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Preface

This book, as with others in the series, is intended to provide supplementary mate-
rial for courses in probability or stochastic processes. The mathematical focus is on
counting processes and continuous-time Markov chains, and the selection of mate-
rial is motivated by the examples and applications drawn from chemical networks
in systems biology. While the material is presented in a manner most suitable for
students who have studied stochastic processes up to and including martingales in
continuous time, much of the necessary background material is summarized in the
Appendix. Our hope is that a student with a solid understanding of calculus, dif-
ferential equations, and elementary probability, and who is well-motivated by the
applications, will be able to follow the main material with occasional reference to
the Appendix.

As a review of the references will indicate, this text includes much work done by
the authors with a long list of collaborators, work that was supported by a variety
of grants from the National Science Foundation, most recently DMS-11-06424 and
DMS-13-18832. This collaboration and support is gratefully acknowledged.

David F. Anderson
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December 2014
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Chapter 1
Infinitesimal specification of continuous time
Markov chains

Abstract The basic building blocks of our models are counting processes, that is,
nonnegative-integer-valued processes that are constant except for jumps of +1. In
this chapter, we introduce the notion of an intensity for a counting process and show
how a counting process model can be specified by specifying a functional form for
its intensity. The counting process corresponding to the intensity can be determined
either as the solution of a stochastic equation or as the solution of a martingale prob-
lem. By writing a lattice-valued (e.g., Zd-valued) Markov chain in terms of counting
processes that count the number of jumps of each of a countable number of types,
we can specify the chain by specifying the intensities of the counting processes as
functions of the state of the Markov chain.

1.1 Poisson and general counting processes

The basic building blocks of the models we will consider are counting processes,
that is, processes N such that N(t) is the number of times that a particular phe-
nomenon has been observed by time t. We assume that these observations occur one
at a time, so we have the following definition.

Definition 1.1. N is a counting process if N(0) = 0 and N is constant except for
jumps of +1.

If N is a counting process and t < s, then N(s)−N(t) is the number of observa-
tions in the time interval (t,s]. The simplest counting process is a Poisson process.

Definition 1.2. A counting process is a Poisson process if it satisfies the following
conditions:

1) Numbers of observations in disjoint time intervals are independent random vari-
ables, i.e., if t0 < t1 < · · ·< tm, then N(tk)−N(tk−1), k = 1, . . . ,m are independent
random variables.

1



2 1 Infinitesimal specification of continuous time Markov chains

2) The distribution of N(t +a)−N(t) does not depend on t.

Theorem 1.3. If N is a Poisson process, then there is a constant λ > 0 such that,
for t < s, N(s)−N(t) is Poisson distributed with parameter λ (s− t), that is,

P{N(s)−N(t) = k}= (λ (s− t))k

k!
e−λ (s−t).

We will refer to N as a unit Poisson process if λ = 1.

Proof. For an integer n > 0, let Nn(t) be the number of time intervals ( k
n ,

k+1
n ],k =

0, . . . , [nt] that contain at least one observation. Then Nn(t) is binomially distributed
with parameters [nt] and pn = P{N( 1

n )> 0}. Consequently,

P{N(1) = 0}= P{Nn(1) = 0}= (1− pn)
n.

Taking logs and noting that the left hand side does not depend upon n, we may
conclude that npn → λ ≡ − logP{N(1) = 0}, as n→ ∞. The rest follows by the
standard Poisson approximation of the binomial. ut

Let N be a Poisson process, and let Sk be the time of the kth observation, that is,
the kth jump of N. Then

P{Sk ≤ t}= P{N(t)≥ k}= 1−
k−1

∑
i=0

(λ t)i

i!
e−λ t , t ≥ 0.

Differentiating to obtain the probability density function gives

fSk(t) =

{
1

(k−1)! λ (λ t)k−1e−λ t t ≥ 0
0 t < 0,

and we see that Sk is Γ -distributed. The proof of Theorem 1.3 can be refined to give
the following:

Theorem 1.4. Let T1 = S1 and for k > 1, Tk = Sk− Sk−1. Then T1,T2, . . . are inde-
pendent and exponentially distributed with parameter λ .

Watanabe’s characterization of Poisson processes [47] is essential for our ap-
proach to more general counting processes. {F N

t } will denote the filtration gener-
ated by N, that is, F N

t = σ(N(s),s≤ t) is the information obtained by observing N
on the time interval [0, t].

Theorem 1.5. (Watanabe) If N is a Poisson process with parameter λ , then N(t)−
λ t is a martingale. Conversely, if N is a counting process and N(t)−λ t is a mar-
tingale, then N is a Poisson process with parameter λ .

Proof. The fact that for a Poisson process N(t)−λ t is a martingale, that is,

E[N(t + s)−λ (t + s)|F N
t ] = N(t)−λ t, (1.1)
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follows from the independent increments property and the fact that E[N(t)] = λ t.
Assuming the conditions of the converse, let {sk} be a partition of (t, t + r]. Then

E[eiθ(N(t+r)−N(t))|F N
t ]

= 1+
n−1

∑
k=0

E[(eiθ(N(sk+1)−N(sk))−1)eiθ(N(sk)−N(t))|F N
t ]

= 1+
n−1

∑
k=0

E[
(

eiθ(N(sk+1)−N(sk))−1− (eiθ −1)(N(sk+1)−N(sk))
)

eiθ(N(sk)−N(t))|F N
t ]

+
n−1

∑
k=0

λ (sk+1− sk)(eiθ −1)E[eiθ(N(sk)−N(t))|F N
t ],

where the second equality holds by the martingale assumption which implies

E[N(sk+1)−N(sk)|F N
sk
] = λ (sk+1− sk).

We claim that as maxk(sk+1− sk)→ 0, the first conditional expectation on the right
hand side of the final equality in the equation array above converges to zero. To see
this, simply move the sum inside the conditional expectation and note that∣∣∣∣∣n−1

∑
k=0

(
eiθ(N(sk+1)−N(sk))−1− (eiθ −1)(N(sk+1)−N(sk))

)
eiθ(N(sk)−N(t))

∣∣∣∣∣≤ 4N(t)

and that the expression inside the first parentheses is zero if N(sk+1)−N(sk) is 0
or 1. Thus, as maxk(sk+1− sk)→ 0 the conditional expectation converges to zero
by the dominated convergence theorem for conditional expectations (see Appendix
A.1.2). Consequently, letting maxk(sk+1− sk)→ 0, we have

E[eiθ(N(t+r)−N(t))|F N
t ] = 1+λ (eiθ −1)

∫ r

0
E[eiθ(N(t+s)−N(t))|F N

t ]ds

and E[eiθ(N(t+r)−N(t))|F N
t ] = eλ (eiθ−1)r, which implies both the independent incre-

ments property and the fact that N(t+r)−N(t) is Poisson distributed with parameter
λ r. (See Section A.5.) ut

The filtration of interest may involve more information than just observations of
N, and the calculations in the previous proof are still valid for any filtration {Ft}
satisfying (1.1) with F N

t replaced by Ft , that is, M defined by M(t) = N(t)−λ t is
a martingale with respect to {Ft}. In particular, N will be compatible with {Ft} in
the following sense.

Definition 1.6. A Poisson process N is compatible with a filtration {Ft}, if N is
{Ft}-adapted and N(t + ·)−N(t) is independent of Ft for every t ≥ 0.

Lemma 1.7. Let N be a Poisson process with parameter λ > 0 that is compati-
ble with {Ft}, and let τ be a {Ft}-stopping time such that τ < ∞ a.s. Define
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Nτ(t) = N(τ + t)−N(τ). Then Nτ is a Poisson process that is independent of Fτ

and compatible with {Fτ+t}.

Proof. Let M(t) = N(t)−λ t. By the optional sampling theorem,

E[M((τ + t + r)∧T )|Fτ+t ] = M((τ + t)∧T ),

so

E[N((τ + t + r)∧T )−N((τ + t)∧T )|Fτ+t ] = λ ((τ + t + r)∧T − (τ + t)∧T ).

Letting T → ∞, by the monotone convergence theorem,

E[N(τ + t + r)−N(τ + t)|Fτ+t ] = λ r,

which shows that Nτ is a {Fτ+t}-martingale. By Theorem 1.5, we may conclude
that Nτ is a Poisson process, and by the proof of Theorem 1.5, we further conclude
that Nτ(t + ·)−Nτ(t) is independent of Fτ+t . ut

If N is a Poisson process with parameter λ and N is compatible with {Ft}, then

P{N(t +∆ t)> N(t)|Ft}= 1− e−λ∆ t ≈ λ∆ t. (1.2)

The parameter λ is refered to as the intensity for the Poisson process, and (1.2)
suggests how to extend the notion of intensity to more general counting processes.
Note that if Y is a unit Poisson process, then for λ > 0, N(t) = Y (λ t) defines a
Poisson process with intensity λ .

At least intuitively, a nonnegative, {Ft}-adapted stochastic process λ (·) is an
{Ft}-intensity for N if

P{N(t +∆ t)> N(t)|Ft} ≈ E[
∫ t+∆ t

t
λ (s)ds|Ft ]≈ λ (t)∆ t.

The following makes this definition precise. (See [33].)

Definition 1.8. Let N be a counting process adapted to {Ft}, and let Sn be the nth
jump time of N. A nonnegative {Ft}-adapted stochastic process λ is an {Ft}-
intensity for N if and only if for each n = 1,2, . . .,

N(t ∧Sn)−
∫ t∧Sn

0
λ (s)ds

is a {Ft}-martingale.
If limn→∞ Sn = ∞, this requirement is equivalent to the requirement that

N(t)−
∫ t

0
λ (s)ds

be a local {Ft}-martingale.
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1.2 Modeling with intensities

In general the intensity for a counting process at time t may depend on the behavior
of the counting process prior to time t, and it may also depend on other stochastic
inputs. Consequently, if we want to specify a counting process model by specifying
its intensity, we need to specify a nonnegative function that depends on the past of
the counting process and perhaps other stochastic inputs.

With this idea in mind, let Z be a stochastic process that models “external noise”
or the “environment.” To avoid measurability issues, assume that Z is cadlag (that is,
Z is right continuous with left limits at all t > 0) and E-valued for some complete,
separable metric space (E,r). DE [0,∞) will denote the space of cadlag, E-valued
paths, and Dc[0,∞) will denote the space of counting paths (zero at time zero and
constant except for jumps of +1) that are finite for all time, while Dc,∞[0,∞) will
include paths x that hit infinity in finite time with x(t) = ∞ beyond that time.

The Borel σ -algebra for DE [0,∞) is the same for all of the standard topologies
on DE [0,∞) and is simply the σ -algebra generated by the evaluation functions πt :
x ∈ DE [0,∞)→ x(t) ∈ E.

Our model intensity will satisfy the following:

Condition 1.9
λ : [0,∞)×DE [0,∞)×Dc[0,∞)→ [0,∞)

is measurable and satisfies λ (t,z,v) = λ (t,zt ,vt), where zt(s) = z(s∧ t) and vt(s) =
v(s∧ t) (λ is nonanticipating), and∫ t

0
λ (s,z,v)ds < ∞

for all t ≥ 0, z ∈ DE [0,∞) and v ∈ Dc[0,∞).

Let Y = {Y (u),u ≥ 0} be a unit Poisson process that is {Gu}-compatible and
assume that Z(s) is G0-measurable for every s ≥ 0. (In particular, Z is independent
of Y .) Consider

N(t) = Y (
∫ t

0
λ (s,Z,N)ds). (1.3)

Theorem 1.10. There exists a unique solution of (1.3) up to S∞ ≡ limn→∞ Sn, where
Sn is the nth jump time of N. Further, τ(t) =

∫ t
0 λ (s,Z,N)ds is a {Gu}-stopping time,

and for each n = 1,2, . . .,

N(t ∧Sn)−
∫ t∧Sn

0
λ (s,Z,N)ds (1.4)

is a {Gτ(t)}-martingale. (In Definition 1.8, Ft = Gτ(t).)

Proof. Existence and uniqueness follows by solving from one jump to the next.
Next, let Y r(u) = Y (r∧u) and let
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Nr(t) = Y r(
∫ t

0
λ (s,Z,Nr)ds).

If τ(t) =
∫ t

0 λ (s,Z,N)ds≤ r, then Nr(t) = N(t). Consequently,

{τ(t)≤ r}= {
∫ t

0
λ (s,Z,Nr)ds≤ r} ∈ Gr,

with a similar statement for {τ(t ∧ Sn) ≤ r}. Since M(u) = Y (u)− u is a {Gu}-
martingale, by the optional sampling theorem, for T > 0,

E[M(τ((t+v)∧Sn)∧T )|Gτ(t)] = M(τ((t+v)∧Sn))∧τ(t)∧T ) = M(τ(t∧Sn)∧T ).

Letting T → ∞, we see that (1.4) is a martingale. ut

The stochastic equation (1.3) gives one way of characterizing a counting process
modeled by specifying its intensity. A second common (and equivalent) approach
is suggested by Watanabe’s theorem, Theorem 1.5, and the martingale properties
given in Theorem 1.10, that is, we can require the counting process to be a solution
of a martingale problem (see [33]).

Definition 1.11. Let Z be a cadlag, E-valued stochastic process, and let λ satisfy
Condition 1.9. A counting process N is a solution of the martingale problem for
(λ ,Z) if for each n = 1,2, . . .,

N(t ∧Sn)−
∫ t∧Sn

0
λ (s,Z,N)ds

is a martingale with respect to the filtration

Ft = σ(N(s),Z(r) : s≤ t,r ≥ 0).

Clearly, the solution of (1.3) gives a solution of the martingale problem. In fact,
essentially every solution of the martingale problem can be obtained as a solution
of (1.3). The following theorem is a consequence of Watanabe’s theorem.

Theorem 1.12. If N is a solution of the martingale problem for (λ ,Z), then N has
the same distribution as the solution of the stochastic equation (1.3).

Proof. First, suppose
∫

∞

0 λ (s,Z,N)ds = ∞ a.s. Let γ(u) satisfy

γ(u) = inf{t :
∫ t

0
λ (s,Z,N)ds≥ u}.

Then, since γ(u+ v)≥ γ(u),

E[N(γ(u+ v)∧Sn∧T )−
∫

γ(u+v)∧Sn∧T

0
λ (s,Z,N)ds|Fγ(u)]

= N(γ(u)∧Sn∧T )−
∫

γ(u)∧Sn∧T

0
λ (s,Z,N)ds.
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A monotone convergence argument lets us send T and n to infinity. We then have

E[N(γ(u+ v))− (u+ v)|Fγ(u)] = N(γ(u))−u,

so Y (u) = N(γ(u)) is a Poisson process. Since γ(τ(t)) = t we have that

N(t) = N(γ(τ(t))) = Y (τ(t)) = Y (
∫ t

0
λ (s,Z,N)ds),

and (1.3) is satisfied for this choice of Y . Finally, since F0 ⊃ σ(Z(s),s ≥ 0), Y is
independent of Z.

If
∫

∞

0 λ (s,Z,N)ds < ∞ with positive probability, then (perhaps on a larger sam-
ple space) let Y ∗ be a unit Poisson process that is independent of Ft for all t ≥ 0
and consider Nε(t) = N(t)+Y ∗(εt). Then Nε is a counting process with intensity
λ (t,Z,N)+ ε , and since

∫
∞

0 (λ (s,Z,N)+ ε)ds = ∞, we may follow the steps above
to conclude that there is a Y ε for which

Nε(t) = Y ε(
∫ t

0
(λ (s,Z,N)+ ε)ds).

As ε → 0, Y ε converges to

Y (u) =
{

N(γ(u)) u < τ(∞)
N(∞)+Y ∗(u− τ(∞)) u≥ τ(∞)

(except at points of discontinuity), and N satisfies (1.3) for this choice of Y . ut

1.3 Multivariate counting processes

The models we wish to specify often involve more than one counting process, so
we want to be able to specify multiple interdependent intensities. Let Dc

d [0,∞) =
Dc[0,∞)d be the collection of d-dimensional counting paths.

Condition 1.13 For k = 1, . . . ,d,

λk : [0,∞)×DE [0,∞)×Dc
d [0,∞)→ [0,∞)

is measurable and nonanticipating with∫ t

0
∑
k

λk(s,z,v)ds < ∞, z ∈ DE [0,∞),v ∈ Dc
d [0,∞).

Let Z be cadlag and E-valued and independent of independent Poisson processes
Y1, . . . ,Yd . Consider the system of equations

Nk(t) = Yk(
∫ t

0
λk(s,Z,N)ds), k = 1, . . . ,d, (1.5)
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where N = (N1, . . . ,Nd). Setting Sn = inf{t : ∑k Nk(t) ≥ n} and S∞ = limn→∞ Sn,
existence and uniqueness holds (including for d = ∞) up to S∞. For t ≥ S∞, we
define N(t) = limn→∞ N(Sn).

For each k, it is not hard to see

Mn
k (t) = Nk(t ∧Sn)−

∫ t∧Sn

0
λk(s,Z,N)ds

is a martingale, but it is not immediately clear that the Mn
k are martingales with

respect to a common filtration. To construct the appropriate filtration, we need to
understand filtrations and martingales indexed by directed sets.

Suppose I is a directed set (see Appendix A.6) with partial ordering u� v. Let a
collection of σ -algebras Gu ⊂F , {Gu,u ∈I } be a filtration in the sense that u� v
implies Gu ⊂ Gv. A stochastic process X indexed by I is a {Gu}-martingale if and
only if E[|X(v)|]< ∞ for all v ∈I and for u� v,

E[X(v)|Gu] = X(u).

An I -valued random variable τ is a stopping time if and only if {τ � u} ∈ Gu,
u ∈I , and as in the I = [0,∞) case, define

Gτ = {A ∈F : A∩{τ � u} ∈ Gu,u ∈I }.

Lemma 1.14. Let X be a martingale, and let τ1 and τ2 be stopping times assum-
ing countably many values and satisfying τ1 � τ2 a.s. If there exists a sequence
{um} ⊂ I such that limm→∞ P{τ2 � um} = 1, limm→∞ E[|X(um)|1{τ2�um}c ] = 0,
and E[|X(τ2)|]< ∞, then

E[X(τ2)|Fτ1 ] = X(τ1). (1.6)

Proof. ([36]) Let Γ ⊂ I be countable and satisfy P{τi ∈ Γ } = 1 and {um} ⊂ Γ .
Define

τ
m
i =

{
τi on {τi � um}
um on {τi � um}c.

Then τm
i is a stopping time, since

{τm
i � u} = ({τm

i � u}∩{τi � um})∪ ({τm
i � u}∩{τi � um}c)

= ({τi � u}∩{τi � um})∪ ({um � u}∩{τi � um}c)

= (∪{v:v∈Γ ,v�u,v�um}{τi � v})∪ ({um � u}∩{τi � um}c).

For A ∈ Gτ1 ,
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A∩{τm

1 =t}
X(τm

2 )dP = ∑
s∈Γ ,s�um

∫
A∩{τm

1 =t}∩{τm
2 =s}

X(s)dP

= ∑
s∈Γ ,s�um

∫
A∩{τm

1 =t}∩{τm
2 =s}

X(um)dP

=
∫

A∩{τm
1 =t}

X(um)dP

=
∫

A∩{τm
1 =t}

X(t)dP =
∫

A∩{τm
1 =t}

X(τm
1 )dP.

Hence E[X(τm
2 )|Fτ1 ] = X(τm

1 ), and letting m→ ∞, we have (1.6). ut

Let I = [0,∞)d , where � denotes componentwise inequality. For u ∈ I , set
Gu = σ(Yk(sk) : sk ≤ uk,k = 1, . . . ,d). Then

Mk(u)≡ Yk(uk)−uk

is a {Gu}-martingale. For

Nk(t) = Yk(
∫ t

0
λk(s,Z,N)ds),

define τk(t) =
∫ t

0 λk(s,Z,N)ds and τ(t) = (τ1(t), . . . ,τd(t)). By the same argument
as in the proof of Theorem 1.10, τ(t) is a {Gu}-stopping time, and similar arguments
give the following.

Lemma 1.15. Let Ft = Gτ(t). If σ is a {Ft}-stopping time, then τ(σ) is a {Gu}-
stopping time.

Lemma 1.16. If τ is a {Gu}-stopping time, then τ(n) defined by

τ
(n)
k =

[τk2n]+1
2n

is a {Gu}-stopping time.

Proof. For u ∈I ,

{τ(n) � u}= ∩k{τ
(n)
k ≤ uk}= ∩k{[τk2n]+1≤ [uk2n]}= ∩k{τk <

[uk2n]

2n }

which is in Gu. ut

Note that τ
(n)
k decreases to τk.

Theorem 1.17. Let Condition 1.13 hold. For n = 1,2, . . ., there exists a unique solu-
tion of (1.5) up to S∞, τk(t) =

∫ t
0 λk(s,Z,N)ds, k = 1, . . . ,d defines a {Gu}-stopping

time, and

Nk(t ∧Sn)−
∫ t∧Sn

0
λk(s,Z,N)ds
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is a {Gτ(t)}-martingale.

Proof. Approximating τ(t) by discrete stopping times as in Lemma 1.16, the result
follows from the fact that Mk(u) is a {Gu}-martingale and Lemma 1.14. ut

Definition 1.18. Let Z be a cadlag, E-valued stochastic process, and let λ =(λ1, . . . ,λd)
satisfy Condition 1.13. A multivariate counting process N is a solution of the mar-
tingale problem for (λ ,Z) if for each k,

Nk(t ∧Sn)−
∫ t∧Sn

0
λk(s,Z,N)ds.

is a martingale with respect to the filtration

Ft = σ(N(s),Z(r) : s≤ t,r ≥ 0).

For t ≥ S∞, we define N(t) = limn→∞ N(Sn).

Theorem 1.19. Let Z be a cadlag, E-valued stochastic process, and let λ =(λ1, . . . ,λd)
satisfy Condition 1.13. Then there exists a unique solution of the martingale problem
for (λ ,Z).

Proof. Existence follows from the time-change equation, and uniqueness follows
by Theorem 2 in [40] which essentially shows that every solution of the martingale
problem can be written as a solution of the time-change equation. (See also Theorem
3.11 of [37].) ut

1.4 Continuous time Markov chains

In most presentations, continuous time Markov chains are specified in terms of a
q-matrix, where for i 6= j, qi j gives

P{X(t +∆ t) = j|X(t) = i} ≈ qi j∆ t. (1.7)

We will assume that X takes values in a subset S of a discrete lattice in Rd and
specify intensities of jumps,

P{X(t +∆ t)−X(t) = ζl |Ft} ≈ λl(X(t))∆ t.

Of course, we could write

qX(t),X(t)+ζl
= λl(X(t)),

but using our approach
X(t) = X(0)+∑

l
Rl(t)ζl ,



1.4 Continuous time Markov chains 11

where Rl is a counting process counting the number of jumps of type ζl , and hence

X(t) = X(0)+∑
l

Yl(
∫ t

0
λl(X(s))ds)ζl . (1.8)

For the moment, assume that there are only finitely many (λl ,ζl) and that the λl
are bounded. Then

R̃l(t) = Rl(t)−
∫ t

0
λl(X(s))ds = Yl(

∫ t

0
λl(X(s))ds)−

∫ t

0
λl(X(s))ds

is a martingale, and for a bounded function f ,

f (X(t)) = f (X(0))+∑
l

∫ t

0
( f (X(s−)+ζl)− f (X(s−)))dRl(s)

= f (X(0))+∑
l

∫ t

0
( f (X(s−)+ζl)− f (X(s−)))dR̃l(s)

+∑
l

∫ t

0
λl(X(s))( f (X(s)+ζl)− f (X(s)))ds.

For our purposes, we can define a stochastic integral for cadlag processes U and V
by ∫ t

0
U(s−)dV (s−) = lim∑U(ti∧ t)(V (ti+1∧ t)−V (ti∧ t)),

where {ti} is a partition of [0,∞) and the limit is taken as maxi(ti+1 − ti) → 0,
provided the limit exists in probability. If V is a {Ft}-martingale and U is {Ft}-
adapted and bounded by a constant, then it is easy to check that each of the approx-
imating sums is a martingale. Under our current assumptions, the limit will also be
a martingale, or if we relax the boundedness assumptions on the λk, at least a local
martingale.

Setting
A f (x) = ∑

l
λl(x)( f (x+ζl)− f (x)), (1.9)

it follows that

f (X(t))− f (X(0))−
∫ t

0
A f (X(s))ds

= ∑
l

∫ t

0
( f (X(s−)+ζl)− f (X(s−)))dR̃l(s)

is a martingale. (See Appendix A.3.) We call A as defined in (1.9) the generator for
the Markov chain.

Now we drop the finiteness and boundedness assumptions, but we do require
∑l λl(x)< ∞ for each x. Define

τK = inf{t : |X(t)| ≥ K}.
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Then
E[∑

l
Rl(t ∧ τK)] = E[

∫ t∧τK

0
∑

l
λl(X(s))ds]≤ t sup

|x|≤K
∑

l
λl(x)

and
f (X(t ∧ τK))− f (X(0))−

∫ t∧τK

0
A f (X(s))ds

is a martingale. Assume that if f has finite support, then lim|x|→∞ A f (x) = 0. In
addition, if limK→∞ τK ≡ τ∞ < ∞, we define X(t) = ∞ for t ≥ τ∞. Then

f (X(t))− f (X(0))−
∫ t

0
A f (X(s))ds (1.10)

= ∑
l

∫ t

0
( f (X(s−)+ζl)− f (X(s−)))dR̃l(s)

is a martingale.
For a finite or countable index set R, we assume the following:

Condition 1.20 • λl(x)≥ 0, x ∈ S, l ∈R.
• ζl ∈ Rd , l ∈R, such that x ∈ S and λl(x)> 0 implies x+ζl ∈ S.
• For x ∈ S, ∑l∈R λl(x)< ∞.
• For f with finite support in S and A defined by (1.9), lim|x|→∞ A f (x) = 0.

The last condition is a modest restriction and is clearly satisfied for the chemical
reaction network models we will consider in Chapter 2. We define A f (∞) = 0.

Definition 1.21. Let A satisfy Condition 1.20. A right continuous, S∪{∞}-valued
stochastic process X is a solution of the martingale problem for A if there exists a
filtration {Ft} such that for each f with finite support, (1.10) is a {Ft}-martingale.
If τ∞ is finite with positive probability, then there may be more than one solution
of the martingale problem. If in addition to the martingale requirements, we require
that X(t) = ∞ for t ≥ τ∞, then we say that X is a minimal solution of the martingale
problem.

Theorem 1.22. Assume A satisfies Condition 1.20. Then the solution of

X(t) = X(0)+ ∑
l∈R

Yl(
∫ t

0
λl(X(s))ds)ζl

with X(t) = ∞ for t ≥ τ∞ is the unique minimal solution of the martingale problem
for A.

The martingale property implies

E[ f (X(t))] = E[ f (X(0))]+
∫ t

0
E[A f (X(s))]ds,

and taking f (x) = 1{y}(x), we have
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P{X(t) = y}= P{X(0) = y}+
∫ t

0
(∑

l
λl(y−ζl)P{X(s) = y−ζl}

−∑
l

λl(y)P{X(s) = y})ds

giving the Kolmogorov forward or master equation for the one-dimensional distri-
butions of X . In particular, defining py(t) = P{X(t) = y} and νy = P{X(0) = y},
{py} satisfies the system of differential equations

ṗy(t) = ∑
l

λl(y−ζl)py−ζl
(t)−∑

l
λl(y)py(t), (1.11)

with initial condition py(0) = νy. We also require

py(t)≥ 0 and ∑
y

py(t)≤ 1, t ≥ 0. (1.12)

Lemma 1.23. Assume Condition 1.20. Let {νy} be a probability distribution on S,
and let X(0) satisfy P{X(0) = y} = νy. The solution of the system of differential
equations (1.11) satisfying (1.12) and py(0) = νy is unique and the unique solution
satisfies ∑y py(t)≡ 1 if and only if the solution of (1.8) satisfies P{τ∞ = ∞}= 1.

Proof. Set λ (y) = ∑l λl(y). The forward equation can be rewritten as

py(t) = νye−λ (y)t +
∫ t

0
e−λ (y)(t−s)

∑
l

λl(y−ζl)py−ζl
(s)ds. (1.13)

Define p(0)y (t)≡ 0 and iterate

p(k+1)
y (t) = νye−λ (y)t +

∫ t

0
e−λ (y)(t−s)

∑
l

λl(y−ζl)p(k)y−ζl
(s)ds.

Let Sn be the nth jump time of the time-change equation (1.8). Note that

p(1)y (t) = P{X(t) = y,S1 > t},

and in general
p(k)y (t) = P{X(t) = y,Sk > t}.

Observe that τ∞ = ∞ if and only if S∞ = ∞, so if P{τ∞ = ∞}= 1,

1 = ∑
y∈Zd

P{X(t) = y}= lim
k→∞

∑
y∈Zd

P{X(t) = y,Sk > t}.

Since every solution of (1.13) and (1.12) satisfies py(t) ≥ p(k)y (t), ∑y p(k)y (t)→ 1

implies p(k)y (t)→ py(t) giving uniqueness for (1.11). ut
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Remark 1.24. Since p(k)y (t) is monotone in k, it converges to the minimal solution
(that is, the smallest solution) of the forward equation and that gives the distribution
of the minimal solution of (1.8).

As the name suggests, a Markov chain is an example of a Markov process, that
is, a stochastic process that has the following Markov property.

Definition 1.25. An S∪{∞}-valued stochastic process X is Markov with respect to
a filtration {Ft} if it is {Ft}-adapted and

E[ f (X(t + s))|Ft ] = E[ f (X(t + s))|X(t)],

for all s, t ≥ 0 and f ∈ B(S∪{∞}). X is strong Markov with respect to {Ft} if for
each finite {Ft}-stopping time τ ,

E[ f (X(τ + s))|Fτ ] = E[ f (X(τ + s))|X(τ)],

for all s≥ 0 and f ∈ B(S∪{∞}).
Let X be the the minimal solution of (1.8). Note that there exists a mapping

H : [0,∞)×S×Dc,∞[0,∞)m→ DS∪{∞}[0,∞)

such that
X(t) = H(t,X(0),{Yk}).

Let τk(r) =
∫ r

0 λk(X(s))ds. For each t ≥ 0,

Y r
k (u) = Yk(τk(r)+u)−Yk(τk(r)), k = 1, . . . ,m,

are independent Poisson processes independent of Ft = Gτ(t).
Define X r(s) = X(r+ s). Then

X r(t) = X r(0)+∑
k

Y r
k (
∫ t

0
λk(X(s))ds)ζk

and
X r(t) = H(t,X r(0),{Y r

k }),

that is, the future of X r is a function of the present, X r(0), and inputs, {Y r
k }, that are

independent of the past. The same holds if r is replaced by a {Ft} stopping time γ .
Consequently, X is strong Markov, and since H does not depend on r or γ ,

P{X(γ + t) = y|X(γ) = x}= P{X(t) = y|X(0) = x}.

Problems

1.1. Prove Theorem 1.4.
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1.2. Let λ (n), n = 0,1, . . . be positive and bounded (to avoid explosions), and let Y
be a unit Poisson process. For

N(t) = Y (
∫ t

0
λ (N(s))ds),

show that
P{N(t +∆ t) = N(t)|F N

t }= e−λ (N(t))∆ t ,

where {F N
t } is the filtration generated by N, so that

P{N(t +∆ t)> N(t)|F N
t }= 1− e−λ (N(t))∆ t ≈ λ (N(t))∆ t.

1.3. Let N0 be a Poisson process with parameter λ , and let ξ1,ξ2, . . . be a sequence
of Bernoulli trials with parameter p. Assume that the ξk are independent of N0, and
define

N1(t) =
N0(t)

∑
k=1

ξk

and

N2(t) =
N0(t)

∑
k=1

(1−ξk).

a) What is the distribution of N1? N2?
b) Show that N1 and N2 are independent.
c) What is P{N1(t) = k|N0(t) = n}?
d) Let S1 be the first jump time of N0. For k ≥ 1, find the conditional density of S1

given that N0(t) = k. (Hint: First calculate P{S1 ≤ s,N0(t) = k} for s≤ t.)

1.4. Let Y1, . . . ,Y5 be independent unit Poisson processes, and let λ1(n) and λ2(n)
be positive, n = 0,1, . . .. Let

N1(t) = Y1(
∫ t

0
λ1(N1(s))ds)

N2(t) = Y2(
∫ t

0
λ2(N2(s))ds)

N3(t) = Y3(
∫ t

0
λ1(N3(s))∧λ2(N4(s))ds)

+Y4(
∫ t

0
(λ1(N3(s))−λ1(N3(s))∧λ2(N4(s)))ds)

N4(t) = Y3(
∫ t

0
λ1(N3(s))∧λ2(N4(s))ds)

+Y5(
∫ t

0
(λ2(N4(s))−λ1(N3(s))∧λ2(N4(s)))ds).

1. Show that N3 has the same distribution as N1 and N4 has the same distribution
as N2.
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2. Suppose that ε > 0 and |λ1(n)−λ2(n)| ≤ ε . Let τ1 = inf{t : N1(t) 6= N2(t)} and
τ2 = inf{t : N3(t) 6= N4(t)}. Give a stochastic lower bound for τ1 (that is, find a
random variable σ1 such that P{τ1 ≥ t} ≥ P{σ1 ≥ t} for all t) and a stochastic
lower bound for τ2. In particular, show that τ1 is stochastically less than τ2.

1.5. Show that the solution of

N(t) = Y (
∫ t

0
(1+N(s)2)ds)

hits infinity in finite time.
More generally, show that if λ (n)> 0 satisfies

∞

∑
n=0

1
λ (n)

< ∞,

then with probability one, the solution of

N(t) = Y (
∫ t

0
λ (N(s))ds)

hits infinity in finite time.

1.6. Consider the infinite server queueing model

Q(t) = Y1(λ t)−Y2(
∫ t

0
µQ(s)ds).

Use martingale properties to compute E[Q(t)] making sure to justify all the steps in
the calculation.

1.7. Let X1(t) be a linear death process

X1(t) = N−Y (
∫ t

0
µX1(s)ds).

Let ∆1, . . . ,∆N be independent exponential random variables with parameter µ and
define

X2(t) =
N

∑
i=1

1{∆i>t}.

Show that X1 and X2 have the same distribution. (In other words, a linear death
process models a population in which there are no births and each individual has an
independent, exponentially distributed lifetime.)

1.8. Let {∆k,k = 0,1, . . .} be independent, unit exponential random variables. De-
fine

pk(t) = P{
∞

∑
l=k+1

∆l

l2 ≤ t <
∞

∑
l=k

∆l

l2 }.

Show that {pk} satisfies
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ṗk(t) = (k+1)2 pk+1(t)− k2 pk(t),

that is, {pk} is a solution of an equation of the form (1.11), and show that the con-
clusion of Lemma 1.23 is in general false, if the requirement (1.12) is dropped.





Chapter 2
Models of biochemical reaction systems

Abstract We introduce the most common stochastic model for biochemical reac-
tion systems. These models are used extensively in cell biology, with applications
ranging from gene interaction and protein regulatory networks, to virology, to neu-
ral networks. The models are most useful when the abundances of the constituent
molecules of a biochemical system are low, in which case the standard deterministic
models do not provide a good representation of the behavior of the system.

2.1 The basic model

It is useful to understand that a biochemical reaction system consists of two parts:
(i) a reaction network, and (ii) a choice of dynamics. The network is a static object
that consists of a triple of sets:

(i) species, S , which are the chemical components whose counts we wish to
model dynamically,

(ii) complexes, C , which are non-negative linear combinations of the species that
describe how the species can interact, and

(iii) reactions, R, which describe how to convert one such complex to another.

For example, if in our system we have only three species, which we denote by
A, B, and C, and the only transition type we allow is the merging of an A and a B
molecule to form a C molecule, then we may depict this network by the directed
graph

A+B→C.

For this very simply model our network consists of species S = {A,B,C}, com-
plexes C = {A+B, C}, and reactions R = {A+B→C}.

Before formally defining a reaction network, we provide a slightly less trivial
example.

19
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Example 2.1. Suppose there are two forms of a given protein: “active” and “inac-
tive.” Denote by A the active form of the protein and denote by B the inactive form.
We suppose that there are only two types of transitions that can take place in the
model: an active protein can become inactive, and an inactive protein can become
active. However, we further suppose that an inactive protein B is required to catalyze
the inactivation of an active protein A. That is, we suppose that the two possible re-
actions can be depicted in the following manner

A+B→ 2B, (R1)
B→ A, (R2)

where, for example, the reaction (R1) captures the idea that both an A and a B
molecule are required for the deactivation of an A molecule and the result of such a
reaction is a net gain of one molecule of B and a net loss of one molecule of A.

We again see that there are three sets of objects necessary to give a full descrip-
tion of the above network. First, we need a set of species, which in this case is just
S = {A,B}. We require a directed graph in which the vertices are linear combi-
nations of the species. These linear combinations are the complexes, which for this
model is the set C = {A+B, 2B, B, A}. Finally, we associate the edges of the graph
with the reactions, R = {A+B→ 2B, B→ A}. 4

Definition 2.2. A chemical reaction network is a triple {S ,C ,R} where

(i) S = {S1, . . . ,Sn} is the set of species,
(ii) C is the set of complexes, consisting of non-negative linear combinations of

the species,
(iii) R = {yk→ y′k : yk,y′k ∈ C and yk 6= y′k} is the set of reactions.

The notation we use throughout is to write the kth reaction as

∑
i

ykiSi→∑
i

y′kiSi, (2.1)

where the vectors yk,y′k ∈ Zn
≥0 are associated with the source and product complex,

respectively. Note that we abuse notation slightly by writing yk→ y′k as opposed to
(2.1). We define ζk := y′k− yk ∈ Zn to be the reaction vectors of the network.

It is most common to forgo formally giving each of the three sets necessary for
a reaction network, as it is easier to simply give the directed graph implied by the
reaction network. For example, the network

S+E 
C→ S+P, E 
 /0, (2.2)

corresponds to the reaction network with S = {S,E,C,P},C = {S +E, C, S +
P, E, /0}, and R = {S+E→C, C→ S+E, C→ S+P, E→ /0, /0→ E}.

Note that the empty set appearing in (2.2) is a valid complex. It is used to model
the inflow or outflow (or degradation) of molecules.

Having a notion of a reaction network in hand, we turn to the question of how
to model the dynamical behavior of the counts of the different species. We describe
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the basic Markov model here and will consider deterministic dynamics at the end of
the chapter. The precise connection between the two models will be considered in
Chapter 4 when scaling limits of the stochastic models are considered.

Returning to Example 2.1 for the time being, let X1(t) and X2(t) be random vari-
ables giving the numbers of molecules of type A and B present in the system at time
t, respectively. Denote by R1(t) and R2(t) the counting processes determining the
number of times reactions (R1) and (R2) have occurred by time t. Clearly, X satisfies

X(t) = X(0)+R1(t)
(
−1
1

)
+R2(t)

(
1
−1

)
.

From the results of Chapter 1, the counting processes R1 and R2 can be specified by
specifying their respective intensity functions. For the time being, we delay the con-
versation regarding what the appropriate form for these intensity functions should
be and simply denote them by λ1 and λ2. The process X then satisfies the stochastic
equation

X(t) = X(0)+Y (
∫ t

0
λ1(X(s))ds)

(
−1
1

)
+Y2(

∫ t

0
λ2(X(s))ds)

(
1
−1

)
,

where Y1,Y2 are independent, unit Poisson processes. We note that the generator
(1.9) for the process of Example 2.1 is

A f (x) = λ1(x)( f (x+ζ1)− f (x))+λ2(x)( f (x+ζ2)− f (x)), x ∈ Z2
≥0,

where ζ1 =−e1 + e2, ζ2 = e1− e2, and the forward or master equation (1.11) is

ṗx(t) = px−ζ1
(t)λ1(x−ζ1)+ px−ζ2

(t)λ2(x−ζ2)− px(t)(λ1(x)+λ2(x)),

for x ∈ Z2
≥0.

Returning to the general reaction network of Definition 2.2, for each reaction
yk→ y′k ∈R we specify an intensity function λk : Zn

≥0→R≥0. The number of times
that the kth reaction occurs by time t can then be represented by the counting process

Rk(t) = Yk(
∫ t

0
λk(X(s))ds),

where the Yk are independent unit Poisson processes. The state of the system then
satisfies the equation X(t) = X(0)+∑k Rk(t)ζk, or

X(t) = X(0)+∑
k

Yk(
∫ t

0
λk(X(s))ds)ζk, (2.3)

where the sum is over the reaction channels. (Recall that ζk = y′k−yk.) The generator
for the general model is

A f (x) = ∑
k

λk(x)( f (x+ζk)− f (x)), (2.4)
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where f : Zd
≥0 → R is any bounded function, whereas the Kolmogorov forward

equation is
ṗx(t) = ∑

k
λk(x−ζk)px−ζk

(t)−∑
k

λk(x)px(t). (2.5)

We now specify the intensity functions, or kinetics. The minimal assumption that
can be put on the kinetics is that it is stoichiometrically admissible, which simply
says that λk(x) = 0 if xi < yki for any i ∈ {1, . . . ,n}. Stoichiometric admissibility
ensures that reactions can only occur if there are sufficient molecules to produce
the source complex and guarantees that the process remains within Zn

≥0 for all time.
The most common choice of intensity function λk is that of stochastic mass-action
kinetics. The stochastic form of the law of mass-action says that for some constant
κk, termed the reaction rate constant, the rate of the kth reaction should be

λk(x) = κk

n

∏
i=1

yki!
(

x
yk

)
= κk

n

∏
i=1

xi!
(xi− yki)!

. (2.6)

Note that the rate is proportional to the number of distinct subsets of the molecules
present that can form the inputs for the reaction. This assumption reflects the idea
that the system is well-stirred. The reaction rate constants are typically placed next
to the arrow in the reaction diagram. The following table gives a representative list
of reactions with their respective intensities under the assumption of mass-action
kinetics,

Reaction Intensity Function

/0
κ1→ S1 λ1(x) = κ1

S1
κ2→ S2 λ2(x) = κ2x1

S1 +S2
κ3→ S3 λ3(x) = κ3x1x2

2S1
κ4→ S2 λ4(x) = κ4x1(x1−1)

where similar expressions hold for intensity functions of higher order reactions.

2.1.1 Example: Gene transcription and translation

We give a series of stochastic models for gene transcription and translation. Tran-
scription is the process by which the information encoded in a section of DNA is
transferred to a piece of messenger RNA (mRNA). Next, this mRNA is translated
by a ribosome, yielding proteins. We will give a series of three examples, with the
first, Example 2.3, only including basic transcription, translation, and degradation
of both mRNA and proteins. Next, in Example 2.4, we allow for the developed pro-
teins to dimerize. Finally, in Example 2.5, we allow the resulting dimer to inhibit
the production of the mRNA, and hence the protein and dimers themselves. This
inhibition is an example of a negative feedback loop in that the protein product (i.e.
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the dimer) inhibits the rate of its own production. We note that each of our models
leaves out many components, such as the RNA polymerase that is necessary for tran-
scription, and the ribosomes that are critical for translation. Instead, we will assume
that the abundances of such species are fixed and have been incorporated into the
rate constants. More complicated, and realistic, models can of course incorporate
both ribosomes and RNA polymerase.

Example 2.3. Consider a model of transcription and translation consisting of three
species: S = {G,M,P}, representing Gene, mRNA, and Protein, respectively. We
suppose there are four possible transitions in our model:

R1) G
κ1→ G+M (Transcription)

R2) M
κ2→M+P (Translation)

R3) M
dM→ /0 (Degradation of mRNA)

R4) P
dP→ /0 (Degradation of protein)

where, as usual, the reaction rate constants for the different reactions have been
placed above the reaction arrows.

We denote by X(t) = (X1(t),X2(t),X3(t)) ∈ Z3
≥0 the vector giving the numbers

of genes, mRNA molecules, and proteins at time t, respectively. The four reaction
channels have reaction vectors

ζ1 =

0
1
0

 , ζ2 =

0
0
1

 , ζ3 =

 0
−1
0

 , ζ4 =

 0
0
−1

 ,
and respective intensities κ1, κ2X1(t), dMX1(t), dPX2(t). The stochastic equation
governing X(t) is

X(t) = X(0)+Y1(κ1t)ζ1 +Y2(κ2

∫ t

0
X2(s)ds)ζ2 +Y3(dM

∫ t

0
X2(s)ds)ζ3

+Y4(dP

∫ t

0
X3(s)ds)ζ4,

(2.7)

where Yi, i ∈ {1,2,3,4} are independent unit Poisson processes, and we have as-
sumed that X1(t) ≡ 1. Note that the rate of reaction 3 is zero when X2(t) = 0 and
the rate of reaction 4 is zero when X3(t) = 0. Therefore, non-negativity of the num-
bers of molecules is assured. See Figure 2.1 for a single realization of the stochastic
model together with the associated deterministic model (see (2.9) below for a defi-
nition of the deterministic model of a chemical reaction system). 4

Example 2.4. We continue the previous example but now allow for the possibility
that the protein dimerizes via the reaction 2P

κ3→ D. The degradation of the dimer

is allowed by the reaction D
dd→ /0. The set of species for the model is now S =

{G,M,P,D} and, keeping all other notation the same as in Example 2.3, we let
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Fig. 2.1 A single trajectory of the model in Example 2.3 with choice of rate constants κ1 = 200,
κ2 = 10, dM = 25, and dp = 1. The associated deterministic model with the same choice of rate
constants is overlain (dashed).

X4(t) denote the number of dimers at time t. The stochastic equation for this model
is

X(t) = X(0)+Y1 (κ1t)


0
1
0
0

+Y2(κ2

∫ t

0
X2(s)ds)


0
0
1
0

+Y3(dM

∫ t

0
X2(s)ds)


0
−1
0
0



+Y4(dP

∫ t

0
X3(s)ds)


0
0
−1
0

+Y5(κ3

∫ t

0
X3(s)(X3(s)−1)ds)


0
0
−2
1



+Y6(dd

∫ t

0
X4(s)ds)


0
0
0
−1

 ,
where Yi, i∈ {1, . . . ,6}, are independent unit Poisson processes. See Figure 2.2 for a
single realization of the stochastic process together with the associated deterministic
model. 4

Example 2.5. Continuing the previous examples, we now allow for the dimer to in-
terfere with, or inhibit, the production of the mRNA. Specifically, we assume the
dimer can bind to the segment of DNA being translated, at which point no mRNA
can be produced. Because the resulting dimers inhibit their own production (through
the mRNA), this is an example of negative feedback. We must now explicitly model
the gene to be in one of two states: bound and unbound. We let G remain the no-
tation for the unbound gene, and use B to represent a bound gene. Let X5(t) give
the number of bound genes at time t. Note that X1 +X5 give the total number of
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Fig. 2.2 A single trajectory of the model in Example 2.4 with choice of rate constants κ1 = 200,
κ2 = 10, dM = 25, dp = 1, κ3 = 0.01, and dd = 1. The associated deterministic model with the
same choice of rate constants is overlain (dashed).

genes. We continue to assume that X1(t) + X5(t) ≡ 1. Now the set of species is
S = {G,M,P,D,B} and we must add the reactions corresponding to binding and
unbinding to our model,

G+D
κon


κoff

B,

where κon,κoff > 0 are the reaction rate constants. The stochastic equations are now
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X(t) = X(0)+Y1(κ1

∫ t

0
X1(s)ds)


0
1
0
0
0

+Y2(κ2

∫ t

0
X2(s)ds)


0
0
1
0
0



+Y3(dM

∫ t

0
X2(s)ds)


0
−1
0
0
0

+Y4(dP

∫ t

0
X3(s)ds)


0
0
−1
0
0



+Y5(κ5

∫ t

0
X3(s)(X3(s)−1)ds)


0
0
−2
1
0

+Y6(dd

∫ t

0
X4(s)ds)


0
0
0
−1
0



+Y7(κon

∫ t

0
X4(s)X1(s)ds)


−1
0
0
−1
1

+Y8(κoff

∫ t

0
X5(s)ds)


1
0
0
1
−1

 .
Note that the rate of the first reaction has changed to incorporate the fact that mRNA
molecules will only be produced when the gene is free. We note that this example
can be easily modified to have the dimer only slow the rate of production, or even
raise the rate of production. If the rate of production is raised, then this would be
an example with positive feedback. See Figure 2.3 for a single realization of the
stochastic process modeled above (i.e. with the negative feedback) together with the
associated deterministic model. Note the strikingly different behavior between the
stochastic and deterministic model. Sample MATLAB code which produces real-
izations of this process is found online as a supplementary material. 4

2.1.2 Example: Virus kinetics

The following model of viral kinetics was first developed in [45] by Srivastava et
al., and subsequently studied by Haseltine and Rawlings in [30], and Ball et al., in
[10].

Example 2.6 (Viral infection). The model includes four time-varying species: the
viral genome (G), the viral structural protein (S), the viral template (T ), and the
secreted virus itself (V ). We denote these as species 1, 2, 3, and 4, respectively, and
let Xi(t) denote the number of molecules of species i at time t. The model has six
reactions,
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Fig. 2.3 A single trajectory of the model in Example 2.5 with choice of rate constants κ1 = 200,
κ2 = 10, dM = 25, dp = 1, κ3 = 0.01, dd = 1, kon = 2, koff = 0.1. The associated deterministic
model with the same choice of rate constants is overlain (dashed). Note that the negative feedback
loop has allowed for strikingly different dynamics between the two models. Sample MATLAB
code which produces realizations of this process is found online as a supplementary material.

R1 : T 1→ T +G, R2 : G 0.025→ T, R3 : T 1000→ T +S,

R4 : T 0.25→ /0, R5 : S 2→ /0, R6 : G+S 7.5×10−6
→ V,

where the units of time are in days. The stochastic equations for this model are

X1(t) = X1(0)+Y1

(∫ t

0
X3(s)ds

)
−Y2

(
0.025

∫ t

0
X1(s)ds

)
−Y6

(
7.5×10−6

∫ t

0
X1(s)X2(s)ds

)

X2(t) = X2(0)+Y3

(
1000

∫ t

0
X3(s)ds

)
−Y5

(
2
∫ t

0
X2(s)ds

)
−Y6

(
7.5×10−6

∫ t

0
X1(s)X2(s)ds

)

X3(t) = X3(0)+Y2

(
0.025

∫ t

0
X1(s)ds

)
−Y4

(
0.25

∫ t

0
X3(s)ds

)

X4(t) = X4(0)+Y6

(
7.5×10−6

∫ t

0
X1(s)X2(s)ds

)
.

(2.8)

Note that the rate constants of the above model vary over several orders of mag-
nitude, which will in turn cause a large variation in the molecular counts of the
different species. See Figure 2.4 for a single realization of this process. 4
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Fig. 2.4 A single trajectory of the model in Example 2.6. Note that the y-axis uses a log scale.

2.1.3 Example: Enzyme kinetics

We consider a standard model in which an enzyme catalyzes the conversion of some
substrate to a product.

Example 2.7. Let S be a substrate, E be an enzyme, SE be an enzyme-substrate
complex, and P be a product and consider the reaction network

S+E
κ1


κ2

SE
κ3→ P+E,

which is a slightly simplified version of (2.2). Letting X1,X2,X3,X4 be the processes
giving the counts of species S,E,SE, and P, respectively, the stochastic equations
for this model are

X1(t) = X1(0)−Y1(
∫ t

0
κ1X1(s)X2(s)ds)+Y2(

∫ t

0
κ2X3(s)ds)

X2(t) = X2(0)−Y1(
∫ t

0
κ1X1(s)X2(s)ds)+Y2(

∫ t

0
κ2X3(s)ds)+Y3(

∫ t

0
κ3X3(s)ds)

X3(t) = X3(0)+Y1(
∫ t

0
κ1X1(s)X2(s)ds)−Y2(

∫ t

0
κ2X3(s)ds)−Y3(

∫ t

0
κ3X3(s)ds)

X4(t) = X4(0)+Y3(
∫ t

0
κ3X3(s)ds).

We will study stationary distributions for variants of this model in Chapter 3, and de-
rive Michaelis-Menten kinetics from a multi-scale analysis of this model in Chapter
4. 4
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2.2 Deterministic models of biochemical reaction systems, and
first order reaction networks

Consider a chemical reaction network {S ,C ,R} in which the counts of the con-
stituent species is so high that a deterministic model accurately captures the dynam-
ics of their concentrations (see Chapter 4). Let x(t) ∈ Rn

≥0 be the vector for which
xi(t) models the concentration of species Si at time t. Then, recalling that for the
kth reaction, yk → y′k, we take ζk = y′k− yk ∈ Zd , the most common choice for the
deterministically modeled system is

ẋ(t) = ∑
k

κkx(t)yk ζk, (2.9)

where for two vectors u,v ∈ Rd
≥0, we define uv = ∏

d
i=1 uvi

i with 00 ≡ 1. The choice
of rate function κkxyk is called deterministic mass-action kinetics.

We delay until Chapter 4 the arguments for how the deterministic model can be
realized as a scaling limit of the stochastic model. Here, we simply consider a special
situation in which the ODE model (2.9) accurately captures the mean behavior of
the corresponding stochastic model.

Definition 2.8. We say a reaction network {S ,C ,R} is a first-order reaction net-
work if for each yk→ y′k ∈R, we have |yk| ∈ {0,1}.

That is, a network is a first-order reaction network if reactions are only of the
form

/0→∗, or Si→∗,

where ∗ can represent any linear combination of the species. Note that Example 2.3
is a first-order reaction network, whereas Examples 2.1, 2.4, 2.5, and 2.6 are not.

It is relatively easy to show that if {S ,C ,R} is a first order reaction network
then E[X(t)] is a solution to the system (2.9), where κk are the reaction rate constants
for the stochastic model. The key observation is that in the case that the system is
first-order, the intensity functions are linear. For example, in the case that the kth re-
action is of the form /0→∗, the associated intensity function is simply κk, whereas in
the case that the kth reaction is of the form Sik →∗, the associated intensity function
is κkXik . In either case we may conclude that E[λk(X(s))] = λk(E[X(s)]). Letting Rk
be the counting process for the kth reaction channel, we know from Chapter 1 that
Rk(t)−

∫ t
0 λk(X(s))ds is a martingale and so,

E[Xi(t)] = E[Xi(0)]+E[∑
k

Rk(t)ζki]

= E[Xi(0)]+E[
∫ t

0
∑
k

λk(X(s))ζki ds]

= E[Xi(0)]+
∫ t

0
∑
k

λk(E[X(s)])ζki ds,

(2.10)
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and differentiating shows the assertion to be true. Second, and higher, moments can
be calculated in a similar manner.

Example 2.9. Consider the reaction network

/0
λ



µ

S,

where λ ,µ > 0. The reaction /0→ S models the arrival of molecules S, whereas
the reaction S→ /0 models their degradation. Note that the corresponding Markov
model is the same as that for an M/M/∞ queue.

Let X(t) denote the number of molecules of S at time t ≥ 0, and let A be the gen-
erator for the stochastically modeled system. Assuming X(0) = x is deterministic,
and taking f (y) = y to be the identity function, we have

E[X(t)] = E[ f (X(t))] = x+E[
∫ t

0
A f (X(s))ds]

= x+E[
∫ t

0

(
λ (X(s)+1−X(s))

)
+µX(s)

(
X(s)−1−X(s)

)
ds]

= x+
∫ t

0
(λ −µE[X(s)])ds.

Solving yields

E[X(t)] = xe−µt +
λ

µ
(1− e−µt). (2.11)

The second moment, and hence the variance, of the process can be calculated in a
similar manner. Letting f (y) = y2, we have

E[X(t)2] = E[ f (X(t))] = E[
∫ t

0
A f (X(s))ds]

= x2 +E[
∫ t

0
λ ((X(s)+1)2−X(s)2)+µX(s)((X(s)−1)2−X(s)2) ds]

= x2 +E[
∫ t

0
λ (2X(s)+1)+µX(s)(−2X(s)+1) ds]

= x2 +(2λ +µ)
∫ t

0
E[X(s)]ds+λ t−2µ

∫ t

0
E[X(s)2] ds.

Using (2.11), we conclude that E[X(t)2] satisfies

E[X(t)2] = x2 +
(2λ +µ)(−e−µ t µ x+λ tµ + e−µ tλ +µ x−λ )

µ2 +λ t

−2µ

∫ t

0
E[X(s)2] ds.
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Solving the above equation yields

E[X(t)2] =

(
1+2

λ

µ

)
xe−µt +

(
1− λ

µ

)
e−µt +

(
1−2e−µt) λ 2

µ2

+ e−2 µ t
(

x2−2
λ x
µ
− x+

λ 2

µ2

)
.

Solving for the variance we find

Var(X(t)) = E[X(t)2]−E[X(t)]2

=
λ

µ

(
1− e−µt)+ xe−µt(1− e−µt).

Note that for this example limt→∞ Var(X(t)) = λ

µ
= limt→∞ EX(t), a fact that will

be explained in more detail in Chapter 3. 4

Problems

2.1. Consider the reaction network

/0
κ1→ S1

κ2→ S2
κ3→ /0.

Compute the expectations E[X1(t)], E[X2(t)].

2.2. Consider the reaction network for a pure birth process

S λ→ 2S,

where λ > 0. Compute E[X(t)] and Var(X(t)).

2.3. Consider the reaction network for a birth and death process

/0
µ← S λ→ 2S,

where λ ,µ > 0. Compute E[X(t)] and Var(X(t)).

2.4. Consider the reaction network introduced in Example 2.9:

/0
λ



µ

S,

where λ ,µ > 0. Derive the equations for the time evolution of the mean of the
process by noting that E[X(t)] = ∑

∞
k=0 kP{X(t) = k}, differentiating, and using the

Kolmogorov forward equation (2.5).





Chapter 3
Stationary distributions of stochastically
modeled reaction systems

Abstract We consider stationary distributions for stochastic models of chemical re-
action networks. In particular, we provide conditions on the network of a model that
guarantee the model admits a stationary distribution that is a product of Poissons.

3.1 Introduction

One of the main objects of study in the analysis of deterministically modeled chem-
ical reaction systems are the fixed points for the system of equations (2.9). In the
deterministic modeling context, key questions related to fixed points include:

• For what class of models are there fixed points, and how many are there?
• When there are fixed points, what can we say about their local or global stability?

The second question has received a remarkable amount of attention over the past ten
years as it relates to one of the main open problems in the field, the so-called Global
Attractor Conjecture, which states that the equilibria for a deterministically modeled
system satisfying certain easily checked criteria (as detailed in Theorem 3.5) are all
globally asymptotically stable relative to their invariant manifolds [3, 16]. The right
hand side of (2.9) is a polynomial, and so it is not surprising that algebraic methods
have been successfully employed in a number of areas related to fixed points of
mass-action systems [16, 39, 41].

Analogous questions are asked about the stationary behavior of the correspond-
ing stochastic model:

• When will a chemical system admit a stationary distribution that charge all states
of the state space?

• Can we characterize the resulting stationary distribution?

Of course, simple example networks such as A→ /0, whose corresponding stochastic
model converges to zero, or /0→ A, whose corresponding stochastic model increases
without bound, show that not all reaction networks admit stationary distributions

33
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that charge all states. In particular, see [8] for a large class of networks with station-
ary distributions that only charge states on the boundary of Zn

≥0.

3.2 Network conditions, complex-balanced equilibria, and the
deficiency zero theorem

It is clear that the network /0→ A induces both a deterministic and stochastic model
that grows unboundedly in time. Just as obvious is the fact that the network A→ /0
induces models that decay to zero as time goes to infinity. Significantly less obvious
is the long-time behavior of the dynamical models associated with more complicated
networks such as

S+E 
 SE 
 P+E, E 
 /0, (3.1)

which is a variant of the model of Example 2.7. The following definitions and results
help us relate properties of the network architecture to those of the associated dy-
namical systems. Most of the terminology and results in this section stem from the
works of Horn, Jackson, and Feinberg [21, 32]. See also [20, 29] for survey articles.

Definition 3.1. A chemical reaction network, {S ,C ,R}, is called weakly reversible
if for any reaction yk→ y′k ∈R, there is a sequence of directed reactions beginning
with y′k as a source complex and ending with yk as a product complex. That is, there
exist complexes y1, . . . ,yr such that y′k → y1,y1 → y2, . . . ,yr → yk ∈R. A network
is called reversible if y′k→ yk ∈R whenever yk→ y′k ∈R.

Note, for example, that the reaction network (3.1) is reversible, and hence weakly
reversible, whereas the network

S+E 
 SE→ P+E, E 
 /0,

is neither reversible nor weakly reversible. The network

A −→ B

↖ ↙
C

(3.2)

is weakly reversible, but not reversible.
Now consider the unique directed graph implied by a reaction network. That is,

consider the graphs of the form (3.1) and (3.2). We term each connected component
of the resulting graph a linkage class and denote the number of linkage classes by
` ∈ Z≥0. For example, the reaction network (3.1) has two linkage classes, whereas
the reaction network (3.2) has only one.

It is easy to see that a chemical reaction network is weakly reversible if and only
if each of the linkage classes of its graph is strongly connected.
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Definition 3.2. S = span{yk→y′k∈R}
{y′k − yk} is the stoichiometric subspace of the

network. For c ∈Rn we say c+S and (c+S)∩Rn
≥0 are the stoichiometric compati-

bility classes and non-negative stoichiometric compatibility classes of the network,
respectively. Denote dim(S) = s.

For example, the network

A 
 B, 2A 
 2B (3.3)

has reaction vectors (
−1
1

)
,

(
1
−1

)
,

(
−2
2

)
,

(
2
−2

)
and stoichiometric subspace {x ∈ R2 : x1 + x2 = 0}, whereas the network

/0 
 A 
 B, 2A 
 2B

has reaction vectors(
1
0

)
,

(
−1
0

)
,

(
−1
1

)
,

(
1
−1

)
,

(
−2
2

)
,

(
2
−2

)
and stoichiometric subspace R2. It is straightforward to show that for both stochas-
tic and deterministic models, the state of the system remains within a single stoi-
chiometric compatibility class for all time. For example, letting Rk be the counting
processes giving the number of times the kth reaction has taken place, we see

X(t)−X(0) = ∑
k

Rk(t)ζk ∈ S =⇒ X(t) ∈ X(0)+S,

for all t > 0. Note that for a given non-negative initial condition X(0) ∈ Zn
≥0, the

state space for the stochastic model will be a subset of the set (X(0)+S)∩Zn
≥0 so

long as the kinetics are stoichiometrically admissible.

Definition 3.3. The deficiency of a chemical reaction network, {S ,C ,R}, is δ =
|C |−`−s, where |C | is the number of complexes, ` is the number of linkage classes
of the network graph, and s is the dimension of the stoichiometric subspace of the
network.

For example, the network (3.3) consists of four complexes, two linkage classes,
and the dimension of the stoichiometric compatibility class is one. Hence, the de-
ficiency is 4− 2− 1 = 1. On the other hand, the network (3.2) consists of three
complexes, one linkage class, and the dimension of the stoichiometric compatibility
class is two. Thus, the deficiency is 3− 1− 2 = 0. Zero is a lower bound on the
deficiency of a network.

Proposition 3.4. The deficiency of a network is non-negative.
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Proof. Let Ci ⊂ C be the complexes in the ith linkage class, and let Si be the span
of the reaction vectors of the edges in the ith linkage class. Then dim(Si)≤ |Ci|−1
and,

dim(S)≤
`

∑
i=1

dim(Si)≤
`

∑
i=1
|Ci|− `= |C |− `.

�

An equilibrium, c∈Rn
≥0, of the deterministic model (2.9) is said to be a complex-

balanced equilibrium if for each complex η ∈ C ,

∑
{k:η=yk}

κkcyk = ∑
{k:η=y′k}

κkcyk , (3.4)

where the sum on the left is over reactions for which η is the source complex and
the sum on the right is over those reactions for which η is the product complex.

See [20] or [29] for a proof of the following.

Theorem 3.5. Let {S ,C ,R} be a chemical reaction network with deterministic
mass-action kinetics. Suppose there is a complex-balanced equilibrium, c ∈ Rn

>0,
satisfying (3.4). Then, there is precisely one equilibrium in the interior of each
positive stoichiometric compatibility class and each such equilibrium is complex-
balanced.

Hence, it makes sense to talk about a complex-balanced system. The following
result by Feinberg makes a connection between the deficiency of a network and its
ability to admit complex-balanced equilibria [20, 21].

Theorem 3.6. Let {S ,C ,R} be a chemical reaction network with deterministic
mass-action kinetics. If the network has a deficiency of zero, then there exists a
complex-balanced equilibrium c ∈ Rn

>0 if and only if the network is weakly re-
versible.

3.3 Stationary distributions for complex-balanced models

Denote the closed, irreducible components of the state space of a countable Markov
chain by {Γ }. All stationary distributions of the chain can be written as

π = ∑
Γ

αΓ πΓ , (3.5)

where αΓ ≥ 0, ∑Γ αΓ = 1, and where πΓ is the unique stationary distribution satis-
fying πΓ (Γ ) = 1, for those Γ for which a stationary distribution exists.

The following result and proof first appeared in [6], though earlier relevant work
is found in [35].
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Theorem 3.7. Let {S ,C ,R} be a chemical reaction network and let {κk} be a
choice of rate constants. Suppose that, modeled deterministically via (2.9), the sys-
tem is complex-balanced with complex-balanced equilibrium c ∈ Rn

>0. Then the
stochastically modeled system with intensities (2.6) has a stationary distribution
consisting of the product of Poisson distributions,

π(x) =
n

∏
i=1

cxi
i

xi!
e−ci , x ∈ Zn

≥0. (3.6)

If Zn
≥0 is irreducible, then (3.6) is the unique stationary distribution, whereas if

Zn
≥0 is not irreducible then the πΓ of equation (3.5) are given by the product-form

stationary distributions

πΓ (x) = MΓ

n

∏
i=1

cxi
i

xi!
, x ∈ Γ ,

and πΓ (x) = 0 otherwise, where MΓ is a positive normalizing constant.

Remark 3.8. It is important to note that the same rate constants {κk} are used for
both the deterministic and stochastic models.

Proof. Let π satisfy (3.6) where c ∈ Rn
>0 is a complex-balanced equilibrium. The

forward equation (1.11) implies π is a stationary distribution if it simultaneously
satisfies

∑
`

λ`(x−ζ`)π(x−ζ`)−∑
`

λ`(x)π(x) = 0, (3.7)

for each x ∈ Zn
≥0, and ∑x∈Zn

≥0
π(x) = 1. The second condition holds automatically,

so we just need to check the first. Plugging π and (2.6) into equation (3.7) and
simplifying yields

∑
k

κkcyk−y′k
1

(x− y′k)!

n

∏
`=1

1{x`≥y′`k}
= ∑

k
κk

1
(x− yk)!

n

∏
`=1

1{x`≥y`k}. (3.8)

The key step in the proof is to note that we may write the above sums as

∑
k

κkcyk−y′k
1

(x− y′k)!

n

∏
`=1

1{x`≥y′`k}
= ∑

η∈C
∑

{k:y′k=η}
κkcyk−y′k

1
(x− y′k)!

n

∏
`=1

1{x`≥y′`k}

and

∑
k

κk
1

(x− yk)!

n

∏
`=1

1{x`≥y`k} = ∑
η∈C

∑
{k:yk=η}

κk
1

(x− yk)!

n

∏
`=1

1{x`≥y`k},

where the enumeration {k : y′k = η} is over reactions for which η is the product
complex and the enumeration {k : yk = η} is over reactions for which η is the
source complex. Hence, equation (3.8) will be satisfied if for each complex η ∈ C ,
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∑
{k:y′k=η}

κkcyk−η 1
(x−η)!

n

∏
`=1

1{x`≥η`} = ∑
{k:yk=η}

κk
1

(x−η)!

n

∏
`=1

1{x`≥η`}. (3.9)

Both the state x and the complex η are fixed in the above equation, and so multiply-
ing (3.9) through by cη(x−η)! > 0 yields the equivalent equation

∑
{k:y′k=η}

κkcyk = ∑
{k:yk=η}

κkcη = ∑
{k:yk=η}

κkcyk ,

which is simply (3.4).
To complete the proof, one need only observe that the normalized restriction of

π to any closed, irreducible subset Γ must also be a stationary distribution. �

Note that in light of Theorem 3.6, the conclusions of Theorem 3.7 hold for any
choice of rate constants if the network is weakly reversible and has a deficiency of
zero.

We present a series of examples demonstrating the usefulness of Theorem 3.7.

Example 3.9. Consider the network of Example 2.9,

/0
λ



µ

S,

where λ ,µ > 0. This network has a deficiency of δ = 2−1−1 = 0, and is weakly
reversible. The equilibrium of the corresponding deterministically modeled system
is c = λ/µ and the state space is all of Z≥0. Hence, the stationary distribution of
the stochastic model is Poisson with parameter λ/µ . Note that this model is iden-
tical to the simplest model of an infinite server queue. This example along with the
next two are well-known in the queueing literature as is the form of their stationary
distributions. 4

Example 3.10. Consider the network

S1
κ1


κ2

S2,

where κ1,κ2 > 0. Suppose that X1(0)+X2(0) = N so that X1(t)+X2(t) = N for all
t > 0. This system has a deficiency of zero and is weakly reversible. A complex-
balanced equilibrium to the deterministically modeled system is

c =
(

κ2

κ1 +κ2
,

κ1

κ1 +κ2

)
,

and the product-form stationary distribution for the system is therefore

π(x) = M
cx1

1
x1!

cx2
2

x2!
,

where M > 0 is a normalizing constant. Using that X1(t)+X2(t) = N for all t yields
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π1(x1) = M
cx1

1
x1!

cN−x1
2

(N− x1)!
=

M
x1!(N− x1)!

cx1
1 (1− c1)

N−x1 ,

for 0 ≤ x1 ≤ N. After setting M = N!, we see that X1 is binomially distributed.
Similarly,

π2(x2) =

(
N
x2

)
cx2

2 (1− c2)
N−x2 ,

for 0 ≤ x2 ≤ N. Note that due to the conservation relation, X1 and X2 are not inde-
pendent under this stationary distribution. 4

The following example shows how to generalize the conclusions of the previous
two.

Example 3.11 (Stationary distributions for first order reaction networks). We denote
by SSC (for single species complexes) the class of first order reaction networks for
which all complexes consist of either a single species or the empty set. For example,
the network

/0← S→ 2S,

is a first order reaction network, but is not contained in SSC. It is known that a
weakly reversible SSC network admits a product form stationary distribution of the
form (3.6) [22, 35]. We show here how this fact follows trivially from Theorem 3.7.

First, it is relatively straightforward to show that all SSC networks have a defi-
ciency of zero (see Problem 3.2). Therefore, Theorem 3.7 is applicable to all SSC
networks that are weakly reversible. Consider such a reaction network with only one
linkage class (if there is more than one linkage class we can consider the different
linkage classes as distinct networks/systems).

We say that the network is open if /0 ∈ C , and otherwise say it is closed. In the
case of an open, weakly reversible, SSC network we see that S =Rn, the state space
is all of Zn

≥0, and Zn
≥0 is irreducible. Thus, by Theorem 3.7 the unique stationary

distribution is

π(x) =
n

∏
i=1

cxi
i

xi!
e−ci , x ∈ Zn

≥0,

where c ∈ Rn
>0 is the complexed balanced equilibrium of the associated (linear) de-

terministic system. Therefore, when in distributional equilibrium, the species num-
bers are independent and have Poisson distributions.

Now suppose the network is closed, weakly reversible, and is a single linkage
class SSC network. Suppose further that X1(0)+ · · ·+Xn(0) = N. Then, ΓN = {x ∈
Zn
≥0 : x1 + · · ·+ xn = N} is closed and irreducible (see Problem 3.3). By Theorem

3.7, in distributional equilibrium X(t) has a multinomial distribution. That is, for
any x ∈ Zn

≥0 satisfying x1 + x2 + · · ·+ xn = N

πΓ (x) =
(

N
x1,x2, . . . ,xn

)
cx =

N!
x1! · · ·xn!

cx1
1 · · ·c

xn
n , (3.10)
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where c ∈Rn
>0 is the equilibrium of the associated deterministic system normalized

so that ∑i ci = 1. 4

We now turn our attention to reaction systems with nonlinear intensity functions.

Example 3.12. We modify the model of Example 2.7 and consider the open network

S+E 
 ES 
 P+E, E 
 /0 
 S. (3.11)

The network (3.11) is reversible and has six complexes and two linkage classes.
The dimension of the stoichiometric subspace is readily checked to be four, and
so the network has a deficiency of zero. Theorem 3.7 applies and so the stochasti-
cally modeled system has a product-form stationary distribution of the form (3.6).
It is readily checked that the unique closed, irreducible communicating class of the
stochastically modeled system is all of Z4

≥0, and so in equilibrium the species are
independent and have Poisson distributions. 4

Example 3.13. We again modify Example 2.7 and consider now the open network

S+E
κ1


κ−1

ES
κ2


κ−2

P+E, /0
κ3


κ−3

E, (3.12)

where a choice of rate constants has now been made explicit. The network is re-
versible, there are five complexes, two linkage classes, and the dimension of the
stoichiometric compatibility class is three. Therefore, Theorem 3.7 implies that the
stochastically modeled system has a product-form stationary distribution of the form
(3.6). Unlike in Example 3.12, there is now a conserved quantity

XS(t)+XES(t)+XP(t) = N,

where N > 0. Therefore, after solving for the normalizing constant, we have that for
any x ∈ Z4

≥0 satisfying x2 + x3 + x4 = N

π(x) = e−c1
cx1

1
x1!

N!
x2!x3!x4!

cx2
2 cx3

3 cx4
4 = e−c1

cx1
1

x1!

(
N

x2,x3,x4

)
cx2

2 cx3
3 cx4

4 ,

where c = (κ3/κ−3,c2,c3,c4) has been chosen so that c2 +c3 +c4 = 1. Thus, when
the stochastically modeled system is in distributional equilibrium we have that: (a)
E has a Poisson distribution with parameter κ3/κ−3, (b) S, ES, and P are multino-
mially distributed, and (c) E is independent from S, ES, and P. 4

Problems

3.1. What are the deficiencies of the models in Examples 2.3 and 2.6?
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3.2. Show that all SSC networks have a deficiency of zero. Give an example of a
first order network with a deficiency of one.

3.3. Let {S ,C ,R} be a closed SSC network with only one linkage class. Show that
ΓN = {x∈Zn

≥0 : x1+ · · ·+xn =N} is a closed and irreducible component of the state
space.

3.4. Find the stationary distribution for the stochastic model associated with the
reaction network

2P
κ1


κ2

D,

and initial condition XP(0),XD(0). Note that this is the standard model for protein
dimerization.

3.5. Find the stationary distribution of the model with network

/0
κ1


κ−1

S1, 2S1
κ2


κ−2

S2.

3.6. Find the stationary distribution of the model with network

A
κ1


κ−1

2A.





Chapter 4
Analytic approaches to model simplification and
approximation

Abstract Models of biochemical reaction systems typically have large state spaces
and complex structure. Stochastic limit theorems provide one approach to deriving
less complex and more tractable models. Specifying models as solutions of Poisson
time-change equations enables exploitation of the law of large numbers and central
limit theorem for the driving Poisson processes to give analytic derivations of the
simplified models.

4.1 Limits under the classical scaling

The state vectors of the models of reaction systems introduced in Chapter 2 give the
numbers of molecules of the chemical species in the system. In classical chemistry,
the state of a reaction system is usually described in terms of chemical concentra-
tions rather than numbers of molecules. These descriptions are, of course, related,
the chemical concentration of a species being the number of molecules of the species
divided by Avogadro’s number NA (≈ 6× 1023) times the volume v of the reaction
mixture.

For a well-mixed, binary reaction,

S1 +S2→∗, (4.1)

the reaction rate should vary inversely with the volume, so we set Nv = NAv and
assume that the rate function for (4.1) has the form

κ

Nv
x1x2, (4.2)

where x1 and x2 are the numbers of molecules of species S1 and S2 respectively. If
we rewrite (4.2) in terms of the concentrations ci = N−1

v xi, we have

κ

Nv
x1x2 = Nvκc1c2 ≡ Nvλ (c).

43
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For unary reactions S1→∗,
κx1 = Nvκc1,

and for 2S1→∗,

κ

Nv
x1(x1−1) = Nvκc1(c1−N−1

v )≈ Nvκc2
1. (4.3)

Consequently, the equation for the species numbers in a system with m reactions
becomes

X(t) = X(0)+
m

∑
k=1

Yk(Nv

∫ t

0
λk(C(s))ds)ζk,

where C(t) = N−1
v X(t), and

C(t) =C(0)+
m

∑
k=1

N−1
v Yk(Nv

∫ t

0
λk(C(s))ds)ζk. (4.4)

In the light of (4.3), we should write λ N
k (c) instead of λk(c), but to keep the notation

simpler, we will just write λk.
Even if the volume v is very small, Nv is still very large, and if we consider a

sequence of equations

CN(t) =CN(0)+
m

∑
k=1

N−1Yk(N
∫ t

0
λk(CN(s))ds)ζk, (4.5)

where for N = Nv, CN = C, C should be approximately equal to limN→∞ CN , if the
limit exists.

For simplicity, assume that m<∞, and set F(x)=∑
m
k=1 λk(x)ζk, so (4.5) becomes

CN(t) =CN(0)+MN(t)+
∫ t

0
F(CN(s))ds,

where

MN(t) =
m

∑
k=1

N−1Ỹk(N
∫ t

0
λk(CN(s))ds)ζk

and Ỹk(u) = Yk(u)−u. Assuming a local Lipschitz condition,

|F(x)−F(y)| ≤ Ka|x− y|, |x|, |y| ≤ a, (4.6)

set
x(t) = x(0)+

∫ t

0
F(x(s))ds, (4.7)

and define γN
a = inf{t : |CN(t)| ∨ |x(t)| ≥ a}. Gronwall’s inequality, Section A.7,

gives
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|CN(t ∧ γ
N
a )− x(t ∧ γ

N
a )| ≤ (|CN(0)− x(0)|+ sup

s≤t∧γN
a

|MN(s)|)eKat .

Note that

MN(t) =
m

∑
k=1

N−1Ỹk(N
∫ t

0
λk(CN(s))ds)ζk

is a martingale with

E[|MN(t ∧ γ
N
a )|2] =

1
N

E[
∫ t∧γN

a

0

m

∑
k=1

λk(CN(s))|ζk|2ds],

and hence by Doob’s inequality, Section A.2.1,

E[sup
s≤t
|MN(s∧ γ

N
a )|2] ≤

4
N

E[
∫ t∧γN

a

0

m

∑
k=1

λk(CN(s))|ζk|2ds]

≤ 4t
N

sup
|x|≤a

m

∑
k=1

λk(x)|ζk|2.

Consequently, we have the following theorem. (See Chapter 11 of [19].)

Theorem 4.1. Let CN satisfy (4.5) and x satisfy (4.7). Suppose that for each a > 0,
the Lipschitz condition (4.6) holds and that the solution of (4.7) exists for all time. (It
is necessarily unique by the Lipschitz assumption.) If CN(0)→ x(0), then for each
ε > 0 and each t > 0,

lim
N→∞

P{sup
s≤t
|CN(s)− x(s)| ≥ ε}= 0.

Theorem 4.1 is essentially a law of large numbers and could have been proved
by a direct application of the law of large numbers for the Poisson processes which
ensures

lim
N→∞

sup
u≤u0

|N−1Yk(Nu)−u|= 0 a.s.

If one has a law of large numbers, then one should look for a central limit theorem,
or in the case of stochastic processes, a functional central limit theorem, that is a
limit theorem that captures the sample path behavior of the rescaled process.

With this goal in mind, consider

V N(t) =
√

N(CN(t)− x(t))

with CN and x as above, and assume V N(0)→ V (0). Assuming that F is continu-
ously differentiable, the stochastic equations give
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V N(t) = V N(0)+
m

∑
k=1

1√
N

Ỹk(N
∫ t

0
λk(CN(s))ds)+

∫ t

0

√
N(F(CN(s))−F(x(s)))ds

≈ V N(0)+
m

∑
k=1

1√
N

Ỹk(N
∫ t

0
λk(CN(s))ds)+

∫ t

0
∇F(x(s)))V N(s)ds.

By Theorem 4.1, we know that
∫ t

0 λk(CN(s))ds→
∫ t

0 λk(x(s))ds, and the standard
central limit theorem implies that for u≥ 0,

W N
k (u) =

1√
N

Ỹk(Nu)

converges in distribution to a Gaussian random variable with mean zero and variance
u. More precisely, the functional central limit theorem (Lemma A.6) holds; that is,
W N

k ⇒Wk, where the Wk are independent standard Brownian motions.
Applying this functional convergence theorem for the W N

k along with the contin-
uous mapping theorem (Theorem A.5), we have V N ⇒V satisfying

V (t) =V (0)+
m

∑
k=1

Wk(
∫ t

0
λk(x(s))ds)ζk +

∫ t

0
∇F(x(s))V (s)ds. (4.8)

Assuming that V (0) is Gaussian, the linearity of (4.8) implies V is a Gaussian
process. Taking expectations, we see that E[V (t)] satisfies

E[V (t)] = E[V (0)]+
∫ t

0
∇F(x(s))E[V (s)]ds.

Setting

K(t) =
∫ t

0
∑
k

ζkζ
T
k λk(x(s))ds,

one can also show that

E[V (t)V (t)T ] = E[V (0)V (0)T ]+K(t)+
∫ t

0
∇F(x(s))E[V (s)V (s)T ]ds

+
∫ t

0
E[V (s)V (s)T ]∇F(x(s))T ds,

and letting Γ (t) denote the covariance matrix,

Γ (t) = Γ (0)+K(t)+
∫ t

0
∇F(x(s))Γ (s)ds+

∫ t

0
Γ (s)∇F(x(s))T ds.
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4.2 Models with multiple time-scales

Reaction networks modeled in cellular biology typically involve species numbers
with orders of magnitude much smaller than the 1023 of Avogadro’s number, and
for some species, the numbers may be much too small to be reasonably modeled by
continuous variables. Even for those species present in sufficient numbers (105 or
even 103) to be modeled using continuous variables, expressing the species abun-
dances as concentrations, as in the previous section, may not be appropriate, and
there may be no normalization of species numbers that is appropriate for all species
in the network. In addition, the rate constants in the models may vary over several
orders of magnitude. Consequently, we want to explore the possibility of deriving
simplified models, as in the previous section, by normalizing species numbers and
rate constants in different ways.

Let N0 � 1, where N0 no longer has an interpretation in terms of Avogadro’s
number. For each species Si, define the normalized abundance (or simply, the abun-
dance) by

Zi(t) = N−αi
0 Xi(t),

where αi ≥ 0 should be selected so that Zi = O(1). Note that the abundance may be
the species number (αi = 0) or the species concentration or something else.

Since the original rate constants, which we will denote by κ ′k, may also vary over
several orders of magnitude, select βk and κk so that κ ′k = κkNβk

0 and κk = O(1). For
binary reactions, for example, the rate function expressed in terms of the normalized
abundances becomes

N
βk+αi+α j
0 κkziz j = κ

′
kxix j.

Note that we can write αi +α j = yk ·α , where we recall that the kth reaction is
yk→ y′k.

As before, we define a sequence of models satisfying

ZN
i (t) = ZN

i (0)+∑
k

N−αiYk(
∫ t

0
Nβk+yk·α λk(ZN(s))ds)ζki,

where as before, ζk = y′k− yk. Then the original model is Z = ZN0 . The assumption
that N0 is “large” suggests attempting to derive approximate models by taking limits
as N→∞. In these derivations, we want to exploit the possibility that the model has
“multiple time-scales.” To make clear what we mean by this terminology, consider
a change of time variable replacing t by Nγ t, and define ZN,γ as the solution of the
system

ZN,γ
i (t)≡ ZN

i (N
γ t) = ZN

i (0)+∑
k

N−αiYk(
∫ t

0
Nγ+βk+yk·α λk(ZN,γ(s))ds)ζki. (4.9)

Assuming that the ZN,γ
i neither blow up nor converge uniformly to zero, each species

has a natural time-scale γi determined by requiring
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αi = max{γi +βk + yk ·α : ζki 6= 0}.

For γ = γi, none of the normalized reaction terms on the right of (4.9) should blow
up, and at least one should be nontrivial. Since the γi need not all be the same, one
may obtain different, nontrivial limiting models depending on the choice of time-
scale γ .

This approach to deriving rescaled limits is explored in detail in [10] and [34].
In particular, [34] develops systematic approaches to the selection of the scaling
exponents αi and βk. Here we simply derive limits for two examples.

4.2.1 Example: Derivation of the Michaelis-Menten equation.

Classically, the Michaelis-Menten equation of enzyme kinetics is derived from the
deterministic law of mass action under the assumption that the concentration of sub-
strate is much larger than the concentration of enzyme. In [17], Darden derives the
Michaelis-Menten equation from the Markov chain model under similar assump-
tions. We repeat that derivation using the stochastic equation representation we have
developed here.

We consider the simplest system introduced in Section 2.1.3

S+E 
 SE→ P+E,

and we assume that the number of substrate molecules is O(N) and the total number
M of free enzyme and bound enzyme molecules is fixed and independent of N.
Setting ZN

S (t) = N−1XN
S (t), we assume that the rate constants scale so that

XN
E (t) = XE(0)−Y1(N

∫ t

0
κ1ZN

S (s)X
N
E (s)ds)+Y2(Nκ2

∫ t

0
XN

SE(s)ds)

+Y3(Nκ3

∫ t

0
XN

SE(s)ds)

ZN
S (t) = ZN

S (0)−N−1Y1(N
∫ t

0
κ1ZN

S (s)X
N
E (s)ds)

+N−1Y2(Nκ2

∫ t

0
XN

SE(s)ds),

where M≡XN
E (t)+XN

SE(t) does not depend on t or N. In particular, we can substitute
M−XN

E for XN
SE . We assume that XE(0) does not depend on N and that ZN

S (0)→
ZS(0)≡ zS(0)< ∞.

For the equation written this way, the natural time-scale for the enzyme is γ =
−1 and the natural time-scale for the substrate is γ = 0. It is easy to check that
(XN,−1

E ,ZN,−1
S ) converges, as N→ ∞, to the solution of
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X−1
E (t) = XE(0)−Y1(

∫ t

0
κ1ZS(s)X−1

E (s)ds)+Y2(κ2

∫ t

0
X−1

SE (s)ds)

+Y3(κ3

∫ t

0
X−1

SE (s)ds)

Z−1
S (t) = ZS(0).

For γ = 0 and hence (XN,0
E ,ZN,0

S ) = (XN
E ,ZN

S ), the law of large numbers for the
Poisson process implies that as N→ ∞,

ZN
S (t)−ZN

S (0)−
∫ t

0
(κ2XN

SE(s)−κ1ZN
S (s)X

N
E (s))ds→ 0, (4.10)

almost surely, uniformly on bounded time intervals. Since ZN
S (0)→ zS(0)< ∞, the

integrand in (4.10) is uniformly bounded, so at least along a subsequence, ZN
S con-

verges to a continuous function zS. Similarly, dividing the equation for XN
E by N, we

have ∫ t

0
κ1ZN

S (s)X
N
E (s)ds−κ2

∫ t

0
(m−XN

E (s))ds−κ3

∫ t

0
(m−XN

E (s))ds)

=
∫ t

0
(κ1ZN

S (s)+κ2 +κ3)XN
E (s)ds− (κ2 +κ3)mt→ 0,

which, by Problem 4.1(b), implies∫ t

0
XN

E (s)ds→
∫ t

0

m(κ2 +κ3)

κ1zS(s)+κ2 +κ3
ds,

at least along the subsequence described above.
Consequently

ZN
S (t) = ZN

S (0)−N−1Y1(N
∫ t

0
κ1ZN

S (s)X
N
E (s)ds)

+N−1Y2(Nκ2

∫ t

0
XN

SE(s)ds)

≈ ZN
S (0)−

∫ t

0
κ1ZN

S (s)X
N
E (s)ds)+κ2

∫ t

0
XN

SE(s)ds)

→ zS(0)−κ3

∫ t

0
(m− m(κ2 +κ3)

κ1zS(s)+κ2 +κ3
)ds

= zS(0)−
∫ t

0

mκ1κ3zS(s)
κ1zS(s)+κ2 +κ3

ds,

so ZN
S → zS satisfies

zS(t) = zS(0)−
∫ t

0

mκ1κ3zS(s)
κ1zS(s)+κ2 +κ3

ds,
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which is the Michaelis-Menten equation.

4.2.2 Example: Approximation of the virus model

We now consider the virus model introduced in Section 2.1.2 and studied earlier in
[45], [30], and [10] using the rate constants from the original paper [45]. The system
is

X1(t) = X1(0)+Y1(
∫ t

0
X3(s)ds)−Y2(0.025

∫ t

0
X1(s)ds)

−Y6(7.5×10−6
∫ t

0
X1(s)X2(s)ds)

X2(t) = X2(0)+Y3(
∫ t

0
1000X3(s)ds)−Y5(2

∫ t

0
X2(s)ds)

−Y6(7.5×10−6
∫ t

0
X1(s)X2(s)ds)

X3(t) = X3(0)+Y2(0.025
∫ t

0
X1(s)ds)−Y4(0.25

∫ t

0
X3(s)ds)

Taking N0 = 1000, we scale the rate constants so that

κ ′1 1 1
κ ′2 0.025 2.5N−2/3

0
κ ′3 1000 N0
κ ′4 0.25 0.25
κ ′5 2 2
κ ′6 7.5×10−6 0.75N−5/3

0

that is, we take β1 = β4 = β5 = 0, β2 =−2/3, β3 = 1, and β6 =−5/3. Scaling the
species numbers, we take α1 = 2/3, α2 = 1, and α3 = 0.

With the scaled rate constants, the normalize equations become

ZN
1 (t) = ZN

1 (0)+N−2/3Y1(
∫ t

0
ZN

3 (s)ds)−N−2/3Y2(2.5
∫ t

0
ZN

1 (s)ds)

−N−2/3Y6(0.75
∫ t

0
ZN

1 (s)Z
N
2 (s)ds)

ZN
2 (t) = ZN

2 (0)+N−1Y3(N
∫ t

0
ZN

3 (s)ds)−N−1Y5(N2
∫ t

0
ZN

2 (s)ds)

−N−1Y6(0.75
∫ t

0
ZN

1 (s)Z
N
2 (s)ds)

ZN
3 (t) = ZN

3 (0)+Y2(2.5
∫ t

0
ZN

1 (s)ds)−Y4(0.25
∫ t

0
ZN

3 (s)ds).
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With these choices of the αi and βk, we see that the natural time-scale for S1 is
γ = 2/3 and the natural time-scale for S2 and S3 is γ = 0.

Assuming (ZN
1 (0),Z

N
2 (0),Z

N
3 (0))→ (Z1(0),Z2(0),Z3(0)), taking the limit with

γ = 0, we have

Z0
1(t) = Z1(0)

Z0
2(t) = Z2(0)+

∫ t

0
Z0

3(s)ds)−2
∫ t

0
Z0

2(s)ds)

Z0
3(t) = Z3(0)+Y2(2.5

∫ t

0
Z0

1(s)ds)−Y4(0.25
∫ t

0
Z0

3(s)ds).

This system is an example of a piecewise deterministic or hybrid model, that is,
one component is discrete and stochastic while the other is an ordinary differential
equation with coefficients depending on the stochastic component.

For γ = 2/3, the system becomes

ZN,2/3
1 (t) = ZN,2/3

1 (0)+N−2/3Y1(N2/3
∫ t

0
ZN,2/3

3 (s)ds)−N−2/3Y2(N2/32.5
∫ t

0
ZN,2/3

1 (s)ds)

−N−2/3Y6(N2/30.75
∫ t

0
ZN,2/3

1 (s)ZN,2/3
2 (s)ds)

ZN,2/3
2 (t) = ZN,2/3

2 (0)+N−1Y3(N5/3
∫ t

0
ZN,2/3

3 (s)ds)−N−1Y5(N5/32
∫ t

0
ZN,2/3

2 (s)ds)

−N−1Y6(N2/30.75
∫ t

0
ZN,2/3

1 (s)ZN,2/3
2 (s)ds)

ZN,2/3
3 (t) = ZN,2/3

3 (0)+Y2(N2/32.5
∫ t

0
ZN,2/3

1 (s)ds)−Y4(N2/30.25
∫ t

0
ZN,2/3

3 (s)ds).

As N→ ∞, dividing the equations for ZN,2/3
2 and ZN,2/3

3 by N2/3 shows that∫ t

0
ZN,2/3

3 (s)ds−2
∫ t

0
ZN,2/3

2 (s)ds→ 0

2.5
∫ t

0
ZN,2/3

1 (s)ds−0.25
∫ t

0
ZN,2/3

3 (s)ds→ 0,

which together imply ∫ t

0
ZN,2/3

2 (s)ds−5
∫ t

0
ZN,2/3

1 (s)ds→ 0.

Applying these limits in the equation for ZN,2/3
1 , estimates on the increments of

ZN,2/3
1 can be given that ensure that, at least along a subsequence, ZN,2/3

1 converges
to a continuous function z1. Then applying Problem 4.1, we have∫ t

0
ZN,2/3

1 (s)ZN,2/3
2 (s)ds→ 5

∫ t

0
z1(s)2ds
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and the following theorem.

Theorem 4.2. For each ε > 0 and t > 0,

lim
N→∞

P{ sup
0≤s≤t

|ZN,2/3
1 (s)− z1(s)| ≥ ε}= 0,

where z1 is the solution of

z1(t) = z1(0)+
∫ t

0
7.5z1(s)ds)−

∫ t

0
3.75z1(s)2ds. (4.11)

Problems

4.1. Let xn,x : [0,∞)→ [0,∞) and zn,z : [0,∞)→ R be measurable functions and z
be continuous, and assume that for all t > 0, sups≤t |z(s)− zn(s)| → 0.

a) Suppose ∫ t

0
xn(s)ds→

∫ t

0
x(s)ds < ∞,

for all t > 0. Show that ∫ t

0
zn(s)xn(s)ds→

∫ t

0
z(s)x(s)ds,

for all t > 0.
b) Suppose T > 0, infs≤T z(s)> 0, and∫ t

0
zn(s)xn(s)ds→

∫ t

0
z(s)x(s)ds,

for all 0 < t ≤ T . Show that∫ t

0
xn(s)ds→

∫ t

0
x(s)ds,

for all 0 < t ≤ T .

4.2. Consider the following model for crystallization that was studied in [30]. The
system involves four species and two reactions

2A
κ ′1→ B A+C

κ ′2→ D.

Rawlings and Haseltine assume XA(0) = 106, XB(0) = 0, XC(0) = 10, and κ ′1 = κ ′2 =
10−7.

a) Set up the system of stochastic equations for the model.
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b) Select appropriate values for N0 and the scaling exponents, and derive a simpli-
fied limiting model.

4.3. Consider an enzyme reaction of the form

S+E 
 SE→ P+E E 
 F +G /0→ G→ /0.

a) Are any linear combinations of species conserved? (Conservation relations re-
duce the number of equations you need to formulate the model.)

b) Assume that E, SE, and F are present only in small numbers and that S is present
in much larger numbers. Assume that the reactions SE → S+E, SE → P+E,
E 
 F +G and /0→ G→ /0 are all fast, scale the model so that there are two
time-scales, and identify the limiting models to the extent that you can.

4.4. Consider the network /0→ S1 → S2 → /0. Suppose the reaction S1 → S2 is de-
terministic, that is, after a molecule of S1 is created, it takes a deterministic amount
of time to convert to a molecule of S2. Assuming a “classical” scaling, prove a law
of large numbers and a central limit theorem for the network.

4.5. Consider the network /0→ S1 
 S2→ /0. Use a continuous time Markov chain
model, but now assume that the reversible reactions are much faster than the input
and output reactions. Under appropriate scaling, prove a law of large numbers and a
central limit theorem for the network.





Chapter 5
Numerical methods

Abstract It is often the case that one would like to simulate a few paths of a par-
ticular model in order to gain insight into its possible behavior. Sometimes one
would like to go further and simulate many paths in order to perform Monte Carlo
experiments and produce estimates of expectations. In this chapter, we provide an
overview of numerical methods for stochastically modeled biochemical systems. We
briefly introduce the basic ideas behind Monte Carlo estimation and discuss ways
to generate the necessary random variables via transformations of uniform random
variables. We introduce two methods that provide statistically exact sample paths,
and one method that provides approximate sample paths. Finally, we introduce the
multi-level Monte Carlo estimator for the efficient computation of expectations.

5.1 Monte Carlo

When analyzing a stochastic model, one often wishes to approximate terms of the
form E[ f (X)], where f : DE [0,∞)→R is a scalar-valued functional of a path which
gives a measurement of interest. Examples of functionals f include

• f (X(T )) = Xi(T ), yielding estimates for mean values at a specific time,
• f (X) = t−1 ∫ t

0 g(X(s))ds, yielding time averages,
• f (X(T )) = Xi(T )X j(T ), yielding covariances,
• f (X) = 1{X(T )∈B}, yielding probabilities,

though this list is far from exhaustive.
Suppose for the time being that we can generate realizations of X exactly via a

computer, and that E[| f (X)|] < ∞. The strong law of large numbers tells us that if
X[1],X[2], . . . , are independent realizations of X then with a probability of one

lim
n→∞

f (X[1])+ · · ·+ f (X[n])

n
= E[ f (X)].

55
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This of course implies the beginnings of a strategy: generate large numbers of inde-
pendent realizations {X[i]}n

i=1, and use the approximation

E[ f (X)]≈ 1
n

n

∑
i=1

f (X[i]). (5.1)

We are now immediately confronted with the following question: how good is the
approximation (5.1)? This question can be answered via the central limit theorem,
which for completeness we restate here. We point the reader to Appendix A.4 for
more details related to convergence of distribution.

Theorem 5.1 (Central limit theorem). Let X[1],X[2], . . . be a sequence of inde-
pendent and identically distributed R-valued random variables with E[X[i]] = µ ∈
(−∞,∞) and Var(X[i]) = σ2 < ∞. If Sn = X[1]+ · · ·+X[n], then

Sn−nµ

σn1/2 ⇒ Z, as n→ ∞,

where Z is a standard normal.

The conclusion of Theorem 5.1 says that for any x ∈ R, we have

lim
n→∞

P
{

Sn−nµ

σn1/2 ≤ x
}
=

1√
2π

∫ x

−∞

e−s2/2ds.

Returning to our estimator n−1
∑

n
i=1 f (X[i]) in (5.1), the central limit theorem

implies that for ε > 0,

P

{∣∣∣∣∣1n n

∑
i=1

f (X[i])−E[ f (X)]

∣∣∣∣∣≤ ε

}
≈ P

{
−
√

nε

σ
≤ Z ≤

√
nε

σ

}
,

where Z is a standard normal. Note that σ is most likely unknown to us, so letting
s2

n be the usual unbiased estimator for the variance of a population, we take

P

{∣∣∣∣∣1n n

∑
i=1

f (X[i])−E[ f (X)]

∣∣∣∣∣≤ ε

}
≈ P

{
−
√

nε

sn
≤ Z ≤

√
nε

sn

}
. (5.2)

Letting µ̂n = n−1
∑

n
i=1 f (X[i]) we conclude that the probability that the true, un-

known, value E[ f (X)] is in the interval (µ̂n− ε, µ̂n + ε) is approximately given by
the right hand side of the above equation. The interval (µ̂n− ε, µ̂n + ε) is termed a
confidence interval.

Example 5.2. Suppose that after n = 1,000 trials we observe µ̂n = 13.45 and s2
n =

3.26. Then, since 2Φ(
√

1000×0.119/
√

3.26)−1 ≈ 0.95, where Φ is the cumula-
tive distribution function for a standard normal random variable, the 95% confidence
interval is (13.45−0.1119,13.45+0.1119). 4
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5.2 Generating random variables: Transformations of uniforms

In order to generate realizations of stochastic processes on a computer, it is crucial
that we are able to generate random variables efficiently. There are now sophisti-
cated algorithms that are found in almost all mathematics software packages that
generate pseudo-uniform random variables defined on the interval [0,1]. A discus-
sion of the quality of these pseudo-random variables is not appropriate for this text,
and we will simply assume here that the uniforms so generated are, in fact, actual
independent uniform random variables.

Supposing now that we may generate uniform random variables, we consider
how to transform them to get random variables with other distributions. First, note
that if g : R→ R is a nondecreasing, right continuous function and we define

g−1(t) = inf{x : g(x)≥ t}= min{x : g(x)≥ t},

then {x : g(x) ≥ t} = {x : x ≥ g−1(t)}, and hence, if X is a random variable with
cumulative distribution function FX , then for t ∈ R

P{g(X)< t}= P{X < g−1(t)}= FX (g−1(t)−).

Similarly, if g is right continuous and nonincreasing and

g−1(t) = inf{x : g(x)≤ t}= min{x : g(x)≤ t},

then {x : g(x)≤ t}= {x : x≥ g−1(t)}, and hence,

P{g(X)≤ t}= P{X ≥ g−1(t)}= 1−FX (g−1(t)−).

Example 5.3. Let U ∼ uniform[0,1], λ > 0, and let g : (0,1]→ R be

g(x) =− ln(x)/λ = ln(1/x)/λ .

Then g(U) is exponentially distributed with parameter λ > 0.

First note that for t < 0, we obviously have that P{g(U) ≤ t} = 0. Next, when
t ≥ 0 we have

P{g(U)≤ t}= P{ln(1/U)/λ ≤ t}= P
{

U ≥ e−λ t
}
= 1− e−λ t .

4
We will also need to generate discrete random variables.

Example 5.4. Suppose that a random variable X takes values in the discrete set K =
{k1,k2, . . .} with associated probabilities P{X = ki} = pi, where ∑i pi = 1. Note
that K could be finite or countably infinite. Define g : [0,1]→ K in the following
manner: g(x) = k j if and only if
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j−1

∑
i=1

pi < x≤
j

∑
i=1

pi,

where we define sums of the form ∑
0
i=1 ai to be zero. If U ∼ uniform[0,1], then g(U)

has the same distribution as X .
To see this, simply note that for U ∼ uniform[0,1],

P{g(U) = k j}= P

{
j−1

∑
i=1

pi <U ≤
j

∑
i=1

pi

}
= p j.

4

5.3 Exact simulation methods

We provide two methods for the generation of statistically exact sample paths of
stochastic models of biochemical processes. In Section 5.3.1 we provide the algo-
rithm which simulates the embedded discrete time Markov chain concurrently with
the exponential holding times. This algorithm is commonly called “Gillespie’s algo-
rithm” in the current context. In Section 5.3.2 we provide the next reaction method
which simulates the random time change representation (2.3).

5.3.1 Embedded discrete time Markov chains and the stochastic
simulation algorithm

Let X(t) be a continuous time Markov chain. Supposing that {t j}∞
j=0 are the transi-

tion times of X , we define Z j = X(t j) for all j ≥ 0. The Markov chain Z is called
the embedded discrete time Markov chain associated with X(t). Conversely, note
that the process X(t) is completely determined by the embedded chain Z j and the
(exponentially distributed) holding times {t j+1− t j}∞

j=0.
The stochastic simulation algorithm, or Gillespie’s algorithm, proceeds by simu-

lating the embedded discrete time Markov chain concurrently with the exponentially
distributed holding times. Specifically, we simulate the discrete time Markov chain
with transition probabilities

pxy =

{
λk(x)

∑` λ`(x)
, if y = x+ζk

0 , else

in order to account for the transitions in the model, and simulate an exponential
random variable with a parameter of ∑k λk(x) to account for the holding time in
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state x. To generate these random variables, we simply use the methods detailed in
Section 5.2.

In the algorithm below, all uniform random variables are assumed to be mutually
independent. Also, note that the algorithm below only provides the state of the sys-
tem at the jump times {t j}∞

j=0. The process is, of course, defined for all t by taking
X(t) = X(t j) for all t ∈ [t j, t j+1). See [25, 26] for one development of the following
algorithm.

(Stochastic simulation algorithm / Gillespie’s Algorithm)
Initialize: Given: a chemical reaction network with intensity functions λk and jump
directions ζk, k = 1, . . . ,R, and initial condition x0. Set j = 0, t0 = 0, and X(t0) =
x0 ∈ Zn

≥0.
Repeat the following steps.

1. For all k ∈ {1, . . . ,R}, calculate λk(X(t j)).
2. Set λ0(X(t j)) = ∑

R
k=1 λk(X(t j)).

3. Generate two independent uniform(0,1) random numbers r j1 and r j2.
4. Set ∆ = ln(1/r j1)/λ0(X(t j)) and t j+1 = t j +∆ .
5. Find µ ∈ [1, . . . ,R] such that

1
λ0(X(t j))

µ−1

∑
k=1

λk(X(t j))< r j2 ≤
1

λ0(X(t j))

µ

∑
k=1

λk(X(t j)),

and set X(t j+1) = X(t j)+ζµ .
6. Set j← j+1.

Note that the above algorithm uses two random numbers per step. The first is
used to find when the next reaction occurs and the second is used to determine
which reaction occurs at that time.

Sample MATLAB code that implements the stochastic simulation algorithm on
the model found in Example 2.5 can be found online as supplementary material.

5.3.2 The next reaction method

Simulation of the random time change representation (2.3) is called the next reac-
tion method in the present context, see [1, 23]. Before presenting the algorithm, we
provide a motivating example.

Example 5.5. Consider the reaction network

S
κ1


κ2

2S,

which has associated stochastic equation
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X(t) = X(0)+Y1(
∫ t

0
κ1X(s)ds)−Y2(

∫ t

0
κ2X(s)(X(s)−1)ds),

where X(t) provides the count of S at time t. We now think about how to simulate
this process forward in time with the main observation that X is simply a function
of the Poisson processes Y1 and Y2. Further, as Poisson processes can be constructed
via their exponential holding times, we suppose that {e11,e12, . . .} and {e21,e22, . . .}
are independent unit exponential random variables and suppose further that for k ∈
{1,2} the jump times of the process Yk are given by ek1,ek1 + ek2, . . . . Finally, for
all t ≥ 0 we define T1(t) =

∫ t
0 κ1X(s)ds, T2(t) =

∫ t
0 κ2X(s)(X(s)−1)ds and for each

k ∈ {1,2},
Pk(t) = inf{s > Tk(t) : Yk(s)−Yk(Tk(t))> 0}.

That is, Pk(t) simply gives the time of the next jump of Yk after time Tk(t).
In order to simulate the above representation, we now simply note that Pk(0) =

ek1 for each k ∈ {1,2}, and that the process X(t) is constant up to time

∆ = min
{

P1(0)−T1(0)
λ1(X(0))

,
P2(0)−T2(0)

λ2(X(0))

}
, (5.3)

since no counting process will change until one of
∫ t

0 λk(X(s))ds = tλk(X(0)) hits
ek1 = Pk(0), and since Tk(0) = 0 for each k.

Now suppose that the minimum was achieved by reaction 2 at time ∆ . In this
case, we set t1 = ∆ , X(t1) = X(0)− 1 (since it was reaction 2 that happened), and
update

Tk(t1) =
∫ t1

0
λk(X(s))ds = t1 ·λk(X(0)), for each k ∈ {1,2}.

Next, we note that P1(t1) = P1(0) (since that point was not reached), but that

P2(t1) = inf{s > T2(t1) : Y2(s)> Y2(T2(t1))}.

Note that, in fact, T2(t1) = e21 (since we have now hit that point) and P2(t1) =
e21 + e22. Continuing, we may now conclude that the process is constant from t1
until t1 +∆ for ∆ satisfying

∆ = min
{

P1(t1)−T1(t1)
λ1(X(t1))

,
P2(t1)−T2(t1)

λ2(X(t1))

}
.

The algorithm now proceeds by continually updating Tk and Pk as above and asking
which reaction will be the next to achieve the minimum in (5.3). 4

In the algorithm below, we consider a chemical reaction network with intensity
functions λk and jump directions ζk, k = 1, . . . ,R. For each k and all t ≥ 0 we let

Tk(t) =
∫ t

0
λk(X(s))ds, and Pk(t) = inf{s > Tk(t) : Yk(s)> Yk(Tk(t))}.
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All generated uniform random variables are assumed to be mutually independent.

(Next Reaction Method)
Initialize: Given: a chemical reaction network with intensity functions λk and jump
directions ζk, k= 1, . . . ,R, and initial condition x0. Set j = 0, t0 = 0, and X(t0)= x0 ∈
Zn
≥0. For each k, set Tk(t0) = 0 and Pk(t0) = ln(1/rk0), where rk0 are independent

uniform[0,1] random variables.
Repeat the following steps.

1. For all k ∈ {1, . . . ,R}, calculate λk(X(t j)).
2. For each k, set

∆ tk =
{
(Pk(t j)−Tk(t j))/λk(X(t j)), if λk(X(t j)) 6= 0

∞, if λk(X(t j)) = 0 .

3. Set ∆ = mink{∆ tk}, and let µ be the index where the minimum is achieved.
4. Set t j+1 = t j +∆ and X(t j+1) = X(t j)+ζµ .
5. For each k ∈ {1, . . . ,M}, set Tk(t j+1) = Tk(t j)+λk(X(t j)) ·∆ .
6. Set Pµ(t j+1) = Pµ(t j)+ ln(1/r j), where r j is a uniform(0,1) random variable,

and for k 6= µ set Pk(t j+1) = Pk(t j).
7. Set j← j+1.

Note that after initialization the Next Reaction Method only demands one random
number to be generated per step.

Sample MATLAB code that implements the next reaction method on the model
found in Example 2.5 can be found online as supplementary material.

5.3.2.1 Time dependent intensity functions

Due to changes in temperature, volume, or voltage (in the case of a model of a
neuronal system such as Morris-Lecar or Hodgkin Huxley), the rate parameters of a
system may be functions of time. That is, we may have λk(t) = λk(X(t), t), and the
stochastic equations for the model become

X(t) = X(0)+∑
k

Yk(
∫ t

0
λk(X(s),s)ds)ζk. (5.4)

The next reaction method as presented above is easily modified to incorporate this
time dependence. The only step that would change is step 2., which becomes:

2. For each k, find ∆ tk satisfying∫ t+∆ tk

t
λk(X(s),s)ds = Pk(t j)−Tk(t j).

Note, in particular, that the integral ranges from t to t +∆ tk.
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5.4 Approximate simulation with Euler’s method / τ-leaping

Each of the above statistically exact algorithms is based on an exact accounting
of all the reaction events that take place. In highly complex systems such exact
algorithms become computationally burdensome since the number of computations
scales linearly with the number of reaction events. Conditioned on the current state
X(t), the holding time is exponentially distributed with mean ∆t = 1/∑k λk(X(t)).
If ∆t � 1 for all t, then the time needed to produce a single sample path can be
prohibitive. This problem is greatly amplified by the fact that these simulations are
usually paired with Monte Carlo techniques that require the generation of many
sample paths.

To address the problem that ∆t may be prohibitively small, approximate algo-
rithms, and notably the class of algorithms termed “tau-leaping” methods introduced
by Gillespie [28], have been developed with the explicit aim of greatly lowering the
computational complexity of each path simulation while attempting to control the
bias (see, for a small subset of this rather large literature, [2, 5, 7, 28, 38, 44]). Tau-
leaping is essentially Euler’s method in that for some time discretization parameter
h > 0, the process generated by tau-leaping can be represented via the equation

Z(t) = Z(0)+∑
k

Yk(
∫ t

0
λk(Z ◦η(s))ds)ζk, (5.5)

where η(s) = bs/hc · h fixes the state of the process at the left endpoint of the dis-
cretization. Note that if {t j} is the discretization of [0,∞) with t j+1− t j = h for all
j ≥ 0, then we have

∫ t j+1

0
λk(Z ◦η(s))ds =

j

∑
i=0

λk(Z(ti))(ti+1− ti),

which explains why tau-leaping can be understood as an Euler method. While the
most straightforward version of tau-leaping is presented below, more general proce-
dures (i) determine a new h at each step [2, 14, 27], and (ii) guarantee that trajecto-
ries can never leave the positive orthant [2, 13, 15, 46]. Implicit [43], midpoint [7],
and Runge-Kutta methods [12] have also been developed.

The following algorithm simulates the process (5.5) at the discretization time
points {t j}, and, unlike the exact methods, does not provide values of Z between
t j and t j+1. Below, for x ≥ 0 we will write Poisson(x) to denote a sample from the
Poisson distribution with parameter x, with all such samples being independent of
each other and of all other sources of randomness used.

(Euler tau-leaping)
Initialize: Given: a chemical reaction network with intensity functions λk and jump
directions ζk, k = 1, . . . ,R, and initial condition x0. Fix h > 0 and set j = 0, t0 = 0,
and X(t0) = x0 ∈ Zn

≥0.
Repeat the following steps.
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1. Set t j+1 = t j +h.
2. For each k, let Λk = Poisson(λk(Zh(t j))h).
3. Set Zh(t j+1) = Zh(t j)+∑k Λkζk.
4. Set j← j+1.

5.5 Monte Carlo and multi-level Monte Carlo

The exact and approximate methods outlined so far in this chapter can be combined
in interesting ways in order to efficiently approximate expectations.

5.5.1 Computational complexity for Monte Carlo

We return to the context of Section 5.1. We let X be a realization of a chemical
process and consider the computational complexity, or number of computations,
required by a computer to approximate E[ f (X)] via Monte Carlo to O(ε) accuracy
in the sense of confidence intervals. Equation (5.2) implies that to achieve such an
order of accuracy, we must get the standard deviation of our estimator,

µ̂n =
1
n

n

∑
i=1

f (X[i]),

to be O(ε). Since

Var(µ̂n) =
1
n

Var( f (X)),

we see that the number of independent sample paths required is O(ε−2Var( f (X))).
If we let N > 0 be the order of magnitude of the number of computations needed to
produce a single sample path using an exact algorithm, then the total computational
complexity becomes O(Nε−2Var( f (X))).

Since for many models of interest the term N is very large (e.g. for some models,
simply generating a few dozen paths is prohibitive), approximate algorithms, and
notably tau-leaping methods (5.5) are often employed for the Monte Carlo compu-
tation. In this case, we let

µ̂
Z
n =

1
n

n

∑
i=1

f (Z`,[i]),

where Z`,[i] is the ith independent approximate path constructed with a time dis-
cretization parameter of h`. Note that

E[ f (X)]− µ̂
Z
n = (E[ f (X)]−E[ f (Z`)])+

(
E[ f (Z`)]− µ̂

Z
n
)
. (5.6)

Supposing that we are using a weakly first order numerical method so that E[ f (X)]−
E[ f (Z`)] = O(h`), and still supposing that we want to approximate E[ f (X)] to an
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accuracy of ε > 0 with a given confidence, then, (i) we must choose h` = O(ε)
so the first term on the right of (5.6), the bias, is O(ε), and (ii) we must generate
O(ε−2Var( f (Z`))) paths so the Monte Carlo estimator for the second term on the
right of (5.6), the statistical error, has a standard deviation of O(ε). We then find
a total computational complexity of O(ε−3Var( f (Z`))). This computational com-
plexity can be less than that required by an exact algorithm, O

(
ε−2N Var( f (X))

)
,

when ε−1� N.
Note that in both cases above the variance of the random variable being estimated

was a critical parameter in the computational complexity of the problem. Variance
reduction methods can sometimes yield large savings in computational time, with
one such method briefly introduced in the next section.

5.5.2 Multi-level Monte Carlo (MLMC)

In the diffusive setting, in which the noise enters the system via Brownian motions
as opposed to the Poisson processes of the current context, the multi-level Monte
Carlo (MLMC) approach of Giles [24], with related earlier work by Heinrich [31],
has the remarkable property of lowering the standard O(ε−3) cost of computing an
O(ε) accurate Monte Carlo estimate of E[ f (X)] down to O(ε−2 log(ε)2). Here, we
are assuming that a weak order one and strong order 1/2 discretization method, such
as Euler–Maruyama, is used.

We can motivate the general multi-level philosophy by observing that we are not
obliged to use the same discretization level, h, for every sample path of an approx-
imate algorithm. Given that a smaller h incurs a higher cost, it may be beneficial
to mix together samples at different h-resolutions. We show how to do this in the
present setting by following the work [4, 9].

The MLMC estimator of [4] is built in the following manner. For a fixed integer
M, and ` ∈ {`0, `0 + 1, . . . ,L}, where both `0 and L depend upon the model and
path-wise simulation method being used, let h` = T M−`, where T is our terminal
time. The value of M can be specified by the user, but reasonable choices for M are
M ∈ {2,3, . . . ,7}. Note that

E[ f (X)] = E[ f (X)− f (ZL)]+
L

∑
`=`0+1

E[ f (Z`)− f (Z`−1)]+E[ f (Z`0)], (5.7)

where the telescoping sum is the key feature. At this point, it certainly appears we
have made things worse, as now we need estimators for each of the expectations
above. Continuing on, we define independent estimators for the multiple terms by
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Q̂E =
1

nE

nE

∑
i=1

( f (X[i])− f (ZL,[i])),

Q̂`0 =
1
n0

n0

∑
i=1

f (Z`0,[i]),

Q̂` =
1
n`

n`

∑
i=1

( f (Z`,[i])− f (Z`−1,[i])),

(5.8)

where ` ∈ {`0 +1, . . . ,L}, and note that

Q̂ = Q̂E +
L

∑
`=`0

Q̂` (5.9)

is an unbiased estimator for E[ f (X)]. The above observations are not useful unless
we can successfully couple the process (X ,ZL) and (Z`,Z`−1) together in a way that
significantly reduces the variance of the estimator Q̂(·) at each level. Defining

Λk(X ,ZL,s)=min{λk(X(s)),λk(ZL ◦ηL(s))}

to be the minimum of the respective intensity functions, the coupling introduced in
[4] for the processes X and ZL is

X(t) = X(0)+∑
k

[
Yk,1(

∫ t

0
Λk(X ,ZL,s)ds)

+Yk,2(
∫ t

0
{λk(X(s))−Λk(X ,ZL,s)}ds)

]
ζk

ZL(t) = ZL(0)+∑
k

[
Yk,1(

∫ t

0
Λk(X ,ZL,s)ds)

+Yk,3(
∫ t

0
{λk(ZL ◦ηL(s))−Λk(X ,ZL,s)}ds)

]
ζk,

(5.10)

which forces the marginal processes to jump together through the counting pro-
cesses Yk,1(·). There is a similar coupling for the processes (Z`,Z`−1); see [4]. Note
that arguments similar to those in Problem 1.4 explain why these processes have the
correct marginal distributions. Numerical simulation of the coupling (5.10) can be
carried out via any exact algorithm, whereas the coupled processes (Z`,Z`−1) can
be simulated via a version of tau-leaping. Numerical examples in [4] demonstrated
speedups by factors of over 100, with no loss in accuracy.

We turn to the question of why the multi-level Monte Carlo estimator reduces
to O(ε−2 ln(ε)2) the computational complexity of approximating E[ f (X)] to an
order of accuracy of O(ε). We let X denote our generic exact process and for
` ∈ {0,1, . . . ,L}, where L is to be determined, we let Z` be an approximate pro-
cess constructed with a time discretization of h` = T/M`. The function f still gives
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our statistic of interest. For simplicity, we assume that we cannot generate realiza-
tions of the process X , which is common in the diffusive setting. If the processes
X can be simulated, as in the case considered here, we simply add the estimator
Q̂E to the construction below and the analysis changes somewhat [4]. We make the
following running assumptions on our processes.

Running Assumptions.

1.) E[| f (X(t))|]< ∞, for all t ≥ 0.
2.) There is a constant C1 > 0 for which |E[ f (X(t))]−E[ f (Z`(t))]|<C1h`.
3.) There is a constant C2 > 0 for which Var( f (X)− f (Z`))<C2h`.

The assumptions are satisfied, for example, if the numerical method is order 1 ac-
curate in a weak sense, and order 1/2 accurate in a strong sense. For `∈ {0,1, . . . ,L}
we let Q̂` be as in (5.8) and let Q̂ = ∑

L
`=0 Q̂`. Note that Q̂ is an unbiased estimator

for E[ f (ZL)] and

E[ f (X)]− Q̂ = (E[ f (X)]−E[ f (ZL)])+(E[ f (ZL)]− Q̂).

In order to provide an estimate of accuracy ε > 0 in terms of confidence intervals it
is sufficient to ensure that the bias, E[ f (X)]−E[ f (ZL)], is O(ε) and that the standard
deviation of Q̂ is of order ε; that is, that the variance of Q̂ is of order ε2.

Handling the bias is straightforward. Choose L = O(| ln(ε)|) so that hL = O(ε)
and so

|E[ f (X)]−E[ f (ZL)]|= O(ε),

where we used the running assumption 2.).
Turning to the statistical error, we note that since the estimators are built using

independent paths

Var(Q̂) = Var

(
L

∑
`=0

Q̂`

)
=

L

∑
`=0

Var(Q̂`).

Further, by the running assumption 3.), for ` ∈ {1, . . . ,L} we have

Var(Q̂`) =
1
n`

Var( f (Z`)− f (Z`−1))≤
1
n`

C2h`.

Since Var(Q̂0) = O(n−1
0 ) we have that for some constant C > 0,

Var(Q̂)≤C

(
L

∑
`=1

1
n`

h`+
1
n0

)
.

Choosing n0 = O(ε−2) and n` = O(ε−2h`L), a straightforward calculation shows
that

Var(Q̂) = O(ε2),
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as desired. We now compute the computational complexity of generating the above
described sequence of estimators. First, the cost of generating Q̂0 is of order

# required paths×# steps per path = ε
−2×1 = ε

−2.

Next, the computational complexity of generating Q̂` for `∈ {1,2, . . . ,L} is of order

# required paths×# steps per path = ε
−2h`L×h−1

` = ε
−2L.

Hence, the total computational complexity is of order

L

∑
`=1

ε
−2L+ ε

−2 = ε
−2(L2 +1).

Recalling that L = O(| ln(ε)|) completes the argument.
We note that the gains in computational efficiency come about for two reasons.

First, a coordinated sequence of simulations is being done, with nested step-sizes,
and the simulations with larger step-size are much cheaper than those with very fine
step sizes. Second, while we do still require the generation of paths with fine step-
sizes, the variance of f (Z`)− f (Z`−1) will be small, thereby requiring significantly
fewer of these expensive paths in the estimation of Q̂`.

The reduction in computational complexity predicted by the analysis above is
observed in examples.

Problems

5.1. Find a 99% confidence interval for the experiment detailed in Example 5.2.
Find both a 95% and 99% confidence interval for the case n = 10,000, µ̂n = 13.45
and s2

n = 3.26.

5.2. Using Gillespie’s algorithm, simulate and plot a single trajectory of

S1
2


1

S2,

up to time T = 10 under the assumption that S1(0) = 15 and S2(0) = 0. Find a
95% confidence interval for E[X1(10)] using 1,000 independent simulations of the
process.

5.3. Using the next reaction method, simulate and plot a single trajectory of the
model in Example 2.3 with κ1 = 200, κ2 = 10, dM = 25, dp = 1, an initial condition
of 1 gene, 10 mRNA, and 50 protein molecules, and a terminal time of T = 8.
Note that you are asked to produce a plot similar to that of Figure 2.1. Find a 95%
confidence interval for E[Xprotein(8)] using 1,000 independent simulations of the
process.
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5.4. Using Euler τ-leaping, simulate and plot a single trajectory of the model

S 1→ 2S,

with h = 0.01, X(0) = 100, and a terminal time of T = 10. Now simulate and plot
the same model using an exact simulation method. Compare the time it takes to
generate each sample path.



Appendix A
Notes on probability theory and stochastic
processes

A.1 Some notation and basic concepts

A.1.1 Measure theoretic foundations of probability

Details of the following basic material on the measure theoretic foundations of prob-
ability can be found in any graduate text on the subject, in particular, [18].

A measurable space (E,E ) consists of a set E and a σ -algebra E of subsets of
E. If E is a metric space, then, typically, E is taken to be B(E), the Borel subsets
of E.

Let (Ei,Ei) be measurable spaces. A function f : E1 → E2 is measurable if
f−1(A) = {x ∈ E1 : f (x) ∈ A} ∈ E1 for each A ∈ E2.

Lemma A.1. If f : E1→ E2 and g : E2→ E3 are measurable, then g◦ f : E1→ E3
is measurable.

A probability space (Ω ,F ,P) is a model of an experiment in which Ω is the set
of possible outcomes, F is the collection of events, where by an event A we mean
the subset of Ω for which some “statement” is true (F is always taken to be a σ -
algebra so that (Ω ,F ) is a measurable space), and P is a probability measure on F ,
that is a measure with P(Ω) = 1. F should contain all the events that correspond to
statements in which the experimenter is interested, so in a sense, F represents the
information that could be obtained by observing the complete experiment. With this
interpretation of events, a sub-σ -algebra D ⊂F represents partial information, that
is the information that would be obtained by checking the validity of only a subset
of the statements.

A random variable X is some quantity that can be observed by performing the
experiment. X might be real-valued, but in general can be vector-valued or even take
values in a more general space E. Of course, the quantity depends on the outcome
of the experiment, so X is a function defined on Ω and taking values in E. We
always assume that there is a σ -algebra E of subsets of E specified (so (E,E ) is a
measurable space), and to say that X is a quantity that can be “observed” means that

69
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subsets of the form {X ∈C}= {ω ∈Ω : X(ω) ∈C} are events in F for all C ∈ E .
In other words, X is a measurable function from (Ω ,F ) into (E,E ).

Mathematically, the expectation E[X ] of a real-valued random variable X is just
the integral

∫
Ω

X(ω)P(dω), assuming that the integral exists, but for the “real”
meaning of expectation in probability theory, see the statement of the law of large
numbers in any probability text or in Section 5.1.

Assuming that X is real-valued, i.e. that E =R, and that D is a sub-σ -algebra of
F , a conditional expectation E[X |D ] is the best estimate of X using the information
in D . If E[X2] < ∞, then by “best estimate” using the information in D , we mean
the D-measurable random variable Y (a random variable whose value is determined
by the information in D) that minimizes E[(X −Y )2]. The condition E[X2] < ∞ is
not necessary and E[X |D ] can be defined for all X satisfying E[|X |]< ∞. In general,
if E[|X |]< ∞, then E[X |D ] is the D-measurable random variable Z satisfying

E[X1D] = E[Z1D] ∀D ∈D .

If the information in D is the information obtained by observing random vari-
ables Y and Z (denoted D = σ(Y,Z), the smallest σ -algebra with respect to which
Y and Z are measurable), then there is a function fX such that

E[X |σ(Y,Z)] = fX (Y,Z).

If E[X2]< ∞, then fX is the minimizer of E[(X− f (Y,Z))2],

E[(X− fX (Y,Z))2] = inf
f

E[(X− f (Y,Z))2].

(Of course, fX has to be appropriately measurable.)

A.1.2 Dominated convergence theorem

Theorem A.2. Let Xn → X and Yn → Y in probability. Suppose that |Xn| ≤ Yn a.s.
and E[Yn|D ]→ E[Y |D ] in probability. Then

E[Xn|D ]→ E[X |D ] in probability.

Proof. A sequence converges in probability iff every subsequence has a further sub-
sequence that converges a.s., so we assume Yn→ Y and E[Yn|D ]→ E[Y |D ] almost
surely. Let Dm,c = {supn≥m E[Yn|D ]≤ c}. Then

E[Yn1Dm,c |D ] = E[Yn|D ]1Dm,c
L1→ E[Y |D ]1Dm,c = E[Y 1Dm,c |D ].

Consequently, E[Yn1Dm,c ]→ E[Y 1Dm,c ], so Yn1Dm,c → Y 1Dm,c in L1 by the ordinary
dominated convergence theorem. It follows that Xn1Dm,c → X1Dm,c in L1 and hence
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E[Xn|D ]1Dm,c = E[Xn1Dm,c |D ]
L1→ E[X1Dm,c |D ] = E[X |D ]1Dm,c .

Since m and c are arbitrary, the lemma follows. ut

A.1.3 General theory of stochastic processes

The following material can be found, for example, in [42] and Chapter 2 of [19].
In the study of stochastic processes (for our purposes, random functions of time

t ∈ [0,∞)), it is natural to consider the information that is available to an observer
who has followed the experiment up to some time t ≥ 0. That information is modeled
by a sub-σ -algebra Ft ⊂ F . Assuming that the observer is not forgetful, t < s
implies Ft ⊂Fs. The collection {Ft}= {Ft , t ≥ 0} of these σ -algebras is called a
filtration (or sometimes a history). Since different observers may observe different
aspects of the experiment, more than one filtration may be important in the model.

A stochastic process X is {Ft}-adapted if for each t ≥ 0, X(t) is Ft -measurable,
that is, the value of X(t) is part of the information known at time t.

A nonnegative random variable τ is a {Ft}-stopping time, if for each t ≥ 0,
{τ ≤ t} ∈Ft . In other words, an observer whose information is modeled by {Ft}
“sees” τ when it occurs. Intuitively, it makes sense to talk about the information Fτ

available to the observer at the stopping time τ . The formal mathematical definition
is

Fτ = {A ∈F : A∩{τ ≤ t} ∈Ft ,∀t ≥ 0}.

Hitting times give a natural class of stopping times. If X is a cadlag (that is, is
right continuous and has left limits at all t > 0) and adapted process and K is a closed
subset, then

τ
h
K = inf{t : X(t) or X(t−) ∈ K}

is a stopping time.
Note that a constant t is a stopping time, and if τ1 and τ2 are stopping times, then

τ1∧ τ2 and τ1∨ τ2 are stopping times. In particular τ1∧ t is a stopping time.

A.2 Martingales

The material in this section can be found in Chapter 2 of [19].
An R-valued stochastic process M adapted to {Ft} is an {Ft}-martingale if

E[|M(t)|]< ∞ for all t ≥ 0 and

E[M(t + r)|Ft ] = M(t), t,r ≥ 0,

or equivalently,
E[M(t + r)−M(t)|Ft ] = 0.
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An R-valued stochastic process X adapted to {Ft} is a submartingale if E[|X(t)|]<
∞ for all t ≥ 0 and

E[X(t + s)|Ft ]≥ X(t), t,s≥ 0.

If X is a submartingale and τ1 and τ2 are stopping times, then the optional sam-
pling theorem states

E[X(t ∧ τ2)|Fτ1 ]≥ X(t ∧ τ1∧ τ2).

If τ2 is finite a.s., E[|X(τ2)|]< ∞ and limt→∞ E[|X(t)|1{τ2>t}] = 0, then

E[X(τ2)|Fτ1 ]≥ X(τ1∧ τ2).

Of course, if X is a martingale

E[X(t ∧ τ2)|Fτ1 ] = X(t ∧ τ1∧ τ2).

It follows that if M is a martingale and τ is a stopping time, then Mτ defined by

Mτ(t) = M(τ ∧ t)

is a martingale.
M is a local martingale if there exists a sequence of stopping times τn→∞ such

that Mτn is a martingale. We call the sequence {τn} a localizing sequence for M.
Note that if

lim
n→∞

E[|M(t)−M(t ∧ τn)|] = 0

for each t ≥ 0, then the local martingale is, in fact, a martingale.

A.2.1 Doob’s inequalities

Let X be a submartingale. Then for x > 0,

P{sup
s≤t

X(s)≥ x} ≤ x−1E[X(t)+]

P{inf
s≤t

X(s)≤−x} ≤ x−1(E[X(t)+]−E[X(0)]).

If X is nonnegative and α > 1, then

E[sup
s≤t

X(s)α ]≤
(

α

α−1

)α

E[X(t)α ].

Note that by Jensen’s inequality, if M is a martingale, then |M| is a submartingale.
In particular, if M is a square integrable martingale, then
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E[sup
s≤t
|M(s)|2]≤ 4E[M(t)2].

A.3 Stochastic integrals

For a full discussion of stochastic integration, see [42].
All of the stochastic processes we consider are cadlag, that is, have sample paths

that are right continuous and have left limits at each t > 0. If X and Y are cadlag
stochastic processes, then, if the following limit exists in probability, we can define
the stochastic integral∫ t

0
X(s−)dY (s)≡ lim

m

∑
i=1

X(si−1)(Y (si)−Y (si−1)), (A.1)

where s0 < s1 < · · ·< sm is a partition of [0, t] and the limit is through any sequence
of partitions with max{si+1− si}→ 0.

We frequently consider integrals against counting processes, R,∫ t

0
X(s−)dR(s).

Note that this integral is not necessarily a Stieltjes integral. For example,∫ t

0
R(s−)dR(s) =

R(t)(R(t)−1)
2

,

by (A.1), but
∫

RdR does not exist as a Stieltjes integral because the integrand and
integrator have common discontinuities. In particular,

lim∑R(si)(R(si)−R(si−1)) =
(R(t)+1)R(t)

2
,

where the limit is taken as in (A.1).
We also note that if M is a (local) martingale with respect to a filtration {Ft} and

X is a cadlag, {Ft}-adapted process, then

Z(t) =
∫ t

0
X(s)dM(s)

is at least a local martingale. If {τn} is a localizing sequence for M and σn = inf{t :
|X(t)|∨ |X(t−)| ≥ n}, then {τn∧σn} is a localizing sequence for Z.
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A.4 Convergence in distribution and the functional central limit
theorem for Poisson processes

All of the material in this section can be found in [11] or Chapter 3 of [19].
Let (S,d) be a complete, separable metric space, and let Cb(S) denote the space

of bounded, continuous functions on S. We say that a sequence of S-valued random
variables {Xn} converges in distribution to X (or equivalently, {PXn} converges
weakly to PX , where PXn and PX denote the distributions of Xn and X) if for each
f ∈Cb(S)

lim
n→∞

E[ f (Xn)] = E[ f (X)].

We will denote convergence in distribution by Xn⇒ X .
There are many equivalent ways of specifying convergence in distribution. For

example, we have the following.

Lemma A.3. {Xn} converges in distribution to X if and only if

liminf
n→∞

P{Xn ∈ A} ≥ P{X ∈ A}, each open A,

or equivalently

limsup
n→∞

P{Xn ∈ B} ≤ P{X ∈ B}, each closed B.

The simplest way to understand the implications of convergence in distribution
is through the Skorohod representation theorem.

Theorem A.4. Suppose that Xn⇒X. Then there exists a probability space (Ω ,F ,P)
and random variables, X̃n and X̃, such that X̃n has the same distribution as Xn, X̃
has the same distribution as X, and X̃n→ X̃ a.s.

The following corollary is an immediate consequence of the Skorohod represen-
tation theorem.

Corollary A.5. Let (S,d) and (E,r) be complete, separable metric spaces, and let
G : S→ E be a Borel measurable function. Define

CG = {x ∈ S : G is continuous at x}.

Suppose Xn⇒ X and that P{X ∈CG}= 1. Then G(Xn)⇒ G(X).

In the study of stochastic processes, S is typically a function space, and the most
important function space is the space of cadlag functions x : [0,∞) → E, where
(E,r) is a complete, separable metric space and by cadlag we mean the function x is
right continuous and has left limits at each t > 0. We denote this space by DE [0,∞).
Skorohod defined a topology on DE [0,∞) by requiring that xn → x if and only if
there exists a sequence of strictly increasing functions λn from [0,∞) onto [0,∞)
such that for each t > 0,
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lim
n→∞

sup
s≤t
|λn(s)− s|= 0 and lim

n→∞
sup
s≤t

r(xn ◦λn(s),x(s)) = 0.

A somewhat subtle fact is that this topology corresponds to a metric d under which
DE [0,∞) is a complete separable metric space. For our purposes, it is enough to
know that if x is continuous, then convergence of xn to x is equivalent to

lim
n→∞

sup
s≤t

r(xn(s),x(s)) = 0 for all t > 0,

since in the following lemma, the limit is continuous.

Lemma A.6. Let Y be a unit Poisson process and Ỹ (u) = Y (u)−u. Define

W N(u) =
1√
N

Ỹ (Nu).

Then W N ⇒W, where W is a standard Brownian motion.

Proof. The result follows from the classical central limit theorem once one proves
relative compactness of the sequence. It can also be obtained as an immediate corol-
lary of the martingale functional central limit theorem, for example, Theorem 7.1.4
of [19]. ut

In applying this lemma, by the Skorohod representation theorem, we can pretend
that for each u0 > 0,

sup
u≤u0

|W N(u)−W (u)| → 0,

but one should note that
(W N ,W N2

)⇒ (W1,W2),

where W1 and W2 are independent standard Brownian motions.

A.5 Conditioning and independence

Let (Ω ,F ,P) be a probability space, and let A ,B ⊂F be sub-σ -algebras. Then
A and B are independent if P(A∩B) = P(A)P(B) for all A ∈ A and B ∈B. A
random variable X is independent of A if σ(X) (the smallest σ -algebra with respect
to which X is measurable) is independent of A .

Let (E,E ) be a measurable space. A collection of bounded, measurable functions
S is separating for finite measures on E if for finite measures µ,ν ,

∫
E f dµ =∫

E f dν for all f ∈S implies µ = ν . For example, for E = R, S = { f (x) = eiθx :
θ ∈ R} is separating.

If (E,r) is a complete, separable metric space, then B(E) denotes the space of
bounded, Borel measurable functions.



76 A Notes on probability theory and stochastic processes

Lemma A.7. Let (E,r) be a complete, separable metric space and S ⊂ B(E) be
separating. Let X be an E-valued random variable and D ⊂F be a sub-σ -algebra.
Suppose that for each f ∈S , E[ f (X)|D ] = E[ f (X)]. Then X is independent of D .

Proof. Let D ∈D , and for A ∈B(E), define

µD(A) = E[1A(X)1D] and νD(A) = E[1A(X)]P(D).

For f ∈S , ∫
f dµD = E[ f (X)1D] = E[ f (X)]P(D) =

∫
f dνD,

which, since S is separating, implies µD = νD. Since D ∈D is arbitrary, we have

P({X ∈ A}∩D) = µD(A) = νD(A) = P{X ∈ A}P(D)

for all A ∈B(E) and D ∈D . Consequently, X and D are independent. ut

A.6 Directed sets

A directed set is a nonempty set I together with a reflexive and transitive binary
relation �, such that every pair of elements has an upper bound. That is, for any a
and b in I there must exist a c in I with a� c and b� c.

A.7 Gronwall inequality

Lemma A.8. Suppose that A is nonnegative, cadlag and non-decreasing. Further
suppose that X is cadlag, and that

0≤ X(t)≤ ε +
∫ t

0
X(s−)dA(s) . (A.2)

Then
X(t)≤ εeA(t).

Proof. Iterating (A.2),

X(t) ≤ ε +
∫ t

0
X(s−)dA(s)

≤ ε + εA(t)+
∫ t

0

∫ s−

0
X(u−)dA(u)dA(s)

≤ ε + εA(t)+ ε

∫ t

0
A(s−)dA(s)+

∫ t

0

∫ s−

0

∫ u−

0
X(r−)dA(r)dA(u)dA(s).
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Since A is finite variation, making [A]ct ≡ 0, Itô’s formula yields

eA(t) = 1+
∫ t

0
eA(s−)dA(s)+Σs≤t(eA(s)− eA(s−)− eA(s−)

∆A(s))

≥ 1+
∫ t

0
eA(s−)dA(s)

≥ 1+A(t)+
∫ t

0

∫ s−

0
eA(u−)dA(u)dA(s)

≥ 1+A(t)+
∫ t

0
A(s−)dA(s)+

∫ t

0

∫ s−

0

∫ u−

0
eA(r−)dA(r)dA(u)dA(s) .

Continuing the iteration, we see that X(t)≤ εeA(t). ut
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