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1. SUMMARY

This document reports on a two-year research project by Kestrel Technology and Honeywell 
Aerospace Advanced Technology to combine model-based development of complex avionics 
control software with static analysis of the generated code to achieve assurance levels not 
available from either technique practiced separately. We concentrated on two classes of 
numerical algorithms, linear digital filters (LDFs) and integrating accumulators, modifying 
existing versions of Honeywell’s HiLiTE model-based development system and Kestrel’s 
CodeHawk abstract interpretation system to share domain specific information about 
implementations of these algorithms. This allowed CodeHawk to exploit model-level 
specifications and theoretical input bounds from HiLiTE concerning the generated C code, 
producing a much more precise over-approximation of the output bounds and accumulated 
floating-point error bounds than would be possible with generic abstract interpretation 
techniques. These static analysis results were then fed back into HiLiTE to be further exploited 
in the formal verification of the generated code. 

We made some unexpected discoveries during the first year analysis of LDFs concerning 
analytic solutions to output and error bounds for filters that changed the architecture of our first 
year approach, and redefined our focus for the second year effort. In particular, Anca Browne’s 
discovery of an analytic technique for computing filter bounds obviated the need for the iterative 
symbolic evaluation of classical abstract interpretation, making the time to analyze a filter 
negligible. This contrasts with comparable filter analyses performed for Airbus that take on the 
order of 20 hours to get less precise results. Extending this technique to floating point error 
analysis, she discovered how to generate a closed-form solution for the error as a function of the 
number of iterations of the recurrence that are performed. This resulted in CodeHawk’s “error 
bounds” for filters being reported back to HiLiTE not as an instance-specific numeric interval, as 
was originally envisioned, but as parameters to a generalized error function, allowing HiLiTE to 
analyze multiple scenarios with different durations from a single analysis result. When these 
techniques were generalized to integrating accumulators in year 2, CodeHawk was able to report 
both output and error ranges as parameters to a generalized function. 

We built specialized versions of both HiLiTE and CodeHawk to exploit the shared model-level 
information and exchange their results over a JSON file interchange architecture. This combined 
system was used first to experiment with the joint modeling and analysis techniques, and then to 
run a series of test suites for filters and integrating accumulators that explored the range of 
variety, and analysis results, among those algorithms. These test suite results are summarized in 
detail in Sections 4.2 and 4.3 below. 
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2. INTRODUCTION

The objective of this project was to develop a software engineering approach and tool set that 
combines the relative strengths of model-based and code-based analyses to provide a 
comprehensive and scalable analysis capability for numerical algorithms in complex systems 
software. Our approach was to utilize static analysis of numerical algorithms in combination with 
model-based design technology to yield considerable benefits compared to applying static 
analysis in isolation. The results of this effort are intended to help detect and mitigate a large 
class of defects that occur due to differences between the intended semantics of design models 
and the actual behavior of the software. 

Large and complex systems control software increasingly is being developed using model-based 
development tools. In this approach a design model of control algorithms is constructed using 
control function blocks in a data flow notation. The transfer function semantics is available at the 
model level along with the semantics of feedback loops, periodic rates, and design patterns such 
as counters, validity status of signals, reset semantics, mid-value selection, etc. Some model-
based toolsets perform extensive analysis of models for early detection of several types of design 
defects and have been used as DO-178B qualified tools in certification of large scale commercial 
avionics systems. These tools can reason with full semantics of control transfer functions and 
discrete constructs, but the bounds on the ranges and errors can be conservative and cannot take 
into account the actual source code constructs and numeric operations and the artifacts 
introduced by the translation of the design model into source code and the impact of object code 
execution on the processing architecture. This challenge is commonly faced when abstractions, 
assumptions, and restrictions are utilized to estimate the behavior of object code at the design 
model level. 

Abstract interpretation is a fully automated mathematical process for discovering properties of 
the execution behavior of a program. Because they derive from a formal representation of a 
program’s behaviors, the results of this kind of static analysis have the status of mathematical 
proofs. Informally, abstract interpretation operates by computing an envelope of all possible 
values of the variables at each point of the program. For example, the possible values of scalar 
variables can be represented by a collection of intervals (one for each variable) or a convex 
polyhedron (each dimension of the affine space representing a program variable). These 
envelopes are then employed as lemmas to prove safety properties of the program, like the 
absence of arithmetic overflows or out-of-bounds array accesses. Some abstractions yield more 
accurate envelopes, which allow more safety conditions to be discharged, but may require higher 
computational times. For example, using intervals to compute the range of variables is extremely 
fast and they can be applied to analyze million lines of code. Using convex polyhedra usually 
yields much tighter bounds, but the exponential complexity of the underlying algorithms makes 
this approach impractical for more than a few hundred lines of code. The complexity of 
engineering a static analyzer that can analyze real codes effectively lies in the combination of 
different levels of abstraction, so that precise and costly abstractions (like convex polyhedra) are 
only applied to those parts of the program that require it, whereas rougher but faster abstractions 
are employed elsewhere. There is no automated way of doing this combination, which is why 
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industrial-strength static analyzers are usually specialized for a particular application or family of 
applications. 

Our specific approach in this project was to specialize Kestrel Technology’s CodeHawk abstract 
interpretation technology to particular classes of numerical algorithms in avionics systems 
control software generated by Honeywell’s HiLiTE model-based development software. This 
marriage of a model-level and a code-level tools allows both the dual verification of model and C 
code correspondences, as well as considerable improvements to the precision of CodeHawk’s 
abstract interpretation due to its exploitation of domain-specific, model-level information from 
HiLiTE. We built a custom version of both tools to exploit a round-trip JSON integration from 
model-analysis to code, to code-analysis informed by model-analysis, and back to model-
analysis confirmed by code-analysis. 

2.1. Original SOW Vision 

The original SOW envisioned specializing this combined model/code analysis architecture to a 
specific class of numerical algorithms, Linear Digital Filters (LDFs), in the first year, then using 
the results of this experience to explore other classes of numerical algorithms over a specific 
abstract domain, zonotopes, in the second year. Our first year exploration of LDFs, however, led 
to some unexpected discoveries about the abstract interpretation of filters, when the abstract 
interpreter knows (via model-level input) that the C code it is analyzing actually implements a 
filter function. This led to a radical redesign of the analyzer, and a shift in focus for the abstract 
domains first envisioned in the SOW. This re-orientation also led us to re-conceptualize the 
second year effort toward a particular class of numerical algorithms (integrating accumulators), 
instead of an abstract interpretation domain (zonotopes). 

2.2. Discoveries about Abstract Interpretation of Filters 

Abstract interpretation attempts to compute an approximation of a program’s behaviors over all 
possible execution paths, without any actual inputs, using only the semantics of the programming 
language to inform its analysis. Without knowledge of inputs, or of what algorithms the program 
is executing, the inferred behaviors will necessarily be a conservative over-approximation of the 
actual behaviors. This over-approximation can often be used to prove properties about the actual 
behaviors of the program, however, if the properties are also true of the over-approximation of 
those behaviors. We recast this problem for LDFs by using HiLiTE to 1) inform CodeHawk that 
the C code it is analyzing implements a LDF, and 2) provide theoretical bounds on the values of 
all inputs to the filter. CodeHawk is then able to compute an approximation of actual bounds of 
the output values that is much more precise that would be possible without these hints. 

2.2.1. Filter-specific widening 
Filters are a special class of iterating numerical algorithms that use the results of prior iteration 
steps to constrain the computation of the next step. This leads to a natural tamping down of the 
input variety and causes the bounds of possible outputs to converge to a smaller range. Without 
this special knowledge, uninformed abstract interpretation will continue to “widen” the iterated 
values in search of a much more conservative convergence. The challenge for abstract 
interpretation of filters is in developing a special widening analysis for filters that takes account 
of the unique cancellation effects that one output has on the next input. 



Approved for Public Release; Distribution Unlimited. 
4 

We originally anticipated that our filter-specific analyzer would be specialized to particular 
classes of filters (exploiting a filter-class parameter from HiLiTE) so that widening could exploit 
the unique cancellation characteristics of these classes. We discovered, however, that this class-
specialization is unnecessary. We developed an incremental widening algorithm, taking 
cancellation into account, which appears to work well for all linear filters. Moreover, we 
discovered that a stable bound on the filter output can be computed symbolically, via closed form 
solution, thus obviating the need for the traditional iterative widening of classical abstract 
interpretation. 

2.2.2. Floating Point Error Bounds 
Another original goal of this project was to take account of floating-point round-off errors when 
real-numbered models are implemented as floating-point code. Theoretical bounds on filter 
outputs derived from models over the real numbers will often not anticipate possible round-off 
effects in the generated C code, which will vary with machine precision. Abstract interpretation 
typically performs its analysis over the infinite precision reals as well, so a combination of 
model-level and code-level analyzers might still miss this important delta. 

We had originally planned to run the analysis for each filter against both CodeHawk’s native 
real/rational abstract domain and a newly implemented floating-point abstract domain, and then 
compare the output range approximations to compute an approximation of the round-off error 
exposure for floats. Our initial implementation of this comparison revealed that the accumulated 
floating-point error range is a function of the number of sampling periods for the filter and thus 
could be computed independently. When this float-error accumulation is combined with the 
cancellation effects of subsequent inputs, there is an inherent stabilization of the error 
accumulation. This result turned out to be surprising in that the Honeywell team had estimated 
error accumulations to be in the 1%-10% range per 1,000,000 samplings. The analysis results 
yielded error ranges that were orders of magnitude lower. 

It appears that filters’ inherent functionality in stabilizing sensor output works to stabilize, rather 
than accumulate, round-off errors. We were further able to derive an optimal function to compute 
the error-accumulation for a filter-instance/sampling-period combination, so rather than reporting 
error bounds, CodeHawk now reports the constant terms to this function, specific to the filter 
instance (input bounds) under analysis, rather than an instance-specific range. The Honeywell 
team can now experiment with various sampling periods for this filter instance off-line without 
having to rerun the CodeHawk analysis. 

2.3. Re-orientation of Year 2 

The original idea in the SOW for the second year of this project was to extend the LDF analysis 
to an interestingly different class of numerical algorithms. This was originally characterized, not 
by an algorithm class (like LDFs), but by a new analysis domain: zonotopes. But our first year 
experience concluded that this work would be more valuable to the aerospace community if the 
focus was on some particular numerical algorithm class that has practical interest for aerospace, 
rather than on a particular abstract interpretation domain. Our somewhat surprising discoveries 
about floating-point error convergence in LDFs led to an interest in the converse class of 
numerical algorithms where such errors do accumulate, often undetected at design time. We 
started with an “accumulating integrator” class of algorithms that was the source of a floating-
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point error design flaw in the Patriot Missile control software that failed to detect an incoming 
Iraqi Scud, allowing it hit the Army barracks in Dhahran, Saudi Arabia in 1991 (killing 28 
Americans). If there had been an abstract interpreter, specialized to this algorithm class over the 
“arithmetic-geometric progression” domain, the floating-point round-off error could have been 
discovered at design/implementation time, before the software was deployed. 

We began with a particular case study: the Patriot Missile failure, then generalized to other 
numerical algorithms in this general class. The new abstract domain is the arithmetic-geometric 
progression domain. It is useful for analyzing the accumulation of round-off errors in algorithms 
that, unlike filters, accumulate rather than stabilize their errors. We got a head start on the 
analysis of this class of algorithms through characteristics that they share with the analytic 
solutions discovered for LDFs. Although the floating-point errors accumulate for this class 
(leading to application failures if the bounds are not correctly anticipated), rather than converge 
as they do for LDFs, the error-bounds can still be characterized by a single, analytic function 
over the number of iterations of the accumulator. This allowed us to report the error-bounds 
output for accumulators in the same format as for our LDF work. We further discovered that the 
range bounds on the accumulator output values could be more generally represented as 
coefficients to an analytic range function, rather than a specific numeric interval, so the code-
analysis results passed from CodeHawk back to HiLiTE are more general for accumulators than 
for LDFs. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES

The goal of this project was to build a combined system of model-level analysis and code-level 
analysis that would allow each analyzer to exploit artifacts from the other. Since we began with 
two existing, unrelated model analysis and code analysis systems, the Statement of Work for the 
project was organized around three major subtasks: 1) enhancements to Kestrel Technology’s 
CodeHawk abstract interpretation software to exploit model-level inputs, 2) enhancements to 
Honeywell’s HiLiTE modeling and code generation software to generate those inputs and exploit 
the resulting analysis, and 3) an integration architecture for allowing the enhanced versions of 
both tools to work together as a single tool, presenting a unified analysis to the end user. The 
following three subsections discuss the starting methods, assumptions, and procedures for each 
of these subtasks, respectively. 

3.1. Control Algorithm Capture in Models and Analysis / Code Verification 

Use of Model-Based Development (MBD) techniques for software development for control 
algorithms has become a common practice in avionics for systems of small to large complexity. 
In this approach, a design model of control algorithms is constructed using control function 
blocks in a data flow notation. The control function blocks include arithmetic operators, digital 
filters, integrators, timers, limiters, etc. that are composed in various patterns such as 
proportional-integrator (PI) controllers that utilize various aspects of control including feedback 
error compensation, integrator anti-windup logic, and shaping the characteristics of the inputs 
from sensors/plant and the command to actuators to meet the control requirements. Besides the 
control-related constructs, the controller software also includes discrete, time-dependent logic 
including timers and counters for implementing mode and states changes. 

The controller design is captured in design models using tools such as MATLAB Simulink and 
SCADE. Source code in C-language is generated from these models that is then used as the 
airborne code in avionics systems. Processes and automation tools have been deployed to certify 
these systems to the DO-178B (and the revised DO-178C) standard. The processes follow the 
verification objectives defined in DO-178C that start with the software high-level requirements 
being refined into design models from which source code is generated that gets compiled and 
linked into airborne executable object code. Figure 1 illustrates this process. Note that there are 
several verification objectives defined in DO-178C for the development artifacts – only a few of 
the objectives are shown in this figure for the design models and the source code. 
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Figure 1. Software Development Process and Verification Objectives 

The objective shown in Figure 1 for the design model is to verify that the low-level requirements 
(i.e., the elements of the design model) are accurate, consistent, and verifiable. This generally 
includes absence of overflow (e.g., division by zero), untestable conditions, and unreachable 
model elements. The source code verification objectives are also quite similar, with the addition 
of memory safety specific to source code constructs, memory usage limits, etc. A point to note 
here that these verification objectives are quite similar and are applied independently at the 
design model level and source code level – with different methods and analysis tools at these two 
levels to perform the verification. 

Need to achieve precise and consistent verification results across model-level and code-level 
analysis: At the core of the static analysis techniques at the model or code level is the derivation 
of conservative range and numerical error bounds on the variables in the algorithm – using these 
bounds various properties can be proven. In complex numerical algorithms, this is a hard 
problem. For example, for transfer functions such as linear digital filters, there is a recurrence 
relation of the output of the filter to the previous step’s output and input values, which in turn 
depend upon the values in the step before that.  It turns out that general-purpose static analysis 
techniques give poor results on linear digital filters.   What is needed are specialized techniques 
to derive sound and precise results. The application of such specialized techniques needs to draw 
upon the semantics of the modeling constructs so that the tools can identify which parts of the 
design or code a particular specialized analysis needs to be applied and what are the parameters 
of interest in the particular instance of usage. This is a common practice in use of formal analysis 
and model checking tools – providing auxiliary lemmas and parts of proof to the tool to make the 
problem tractable. 

A problem observed with the current state of the model-level and code-level analysis is that the 
users get different answers from the tools applied at these two levels due the practical limitations 
of the analysis capabilities of the tools. For example, a control-theory based analysis may predict 
reasonable range bounds at the output of a filter but a code analysis tool may derive very large 
bounds for the filter since that tool does not apply a specialized analysis technique for this code.  
This inconsistency (and large bounds reported by the code analysis) creates a problem for the 
user to understand and resolve the discrepancy. Furthermore, large bounds can lead to false 
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alarms and trigger unnecessary additional work steps in the certification process to manually 
analyze and resolve each situation. 

The research goal of this project is to investigate/develop a model-based software engineering 
approach and tool set that combines the relative strengths of model-based and code-based 
analyses to provide a comprehensive and scalable analysis capability for numerical algorithms in 
complex systems software. 

3.1.1. Use of Semantics at the Design Model Level to Aid Analysis 
Models use control transfer functions such as filters, integrators, gains to build a control 
algorithm. Figure 2 shows a simple Simulink model that is part of a control algorithm feedback 
loop – specifically compensation of the feedback error from the plant sensor to meet the control 
objectives of rise time and overshoot. There are two lead-lag filters in series; instances of the 
generic lead-lack filter block with specific values of the time-constant parameters. 

Figure 2. Example Model of Control Algorithm using Lead-Lag Filters 

The transfer function of the lead lag filter is shown in Figure 3. The control algorithm analysis 
and simulation in closed-loop mode starts with the continuous domain Laplace transform. During 
the model-based development process, that is translated to the transfer function in the discrete 
domain (Z-domain) that is implemented in the controller software. This is a necessary step since 
the controller software is implemented as a periodic thread where the transfer function is 
evaluated at each periodic step (frame). From the Z-domain transform, we derive a difference 
equation that is then implemented in the software. The terminology used in Figure 3 is shown on 
the right hand side: u is the input and y is the output of the filter. The subscripts n, n-1, n+1 
denote the relative number of a particular time step in the sequence.  
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Figure 3.Transfer Function for a Lead Lag Filter and Derivation of Difference Equation 

Using the Z-domain transfer function H(z), a difference equation can be derived as shown in the 
figure. The difference equation computes the value of y in the current step (yn) in terms of output 
value in the previous step and input values in the previous and current steps. The coefficients k1 
to k4 are defined in terms of the sampling period Ts and the filter time constants: Tn is the 
numerator time constant and Td the denominator time constant of the transfer function. Note that 
the terms ui and yi in the difference equation correspond to variables in the code where un-1 and 
yn-1 are state variables that hold the values of u and y from the previous step. The difference 
equation and the form of its corresponding translation to code are very important from the 
perspective of the code-level analysis that is described in another section in this document.  

3.1.2. Exploration of Model-Based Code Generation Approach  
Specific model-level encapsulation guidelines and code generation options are required to ensure 
the generated code will not exhibit intermingling of the numerical algorithm’s code with the code 
from other parts of the model. This presents an unnecessary difficulty for the code-level analysis 
since the intermingled code cannot be cleanly mapped to the appropriate abstract domain 
corresponding to the algorithm characteristics. 

Using MATLAB Simulink, we performed experiments with different options of modeling 
abstractions and code generation and selected a strategy that is best suited for integrated static 
analysis of models and code. For each filter block, we construct a reference model for simulation 
of its discrete behavior and code generation. The reference model is built with basic arithmetic 
blocks and unit delay blocks in Simulink. 

From the continuous transfer function of a filter block, we first derive its discrete transfer 
function with parameters expressed in the continuous domain. The correctness of the discrete 
transfer function can be verified by the difference equation converted from it. There are several 
methods to transform continuous transfer functions to discrete and vice versa. We use the 
bilinear transform which essentially substitutes “s” in the continuous transfer function using the 
first order approximation: 

 
𝒔𝒔 =

𝟐𝟐
𝑻𝑻
𝟏𝟏 − 𝒛𝒛−𝟏𝟏

𝟏𝟏 + 𝒛𝒛−𝟏𝟏
 (1) 

Coefficient definitions 
(linearity assumption: all coefficients are constant for a filter instance in a model)

Difference equation:

Continuous domain: Discrete domain: 𝒚𝒚𝒏𝒏 - Current output 

𝒚𝒚𝒏𝒏−𝟏𝟏 - Previous output 

𝒖𝒖𝒏𝒏 - Current input 

𝒖𝒖𝒏𝒏−𝟏𝟏 - Previous input 

𝑻𝑻𝒔𝒔 - Sampling period 

u y
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. 
For example, from the continuous transfer function H(s) of the lead-lag filter, we have 

𝑯𝑯(𝒔𝒔) = 𝑻𝑻𝒏𝒏𝒔𝒔+𝟏𝟏
𝑻𝑻𝒅𝒅𝒔𝒔+𝟏𝟏

⇒ 𝑯𝑯(𝒛𝒛) =
𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛

−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
, 𝒌𝒌𝟏𝟏 = 𝟏𝟏 +

𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟑𝟑 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟒𝟒 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

.  (2) 

Hence the difference equation is 𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏. Note that Tn and Td are time 
constants defined in the application model for each filter instance similar to the way a constant 
block’s value is specified. The sample time, Ts, is linked to the application model’s sample time 
by Simulink for all filter instances. 

Figure 4 shows a Simulink model that can be referenced by application models. An application 
model employs a filter by connecting signals used in an application to a model reference that 
links to the implementation of the filter. 

Figure 4. Reference model for lead-lag filter block 

The reference model is constructed by the following steps: 

1. Create a new Simulink model file.
2. Set up the reference model parameters as shown in Figure 5.

a. Navigate to “View”-“Model Explorer” to open the Model Explorer window.
b. Click “Model Workspace” in “Model Hierarchy” menu on the left side of the

window.
c. Click “Add Simulink parameter” button on the top tool bar.
d. Double click the parameter to set its name/default_value/type/dimension…
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e. Add all the parameters (separated by comma) into the model argument

Figure 5. Setting reference model parameters 

3. Create the Simulink block diagram according to the difference equation.
4. Assign constant blocks with corresponding parameters from workspace.

Figure 6 shows an application model with lead-lag filter blocks. The code for the lead-lag filter is 
generated as a separate function. The coupling between the main model’s code and the filter 
function is achieved via the variables corresponding to the input and output of the filter function. 
Additional relevant parameters are specified when the model reference is instantiated, allowing 
the application model to define the time constants for each instance and enforcing a consistent 
same period between the application model and all filter instances. 

Figure 6. An Application Model Containing a Lead-Lag Filter Function 

The code generated for the model is shown below. The input variables are errorcomp_B.Limit_1, 
errorcomp_P.Constant_1_Value, and Reset. The output variables is rtb_cmp3_y. There are two 
state variables, errorcomp_DWork.cmp3_DWORK1.rtb and errorcomp_DWork.cmp3_DWORK1.rtdw . The 
sample time, errorcomp_P.cmp3_rtp_rate, is automatically inherited from the application thread 
level. Finally the filter instance time constants, errorcomp_P.cmp3_rtp_Tn and 
errorcomp_P.cmp3_rtp_Td, are specified by the application model designer. 

void errorcomp_step(void) 
{ 
  … 
  errorcomp_B.Limit_1 = saturate_dbl(errorcomp_B.Sum1, 

errorcomp_P.Limit_1_LowerSat, 
errorcomp_P.Limit_1_UpperSat); 

  /* call to lead lag filter function for 1st filter instance */ 
  RefMdl_ResetLeadLagFilter_p(&errorcomp_B.Limit_1, 

&errorcomp_P.Constant_1_Value, &Reset, 
&rtb_cmp3_y, 
&(errorcomp_DWork.cmp3_DWORK1.rtb), 
&(errorcomp_DWork.cmp3_DWORK1.rtdw), 
errorcomp_P.cmp3_rtp_rate, 
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                              errorcomp_P.cmp3_rtp_Tn, 
                              errorcomp_P.cmp3_rtp_Td); 
   … 
} 

It is important that the referenced model code closely reflects the difference equation for the 
filter function. Other implementations may incorporate coefficients into feedback loops to 
produce the same results with variable—rather than constant—coefficients that throw off code-
level analysis. 

Some filters (those named Variable<filter type>) take tau (or Tn or Td) as an input signal. This 
would allow the model to vary tau continuously, which is not supported by these analyses. The 
coefficients need to be fixed for the analysis. In practice, however, tau is never varied 
continuously since that can make the entire control analysis non linear. In general, the tau input 
is a way to decouple the filter for more flexible models. For example, product line modeling 
reuses models for different variants of a component. The architecture is the same for all part 
numbers, but details change between parts. In such a scenario, a different tau is specified for 
different configurations, but it is fixed for each. In other usages, where multiple modes exists in 
the avionics subsystems, tau can change across mode changes, but is constant within a single 
mode. This allows separate piecewise analyses to be performed for each mode. 

3.2. Abstract Interpretation 

Given a model and code generated from the model, we want to provide mathematical evidence 
that the code faithfully implements the model. For linear digital filters (LDFs), the code 
implements a linear recurrence equation derived from a continuous-domain model.  A filter takes 
a stream of inputs (e.g. a stream of sensor readings), and produces a stream of output values in 
accord with the linear recurrence. An accumulating integrator takes a stream of inputs and also 
produces a stream of outputs, again according to a linear recurrence, but the output values and 
their floating point errors can grow without bound with the number of iterations. 

Two main analysis issues arise: (1) what is the range of possible output values considered over 
all possible input streams, and (2) what is the range of possible errors in the output stream due to 
the floating point implementation of real-valued variables in the continuous model? 

Generally, static analysis reasons about all possible behaviors of a program.  Since there are 
usually a very large (or even infinite) set of possible inputs, it is usually not feasible to reason 
about all the inputs individually. Instead, static analysis treats all inputs at once by characterizing 
their common structure, via type information and logical constraints. The goal is to symbolically 
simulate the execution of the program over this input characterization, yielding a characterization 
of all possible behaviors. Typically, programs have a very complex set of behaviors and so it is 
only feasible to generate an approximation, analogous to finding the hull of a complex set of 
points in space. If the approximation is an over-approximation (i.e. an upper bound), then any 
property that we can prove about the over-approximation also holds for all behaviors of the 
program. 

The general theory of static analysis, called Abstract Interpretation, was developed in the 1970's 
by Cousot and Cousot [1]. The technique is widely used and can be efficient enough for 
commercial use. One of the success stories of abstract interpretation is the complete analysis of 
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the Airbus 380 flight control software for out-of-bound memory access and arithmetic exceptions 
[2]. CodeHawk is a state-of-the-art implementation of abstract interpretation. 

The key idea of abstract interpretation is abstract domains that allow computing an over-
approximation of the behaviors of a given program. An abstract domain provides (1) an abstract 
type to represent concrete program states, and (2) abstract functions to represent the effect of 
concrete state-changing actions. Rather than simulate the concrete program, abstract 
interpretation uses abstract domains to construct and simulate an abstract version of the program.  
The simulation is computationally cheaper in the abstract program because the abstraction 
throws away information. However the very act of throwing away information causes a loss of 
precision in the simulation/analysis process. Hence there is a tradeoff in abstract interpretation 
between computational complexity of the analysis and precision of the results. 

To illustrate the loss of precision due to abstraction, suppose that we want to analyze the 
following program fragment, where input x ranges over the integers {1,2,3,4,5}:  

y = 3*x;  
if y > 20 then ... 

If we abstract each variable to an interval over the integers, then we can precisely represent x in 
the initial and final state of this simple program by the interval [1,5] which gives a minimum and 
maximum value that the variable can take on in any execution of the program. However, to 
reflect the action of multiplying by 3, the abstract domain would multiply the interval by 3, 
resulting in the interval [3,15] for y. Clearly, we have lost information in this abstraction, since 
we can only represent the possible values of y via a simple interval (rather than the precise set 
{3,6,9,12,15}). On the other hand, the abstraction does allow us to cheaply compute some kinds 
of information about the concrete program. In the example, we can symbolically evaluate the 
condition to false in the abstract domain, so we know that the then-branch can never be executed. 

An abstract interpretation engine comes with a library of standard abstract domains that can be 
used to analyze a broad range of problems. The most common abstract domain is numeric 
intervals, as illustrated above, which abstract the possible values of a numeric variable at a 
program control point by a bounding interval. Another common abstract domain uses a set of 
linear constraints (i.e. an enclosing polyhedron) to over-approximate the joint values of several 
variables. The interval domain is computationally cheap and scales well to very large programs, 
although it can become imprecise. In contrast, a polyhedral abstract domain provides good 
precision since it relates several variables, but can be very expensive to apply.    

An abstract domain is used to generate a specific kind of invariant at each program control point 
(e.g. the control point between assignments in C). The interval domain infers interval invariants 
for each program variable at each control point. The polyhedral domain infers a polyhedral 
envelope for some of the program variables at each control point. 

To analyze a given program, an abstract interpreter starts with an abstract representation of the 
input and forward simulates that representation through the abstracted actions of the program.   
The simulation continues until a fixpoint is reached, which is expressed as a sound invariant at 
each control point in the program. The presence of loops complicates the analysis, since it may 
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be necessary to simulate around a loop an unlimited number of times. Abstract interpretation 
uses a widening operator to speed up convergence of the simulation to a fixpoint, by generalizing 
the current abstract representations. The result will generally be a fixpoint (set of invariants at 
control points) that is not a least fixpoint (the strongest expressible set of invariants at control 
points of the program). 

Part of the art of abstract interpretation is carefully choosing where in a program to apply which 
abstract domain – where precision is needed (as in an inner loop) we might apply a polyhedral 
domain, but elsewhere use intervals. The goal is to gain as much information as possible about 
the program while minimizing analysis time and space. Another part of the art of abstract 
interpretation is developing new abstract domains that are tailored to a special class of programs.   
Often a new domain is motivated by a new kind of invariant that is need to effectively analyze 
and prove properties of a special class of program. In this project, with a special focus on linear 
digital filters and linear accumulators, it is natural to explore new abstract domains that generate 
appropriate invariants for those classes. 

At the outset of this project, our working hypothesis was that the standard abstract domains used 
in abstract interpretation (including numeric intervals) would give results that are too imprecise 
to be useful. Consequently, the project goal was to explore abstract domains that are specialized 
to linear digital filters. As discussed later in Section 4, our working hypothesis was borne out, 
but, surprisingly, as we developed and applied more specialized domains, we discovered 
techniques that produce the desired analytic results without the need for abstract interpretation.  
We discovered techniques for generating closed-form formulas for LDFs and accumulator codes 
that yield sound and reasonably precise bounds on the output stream and its floating point errors. 
That is, we were able to obtain our desired analytic results in negligible time. 

3.3. Integration of Model Analysis and Code Analysis 

This section describes the original, standalone platforms of the two tools, and the modifications 
and bridges that we designed to allow their SANA-enhanced versions to work as one. 

3.3.1. Original HiLiTE Platform 
Figure 7 is an overview of the HiLiTE tool and its usage context, as deployed in the avionics 
certification programs in Honeywell aerospace products. HiLiTE provides comprehensive design 
model analysis and test generation for MATLAB Simulink/Stateflow models. It performs 
symbolic analyses combining computation semantics, control transforms, and temporal 
properties in a unified analysis framework. Error propagation is a recent addition to support 
increasing tolerances only where necessary and identify when a construct is untestable because 
cumulative error makes an execution path undecidable. 
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Figure 7. HiLiTE Overview 

Range propagation: During model analysis, HiLiTE propagates signal dimensions, data type, 
and range information from the model input blocks through the rest of the blocks in the model to 
the model outputs. In this propagation, the dimensions, data type, operating range, and hard 
range constraint are determined for all intermediate signals (all inputs and outputs of each block 
instance) in the model. The range computation takes into account the specific mathematical and 
functional effect of each library block. The following are computed for each output of each 
block: 

• Shape: The dimensions of the signal represented as a list of sizes for each dimension;
scalar signals have shape=1.

• Data type: The data type is inferred from the block type and input data types.
• Normal operating range: The range of possible values the output can have, for all

combinations of input values of the block within the normal operating range of each
input. This may include an estimated error component on each end of the range.

• Maximum allowable range constraint (also called a “hard bound” or “constraint”): This
denotes a constraint on the feasible values due to specific block computations. Examples
are outputs of the constant and range limiter blocks; values on these signals outside the
constraint are not feasible in the model.
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Based on the range analysis certain model design defects can be analyzed including overflow 
conditions, frozen signals (constant value), un-testable conditions, and violation of modeling 
design guidelines or block-specific constraints. 

Feedback loops and patterns: HiLiTE detects and breaks any feedback loops and performs the 
propagations (Shape/DataType/Range) for all the blocks interconnected in the loop. Similarly, it 
analyzes certain combinations of blocks to identify common patterns. HiLiTE substitutes a single 
block for the model blocks that comprise the pattern and performs the comprehensive 
propagation analysis and test vector generation for the entire pattern as a whole. 

Relationship propagation: HiLiTE has the capability to determine the relationship of a block’s 
output to the upstream source ports in the model. A constraint in the model occurs when a signal 
fans out, creating multiple branches that converge downstream onto the inputs of a single block. 
When two or more such inputs are totally related to each other (identity or linear relationship 
with zero slope) HiLiTE recognizes this and maintains a list of totally related inputs for the 
blocks in the model. If the output of the block is a polynomial of the block inputs HiLiTE 
recognizes the polynomial relationship and uses it to determine a tight range bound at the output. 

The relationship propagation takes into account the specific mathematical and functional effect 
of each library block. The propagation of these relationships supports the analysis of the data 
flow expression to recognize and solve the equation to derive tight, exact range bounds at a 
block’s output. Also it helps in identifying test generation constraints due to related inputs in the 
model. 

Feedback loop invariant analysis: We extended HiLiTE’s feedback loop and relationship 
processing to discover cycle invariants describing cycle input-state-output behaviors. A cycle 
invariant is expressed by guard/assignment pairs, where each pair represents a possible execution 
path of the cycle.  HiLiTE discovers cycle invariants by performing path analysis and integration 
of individual block invariants following the analysis procedures described below. 

Figure 8 shows a model of a limited counter with only one cycle. This cycle has three possible 
paths due to the three different guard conditions of block limit. For each path, we collect the set 
of guard/assignment pairs from blocks within the cycle starting with the time-dependent block 
delay, followed by sum and limit. 

Figure 8. Simulink model of limited counter and three possible paths 

Next, we use SMT solver Z3 to check the satisfiability of each path. HiLiTE automatically 
generates the input file for Z3 containing variable declarations, sets of constraints translated from 
the block level guard/assignment pairs and some checking commands. Z3 returns “unsat” for 
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each invalid path, which is then removed from the cycle invariant. For the remaining valid paths 
(all 3 paths are valid in Figure 8), we further reduce the block level guard/assignment pairs into a 
cycle level guard/assignment pair possessing only the cycle level input/output variables. This 
process includes virtual substitution to eliminate the intermediate variables as well as some 
general simplification. Finally, the cycle invariant is printed out in the log. 

The OptionSet information to include in the command file looks like this: 
 <OptionSet name="ModelAnalysisDirectives"> 

 <Option key=" AnalyzeFeedbackLoops">True</Option> 
 </OptionSet> 

By running HiLiTE on a model with the option "AnalyzeFeedbackLoops" set as “True,” HiLiTE 
obtains the cycle invariant and decoupler outport range. In the analysis process, messages are 
given as information including “cycle list information,” “path expressions,” and “range 
calculated for the time-dependent block outport in current cycle list”. 

3.3.2. Original CodeHawk Platform 
Kestrel Technology’s CodeHawk technology is an Abstract Interpretation framework, written in 
Ocaml, that is meant to be specialized to particular programming languages and program 
properties of interest. A specific analyzer tool is built for a specific combination of 
language/properties by specializing the Ocaml source and compiling to the intended operating 
system (Figure 9 below). Thus CodeHawk can in principle run on any machine/OS for which 
there is an Ocaml compiler. We have standard front ends for C, Java and x86 binaries, and a 
variety of abstract domains over which to approximate program behaviors. For this project, we 
started with an exiting specialization for memory safety properties of C programs that typically 
runs on Unix/Linux/MacOS. The need to extend this analyzer to a new floating-point abstract 
domain during the course of this project caused us to re-implement a portion of the analyzer in 
C++, thus breaking the monolithic Ocaml compilation and resulting in a mixed language system 
that (currently) runs only on MacOS (see 3.3.4 below). 
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Figure 9 CodeHawk Overview 

3.3.3. JSON Interchange Architecture 
Since HiLiTE and CodeHawk typically run on different operating system platforms, we made an 
early architectural decision to exchange information between their SANA-enhanced versions via 
an external file interface. This would allow development to proceed in parallel at different sites, 
and for the final, integrated deliverable to be run on the same or different machines at the same 
site, as well as different machines at different sites. We designed a custom JSON interface 
specification that was sufficiently abstract to mask differences between the two tools and their 
respective source languages. As the first year enhancements and integration progressed, we 
repeatedly revised this common JSON specification to match, buffering the changes with 
grammars and parser generators to rebuild the necessary translators. 

Figure 10 shows the overall file exchange integration for Linear Digital Filters. CodeHawk 
normally takes as input all of the C sources required to compile the filter application (or any 
other C application). For this project, we restricted the C source to just that implementing the 
actual filter function that HiLiTE generates. In addition to the C sources, HiLiTE also passes 
model-level information about the filter (parameters, recurrence relation, input bounds, etc) in a 
JSON file, which contains a reference to the C source file. CodeHawk consumes both inputs, 
uses the model-level JSON information to specialize the abstract interpretation to the input filter, 
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then writes back an approximation of the value and error bounds of the filter’s output to the same 
JSON instance. HiLiTE then consumes this rewritten instance to exploit the computed bounds at 
the filter model level. 

Figure 10 HiLiTE <-> CodeHawk Integration via files 
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Figure 11 HiLiTE <-> CodeHawk JSON Exchange Example 

Figure 11 illustrates a sample JSON input file (portion thereof) for a filter analysis. This file 
contains information about the filters found in a model. A given C application may contain a 
number of filter functions, and any one filter function may be used by multiple “instances” of 
that filter. The JSON file for filter analysis consequently uses a series (JSON array) of 
filterInstanceSpec objects. Each instance represents a particular set of parameters for the filter, 
theoretical bounds on the inputs to the filter, references to the C sources and their algorithmic 
parts (init and step functions) that implement the filter, and placeholder JSON objects 
representing the value and error bounds on the outputs from the filter. CodeHawk will consume 
the input characteristics, and rewrite the JSON output objects to record the results of analysis. 

Note that the HiLiTE JSON output refers to other files. These files may be the source code for 
standard functionality referenced by the analyzed model or it may be the source code generated 
for the model itself.  

The JSON format for integrating accumulators explored in the second year of this project is 
different than that for filters since different information is required for these two types of 
analyses.  We avoid confusion in the exchange both by using different files for each type of 
analysis data and by the creation of a ‘filterInstances’ list for filter analysis data and an 
‘accumulatorInstances’ list for accumulator analysis data.  
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3.3.4. Tool Software Integration Architecture 
The toolset integration has several ‘levels’. There is the integration of the entire system of tools 
(CodeHawk + HiLiTE) as well as the integration of each of the tool’s internal systems within 
itself. 

HiLiTE is a Windows .NET application comprised of multiple C# and J# assemblies, some 
statically linked and others dynamically loaded. In addition, HiLiTE links to COM libraries for 
its interface to MATLAB Simulink to open and process the contents of a model. 

CodeHawk is normally an OCaml application specialized to a particular source language (C, 
Java, x86 binary) and a particular set of program conjectures to be proved. This project required 
specializing Kestrel’s existing C analyzer to a new abstract domain of floating point numbers. 
The libraries for this domain, however, are written in C++, so our original architectural plan was 
to write Ocaml “wrapper” code for these C++ libraries to bring them into the existing Ocaml 
architecture. This proved to be infeasible, so we were forced to write an entirely new abstract 
interpretation engine in C++ and split the erstwhile monolithic CodeHawk architecture into 
several pipelined pieces. Because of the exigencies of developing and integrating these pieces 
from multiple languages at multiple sites, the resulting SANA-specialized CodeHawk (currently) 
only runs reliably under MacOS. Its constituent pieces are assembled from C, C++, and Ocaml 
compiled binaries, plus a Unix shell script, and integrated into a single application as a runnable 
Java jar file. 

A consequence of this mixed-language/mixed-operating-system configuration is that the 
combined HiLiTE/CodeHawk system typically runs on separate Windows and Mac machines, 
with round-trip communication implemented via shared C source and JSON files. 

The source code for the library of standard functionality that can be referenced is installed as part 
of the CodeHawk installer. Currently this set of standard functionality consists of all the known 
filters. 
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Figure 12 HiLiTE <-> CodeHawk Comm Process 

The system of tools is integrated through the use of the files described above.  Since these JSON 
files also reference ‘C’ source files, those files must either already be present on the CodeHawk 
machine or must be transferred along with the JSON file that references them.  The filter source 
code is installed along with CodeHawk and thus need not be transferred. HiLiTE recognizes this 
and bundles model specific source code along with the JSON in a package that can be easily 
made accessible to the CodeHawk machine. 

Because the HiLiTE machine already has all the source code, the only information that need be 
transmitted back from the CodeHawk machine is the result JSONfile.  

The actual mechanism for transfer can be through use of a file server, email or any other 
mechanism convenient to the user. As part of moving files, they will need to be placed where 
CodeHawk/ HiLiTE can find them. See the User Guide for details. 
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4. RESULTS AND DISCUSSION 

4.1. Discoveries in Abstract Interpretation 

As discussed in the previous section, our approach was to explore various abstract domains 
within an abstract interpretation framework, implemented by CodeHawk, for analyzing linear 
digital filters and accumulating integrators.   The analytic results that we desire are  

(1) bounds on the output of a filter,  
(2) bounds on the floating-point errors in the output of a filter,  
(3) bounds on the output of an accumulating integrator as a function of the number of 

iterations, and  
(4) bounds on the floating-point errors in the output of an accumulating integrator as a 

function of the number of iterations.    

4.1.1. Interval Abstract Domain 
As always in analyzing a program, the first question is what kinds of invariants are required to 
establish the desired results.  Since we obviously want bounds as results, the first abstract 
domain to try is intervals. 

As a running example, we will use a simple first-order linear digital filter (called a Lead Lag 
filter, see Section 4.2.1): 

 
𝑦𝑦𝑛𝑛+1 =  

9
13

𝑢𝑢𝑛𝑛+1 −  
7

13
𝑢𝑢𝑛𝑛 +  

11
13

𝑦𝑦𝑛𝑛 (3) 

 

where the input stream is written 𝑢𝑢0,𝑢𝑢1, … and the output stream is  𝑦𝑦0,𝑦𝑦1, … We are given that 
the range of the input values is [-1,1], and that 𝑦𝑦0 = 0.   What are the possible values for the 
output stream?   If we use the interval abstract domain, representing 𝑦𝑦0 as [0,0] and iterate the 
recurrence we get 

 
𝑦𝑦1 =  

9
13

[−1,1] −  
7

13
[−1,1] + 

11
13

[0,0]   = [
−16
13

,
16
13

] (4) 

 
𝑦𝑦2 =  

9
13

[−1,1] −  
7

13
[−1,1] +  

11
13

�
−16
13

,
16
13
� =   �

−192
169

,
192
169

� 
(5) 

 

Note that the sequence is growing and we have gone through the iterative loop twice.  A typical 
step in abstract interpretation is to speed up convergence to a fixpoint by applying a widening 
operator.   There are standard widening operators for each abstract domain and their choice is 
somewhat of an art.   A widening operator suggested in earlier work on filters [3] is to jump up 
to the nearest power of ten, so [-10,10] in our case.    This does in fact converge since 

 9
13

[−1,1] −  
7

13
[−1,1] +  

11
13

[−10,10]   ⊆ [−10,10]. (6) 
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The actual range of the output is [-1,1], so this inferred range is very imprecise, although sound.  
The best that can be obtained using the interval domain is [-8,8] which is better, but far from the 
exact bound.    

4.1.2. Cancellation Abstract Domain 
The essential reason for the imprecision when using the interval domain is that there are 
cancellation possibilities if we simply unroll the recurrence: 

 
𝑦𝑦2 =  

9
13

𝑢𝑢2 −  
7

13
𝑢𝑢1 +  

11
13

𝑦𝑦1   

 
     =   

9
13

𝑢𝑢2 −  
7

13
𝑢𝑢1 + 

11
13

�
9

13
𝑢𝑢1 −  

7
13

𝑢𝑢0 +  
11
13

𝑦𝑦0� 
(7) 

 
     =  

9
13

𝑢𝑢2 + 
8

169
𝑢𝑢1 −

77
169

𝑢𝑢0  
 

where some of the contribution of 𝑢𝑢1 to 𝑦𝑦2 has been cancelled out.   This phenomenon suggests 
an approach to constructing an abstract domain that generates stronger invariants for linear 
recurrences:  supplement intervals with symbolic expressions to allow cancellation as part of the 
abstract operators of the domain.  As an example, instead of abstracting 𝑦𝑦2 to an interval, we 
abstract it to a symbolic sum (where Abs(x) denotes the abstract value of variable x): 

 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦2) =  

9
13

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢2) + [−
8

169
,

8
169

]  (8) 

which will allow us to partially cancel 𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢2) in the next iteration (to generate 𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦3)).   We 
implemented an abstract domain of this type and indeed it converges to the exact bound [-1,1] in 
our example.   It generally performs well for first-order linear filters since there are a fixed 
number of terms to be carried between iterations to harvest all the cancellation possibilities.   
Unfortunately, for higher-order linear filters, there is no fixed bound on the number of terms to 
be carried so this approach won’t work as stated.   We explored several ways to further elaborate 
the approach for second-order filters, but the result is very complex and of unclear benefit. 

Fortunately, the idea of unrolling the recurrence carries the seed of an alternate approach that 
proved successful.  Intuitively, we can imagine fully unrolling the recurrence until any output 𝑦𝑦𝑛𝑛 
is expressed as a linear sum of all preceding inputs (i.e. all previous outputs in the recurrence are 
eliminated by unrolling).   Before we turn to the approach based on that concept, we first review 
our parallel efforts to analyze the error due to floating-point representations. 

4.1.3. Analyzing for Error Bounds 
In addition to wanting bounds on the values of the output of a filter or accumulator, we also want 
to know bounds on the accumulated errors due to floating point implementation of real values.   
Using simple intervals for error analysis will result in a non-converging series of bounds. In 
practice the errors are bounded and fairly small, at least for first-order filters, so once again the 
interval domain proves to be too imprecise for this application. 
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As mentioned earlier, if the standard abstract domains do not provide a useful time/precision 
tradeoff, then the skilled abstract interpretationist explores the type of invariants that are required 
to obtain the desired results and develops abstract domains to generate those invariants.    

We define the error as 

 𝑓𝑓(𝑥𝑥, 𝑛𝑛) − 𝑟𝑟(𝑥𝑥,𝑛𝑛)  ≤ 𝜖𝜖(𝑥𝑥,𝑛𝑛) (9) 

where 𝑟𝑟(𝑥𝑥,𝑛𝑛) denotes the real value of variable x at the nth iteration, 𝑓𝑓(𝑥𝑥,𝑛𝑛) is the floating point 
value of x after n iterations, and 𝜖𝜖(𝑥𝑥, 𝑛𝑛) is the error, expressed as a bound on the difference of the 
two. 

If we view the output 𝑦𝑦𝑛𝑛 as a linear sum of all preceding inputs, we get a sense that the net error 
due to floating point can be calculated as a linearly weighted sum of the error contributions of 
each of the inputs and the operations performed upon them.    This leads, after some trial and 
error, to seeking an invariant of the form 

 𝜖𝜖(𝑥𝑥, 𝑛𝑛) =  𝐴𝐴𝑥𝑥 +  𝑀𝑀𝑥𝑥𝑏𝑏𝑝𝑝𝑥𝑥� 𝛽𝛽𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (10) 

 

where 𝜖𝜖(𝑥𝑥,𝑛𝑛) is the error range of variable x at a code location.   The sum conveys the effect of 
the errors from all earlier inputs.   The invariant is parametric on A, M, p, b, and 𝛽𝛽, where Ax, Mx, 
and px vary per variable x.  As we simulate the concrete program (implementing the recurrence) 
via abstract operators, the effect will be to update the current abstract values of Ax, Mx, and px .    

We have been able to derive the abstract operations that preserve the form of the invariant by 
changing the parameters.  To illustrate, consider the case that the concrete program performs a 
sum of two variables 

 𝑣𝑣 = 𝑤𝑤 + 𝑧𝑧 (11) 

 

where the invariant holds before the assignment.  We want to calculate updates to the parameters 
of the invariant such that the invariant holds after the assignment. 

We assume that  

 𝜖𝜖(𝑤𝑤) =  𝐴𝐴𝑤𝑤 + 𝑀𝑀𝑤𝑤𝑏𝑏𝑝𝑝𝑤𝑤� 𝛽𝛽𝑤𝑤𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (12) 

 

 𝜖𝜖(𝑧𝑧) =  𝐴𝐴𝑧𝑧 +  𝑀𝑀𝑧𝑧𝑏𝑏𝑝𝑝𝑧𝑧� 𝛽𝛽𝑧𝑧𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (13) 

 

then (letting 𝜖𝜖𝑚𝑚 denote the machine error for the chosen floating-point representation) 
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𝑓𝑓(𝑣𝑣,𝑛𝑛) − 𝑟𝑟(𝑣𝑣,𝑛𝑛) 

    =   �𝑓𝑓(𝑤𝑤,𝑛𝑛) + 𝑓𝑓(𝑧𝑧,𝑛𝑛)�(1 + 𝛿𝛿) − �𝑟𝑟(𝑤𝑤,𝑛𝑛) +  𝑟𝑟(𝑧𝑧,𝑛𝑛)�  where |𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚 

=  �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝜖𝜖(𝑤𝑤) + 𝑟𝑟(𝑧𝑧,𝑛𝑛) +  𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿) − �𝑟𝑟(𝑤𝑤,𝑛𝑛) +  𝑟𝑟(𝑧𝑧,𝑛𝑛)� 

=  �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝑟𝑟(𝑧𝑧,𝑛𝑛)�𝛿𝛿 +  �𝜖𝜖(𝑤𝑤) +  𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿) 

 =   𝑟𝑟(𝑣𝑣,𝑛𝑛)𝛿𝛿 +  �𝜖𝜖(𝑤𝑤) +  𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿) (14) 

≤  max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 +  𝑀𝑀𝑤𝑤𝑏𝑏𝑝𝑝𝑤𝑤 ∑ 𝛽𝛽𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=0 +  𝐴𝐴𝑧𝑧 + 𝑀𝑀𝑧𝑧𝑏𝑏𝑝𝑝𝑧𝑧 ∑ 𝛽𝛽𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=0 )(1 + 𝛿𝛿) 

≤  [max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 +  𝐴𝐴𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)] 

+ 
(𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)

𝑏𝑏
𝑏𝑏max(𝑝𝑝𝑤𝑤,𝑝𝑝𝑧𝑧)+1� 𝛽𝛽𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=0
 

=  𝜖𝜖(𝑣𝑣,𝑛𝑛) 

where we update the parameters according to 

 𝐴𝐴𝑣𝑣 =  [max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 +  𝐴𝐴𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)] (15) 

 
𝑀𝑀𝑣𝑣 =  

(𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)
𝑏𝑏

 (16) 

 𝑝𝑝𝑣𝑣 =  max(𝑝𝑝𝑤𝑤,𝑝𝑝𝑧𝑧) + 1. (17) 

That is, when the concrete implementation assigns a sum of two variables to a variable, we 
perform the updates above in the abstract domain.   Similar abstract operators have been derived 
and implemented for other concrete operations: subtraction, multiply by a constant, divide, and 
so on.    

Using this abstract domain resulted in finite error bounds that were surprisingly small.  One 
might intuit that floating-point errors should accumulate without bound as a linear recursion 
progresses.   However, it seems that filters inherently have a discounting mechanism so that the 
contribution of previous inputs increasingly diminish with age.   The same mechanism seems to 
apply to errors: the effects of older errors are discounted with age, so that the age-weighted 
errors form a series that converges. 

4.1.4. Closed-form Solutions 
The explorations discussed in previous subsections pointed to the conceptual value of fully 
unrolling the recursion and expressing the current output 𝑦𝑦𝑛𝑛 as a linear sum of all preceding 
inputs.   Anca Browne discovered that the coefficients of that linear sum are fixed by the linear 
recurrence, and, moreover, are themselves characterized by a homogeneous linear recurrence 
relation.  This remarkable fact allows us to find a closed-form expression of the coefficients and 
then to symbolically calculate exact bounds on the output values.   A generalization of this 
approach can also be applied to calculating bounds on error values and to find bounding 
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functions on the range and errors of accumulating integrators.  The effect is that through 
symbolic analysis of the linear recurrences that characterize linear digital filters and 
accumulating integrators, we can derive exact or tight bounds on the range of outputs and their 
floating point errors, in essentially constant time.  This stands in contrast, say, to 20 hours of 
analysis time needed to perform sophisticated abstract interpretation-based analysis for just one 
Airbus-related analysis in [3]. 

Let  
 𝑦𝑦𝑛𝑛+1  =  𝑎𝑎0𝑢𝑢𝑛𝑛+1  +  𝑎𝑎1𝑢𝑢𝑛𝑛 + . . . + 𝑎𝑎𝑁𝑁𝑢𝑢𝑛𝑛−𝑁𝑁+1  + 𝑏𝑏1𝑦𝑦𝑛𝑛 + . . . + 𝑏𝑏𝑁𝑁𝑦𝑦𝑛𝑛−𝑁𝑁+1 (18) 

 
be the recurrence equation for the output of a digital filter of order N that defines the output 𝑦𝑦𝑛𝑛+1 
in terms of N + 1 present and past inputs and N past outputs.  Unfolding the equation, 𝑦𝑦𝑛𝑛+1can 
be expressed as a linear combination of 𝑢𝑢𝑛𝑛+1 … 𝑢𝑢1: 
 

 𝑦𝑦𝑛𝑛+1 =  𝑐𝑐0𝑛𝑛+1𝑢𝑢𝑛𝑛+1 +  𝑐𝑐1𝑛𝑛+1𝑢𝑢𝑛𝑛 + ⋯+  𝑐𝑐𝑛𝑛𝑛𝑛+1𝑢𝑢1 (19) 

 
Notice that for any n, 𝑐𝑐0𝑛𝑛+1 =  𝑎𝑎0. Therefore for any n, 𝑐𝑐1𝑛𝑛+1= 𝑎𝑎1 + 𝑏𝑏1𝑐𝑐0𝑛𝑛 =  𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0,  etc.  
The key point to notice is that 𝑐𝑐𝑘𝑘𝑛𝑛 does not depend on n, for any k.  Without the superscript,   
 

 𝑦𝑦𝑛𝑛+1  =  𝑐𝑐0𝑢𝑢𝑛𝑛+1  +  𝑐𝑐1𝑢𝑢𝑛𝑛 + . . . + 𝑐𝑐𝑛𝑛𝑢𝑢1 (20) 

 
The first N+1 terms 𝑐𝑐0, … , 𝑐𝑐𝑁𝑁 depend on both 𝑎𝑎0, … ,𝑎𝑎𝑁𝑁 and 𝑏𝑏1, … , 𝑏𝑏𝑁𝑁. However, for any 𝑛𝑛 ≥ 𝑁𝑁,  
 

 𝑐𝑐𝑛𝑛+1  =  𝑏𝑏1𝑐𝑐𝑛𝑛  +  𝑏𝑏2𝑐𝑐𝑛𝑛−1 + . . . + 𝑏𝑏𝑁𝑁𝑐𝑐𝑛𝑛−𝑁𝑁+1 (21) 

 
This homogeneous linear recursion formula of order N has the general solution  
 

 𝑐𝑐𝑛𝑛+1  =  𝑃𝑃1(𝑛𝑛)𝑟𝑟1𝑛𝑛  +  𝑃𝑃2(𝑛𝑛)𝑟𝑟2𝑛𝑛  +  … +  𝑃𝑃𝑗𝑗(𝑛𝑛)𝑟𝑟𝑗𝑗𝑛𝑛 (22) 

 
where 𝑟𝑟1, … , 𝑟𝑟𝑗𝑗 are solutions of the characteristic equation 
 

 𝑥𝑥𝑁𝑁  =  𝑏𝑏1𝑥𝑥𝑁𝑁−1  + 𝑏𝑏2𝑥𝑥𝑁𝑁−2 + . . . + 𝑏𝑏𝑁𝑁 
 (23) 

with respective multiplicities 𝑚𝑚1,𝑚𝑚2, . . . ,𝑚𝑚𝑗𝑗 and 𝑃𝑃𝑖𝑖 's are polynomials of degree 𝑚𝑚𝑖𝑖 −  1.  See 
e.g. [4] for more background on solving (in)homogeneous linear recurrence equations. 
 
The initial conditions that determine the solution are given by 𝑐𝑐1, … , 𝑐𝑐𝑁𝑁. 
 

4.1.5. Range Analysis for First-order Linear Digital Filters 
 
The general form of a first-order linear filter is 
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𝑦𝑦0  =  0 (24) 

𝑦𝑦𝑛𝑛+1  =  𝑎𝑎0𝑢𝑢𝑛𝑛+1  +  𝑎𝑎1𝑢𝑢𝑛𝑛  +  𝑏𝑏1𝑦𝑦𝑛𝑛 for 𝑛𝑛 ≥ 0 (25) 

where 𝑢𝑢0 = 0. The coefficients 𝑐𝑐𝑖𝑖 are given by 
𝑐𝑐0  =  𝑎𝑎0 (26) 

𝑐𝑐1  =  𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0 (27) 

𝑐𝑐𝑛𝑛+1 =  𝑐𝑐1𝑏𝑏1𝑛𝑛  (28) 

and therefore the output is 

𝑦𝑦𝑛𝑛+1  =  𝑎𝑎0𝑢𝑢𝑛𝑛+1  + (𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)(𝑢𝑢𝑛𝑛  +  𝑏𝑏1𝑢𝑢𝑛𝑛−1 + ⋯+ 𝑏𝑏1𝑛𝑛−1𝑢𝑢1) (29) 

or 

𝑦𝑦𝑛𝑛+1  =  𝑎𝑎0𝑢𝑢𝑛𝑛+1  + (𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)�𝑏𝑏1𝑖𝑖𝑢𝑢𝑛𝑛−𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

 (30) 

Since we are assuming that all inputs have the same range, we can omit the subscript on inputs 
for purposes of computing the range bounds of the output: 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛+1)  = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑎𝑎0𝑢𝑢)  + 𝑚𝑚𝑚𝑚𝑚𝑚((𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)�𝑏𝑏1𝑖𝑖𝑢𝑢
𝑛𝑛−1

𝑖𝑖=0

) 

=  𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)(𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙ 1− 𝑏𝑏1𝑛𝑛

1− 𝑏𝑏1
�) 

≤  𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)�𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙
1

1 −  𝑏𝑏1
�� (31) 

when 𝑏𝑏1 < 1.  Similarly, 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛+1)  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)�𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙
1

1 −  𝑏𝑏1
��. 

As an example, consider the lead lag filter (see Section 4.2.1) described by 

𝑦𝑦0  =  0 (32) 

𝑦𝑦𝑛𝑛+1 =  
9

13
𝑢𝑢𝑛𝑛+1 −  

7
13

𝑢𝑢𝑛𝑛 +  
11
13

𝑦𝑦𝑛𝑛 (33) 
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with 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈  [−1, 1].  Then the coefficients 𝑐𝑐𝑖𝑖 are given by 
 

 
𝑐𝑐0 =  

9
13

 (34) 

 
𝑐𝑐1  =

7
13

 + 
11
13

 
9

13
 =

 8
169

 (35) 

 
𝑐𝑐𝑛𝑛+1  =  

8
169

 ( 
11
13 

)𝑛𝑛 (36) 

 
and the range of the output by 
 

 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛)  ≤

 9
13 

+ 
8

169 
1

1 − 11
13

 =  1 (37) 

 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛) ≤ −

 9
13 

−  
8

169 
1

1 − 11
13

 =  −1 (38) 

 
 

4.1.6. Range Analysis for Second-order Linear Digital Filters 
 
A similar, slightly more complex treatment computes the range bound for second-order linear 
filters: 
 

 𝑦𝑦0  =  𝑦𝑦1 = 0 
 (39) 

 𝑦𝑦𝑛𝑛+1  =  𝑎𝑎0𝑢𝑢𝑛𝑛+1  +  𝑎𝑎1𝑢𝑢𝑛𝑛  + 𝑎𝑎2𝑢𝑢𝑛𝑛−1  +  𝑏𝑏1𝑦𝑦𝑛𝑛 +  𝑏𝑏2𝑦𝑦𝑛𝑛−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 1. 
 (40) 

Suppose that the characteristic equation has two distinct solutions 𝑟𝑟1 and 𝑟𝑟2. Then  
 

 𝑐𝑐0  =  𝑎𝑎0 (41) 

 𝑐𝑐1  =  𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0 (42) 

 𝑐𝑐2 = 𝑏𝑏1 + 𝑏𝑏12𝑎𝑎0 + 𝑏𝑏2𝑎𝑎0 (43) 

 𝑐𝑐𝑛𝑛+1 =  𝑠𝑠𝑟𝑟1𝑛𝑛 +  𝑡𝑡𝑟𝑟2𝑛𝑛  (44) 

where s and t are the solutions of 
 𝑐𝑐1  =  𝑠𝑠 +  𝑡𝑡 (45) 

 𝑐𝑐2  =  𝑠𝑠 𝑟𝑟1  +  𝑡𝑡 𝑟𝑟2  (46) 
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The output is 

𝑦𝑦𝑛𝑛+1 =  𝑎𝑎0 𝑢𝑢𝑛𝑛+1  +  (𝑠𝑠 +  𝑡𝑡) 𝑢𝑢𝑛𝑛  +  (𝑠𝑠 𝑟𝑟1  +  𝑡𝑡 𝑟𝑟2) 𝑢𝑢𝑛𝑛−1+ . .. (47) 

In the case when 𝑠𝑠, 𝑡𝑡, 𝑟𝑟1, 𝑟𝑟2 are all positive the range is given by 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛)  = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0 𝑢𝑢) + 𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟1 + 𝑟𝑟12+ . . . )  +  𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟2
+ 𝑟𝑟22 + . . . ) 

(48) 

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛)  = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0 𝑢𝑢) + 𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟1 +  𝑟𝑟12+ . . . )  +  𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟2
+ 𝑟𝑟22 + . . . ) 

(49) 

For example, consider the following quadratic filter (discussed in Section 4.2.4) 

𝑦𝑦0 = 𝑦𝑦1  =  0 (50) 

𝑦𝑦𝑛𝑛+1  =  
592841

78010601 
𝑢𝑢𝑛𝑛+1 +  

1185682
78010601 

𝑢𝑢𝑛𝑛  +  
592841

78010601 
𝑢𝑢𝑛𝑛−1 +

126814318
78010601 

𝑦𝑦𝑛𝑛  −  
51175081
78010601 

𝑦𝑦𝑛𝑛−1 

(51) 

where 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈  [−100, 100]. 

The first coefficients are 

𝑐𝑐0 =  
592841

78010601
(52) 

𝑐𝑐1 =  
167676492512320

6085653868381201
(53) 

𝑐𝑐2 =  
22504866023935154502080

474745515750392387111801
(54) 

and the others are determined by the solutions of the characteristic equation 

𝑥𝑥2  =  
126814318
78010601 

𝑥𝑥 −  
51175081
78010601

(55) 

which are 
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𝑟𝑟1,2 =  

63407159 ±  160 √1104257321
78010601

 ≈ {0.744646, 0.880957} (56) 

 
The general solution is 

  (57) 

𝑐𝑐𝑛𝑛+1  =  𝑠𝑠 ( 
63407159 −  160 √1104257321

78010601
 )𝑛𝑛  +  𝑡𝑡 (

63407159 +  160 √11042573211
7801060

)𝑛𝑛 
 
where s and t are solutions of the system 
 

 𝑠𝑠 +  𝑡𝑡 =  𝑐𝑐1 (58) 

𝑠𝑠 (
63407159 –  160 √1104257321

78010601
) +  𝑡𝑡 (

63407159 +  160 √1104257321
78010601

)  =  𝑐𝑐2 
(59) 

 
 
which are 

  (60) 

𝑠𝑠 =  −
5579860(−976009979996381 +  391157262321 √1104257321) 

39530163748423009547191
≈  −0.169695 

𝑡𝑡 =
 5579860 � 17

64956313 (391157262321 +  883861 √1104257321)

6085653868381201
 ≈ 0.197247 

(61) 

 
The expansion of 𝑦𝑦𝑛𝑛+1 is  
 

 𝑦𝑦𝑛𝑛+1 =  𝑐𝑐0𝑢𝑢𝑛𝑛+1 +  (𝑠𝑠 + 𝑡𝑡) 𝑢𝑢𝑛𝑛 + (𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2)𝑢𝑢𝑛𝑛−1 + ⋯  +  (𝑠𝑠 𝑟𝑟1𝑛𝑛−1 +  𝑡𝑡 𝑟𝑟2𝑛𝑛−1)𝑢𝑢1 (62) 

 
Notice that 𝑠𝑠 𝑟𝑟1𝑘𝑘 +  𝑡𝑡 𝑟𝑟2𝑘𝑘 > (𝑠𝑠 + 𝑡𝑡)𝑟𝑟2𝑘𝑘 > 0    since 𝑠𝑠 < 0, 𝑠𝑠 +  𝑡𝑡 > 0 and 𝑟𝑟2 >  𝑟𝑟1.  As all the 
coefficients are positive, the maximum is attained for 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢) and the minimum for 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢) 
 

  𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑛𝑛)  =  100 (𝑐𝑐0 + (𝑠𝑠 + 𝑡𝑡)  +  (𝑠𝑠 𝑟𝑟1 +  𝑡𝑡 𝑟𝑟2) + . . . )  
 

       =  100 (𝑐𝑐0 +  𝑠𝑠 
1

1 −  𝑟𝑟1
 +  𝑡𝑡

1
1 −  𝑟𝑟2

)  =  100 (63) 

 
𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑛𝑛) =  −100 (𝑐𝑐0 + (𝑠𝑠 + 𝑡𝑡)  +  (𝑠𝑠 𝑟𝑟1 +  𝑡𝑡 𝑟𝑟2) + . . . )  

 
       =  −100 �𝑐𝑐0 +  𝑠𝑠 

1
1 −  𝑟𝑟1

 +  𝑡𝑡
1

1 −  𝑟𝑟2
� =  −100. (64) 
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4.1.7. Digital Filters: Error Range 
 
The filter recursive formula does not immediately translate into a constant-term recursive 
formula for the floating-point output or its accumulated error. Different inputs, with different 
errors, will influence the constants differently. The solution we adopt is to use intervals. 
However, just reproducing our approach for finding the real bounds does not work because the 
characteristic equation cannot be solved in the same way over intervals. 
 
As before, the error for variable 𝑥𝑥 is 

 𝑓𝑓(𝑥𝑥, 𝑛𝑛) − 𝑟𝑟(𝑥𝑥,𝑛𝑛)  ≤ 𝜖𝜖(𝑥𝑥,𝑛𝑛) (65) 

where 𝑟𝑟(𝑥𝑥,𝑛𝑛) denotes the real value of variable x at the nth iteration for some particular 
sequence of inputs, 𝑓𝑓(𝑥𝑥,𝑛𝑛) is the floating point value of x after n iterations, and 𝜖𝜖(𝑥𝑥, 𝑛𝑛) is the 
error, expressed as a bound on the difference of the two.  We will assume that all the variables 
are bounded over all iterations and we will denote by 𝑅𝑅(𝑥𝑥) an interval that includes all possible 
real values for 𝑥𝑥 and by 𝐸𝐸𝐸𝐸(𝑥𝑥) an interval that includes all the possible errors for variable 𝑥𝑥. For 
inputs 𝑢𝑢𝑖𝑖, we will take 𝐸𝐸𝐸𝐸(𝑢𝑢𝑖𝑖) to be a symmetric interval.  

4.1.7.1. Symbolic Interval Combinations 

Let ℐ be the set of intervals over real numbers.   Let 𝒮𝒮 be a set of symbols and 𝒜𝒜 be the set of 
affine combinations 
 

 𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺 (66) 

 
where 𝐺𝐺0, . . .𝐺𝐺𝑝𝑝,𝐺𝐺 ∈ ℐ and 𝑆𝑆0, . . . , 𝑆𝑆𝑝𝑝  ∈  𝒮𝒮. Two combinations that differ only by the order of 
their terms or by a zero-coefficient term as in 
 

 𝐺𝐺1 𝑆𝑆1  + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺 ≡  𝐺𝐺1 𝑆𝑆1  +  … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  + [0,0]𝑆𝑆𝑝𝑝+1 + 𝐺𝐺 (67) 

 
are considered identical.  
 
We will assume that 𝒮𝒮 contains all the symbols that we need, among which are symbols for the 
infinite sequence of input errors and output errors.  
 
We define the following operations on 𝒜𝒜: 
 

1. multiplication by an interval  
 

 (𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺) ∗ 𝐼𝐼 =  (𝐺𝐺1 ∗ 𝐼𝐼) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 ∗ 𝐼𝐼) 𝑆𝑆𝑝𝑝  +  𝐺𝐺 ∗ 𝐼𝐼 (68) 

 
2.  division by an interval 
 

 𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺)/𝐼𝐼 =  (𝐺𝐺1/𝐼𝐼) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝/𝐼𝐼) 𝑆𝑆𝑝𝑝  +  𝐺𝐺/𝐼𝐼 (69) 
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3. addition 
 

 (𝐺𝐺1 𝑆𝑆1  +  … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺)  +  �𝐺𝐺′1 𝑆𝑆1 + . . .𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺′� 

=  (𝐺𝐺1 + 𝐺𝐺′1) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 + 𝐺𝐺′𝑝𝑝)  𝑆𝑆𝑝𝑝  + (𝐺𝐺 + 𝐺𝐺′) 
(70) 

Notice that we can always assume two combinations have the same symbols because we 
can always add zero-coefficient terms.  
 
4. subtraction 
 

 (𝐺𝐺1 𝑆𝑆1  +  … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺) −  �𝐺𝐺′1 𝑆𝑆1 + . . .𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺′� 

=  (𝐺𝐺1 − 𝐺𝐺′1) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 − 𝐺𝐺′𝑝𝑝)  𝑆𝑆𝑝𝑝  + (𝐺𝐺 − 𝐺𝐺′) 
(71) 

5.  Simultaneous substitution. Here is the result of one symbol being substituted: 
 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆( 𝐺𝐺1 𝑆𝑆1  +  … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺;  𝑆𝑆1  →  𝐻𝐻1𝑆𝑆1 + . . .𝐻𝐻𝑝𝑝𝑆𝑆𝑝𝑝 +  𝐻𝐻
=  𝐺𝐺1 �𝐻𝐻1𝑆𝑆1 + . . .𝐻𝐻𝑝𝑝𝑆𝑆𝑝𝑝 +  𝐻𝐻� +  𝐺𝐺2 𝑆𝑆2 + ⋯  𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺 

(72) 

 
 

 
Any 𝑉𝑉: 𝒮𝒮 → ℐ can be extended to 𝑉𝑉: 𝒜𝒜 → ℐ by 
 

 𝑉𝑉�𝐺𝐺1 𝑆𝑆1  + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺� =  𝐺𝐺1 ∗ 𝑉𝑉(𝑆𝑆1) + . . . + 𝐺𝐺𝑝𝑝 ∗ 𝑉𝑉(𝑆𝑆𝑝𝑝) +  𝐺𝐺  (73) 

 
We will call such a 𝑉𝑉, a value function. Notice that for any value function 𝑉𝑉 and any interval 𝐺𝐺, 
𝑉𝑉(𝐺𝐺) = 𝐺𝐺. 
 
Lemma 1.  If V associates with each symbol a singleton interval 𝑉𝑉(𝑆𝑆) = [𝑠𝑠, 𝑠𝑠] then for any 
[𝐴𝐴,𝐴𝐴′]  ∈  𝒜𝒜, and 𝐽𝐽 ∈ ℐ. 
 

 𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴),𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴′) ⇒ 𝑎𝑎 + 𝑎𝑎′ ∈  𝑉𝑉(𝐴𝐴 +  𝐴𝐴′) (74) 

 𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴),𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴′) ⇒ 𝑎𝑎 − 𝑎𝑎′ ∈  𝑉𝑉(𝐴𝐴 −  𝐴𝐴′) (75) 

 𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴), 𝑖𝑖 ∈ ℐ ⇒ 𝑎𝑎𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴 ∗ 𝐼𝐼) (76) 

 𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴), 𝑖𝑖 ∈ ℐ ⇒ 𝑎𝑎/𝑖𝑖 ∈  𝑉𝑉(𝐴𝐴/𝐼𝐼) (77) 

 𝑎𝑎 ∈  𝑉𝑉(𝐴𝐴), 𝑠𝑠𝑖𝑖 ∈ 𝑉𝑉(𝐴𝐴′)  ⇒ 𝑎𝑎 ∈  𝑉𝑉(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝐴𝐴, 𝑆𝑆𝑖𝑖 → 𝐴𝐴′) (78) 

Proof:  Let  
 𝐴𝐴 =  𝐺𝐺1 𝑆𝑆1  +  … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺  (79) 
 𝐴𝐴′ =  𝐺𝐺′1 𝑆𝑆1  + … 𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝  +  𝐺𝐺′ (80) 

 𝑎𝑎 =  𝑔𝑔1𝑠𝑠1 + . . . + 𝑔𝑔𝑝𝑝𝑠𝑠𝑝𝑝  +  𝑔𝑔    with  𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺𝑖𝑖,𝑔𝑔 ∈ 𝐺𝐺 (81) 

 𝑎𝑎′ =  𝑔𝑔′1𝑠𝑠1 + . . . + 𝑔𝑔′𝑝𝑝𝑠𝑠𝑝𝑝  +  𝑔𝑔′    with  𝑔𝑔′𝑖𝑖 ∈ 𝐺𝐺𝑖𝑖 ,𝑔𝑔′ ∈ 𝐺𝐺 (82) 
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Then, using distributivity, we get 

            𝑎𝑎 +  𝑎𝑎′  =  �𝑔𝑔11 +  𝑔𝑔′1�𝑠𝑠1   +  … +  �𝑔𝑔𝑝𝑝  +  𝑔𝑔′𝑝𝑝� 𝑠𝑠𝑝𝑝   +  (𝑔𝑔 + 𝑔𝑔′)
∈  (𝐺𝐺1 + 𝐺𝐺′1)𝑆𝑆1  +  … +  �𝐺𝐺𝑝𝑝 + 𝐺𝐺′𝑝𝑝�𝑆𝑆𝑝𝑝  +  (𝐺𝐺 + 𝐺𝐺′) 

∈  𝑉𝑉(𝐴𝐴 +  𝐴𝐴 )  

(83) 

 
The other cases are similar. Notice that the first two implications do not necessarily hold if 
𝑉𝑉(𝑆𝑆) is not a singleton interval as interval multiplication is not distributive over interval addition. 
QED  
 

4.1.7.2. Error Set Abstractions 

 
For each variable 𝑥𝑥, we will define 𝐸𝐸(𝑥𝑥) ∈  𝒜𝒜 and then show how it represents an abstraction of 
the set of errors for variable 𝑥𝑥. More precisely, 𝐸𝐸(𝑥𝑥) will represent a symbolic combination of 
the inputs and outputs. 
 
Definition of 𝑬𝑬(𝒙𝒙).   For constants 𝑐𝑐, let 𝐸𝐸(𝑐𝑐) be a constant interval that includes all possible 
error values for 𝑐𝑐.  
 
For any input 𝑢𝑢𝑖𝑖, let 𝑈𝑈𝑖𝑖 ∈ 𝒮𝒮 and let 𝐸𝐸(𝑢𝑢𝑖𝑖) =  𝑈𝑈𝑖𝑖 = [1,1] 𝑈𝑈𝑖𝑖 ∈ 𝒜𝒜. 
 
Similarly, for output 𝑦𝑦𝑖𝑖, let 𝑌𝑌𝑖𝑖 ∈ 𝒮𝒮 and 𝐸𝐸(𝑦𝑦𝑖𝑖) =  𝑌𝑌𝑖𝑖 = [1,1]𝑌𝑌𝑖𝑖 ∈ 𝒜𝒜. 
 
Suppose that for all 𝑥𝑥 that were assigned a value before 𝑣𝑣 in the filter code, 𝐸𝐸(𝑥𝑥) ∈ 𝒜𝒜 was 
defined. Then the definition for 𝐸𝐸(𝑣𝑣) depends on the statement that assigns it a value. 
 
𝑣𝑣 = 𝑤𝑤 ∶ 

 𝐸𝐸(𝑣𝑣)  =   𝐸𝐸(𝑤𝑤) (84) 

𝑣𝑣 =  𝑐𝑐 ∶  
 𝐸𝐸(𝑣𝑣)  =   𝐸𝐸(𝑐𝑐) (85) 

𝑣𝑣 =  𝑤𝑤 +  𝑧𝑧 ∶  
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] +  (𝐸𝐸(𝑤𝑤)  +  𝐸𝐸(𝑧𝑧))  ∗  [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚 ] (86) 

𝑣𝑣 =  𝑤𝑤 −  𝑧𝑧 ∶ 
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] +  (𝐸𝐸(𝑤𝑤) −  𝐸𝐸(𝑧𝑧))  ∗  [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚 ] (87) 

𝑣𝑣 =  𝑐𝑐 ∗  𝑤𝑤 ∶  
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + �𝐸𝐸(𝑐𝑐) ∗ 𝑅𝑅(𝑤𝑤) +  �𝑅𝑅(𝑐𝑐) + 𝐸𝐸(𝑐𝑐)� ∗  𝐸𝐸(𝑤𝑤)�  ∗  [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚 ] (88) 

𝑣𝑣 =  𝑤𝑤 / 𝑐𝑐 ∶  
 

𝐸𝐸(𝑣𝑣)  =
− 𝑅𝑅(𝑣𝑣) 𝐸𝐸(𝑐𝑐)  +  𝑅𝑅(𝑤𝑤) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]  +  𝐸𝐸(𝑤𝑤) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚 ]  

𝑅𝑅(𝑐𝑐) +  𝐸𝐸(𝑐𝑐)
 (89) 
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Lemma 2. Let 𝜖𝜖𝑖𝑖(𝑢𝑢) and 𝜖𝜖𝑖𝑖(𝑦𝑦) be the error for input i and output i respectively and 𝑉𝑉 the value 
function with 𝑉𝑉(𝑈𝑈𝑖𝑖) =  [𝜖𝜖𝑖𝑖(𝑢𝑢), 𝜖𝜖𝑖𝑖(𝑢𝑢)] and 𝑉𝑉(𝑌𝑌𝑖𝑖) =  [𝜖𝜖𝑖𝑖(𝑦𝑦), 𝜖𝜖𝑖𝑖(𝑦𝑦) ].  Then for any variable 𝑥𝑥 

∀ 𝑛𝑛 ≥ 0. 𝜖𝜖𝑖𝑖(𝑥𝑥) ∈ 𝑉𝑉�𝐸𝐸(𝑥𝑥)�. (90) 

Proof:   From the definition of 𝐸𝐸(𝑥𝑥), the statement is trivially true for the state variables and 
constants.  Assume that the statement is true for the variables given a value before 𝑣𝑣. Then the 
first two cases are obvious. 

Case 𝑣𝑣 =  𝑤𝑤 +  𝑧𝑧: 
𝑓𝑓𝑛𝑛(𝑣𝑣)  −  𝑟𝑟𝑛𝑛(𝑣𝑣)  
=  (𝑓𝑓𝑛𝑛(𝑤𝑤) +  𝑓𝑓𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿)  −  (𝑟𝑟𝑛𝑛(𝑤𝑤) +  𝑟𝑟𝑛𝑛(𝑧𝑧))      where   |𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚 
=  (𝑟𝑟𝑛𝑛(𝑤𝑤)  +  𝜖𝜖𝑛𝑛(𝑤𝑤)) +  (𝑟𝑟𝑛𝑛(𝑧𝑧)  +  𝜖𝜖𝑛𝑛(𝑧𝑧))) (1 + 𝛿𝛿)  −  (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝑟𝑟𝑛𝑛(𝑧𝑧)) (91) 

=  (𝑟𝑟𝑛𝑛(𝑤𝑤) +  𝑟𝑟𝑛𝑛(𝑧𝑧)) 𝛿𝛿 +  (𝜖𝜖𝑛𝑛(𝑤𝑤) +  𝜖𝜖𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿) 
=  𝑟𝑟𝑛𝑛(𝑣𝑣) 𝛿𝛿 +  (𝜖𝜖𝑛𝑛(𝑤𝑤) +  𝜖𝜖𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿)  

then, 
𝑟𝑟𝑛𝑛(𝑣𝑣) ∈ 𝑅𝑅(𝑣𝑣) =  𝑉𝑉�𝑅𝑅(𝑣𝑣)�, 
𝛿𝛿 ∈ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] =  𝑉𝑉([−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]), 
1 + 𝛿𝛿 ∈ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] =  𝑉𝑉([1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]  ) 

and from the inductive hypothesis we have, 𝜖𝜖𝑛𝑛(𝑤𝑤) ∈ 𝑉𝑉(𝐸𝐸(𝑤𝑤)) and 𝜖𝜖𝑛𝑛(𝑧𝑧) ∈ 𝑉𝑉(𝐸𝐸(𝑧𝑧)). Therefore, 
by Lemma 1,  

𝑓𝑓𝑛𝑛(𝑣𝑣)  −  𝑟𝑟𝑛𝑛(𝑣𝑣) ∈ 𝑉𝑉(𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]  +  ( 𝐸𝐸(𝑤𝑤) +  𝐸𝐸(𝑧𝑧) ) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]) 

 =  𝑉𝑉�𝐸𝐸(𝑣𝑣)�. 
(92) 

Case 𝑣𝑣 =  𝑤𝑤 − 𝑧𝑧: similar to previous case 

Case 𝑣𝑣 =  𝑐𝑐 ∗  𝑤𝑤: 

𝑓𝑓𝑛𝑛(𝑣𝑣)– 𝑟𝑟𝑛𝑛(𝑣𝑣) 

=   𝑓𝑓(𝑐𝑐) 𝑓𝑓𝑛𝑛(𝑤𝑤) (1 +  𝛿𝛿)  −  𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤)      where   | 𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚 

=   (𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐)) (𝑟𝑟𝑛𝑛(𝑤𝑤) +  𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 +   𝛿𝛿)  −  𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤)   

=   𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤)  𝛿𝛿 + (𝜖𝜖(𝑐𝑐)𝑟𝑟𝑛𝑛(𝑤𝑤) +  𝑟𝑟(𝑐𝑐) 𝜖𝜖𝑛𝑛(𝑤𝑤) +  𝜖𝜖(𝑐𝑐) 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿) 

=   𝑟𝑟𝑛𝑛(𝑣𝑣)  𝛿𝛿 +   (𝜖𝜖(𝑐𝑐)𝑟𝑟𝑛𝑛(𝑤𝑤) +  �𝑟𝑟(𝑐𝑐) +  𝜖𝜖(𝑐𝑐)� 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)  

∈  𝑉𝑉( 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]  + (𝐸𝐸(𝑐𝑐) ∗ 𝑅𝑅(𝑤𝑤) +  �𝑅𝑅(𝑐𝑐) +  𝐸𝐸(𝑐𝑐)� ∗  𝐸𝐸(𝑤𝑤)) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] ) 
=   𝑉𝑉(𝐸𝐸(𝑣𝑣)) 

Case 𝑣𝑣 =  𝑤𝑤 / 𝑐𝑐: 

𝑓𝑓𝑛𝑛(𝑣𝑣)– 𝑟𝑟𝑛𝑛(𝑣𝑣) 
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=   (𝑓𝑓𝑛𝑛(𝑤𝑤) / 𝑓𝑓(𝑐𝑐)) (1 + 𝛿𝛿)  −  𝑟𝑟𝑛𝑛(𝑤𝑤) / 𝑟𝑟(𝑐𝑐)      where   | 𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚 

=   
(𝑟𝑟𝑛𝑛(𝑤𝑤)  +  𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)

𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐)
 −  

𝑟𝑟𝑛𝑛(𝑤𝑤)
𝑟𝑟(𝑐𝑐)

   

=  
(𝑟𝑟𝑛𝑛(𝑤𝑤)  +  𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)  −  𝑟𝑟𝑛𝑛(𝑤𝑤) (𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐)) / 𝑟𝑟(𝑐𝑐)

𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐)
 (93) 

=   
(𝑟𝑟𝑛𝑛(𝑤𝑤) 𝑟𝑟(𝑐𝑐)   −  𝑟𝑟𝑛𝑛(𝑤𝑤) 𝑟𝑟(𝑐𝑐)  −  𝑟𝑟𝑛𝑛(𝑤𝑤) 𝜖𝜖(𝑐𝑐)) / 𝑟𝑟(𝑐𝑐)  +  𝑟𝑟𝑛𝑛(𝑤𝑤) 𝛿𝛿 +  𝜖𝜖𝑛𝑛(𝑤𝑤) (1 +  𝛿𝛿)

𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐) 
 

=   
− 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝜖𝜖(𝑐𝑐) / 𝑟𝑟(𝑐𝑐)  + 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝛿𝛿 + 𝜖𝜖𝑛𝑛(𝑤𝑤) (1 +  𝛿𝛿)  

𝑟𝑟(𝑐𝑐)  +  𝜖𝜖(𝑐𝑐)
 

∈ 𝑉𝑉( 
 − 𝑅𝑅(𝑣𝑣) ∗ 𝐸𝐸(𝑐𝑐)  +  𝑅𝑅(𝑤𝑤) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]  +  𝐸𝐸(𝑤𝑤) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]  

𝑅𝑅(𝑐𝑐)  +  𝐸𝐸(𝑐𝑐)
)  

=   𝑉𝑉�𝐸𝐸(𝑣𝑣)�. 
 
QED 
 
Notice that, for any 𝑥𝑥,𝐸𝐸(𝑥𝑥) is either a symbol (in the case when x is an input or a past output), 
a constant interval (in the case x is a constant value) or is defined as a linear expression over 
other error set abstractions. Therefore any 𝐸𝐸(𝑥𝑥) can be expressed as a linear combination of 
input symbols 𝑈𝑈𝑖𝑖 and past output symbols 𝑌𝑌𝑖𝑖. 
 
Suppose that for the output variable 𝑦𝑦, 𝐸𝐸(𝑦𝑦) ∈ 𝒜𝒜 is  
 

 𝐸𝐸(𝑦𝑦) =  𝐴𝐴0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐴𝐴𝑁𝑁 𝑈𝑈𝑛𝑛−𝑁𝑁+1  + 𝐵𝐵1 𝑌𝑌𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁 𝑌𝑌𝑛𝑛−𝑁𝑁+1 +  𝑃𝑃 (94) 

Without loss of generality we can assume 𝑃𝑃 is symmetric about 0. Indeed, we can always enlarge 
P into a symmetric interval and the effect will be a larger 𝐸𝐸(𝑦𝑦).  We can treat 𝑃𝑃 similar to an 
input error at iteration 𝑛𝑛 + 1 by introducing a symbolic variable 𝑃𝑃𝑛𝑛+1. 
 

 𝐸𝐸(𝑦𝑦) =  𝐴𝐴0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐴𝐴𝑁𝑁 𝑈𝑈𝑛𝑛−𝑁𝑁+1  + 𝐵𝐵1 𝑌𝑌𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁 𝑌𝑌𝑛𝑛−𝑁𝑁+1 + [1,1] 𝑃𝑃𝑛𝑛+1 (95) 

We will define recursively 𝐸𝐸𝑛𝑛(𝑦𝑦) ∈ 𝒜𝒜 to be the unfolded version of 𝐸𝐸(𝑦𝑦) of  “depth” 𝑛𝑛. 
 

 𝐸𝐸𝑘𝑘(𝑦𝑦) = [0,0]       if  𝑘𝑘 = 0, . . . ,𝑁𝑁 − 1  (96) 

 𝐸𝐸𝑘𝑘+1(𝑦𝑦)  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸(𝑦𝑦),𝑌𝑌𝑛𝑛 → 𝐸𝐸𝑘𝑘(𝑦𝑦), . . . ,𝑌𝑌𝑛𝑛−𝑁𝑁+1 → 𝐸𝐸𝑘𝑘−𝑁𝑁+1(𝑦𝑦))     for  𝑘𝑘 ≥ 𝑁𝑁 (97) 

With these definitions,  
 

 𝐸𝐸𝑛𝑛+1(𝑦𝑦) =  𝐶𝐶0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐶𝐶𝑁𝑁 𝑈𝑈1  + 𝐷𝐷0 𝑃𝑃𝑛𝑛+1 + . . . + 𝐷𝐷𝑛𝑛𝑃𝑃1 (98) 

where 𝐶𝐶𝑛𝑛, 𝐷𝐷𝑛𝑛are intervals and for 𝑛𝑛 >  𝑁𝑁, 
 

 𝐶𝐶𝑛𝑛+1  =  𝐵𝐵1𝐶𝐶𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁𝐶𝐶𝑛𝑛−𝑁𝑁+1  (99) 

 𝐷𝐷𝑛𝑛+1  =  𝐵𝐵1𝑃𝑃𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁𝑃𝑃𝑛𝑛−𝑁𝑁+1 (100) 



Approved for Public Release; Distribution Unlimited. 
37 

4.1.7.3. Error Bounds for First-Order Linear Filters 

For a first order filter, the recurrence equations are 

𝐶𝐶0  =  𝐴𝐴0 (101) 

𝐶𝐶1  =  𝐴𝐴1 +  𝐵𝐵1𝐴𝐴0  (102) 

𝐶𝐶𝑛𝑛+1  =  𝐵𝐵1𝐶𝐶𝑛𝑛  (103) 

𝐷𝐷0  = [1,1]  (104) 

𝐷𝐷1  =  𝐵𝐵1[1,1]  =  𝐵𝐵1 (105) 

𝐷𝐷𝑛𝑛+1  =  𝐵𝐵1𝐷𝐷𝑛𝑛 (106) 

which have the solution 

𝐶𝐶𝑛𝑛+1  =  𝐶𝐶1𝐵𝐵1𝑛𝑛  (107) 

𝐷𝐷𝑛𝑛+1  =  𝐷𝐷1𝐵𝐵1𝑛𝑛  =  𝐵𝐵1𝑛𝑛+1 (108) 

Let 𝑉𝑉 the value function for which 𝑉𝑉(𝑈𝑈𝑖𝑖)  =  𝐸𝐸𝐸𝐸(𝑢𝑢𝑖𝑖) (the set of error values for 𝑢𝑢𝑖𝑖) and 𝑉𝑉(𝑃𝑃𝑖𝑖)  =
 𝑃𝑃. Then 

𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))  =  𝐶𝐶0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1)  +  𝐶𝐶1 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛) + . . .𝐶𝐶1𝐵𝐵1𝑛𝑛𝐸𝐸𝐸𝐸(𝑢𝑢1)  + 
 𝐷𝐷0 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1)  + 𝐷𝐷1 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) + . . .𝐷𝐷1𝐵𝐵1𝑛𝑛𝐸𝐸𝐸𝐸(𝑝𝑝1) 

(109) 

For an interval 𝐼𝐼 = [𝑎𝑎, 𝑏𝑏], let 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐼𝐼| = max{ |𝑥𝑥| | 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]}  =  𝑚𝑚𝑚𝑚𝑚𝑚(|𝑎𝑎|, |𝑏𝑏|). 

As 𝐸𝐸𝐸𝐸(𝑢𝑢) and 𝑃𝑃 are symmetric about 0, 

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))|  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)  + 
 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  + 

      𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)(1 + . . . + (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛) 
 =  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)  +  

 (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃))(1 + . . . + (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛) 

For example, let’s reconsider the lead lag filter described by 

𝑦𝑦0  =  0 (110) 

𝑦𝑦𝑛𝑛+1 =  
9

13
𝑢𝑢𝑛𝑛+1 −  

7
13

𝑢𝑢𝑛𝑛 +  
11
13

𝑦𝑦𝑛𝑛 (111) 

with 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈  [−1, 1]. 

The analysis produces the following recurrence equation for the accumulated error after 𝑛𝑛 +  1 
iterations 
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 𝐸𝐸𝑛𝑛+1(𝑦𝑦)  =   𝐴𝐴0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1)  + 𝐴𝐴1𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛)  +  𝐵𝐵1𝐸𝐸𝐸𝐸(𝑦𝑦𝑛𝑛)  +  𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1)  (112) 

 
where 

 𝐴𝐴0 =  �0.69230720700609994212820001624950,
0.69230816632349415561292123758108

� (113) 

 𝐴𝐴1 =  [−0.53846195604689442353836541364470, 

              −0.53846117730685048103835362264472] 
(114) 

 𝐵𝐵1 =  [0.84615337425443068269699198003444, 

              0.84615438577002839040341485924719] 
(115) 

 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) = 𝑃𝑃 =  [−0.00000073359592004213967781243823, (116) 

                                   0.00000073359592004213967781243823] 
Therefore, 

 �𝑉𝑉�𝐸𝐸𝑛𝑛+1(𝑦𝑦)��  ≤ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + . . . + 𝛽𝛽𝑛𝑛) (117) 

 
where 
𝐶𝐶0 = 𝐴𝐴0 =  [0.69230720700609994212820001624950,  

           0.69230816632349415561292123758108] (118) 

 
𝐶𝐶1 = 𝐴𝐴1 + 𝐵𝐵1𝐶𝐶0  =  [0.04733612318197767638922552809080,  

   0.04733841393218037023261187048824] (119) 

 
 
𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶0|𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸𝐸𝐸(𝑢𝑢)� + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)  =  0.00000081612548469976751733157194 
𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶1|𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸𝐸𝐸(𝑢𝑢)� +  𝑚𝑚𝑚𝑚𝑚𝑚|𝐵𝐵1|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) =  0.00000062637858381997158563381300 
β = max|𝐵𝐵1| = 0.84615438577002839040341485924719 
 

4.1.7.4. Error Bounds for Second-Order Linear Filters 

For a second-order filter, the recurrence equations are 
 𝐶𝐶0  =  𝐴𝐴0  (120) 

 𝐶𝐶1  =  𝐴𝐴1  +  𝐵𝐵1𝐶𝐶0 (121) 

 𝐶𝐶2  =  𝐴𝐴2  +  𝐵𝐵1𝐶𝐶1  +  𝐵𝐵2𝐶𝐶0  (122) 

 𝐶𝐶𝑛𝑛+1  =  𝐵𝐵1𝐶𝐶𝑛𝑛 + 𝐵𝐵2𝐶𝐶𝑛𝑛−1 (123) 

 𝐷𝐷0  = [1,1]  (124) 

 𝐷𝐷1  =  𝐵𝐵1[1,1]  =  𝐵𝐵1 (125) 

 𝐷𝐷2 =  𝐵𝐵1𝐷𝐷1  +  𝐵𝐵2[1,1]  =  𝐵𝐵12 + 𝐵𝐵2 (126) 

 𝐷𝐷𝑛𝑛+1  =  𝐵𝐵1𝐷𝐷𝑛𝑛 + 𝐵𝐵2𝐷𝐷𝑛𝑛−1 (127) 
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Consider all the solutions 𝑟𝑟1 < 𝑟𝑟2 of the equation 
 𝑥𝑥2 =  𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 (128) 

with 𝑏𝑏1 ∈ 𝐵𝐵1 and 𝑏𝑏2 ∈ 𝐵𝐵2. Then  
 

𝑅𝑅1 =  
𝐵𝐵1 − � 𝐵𝐵12 + 4𝐵𝐵2

2
  (129) 

 
𝑅𝑅2 =  

𝐵𝐵1 + � 𝐵𝐵12 + 4𝐵𝐵2
2

 (130) 

and therefore 
 {𝑟𝑟1 | 𝑟𝑟1  the smaller solution of 𝑥𝑥2 =  𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 for 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖}  ⊆ 𝑅𝑅1  
 {𝑟𝑟2 | 𝑟𝑟2  the larger solution of 𝑥𝑥2 =  𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 for 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖}  ⊆ 𝑅𝑅2  

 
 
In the case when 𝑅𝑅1and 𝑅𝑅2 do not intersect, we can define a few constants that are needed in 
what follows  
 

 
𝛽𝛽1  =  

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅2)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

  (131) 

 
𝛽𝛽2  =  

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 − 𝑅𝑅1)  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1) 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

 (132) 

 𝛽𝛽 =  𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽1,𝛽𝛽2)  (133) 

 
𝑀𝑀 =  𝑚𝑚𝑚𝑚𝑚𝑚(

𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1𝑅𝑅2  −  𝐶𝐶2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2 − 𝐶𝐶1𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

)  (134) 

 
𝑁𝑁 =  𝑚𝑚𝑚𝑚𝑚𝑚(

𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1𝑅𝑅2 −  𝐷𝐷2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2 −  𝐷𝐷1𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

)  (135) 

 
 
 
Theorem:  If 0 < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) then for any 𝑛𝑛 > 1,  
 
|𝐸𝐸𝑛𝑛+2(𝑦𝑦)| ≤ [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0|  +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1|  +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2|  +  2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) (1 + . . . + 𝛽𝛽𝑛𝑛−1)] 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  

          [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷0| +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2| +  2 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2)(1 + . . . + 𝛽𝛽𝑛𝑛−1)] 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) 
 (136) 

The theorem implies that 
 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))|  ≤  𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 +  𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1 + ⋯+  𝛽𝛽𝑛𝑛)  (137) 

 
where  

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  = [max|𝐶𝐶0| + max|𝐶𝐶1| + max|𝐶𝐶2|] max�𝐸𝐸𝐸𝐸(𝑢𝑢)� + 
                    [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷0| +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2|] max(P) (138) 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  2 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) (139) 
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Notations:  Let 𝑐𝑐0, 𝑐𝑐1, . .. be such that 𝑐𝑐0 ∈ 𝐶𝐶0, 𝑐𝑐1 ∈ 𝐶𝐶1 and ∀ 𝑛𝑛 > 0. 𝑐𝑐𝑛𝑛+1 =  𝑏𝑏𝑛𝑛+1,1 𝑐𝑐𝑛𝑛  +
 𝑏𝑏𝑛𝑛+1,2 𝑐𝑐𝑛𝑛−1 with 𝑏𝑏𝑛𝑛+1,𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖.   For each 𝑛𝑛 >  0, let  𝑟𝑟𝑛𝑛+1,1 <  𝑟𝑟𝑛𝑛+1,2  be the solutions of  
 

 𝑥𝑥2 =  𝑏𝑏𝑛𝑛+1,1𝑥𝑥 + 𝑏𝑏𝑛𝑛+1,2 (140) 

 
 
and let 𝑠𝑠𝑛𝑛+1 and 𝑡𝑡𝑛𝑛+1 be the solutions of 
 

 𝑐𝑐𝑛𝑛−1 =  𝑠𝑠𝑛𝑛+1  + 𝑡𝑡𝑛𝑛+1 (141) 

 𝑐𝑐𝑛𝑛 =  𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2  (142) 

 
 
Lemma 3:   If 0 < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) then  

𝑚𝑚𝑎𝑎𝑥𝑥 (|𝑠𝑠3|, |𝑡𝑡3|)  ≤ 𝑀𝑀  
𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+2|, |𝑡𝑡𝑛𝑛+2|)  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) ∗ 𝛽𝛽 

 
Proof:   𝑠𝑠3 and 𝑡𝑡3 are the solutions of the system 

 𝑐𝑐1  =   𝑠𝑠3 +  𝑡𝑡3 (143) 

 𝑐𝑐2  =   𝑠𝑠3 𝑟𝑟3,1  +  𝑡𝑡3𝑟𝑟3,2 (144) 

 
Therefore 
 

 𝑠𝑠3  =  
𝑐𝑐1𝑟𝑟3,2  −  𝑐𝑐2
𝑟𝑟3,2  −  𝑟𝑟3,1

  (145) 

 
𝑡𝑡3  =  

𝑐𝑐2 −  𝑐𝑐1𝑟𝑟3,1

𝑟𝑟3,2  −  𝑟𝑟3,1
  (146) 

 
 
which imply the first inequality of Lemma 3.  Now, for any 𝑛𝑛 >  1,  
 
 𝑐𝑐𝑛𝑛+1 = 𝑏𝑏𝑛𝑛+1,1 𝑐𝑐𝑛𝑛 +  𝑏𝑏𝑛𝑛+1,2 𝑐𝑐𝑛𝑛−1 =  𝑏𝑏𝑛𝑛+1,1(𝑠𝑠𝑛𝑛+1  𝑟𝑟𝑛𝑛+1,1  + 𝑡𝑡𝑛𝑛+1  𝑟𝑟𝑛𝑛+1,2)  +  𝑏𝑏𝑛𝑛+1,2 (𝑠𝑠𝑛𝑛+1 + 𝑡𝑡𝑛𝑛+1)  
          =  𝑠𝑠𝑛𝑛+1 (𝑏𝑏𝑛𝑛+1,1  𝑟𝑟𝑛𝑛+1,1  +  𝑏𝑏𝑛𝑛+1,2)  +  𝑡𝑡𝑛𝑛+1(𝑏𝑏𝑛𝑛+1,1  𝑟𝑟𝑛𝑛+1,2  + 𝑏𝑏𝑛𝑛+1,2)  (147) 

           =  𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1
2  + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2

2  
 
From the definitions of  𝑟𝑟𝑛𝑛+1,𝑖𝑖 and  𝑟𝑟𝑛𝑛+2,𝑖𝑖, 
 

 𝑐𝑐𝑛𝑛 = 𝑠𝑠𝑛𝑛+1  𝑟𝑟𝑛𝑛+1,1  +  𝑡𝑡𝑛𝑛+1  𝑟𝑟𝑛𝑛+1,2  =  𝑠𝑠𝑛𝑛+2 +  𝑡𝑡𝑛𝑛+2  (148) 

 𝑐𝑐𝑛𝑛+1  =  𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1
2  + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2

2  =  𝑠𝑠𝑛𝑛+2 𝑟𝑟𝑛𝑛+2,1  +  𝑡𝑡𝑛𝑛+2 𝑟𝑟𝑛𝑛+2,1  (149) 
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and by solving this system for 𝑠𝑠𝑛𝑛+2 and 𝑡𝑡𝑛𝑛+2 we get 
 

∀𝑛𝑛 > 0. 𝑠𝑠𝑛𝑛+2 = 𝑠𝑠𝑛𝑛+1
 𝑟𝑟𝑛𝑛+1,1� 𝑟𝑟𝑛𝑛+2,2 −   𝑟𝑟𝑛𝑛+1,1�

 𝑟𝑟𝑛𝑛+2,2  −  𝑟𝑟𝑛𝑛+2,1
+ 𝑡𝑡𝑛𝑛+1

 𝑟𝑟𝑛𝑛+1,2( 𝑟𝑟𝑛𝑛+2,2 −  𝑟𝑟𝑛𝑛+1,2)
 𝑟𝑟𝑛𝑛+2,2 −   𝑟𝑟𝑛𝑛+2,1

  (150) 

 
∀𝑛𝑛 > 0. 𝑡𝑡𝑛𝑛+2  =  𝑠𝑠𝑛𝑛+1

 𝑟𝑟𝑛𝑛+1,1� 𝑟𝑟𝑛𝑛+1,1 −   𝑟𝑟𝑛𝑛+2,1�
 𝑟𝑟𝑛𝑛+2,2 −  𝑟𝑟𝑛𝑛+2,1

+ 𝑡𝑡𝑛𝑛+1
 𝑟𝑟𝑛𝑛+1,2( 𝑟𝑟𝑛𝑛+1,2 −   𝑟𝑟𝑛𝑛+2,1)

 𝑟𝑟𝑛𝑛+2,2 −   𝑟𝑟𝑛𝑛+2,1
 (151) 

 

 
 
therefore  
 

 
|𝑠𝑠𝑛𝑛+2|  ≤ |𝑠𝑠𝑛𝑛+1|  

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

 +  |𝑡𝑡𝑛𝑛+1|  
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅2)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)
  (152) 

 

|𝑡𝑡𝑛𝑛+2|  ≤ |𝑠𝑠𝑛𝑛+2| 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 −  𝑅𝑅1)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
 + |𝑡𝑡𝑛𝑛+1|  

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1) 
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

 

 

(153) 

and thus 
 

 |𝑠𝑠𝑛𝑛+2|  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) 𝛽𝛽1 (154) 

 |𝑡𝑡𝑛𝑛+2|  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) 𝛽𝛽2 (155) 

which imply the second inequality of Lemma 3. QED 
 
Proof of Theorem:  From Lemma 3,  
 

 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+2|, |𝑡𝑡𝑛𝑛+2|) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|)𝛽𝛽 ≤ 𝑀𝑀 𝛽𝛽𝑛𝑛−1 (156) 

 
 
Thus 
 

 |𝑐𝑐𝑛𝑛+2|  ≤ 𝑀𝑀𝛽𝛽𝑛𝑛−1 𝑟𝑟1  +  𝑀𝑀𝛽𝛽𝑛𝑛−1 𝑟𝑟2  <  2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (157) 

which implies 
 

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶𝑛𝑛+2|  ≤ 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (158) 

 
Similarly, for the sequence 𝐷𝐷𝑛𝑛,  
 

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷𝑛𝑛+2|  ≤ 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (159) 

 
Thus 
 

𝐸𝐸𝑛𝑛+2(𝑦𝑦)  ∈  𝐶𝐶0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + . . . +  𝐶𝐶𝑛𝑛 𝐸𝐸𝐸𝐸(𝑢𝑢1)  +  𝐷𝐷0 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1) + . . . +  𝐷𝐷𝑛𝑛 𝐸𝐸𝐸𝐸(𝑝𝑝1)  
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|𝐸𝐸𝑛𝑛+2(𝑦𝑦)|  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐶𝐶𝑛𝑛| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  

 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐷𝐷0|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)+ . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐷𝐷𝑛𝑛|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)                                               (160) 

  = (𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶0| +  𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶1| +  𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶2| +  2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2)(1 + ⋯+ 𝛽𝛽𝑛𝑛−1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢))  +  

               𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷0|  + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷1|  + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷2|  + 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑅𝑅2) (1 + ⋯+ 𝛽𝛽𝑛𝑛−1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)  
 
QED 
 
Example:  consider again the second-order filter (from Section 4.2.4) 
 
𝑦𝑦0 = 𝑦𝑦1  =  0 (161) 

  (162) 

𝑦𝑦𝑛𝑛+1  =  
592841

78010601 
𝑢𝑢𝑛𝑛+1 +  

1185682
78010601 

𝑢𝑢𝑛𝑛  +  
592841

78010601 
𝑢𝑢𝑛𝑛−1 +

126814318
78010601 

𝑦𝑦𝑛𝑛  −  
51175081
78010601 

𝑦𝑦𝑛𝑛−1 

 
where 𝑢𝑢0 = 𝑢𝑢1 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈  [−100, 100].  
 
The analysis produces the following recurrence equation for the accumulated error of the output 
 
𝐸𝐸𝑛𝑛+1(𝑦𝑦) =  𝐴𝐴0𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + 𝐴𝐴1𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛) + 𝐴𝐴2𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛−1) + 𝐵𝐵1𝐸𝐸𝐸𝐸(𝑦𝑦𝑦𝑦) + 𝐵𝐵2𝐸𝐸𝐸𝐸(𝑦𝑦𝑛𝑛−1)  + 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1)  

  
where  
𝐴𝐴0 = [0.00759948777424905218315802011899,  
          0.00759950078268356597649013476543]  
𝐴𝐴1 = [0.01519897917221431452601296749856,  
         0.01519900518909170492103914110864]  
𝐴𝐴2 = [0.00759948868017869869646495929948, 
          0.00759949987675258472756483898753]  
𝐵𝐵1 = [1.62560296051380471713218194062187,  
          1.62560458404225805892680063197886]  
𝐵𝐵2 = [-0.65600182747582427514452884015165,  
         -0.65600128735740701548264934562427]  
𝑃𝑃 = [-0.00003958948071918890118042099520,  
          0.00003958948071918890118042099520] 
 
𝐶𝐶0 = 𝐴𝐴0 = [0.00759948777424905218315802011899,  
                  0.00759950078268356597649013476543]  
𝐶𝐶1 = 𝐴𝐴1+ 𝐵𝐵1𝐶𝐶0 = [0.02755272899642203819834661633796,          
                             0.02755278849785483774577685006890]  
𝐶𝐶2 = 𝐴𝐴2 + 𝐵𝐵1𝐶𝐶1 + 𝐵𝐵2𝐶𝐶0 

= [0.04740400010565253933432332363906,  
     0.04740416539884795655834288117112]  

𝐷𝐷0 = [1,1]  

  (163) 
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𝐷𝐷1 = 𝐵𝐵1 [1,1] = 𝐵𝐵1 = [1.62560296051380471713218194062187, 
1.62560458404225805892680063197886] 

𝐷𝐷2 = 𝐵𝐵1 𝐷𝐷1 + 𝐵𝐵2  [1,1] = 𝐵𝐵12 + 𝐵𝐵2 
     = [1.98658315775542226318354179506256, 
         1.98658897630179582912383485351786] 

𝑅𝑅1 =  
𝐵𝐵1  −  �𝐵𝐵12  +  4 𝐵𝐵2

2
 

(164) 

    = [0.74463786417476000521570285455046, 
          0.74465231893245232206672049472825] 

𝑅𝑅2 =  
𝐵𝐵1 +  �𝐵𝐵12  +  4 𝐵𝐵2

2
 (165) 

     = [0.88095145334557906596277079157211, 
         0.88096590810327138281378843174991] 

𝛽𝛽1 =  
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅2)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)
(166) 

 =  0.74490369020164437255103955622501 

𝛽𝛽2 =  
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 −  𝑅𝑅1)  +  𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)
(167) 

 =  0.88123173566310767125443267351180 

𝛽𝛽 =  𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽1,𝛽𝛽2)  =  0.88122124050850451432751993407794 (168) 

𝑀𝑀 =  𝑚𝑚𝑚𝑚𝑚𝑚(
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1 𝑅𝑅2 −  𝐶𝐶2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2 −  𝐶𝐶1 𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 −  𝑅𝑅1)

) (169) 

 =  0.19726728451018537213720993866727 

𝑁𝑁 =  𝑚𝑚𝑚𝑚𝑚𝑚(
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1 𝑅𝑅2 −  𝐷𝐷2|}{}

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2 −  𝐷𝐷1 𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

) (170) 

      =  5.69411877140933861544292553129993  

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  0.00018357849766142422504207973351 (171) 

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  0.00040133074049677426939408818760 (172) 

4.1.8. Accumulating Integrators: Error Range Functions 
In contrast to digital filters, accumulating integrators have no discounting mechanism for past 
inputs.  Instead, the output range intentionally grows without bound.   An analysis of the 
floating-point errors can only give bounds as a function of the number of iterations.   The analyst 
can then decide how many iterations to allow before the error becomes unacceptable. 
Let  
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 𝑥𝑥0  =  0  (173) 

 𝑥𝑥𝑛𝑛+1  =   𝑥𝑥𝑛𝑛 +  𝑐𝑐 (174) 

 
 
be the recursive equation of an integrator. In this case, we are interested in the range of values 
after at most 𝑛𝑛 iterations, which is [0, 𝑛𝑛𝑛𝑛] or [𝑛𝑛𝑛𝑛, 0] depending whether 𝑐𝑐 is a positive or negative 
constant. 
  
To find the error range after 𝑛𝑛 iterations or less, we cannot use the same expressions as for the 
analysis of filters. In that case, we used the fact that all the variables involved have finite ranges 
which we computed in advance. However, we can adapt the method by changing the symbolic 
interval combinations used for filters with symbolic combinations over linear expressions in 𝑛𝑛, 
the number of iterations. 
 
The real value after 𝑛𝑛 iterations is 𝑅𝑅𝑛𝑛(𝑥𝑥)  =  𝑛𝑛𝑛𝑛. In the simple case when 𝑐𝑐 is found to be 
representable then the error found is 0. Otherwise, the analysis finds the following recurrence 
relation. 
 

 𝐸𝐸𝑛𝑛+1(𝑥𝑥)  =  𝐸𝐸𝑛𝑛(𝑥𝑥) 𝐵𝐵1  + 𝑄𝑄𝑛𝑛 +  𝑃𝑃  (175) 

 𝐵𝐵1 =  [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]  (176) 

 𝑄𝑄 =  𝑐𝑐 ∗  [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]  (177) 

 𝑃𝑃 =  𝐸𝐸(𝑐𝑐)  ∗  [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (178) 

 
 
from which we get the closed form 
 

|𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑥𝑥))|  ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑄𝑄| (𝑛𝑛 +  (𝑛𝑛 − 1)𝛽𝛽 + ⋯  + 𝛽𝛽𝑛𝑛)  +  𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃| (1 +  𝑏𝑏𝑏𝑏 + ⋯  +  𝛽𝛽𝑛𝑛)  
  (179) 

where 𝛽𝛽 =  1 + 𝜖𝜖𝑚𝑚.  Notice that  
 

𝑛𝑛 +  (𝑛𝑛 − 1)𝛽𝛽 + ⋯  + 𝛽𝛽𝑛𝑛  

=  (1 +  𝑏𝑏𝑏𝑏 + ⋯  + 𝛽𝛽𝑛𝑛)  +  (1 +  𝑏𝑏𝑏𝑏 + ⋯  +  𝛽𝛽𝑛𝑛−1) +  … +  1  

 
 

 
=  

𝛽𝛽𝑛𝑛+1  −  1
𝛽𝛽 −  1

 +  
𝛽𝛽𝑛𝑛  −  1
𝛽𝛽 −  1

 + ⋯  +
 𝛽𝛽 −  1
𝛽𝛽 −  1

 (180) 

=  
𝛽𝛽 + ⋯  + 𝛽𝛽𝑛𝑛+1 − 𝑛𝑛

𝛽𝛽 − 1
 

=
 𝛽𝛽

𝛽𝛽 − 1
(1 + ⋯+ 𝛽𝛽𝑛𝑛)  −  

𝑛𝑛
𝛽𝛽 − 1
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and therefore 
 

�𝑉𝑉�𝐸𝐸𝑛𝑛+1(𝑥𝑥)�� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|
𝛽𝛽

𝛽𝛽 − 1
(1 + 𝛽𝛽 + ⋯  +  𝛽𝛽𝑛𝑛) −𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|

𝑛𝑛
𝛽𝛽 − 1

 +  

                              𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃| (1 + 𝛽𝛽 + ⋯+ 𝛽𝛽𝑛𝑛)  
 
or  
 

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))|  ≤ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  +  𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + 𝛽𝛽 + ⋯+ 𝛽𝛽𝑛𝑛)  +  𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 
 
where  

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  0  

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|
𝛽𝛽

𝛽𝛽 − 1
+ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃|  =  (|𝑐𝑐|  +  𝐸𝐸(𝑐𝑐))(1 + 𝜖𝜖𝑚𝑚)  

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  −
𝑚𝑚𝑚𝑚𝑚𝑚 |𝑄𝑄|
𝛽𝛽 − 1

 

 
Example:   Consider the integrator described by  
 

 𝑥𝑥0  =  0  (181) 

 𝑥𝑥𝑛𝑛+1  =   𝑥𝑥𝑛𝑛 +  0.1 (182) 

 
 
with the output variable given by 𝑦𝑦𝑛𝑛 =  𝑥𝑥𝑛𝑛 ∗  3.2.   This is the essence of the integrator that 
caused the Patriot Missile failure.  The error bound for the integrator is then  

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑥𝑥))|  ≤ 𝐴𝐴𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  +  𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + ⋯  + 𝛽𝛽𝑛𝑛)  +  𝑁𝑁𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 
where  

𝐴𝐴𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  0  

𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  (|𝑐𝑐|  +  𝐸𝐸(𝑐𝑐))(1 + 𝜖𝜖𝑚𝑚)  =  0.10000001788139414315992326010019  

𝑁𝑁𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  − |𝑐𝑐|  =  − 0.1  
 
The error bound on the output is 

𝐸𝐸𝑛𝑛(𝑦𝑦)  =  𝑅𝑅𝑛𝑛(𝑦𝑦) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + [𝐸𝐸(3.2) ∗ 𝑅𝑅𝑛𝑛(𝑥𝑥) + (3.2 + 𝐸𝐸(3.2)) ∗ 𝐸𝐸𝑛𝑛(𝑥𝑥)] ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] 
  (183) 

and thus 
 
𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))|  ≤ 0.32 𝜖𝜖𝑚𝑚𝑛𝑛  
                   + [𝐸𝐸(3.2) ∗ 0.1 𝑛𝑛 +  �3.2 + 𝐸𝐸(3.2)� ∗ (𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + ⋯  +  𝛽𝛽𝑛𝑛) − 0.1 𝑛𝑛)] (1 + 𝜖𝜖𝑚𝑚) 

                    =  𝐴𝐴𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  +  𝑀𝑀𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1 + ⋯  +  𝛽𝛽𝑛𝑛)  +  𝑁𝑁𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛  (184) 
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where 
𝐴𝐴𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  0         
𝑀𝑀𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  =  �3.2 +  𝐸𝐸(3.2)�(1 + 𝜖𝜖𝑚𝑚)𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 =  0.32000011444093274803971696172939 (185) 

𝑁𝑁𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.32 𝜖𝜖𝑚𝑚 +  0.1 𝐸𝐸(3.2)(1 + 𝜖𝜖𝑚𝑚) −  �3.2 +  𝐸𝐸(3.2)�0.1 (1 + 𝜖𝜖𝑚𝑚) 
 = 0.32 𝜖𝜖𝑚𝑚 −  0.32 (1 + 𝜖𝜖𝑚𝑚)  =  − 0.32 

4.2. Summary of Filter Test Suite Results 

The development of the first year analysis of Linear Digital Filters was guided by, tuned, and 
ultimately tested for round trip integration by a suite of test cases designed by the Honeywell 
team. These consisted of Simulink models of representative filter applications, their generated C 
implementations and their generated JSON files describing model-level properties of the 
generated code to be exploited by CodeHawk. This section summarizes the results of each of 
these test cases.  

General Significance and Organization of the Results. 

As discussed in Section 3.1, the goal of the combined model-level and code-level analysis is to 
derive precise, consistent bounds for the range and numerical error of the filter outputs. Both the 
range and error need to be bounded in order to guarantee stability of the control algorithm. As we 
have pointed out earlier in this report, most static analysis tools are not able to compute such a 
bound and can thus report high bounds. This forces current practices to rely upon informal, 
empirical manual analysis/reviews and simulations of the code. Our results demonstrate that our 
combined analysis technique proves precise, conservative bounds for both variable range and 
numerical error – representing a definite advancement in the state-of-art of static analysis 
approaches for numerical algorithms. 

Range Bounds Results: The range at the output of the filter is theoretically expected to be 
bounded. The bounds should be stable over time – often proportionally related to the input range 
bound based upon the filter coefficients which are derived from the time constants (Tn and Td) of 
the filter and the sample period (Ts). As presented in the following subsections, the results 
returned by the CodeHawk analysis of filter range bounds on he source code confirm the 
theoretically expected properties. Furthermore the bounds are precise (tight), yet conservative – 
i.e., representing the worst case if value at the filter input is varied within its range arbitrarily
over time. 

Numerical Error Bounds Results: For a properly designed filter, the numerical error at the 
output of the filter is expected to be bounded to a small value (less than 1% of the range) in order 
to achieve control stability. The error bounds should be convergent over time. The ideal dynamic 
scenario is that the numerical error should approach 0 as time approaches infinity if the filter 
input is held at a constant value. This ideal dynamic scenario, however, is hard to achieve in a 
static analysis framework. Thus, industry practice relies on empirically testing the tolerance for 
error to be within 1% of the variable value. Our analysis proves the error bound to be well within 
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this tolerance even for 2nd order (quadratic) filter; furthermore the error bound remains constant 
with time. 

4.2.1. Filter Example using a Resettable Lead Lag Filter 

Figure 13 Resettable Lead Lag Filter - Test Model Diagram 

Figure 13 shows ‘errorcomp’, a model with two resettable lead lag filters in series, creating a 2nd 
order filter.  The next subsection describes the transfer function and difference equation 
derivation for this class of filters. Following subsection shows the analysis results assuming the 
filter runs for 72,000 seconds at 40 Hz (25 ms period).  

4.2.1.1. Resettable Lead Lag Filter Transfer Function 

Figure 14 shows the Resettable Lead Lag filter as it appears as a block in MATLAB Simulink. 
This class of filters has two time constants, Tn and Td, that are both constants for a particular 
filter instance. There are additional reset (IC) and reset value (ICV) inputs that allow the filter to 
be reset. 

Figure 14 Resettable Lead Lag Filter 
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The following is the transfer function derivation for this filter class: 

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏):    𝒚𝒚 = 𝑰𝑰𝑰𝑰𝑰𝑰 

Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):  

General form:   

Continuous domain:     𝑯𝑯(𝒔𝒔) = 𝑻𝑻𝒏𝒏𝒔𝒔+𝟏𝟏
𝑇𝑇𝑑𝑑𝒔𝒔+𝟏𝟏

              Discrete domain:     𝑯𝑯(𝒛𝒛) = 𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
 

Coefficient definitions (all coefficients are constant) 

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

                  𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

                  𝒌𝒌𝟑𝟑 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

                  𝒌𝒌𝟒𝟒 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

 

Difference equation: 
 𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (186) 
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4.2.1.2. Analysis results after 72,000 Seconds (20 hrs) 

 

Figure 15 Resettable Lead Lag Filter - 72000 Seconds 

In Figure 15, variable CMP_ERROR shows the analysis for the final output of the model in 
Figure 13 for a run time of 72000 seconds. Cmp3 and cmp4 show the analysis for the outputs of 
filters cmp3 and cmp4 respectively. The output of cmp4 matches the values of CMP_ERROR 
because there is no intervening functionality. For the filter cmp3, the normal (operational) range 
of the filter input is [-2, 2] which also happens to be a hard range constraint since there is a limit 
block before cmp3, constraining the range not to exceed [-2, 2] even if abnormal values are 
present at the input variable of the model named ERROR. Note that the range bounds reported in 
Figure 15 are convergent over time; i.e. filter output range is bounded by the values shown when 
input value varies arbitrarily within its range over infinite time. The range bounds of [-3.9506, 
3.9506] for cmp3 output are precise and compliant with the theoretically expected bounds for the 
specific values of filter coefficients for cmp3. Likewise for cmp4. 

The worst case numerical error bound (WCEB) for cmp3 output, after 72000 seconds of 
operation, is [-2.29e-004, -2.29e-004] over the range of [-3.9506, 3.9506] – this is two orders of 
magnitude less than the empirical practice tolerance of 1%. 
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4.2.2. Filter Example using a Variable Lag Filter 

 

Figure 16 Variable Lag Filter - Test Model Diagram 

Figure 16 shows ‘high_lim_setpoint’, a model containing a variable lag filter with a fixed tau.  
The next subsection describes the transfer function and difference equation derivation for this 
class of filters.   Following subsection  shows the analysis results assuming the filter runs for 
72,000 seconds at 10 Hz (100 ms period).  

4.2.2.1. Variable Lag Filter Transfer Function 

Figure 17 shows the Variable Lag filter as it appears as a block in MATLAB Simulink. This 
class of filters has a variable tau, τ, that determines the lag according to the transfer function. 
There are additional reset (IC) and reset value (ICV) inputs that allow the filter to be reset. 

 

Figure 17 Variable Lag Filter 

  

varLag

In

ICV

IC
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The following is the transfer function derivation for this filter class: 

Reset Mode (when 𝐈𝐈𝐈𝐈 = 𝟏𝟏):    𝐲𝐲 = 𝐈𝐈𝐈𝐈𝐈𝐈 

Filter Mode Transfer Function (when 𝐈𝐈𝐈𝐈 = 𝟎𝟎):  
General form:   

Continuous domain:     𝑯𝑯(𝒔𝒔) = 𝟏𝟏
𝝉𝝉𝝉𝝉+𝟏𝟏

              Discrete domain:     𝑯𝑯(𝒛𝒛) = 𝟏𝟏+𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
 

Coefficient definitions (𝝉𝝉 is given as an input) 

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝟐𝟐
𝑻𝑻𝒔𝒔

                  𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝟐𝟐
𝑻𝑻𝒔𝒔

 

Difference equation: 
 𝒚𝒚𝒏𝒏 = (𝒖𝒖𝒏𝒏 + 𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (187) 

4.2.2.2. Analysis results after 72,000 Seconds (20 hrs) 

 

Figure 18 Variable Lag Filter - 72000 Seconds 

In the above figure, CLOSED_LOOP is Boolean, and thus incurs no numerical error. HI_LIM_C 
shows the analysis for the final output of the model in Figure 16. Variable varLag shows the 
analysis for the output of the variable lag filter. The results are similar to that of the example in 
Section 4.2.1.2 and do not require further discussion. 
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4.2.3. Filter Example using a Lag Filter 

 

Figure 19 Lag Filter - Test Model Diagram 

Figure 19 shows ‘lag_filter_quantized’, a model with a lag filter with a fixed time constant.  The 
next subsection describes the transfer function and difference equation derivation for this class of 
filters; followed by the transfer function equations.   Following subsection shows the analysis 
results assuming the filter runs for 72,000 seconds at 20 Hz (50 ms period).  

4.2.3.1. Lag Filter Transfer Function 

Figure 20 shows the Lag filter as it appears as a block in MATLAB Simulink. This class of 
filters has a time constant tau that is set for each filter instance. It is not resettable. 

 

Figure 20 Lag Filter 

The following is the transfer function derivation for this filter class: 

Transfer Function: 

General form:   

Continuous domain:     𝑯𝑯(𝒔𝒔) = 𝟏𝟏
𝜏𝜏𝒔𝒔+𝟏𝟏

             Discrete domain:     𝑯𝑯(𝒛𝒛) = 𝟏𝟏+𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
 

Coefficient definitions (all coefficients are constant) 

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

                  𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 

Difference equation:  
 𝒚𝒚𝒏𝒏 = (𝒖𝒖𝒏𝒏 + 𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (188) 

 

lag

   1
   ----------------
   Tau s +1
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4.2.3.2. Analysis results after 72,000 Seconds (20 hrs) 

 

Figure 21 Lag Filter - 72000 Seconds 

In the above figure, h_cabin_rate_out_fpm has numerical error bounds of zero because it is 
processed through a ‘round’ing block . The only other input affecting the value at 
h_cabin_rate_out_fpm is a whole number (the RATE_QUANTIZER constant of 25), which can 
be represented without loss. The values for lag3 above show the analysis as applicable to the 
output of the lag3 filter. The results are similar to that of the example in Section 4.2.1.2 and do 
not require further discussion. 
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4.2.4. Filter Example using a Quadratic Filter 

 

Figure 22 Quadratic Filter - Test Model Diagram 

Figure 22 shows ‘sensor_feedback_selection’, a model with two quadratic filters.  The next 
subsection describes the transfer function and difference equation derivation for this class of 
filters.   Following subsection  shows the analysis results assuming the filter runs for 72,000 
seconds at 10 Hz (100 ms period).  

4.2.4.1. Quadratic Filter Transfer Function 

Figure 23 shows the Quadratic filter as it appears as a block in MATLAB Simulink. This class of 
filters has six constants specified for each instance: a,b,c, p,q,r that form the coefficients of two 
quadratic equations, a numerator: as^2 + bs+ c, and a denominator: ps^2+qs+r.  There is also a 
reset (IC) that resets the filter to a pre-specified value. 

 

Figure 23 Quadratic Filter 

The following is the transfer function derivation for this filter class: 

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏):    𝒚𝒚 = 𝒖𝒖 ∗ 𝒄𝒄/𝒓𝒓  (𝒄𝒄/𝒓𝒓  is the DC gain of the filter) 
Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):  

quadraticFilter
  

In

IC

   as^2+bs+c
   -------------

   ps^2+qs+r
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General form:   

Continuous domain:     𝑯𝑯(𝒔𝒔) = 𝒂𝒂𝒔𝒔𝟐𝟐+𝒃𝒃𝒃𝒃+𝒄𝒄
𝒑𝒑𝒔𝒔𝟐𝟐+𝒒𝒒𝒔𝒔+𝒓𝒓

              Discrete domain:     𝑯𝑯(𝒛𝒛) = 𝑨𝑨+𝑩𝑩𝒛𝒛−𝟏𝟏+𝑪𝑪𝒛𝒛−𝟐𝟐

𝑫𝑫+𝑬𝑬𝒛𝒛−𝟏𝟏+𝑭𝑭𝑭𝑭−𝟐𝟐
 

Coefficient definitions (all coefficients are constant) 

𝑨𝑨 = 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐                𝑩𝑩 = −𝟐𝟐(𝟒𝟒𝟒𝟒 − 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐)              𝑪𝑪 = 𝟒𝟒𝟒𝟒 − 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐 

𝑫𝑫 = 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐                𝑬𝑬 = −𝟐𝟐(𝟒𝟒𝟒𝟒 − 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐)              𝑭𝑭 = 𝟒𝟒𝟒𝟒 − 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐 

Difference equation: 

 
 𝒚𝒚𝒏𝒏 = (𝑨𝑨𝒖𝒖𝒏𝒏 + 𝑩𝑩𝑩𝑩𝒏𝒏−𝟏𝟏 + 𝑪𝑪𝑪𝑪𝒏𝒏−𝟐𝟐 − 𝑬𝑬𝒚𝒚𝒏𝒏−𝟏𝟏 − 𝑭𝑭𝒚𝒚𝒏𝒏−𝟐𝟐)/𝑫𝑫 (189) 

4.2.4.2. Analysis results after 72,000 Seconds (20 hrs) 

 

Figure 24 Quadratic Filter - 72000 Seconds 
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The range bounds of the filter output variables in the above figure are compliant with the 
theoretically expected results, similar to that of the example in Section 4.2.1.2, and do not require 
further discussion.  

In the above figure, FAIL_CONFIG has numerical error bounds of zero because it is a Boolean. 
DISCHARGE_C and MAX_C have the same numerical error bounds because they come from 
the results of the two quadratic filters. MAX_UNFILT_C has the error bound of a 32-bit floating 
point representation because it uses values straight from input without any processing. As you 
can see the error bounds on MAX_C and DISCHARGE_C are the max of the error bounds on 
the two quadratic filters, since both of them can end up with a value from either filter. It is 
remarkable that our static analysis techniques were able to prove numerical error bounds on the 
2nd order (quadratic) filter. The error bound of [-6.58e-003, 6.58e-003] on quadraticFilter1 output 
is within the practical tolerance guideline of 1% of the range. We conducted the analysis run for 
72 seconds, 720 seconds, 7200 seconds, and 72000 seconds of operation. In all cases the error 
bounds is the same ([-6.58e-003, 6.58e-003]); implying it converges and stabilizes over time; 
thus supporting the theoretical analysis expectations. 
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4.2.5. Filter Example using a Variable Washout Filter 

 

Figure 25 Variable Washout Filter - Test Model Diagram 

Figure 25 shows ‘VarWashoutFilter’, a model with a variable washout filter.  The next section 
(subsection 4.2.5.1) shows the transfer function diagram Figure 26 followed by the transfer 
function equations.   Subsection 4.2.5.2 shows the analysis results assuming the filter runs for 
72,000 seconds at 10 Hz (100 ms period). Subsection 4.2.5.3 shows the actual ‘C’ code for the 
filter. 

4.2.5.1. Variable Washout Filter Transfer Function 

Figure 26 shows the Variable Washout filter as it appears as a block in MATLAB Simulink. This 
class of filters has a variable tau, τ, that determines the lag according to the transfer function. 
There are additional reset (IC) and reset value (ICV) inputs that allow the filter to be reset. 

 

Figure 26 Variable Washout Filter 

The following is the transfer function derivation for this filter class: 

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏):    𝒚𝒚 = 𝑰𝑰𝑰𝑰𝑰𝑰 
Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):  

General form:   

Continuous domain:     𝑯𝑯(𝒔𝒔) = 𝜏𝜏𝒔𝒔
𝜏𝜏𝒔𝒔+𝟏𝟏

              Discrete domain:     𝑯𝑯(𝒛𝒛) = 𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
 

Coefficient definitions (𝜏𝜏 is given as an input) 

varWashout

In

ICV

IC
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𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟑𝟑 =
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟒𝟒 = −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

Difference equation: 
𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (190) 

4.2.5.2. Analysis results after 72,000 Seconds (20 hrs) 

Figure 27 Variable Washout Filter -72000 Seconds 

In the above figure, you can see that output has an error bound of 3 times the error bound of 
varWashout, because they are separated by a gain of 3. 
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4.3. Summary of Accumulator Test Suite Results 

The development of the second year analysis of Integrating Accumulators was guided by, tuned, 
and ultimately tested for round trip integration by a suite of test cases designed by the Honeywell 
team. These consisted of Simulink  models of representative accumulator applications, their 
generated C implementations and their generated JSON files describing model-level properties 
of the generated code to be exploited by CodeHawk. This section summarizes the results of these 
test cases.  

Motivation and Significance of the Results 

The Patriot Missile system suffered an infamous failure [5] when its computation of time drifted 
over the course of two days of continuous operation. The computations using the 24-bit floating 
point unit introduced error in the calculation of elapsed time accumulated since system start. 
After 8 hours of operations, this resulted in a 20 percent error in the "range gate" – the expected 
position of the target. After 20 hours, the error was as much as 50 percent, resulting the Patriot 
missile’s failure to intercept an incoming Scud missile. Figure 28 shows the increase in absolute 
error with elapsed time. 

Figure 28. The error in accumulated time due to floating point multiplication and the resulting distance by which the 
computed range gate was off 

Using the combination of model-level and code-level analysis, we have addressed the problem of 
automated detection and analysis of such constructions. HiLiTE performance an analysis of 
cyclic path (feedback loop) invariants in the Simulink model to detect a counter type of 
invariants and provide this information to CodeHawk in terms of the accumulator variable and 
nature of the invariant. CodeHawk then applies novel code analysis techniques to derive precise 
closed-form mathematical bounds for the both the range and numerical error as a function of 
time. The results presented in the following subsections clearly show how the numerical error 
grows with system operational time. 

Hours Seconds Calculated Time (sec) Inaccuracy (sec)
Approx. shift in 

Range Gate 
(meters)

0 0 0 0 0
1 3600 3599.9966 .0034 7
8 28800 8799.9725 .0251   55

20(a) 72000 71999.9313 .0687 137
48 172800 172799.8352 .1648 330
72 259200 259199.7528 .2472 494

100(b) 360000 359999.6667 .3433 687
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4.3.1. Accumulator Example using a Fixed Integer Increment 

Figure 29. Fixed Increment Accumulator – abstract diagram for the Patriot Missile Bug 

Figure 29 shows a model with an accumulator with a fixed integer increment which abstracts the 
essential elements of the Patriot Missile bug. At each periodic execution frame (at 10 Hz rate) 
the counter (output of sum block) counts by 1. The numerical error occurs when the counter 
value is multiplied by 0.1 to get the value of elapsed time; note that 0.1 is not accurately 
representable in any binary-based floating point notation. This numerical error is shown in the 
results. 

The next subsection shows the analysis results assuming the filter runs for 72, 720, 7200 and 
72,000 seconds at 10 Hz (100 ms period). The JSON files exchanged between HiLiTE and 
CodeHawk and the actual ‘C’ code. 

4.3.1.1. Analysis results after different periods (72, 720, 7200, 72000 seconds) 

Figure 30 Fixed Increment Accumulator - 72 Seconds 
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Figure 31 Fixed Increment Accumulator - 720 Seconds 

Figure 32 Fixed Increment Accumulator - 7200 Seconds 

Figure 33 Fixed Increment Accumulator - 72000 Seconds 

In the above figure, the range and error bounds for the time variable are provide for different 
system operational times; both grow as a linear function of time as theoretically expected.  (note 
that variable outport in this example is unrelated to the accumulator and thus its error bound 
remains fixed with the operational time ). 
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4.3.2. Accumulator Example using Variable Increments 

Figure 34 Variable Increment Accumulator - Test Model Diagram 

The figure above shows ‘CounterWithoutLimitsWithExternalInputs’, a model with a floating-
point accumulator with a variable increment with the input range constrained to [0.1, 0.2] .  The 
next subsection  shows the analysis results assuming the filter runs for 72, 720, 7200 72,000 
seconds at 20 Hz (50 ms period).  This example was created to ensure that both HiLiTE can 
CodeHawk can properly identify and analyze accumulators with floating-point variable 
increment. The results are consistent with the theoretical analysis. 

4.3.2.1. Analysis results after different periods (72, 720, 7200, 72000 seconds) 

Figure 35 Variable Increment Accumulator - 72 Seconds 
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Figure 36 Variable Increment Accumulator - 720 Seconds 

Figure 37 Variable Increment Accumulator - 7200 Seconds 



Approved for Public Release; Distribution Unlimited. 
64 

Figure 38 Variable Increment Accumulator - 72000 Seconds 

5. CONCLUSIONS

We have demonstrated a combined model-level and code-level analysis approach to prove 
precise, yet conservative bounds for variable ranges and numerical error on two classes of 
numerical algorithms: linear digital filters and accumulators.  Our novel analysis approach uses 
the semantics of control algorithms available in the Simulink models to identify and classify the 
properties of filter blocks and accumulator patterns. The HiLiTE tool introduced a novel 
technique to analyze cyclic path (feedback loop) expressions in models to automatically detect 
patterns and reduce them to temporal invariants in terms of a single accumulator variable that 
could then be provided to CodeHawk. We defined extensible formats for representing variable 
ranges, properties of filters and accumulators, functions for error bounds. These were used in 
developing a flexible JSON interchange infrastructure in the tool chain that allowed the 
automated round-trip analysis and presentation of the results to the user.  

At the code-level analysis, Anca Browne discovered a technique, based on classical discrete 
mathematics, for computing the exact (real) bounds on linear discrete filters, and applied it to 
first-order and second-order filters supplied by Honeywell.  The time to analyze a filter is 
negligible. This contrasts with analyses performed for Airbus that take on the order of 20 hours 
to get less precise results. 

Extending this technique to floating point error analysis, she discovered how to generate a 
closed-form solution for the error as a function of the number of iterations of the recurrence that 
are performed.  Again, this result was applied to first-order and second-order filters supplied by 
Honeywell.  The result of the error analysis were sufficiently precise and valid even for second-
order filters the numerical error stabilized within practically acceptable tolerance bounds even 
for very large periods of run time.  These precise bounds prove the essential characteristics of 
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variable ranges and numerical error in the control algorithms, as discussed in detail in Section 
4.2. 

These techniques were slightly generalized to analyze a different class of numerical algorithms 
used in control systems, namely accumulators.  Accumulators, such as counters, are used in 
many control systems – a prime example is the Patriot Missile system where the accumulated 
numerical error resulted in an infamous failure.  Again, our techniques allow almost 
instantaneous generation of an analysis function that gives (1) accumulator results as a function 
of the number of iterations performed, and (2) accumulated floating-point error as a function of 
the number of iterations performed.   

As avionics software becomes increasingly complex, the need for automated analysis becomes 
critical to verify correct algorithm behavior and absence of potential failures. The current static 
analysis tools and proposed techniques may handle discrete types of algorithms well, but fall 
short of providing a precise analysis for numerically intensive algorithms. This can result in large 
range bounds (or no error bounds) provided by the tools which then leave it to the developer to 
analyze the problem by manual reviews or empirical means. This is already proving to be a 
problem in current avionics system when deploying large amounts of software with frequent 
configuration changes. For example, developers may need to do extensive analysis to ascertain 
that the new set of values of filter parameters is not degenerate and will indeed make the range 
and error bounds converge. 

We believe this work is a significant step towards improving the automation and quality of 
results provided by static analysis techniques. Our novel analysis techniques can automatically 
analyze the code implementations of a variety of first and second order linear filter and derive 
not only precise range bounds but also numerical error bounds. This allows quick verification of 
normal algorithm behavior as well as detection of erroneous combinations filter parameters (time 
constant values) that can make bounds diverge, and defective implementations that can give rise 
to large numerical error. Our techniques for the analysis of accumulator patterns would have 
detected the bug that led to Patriot Missile failure, and may hopefully prevent such faulty 
software in the future.  
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7. LIST OF ACRONYMS

COM Common Object Model 
HiLiTE Honeywell Integrated Lifecycle Tool Environment 
JSON JavaScript Object Notation 
LDF Linear Digital Filters  
MBD Model-Based Development  
Ocaml O Collaborative Application Markup Language 
PI Proportional-Integrator  
SANA Static Analysis of Numerical Algorithms 
SoW Statement of Work 
WCEB Worst Case Error Bound 
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