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ABSTRACT 

Deep learning solutions based on deep neural networks (DNN) 

and deep stack networks (DSN) were investigated for 
classifying target images in a non-time-Iocked rapid serial 

visual presentation (RSVP) i mage target identification task 

using EEG. Several feature extraction methods associated with 
this task were implemented and tested for deep learning, where 

a sliding window method using the trained classifier was used 
to predict the occurrence of target events in a non -time-locked 

fashion .. The deep learning algorithms explored based on deep 
stacking networks were able to improve the error rate by about 

5% over existing algorithms such as linear discriminant 

analysis (LDA) for this task. Initial test results also showed that 
this method based on deep stacking networks for 

non-time-Iocked classification can produce an error rate close 
to that achieved for time-locked classification, thus illustrating 

the power of deep learning for complex feature spaces. 

Index tenns - RS VP, non-time-Iocked events, feature selection, 

deep leaming, deep neural networks, deep stacking networks, 

brain-computer interaction. 

I. INTRODUCTION 

A brain computer internction (BCI) system allows h uman 
subjects to communicate with or control an extemal device 

with their brain signals [1], or to use those brain signals to 
interact with computers, environments, or even other humans 

[2]. One application of BCI is to use brnin signals to distinguish 
target images within a large collection of non-target images [2]. 

Such BCI-based systems can drastically increase the speed of 

target identification in large image databases over manual 

procedures [3]. Data collection for training such BCI systems is 

commonly carried o ut using the rnpid serial visual presentation 
(RSVP) paradigm [2], where test subjects are asked to identifY 

a target image from a contin uous burst of image clips presented 
at a high rate. The EEG recordings are collected and a classifier 

capable of predicting the presence of target images based on 

EEG responses is trained using this data. 

Classification for RSVP data is usually performed in a 

'time-locked' fashion, by analyzing the spectrum or amplitude 
in the EEG signal 300-1000 ms immediately following 

presentation of target and non-target images. Although 

processing RSVP data without time locking is more realistic, 

non-time-Iocked classification is significantly more demanding 

because target event timing needs to be explicitly or implicitly 
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estimated. So far, a number of class ifiers including logistic 
regression, linear discriminant analysis (LDA) and support 

vector machines (SVM) have been proposed in the literature to 
address the classification of time-locked events [2, 4]. These 

classifiers have been reported to provide less than 10% error 

rate. The problem of imperfectly time-locked events was 
considered in [5], where event timing was assumed to be 

unknown but occurring within a small known interval. 
Performance close to that achieved under perfect time locking 

were reported. However, classificatkln for completely 
non-time-locked events has as of yet not been addressed. 

In this paper, we investigate deep leamin g (DL) solutions to 

non-time-Iocked RSVP classification. Dee p learning is a term 
for a new family of learning methods that have been shown to 

offer superb representation of complex data by using a 
multiple-layered architecture r6, 7]. DL has gained great 

interest in recent years due to its ability to outperform 
alternative classification methods in several machine leaming 

competitions and in a variety of applications, including image 

classification and speech recognition [8, 9]. However, DL 
applications for EEGdata analysis are at a very early stage. It is 

not clear if and how unique characteristics of EEG data 
including high dimensional feature spaces, temporal and spatial 

data correlation, and excessive noise will affect the 
imple mentation and performance of DL algorith ms. The goal of 

this work is two-fold. First, we aim to develop solutions to 
classifY non-time-locked events in RSVP. Second, we intend to 

investigate the use of DL algorithms for EEG data analysis in 

BCI research. 

II. MATERIAL AND METHODS 

A. Experimental Design 
The RSVP EEG recordings were obtained from [ 2], which 

include brain activities of five participants presented with a 
series of bulSts of images in an RSVP paradigm. Each bUlSt 

lasts for 4.1s and consists of 49 images presented at a speed of 
12 i mages/second. A bUlSt may contain zero or one target 

images, where a target image includes a silhouette of airplane 
which is not present in non-target images. To ensure no 

interference from bUlSt edges, the target image is not presented 

within 500 milliseconds (ms) from the onset and offSet of the 
bulSt. EEG recordings were collected using a BIOSEMI 

ActiveTwo system with 256 electrodes at 256 Hz sampling rate 
with 24-bit digitization. 
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B. Data Preprocessing and Prediction Objective 

The raw data include 7.1 s EEG data epochs, each centered on a 
4.1s RSVP burst. The data was fIrSt bandpass-filtered in the 

range 2-100Hz. Independent component analysis (lCA) using 
the Extended Infomax Algorithm in EEGLAB [10] was then 

performed to reduce the correlation between channels and to 
remove noise. The 16 components with highest variance were 

retained. To capture the time-frequency space characteristics, a 

wavelet transformation was applied to the ICA transformed 
data to obtain a temporal-IC power spectrum for 18 frequency 

bands evenly sampled on a logarithmic scale from 2-100Hz. 
Only 5s of the 7.ls data epochs were extracted from the 

reconling of subject 1-5, where for target epochs, the target 
event onset time was at 2s of the 5s epoch. There were a total 

of 138, 129, 114, 121, and 145 target epochs for subject I to 5, 
and 188, 1 71, 194, 188, and 190 non-target epochs for subject 1 

to 5, respectively. Our goal is to predict if and when a target 

image is present in a 5-second epoch. The transformed data of 
each epoch represented the power of EEG record ing distributed 

in three dimensions: independent components (ICs), frequency, 
and time. 

C. Construction of training data. 

We developed a solution based on sliding windows, where a 

500- ms long window slides from the beginning to the end of an 

epoch at a step size of 1 sample. For each slide location, the 
EEG data within the window is subjected to a classifier to 

predict if a target image is present. The key to this solution is to 
train a classifier that can predict a target event if the 

event-related brain response occurs within the 500ms window 
of the input EEGdata. What makes this training difficult is that 

the response can happen at any place within the window. To 

construct a training set, we defme the target event region as the 
region from the event onset time (2s) to one second (Is) 

afterwards. Since a target image can appear 200- 300 ms after 
the onset time and a target-related potential is known to occur 

300- 500 ms after an i mage appears in each of the target epochs, 
a 500 ms window within the target event region should contain 

event-related brain response. To account for potential olliet 
between the sliding window and the target event, we also 

investigated the target event region with 200ms olliet, which 

covers 200ms before target onset to 300ms after target onset. 
For each of the defmed target event regions, 50 random 

sections of 500ms-long EEG data were randomly taken from 
the one-second target event region and labeled as target event. 

Next, 50 non-target labeled data samples of 500ms windows 
were extracted randomly from the 5-second non-target epochs. 

This was done for each targetlnon-target epochs and in the end, 

two training datasets corresponding to offsets of Os and 200 ms, 
respectively, were obtained for each subject. Each set includes 

6750, 6450, 5700, 6050, 7250 target event samples and 9250, 
8550, 9700, 9400, 9500 non-target event samples for subject I 

to 5, respectively, where a sample contains IC-time-freq uency 
powers for 500ms resulting in a 36864 (16 ICs xl8 frequenc� 

x 128 time samples) dimensional feature vector. The 

class ification output includes two labels: target or non -target 
event. 
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D. Deep Learning Algorithms 

Deep learning is a term that refers to a class of new machine 
learning algorithms that exploit architectures of layered 

modules of supervised or unsupervised learning algorithm>. 
Depending on the leaming nature of each module, the existing 

deep learning algorithm> can be classified into generntive, 
discriminative, and hybrid architectures [7]. Generative 

architectures include the deep auto-encoder, which consists of 

layers of neural networks, whose o utput has the same 
dimension as the input. The main objective of deep 

auto-encoders is to extract features from data as opposed to 
classification. Deep stacking networks (DSN) exemplifY 

discriminative architectures [11-13]. For DSN, each module is 
a classifier that takes a simplified multilayer perceptron, which 

includes a shallow sigmoidal neural network followed by a 
linear classifier. The hybrid class includes the well-known deep 

neural network (DNN), which consists of layers of restricted 

Boltzmann machines with a classification module at the vel)' 
top. A survey of these algorithms can be found in [6]. 

In this paper we will foc us on the DNN and the DSN. Two 
variations of DSN, one with a linear (DSN- L) and one with a 

sigmoidal activation function (DSN-S) were implemented. 
When applying DL to EEG data, high feature dimension and 

potentially strong tempora� spatia� and frequency feature 

correlations can be problematic. The dimension of the input 
features in the described training set is 36864 (16x 18x 128), 

which is unrealistically high for most classifiers, including DL 
algorithms. Reduction of feature dimension needs to be 

performed befure these features can be used for DL-based 
class ification. Moreover, the features in adjacent channels, 

frequency bands, and time samples are highly correlated, which 

might affect the convergence of DL algorithms. We used ICA 
to reduce the spatial (EEG channels) feature dimension and 

correlation. We reduced the dimension and correlation of 
temporal and frequency features using down-sampling and 

principal component analys is. 

III. RESULTS 

Feature dimension reduction schemes including down-sampling 
and principal component analysis (PCA). Parameters for 

preprocessing and DL algorithms were identified using grid 

search on the data from subject 1. Cross-validated training and 
prediction of non-time-locked target events were conducted for 

each of the remaining 4 subjects us ing the d imens ion reduction 
scheme and DL parameters that led to the best performance in 

subject 1. 

A. Investigation of foature dimension reduction 

J) Reduction by down-sampling 

The impact of down sampling on classification was tested by 

comparing results from 4 different orders of reduction (i.e., 
down sampling by a factor 2, 4, 8 or 16). LDA was used as the 

baseline classifier for this investigation. Table I shows the 

avernge error rates for 5-fold cross validation using different 
down-sampling factors. The lowest error rate was obtained for 

a down-sampling factor of 8. As a result, the time sample s were 
reduced by a factor of 8 from the original 128 to 16, reducing 

the feature dimension to 4608. 



Down sampling factor 

2) Reduction by principal component analysis 

Both DSN and DNN were tested on the down-sampled data, 
however neither resulted in convergence. Correlation of 

features from adjacent frequency bands and time points 
contributed to the poor convergence of the stochastic 

optimization used in these DL algorith ms. To overcome this 

problem, principal component analysis was applied to reduce 
the correlations among features over time and frequency, 

further reducing feature dimension. Table II demonstrates the 
class ification performance of LDA both befure PCA and afier 

using only the fIrst 100 principal components (PCS). It is clear 
that applying PCA improves the classification performance of 

LDA. We use the fIrst 100 PCs based on the results of grrl 

search. 

Dimension reduction Before PCA A fier PCA (100) PCs) 

Classifier LDA LDA 

Error rate 0.2959 0.2044 

Table II. Irror rate before and after PCA 

B. investigation of deep learning parameters 

For both DNN and DSN, the number of layelS and the n umber 

of hidden units in each layer can impact the classification 
performance. Tuning parametelS including the learning rate are 

also important factors. We determined the best number of 

hidden units and layelS as well as the values of other tuning 
parameters by using the training data of subject 1 with 5-fold 

cross validation. 

DNN First (100 units) First (100 units) + second 

layer (50 units) layer 

Error rate 0.1791 0.1706 

Table III. Irror rate ofDNN WIth different hidden layers 

For DNN, two-layer an;hitectures resulted in the best 
performance (Table III); using more than 3 layers resulted in 

poor convergence. For DSN, the best performance was 

achieved at 21 layers with 60 hidden units for Oms offset and 
14 layers with 60 hidden units for 200 ms offset. The best 

performance for different DL algorithms was also summarized 
in Table IV. For both DNN and DSN, only one iteration of fme 

tuning was applied. The performance of DNN and DSN was 
similar, with DSN-S achieving a slightly lower error rate. The 

results for Os olliet are also consistently better than those for 
200 ms offSet, suggesting that training data with G; offSet better 

captures the brain response to ta.get image. It is likely that 

some of the ta.get event training samples for 200ms offsets 
contained no corresponding brain response and thus were 

mislabeled. The resulting values for DL algorithms are fIxed 
for training and prediction in the remaining 4 subjects in later 

sections of the paper. 
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Figure 1. ROC curves for subject 2-5 

Offset DSN-L DSN-S DNN 

Oms 0.1693 0.1666 0.1706 

200 ms 0.1883 0.1856 0.1907 

Table IV. Average error rates ofDL algorithms 

C. Training of DL classifiers for individual subjects 

We proceeded to train separate DL classifiers for subject 2 to 5. 
The parameter settings obtained in Section III.B that led to the 

best performance were selected for the training. The goal of 
training was to estimate the DL weights and compare the DL 

performance with LDA. 5-fold cross validation used for 
evaluatnn. 

Figure 1 shows the ROC c urves and Area-Under-the-Curve 
(AUC) statistics of the trained DL algorithm; for all 4 subjects 

for Os offSet. Consistent with results reported previously [5, 6], 

the A UC performance for subjects 2 and 4 was lower than that 
for subjects 3 and 5. The three DL algorithms achieve d similar 

performance. All the DL algorithms improved perfurmance by 
about 5% in AUC for all subjects when compared with LDA. 

D. Predictions of non-time-locked target events 

We proceeded to pred ict the ta.get event in a 5 -second epoch 

with sliding windows using the trained DSN-S classifiers for 

each subject (2-5), res pectively. A data window in the ta.get 
event region of a target 5s-epoch was labeled as a "ta.get evenf' 

while those in the remaining regions were labeled "non-ta.get 
events ". The prediction ROC cUf\le is shown in Fig. 2-A and 

the AUC statistics are vel)' close to those of the training in Fig. 
1, suggesting that our constructed training dataset was 

sufficient to capture the characteristics of the EEG data for both 

target and non-target events. Once again, the performance for 
subjects 3 and 5 is better. This performance is also comparable 

to that of the time-locked prediction [4]. Examples of the 
pred iction res u Its in both target and non -ta.get epochs are 

shown in Fig. 3. We obsef\led that our method did very well in 
predicting the target event regions and could also correctly 

predict the onset of the ta.get event. Overall, the false negative 
predictions were small and made towan:ls the end of the ta.get 
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Figure 2. ROC (A) and Precision-Recall (B) curves of 
prediction by sliding mndow. 

event region. It is likely that towan:ls the end of target event 

region, the brain response to target images has already faded, 
resulting in the false positive predictions. 

To further investigate the effectiveness of o ur method in the 
prediction of taIget events, we plotted in Fig. 2-B the 

precision-recall (PR) c urve for the predictions made in the 

target event epochs. The precision is defmed as the percentage 
of correctly predicted target events among all data windows 

that were predicted as a target event at a given decision 
threshold. As can be seen, except for subject 4, DSN-S can 

achieve and maintain 100"10 precision until the prediction recall 
reaches almost 10%. This implies that top 10% highly ranked 

predictions are true positive prediction of taIget event. Taken 

together, these preliminary results indicate that the proposed 
sliding window method for predicting non-time-Iocked taIget 

events may be able to achieve a performance level close to that 
of the time-locked prediction (Table V). 

Subject 2 3 4 5 

DSN 0.73 0.85 0.71 0.82 

cLDA 0.81 0.91 0.68 0.88 

Table V. ComparIson of AUCs between the proposed 

DSN-based sliding mndow method for 

non-time-Iocked event prediction (Fig. 2) and cLDA 

for time-lock event prediction reported in [5]. 

IV. CONCLUSION AND FUTURE WORK 

We presented in this paper an investigation of deep leaming 

classifiers based on the architectures of the DSN and DNN for 
automatic classification of non-time-Iocked image RSVP 

events. The preliminary results obtained from analyzing five 

subjects, one for training and four for validation, indicate that 
deep learning may be able to improve the prediction error rate 

by about 5% over other existing mainstream methods fur this 
task. In addition, we provided preliminary results showing that 

a sliding window method based on the DSN produced an error 
rate similar to that for prediction of time-locked events. Our 

study in this paper suggests that deep leaming has a strong 

potential to be a powerful tool for BCI research. However, 
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Figure 3. Examples of predictions by sliding-mndow. 
The left column includes epochs with target events. The 

target event regions are highlighted by green. The vertical 

axis denotes the probably of predicting a target event. The 

line at 0.5 represents the decision threshold 

careful extraction of features from the EEG signal to feed into 

the existing DSN or DNN architectures are likely to further 
improve the classification accuracy in this application domain. 

How to incorporate the stage of modeling EEG features into the 
deep learning architecture will be a topic of future study. The 

main challenge is to take into account both temporal and spatial 
correlations in the observed data exhibiting variable 

dimensionality. This is a popular topic in deep le aming 

research with other application domains [17, 18, 19] that is 
like ly to help the BCI application discussed in this paper. 
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