesion is not significant between the nylon matrix and glass 
fiber. Yet, the CNS network remains embedded in the nylon matrix and is pulled 
from the glass fiber surface during the tension test as shown in the magnified view 
of the glass fiber and nylon matrix in Fig. 11. This is evidence that the effective 
bond strength (due to adhesion, thermal expansion coefficient mismatch, 
entanglement, etc.) between the nylon matrix and CNS is greater than the bond 
strength of the glass fiber and CNS attachment site.
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(a) 

 

 
(b)  

Fig. 10 SEM images of test specimen fracture surface: a) neat nylon and b) 100% CER 
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Fig. 11 Close-up SEM image of glass fiber–nylon matrix interface in 100 wt% CER test 
specimen 

4. Conclusions 

The primary objective of this research was to determine the increased mechanical 
properties of nylon resin when blended with a CER. An obvious follow-on to this 
work is to evaluate the same compositions without CNS (i.e., short glass-fiber-
reinforced nylon) and compare the results to these findings. This work shows that 
the tensile elastic modulus and yield strength of materials with 40.3 wt% CER 
content were on average 520% and 125% higher, respectively, than those of neat 
PA-6,6 nylon. Additionally, the increase in tensile elastic modulus and yield 
strength increases nearly linearly with CER content. This increased elastic modulus 
and yield strength are accompanied by a reduction in failure strain, which drops by 
over 100% with the introduction of 10.1 wt% of CER material. The reduction in 
failure strain is nonlinear with a large reduction in failure strain occurring between 
the 0 wt% CER and the 10.1 wt% CER compositions. Also, the bonding of the CNS 
to the glass fiber appears to be low and may prevent the achievement of superior 
composite mechanical properties. 

 

 
 
 
 
 
 
 

Fiber Surface 
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