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During dynamic stall, large peaks in lift, pitching moment and drag appear, and these cause an undesirable increase in the mean drag. 
Dynamic stall can also lead to potentially fatal structural loads due to strong vibrations of flexible aerodynamic surfaces. Despite extensive 
analytical, numerical, and experimental efforts to study dynamic stall, progress is needed for the full 


understanding and prediction of the relevant complex fluid dynamic mechanisms. 





We propose to do the following:


1. Continue the research on cylinder in an oscillating incoming flow that is proving to be a useful "model system". We will include effects of 
oscillation of direction of incoming velocity vector (and not just its magnitude) to emulate effects of separation at the leading edge.


2. Explore an analytical direction by extending the Ginzburg-Landau equation approach to compute Koopman Modes for flow around the 
cylinder with oscillating incoming velocity and compare with numerical approach. This will be done in collaboration with ARL.


3. Explore Koopman Mode Decomposition in 2-D and 3-D data of plunging airfoil provided by Dr. Miguel Visbal of AFRL.


4. Provide a Reduced Order Model (ROM) of Dynamic Stall using skew-projection methods in conjunction with the Koopman Mode 
Decomposition.
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Periodically forced Hopf bifurcation flows, such as oscillating cylinders, can exhibit rich spectral content. Though lock-on dynamics of 
systems forced near resonances are well understood, the underlying chaotic or quasi-periodic dynamics when forcing away from a natural 
frequency are not. This behavior can be critical for systems of practical significance, such as oscillating airfoils under dynamic stall. In this 
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Introduction 
 
High manoeuvrability requirements on modern helicopters require the necessity of deeper 
understanding of dynamics, and in turn possibilities for control of, dynamic stall. Unsteady flow 
and resulting aerodynamic loads strongly affect the propulsive efficiency of highly loaded 
helicopter rotor blades [Ham:1968], [Johnson:1972]. Thus, there is currently much interest in the 
unsteady aerodynamics of flows relevant to rotorcraft (manned and unmanned) air vehicles. The 
flowfields in these applications exhibit unsteady separation followed by the formation of 
dynamic-stall-like vortices whose evolution and interaction with flexible aerodynamic surfaces 
have a significant impact on flight stability and performance and in turn on structural design 
[Barwey:1994]. Analysis of these flows is complicated further by their mixed laminar 
transitional turbulent character at moderate Reynolds numbers, as well as by the broad range of 
possible parameters, kinematics, and configurations. To facilitate progress in the understanding 
and prediction of the relevant fluid dynamic mechanisms, it is natural to consider methods that 
provide simplification of the flow phenomena by separating them into individual modes. The 
technique of Proper Orthogonal Decomposition (POD), see [Holmes: 1998] is a popular way of 
accomplishing this task. However, while POD is capable of extracting the most energetic parts of 
the flow field, it has been shown to lack ability of highlighting subtle, oscillatory phenomena that 
are nevertheless implicated in important physical processes such as the shear layer separation. 
 
Unsteady flows over plunging and pitching airfoils with large excursions in effective angle of 
attack exhibit the phenomenon termed dynamic stall, a process characterized 
phenomenologically by unsteady separation and by the formation of large-scale leading-edge and 
trailing-edge vortices, which exert difficult-to-predict variations in aerodynamic loads.  Distinct 
stages of the evolution of dynamic stall are a) vortex formation, b) vortex convection, c) stall 
onset and d) stalled stage. Comprehensive reviews of this phenomenon, first discovered and 
studied extensively in the context of helicopter rotor blades, has been given by McCroskey 
[Mccroskey:1982], [Carr:2012], and [Ekaterinaris:1998]. 
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Aimdyn and AFRL have been studying physical mechanisms of dynamic stall using the methods 
of Koopman operator theory. The initial seed research has suggested existence of high-frequency 
effects in leading edge vortex shedding events, not present in the static stall case. The research 
guided by dynamical systems methods and efficient numerical methods for Koopman Mode 
Decomposition already lead to interesting outcomes. Among those are insight into the physical 
effects of the oscillatory nature of the incoming velocity that the wing experiences due to pitch or 
plunging. For example, the examination of a model system - a cylinder in an incoming 
oscillatory flow - showed some of the physical effects (e.g. broadening of the spectrum) 
observed in the pitching airfoil case are present in the model system and shed light on the 
dynamics of aspects of pitching airfoil dynamics as a nonlinear interaction of the forcing by the 
oscillating incoming flow frequency and natural frequency of vortex shedding dynamics. In 
collaboration with the Army Research Laboratory's Dr. Bryan Glaz, we found the precise state-
space description of the mechanism of the broadening of the spectrum by examining 
perturbations of the limit cycling motion by external forcing frequency. 
 
Koopman Modes for Stationary Airfoil with Different Degrees of Oscillation Amplitude 
 
Koopman mode decomposition is based on the surprising fact, discovered in [Mezic: 2005], that 
normal modes of linear oscillations have its natural analogue - Koopman modes - in the context 
of nonlinear dynamics. To pursue this analogy, one must change the representation of the system 
from the state-space representation to the dynamics governed by the linear Koopman operator 
([Koopman: 1931]) on an infinite-dimensional space of observables. Contrary to the proper 
orthogonal decomposition, the dynamic mode decomposition contains not only information 
about coherent structures, but also about their temporal evolution. 
 
Based on snapshots of the flow, we can approximate the Koopman Modes using an Arnoldi-like 
algorithm sometimes called dynamic mode decomposition (DMD) ([Schmid: 2008], [Rowley: 
2009]) which computes eigenvalues based on the so-called companion matrix. 
 
Given a sequence of equispaced in time snapshots from numerical simulations or physical 
experiments, with ∆� being the time interval between snapshots, a data matrix is formed with 
columns that represent the individual data samples �� ∈ �

�, � = 0,… ,�, with � representing time 

�∆�. The companion matrix is then defined as: 

 
where ��, � = 0,… ,� − 1 are such that: 

 
and � is the residual vector. 
 
The spectrum of the Koopman operator restricted to the subspace spanned by ��  is equal to the 

spectrum of the infinite-dimensional companion matrix and the associated Koopman modes are 
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given by �� (provided that � does not belong to the null space of �), where � =
[��, ��, … , ����] is the column matrix (vector-valued) of observables snapshots at times 
0, ∆�, … , (� − 1)∆� and � is an eigenvector of the shift operator restricted to Krylov subspace 
spanned by �� which the Companion matrix is an approximation of. The approximate Koopman 
eigenvalues and eigenvectors obtained by the Arnoldi's algorithm are called Ritz eigenvalues and 
eigenvectors. 
 
The standard Arnoldi-type algorithm to calculate the Ritz eigenvalues �� and eigenfunctions ��  is 
as follows: 
 
1.  Define � = [��, ��, … , ����]. 
 
2. Find constants �� such that: 

 
This can be done by defining � = ����, where �� is the pseudo inverse of �. 
 
3.  Define the companion matrix � as above and find its eigenvalues and eigenvectors: 

 
where eigenvectors are columns of ���. Note that the Vandermonde matrix ��  

 
diagonalizes the companion matrix � , as long as the eigenvalues ��, … , �� are distinct. 
 
4. Define ��  to be the columns of � = �����. 
 
Then, the Arnoldi-type Koopman Mode Decomposition gives: 

 
 
We studied the stationary airfoil simulation provided by our collaborator Dr. Bryan Glaz at the 
U.S. Army Research Laboratory. The simulation was for a statically pitched NACA 0015 airfoil. 
The airfoil chord was 0.135 m, fresstream velocity magnitude was 100 m/s, and the freestream 
was oriented at a static 18 degree angle of attack. We also studied the case with 6 deg oscillation 
amplitude as well as 2 deg, 4 deg and 8 deg oscillation amplitude. 
 
Figure 1 shows Fourier and KMD spectrum for u-velocity. 
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Figure 1. Fourier and KMD spectrum. FFT is in black; KM spectrum is red. 

 
The obtained Koopman mode eigenvalues are shown in Figure 2, DMD spectrum in frequency 
w, exponential rate mu plane is shown in Figure 3. 
 

  
Figure 2. Koopman Mode Eigenvalues. Figure 3. DMD spectrum in frequency w, 

exponential rate mu plane. 
 
The recomposition of signal using 40 first pairs of the highest magnitude modes sorted by abs of 
norm of Vj has been performed. Figure 4 shows the reconstructed signal (red) vs the original 
data (blue). 

 
Figure 4. The reconstructed signal (red) vs the original data (blue) for the random location. 

 
Magnitude, phase, real part and imaginary part for the Koopman mode corresponding to 
frequency 470 Hz are shown in Figure 5. 
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Figure 5. Magnitude, phase, real part and imaginary part for the Koopman mode corresponding 

to frequency 470 Hz. 
 
Figure 6 shows Fourier and KMD spectrum for u-velocity for the airfoil case with 6 deg 
oscillation amplitude. 

 
Figure 6. Fourier and KMD spectrum for the airfoil case with 6 deg oscillation amplitude. FFT is 

in black; KM spectrum is red. 
 
Figure 7 shows Fourier and KMD spectrum for u-velocity for the airfoil case with 2 deg 
oscillation amplitude. 
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Figure 7. Fourier and KMD spectrum for the airfoil case with 2 deg oscillation amplitude. FFT is 

in black; KM spectrum is red. 
 
Figure 8 shows Fourier and KMD spectrum for u-velocity for the airfoil case with 4 deg 
oscillation amplitude. 

 
Figure 8. Fourier and KMD spectrum for the airfoil case with 4 deg oscillation amplitude. FFT is 

in black; KM spectrum is red. 
 
The real part for the Koopman mode corresponding to frequency 24 Hz for the u-velocity for the 
airfoil case with 6 deg oscillation amplitude is shown in Figure 9A, the real part for the 
Koopman mode corresponding to frequency 23.5 Hz for the u-velocity for the airfoil case with 2 
deg oscillation amplitude is shown in Figure 9B, the real part for the Koopman mode 
corresponding to frequency 23.5 Hz for the u-velocity for the airfoil case with 4 deg oscillation 
amplitude is shown in Figure 9C. 
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Figure 9A. The real part for 
the Koopman mode 

corresponding to frequency 
23.5 Hz for the airfoil case 

with 6 deg oscillation 
amplitude. 

Figure 9B. The real part for 
the Koopman mode 

corresponding to frequency 
23.5 Hz for the airfoil case 

with 2 deg oscillation 
amplitude. 

Figure 9C. The real part for 
the Koopman mode 

corresponding to frequency 
23.5 Hz for the airfoil case 

with 4 deg oscillation 
amplitude 

 
Connection between a basic version of the dynamic mode decomposition and the discrete-
time version of the generalized Laplace analysis 
 
We studied the connection between a basic version of the dynamic mode decomposition and the 
discrete-time version of the generalized Laplace analysis to apply to the airfoil case. 
 
Theorem: Let f(x;z) be a field of observables f(x;z) : M x A -> Rm, where the observables are 
indexed over the set A. We will occasionally drop the dependence on the state-space variable x 
and denote f(x;z) = f(z) and the iterates of f by f(Tix;z) = fi(z). Let λ0, ..., λk be the  eigenvalues of 
�� such that ||λ0|| ≥ ||λ1|| ≥  … ≥ ||λk||. Then, the Koopman mode associated with λk is obtained by 
computing 

 
 
We showed an explicit relationship between a basic version of the Dynamic Mode 
Decomposition (DMD) and the Koopman Mode Decomposition (KMD) of dynamical systems, 
that allows for estimates of validity of approximation of Koopman modes by DMD modes. We 
also linked the recently introduced Generalized Laplace Analysis and the inverse of the 
Vandermonde matrix. We proved the equivalence between dynamic modes and Koopman modes 
over infinite iteration of the dynamical system. 
 
Prony Methods 
 
We also studied Prony methods [Plonka: 2014] for recovery of structured functions and 
implemented the following algorithm in C++. 
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Algorithm (Classical Prony method) 
 
Input: 
M  N, sampled values h(k), k = 0,…,2M-1, of the exponential sum 

 
1. Solve the following linear system 

 
where 

 
2. Compute all zeros zj  D, j = 1,…,M, of the Prony polynomial 

 
i.e., calculate all eigenvalues of the associated companion matrix 

 
and form fj = log zj for j = 1,…,M, where log is the principal value of the complex logarithm. 
3. Solve the Vandermonde system 

 
Output: 

 
 
Bifurcation around a Critical Reynold’s Number 
 
We were looking at the theoretical explanation of our numeric observations of bifurcation around 
a critical Reynold’s number. Reading paper [Bagheri: 2013], we realized that we could look at 
this issue as a forced oscillator set up similar to the one in paper [Vance: 1989]. We were 
studying this paper to apply the theory to our case. 
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We compared analytic solutions for the bifurcation sets of the truncated normal form of the 
dynamic equations for p=1 (Figure 10A), p=2 (Figure 10B) and p=40 (Figure 10C). 
 

 
Figure 10A. p=1 

 

 
Figure 10B. p=2 
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Figure 10C. p=40 

 
We researched the following papers: [Wang: 2003], [Lin: 2008]. The main idea there is that for 
large periods T of perturbation chaotic behavior arises in systems with Hopf bifurcation. This is a 
restricted result in that the considered perturbation consists of kicks. We are considering 
pursuing simulations of a simple system where the perturbation is smooth, and pursuing CFD 
with oscillating forcing in form of kicks with very large period. 
 
The team members studied the cylinder wake simulation provided by our collaborator Dr. Bryan 
Glaz at the U.S. Army Research Laboratory. There are two cases for p=1 and for p=2 (assuming 
q=2 in the paper [Vance: 1989]). For p=1 the cylinder is oscillated at twice the natural 
bifurcation frequency, and at p=2 it is oscillated at the natural shedding frequency of ~39 Hz. 
Within each p, there are large amplitude oscillation and small amplitude oscillation. For p=2, the 
tecplot output files were output at every 12 time steps (CFD time step size = 1e-4 s). The first 
5000 time steps and the corresponding output files are for the stationary cylinder. Then, the 
cylinder is oscillated for the remaining time steps. After 5000 time steps, each case is run enough 
time to capture about 10-12 periods of the oscillation frequency. Everything the same is for p=1, 
except files are outputted at every 6 time steps. It was done because the cylinder oscillates twice 
as fast as the p=2 case and to make sure to capture higher frequency content. 
 
Figure 11 shows Fourier and KMD spectrum for u-velocity for p=1 and small amplitude. 
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Figure 11. Fourier and KMD spectrum. FFT is in black; KM spectrum is red. 

 
The obtained Koopman mode eigenvalues are shown in Figure 12, DMD spectrum in frequency 
w, exponential rate mu plane is shown in Figure 13. 
 

  
Figure 12. Koopman Mode Eigenvalues. Figure 13. DMD spectrum in frequency w, 

exponential rate mu plane. 
 
The recomposition of signal using 20 first pairs of the highest magnitude modes sorted by abs of 
norm of Vj has been performed. Figure 14 shows the reconstructed signal (red) vs the original 
data (blue). 

 
Figure 14. The reconstructed signal (red) vs the original data (blue) for the random location. 

 
Figure 15 shows Fourier and KMD spectrum for u-velocity for p=2 and small amplitude by using 
not-normalized Vandermonde matrix (top) and normalized Vandermonde matrix (bottom). 
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Figure 15. Fourier and KMD spectrum. FFT is in black; KM spectrum is red. 

 
The obtained Koopman mode eigenvalues are shown in Figure 16, DMD spectrum in frequency 
w, exponential rate mu plane is shown in Figure 17. 
 

  
Figure 16. Koopman Mode Eigenvalues. Figure 17. DMD spectrum in frequency w, 

exponential rate mu plane. 
 
The recomposition of signal using 20 first pairs of the highest magnitude modes sorted by abs of 
norm of Vj has been performed. Figure 18 shows the reconstructed signal (red) vs the original 
data (blue). 

 
Figure 18. The reconstructed signal (red) vs the original data (blue) for the random location. 

 
Reduced Order Model (ROM) of Dynamic Stall 
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The team members began working on the Reduced Order Model (ROM) of Dynamic Stall using 
skew-projection methods used in conjunction with the Koopman Mode Decomposition. 
 
We used the following four cylinder simulations provided by Dr. Bryan Glaz at the U.S. Army 
Research Laboratory. The cylinder was 0.002m in diameter. Each simulation was run for 6 s. 
The number of nodes in the grid is 29954. For the stationary cylinder case, there are output files 
at every 12 time steps, so the delta t between outputs is 0.0012 s. For the oscillating cylinder 
cases, flow snapshots were outputted starting at the 25th time step, up to the 60,000th time step 
in increments of 25 time steps (each time step is 1e-4 s). From 0.0s to 0.5s (i.e. 5000 iterations) 
Reynolds number (Re) was 58.3 that corresponds to incoming velocity of 0.5 m/s. The critical Re 
for a cylinder is about Re~40 when it starts exhibiting the von Karman wake instability. So the 
interval from 0 to 0.5 s at Re=58.3 corresponds to the Landau equation when the external input is 
greater than the bifurcation value. Then, starting at 0.5 seconds, the Re is being oscillated by 
oscillating incoming velocity. The oscillating Re corresponded to Re = 58.3 + 
35*sin(2pi*omega*t), where omega corresponded to 2 Hz. The reason 35 was selected for the 
oscillating Re amplitude is because a large enough amplitude was needed such that the Re would 
oscillate above and below the critical value predicted by the regular Landau equation. The reason 
2 Hz was selected is that it's an order of magnitude slower than the von Karman vortex 
frequency, which is about 39 Hz for Re = 58.3. Two simulations for the oscillating cylinder case 
were performed for the case of Re = 58.3 + 5.85*sin(2pi*omega*t) and Re = 58.3 + 
1*sin(2pi*omega*t). 
 
We used the following algorithm: 
 
Let λj, j=1,2,..., 4969, be eigenvalues corresponding to Koopman Modes Vj,i, where 
j=1,2,...,4969, coordinates i=1,2,...,29954, for the stationary cylinder case. We find the Koopman 
Mode Vind,i from the stationary cylinder case that corresponds to the frequency of 39.26 Hz 
(Figure 19). 
 

 
Figure 19. Fourier and KMD spectrum for u-velocity. FFT is in black; KM spectrum is red. 

 
Then we find adjoint matrix B=(inv(V*V')*V)', that satisfies the condition that [BV]k,k=1 and 
[BV]k,l=0 for k ≠ l. 
 
Let X of size 4969x29954 be the u-velocity corresponding to the stationary cylinder. 
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Then we calculate cind,k in the following way: for each k=1:size(B,1) for each i=1:size(X,1) we 
calculate cind,k(i,:)=dot(X(i,:),B(k,:))*Vind(:). Then we find norm(abs(cind,k)) (Figure 20). 
 

 
Figure 20. Norm of cind,k. 

 
In Figure 22 we present cind,ind vs simulation time and its embedding in time for w=39.26 Hz for 
Point 5 (Figure 21). 

 
Figure 21. Points around the cylinder. 

 

  

Figure 22. cind,ind vs simulation time (left) and its embedding in time (right) for Point 5 for 
w=39.26 Hz. 
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We also calculate cind,k for the oscillating cylinder cases by using the same algorithm as above 
with the difference that X of size 2400x29954 is the u-velocity corresponding to the oscillating 
cylinder case. In this case norm(abs(cind,k)) is shown in Figures 23, 24 and 25. 
 

 
Figure 23. Norm of cind,k for the oscillating cylinder case with Re=35. 

 

 
Figure 24. Norm of cind,k for the oscillating cylinder case with Re=5.83. 

 

 
Figure 25. Norm of cind,k for the oscillating cylinder case with Re=1. 

 
In Figures 26, 27 and 28 we present cind,ind vs simulation time and its embedding in time for Point 
5 (Figure 21) for w=39.26 Hz for all oscillating cylinder cases. 
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Figure 26. cind,ind vs simulation time (left) and its embedding in time (right) for Point 5 for 

w=39.26 Hz for the oscillating cylinder case with Re=35. 
 

  
Figure 27. cind,ind vs simulation time (left) and its embedding in time (right) for Point 5 for 

w=39.26 Hz for the oscillating cylinder case with Re=5.83. 
 

  
Figure 28. cind,ind vs simulation time (left) and its embedding in time (right) for Point 5 for 

w=39.26 Hz for the oscillating cylinder case with Re=1. 
 
Koopman mode projections of cylinder in oscillating inlet flow show an interesting transition 
that happens with the increase of Reynolds number. Specifically, the spectrum is strongly peaked 
at low Reynolds number, and shows continuous elements as Reynolds number increases. The 
transition starts with broadening of the spectrum around harmonics of vortex shedding frequency 
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and leads to merging of spectrum into a continuous-looking spectrum at higher Reynolds 
numbers. We researched connections of these transitions to normal form equations that extend 
those obtained for Hopf bifurcation. We found that adding a constant forcing term to the Hopf 
bifurcation normal form, along the lines suggested by the paper of [Tsarouhas: 1987] does not 
lead to a good match with observed transition in the fluid-mechanical problem. Further 
investigation lead to suggestion of adding a term proportional to the radial coordinate in the 
normal form, similar to the suggestion made in papers of Young and collaborators (2003, 2008). 
This approach proved very promising, with spectral results matching closely the progression of 
spectral changes in the flow, especially around shedding frequency. The normal form model, 
however, does not match the spectrum at the inlet flow oscillating frequency. Our conjecture is 
that this might be due to absence of pure (radial coordinate independent) oscillating term in the 
current version of the normal form. 
 
 
 
Conclusions 
 
We believe that the given study can be extended to capture aspects of a number of different 
applied problems of Army interest in flow-structure interaction, where the flow affecting the 
structure is unsteady or the structure is moving in an unsteady manner. 
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