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1 SUMMARY

This project develops a suite of specialized analysis techniques for vetting Android applica-
tions to confirm the presence or rule out the absence of malice. The definition of malice of
interest is an inconsistency between the action taken by the app and the user expectation
of what the app is doing. These techniques enable security analysts to quickly vet any given
Android app even if the source code is unavailable. These techniques make it possible to vet
a large number of Android apps in a timely and cost-effective manner.

The project develops 4 complementary techniques. First is based on detecting inconsis-
tencies between (a) the public information of an app and its user interface (UI), (b) the UI
and the actual behavior, or (c) the public information and the actual behavior. For example,
turning on the camera (actual behavior) when there is no button related to camera opera-
tions is a potential security indicator. Second is based on combining information extracted
from an app’s source code and marketplace webpage to identify correlated variables and
validate an app’s quality properties such as its intended behavior, trust or suspiciousness.
This work involved analysis of artifacts such as the GUI text, user ratings, app description
keywords, permission requests, and sensitive Android library invocations. Third, the project
builds a mental model that a GUI user creates during app usage; a model that implicitly
informs the user of the software designer’s intent. Specifically, the model focuses on an im-
portant question used for security assessment of Android apps: “What permission-sensitive
behaviors does this app exhibit?” Finally, we use static analysis to connect security sensitive
operations to GUI components.

The project experimentally evaluated each of the above techniques. Experimental re-
sults show that each of our approaches has complementary strengths, and together, form a
powerful paradigm for Android app security assessment using UI logic.

1
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2 INTRODUCTION

The use of mobile devices has created an enormous and lively marketplace for application
development and deployment [11, 41, 42, 58]. A developer can create a mobile application
(or app) and provide it for users to download with only a small monetary investment [20, 47].
Apps exist to help users with almost any conceivable task. For instance, to track finances,
provide meta-data about products when shopping, manage health, or play games (either
alone or with friends). Millions of apps are found in marketplaces like the Google Play store
[3], yet this type of distributed development comes with some downsides [12, 35, 53, 64].
For the user who is concerned about application quality, it is difficult to discern what an
app actually does [49], or to know if one can trust that it won’t perform malicious acts
[21, 43, 65]. If an unexpected behavior occurs, it may not be clear if this is intended or is a
fault – without a formal specification [36, 69], it is not possible to reliably check the behavior
of these apps [44]. DoD app marketplaces are no exception.

Android leads the US market with a market share of 60% (Dec. 2015), which is projected
to reach 68% in 2016. The number of Android apps available is well over 1.5 Million.
Currently, it is not possible to confirm the absence of hidden malice in these apps. As a
result, organizations that require high security standards, such as government agencies and
banks, often take the pessimistic approach of assuming most of the apps are unsafe unless
proven otherwise. Employees of these organizations are restricted to only a handful of apps
vetted by security analysts. This restriction has adverse effects on employee productivity and
happiness. An employee may want to use a newly released app that offers many attractive
timesaving features to boost productivity. Another employee may want to use an email
app she is familiar and happy with rather than using the one officially sanctioned. Both
employees must seek approval from security analysts but both are likely to be disappointed.
An organization may not have enough security analysts to vet every single app employees
want to use. Third-party app developers may not always cooperate by providing source code
for security analysts to examine. “Your approval request is denied due to security concerns”
is often the most convenient and safest response, at the unfortunate loss in productivity and
happiness.

This project develops a suite of specialized analysis techniques for vetting Android apps
to confirm the absence of malice. These techniques enable security analysts to quickly vet
any given Android app even if the source code is unavailable. The definition of malice of
interest is an inconsistency between the action taken by the app and the user expectation
of what the app is doing.

Example 1 (Expectation Inconsistency). A camera app is designed to take pictures. There
are two execution paths in this app:

Normal The user presses a button labeled “Take Picture,” then the app captures a pictures
tags it with the time and location. The user presses a button labeled “Upload Picture,”
and the app uploads the picture to a desired cloud service.

Malicious The app also takes a picture quietly in the background and uploads to a central
server without the user’s knowledge.

2
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Such a malicious app is particularly pernicious because the app does not seem malicious
from a permission audit perspective. In order to carry out the malicious behavior, this
app must request the permission to take a picture (android.permission.CAMERA) and to
upload (android.permission.INTERNET), but these requests appear legitimate from the
normal execution path.

The key novelty of this project is the use of high-level reasoning based on the GUI design
logic of an app to enable a security analyst to diagnose and triage the potentially sensitive
execution paths of an app.

Levels of Inconsistency We have identified three-levels of logical inconsistencies:

Event-level inconsistency A sensitive operation (e.g., taking a picture) is not trigged by
user action on a GUI component.

Layout-level inconsistency A sensitive operation is triggered by a GUI component that
may be deceptive to user due visibility or layout.

Semantic-level inconsistency A sensitive operation is triggered by a GUI component that
may be deceptive to use due to a semantic inconsistency in the labels (e.g., a “Save”
button triggers picture taking).

This project develops 4 complementary techniques to detect the above levels of incon-
sistency. The first uses the fact that a user typically learns about an app from the app’s
public information (while deciding whether to install it), from the app’s UI (while exploring
the UI), and from the app’s actual behaviors (while using it). Users may become confused
or surprised if there are inconsistencies between (a) the public information and UI, (b) the
UI and the actual behavior, or (c) the public information and the actual behavior. For
example, turning on the camera (actual behavior) when there is no button that says SNAP
(UI) is a potentially confusing and even malicious inconsistency. We present a methodology
for automatically detecting inconsistencies in Android apps with respect to permissions and
similarity. We report results on a large corpus of 178,765 apps.

Second, to combine information extracted from an app’s source code and marketplace
webpage to identify correlated variables and validate an app’s quality properties such as
its intended behavior, trust or suspiciousness. This work involved analysis of one or two
artifacts such as the GUI text, user ratings, app description keywords, permission requests,
and sensitive API calls. Previous such approaches have made assumptions about how the
various artifacts are populated and used by developers, which may lead to a gap in the
resulting analysis. We take a step back and perform an in-depth study of 14 popular apps
from the Google Play Store. We have studied a set of 16 different artifacts for each app, and
conclude that the output of these must be pieced together to form a complete understanding
of the app’s true behavior. We show that (1) developers are inconsistent in where and how
they provide descriptions; (2) each artifact alone has incomplete information; (3) different
artifacts may contain contradictory pieces of information; (4) there is a need for new analyses,
such as those that use image processing; and (5) without including analyses of advertisement
libraries, the complete behavior of an app is not defined. In addition, we show that the
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number of downloads and ratings of an app does not appear to be a strong predictor of overall
app quality, as these are propagated through versions and are not necessarily indicative of
the current app version’s behavior.

Our third technique outputs a mental model that a GUI user creates during app usage;
a model that implicitly informs the user of the software designer’s intent. Our model specif-
ically considers an important question used for security assessment of Android apps: “What
permission-sensitive behaviors does this app exhibit?” Our assessment is based on the com-
parison of 2 mental models of 12 Android apps – one derived from the app’s usage and the
other from its public description. We compare these two models with a third, automatically
derived model – the permissions the app seeks from Android. Our results show that the
usage-based model provides unique insights into app behavior. This model’s consistency
with other behavioral information about the app may be used in security assessment. Fi-
nally, we develop specialized static analysis to connect GUI actions to the underlying source
code.

These techniques make it possible to vet a large number of Android apps in a timely
and cost-effective manner. Organizations will no longer need to tradeoff productivity and
happiness for security.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Descriptor-Based Analysis

Android uses a permission system to protect the device’s resources and user’s data. There
are many apps that ask for unexpected permissions. Why does this app ask for the camera
permission but never mention a word about it? Why does this app ask for the camera
permission but never invoke any API method to operate the camera? Is this a bug, malice,
or a feature? These are potential inconsistencies that often confuse users.

Within a group of apps, there may exist some apps significantly different from the rest.
As an example, consider a set of apps grouped together because they all require camera
permissions. After analyzing a large number of these apps, we may spot a common pattern
exhibited by the majority of these apps. The pattern may be that an app’s public description
tends to contain words such as capture, take picture, or photo. A user might be confused
when he finds an app that says nothing publicly about using cameras even though it explicitly
requires camera permissions. Inconsistency may occur between various levels. Consider an
app whose description includes words like take a picture but it doesn’t include anything at
the UI level. Additionally, the UI may include “take a picture” button, yet that button
doesn’t trigger the phone’s camera. As a result of this inconsistency, users may be surprised,
annoyed, confused, or even harmed. We studied two questions regarding inconsistencies in
Android apps:

1. How can we compute a descriptor to provide a comprehensive and comparable view of
an app?

2. How can we apply such descriptor to discover inconsistencies between an app’s public
features, UI features, and code features?

4
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To address these questions, we took a data-driven approach. We collected a corpus of
178,765 Android apps from the Google Play Store. We computed descriptors of Android apps
by combining features extracted at three levels. At the public level, we considered an app’s
online description, package name, category, ratings, install size, and other publicly available
information. At the UI level, we considered an app’s user interface’s text and layout. At the
code level, we considered the methods declared, invoked and the connections between event
handlers (e.g., onClick) and library calls (e.g., takePicture), using program analysis.

We begin our analysis of inconsistencies in Android apps by computing a descriptor for
each app. The role of a descriptor is to give a comprehensive and comparative view of an app.
A descriptor should comprehensively capture as many aspects about an app as possible. It
should also allow efficient and effective comparison. We propose a novel descriptor composed
of features extracted at three levels.

Three-level features are extracted to form a descriptor of each app. Public Features are
derived from public information about an app and visible to users before the app is installed.
We extracted public features about an app from the details published on the Google Play
Store. We used Google-Play-Crawler,1 an unofficial open source API for the Google Play
Store, to download APK files, collect package names, reviews, permissions, title, creator, and
number of downloads for each application from the Google Play Store. NOKOGIRI2 was
used to gather further information from each app’s Google Play Store web page including:
app description, category, rating, date published, Play Store URL, price, version, operating
system, ratings count, content rating, developer URL, install size, and downloads count text.

User Interface (UI) Features are derived from the user interface of an app, including the
text and layout. They are visible only to users who have installed and are using the app.
We extracted two types of user interface features: text and layout. We downloaded each app
and saved it as an APK file (Android Package). We used an open source reverse-engineering
tool, to unpack the APK file into a directory tree of program files that make up the app.
To extract layout features, we examined the res/layout directory for layout files. We parsed
them all using a custom XML parser and collected all the widgets we encountered as features.
To extract text features, we parsed three string resources files, (strings.xml, arrays.xml, and
plurals.xml). We extracted strings from layout files when strings are hardcoded into layout
files.

Code Features are derived from the disassembled and decompiled code of an app. We are
interested in the following code features: (a) an app’s own methods, (b) the Android library
methods an app invokes, and (c) the connection between a user event handler (e.g., onClick)
and the method triggered by the event (e.g., takePicture). These features are not visible
to users but can be inspected by an expert program analyst to examine the app’s actual
behavior. We extracted three types of code features: declared methods, invoked methods,
and pairs. We used apktool to unpack an app’s APK file.

We located the file classes.dex, which bundles the binary code of all the classes of an app
into a single file. We used smali to disassemble classes.dex into individual files, one per class,
in a human-readable assembly-like format. To extract declared method features, we looked
for the pattern .method [declared name] in every smali file and collected all occurrences. To

1https://github.com/Akdeniz/google-play-crawler
2http://nokogiri.org
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extract invoke method features, we looked for the pattern .invoke-virtual and .invoke-public.
To extract method pair features, we built a call graph for each app using the WALA program
analysis framework. WALA takes Java classes.dex into Java bytecode. Our call graphs are
object-sensitive with unlimited context sensitivity for container classes.

3.2 App Artifact Synthesis

We now describe a synthesis-based approach that we developed as there are no formal re-
quirements that must be adhered to when marketing an app to a marketplace [42, 59, 64],
and no set standards for how to describe and document exactly how an app is supposed to
behave [45, 62]. The marketplaces provide ample space for developers to upload this infor-
mation, but as we have learned, the structure for documentation is loose and its use open
to choice and style [46, 66]. For instance, a developer can write a complete natural language
description of their app, or they can provide screenshots or videos – or use a mixture [25].
They might instead, rely on the crowd and provide only a brief description, expecting users
to comment on the other behavior within their reviews [37, 60, 67]. Some hints can be in-
ferred about an application’s intention [24], such as the request for user permissions [28] to
utilize particular resources (e.g. a camera), however, some apps use alternative mechanisms
that rely on other apps (and their permissions) to access these resources (e.g. an app might
use a camera Intent to utilize a camera via another app and this would not require explicit
user permissions [61]), or they may over request, meaning that the user has no real idea of
what the actual behavior will be [27]. Having such flexibility makes the release of new apps
easy on the developer, however it means that users have incomplete information, and may
end up surprised later. Even the use of a simple mechanism such as user reviews seems to be
open to interpretation, since as we have learned, reviews from one version of an app appear
to follow it to the next version. New faulty behavior, or malicious Intent will not be exposed
[48].

Recent research has focused on ways to automatically extract particular types of app
behavior, such as those that might violate user privacy or that may indicate the existence
of malware or stealthy methods [21, 39]. Other research has looked at ways to measure the
amount of trust one should have in an app (by rating developers, comments, etc.) [26]. But
most of these approaches use limited information. For instance, there has been work on
finding mismatches between the online descriptions with the requested permissions [7, 33].
While this provides some notion of intended vs. hidden behaviors, we have learned that
neither information source gives complete and accurate information. Other research has
focused on comparing descriptions vs. API calls, however there is often a lot of dead code
in the form of API calls leading to a large overapproximation [27]. Other analyses remove
advertisement or analytic libraries [34, 56], for simplification. We have learned that the
external libraries often have their own behavior, and require their own permissions – and
that they should not be ignored. Finally, there has been work on comparing user ratings,
descriptions and permissions, but this is still only a partial view [37, 67]. While all of these
approaches extract important behavioral information, and each provides a useful analysis
technique, they often target specific data elements which may expose only a subset of app
behavior.

Several researchers have started to analyze various app artifacts with focus on secu-
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rity, quality and reliability. Qu et al. [55] examine the app’s Description and Permission
requests. Their analysis tries to determine whether text in the app description provides
any indication for why the app needs a specific permission (they considered only 3 permis-
sions: READ CONTACTS, READ CALENDAR, and RECORD AUDIO). They selected
from the top 500 apps specifically for each of the 3 permissions of interest, and analyzed
each description with respect to only one permission for which the app was selected. In
later work [63], they check for consistency between Description and Permissions, which they
call description-to-permission fidelity. Their results show that the description-to-permissions
fidelity is generally low on Google Play with only 9.1% of applications having permissions
that can all be inferred from the descriptions. They hypothesize that new or individual
developers—those not from a software company—may fail to completely discuss the need
for some permission in the app description.

Gorla et al. [33] make use of app Description and API usage. Their goal is to identify
suspicious/outlier apps in respect to API usage. They first examine the description text
to cluster descriptions into topics, and then use API calls to reclassify apps as normal or
abnormal depending on whether their API usage falls in “normal” behavior, where normal is
defined by other apps in the cluster. They mention several weaknesses with the app artifacts
in their dataset: code dominated with advertisement frameworks because they used free
apps; use of certain words in the description text led to misclassification; analysis of code
artifacts may be incomplete because of their inability to follow reflective calls and recover
source code from obfuscated binaries.

Chia et al. [21] examine User Ratings, Description, and Permissions to determine that
the current forms of community ratings used in app markets today are not reliable indicators
of privacy risks of an app. Their large-scale study provided evidence indicating attempts to
mislead or entice users into granting permissions. In terms of app artifacts, they conclude
that popular and free apps request more permissions than they need. Hence, studies that
rely only on such apps may unknowingly skew their analysis of permissions.

The work by Dini et al. [26] uses the largest variety of app artifacts to evaluate app
“trust.” They label an app as trusted, untrusted, or deceptive, based on a weighted formula
that takes Developer Rating, Number of Downloads, Market Name, User Rating, Number
of Crashes, and Battery Consumption. Because of their focus on trust, they ignore app
functionality, and consequently code artifacts. Their weighted function gives high weightage
to Developer Rating (to reward historically trusted developers), with the result that poor
quality apps by a trusted developer may be ranked as trusted.

Other researchers have examined only code artifacts to assess security and trust. Huang
et al. [39] compare text strings used in the user interface of an app with API calls to
determine whether the API usage is consistent with user expectation. We have learned that
developers may not always use the .xml files, and instead, choose to hardcode the strings
into the Java source code, or use images for buttons. Moreover, they may not use all the
strings in the .xml files.

Fuchs et al. [30] extract security specifications from manifests that accompany such
applications, and check whether data flows through those applications are consistent with
the specifications. Linares-Vásquez et al. [50] analyze how the fault- and change-proneness
of APIs used by 7,097 (free) Android apps relates to its lack of success. They used the
apps’ average ratings as a measure of app success; the number of bug fixes in a particular
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version as a measure of fault proneness; and the number of code changes at method level in
a particular version as a measure of fault proneness.

Barrera et al. [16] analyze the Android permission model to investigate how it is used in
practice and to determine its strengths and weaknesses, and usage patterns by apps. Peng
et al. [57] use probabilistic models to assign each app a risk score based on its requested
permissions.

Finally, some researchers have used non-code and non-developer artifacts to assess quality.
Galvis et al. [31] process user comments to extract the main topics mentioned as well as some
sentences representative of those topics. This information can be useful for requirements
engineers to revise the requirements for next releases. Results show that the automatically
extracted topics match the manually extracted ones, while also significantly decreasing the
manual effort. Fu et al. [29] identify users’ major concerns and preferences of different types
of apps through user ratings and comments. Malmi [51] show how the quality of an app, as
reflected in how people start to use it, is linked to the popularity of the app. They also show
the connection between app popularity and the past popularity of other apps from the same
publisher and find a small correlation between the two.

In our analysis, we ask what information should be utilized and pieced together to com-
plete the puzzle of an apps true specification. We believe that this question is important,
yet has not been previously answered. We present an in-depth case study on 14 highly
downloaded apps from differing domains. We quantify the different sources of information
that the developers use and look for inconsistencies between them.

Unlike traditional software applications that come bundled with extensive user guides,
reference manuals, troubleshooting guides, etc., mobile apps are rarely supplied with such
detailed artifacts. Instead, where they lack in providing extensive documentation and man-
uals, they attempt to make up for with a variety of concise artifacts, such as Description,
Reviews, What’s New, Number of Installs, Platform Requirements, Content Rating, Permis-
sions, Vendor Name, Category, Developer Contact, screenshots, Demonstrational Videos, and
Size. End users browse through these artifacts before purchasing an app from marketplaces
such as Google Play, Amazon Appstore for Android, and the Apple App Store.

App code binary updates are frequent and are typically downloaded and installed auto-
matically unless they require user consent or have been disabled. The app’s corresponding
artifacts may be updated in the marketplace, but this responsibility of keeping an app’s
artifacts consistent with each other as well as providing accurate information is distributed
across multiple stakeholders, namely developers, users, and marketplace managers.

We analyze a subset of Android app artifacts to understand and compare what they tell
us about how an app behaves. While some of these (rating, description, videos) are straight-
forward to understand, several others (permissions, Intents) require background in Android
app structure, operation, and security features. We summarize some of the fundamental
concepts needed to understand our study and results.

An end user downloads and installs an Android .apk file from a marketplace, which is
actually a zip compression package containing several code artifacts needed to install and ex-
ecute the app. Of interest to us are the Classes.dex file, res/ folder, and AndroidManifest.xml
file.
• Classes.dex is a java byte code file in Dalvik executable format, generated after compilation
from java source, and used by the Dalvik virtual machine in Android. There are various tools
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that can disassemble and decompile .dex files such as dexdump, dex2jar and apktool. These
allow .dex files to be viewed on their byte- and source-code levels. For example, we obtain
the following decompiled code segment for one app:

# virtual methods

.method public onClick(Landroid/view/View;)V

.registers 6

.parameter "v"

.prologue

.line 58

...

invoke-virtual {v0,v1,v2,v3},Landroid/hardware/Camera;->

takePicture(Landroid/hardware/Camera\$ShutterCallback;

Landroid/hardware/Camera\$PictureCallback;

Landroid/hardware/Camera\$PictureCallback;)V

.line 59

return-void

.end method

We show the recovered signature of the invocation of Camera.takePicture() and its invoking
onClick() method. Such information may be mined to determine the resources (e.g., the
Camera API) used by an app.
• The res/ folder contains all the resources: an image resource, layout resources, launcher
icons, and string resources. All this information may be used to better understand the app,
e.g., by reading its strings, and examining its icons and GUI widgets.
• The AndroidManifest.xml file presents essential information about the app to the Android
system. Of importance to us is it declares the permissions the app must have in order to
access protected parts of the API and interact with other applications. For example, to take
a picture, using the aforementioned Camera.takePicture() method, the app needs to declare
the following permission in its AndroidManifest.xml file:

<uses-permission android:name="android.permission.CAMERA"/>

Such permissions are used by Google Play to inform end users about an app’s access to
resources and its capabilities.

As discussed above, an app may use a camera on an Android device by invoking the Cam-
era API and adding a uses-permission block in the AndroidManifest.xml file. An alternative
way is using the camera via an Intent (for our purpose, an Intent is an inter-app message)
to invoke an existing Android camera app. A camera Intent makes a request to capture a
picture or video clip through an existing camera app. The app using the Intent mechanism
does not need to request permission in the AndroidManifest.xml file. The developer simply
has to create an Intent object that requests an image or video, set a resulting image/video
file location, and to “send” the Intent, using code much like the following:

// create Intent to take a picture and return control to the calling application
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

// create a file to save the image
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fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);

// set the image file name
intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri);

// start the image capture Intent
startActivityForResult(intent, CAPTURE_IMAGE_ACTIVITY_REQUEST_CODE);

After the Intent starts, the Camera app user interface appears on the device screen and the
user can take a picture or video. When the user finishes taking a picture or video (or cancels
the operation), the system returns control to the calling app.

Although much of the work on understanding app artifacts is new, there is related work
on the topic of general program understanding using reverse engineering [22], which iden-
tifies software artifacts in the subject system, and then aggregates these artifacts to form
more abstract architectural models [52]. Some of this work has also been applied to specific
domains such as the web [8] and service-oriented software [32] that are constantly expand-
ing from simple systems (simple web-sites and message passing) toward the construction of
full-fledged applications. A richer set of artifacts is available when understanding code by
programmers for maintenance and evolution of large-scale code [68]. As end users provide
online feedback (in the form of accessible reviews), these have also been mined and summa-
rized [38]. Our own recent work on understanding GUI behaviors from test execution [9, 10]
is rooted in test case repair and combinatorial coverage [23].

We complement prior work by providing an in-depth study that is conducted from a
more holistic view. We identify the pieces of the puzzle that contribute to an apps overall
behavior and security.

3.3 Role of Static Analysis

Static analysis concerns the inference of possible program behavior from the source code of
the program. For each of the levels of logical inconsistencies, a security analyst needs to
be able to connect sensitive operations to the GUI components that trigger them. Thus,
the central role of static analysis in our project is this connection of sensitive operations
to GUI components. Other tools in our project (described separately) leverage the static
analysis information to interface with the security analyst (e.g., to flag potential semantic
inconsistencies in button labels).

We specifically focused on three tasks:

• Task 1: Developing Static Analysis Techniques for Vetting Sensor Operations

• Task 2: Developing Static Analysis Techniques for Vetting Input Operations

• Task 3: Developing Static Analysis Techniques for Vetting Network Operations

We addressed these tasks together by considering the sensitive operation of interest
(sensor, input, or network) as an input to the tool. We have thus focused our efforts on
progressively improving our ability to give precise GUI component to sensitive operation
information.
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3.3.1 Static Analysis for GUI Logic

Android applications are executed in an event-driven environment governed by the Android
framework. Apps are developed against the framework by extending special framework
classes like Activity and Service and overriding pre-determined callback methods like
onCreate and onDestroy. This model of development is quite different than standard Java
applications, so there are a number of technical challenges that we have addressed to be able
to perform static analysis of Android applications for GUI logic.

In a standard batch application, there is a single main method. In Android, however, the
application implements a number of callback methods that are then invoked by the Android
framework, so there is no single main method but rather a set of callback methods that we
call entry points. Each entry point handles some event. From each entry point, we derive
control-flow and call graphs, which are standard program representations. Thus, the baseline
fact that we generate via static analysis is a permission path:

Definition 1 (Permission Path). Given a sensitive method Cn.sensitive, a permission path
is a path in the intra-event call graph from an entry point method C1.entry . Schematically,

C1.entry → C2.m2 → · · · → Cn.sensitive .

Or we may simply be interested in the permission pair

(C1.entry , Cn.sensitive) .

False Positives and False Negatives Since sound static analysis is concerned with
over-approximating program behavior, it is possible that some permission paths that our tool
outputs does not correspond to actual behavior (i.e., is a false positive or a false alarm). Our
approach is to examine successive approaches for refining our statically-derived information
to successively eliminate false alarms. Our approach builds a semantic call graph using
inclusion-based points-to analysis, so this initial phase already mitigates some sources of
false alarms due to dead code.

While the static analysis approaches we apply are over-approximate, there are two main
sources of false negatives or missed alarms. First, if the input app is a binary, then we apply
existing tools for decompilation to Java bytecode. If these tools are unsound, then this may
be a source of missed alarms. Second, the Android framework is complex and uses both
reflection and native methods, which results in potentially missing behavior that could lead
to missed alarms. We discuss in Section 3.3.3 our work in mitigating this source of missed
alarms.

3.3.2 Permission-Sensitive Methods

From a usability perspective, it is simpler for the analyst to specify the Android permissions of
interest (e.g., android.permission.CAMERA) than a sensitive method (e.g., android.hardware.Camera:
void <init>()). We permit the analyst to instead specify a permission of interest by using
a mapping from permissions to corresponding permission-sensitive methods. We obtain this
mapping from the PScout tool [14].

11
Approved for Public Release; Distribution Unlimited.



3.3.3 Android Analysis Infrastructure

Our static analysis tools are built on the WALA [40] analysis framework for Java bytecode.
We support analyzing applications from binary apk packages by using the third-party tools
apktool [5] for extracting code from the package and dex2jar [6] for decompiling Dalvik
bytecode to Java bytecode. It is known that dex2jar may not always produce sound Java
bytecode [54], so issues in decompiling using dex2jar may result in missed alarms.

The second issue with respect to missed alarms mentioned above concerns static analysis
of the Android framework. The Android framework makes heavy use of reflection. Reflection
is a notoriously difficult issue for static analysis because of the need to model that reflection—
otherwise code invoked via reflection is (unsoundly) seen as unreachable. In particular,
application entry points are invoked by the framework using reflection, and thus, without
special handling of reflection, none of the application code would be seen as reachable. In
order to perform GUI logic analysis, we needed to invest effort in this problem, which resulted
in the creation of Droidel [19]. Droidel has been open sourced and has already been adopted
by other researchers at IBM Research and the University of Texas at Austin.

Prior approaches to Android static analysis have addressed this problem by developing
models of the Android framework to serve as a replacement for the Android code itself.
Because modeling is labor intensive, almost all models are client-specific, meaning the model
only aspects of interest to the client analysis (e.g., taint flow for taint analysis). Thus, we
were unable to reuse prior models for our GUI logic analysis and thus needed to create
Droidel. Droidel is different from prior models in that it aims to be a general approach to
the framework modeling issue—at least with respect to resolving reflective calls in Android.
We compared Droidel with the model from an existing state-of-the-art Android analysis tool
on a set of seven open source apps and observed significantly fewer missed methods in call
graph construction (see [19] for details).

Droidel also provides infrastructure for working with Android GUI components (called
Views), including reasoning about layout inflation and manifest-registered callbacks.

3.3.4 Precision Improvements

In the remainder of this section, we discussed static analysis approaches that we have taken
to improve the quality of the permission path results we produce, particularly with respect
to false alarms.

3.3.5 View Refinements

Given a permission path to a GUI component handler entry point (e.g., onClick), it is non-
trivial to identify the corresponding GUI component. Specifically for example, an onClick

entry point is a method on an app class that implements a View.OnClickListener interface
with the following signature:

public void onClick(View v);

When this callback is invoked, the GUI component is passed as the v parameter. For GUI
logic analysis, we need to be able to determine what are the possible Views on which this
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onClick may be invoked. Unfortunately, the baseline information via a point-to analysis is
typically extremely imprecise, yielding essentially all Views of the application.

To obtain more precise information about GUI components and associated callbacks, we
apply further static analysis to try to determine which Views can have which listeners reg-
istered. Obtain such information in a precise manner is challenging because a listener can
be attached and detached from a View programmatically in addition to manifest declara-
tions. In on-going work, we address this problem by applying backwards symbolic reasoning
techniques [17, 18]

3.3.6 Activity Transitions

In addition to GUI component handler entry points, another kind of entry point is a lifecycle
callback. A lifecycle callback is an app-implemented method on a core Android component,
such as Activity.onCreate. An Activity is an Android component that corresponds
roughly to a screen, and an Android app can consist of multiple Activities.

A permission path that begins from, for example, an Activity lifecycle entry point like

A1.onCreate

is not directly associated with a GUI component. However, a common idiom is that the trig-
gering of GUI component from another Activity A2 causes the creation of A1. Thus to pro-
vide more precise permission path information, we need to relate the creation of Activities.
To do so, we apply a separate static analysis to generate such relations in the form of an
activity-transition graph, which was defined by prior work in the literature [15].

4 RESULTS AND DISCUSSION

4.1 Findings from Descriptor-Based Analysis

To evaluate our descriptor based approach, we collected our own corpus of Android apps.
This corpus consists of 178,765 apps published on the Google Play Store. We extracted
the public features of all 178,765 apps to perform our analysis. Among these apps, 153,294
were free. We took a sample of 84,405 apps (about 50%). We downloaded, unpacked,
disassembled, and decompiled them. Each app yielded about 1,000 program files we must
process. From these files, we extracted user interface and code features. We stored all
extracted features using MongoDB, a NoSQL database optimized for big data analytic. The
total size of raw data is about 4TB.

4.1.1 Camera Permission Inconsistencies

In our corpus of 178,765 apps, we found 17,739 (9.9%) apps requiring camera permissions. At
the public level, we used all these apps as positive examples. We randomly selected the same
number of apps that do not require camera permissions as negative examples. We trained
a model for positive camera permission apps based on Maximum entropy. The training
accuracy was 98.7%. We then applied the classifier to the 17,739 apps that require camera
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permissions. Among these apps, 307 were classified as not requiring camera permissions.
These apps present inconsistency that could not fit the model. At the user interface level,
we analyzed a subset of 7,816 apps requiring camera permissions. We repeated a similar
training process. The training accuracy was 92.9%. 498 were classified as inconsistent. We
now discuss three types of camera inconsistencies we discovered.

Figure 1: Example of Inconsistency between Public and Interface

Inconsistency between Public (P) and Interface (I): An app is inconsistent between its
public information and interface if the interface presents certain sensitive features that are
not disclosed on the app’s public page in the app market. TinkerBell Puzzle (Figure 1) is
an example we discovered that exhibits this type of inconsistency. It is a puzzle game. The
app’s public description mentions “photos” but it does not suggest the photo is being taken
or shot by cameras. At the interface level, the combination of the word “photos” and the
phrase “Take a Picture” provides strong evidence to the camera use. In this case, users
may be confused since the app’s description does not clearly describe the camera feature.
Consequently, they may avoid installing the app to explore the UI.
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Figure 2: Example of Inconsistency between Interface and Code

Inconsistency between Interface (U) and Code (C): An app is inconsistent between its
user interface and code if the label of an interface component (e.g., “New”) does not match
the code this component invokes (e.g., takePicture). Animals Game for Kids (Figure 2) is
an example we discovered that exhibits this type of inconsistency. It is a game for kids.
There is no indication on the user interface that the camera is used. But at the code level,
camera API calls are found. There is no logical connection between any interface component
and these API calls. In this case, users would be confused because it is not clear what UI
component triggers the camera function.

Inconsistency between Public (P) and Code (C): An app is inconsistent between the public
and the code levels when there is a mismatch between its public description and its actual
behavior as revealed by code. Figure 3 shows an actual example of this type of inconsistency
we discovered. This app appears to be a glossary app. The app’s code contains calls to take
pictures. A user would be very surprised when a picture is taken while he/she is using the
app to look up math terms.
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Figure 3: Example of Inconsistency between Public and Code

4.1.2 Similarity Inconsistencies

A classic example of similarity inconsistency is when two apps appear to be different at the
public level but have very similar user interfaces. We further analyze our dataset to identify
this type of inconsistency. We used the classic term frequency-inverse document frequency
(tf-idf) model to calculate the similarity among apps. We used 95% as the threshold. If two
apps are more than 95% similar, they are considered as near identical. We treat them as
inconsistent apps because most apps have no near identical apps. At the public level, we
analyzed 11,880 apps and focused on just the app’s description. We found 630 apps (5.3%)
with near identical apps in terms of their description. Let’s denote the set of these apps as
P. At the interface level, we analyzed a sample of 72,993 apps and found 1,339 apps (1.83%)
with near identical apps. Let’s denote this set as I. Having found P and I, we can compute
the difference between the two, which will tell us which apps are similar at one level but not
at the other.
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As an example, NetCounter and Network Traffic Monitor are a pair of apps we discovered
that exhibit similarity not at the public level and only at the user interface level. By reading
the public information, users would see them described differently, made by separate creators,
and filed under distinct categories. But our UI similarity analysis reveals that the interfaces
of the two apps are almost identical, suggesting that one app may be a knockoff of the
other. An unsuspecting user would have no way to tell until after installing the app. A
more cautious user may compare the two apps and notice that one requires as many as 28
permissions while the other requires only five. Also, one has more than 20K user ratings
with an average of 4.5 star while the other has only 177 ratings with an average of 2.5 stars.
Based on this comparison, one may deduce that the one that receives weaker ratings and
requires more permissions is probably a knockoff. Unfortunately, Google Play’s similarity
calculation does not take into account the user interface or the code. These two apps are
not listed as similar apps to allow users to do such comparison.

4.2 Findings of App Artifact Synthesis

In our evaluation of app synthesis, we ask three research questions that aim to find out what
types of information are required to piece together an app’s true specification. Our first
question looks at the descriptive artifacts provided by the developer. The second question
examines artifacts that provide indirect information. Our last research question evaluates
information provided by stakeholders besides the developer. The questions are:
RQ1: Which artifacts provide descriptive information of an app’s behavior and
are these consistent across artifacts?
RQ2: What information can be inferred indirectly from other artifacts?
RQ3: What type of specification information and app behaviors are not con-
trolled by the developer?

4.2.1 Selecting the Apps

We performed in-depth manual analysis on 14 free apps selected from the Google Play store.
We chose apps that span categories and size (as determined by apk size). Table 1 shows
our sample in more detail. The apps’ sizes range from 806KB to 49MB and are distributed
across 10 different categories. We only selected apps which were expected to be of average
to high quality. Such app’s we assumed would be better documented and contain more
consistent artifacts. Both of these properties should facilitate our goal of spec construction.
The ratings range from 3.6 to 4.6 on a 5.0 rating scale and include several developers with
Top Developer badges.

4.2.2 Preparing the Apps for Evaluation

To prepare the apps for manual evaluation, we began by collecting information from each
app’s Google Play store page as well as downloading the respective .apk file. We then
performed the following:
(1) From each app’s Google Play page, we scraped the page for developer rating, user rating,
user comments, number of installs, screenshots, video (if uploaded), permission request text,
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Table 1: Apps in Case Study

App Name Category Developer APK Size
Rating listed actual

HealthTap (HT) Health/Fitness Top 47M 49.5M
Android Auto (AA) Transportation Top 27M 27.9M
Nest (NST) Lifestyle Standard 24M 25.3M
Kids Puzzle: Vehicles (KPV) Educational Standard 21M 20.7M
Peel Smart Remote (PSR) Entertainment Standard 17M 17.5M
Diabetes Logbook by mySugr (DL) Medical Standard 14M 14.9M
Timely Alarm Clock (TAC) Lifestyle Top 9.4M 9.9M
HiFont - Cool Font Text Free (HF) Personalization Standard 6.1M 6.4M
Paint for Kids (PFK) Casual Standard 6.8M 6.3M
Water Your Body (WB) Health/Fitness Standard 5.7M 6M
Spell Checker - Spelling boost (SP) Books/Reference Standard 2.9M 3M
IDO Calculators Plus Free (ICP) Tools Standard 2.7M 2.7M
Pedometer (PED) Health/Fitness Standard 1.9M 2M
Barcode Scanner (BS) Shopping Standard Varies 806K

listed interactive elements text, whether the app contained in-app purchases, and the text
in the app’s description.
(2) From each app’s .apk file, we obtained source code files by disassembling the .apk file
into smali byte code files with apktool [5]. We also decompiled the .apk file with dex2jar [6]
to obtain the app’s Java source code files.

This resulted in a collection of quantitative, categorical, text, and image based informa-
tion on the app that guided the evaluations discussed in Section 4.2.8.

4.2.3 Evaluation Methods

Additional preparation was required for each app’s text, video and image-based artifacts.
This included parsing the app’s Manifest file for permission and library usage, parsing code
files for API calls and Intents, as well as manual analysis. Manual analysis required the
evaluator to watch a video, read text or view a collection of images. After viewing, reading
or watching, the evaluator then produced a set of behaviors that the non-code related video,
text, or images described. Behaviors were defined as a higher-level action the app could
perform that required permission. To address ambiguity within the artifacts and implemen-
tation, we listed all possible related behaviors. For example, a description may list “Share
with friends” as a feature. This would result in messaging and social media behaviors. Im-
ages often contain many behaviors in a single image. For example, suppose a screenshot
shows the device with a map and consequently shows the UI which contains a download and
sync button. Such a screenshot would result in maps, navigation, download, sync, location
behaviors. The reason for including these clusters was to ensure that the inconsistencies
found were less a matter of evaluator opinion.

To determine incompleteness of descriptions against permissions, we took each descrip-
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tion’s set of behaviors and converted them into the permissions they require. This conversion
was done by referencing Android permission documentation as well as PScout’s permissions
mappings [13]. We then went through the app’s requested permissions. First, we looked
to see if the permission was accounted for in the desc’s set. If there was a permission un-
accounted for in the description that was requested by the app then the descriptions was
marked incomplete. If all permissions were accounted for by the description, we then eval-
uated the app’s behavior by comparing its higher level features with its screenshots, videos
and our own use of the app (i.e. we ran the app on a physical device). If the app’s behaviors
contained in the description were in the app when we used it, we called this app description
complete. If there were features in the description not in the app, it was labeled contradic-
tory. The only app we could not run (due to compatibility issues) was Android Auto, but
the app was already inconsistent and did not require such analysis.

In order to determine each app’s use of advertisement (ad) and analytic libraries, we
evaluated the app’s source code files. Specifically, an app was said to use ads and analytics
if their disassembled code contained both of the following: (1) the app contained a key for
the package in its Android Manifest file and (2) the library’s code was included in the app’s
disassembled byte code. We then obtained each of the library’s use of sensitive methods
by string searching through the app’s code for API calls found by PScout [13], a tool that
extracts the permission specification from Android source code using static analysis, for each
app’s Android build and parsing the results for the identified library-related class paths.

To evaluate an app’s use of non-permission protected Intents, we consulted Android
documentation. Android lists common Intents and describes several which do not require
permissions. While there are many Intents, we focused our studies on those related to oth-
erwise permission-sensitive behaviors—specifically those related to SMS, contacts, internet,
phone, calendar and camera/video—in order to see where permissions were lacking informa-
tion about program behavior. Note we did not account for all permission-sensitive behaviors,
such as those that open a user’s settings, although the addition of these could only keep or
enhance the findings we present.

In order to evaluate user comments, we obtained the first 20 comments on the app’s
Play Store page ranked by newest to oldest and filtered for all versions. This is in contrast
to filtering the comments for those only on the latest versions – another option provided
by the Play Store. The resulting comments were then combined with the first 20 returned
comments ranked from most helpful to least helpful on any version of the app. Helpfulness
is determined by fellow users who can rate the comments on the page. Duplicate comments
were removed and the resulting set consisted of both the most recent ratings as well as those
that have been voted as providing the most useful information about the app’s functionality.
When evaluating the comments, a comment was considered negative if it indicated either a
functionality problem or an indication that the app should undergo changes. This included
comments reporting crashes, bugs, freezing, hanging, missing features, and ads.

4.2.4 Threats to Validity

This study has some potential threats to validity that we outline here.
Threats to External Validity. First with respect to external validity, we used only

14 apps and we do not span all categories (we cover 10 of 26). We also do not evaluate only
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the highest rated apps such as those with 4.6 or above, but instead chose to use a variety of
ratings. Given that this is meant as a case study and we are not necessarily generalizing, we
believe that this is valid.

Threats to Internal Validity. With respect to internal validity, the behaviors we
extract may be subjective and require extensive background knowledge of Android’s API
and framework. Consistency and incompleteness suffer from the same problem. We erred
on the side of caution and always gave the benefit of doubt for consistency when a case was
too close to determine. This means that our results should be conservative.

Another internal threat is that the manual analysis was performed by us. The manual
work might also be subject to mistakes, but we double checked our results to improve our
confidence in their correctness.

The use of the apps and their documentation were limited to the free portion of the
application (features or descriptions that are provided with the paid version are missed).
Since we compared artifacts all within the free domain, we believe our results are at least
consistent. Additionally, some apps described pro and paid versions on these pages as well
as free in their descriptions. Further, each artifact is subject to threats to validity associated
with human actions (e.g, any errors the user may have made when filling out the forms).
These may contribute to the study’s observed contradictions and inconsistencies. Finally,
one app, Android Auto, could not be used manually due to compatibility issues, therefore
for that app we were restricted to static analysis.

Threats to Construct Validity. With respect to construct validity, we could have
chosen different artifacts or measures, but we based our analysis on other types of studies
that have been performed before on Android.

We now look at the results for each of our three research questions. We then discuss
some observations in more detail and summarize what we have learned from this study.

4.2.5 RQ1: Descriptive Artifacts

To answer RQ1 we examined the data that developers explicitly provide on the Google Play
store. When a developer publishes their app on the Play store they are required to give a
description with a 4000 character limit. This description then appears on the app’s Play
store page, which in turn can be seen by users to help them determine whether or not to
install the app.

As we read each of the app’s descriptions, we noticed the apps’ developers were using
this space in different ways. Not only were there varying lengths ranging from as few as 57
words to 622 words, but there were differing uses of the descriptions. Some developers were
explicitly stating the app’s use of permissions (or providing a link to a site which did so),
many others included a bulleted list of the app’s features, while others focused less on its
complete behavior, and instead focused on its benefits, how it could be used (in a generic
way), or just quoted positive reviews.

Table 2 divides our apps’ descriptions by the type and amount of information present
in the description. The first column (len) shows the variation in user description length.
The second (Exp) shows whether the permissions were explicit or contained in a link, and
the third (List) whether a list of features was provided. In addition, Table 2 shows whether
the description provides extra (non-behavioral) information (Other) such as the benefits of
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downloading the app. This text does not provide specifications and may actually hurt an
NLP analysis. Finally, we show whether descriptions offered incomplete or contradictory
information with respect to the app’s behavior as determined by the evaluation methods
discussed earlier.

As can be seen from Table 2, 7 of the 14 apps had incomplete descriptions and one
contained a contradictory statement. The contradictory statement in IDO Calculator Plus’s
description said that the app did not contain ads when in fact it did. Interestingly, the apps
which listed features and stated the permissions explicitly weren’t necessarily immune from
being incomplete.

During our evaluations, we noticed that other artifacts on the app’s Play store page dis-
closed behaviors that the descriptions had excluded, and as a result, realized that looking at
the description alone may be too limited of a scope. Specifically, developers were using assets
such as videos, screenshots and the What’s New section to provide relevant spec information
not present in the description. The most blatant example of this was in Google’s Android
Auto. The description contains only 57 words and states the app “brings familiar apps and
services to a car”. However, it provides a video which demos the app’s use, and screen-
shots which shows the app’s UI and core capabilities. This shows the user the UI as well
as functionalities like the use of maps and navigation, SMS, phones calls, voice commands
and scheduling reminders and events. Further, in the app’s What’s New section, it includes
74 words explaining the features (16 more words than its description). The new features
listed included all of the behaviors shown in the video and screenshots, which were missing
from its description (navigation, SMS sending, scheduling & notifications, phone calls, and
voice commands). Therefore, while Android Auto’s description provided little information
on the app’s behavior, other accessible information on the app’s page could impact their
expectations. One thing that we noticed is that some of the videos and other artifacts were
in languages other than English, which will complicate an analysis.

The apps we studied used on average 9.9 screenshots and nearly half of them included a
video that was on average 2 minutes long. The use of the What’s New section varied in our
apps. Some developers simply listed “fixed bugs”, while others offered long explanations of
new features like Android Auto. Most importantly, we identified approximately 8 behaviors
that were not included in the apps’ descriptions that were contained in the videos and
screenshots. In summary, nearly half of our apps’ descriptions did not exhaustively and
explicitly explain their app’s behavior, and we identified alternative artifacts within an app’s
Play store page where developers disclose spec related information on the app’s behavior.
Summary of RQ1: Play store app descriptions are used in varying ways. Most of the apps
studied had incomplete descriptions and one had contradictory information. Some developers
opt to use alternative assets like images, videos, or the What’s New field to reveal additional
behavior.

4.2.6 RQ2: What Types of Inferred Information Exists

To answer this research question we examine types of information that are provided by
alternative artifacts (not explicitly provided). For this we use the AndroidManifest.xml
file and the user interface (UI) itself. We begin with the manifest file. Since prior studies
show that the manifest file often over requests permissions, we were surprised to find several

21
Approved for Public Release; Distribution Unlimited.



Table 2: Description Lengths & Usage. “I” are incomplete descriptions. “C” are contradic-
tory descriptions.

App Len Exp. List Other I C

AA 57 3 3

BS 184 3 3 3

DL 243 3 3 3

HF 197 3 3 3

HT 622 3 3 3 3

ICP 184 3 3 3

KPV 184 3 3 3

NST 104 3 3

PED 251 3

PFK 105 3 3 3

PSR 317 3 3

SC 197 3

TAC 257 3 3

WB 198 3 3 3

Totals 3(20%) 9(64%) 14(100%) 7(50%) 1(7.14%)

Table 3: Permission Requests, Intents and API calls.

App # of Non-permission App # of Non-permission
App protected Intents App protected Intents

BS 3 PFK 1
AA 1 SP 1
DL 1 WB 1
HF 1 ICP 0
HT 1 PED 0

KPV 1 PSR 0
NST 1 TAC 0
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cases where the opposite was true, and the permissions lacked important information on the
app’s behavior. Specifically, we observed apps that were using Intents to perform significant
actions without the need to request permission. These Intents are not those defined in the
manifest file, but could be found by searching the app’s decompiled java files. We provide
some examples here.
Paint for Kids. Paint for Kids is a kid’s app that provides pages for children to color. It
has a user rating of 3.6 and approximately 1,000,000-5,000,000 installations. Its description
says it can color, save and share pictures as well as take pictures which can be turned into
coloring pages for use in the app. The Play store page contains a video which demos the app
and shows the app taking a picture and then turning it into a coloring page. Screenshots
show painted pictures as well as buttons with icons for saving, sharing, painting and taking
pictures. Despite all indications of camera usage, however, when a user asks to install the
app, no camera permission is requested and no permission request appears in the app’s
manifest file. When the app is used, the camera is indeed opened by the camera button, and
everything else proceeds as demoed in the developer’s video.

What allows Paint for Kids to use the camera without a user’s permission is that the
app is invoking the camera via a non-permission protected Intent. This Intent allows the
app to employ another app on the device to take and save the picture. Paint for Kids
then has access to the saved image and can do what it likes with the file. Intents exist for
other typically sensitive operations such as creating and writing SMS texts, editing contacts,
dialing phone numbers and capturing video [1]. An app (possibly malicious) may circumvent
the permissions by accessing these sensitive operations via Intents.

Table 3 shows the number of such Intents not accounted for by an app’s permission list,
along with the number of permissions the app does request. 10 of the 14 apps used this
mechanism to access protected resources. Surprisingly, Paint for Kids was not the only app
aimed at children with such behavior. Kid Puzzle-Vehicles included an ad-related class that
dialed phone numbers. Although the phone itself is not invoked, the dial pad will pop up
with a number, and a child can then easily press the call button to execute the call.

The second artifact we used for inference was the UI since it offers additional information
about what an application does and impacts the user’s expectation. For example, a user
might see an icon of an envelope and will expect the app to be associated with some sort of
messaging or email behavior. Several studies have identified the UI as a source of valuable
information for program understanding [39], but most evaluate the app’s strings statically
and leave the icons as future work. As a result we were interested in evaluating how an app’s
strings and icons interact with respect to what unique information they each provide. In
short, do our app’s icons provide information that is not available in the app’s strings?

To answer this question, we manually evaluated all of the app’s strings defined in values
and values-en as well as all included .png files in drawables, drawables-nopi and drawables-
hdpi that were icons (i.e., not images or graphics used for content or background purposes)
and listed the associated behaviors for each string and icon. Because app’s often include
the same icon for different states (such as pressed and active), the unique images within
the drawables was typically much less then the number of included .png files. During our
analysis we failed to find a icon-related .png that did not contain a defined string that defined
it. That said, the set of defined strings in our apps greatly outnumbered the defined icons
so this may be a superset of information.
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In summary, the collective set of icon-related .pngs in drawables, drawables-nopi, and
drawables-hddpi was contained in the combined set of strings in values and values-en. What
remains unclear and may be a subject for future work is either set’s relationship to our app’s
actual UI and behavior– whether the icons are a more concise representation of the UI or
whether the strings define too many false values not used by the app.
Summary of RQ2. We conclude additional (and possibly differing) information for an
app’s spec is indirectly available through the permission set, non-permission protected Intents,
and/or the app’s UI as represented by sets of icons and strings. Our research suggests that
the icons an app defines have significant overlap with its strings.

4.2.7 RQ3: What Externally Controlled Information is Available?

To answer the last research question, we turn to three pieces of information that are not
explicitly provided by the developer – advertisements, user ratings and user comments.
Advertisements. Little information on advertisements (ads), analytics and social media
libraries was contained on the app’s Play store page, yet these libraries present obstacles in
specification construction at the code level. First, they introduce extra code in the source
code files, icons, and strings which may potentially cause a specification to include behaviors
an app doesn’t actually perform. Second, they often employ reflection causing an app’s API
calls to be incomplete [34], and as confirmed in our case studies, little information about
them can be obtained from the Play store – apps tend not to be upfront about their usage.
Last, they can be dynamically added and removed (e.g., the app might cycle through or
change their advertisers on a regular basis, and the ads themselves, may evolve on a cycle
that differs from the app evolution). In fact, some other studies have chosen to remove
ads from their analyses [34, 56]. Since our case studies were all free apps, the use of ads,
analytics and social media service libraries may not be surprising. We observed on average 2
such libraries in each app with one app containing as many as 5 and another not containing
any. It is relatively easy to determine if an app includes a library based on the source code,
but it is difficult to determine what aspects it uses due to the presence of dead code and
use of reflection. Two cases that we present next help us show some behaviors found in our
app’s code that appeared related to the libraries.
Kids Puzzle - Vehicles. Kids Puzzle - Vehicles is a children’s game app that also teaches
the user different languages. Its description describes the different levels and characters of
the game as well as the benefits of learning a new language. Its Play store page confirms
these behaviors and includes screenshots of the different games children can play as well as
different languages to use while playing. It has over 50,000 downloads and a user rating
of 3.9. Five of the 28 comments evaluated reported the app hanging, crashing, or freezing
and one of these comments reported crashing because of ads. This comment was the only
mention of ads on the page. The app requested 12 permissions and included several which
were not described by its description, UI or comments. These included READ LOGS and
MOUNT UNMOUNT FILESYSTEM. While evaluating the byte code further, we found that
the app included the Umeng ad library, which has been reported as harmful adware [4]. No
mention of Umeng were in the description and the app did not include an interactive elements
section. Umeng could be detected when inspecting the resource files for the app. Execution
of the app also revealed ads, which were not mentioned in the app description.

24
Approved for Public Release; Distribution Unlimited.



Table 4: Negative Comments, User Ratings & Quality. “TD” indicates whether the app was
developed by a Top Developer. “DR” is whether the number of times the developer responded
to negative comments. “CR” is the number of comments that indicated crashing or freezing.
“LH” is whether the app had the <:largeHeap> attribute set to true. This determines
whether the app’s processes are created with a large Dalvik heap and is discouraged by
Android.
App Installs TD User Rating Size Neg. Comments Repeating Issues DR CR Perm Lib LH

AA >10K 3 3.7 27M 28:38 (73.6%)

Compatibility, Night Mode
Needed, Car Display
Requirements, Limited
App Support

0 1 16 0

PSR >10M 4.2 17.5M 20:29 (68.9%)
Crashes, Issues w/ Update,
no guide available, button
functionality issues

1 3 13 0

NST >500K 4.4 25.3M 25:38 (65.7%)
Offline, Auto-Sched. &
Geofencing Doesn’t Work

0 1 12 2

TAC >5M 3 4.4 9.9M 25:40 (62.5%)

Can’t Dismiss Alarm,
Alarm Doesn’t Go Off
When Phone is Silenced,
Dislike of Notifications for
Upcoming Alarms,
Requests for Skip Next
Features, Wrong Time

0 1 14 1

BS >100M 4.1 806K 21:40 (52.5%) Slow to Scan, Won’t Scan 2 0 9 0

SC >1M 3.9 3M 16:32 (50%)
Ads, Crashes, Trouble w/
Foreign Languages, Doesn’t
Work, Char. Limit

1 3 4 4

HT >1M 3 4.4 47M 12:29 (41.3%)
Wrongly Charged For
Services, Freezing

8 2 22 2 3

PFK >1M 3.6 6.4M 11:27 (40.7%) Ads, Slow to Download 0 1 4 1 3

DL >1K 4.6 14.9M 10:38 (26.3%)
Include Carb Search, Too
Expensive to Upgrade

1 0 14 2 3

PED >1M 4.2 2M 9:38 (23.6%)
Inaccurate Step Counting,
Trouble Resetting Session

0 0 4 2

KPV >100K 3.9 20.7M 5:28 (17.8%) 0 3 12 2
HF >10M 4.2 6.4M 7:40 (17.5%) Trouble Installing Fonts 0 0 19 5

ICP >500K 4.1 2.7M 4:29 (13.7%)
Permanent Ads in
Notification Bar

0 0 10 2

WB >5M 4.5 6M 4:37 (10.8%) Ads 0 11 1
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HealthTap. HealthTap is a health related app that allows a user to search and consult
with doctors via text, video and phone as well as send them medical documents and im-
ages. It’s developed by a Top Developer, has 1,000,0000-5,000,000 installs and a rating of
4.4. It requests 22 permissions including those related to location, camera, recording audio,
accounts, contacts, and internet. While their app requires a lot of permissions, each of these
could be reasoned from the description, which is over 600 words long. In the description,
videos and screenshots, no mention of ads or social media services appears, however they
were included in the app’s code and resources as well as the Android Manifest file where
their keys and meta data were included. When viewing the page, a viewer may infer the app
used location to personalize feeds as well as facilitate other features like searching for doctors
and prescription delivery, which were features of the app. The byte code indicated other
undisclosed uses such as tracking the user to send localized marketing via push notifications.

In summary, we saw that apps only occasionally mention ad libraries and analytics to
users in the app’s descriptions and never showed ads or analytics in screenshots or videos.
Furthermore, when ads were mentioned they were typically inferred when the description
mentioned that the paid version contained no ads or in user comments complaining about
them. The store’s new interactive elements category [2] (described in Table 5) may help with
this, although it is still new and not all developer’s have updated their pages to include this
information. For the purposes of constructing the app’s specification, this category will not
solve all the presented issues. These two examples help demonstrate that while the use of ad
and analytics libraries may be expected in free apps, their specific behaviors are important
to include.
User Provided Information. Every app’s Google Play store page contains several user-
controlled categories that display information submitted or defined by the app’s users. These
categories include developer ratings, number of installs, user comments and user ratings. We
included these artifacts in our evaluation to assess what information they could provide and
to determine whether they could be used as indicators of the app’s general quality.

Table 4 presents these artifacts and other measures of quality for each app in our study.
We were surprised to see the apps that had reports of major functionality issues– such as
reported crashes, freezing, and buttons not working– continued to be downloaded by many
users and receive high user ratings. Two examples are discussed next.
Peel Smart Remote. Peel Smart Remote is a remote control which enables a user’s Android
device to control his or her television, Apple TV, etc. The app’s description explains that Peel
can personalize viewing, set reminders and change and customize channels. When evaluated
against the app’s permissions, the artifacts appeared relatively consistent. Despite its overall
consistency, user comments suggest the app may functionally be sub-optimal. At the time
of the study, 3 out of its then 20 latest reviews report crashing and 4 additional comments
reported freezing and dysfunctional button usage. Despite these complaints, the app holds
a 4.4 rating on a 5.0 scale.
Timely Alarm Clock. Timely Alarm Clock is an app that allows you to synchronize
alarms across multiple devices. Its description describes the app’s ability to sync devices and
customizable interface, and its UI is straightforward with clock-related icons and strings. Its
video highlights the app’s customizable UI and alarms as well as its ability to sync with
devices, work as a timer, and adjust audio with different user gestures. Like Peel, Timely
Alarm Clock received many complaints. Seven of the last 20 comments at the time of the
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study reported functionality issues such as not being able to turn off the alarm, the set alarm
not going off or going off late, and its time lagging behind the system clock. In the combined
set of helpful and new user comments spanning all versions, 25 out of 40 were negative.
Nonetheless, Timely maintains a very high user rating of 4.4 as well as a Top Developer
badge.

Such contradictions were witnessed in several other apps as well. Table 4 lists the apps
by decreasing percentage of negative comments received. Apps with 5 million downloads
and user ratings of 4.4 received a high percentage of negative comments. Furthermore, as
indicated by the location of the check marks in the table, developers with Top Developer
badges appeared to receive just as many negative comments as non-top developers, with
some receiving as many as 60-70% negative comments. Such results suggests that either
user ratings and developer ratings were not indicators of quality in our study or perhaps the
sample of user comments were biased towards negative reviews.

We did identify one potential reason for this discrepancy, which might help explain Peel
Smart Remote. User ratings are cumulative and include ratings from older versions of the
application, while user comments can be sorted by decreasing variables (such as date, help-
fulness and rating) and filtered by the latest or by all versions. When evaluating the different
filters, the returned results tended to favor more recently submitted comments even when
sorted by helpfulness. As a result, for some apps, this inconsistency between ratings and
comments may be explained by a high user rating reflecting a history of high-quality and
negative comments which may reflect a poor release or update. In essence we are comparing
data from different points in time and this could be problematic for a user.

In conclusion, we saw inconsistencies between user approval indicators such as user ratings
and installs and app quality indicators such as developer ratings and user comments. We also
saw inconsistency between developer ratings and user comments. These may be explained
by the user approval being unrelated to quality, or the user comments containing a bias in
either how they are ranked and displayed by the Play store, or how users use them (such as
dissatisfied users are more likely to submit a comment then satisfied users). Either way, the
app’s within our study with high user ratings or a Top Developer badge did not appear to
indicate that the latest version available on the store was not buggy.
Summary of RQ3. We see that there is dynamically added behavior (in the form of ads)
that should be accounted for if we want to understand an app’s true behavior. This is usually
not discussed by the developer and may not be known. We also see that user approval and
quality measures such as number of downloads, user & developer ratings and user comments
can be utilized, but they were contradictory. Such contradictions may be a result of versioning
or suggest that comments and ratings can not be compared.

4.2.8 Summary Discussion

We now synthesize what we have learned from this study. Table 5 shows a summary of the
artifacts we have studied. For each it shows whether they are located on the Play store
or in an apk file, their visibility to the user, what information they contain, whether they
provide behavioral information, and an overview of their potential source of inaccuracy when
assembling an app’s specification. Together these pieces should be combined to understand
true specifications. As can be seen, many new analyses are needed to extract and merge this
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Table 5: Synthesized Android Artifacts Used in our Study. In the column “Creator”, “D”
is for developer, “U” users, and “M” the Google Play store market. In the column “Type”,
“N” is for numerical, “C” categorical, “T” textual, and “P” pictorial.

Artifact Creator Type Potential Information Behavioral Source of Inaccuracy Previous
Work

Description D T App features and behaviors. 3 May be incomplete. Developers could
use other elements of the page instead.

[35, 36, 39,
40]

What’s New D T Features added to the latest updates. 3 May be incomplete. Developers could
use other elements of the page instead.
May only include changes, not overall
app behavior.

Screenshots D P Visualization of app behavior and de-
sign.

3 May be for an older version. May be
absent from the page.

Videos D P Real-time behaviors and design. 3 May be for an older version. May be
absent from the page.
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r) Interactive Elements D C Whether the app does the following:
shares personal information with third-
parties, shares location, allows pur-
chases, contains user-provided uncen-
sored content and/or has unrestricted
internet access.

3 May not be included by developer.

User Comments U T Functionality, user approval, and be-
haviors

3 May include previous versions. May be
device specific.

[25, 26, 27,
45, 46, 53]

User Ratings U N User approval and quality. May not reflect the latest version. [34, 42, 46]
Developer Rating M C An indicator of developer trust and app

quality.
May not reflect the Developer’s latest
version or project.

[34]

Installs U N The number of times the app has been
downloaded by users.

Does not reflect number of uninstalls
after install.

[34]

Permissions (as
listed on the Play
Store)

D C The sensitive operations an app can
perform.

3 Displays certain categories of permis-
sions only, so list may not be an ex-
haustive. May include permissions not
used by the app. May miss behaviors
performed via non-protected intents.

[14, 29, 31,
33, 35, 36,
37, 39, 40,
43, 44, 59]

Strings (in
strings.xml)

D T Text that may appear in an app’s UI. 3 May not be used at runtime. May may
be an incomplete set because of hard-
coding.

[33,36]

Images (in
/res/drawables)

D P Images that may appear in the app’s
UI.

3 May not be used at runtime.

Permissions (in
Android Manifest
file)

D C The sensitive operations an app can
perform.

3 May include permissions not used by
the app. May miss behaviors per-
formed via non-protected intents.

[14, 29, 31,
33, 35, 36,
37, 39, 40,
43, 44, 59]

.a
p

k
fi

le Bytecode API
calls

D T Android library calls. 3 May contain dead code, include ads
which use reflection, obfuscation, ex-
cludes method arguments values that
are obtained at runtime.

[35, 36, 37,
38, 42, 43]

Source Code
API calls

D T Android library calls. 3 May contain dead code, include ads
which use reflection, obfuscation, ex-
cludes method arguments values that
are obtained at runtime.

<meta-data>

& <uses-library> ele-
ments

D T Libraries included. 3 May be dead code. [38]
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information. Our key findings are:
(1) The apps’ developers use descriptions in varying ways and other artifacts on the webpage,
such as screenshots and videos, are also being used for specification purposes. We saw that
some may be presented in differing languages (e.g. the app Paint for Kids has its app
description in English but the demonstrational video language is Portuguese). Such results
suggest that an app’s description alone is not an accurate representation of either program
behavior or user expectation of a program’s behavior, and that alternative analyses that
can extract information from artifacts such as video or screenshots is needed. To get a full
specification, these analyses should ultimately be merged.
(2) While it is known that apps over-request permissions and therefore permissions may
contain behavioral capabilities not actually utilized by the app, we saw several apps whose
permission sets lacked information regarding important behaviors the apps perform. This
offers yet another reason why permissions alone cannot be used as an app’s specification.
(3) The majority of apps in our study contain ads and analytic libraries. Under the current
developer practices such libraries present obstacles in program understanding. Specifically,
they complicate the use of API calls through their use of reflection and injection of large
amounts of dead code. Little information about their behavior is available on an app’s Play
store page other than the mention of their absence in paid versions and user comments
mentioning related crashes, freezing and general annoyance. No mention is ever made about
analytics.
(4) While the number of downloads, user ratings and user comments may seem like similar
measures of user approval and even program quality, we observed contradictory results in
several apps where users reported many bugs but users continued to download the app and
rate it highly. Within our study, such negative comments were independent of whether the
developer had received a Top Developer badge.

4.3 Evaluating Static Analysis

In this section, we present some preliminary results of our static analysis that generates
permission paths. Thus far, we have applied our tool for generating permission paths to 48
of the challenges apps produced as part of the APAC program. Because the challenge apps
include source code, there are no concerns about problematic decompilation. In Table 6,
we list these preliminary results. For each app, we list the number of permission-sensitive
methods found (Sensitive). Then, we classify the permission paths found into those that be-
gin with a GUI handler (e.g., onClick), lifecycle handlers (e.g., onCreate), and background
handlers. The final column list the remaining handlers that we have not yet classified.

For GUI handlers, we examine how many of those entry points can we discover a view
refinement (see Section 3.3.5). For lifecycle handlers, we show how many of those entry
points can we discover an Activity transition (see Section 3.3.6).
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Table 6: Preliminary empirical results for finding permission
paths. On each row, we list the Android application (App),
the total number of sensitive methods found (Sensitive), the
number of permission paths that begin from a GUI handler
(GUI Handlers-Tot), the number of GUI handler permission
paths where view refinements were found (GUI Handlers-
VR), the effectiveness of view refinement (GUI Handlers-
Eff), the number of permission paths from a lifecycle handler
(Lifecycle Handlers-Tot), the number lifecycle handler per-
mission paths with an associated Activity transition (Life-
cycle Handlers-AT), the effectiveness of Activity transitions
(Lifecycle Handlers-Eff), the number of permission paths that
end in background entry points (Bg), and the remaining per-
mission paths whose entry point have unknown classification
(Unk).

App Sensitive GUI Handlers Lifecycle Handlers Bg Unk

Tot VR Eff Tot AT Eff

AndroidGame 1 0 0 - 0 0 - 0 1
AudioAssure 1 1 1 100% 0 0 - 0 0
AudioSidekick 1 1 1 100% 0 0 - 0 0
AutoQuiet 1 0 0 - 1 0 0% 0 0
MorseCode 1 1 0 0% 0 0 - 0 0
PasswordVault 1 1 1 100% 0 0 - 0 0
ShyGuyCamera 1 1 1 100% 0 0 - 0 0
TitleScreenActivity 1 1 1 100% 0 0 - 0 0
Expenses 2 0 0 - 2 2 100% 0 0
MeediaFun 2 0 0 - 2 0 0% 0 0
Meetloaf 2 0 0 - 0 0 - 2 0
Memotis 2 0 0 - 0 0 - 0 2
Orienterring 2 0 0 - 2 0 0% 0 0
Pondl 2 0 0 - 0 0 - 0 2
reveal 2 0 0 - 0 0 - 2 0
tomdroid 2 1 0 0% 0 0 - 1 0
TopicReel 2 0 0 - 2 0 0% 0 0
InstantMessage 3 3 3 100% 0 0 - 0 0
InstantReplay 3 2 2 100% 1 1 100% 0 0
RunningMap 4 0 0 - 0 0 - 4 0
SuperNote 4 1 0 0% 3 3 100% 0 0
ColorMatcher 5 1 1 100% 0 0 - 0 4
FlappyWidget 6 0 0 - 6 6 100% 0 0
SysWatcher 6 0 0 - 2 0 0% 4 0
KnectChat 7 7 7 100% 0 0 - 0 0
omnidroid 7 1 1 100% 6 0 0% 0 0
AgentSmith 8 0 0 - 0 0 - 8 0
apg-e 8 0 0 - 0 0 - 8 0
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apg-m 8 0 0 - 0 0 - 8 0
Bites 8 0 0 - 0 0 - 8 0
MainRedditActivity 8 6 6 100% 0 0 - 2 0
Reveal 8 0 0 - 0 0 - 8 0
SMSBot 8 0 0 - 0 0 - 8 0
AndroidMap 9 9 9 100% 0 0 - 0 0
DvorakKeyboard 9 9 0 0% 0 0 - 0 0
Aperture 10 0 0 - 0 0 - 0 10
AWeather 10 0 0 - 0 0 - 10 0
com.deepSoft.fullcontrol 10 9 9 100% 1 0 0% 0 0
SysMon 10 4 0 0% 6 6 100% 0 0
Arabicize 11 0 0 - 0 0 - 11 0
NewsCollator 11 0 0 - 0 0 - 11 0
Entomologist 12 0 0 - 0 0 - 12 0
Sentinental 13 0 0 - 0 0 - 13 0
SmartCameraWebCam 13 2 0 0% 0 0 - 9 2
TextSecure 15 0 0 - 0 0 - 15 0
Sanity 18 1 0 0% 1 1 100% 2 14
OpenGPSTracker 23 0 0 - 0 0 - 0 23
Vermillion 29 0 0 - 12 0 0% 17 0

Total 330 62 43 69% 47 19 40% 163 58

5 CONCLUSIONS

The primary contribution of this project is to show that the user interface part of an Android
app may be used to define what it means for an app to be malicious. An app that has a user
interface that is inconsistent with its behavior is more likely to be malicious than another
that declares everything in its textual description as well as user interface.

More specifically, we developed a new approach to identifying inconsistencies in Android
apps. Our results on using a descriptor-based approach showed the promise of applying
comprehensive and automated analysis techniques on Android apps.

In our broader work on synthsis of app behavior, we identified the puzzle pieces that are
required to determine an app’s true behavior and security. We call this a puzzle because,
as we have shown, the behavior (or app’s specification) is never fully explicitly revealed
to an end user in a document. Instead, the behavior is revealed “in pieces” across the
multiple artifacts that typically accompany an app. These pieces need to be put together to
understand true behavior for security. This is important if we are concerned about evaluating
the app’s quality or testing it for functional correctness or suspicious behavior.

In our study of Android apps, we have learned that developers do not use descriptions
in a consistent manner. In order to fully understand a complete description, one must
add visual (screenshot and video) analysis. We also find that artifacts that provided inferred
behavior (e.g., AndroidManifest.xml file’s permissions section is thought to provide complete
knowledge of the app’s phone usage such as dialer, camera, and microphone) may not be
complete as there are dynamic behaviors from advertisements that are almost completely
ignored by developers and poorly documented. Finally, we have learned that user ratings
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follow an app through its history, therefore newly introduced faulty behavior will not be
reflected in ratings.
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[16] David Barrera, H Güneş Kayacik, Paul C van Oorschot, and Anil Somayaji. A method-
ology for empirical analysis of permission-based security models and its application to
android. In Proceedings of the 17th ACM conference on Computer and communications
security, pages 73–84. ACM, 2010.

[17] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Thresher: Precise refu-
tations for heap reachability. In Programming Language Design and Implementation
(PLDI), pages 275–286, 2013.

[18] Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-flow
abstraction via jumping. 2015. In submission.

[19] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: a general
approach to Android framework modeling. In State of the Art in Program Analysis
(SOAP), pages 19–25, 2015.

[20] Kevin J. Boudreau. Let a thousand flowers bloom? an early look at large numbers
of software app developers and patterns of innovation. Organization Science, 23(5):
1409–1427, 2012.

[21] Pern Hui Chia, Yusuke Yamamoto, and N Asokan. Is this app safe?: a large scale study
on application permissions and risk signals. In Proceedings of the 21st international
conference on World Wide Web, pages 311–320. ACM, 2012.

[22] E.J. Chikofsky and II Cross, J.H. Reverse engineering and design recovery: a taxonomy.
Software, IEEE, 7(1):13–17, Jan 1990.

[23] Myra B. Cohen, Si Huang, and Atif M. Memon. Autoinspec: Using missing test coverage
to improve specifications in GUIs. In Proceedings of the 2012 IEEE 23rd International
Symposium on Software Reliability Engineering, ISSRE ’12, pages 251–260, 2012. ISBN
978-0-7695-4888-3.

[24] Dimitrios Damopoulos, Georgios Kambourakis, Stefanos Gritzalis, and SangOh Park.
Exposing mobile malware from the inside (or what is your mobile app really doing?).
Peer-to-Peer Networking and Applications, 7(4):687–697, 2014. ISSN 1936-6442.

[25] Francesco Di Cerbo, Michele Bezzi, SamuelPaul Kaluvuri, Antonino Sabetta, Slim
Trabelsi, and Volkmar Lotz. Towards a trustworthy service marketplace for the fu-
ture internet. In Federico lvarez, Frances Cleary, Petros Daras, John Domingue, Alex
Galis, Ana Garcia, Anastasius Gavras, Stamatis Karnourskos, Srdjan Krco, Man-Sze

33
Approved for Public Release; Distribution Unlimited.



Li, Volkmar Lotz, Henning Mller, Elio Salvadori, Anne-Marie Sassen, Hans Schaffers,
Burkhard Stiller, Georgios Tselentis, Petra Turkama, and Theodore Zahariadis, editors,
The Future Internet, volume 7281 of Lecture Notes in Computer Science, pages 105–116.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-30240-4.

[26] Gianluca Dini, Fabio Martinelli, Ilaria Matteucci, Marinella Petrocchi, Andrea Saracino,
and Daniele Sgandurra. A multi-criteria-based evaluation of android applications. In
Trusted Systems, pages 67–82. Springer, 2012.

[27] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. An-
droid permissions demystified. In Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS ’11, pages 627–638, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0948-6.

[28] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David
Wagner. Android permissions: User attention, comprehension, and behavior. In Pro-
ceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12, pages
3:1–3:14, 2012. ISBN 978-1-4503-1532-6.

[29] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. Why
people hate your app: Making sense of user feedback in a mobile app store. In Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 1276–1284. ACM, 2013.

[30] Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated security
certification of android applications. Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/avik/projects/scandroidascaa, 2(3), 2009.

[31] Laura V Galvis Carreño and Kristina Winbladh. Analysis of user comments: an ap-
proach for software requirements evolution. In Proceedings of the 2013 International
Conference on Software Engineering, pages 582–591, 2013.

[32] N. Gold, A. Mohan, C. Knight, and M. Munro. Understanding service-oriented software.
Software, IEEE, 21(2):71–77, March 2004.

[33] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app
behavior against app descriptions. In Proceedings of the 36th International Conference
on Software Engineering, pages 1025–1035. ACM, 2014.

[34] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the Fifth ACM Conference
on Security and Privacy in Wireless and Mobile Networks, WISEC ’12, pages 101–112,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1265-3.

[35] A. Hammershoj, A. Sapuppo, and R. Tadayoni. Challenges for mobile application devel-
opment. In Intelligence in Next Generation Networks (ICIN), 2010 14th International
Conference on, pages 1–8, Oct 2010.

34
Approved for Public Release; Distribution Unlimited.



[36] S. Hess, F. Kiefer, and R. Carbon. Quality by construction through mconcappt: Towards
using ui-construction as driver for high quality mobile app engineering. In Quality of
Information and Communications Technology (QUATIC), 2012 Eighth International
Conference on the, pages 313–318, Sept 2012.

[37] Leonard Hoon, Rajesh Vasa, Jean-Guy Schneider, and Kon Mouzakis. A preliminary
analysis of vocabulary in mobile app user reviews. In Proceedings of the 24th Australian
Computer-Human Interaction Conference, OzCHI ’12, pages 245–248, 2012. ISBN 978-
1-4503-1438-1.

[38] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of
the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 168–177, 2004. ISBN 1-58113-888-1.

[39] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. Asdroid: Detect-
ing stealthy behaviors in android applications by user interface and program behavior
contradiction. In Proceedings of the 36th International Conference on Software Engi-
neering, pages 1036–1046. ACM, 2014.

[40] IBM Research. T.J. Watson Libraries for Analysis (WALA). http://wala.sf.net.

[41] A. Jain. Apps marketplaces and the telecom value chain. Wireless Communications,
IEEE, 18(4):4–5, August 2011.

[42] Slinger Jansen and Ewoud Bloemendal. Defining app stores: The role of curated mar-
ketplaces in software ecosystems. In Georg Herzwurm and Tiziana Margaria, editors,
Software Business. From Physical Products to Software Services and Solutions, volume
150 of Lecture Notes in Business Information Processing, pages 195–206. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-39335-8.

[43] Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu. Riskmon: Continuous
and automated risk assessment of mobile applications. In Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy, CODASPY ’14, pages 99–
110, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2278-2.

[44] M.E. Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in mobile app devel-
opment. In Empirical Software Engineering and Measurement, 2013 ACM / IEEE
International Symposium on, pages 15–24, Oct 2013.

[45] Henry Lee and Eugene Chuvyrov. Packaging, publishing, and managing applications.
In Beginning Windows Phone 7 Development, pages 121–138. Apress, 2010. ISBN 978-
1-4302-3216-2.

[46] Rory Lewis and Laurence Moroney. Deploying your app to the app store. In iPhone
and iPad Apps for Absolute Beginners, pages 273–303. Apress, 2013. ISBN 978-1-4302-
6361-6.

[47] Jesse Liberty and Jeff Blankenburg. Get money: Profiting from your applications. In
Migrating to Windows Phone, pages 217–242. Apress, 2011. ISBN 978-1-4302-3816-4.

35
Approved for Public Release; Distribution Unlimited.



[48] Steffen Liebergeld and Matthias Lange. Android security, pitfalls and lessons learned. In
Erol Gelenbe and Ricardo Lent, editors, Information Sciences and Systems 2013, volume
264 of Lecture Notes in Electrical Engineering, pages 409–417. Springer International
Publishing, 2013. ISBN 978-3-319-01603-0.

[49] Jialiu Lin, Shahriyar Amini, Jason I. Hong, Norman Sadeh, Janne Lindqvist, and Joy
Zhang. Expectation and purpose: Understanding users’ mental models of mobile app
privacy through crowdsourcing. In Proceedings of the 2012 ACM Conference on Ubiq-
uitous Computing, UbiComp ’12, pages 501–510, 2012. ISBN 978-1-4503-1224-0.

[50] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change and fault proneness:
a threat to the success of android apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, pages 477–487. ACM, 2013.

[51] Eric Malmi. Quality matters: Usage-based app popularity prediction. In Proceedings of
the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct Publication, UbiComp ’14 Adjunct, pages 391–396, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-3047-3.

[52] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Understanding software systems
using reverse engineering technology perspectives from the rigi project. In Proceedings
of the 1993 Conference of the Centre for Advanced Studies on Collaborative Research:
Software Engineering - Volume 1, CASCON ’93, pages 217–226, 1993.

[53] Roland M. Müller, Björn Kijl, and Josef K. J. Martens. A comparison of inter-
organizational business models of mobile app stores: There is more than open vs. closed.
J. Theor. Appl. Electron. Commer. Res., 6(2):63–76, August 2011. ISSN 0718-1876.

[54] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting android applications
to Java bytecode. In Foundations of Software Engineering (FSE), page 6, 2012.

[55] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper: Towards
automating risk assessment of mobile applications. In USENIX Security, volume 13,
2013.

[56] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid: Priv-
ilege separation for applications and advertisers in android. In Proceedings of the 7th
ACM Symposium on Information, Computer and Communications Security, ASIACCS
’12, pages 71–72, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1648-4.

[57] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju, Cristina
Nita-Rotaru, and Ian Molloy. Using probabilistic generative models for ranking risks of
android apps. In Proceedings of the 2012 ACM conference on Computer and communi-
cations security, pages 241–252. ACM, 2012.

[58] Thanasis Petsas, Antonis Papadogiannakis, Michalis Polychronakis, Evangelos P.
Markatos, and Thomas Karagiannis. Rise of the planet of the apps: A systematic

36
Approved for Public Release; Distribution Unlimited.



study of the mobile app ecosystem. In Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC ’13, pages 277–290, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1953-9.

[59] Taylor Pierce and Dave Wooldridge. Keys to the kingdom: The app store submission
process. In The Business of iOS App Development, pages 333–376. Apress, 2014. ISBN
978-1-4302-6238-1.

[60] Elisabeth Platzer and Otto Petrovic. Learning mobile app design from user review
analysis. iJIM, 5(3):43–50, 2011.

[61] Paul POCATILU. Android Applications Security. Informatica Economica, 15(3):163–
171, 2011.

[62] Michael Privat and Robert Warner. Submitting to the mac app store. In Beginning OS
X Lion Apps Development, pages 323–363. Apress, 2011. ISBN 978-1-4302-3720-4.

[63] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong
Chen. Autocog: Measuring the description-to-permission fidelity in android applica-
tions. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1354–1365. ACM, 2014.

[64] Roy Sandberg and Mark Rollins. Making sure your app will succeed. In The Business
of Android Apps Development, pages 15–30. Apress, 2013. ISBN 978-1-4302-5007-4.

[65] Irina Shklovski, Scott D. Mainwaring, Halla Hrund Skúladóttir, and Höskuldur Borgth-
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