
STATIC ANALYSIS OF NUMERICAL ALGORITHMS

KESTREL TECHNOLOGY, LLC

APRIL 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-101

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-101 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
WILLIAM MCKEEVER RICHARD MICHALAK
Work Unit Manager Acting Technical Advisor, Computing

 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2013 – NOV 2015
4. TITLE AND SUBTITLE

STATIC ANALYSIS OF NUMERICAL ALGORITHMS

5a. CONTRACT NUMBER
FA8750-14-C-0009

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63781D

6. AUTHOR(S)

Matthew Barry, Eric Bush, Doug Smith,Devesh Bhatt, David Oglesby,
Anca Browne, Steve Hickman

5d. PROJECT NUMBER
ASET

5e. TASK NUMBER
13

5f. WORK UNIT NUMBER
KT

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Kestrel Technology LLC
3260 Hillview Ave
Palo Alto CA 94304-1225

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-101
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2016-1710
Date Cleared: 31 MAR 2016
13. SUPPLEMENTARY NOTES

14. ABSTRACT
This document reports on a two-year research project by Kestrel Technology and Honeywell Aerospace Advanced
Technology to combine model-based development of complex avionics control software with static analysis of the
generated code to achieve assurance levels not available from either technique practiced separately. We concentrated
on two classes of numerical algorithms, linear digital filters and integrating accumulators, modifying existing versions of
Honeywell’s HiLiTE model-based development system and Kestrel’s CodeHawk abstract interpretation system to share
domain specific information about implementations of these algorithms. This allowed CodeHawk to exploit model-level
specifications and theoretical input bounds from HiLiTE concerning the generated C code, producing a much more
precise over-approximation of the output bounds and accumulated floating-point error bounds than would be possible
with generic abstract interpretation techniques. These static analysis results were then fed back into HiLiTE to be further
exploited in the formal verification of the generated code.
15. SUBJECT TERMS
Model-based development, abstract interpretation, linear digital filter, integrating accumulator, recurrence relation,
floating-point error bounds, numerical algorithms, software verification, formal methods

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM McKEEVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(315) 330-2897

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

73

i

TABLE OF CONTENTS

List of Figures ... iii

1. Summary ... 1

2. Introduction ... 2

2.1. Original SOW Vision .. 3

2.2. Discoveries about Abstract Interpretation of Filters ... 3

2.2.1. Filter-specific widening .. 3

2.2.2. Floating Point Error Bounds ... 4

2.3. Re-orientation of Year 2 ... 4

3. Methods, Assumptions, and Procedures ... 6

3.1. Control Algorithm Capture in Models and Analysis / Code Verification 6

3.1.1. Use of Semantics at the Design Model Level to Aid Analysis 8

3.1.2. Exploration of Model-Based Code Generation Approach 9

3.2. Abstract Interpretation .. 12

3.3. Integration of Model Analysis and Code Analysis ... 14

3.3.1. Original HiLiTE Platform ... 14

3.3.2. Original CodeHawk Platform ... 17

3.3.3. JSON Interchange Architecture .. 18

3.3.4. Tool Software Integration Architecture .. 21

4. Results and Discussion ... 23

4.1. Discoveries in Abstract Interpretation .. 23

4.1.1. Interval Abstract Domain .. 23

4.1.2. Cancellation Abstract Domain .. 24

4.1.3. Analyzing for Error Bounds.. 24

4.1.4. Closed-form Solutions .. 26

4.1.5. Range Analysis for First-order Linear Digital Filters ... 27

4.1.6. Range Analysis for Second-order Linear Digital Filters 29

4.1.7. Digital Filters: Error Range .. 32

4.1.7.1. Symbolic Interval Combinations .. 32

ii

4.1.7.2. Error Set Abstractions ... 34

4.1.7.3. Error Bounds for First-Order Linear Filters.. 37

4.1.7.4. Error Bounds for Second-Order Linear Filters ... 38

4.1.8. Accumulating Integrators: Error Range Functions ... 43

4.2. Summary of Filter Test Suite Results ... 46

4.2.1. Filter Example using a Resettable Lead Lag Filter ... 47

4.2.1.1. Resettable Lead Lag Filter Transfer Function .. 47

4.2.1.2. Analysis results after 72,000 Seconds (20 hrs) ... 49

4.2.2. Filter Example using a Variable Lag Filter ... 50

4.2.2.1. Variable Lag Filter Transfer Function .. 50

4.2.2.2. Analysis results after 72,000 Seconds (20 hrs) ... 51

4.2.3. Filter Example using a Lag Filter ... 52

4.2.3.1. Lag Filter Transfer Function ... 52

4.2.3.2. Analysis results after 72,000 Seconds (20 hrs) ... 53

4.2.4. Filter Example using a Quadratic Filter .. 54

4.2.4.1. Quadratic Filter Transfer Function ... 54

4.2.4.2. Analysis results after 72,000 Seconds (20 hrs) ... 55

4.2.5. Filter Example using a Variable Washout Filter ... 57

4.2.5.1. Variable Washout Filter Transfer Function .. 57

4.2.5.2. Analysis results after 72,000 Seconds (20 hrs) ... 58

4.3. Summary of Accumulator Test Suite Results ... 59

4.3.1. Accumulator Example using a Fixed Integer Increment 60

4.3.1.1. Analysis results after different periods (72, 720, 7200, 72000 seconds) 60

4.3.2. Accumulator Example using Variable Increments ... 62

4.3.2.1. Analysis results after different periods (72, 720, 7200, 72000 seconds) 62

5. Conclusions ... 64

6. References ... 66

7. List of Acronyms…………………………………………………………………………....67

iii

LIST OF FIGURES

Figure 1. Software Development Process and Verification Objectives .. 7
Figure 2. Example Model of Control Algorithm using Lead-Lag Filters 8
Figure 3.Transfer Function for a Lead Lag Filter and Derivation of Difference Equation 9
Figure 4. Reference model for lead-lag filter block .. 10
Figure 5. Setting reference model parameters .. 11
Figure 6. An Application Model Containing a Lead-Lag Filter Function 11
Figure 7. HiLiTE Overview .. 15
Figure 8. Simulink model of limited counter and three possible paths .. 16
Figure 9 CodeHawk Overview ... 18
Figure 10 HiLiTE <-> CodeHawk Integration via files ... 19
Figure 11 HiLiTE <-> CodeHawk JSON Exchange Example ... 20
Figure 12 HiLiTE <-> CodeHawk Comm Process ... 22
Figure 13 Resettable Lead Lag Filter - Test Model Diagram ... 47
Figure 14 Resettable Lead Lag Filter.. 47
Figure 15 Resettable Lead Lag Filter - 72000 Seconds .. 49
Figure 16 Variable Lag Filter - Test Model Diagram ... 50
Figure 17 Variable Lag Filter ... 50
Figure 18 Variable Lag Filter - 72000 Seconds .. 51
Figure 19 Lag Filter - Test Model Diagram.. 52
Figure 20 Lag Filter .. 52
Figure 21 Lag Filter - 72000 Seconds... 53
Figure 22 Quadratic Filter - Test Model Diagram .. 54
Figure 23 Quadratic Filter ... 54
Figure 24 Quadratic Filter - 72000 Seconds ... 55
Figure 25 Variable Washout Filter - Test Model Diagram ... 57
Figure 26 Variable Washout Filter ... 57
Figure 27 Variable Washout Filter -72000 Seconds ... 58
Figure 28. The error in accumulated time due to floating point multiplication and the resulting
distance by which the computed range gate was off... 59
Figure 29. Fixed Increment Accumulator – abstract diagram for the Patriot Missile Bug 60

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY

This document reports on a two-year research project by Kestrel Technology and Honeywell
Aerospace Advanced Technology to combine model-based development of complex avionics
control software with static analysis of the generated code to achieve assurance levels not
available from either technique practiced separately. We concentrated on two classes of
numerical algorithms, linear digital filters (LDFs) and integrating accumulators, modifying
existing versions of Honeywell’s HiLiTE model-based development system and Kestrel’s
CodeHawk abstract interpretation system to share domain specific information about
implementations of these algorithms. This allowed CodeHawk to exploit model-level
specifications and theoretical input bounds from HiLiTE concerning the generated C code,
producing a much more precise over-approximation of the output bounds and accumulated
floating-point error bounds than would be possible with generic abstract interpretation
techniques. These static analysis results were then fed back into HiLiTE to be further exploited
in the formal verification of the generated code.

We made some unexpected discoveries during the first year analysis of LDFs concerning
analytic solutions to output and error bounds for filters that changed the architecture of our first
year approach, and redefined our focus for the second year effort. In particular, Anca Browne’s
discovery of an analytic technique for computing filter bounds obviated the need for the iterative
symbolic evaluation of classical abstract interpretation, making the time to analyze a filter
negligible. This contrasts with comparable filter analyses performed for Airbus that take on the
order of 20 hours to get less precise results. Extending this technique to floating point error
analysis, she discovered how to generate a closed-form solution for the error as a function of the
number of iterations of the recurrence that are performed. This resulted in CodeHawk’s “error
bounds” for filters being reported back to HiLiTE not as an instance-specific numeric interval, as
was originally envisioned, but as parameters to a generalized error function, allowing HiLiTE to
analyze multiple scenarios with different durations from a single analysis result. When these
techniques were generalized to integrating accumulators in year 2, CodeHawk was able to report
both output and error ranges as parameters to a generalized function.

We built specialized versions of both HiLiTE and CodeHawk to exploit the shared model-level
information and exchange their results over a JSON file interchange architecture. This combined
system was used first to experiment with the joint modeling and analysis techniques, and then to
run a series of test suites for filters and integrating accumulators that explored the range of
variety, and analysis results, among those algorithms. These test suite results are summarized in
detail in Sections 4.2 and 4.3 below.

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTION

The objective of this project was to develop a software engineering approach and tool set that
combines the relative strengths of model-based and code-based analyses to provide a
comprehensive and scalable analysis capability for numerical algorithms in complex systems
software. Our approach was to utilize static analysis of numerical algorithms in combination with
model-based design technology to yield considerable benefits compared to applying static
analysis in isolation. The results of this effort are intended to help detect and mitigate a large
class of defects that occur due to differences between the intended semantics of design models
and the actual behavior of the software.

Large and complex systems control software increasingly is being developed using model-based
development tools. In this approach a design model of control algorithms is constructed using
control function blocks in a data flow notation. The transfer function semantics is available at the
model level along with the semantics of feedback loops, periodic rates, and design patterns such
as counters, validity status of signals, reset semantics, mid-value selection, etc. Some model-
based toolsets perform extensive analysis of models for early detection of several types of design
defects and have been used as DO-178B qualified tools in certification of large scale commercial
avionics systems. These tools can reason with full semantics of control transfer functions and
discrete constructs, but the bounds on the ranges and errors can be conservative and cannot take
into account the actual source code constructs and numeric operations and the artifacts
introduced by the translation of the design model into source code and the impact of object code
execution on the processing architecture. This challenge is commonly faced when abstractions,
assumptions, and restrictions are utilized to estimate the behavior of object code at the design
model level.

Abstract interpretation is a fully automated mathematical process for discovering properties of
the execution behavior of a program. Because they derive from a formal representation of a
program’s behaviors, the results of this kind of static analysis have the status of mathematical
proofs. Informally, abstract interpretation operates by computing an envelope of all possible
values of the variables at each point of the program. For example, the possible values of scalar
variables can be represented by a collection of intervals (one for each variable) or a convex
polyhedron (each dimension of the affine space representing a program variable). These
envelopes are then employed as lemmas to prove safety properties of the program, like the
absence of arithmetic overflows or out-of-bounds array accesses. Some abstractions yield more
accurate envelopes, which allow more safety conditions to be discharged, but may require higher
computational times. For example, using intervals to compute the range of variables is extremely
fast and they can be applied to analyze million lines of code. Using convex polyhedra usually
yields much tighter bounds, but the exponential complexity of the underlying algorithms makes
this approach impractical for more than a few hundred lines of code. The complexity of
engineering a static analyzer that can analyze real codes effectively lies in the combination of
different levels of abstraction, so that precise and costly abstractions (like convex polyhedra) are
only applied to those parts of the program that require it, whereas rougher but faster abstractions
are employed elsewhere. There is no automated way of doing this combination, which is why

Approved for Public Release; Distribution Unlimited.
3

industrial-strength static analyzers are usually specialized for a particular application or family of
applications.

Our specific approach in this project was to specialize Kestrel Technology’s CodeHawk abstract
interpretation technology to particular classes of numerical algorithms in avionics systems
control software generated by Honeywell’s HiLiTE model-based development software. This
marriage of a model-level and a code-level tools allows both the dual verification of model and C
code correspondences, as well as considerable improvements to the precision of CodeHawk’s
abstract interpretation due to its exploitation of domain-specific, model-level information from
HiLiTE. We built a custom version of both tools to exploit a round-trip JSON integration from
model-analysis to code, to code-analysis informed by model-analysis, and back to model-
analysis confirmed by code-analysis.

2.1. Original SOW Vision

The original SOW envisioned specializing this combined model/code analysis architecture to a
specific class of numerical algorithms, Linear Digital Filters (LDFs), in the first year, then using
the results of this experience to explore other classes of numerical algorithms over a specific
abstract domain, zonotopes, in the second year. Our first year exploration of LDFs, however, led
to some unexpected discoveries about the abstract interpretation of filters, when the abstract
interpreter knows (via model-level input) that the C code it is analyzing actually implements a
filter function. This led to a radical redesign of the analyzer, and a shift in focus for the abstract
domains first envisioned in the SOW. This re-orientation also led us to re-conceptualize the
second year effort toward a particular class of numerical algorithms (integrating accumulators),
instead of an abstract interpretation domain (zonotopes).

2.2. Discoveries about Abstract Interpretation of Filters

Abstract interpretation attempts to compute an approximation of a program’s behaviors over all
possible execution paths, without any actual inputs, using only the semantics of the programming
language to inform its analysis. Without knowledge of inputs, or of what algorithms the program
is executing, the inferred behaviors will necessarily be a conservative over-approximation of the
actual behaviors. This over-approximation can often be used to prove properties about the actual
behaviors of the program, however, if the properties are also true of the over-approximation of
those behaviors. We recast this problem for LDFs by using HiLiTE to 1) inform CodeHawk that
the C code it is analyzing implements a LDF, and 2) provide theoretical bounds on the values of
all inputs to the filter. CodeHawk is then able to compute an approximation of actual bounds of
the output values that is much more precise that would be possible without these hints.

2.2.1. Filter-specific widening
Filters are a special class of iterating numerical algorithms that use the results of prior iteration
steps to constrain the computation of the next step. This leads to a natural tamping down of the
input variety and causes the bounds of possible outputs to converge to a smaller range. Without
this special knowledge, uninformed abstract interpretation will continue to “widen” the iterated
values in search of a much more conservative convergence. The challenge for abstract
interpretation of filters is in developing a special widening analysis for filters that takes account
of the unique cancellation effects that one output has on the next input.

Approved for Public Release; Distribution Unlimited.
4

We originally anticipated that our filter-specific analyzer would be specialized to particular
classes of filters (exploiting a filter-class parameter from HiLiTE) so that widening could exploit
the unique cancellation characteristics of these classes. We discovered, however, that this class-
specialization is unnecessary. We developed an incremental widening algorithm, taking
cancellation into account, which appears to work well for all linear filters. Moreover, we
discovered that a stable bound on the filter output can be computed symbolically, via closed form
solution, thus obviating the need for the traditional iterative widening of classical abstract
interpretation.

2.2.2. Floating Point Error Bounds
Another original goal of this project was to take account of floating-point round-off errors when
real-numbered models are implemented as floating-point code. Theoretical bounds on filter
outputs derived from models over the real numbers will often not anticipate possible round-off
effects in the generated C code, which will vary with machine precision. Abstract interpretation
typically performs its analysis over the infinite precision reals as well, so a combination of
model-level and code-level analyzers might still miss this important delta.

We had originally planned to run the analysis for each filter against both CodeHawk’s native
real/rational abstract domain and a newly implemented floating-point abstract domain, and then
compare the output range approximations to compute an approximation of the round-off error
exposure for floats. Our initial implementation of this comparison revealed that the accumulated
floating-point error range is a function of the number of sampling periods for the filter and thus
could be computed independently. When this float-error accumulation is combined with the
cancellation effects of subsequent inputs, there is an inherent stabilization of the error
accumulation. This result turned out to be surprising in that the Honeywell team had estimated
error accumulations to be in the 1%-10% range per 1,000,000 samplings. The analysis results
yielded error ranges that were orders of magnitude lower.

It appears that filters’ inherent functionality in stabilizing sensor output works to stabilize, rather
than accumulate, round-off errors. We were further able to derive an optimal function to compute
the error-accumulation for a filter-instance/sampling-period combination, so rather than reporting
error bounds, CodeHawk now reports the constant terms to this function, specific to the filter
instance (input bounds) under analysis, rather than an instance-specific range. The Honeywell
team can now experiment with various sampling periods for this filter instance off-line without
having to rerun the CodeHawk analysis.

2.3. Re-orientation of Year 2

The original idea in the SOW for the second year of this project was to extend the LDF analysis
to an interestingly different class of numerical algorithms. This was originally characterized, not
by an algorithm class (like LDFs), but by a new analysis domain: zonotopes. But our first year
experience concluded that this work would be more valuable to the aerospace community if the
focus was on some particular numerical algorithm class that has practical interest for aerospace,
rather than on a particular abstract interpretation domain. Our somewhat surprising discoveries
about floating-point error convergence in LDFs led to an interest in the converse class of
numerical algorithms where such errors do accumulate, often undetected at design time. We
started with an “accumulating integrator” class of algorithms that was the source of a floating-

Approved for Public Release; Distribution Unlimited.
5

point error design flaw in the Patriot Missile control software that failed to detect an incoming
Iraqi Scud, allowing it hit the Army barracks in Dhahran, Saudi Arabia in 1991 (killing 28
Americans). If there had been an abstract interpreter, specialized to this algorithm class over the
“arithmetic-geometric progression” domain, the floating-point round-off error could have been
discovered at design/implementation time, before the software was deployed.

We began with a particular case study: the Patriot Missile failure, then generalized to other
numerical algorithms in this general class. The new abstract domain is the arithmetic-geometric
progression domain. It is useful for analyzing the accumulation of round-off errors in algorithms
that, unlike filters, accumulate rather than stabilize their errors. We got a head start on the
analysis of this class of algorithms through characteristics that they share with the analytic
solutions discovered for LDFs. Although the floating-point errors accumulate for this class
(leading to application failures if the bounds are not correctly anticipated), rather than converge
as they do for LDFs, the error-bounds can still be characterized by a single, analytic function
over the number of iterations of the accumulator. This allowed us to report the error-bounds
output for accumulators in the same format as for our LDF work. We further discovered that the
range bounds on the accumulator output values could be more generally represented as
coefficients to an analytic range function, rather than a specific numeric interval, so the code-
analysis results passed from CodeHawk back to HiLiTE are more general for accumulators than
for LDFs.

Approved for Public Release; Distribution Unlimited.
6

3. METHODS, ASSUMPTIONS, AND PROCEDURES

The goal of this project was to build a combined system of model-level analysis and code-level
analysis that would allow each analyzer to exploit artifacts from the other. Since we began with
two existing, unrelated model analysis and code analysis systems, the Statement of Work for the
project was organized around three major subtasks: 1) enhancements to Kestrel Technology’s
CodeHawk abstract interpretation software to exploit model-level inputs, 2) enhancements to
Honeywell’s HiLiTE modeling and code generation software to generate those inputs and exploit
the resulting analysis, and 3) an integration architecture for allowing the enhanced versions of
both tools to work together as a single tool, presenting a unified analysis to the end user. The
following three subsections discuss the starting methods, assumptions, and procedures for each
of these subtasks, respectively.

3.1. Control Algorithm Capture in Models and Analysis / Code Verification

Use of Model-Based Development (MBD) techniques for software development for control
algorithms has become a common practice in avionics for systems of small to large complexity.
In this approach, a design model of control algorithms is constructed using control function
blocks in a data flow notation. The control function blocks include arithmetic operators, digital
filters, integrators, timers, limiters, etc. that are composed in various patterns such as
proportional-integrator (PI) controllers that utilize various aspects of control including feedback
error compensation, integrator anti-windup logic, and shaping the characteristics of the inputs
from sensors/plant and the command to actuators to meet the control requirements. Besides the
control-related constructs, the controller software also includes discrete, time-dependent logic
including timers and counters for implementing mode and states changes.

The controller design is captured in design models using tools such as MATLAB Simulink and
SCADE. Source code in C-language is generated from these models that is then used as the
airborne code in avionics systems. Processes and automation tools have been deployed to certify
these systems to the DO-178B (and the revised DO-178C) standard. The processes follow the
verification objectives defined in DO-178C that start with the software high-level requirements
being refined into design models from which source code is generated that gets compiled and
linked into airborne executable object code. Figure 1 illustrates this process. Note that there are
several verification objectives defined in DO-178C for the development artifacts – only a few of
the objectives are shown in this figure for the design models and the source code.

Approved for Public Release; Distribution Unlimited.
7

Figure 1. Software Development Process and Verification Objectives

The objective shown in Figure 1 for the design model is to verify that the low-level requirements
(i.e., the elements of the design model) are accurate, consistent, and verifiable. This generally
includes absence of overflow (e.g., division by zero), untestable conditions, and unreachable
model elements. The source code verification objectives are also quite similar, with the addition
of memory safety specific to source code constructs, memory usage limits, etc. A point to note
here that these verification objectives are quite similar and are applied independently at the
design model level and source code level – with different methods and analysis tools at these two
levels to perform the verification.

Need to achieve precise and consistent verification results across model-level and code-level
analysis: At the core of the static analysis techniques at the model or code level is the derivation
of conservative range and numerical error bounds on the variables in the algorithm – using these
bounds various properties can be proven. In complex numerical algorithms, this is a hard
problem. For example, for transfer functions such as linear digital filters, there is a recurrence
relation of the output of the filter to the previous step’s output and input values, which in turn
depend upon the values in the step before that. It turns out that general-purpose static analysis
techniques give poor results on linear digital filters. What is needed are specialized techniques
to derive sound and precise results. The application of such specialized techniques needs to draw
upon the semantics of the modeling constructs so that the tools can identify which parts of the
design or code a particular specialized analysis needs to be applied and what are the parameters
of interest in the particular instance of usage. This is a common practice in use of formal analysis
and model checking tools – providing auxiliary lemmas and parts of proof to the tool to make the
problem tractable.

A problem observed with the current state of the model-level and code-level analysis is that the
users get different answers from the tools applied at these two levels due the practical limitations
of the analysis capabilities of the tools. For example, a control-theory based analysis may predict
reasonable range bounds at the output of a filter but a code analysis tool may derive very large
bounds for the filter since that tool does not apply a specialized analysis technique for this code.
This inconsistency (and large bounds reported by the code analysis) creates a problem for the
user to understand and resolve the discrepancy. Furthermore, large bounds can lead to false

Develop
Software
Design

High-Level
Requirements Generate Code

Design Model
(low-level reqs.)

Source
Code

Compile
& Link

Executable
Object Code

Verify Design is
accurate &
consistent

Block
Library

Target
Processor

Development Process Steps

DO-178C: A-4.2, 3, 5

Verification Objectives
Verify Code is

accurate &
consistent

DO-178C: A-5.6

Approved for Public Release; Distribution Unlimited.
8

alarms and trigger unnecessary additional work steps in the certification process to manually
analyze and resolve each situation.

The research goal of this project is to investigate/develop a model-based software engineering
approach and tool set that combines the relative strengths of model-based and code-based
analyses to provide a comprehensive and scalable analysis capability for numerical algorithms in
complex systems software.

3.1.1. Use of Semantics at the Design Model Level to Aid Analysis
Models use control transfer functions such as filters, integrators, gains to build a control
algorithm. Figure 2 shows a simple Simulink model that is part of a control algorithm feedback
loop – specifically compensation of the feedback error from the plant sensor to meet the control
objectives of rise time and overshoot. There are two lead-lag filters in series; instances of the
generic lead-lack filter block with specific values of the time-constant parameters.

Figure 2. Example Model of Control Algorithm using Lead-Lag Filters

The transfer function of the lead lag filter is shown in Figure 3. The control algorithm analysis
and simulation in closed-loop mode starts with the continuous domain Laplace transform. During
the model-based development process, that is translated to the transfer function in the discrete
domain (Z-domain) that is implemented in the controller software. This is a necessary step since
the controller software is implemented as a periodic thread where the transfer function is
evaluated at each periodic step (frame). From the Z-domain transform, we derive a difference
equation that is then implemented in the software. The terminology used in Figure 3 is shown on
the right hand side: u is the input and y is the output of the filter. The subscripts n, n-1, n+1
denote the relative number of a particular time step in the sequence.

CMP_ERROR (a) [1]

Limit
l imit

-2 to 2

C

icCMP
c=double(0)

s+1

s+1

In

ICV

IC

cmp4
Limit= -1e6 to 1e6

s+1

s+1

In

ICV

IC

cmp3
Limit= -1e6 to 1e6

Program: Hao
CPU/Process: kestrel/FilterAnalysisTe

DLL: HAMFilterModels
Filename: errorcomp.mdl

HAM Library Version: 7.5.0

CMP_IC (b, , L) [2]

ERROR (f, , L) [1]

Approved for Public Release; Distribution Unlimited.
9

Figure 3.Transfer Function for a Lead Lag Filter and Derivation of Difference Equation

Using the Z-domain transfer function H(z), a difference equation can be derived as shown in the
figure. The difference equation computes the value of y in the current step (yn) in terms of output
value in the previous step and input values in the previous and current steps. The coefficients k1
to k4 are defined in terms of the sampling period Ts and the filter time constants: Tn is the
numerator time constant and Td the denominator time constant of the transfer function. Note that
the terms ui and yi in the difference equation correspond to variables in the code where un-1 and
yn-1 are state variables that hold the values of u and y from the previous step. The difference
equation and the form of its corresponding translation to code are very important from the
perspective of the code-level analysis that is described in another section in this document.

3.1.2. Exploration of Model-Based Code Generation Approach
Specific model-level encapsulation guidelines and code generation options are required to ensure
the generated code will not exhibit intermingling of the numerical algorithm’s code with the code
from other parts of the model. This presents an unnecessary difficulty for the code-level analysis
since the intermingled code cannot be cleanly mapped to the appropriate abstract domain
corresponding to the algorithm characteristics.

Using MATLAB Simulink, we performed experiments with different options of modeling
abstractions and code generation and selected a strategy that is best suited for integrated static
analysis of models and code. For each filter block, we construct a reference model for simulation
of its discrete behavior and code generation. The reference model is built with basic arithmetic
blocks and unit delay blocks in Simulink.

From the continuous transfer function of a filter block, we first derive its discrete transfer
function with parameters expressed in the continuous domain. The correctness of the discrete
transfer function can be verified by the difference equation converted from it. There are several
methods to transform continuous transfer functions to discrete and vice versa. We use the
bilinear transform which essentially substitutes “s” in the continuous transfer function using the
first order approximation:

𝒔𝒔 =

𝟐𝟐
𝑻𝑻
𝟏𝟏 − 𝒛𝒛−𝟏𝟏

𝟏𝟏 + 𝒛𝒛−𝟏𝟏
 (1)

Coefficient definitions
(linearity assumption: all coefficients are constant for a filter instance in a model)

Difference equation:

Continuous domain: Discrete domain: 𝒚𝒚𝒏𝒏 - Current output

𝒚𝒚𝒏𝒏−𝟏𝟏 - Previous output

𝒖𝒖𝒏𝒏 - Current input

𝒖𝒖𝒏𝒏−𝟏𝟏 - Previous input

𝑻𝑻𝒔𝒔 - Sampling period

u y

Approved for Public Release; Distribution Unlimited.
10

.
For example, from the continuous transfer function H(s) of the lead-lag filter, we have

𝑯𝑯(𝒔𝒔) = 𝑻𝑻𝒏𝒏𝒔𝒔+𝟏𝟏
𝑻𝑻𝒅𝒅𝒔𝒔+𝟏𝟏

⇒ 𝑯𝑯(𝒛𝒛) =
𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛

−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏
, 𝒌𝒌𝟏𝟏 = 𝟏𝟏 +

𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟑𝟑 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

, 𝒌𝒌𝟒𝟒 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

. (2)

Hence the difference equation is 𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏. Note that Tn and Td are time
constants defined in the application model for each filter instance similar to the way a constant
block’s value is specified. The sample time, Ts, is linked to the application model’s sample time
by Simulink for all filter instances.

Figure 4 shows a Simulink model that can be referenced by application models. An application
model employs a filter by connecting signals used in an application to a model reference that
links to the implementation of the filter.

Figure 4. Reference model for lead-lag filter block

The reference model is constructed by the following steps:

1. Create a new Simulink model file.
2. Set up the reference model parameters as shown in Figure 5.

a. Navigate to “View”-“Model Explorer” to open the Model Explorer window.
b. Click “Model Workspace” in “Model Hierarchy” menu on the left side of the

window.
c. Click “Add Simulink parameter” button on the top tool bar.
d. Double click the parameter to set its name/default_value/type/dimension…

Approved for Public Release; Distribution Unlimited.
11

e. Add all the parameters (separated by comma) into the model argument

Figure 5. Setting reference model parameters

3. Create the Simulink block diagram according to the difference equation.
4. Assign constant blocks with corresponding parameters from workspace.

Figure 6 shows an application model with lead-lag filter blocks. The code for the lead-lag filter is
generated as a separate function. The coupling between the main model’s code and the filter
function is achieved via the variables corresponding to the input and output of the filter function.
Additional relevant parameters are specified when the model reference is instantiated, allowing
the application model to define the time constants for each instance and enforcing a consistent
same period between the application model and all filter instances.

Figure 6. An Application Model Containing a Lead-Lag Filter Function

The code generated for the model is shown below. The input variables are errorcomp_B.Limit_1,
errorcomp_P.Constant_1_Value, and Reset. The output variables is rtb_cmp3_y. There are two
state variables, errorcomp_DWork.cmp3_DWORK1.rtb and errorcomp_DWork.cmp3_DWORK1.rtdw . The
sample time, errorcomp_P.cmp3_rtp_rate, is automatically inherited from the application thread
level. Finally the filter instance time constants, errorcomp_P.cmp3_rtp_Tn and
errorcomp_P.cmp3_rtp_Td, are specified by the application model designer.

void errorcomp_step(void)
{
 …
 errorcomp_B.Limit_1 = saturate_dbl(errorcomp_B.Sum1,

errorcomp_P.Limit_1_LowerSat,
errorcomp_P.Limit_1_UpperSat);

 /* call to lead lag filter function for 1st filter instance */
 RefMdl_ResetLeadLagFilter_p(&errorcomp_B.Limit_1,

&errorcomp_P.Constant_1_Value, &Reset,
&rtb_cmp3_y,
&(errorcomp_DWork.cmp3_DWORK1.rtb),
&(errorcomp_DWork.cmp3_DWORK1.rtdw),
errorcomp_P.cmp3_rtp_rate,

Approved for Public Release; Distribution Unlimited.
12

 errorcomp_P.cmp3_rtp_Tn,
 errorcomp_P.cmp3_rtp_Td);
 …
}

It is important that the referenced model code closely reflects the difference equation for the
filter function. Other implementations may incorporate coefficients into feedback loops to
produce the same results with variable—rather than constant—coefficients that throw off code-
level analysis.

Some filters (those named Variable<filter type>) take tau (or Tn or Td) as an input signal. This
would allow the model to vary tau continuously, which is not supported by these analyses. The
coefficients need to be fixed for the analysis. In practice, however, tau is never varied
continuously since that can make the entire control analysis non linear. In general, the tau input
is a way to decouple the filter for more flexible models. For example, product line modeling
reuses models for different variants of a component. The architecture is the same for all part
numbers, but details change between parts. In such a scenario, a different tau is specified for
different configurations, but it is fixed for each. In other usages, where multiple modes exists in
the avionics subsystems, tau can change across mode changes, but is constant within a single
mode. This allows separate piecewise analyses to be performed for each mode.

3.2. Abstract Interpretation

Given a model and code generated from the model, we want to provide mathematical evidence
that the code faithfully implements the model. For linear digital filters (LDFs), the code
implements a linear recurrence equation derived from a continuous-domain model. A filter takes
a stream of inputs (e.g. a stream of sensor readings), and produces a stream of output values in
accord with the linear recurrence. An accumulating integrator takes a stream of inputs and also
produces a stream of outputs, again according to a linear recurrence, but the output values and
their floating point errors can grow without bound with the number of iterations.

Two main analysis issues arise: (1) what is the range of possible output values considered over
all possible input streams, and (2) what is the range of possible errors in the output stream due to
the floating point implementation of real-valued variables in the continuous model?

Generally, static analysis reasons about all possible behaviors of a program. Since there are
usually a very large (or even infinite) set of possible inputs, it is usually not feasible to reason
about all the inputs individually. Instead, static analysis treats all inputs at once by characterizing
their common structure, via type information and logical constraints. The goal is to symbolically
simulate the execution of the program over this input characterization, yielding a characterization
of all possible behaviors. Typically, programs have a very complex set of behaviors and so it is
only feasible to generate an approximation, analogous to finding the hull of a complex set of
points in space. If the approximation is an over-approximation (i.e. an upper bound), then any
property that we can prove about the over-approximation also holds for all behaviors of the
program.

The general theory of static analysis, called Abstract Interpretation, was developed in the 1970's
by Cousot and Cousot [1]. The technique is widely used and can be efficient enough for
commercial use. One of the success stories of abstract interpretation is the complete analysis of

Approved for Public Release; Distribution Unlimited.
13

the Airbus 380 flight control software for out-of-bound memory access and arithmetic exceptions
[2]. CodeHawk is a state-of-the-art implementation of abstract interpretation.

The key idea of abstract interpretation is abstract domains that allow computing an over-
approximation of the behaviors of a given program. An abstract domain provides (1) an abstract
type to represent concrete program states, and (2) abstract functions to represent the effect of
concrete state-changing actions. Rather than simulate the concrete program, abstract
interpretation uses abstract domains to construct and simulate an abstract version of the program.
The simulation is computationally cheaper in the abstract program because the abstraction
throws away information. However the very act of throwing away information causes a loss of
precision in the simulation/analysis process. Hence there is a tradeoff in abstract interpretation
between computational complexity of the analysis and precision of the results.

To illustrate the loss of precision due to abstraction, suppose that we want to analyze the
following program fragment, where input x ranges over the integers {1,2,3,4,5}:

y = 3*x;
if y > 20 then ...

If we abstract each variable to an interval over the integers, then we can precisely represent x in
the initial and final state of this simple program by the interval [1,5] which gives a minimum and
maximum value that the variable can take on in any execution of the program. However, to
reflect the action of multiplying by 3, the abstract domain would multiply the interval by 3,
resulting in the interval [3,15] for y. Clearly, we have lost information in this abstraction, since
we can only represent the possible values of y via a simple interval (rather than the precise set
{3,6,9,12,15}). On the other hand, the abstraction does allow us to cheaply compute some kinds
of information about the concrete program. In the example, we can symbolically evaluate the
condition to false in the abstract domain, so we know that the then-branch can never be executed.

An abstract interpretation engine comes with a library of standard abstract domains that can be
used to analyze a broad range of problems. The most common abstract domain is numeric
intervals, as illustrated above, which abstract the possible values of a numeric variable at a
program control point by a bounding interval. Another common abstract domain uses a set of
linear constraints (i.e. an enclosing polyhedron) to over-approximate the joint values of several
variables. The interval domain is computationally cheap and scales well to very large programs,
although it can become imprecise. In contrast, a polyhedral abstract domain provides good
precision since it relates several variables, but can be very expensive to apply.

An abstract domain is used to generate a specific kind of invariant at each program control point
(e.g. the control point between assignments in C). The interval domain infers interval invariants
for each program variable at each control point. The polyhedral domain infers a polyhedral
envelope for some of the program variables at each control point.

To analyze a given program, an abstract interpreter starts with an abstract representation of the
input and forward simulates that representation through the abstracted actions of the program.
The simulation continues until a fixpoint is reached, which is expressed as a sound invariant at
each control point in the program. The presence of loops complicates the analysis, since it may

Approved for Public Release; Distribution Unlimited.
14

be necessary to simulate around a loop an unlimited number of times. Abstract interpretation
uses a widening operator to speed up convergence of the simulation to a fixpoint, by generalizing
the current abstract representations. The result will generally be a fixpoint (set of invariants at
control points) that is not a least fixpoint (the strongest expressible set of invariants at control
points of the program).

Part of the art of abstract interpretation is carefully choosing where in a program to apply which
abstract domain – where precision is needed (as in an inner loop) we might apply a polyhedral
domain, but elsewhere use intervals. The goal is to gain as much information as possible about
the program while minimizing analysis time and space. Another part of the art of abstract
interpretation is developing new abstract domains that are tailored to a special class of programs.
Often a new domain is motivated by a new kind of invariant that is need to effectively analyze
and prove properties of a special class of program. In this project, with a special focus on linear
digital filters and linear accumulators, it is natural to explore new abstract domains that generate
appropriate invariants for those classes.

At the outset of this project, our working hypothesis was that the standard abstract domains used
in abstract interpretation (including numeric intervals) would give results that are too imprecise
to be useful. Consequently, the project goal was to explore abstract domains that are specialized
to linear digital filters. As discussed later in Section 4, our working hypothesis was borne out,
but, surprisingly, as we developed and applied more specialized domains, we discovered
techniques that produce the desired analytic results without the need for abstract interpretation.
We discovered techniques for generating closed-form formulas for LDFs and accumulator codes
that yield sound and reasonably precise bounds on the output stream and its floating point errors.
That is, we were able to obtain our desired analytic results in negligible time.

3.3. Integration of Model Analysis and Code Analysis

This section describes the original, standalone platforms of the two tools, and the modifications
and bridges that we designed to allow their SANA-enhanced versions to work as one.

3.3.1. Original HiLiTE Platform
Figure 7 is an overview of the HiLiTE tool and its usage context, as deployed in the avionics
certification programs in Honeywell aerospace products. HiLiTE provides comprehensive design
model analysis and test generation for MATLAB Simulink/Stateflow models. It performs
symbolic analyses combining computation semantics, control transforms, and temporal
properties in a unified analysis framework. Error propagation is a recent addition to support
increasing tolerances only where necessary and identify when a construct is untestable because
cumulative error makes an execution path undecidable.

Approved for Public Release; Distribution Unlimited.
15

Figure 7. HiLiTE Overview

Range propagation: During model analysis, HiLiTE propagates signal dimensions, data type,
and range information from the model input blocks through the rest of the blocks in the model to
the model outputs. In this propagation, the dimensions, data type, operating range, and hard
range constraint are determined for all intermediate signals (all inputs and outputs of each block
instance) in the model. The range computation takes into account the specific mathematical and
functional effect of each library block. The following are computed for each output of each
block:

• Shape: The dimensions of the signal represented as a list of sizes for each dimension;
scalar signals have shape=1.

• Data type: The data type is inferred from the block type and input data types.
• Normal operating range: The range of possible values the output can have, for all

combinations of input values of the block within the normal operating range of each
input. This may include an estimated error component on each end of the range.

• Maximum allowable range constraint (also called a “hard bound” or “constraint”): This
denotes a constraint on the feasible values due to specific block computations. Examples
are outputs of the constant and range limiter blocks; values on these signals outside the
constraint are not feasible in the model.

Approved for Public Release; Distribution Unlimited.
16

Based on the range analysis certain model design defects can be analyzed including overflow
conditions, frozen signals (constant value), un-testable conditions, and violation of modeling
design guidelines or block-specific constraints.

Feedback loops and patterns: HiLiTE detects and breaks any feedback loops and performs the
propagations (Shape/DataType/Range) for all the blocks interconnected in the loop. Similarly, it
analyzes certain combinations of blocks to identify common patterns. HiLiTE substitutes a single
block for the model blocks that comprise the pattern and performs the comprehensive
propagation analysis and test vector generation for the entire pattern as a whole.

Relationship propagation: HiLiTE has the capability to determine the relationship of a block’s
output to the upstream source ports in the model. A constraint in the model occurs when a signal
fans out, creating multiple branches that converge downstream onto the inputs of a single block.
When two or more such inputs are totally related to each other (identity or linear relationship
with zero slope) HiLiTE recognizes this and maintains a list of totally related inputs for the
blocks in the model. If the output of the block is a polynomial of the block inputs HiLiTE
recognizes the polynomial relationship and uses it to determine a tight range bound at the output.

The relationship propagation takes into account the specific mathematical and functional effect
of each library block. The propagation of these relationships supports the analysis of the data
flow expression to recognize and solve the equation to derive tight, exact range bounds at a
block’s output. Also it helps in identifying test generation constraints due to related inputs in the
model.

Feedback loop invariant analysis: We extended HiLiTE’s feedback loop and relationship
processing to discover cycle invariants describing cycle input-state-output behaviors. A cycle
invariant is expressed by guard/assignment pairs, where each pair represents a possible execution
path of the cycle. HiLiTE discovers cycle invariants by performing path analysis and integration
of individual block invariants following the analysis procedures described below.

Figure 8 shows a model of a limited counter with only one cycle. This cycle has three possible
paths due to the three different guard conditions of block limit. For each path, we collect the set
of guard/assignment pairs from blocks within the cycle starting with the time-dependent block
delay, followed by sum and limit.

Figure 8. Simulink model of limited counter and three possible paths

Next, we use SMT solver Z3 to check the satisfiability of each path. HiLiTE automatically
generates the input file for Z3 containing variable declarations, sets of constraints translated from
the block level guard/assignment pairs and some checking commands. Z3 returns “unsat” for

Approved for Public Release; Distribution Unlimited.
17

each invalid path, which is then removed from the cycle invariant. For the remaining valid paths
(all 3 paths are valid in Figure 8), we further reduce the block level guard/assignment pairs into a
cycle level guard/assignment pair possessing only the cycle level input/output variables. This
process includes virtual substitution to eliminate the intermediate variables as well as some
general simplification. Finally, the cycle invariant is printed out in the log.

The OptionSet information to include in the command file looks like this:
 <OptionSet name="ModelAnalysisDirectives">

 <Option key=" AnalyzeFeedbackLoops">True</Option>
 </OptionSet>

By running HiLiTE on a model with the option "AnalyzeFeedbackLoops" set as “True,” HiLiTE
obtains the cycle invariant and decoupler outport range. In the analysis process, messages are
given as information including “cycle list information,” “path expressions,” and “range
calculated for the time-dependent block outport in current cycle list”.

3.3.2. Original CodeHawk Platform
Kestrel Technology’s CodeHawk technology is an Abstract Interpretation framework, written in
Ocaml, that is meant to be specialized to particular programming languages and program
properties of interest. A specific analyzer tool is built for a specific combination of
language/properties by specializing the Ocaml source and compiling to the intended operating
system (Figure 9 below). Thus CodeHawk can in principle run on any machine/OS for which
there is an Ocaml compiler. We have standard front ends for C, Java and x86 binaries, and a
variety of abstract domains over which to approximate program behaviors. For this project, we
started with an exiting specialization for memory safety properties of C programs that typically
runs on Unix/Linux/MacOS. The need to extend this analyzer to a new floating-point abstract
domain during the course of this project caused us to re-implement a portion of the analyzer in
C++, thus breaking the monolithic Ocaml compilation and resulting in a mixed language system
that (currently) runs only on MacOS (see 3.3.4 below).

Approved for Public Release; Distribution Unlimited.
18

Figure 9 CodeHawk Overview

3.3.3. JSON Interchange Architecture
Since HiLiTE and CodeHawk typically run on different operating system platforms, we made an
early architectural decision to exchange information between their SANA-enhanced versions via
an external file interface. This would allow development to proceed in parallel at different sites,
and for the final, integrated deliverable to be run on the same or different machines at the same
site, as well as different machines at different sites. We designed a custom JSON interface
specification that was sufficiently abstract to mask differences between the two tools and their
respective source languages. As the first year enhancements and integration progressed, we
repeatedly revised this common JSON specification to match, buffering the changes with
grammars and parser generators to rebuild the necessary translators.

Figure 10 shows the overall file exchange integration for Linear Digital Filters. CodeHawk
normally takes as input all of the C sources required to compile the filter application (or any
other C application). For this project, we restricted the C source to just that implementing the
actual filter function that HiLiTE generates. In addition to the C sources, HiLiTE also passes
model-level information about the filter (parameters, recurrence relation, input bounds, etc) in a
JSON file, which contains a reference to the C source file. CodeHawk consumes both inputs,
uses the model-level JSON information to specialize the abstract interpretation to the input filter,

Approved for Public Release; Distribution Unlimited.
19

then writes back an approximation of the value and error bounds of the filter’s output to the same
JSON instance. HiLiTE then consumes this rewritten instance to exploit the computed bounds at
the filter model level.

Figure 10 HiLiTE <-> CodeHawk Integration via files

Approved for Public Release; Distribution Unlimited.
20

Figure 11 HiLiTE <-> CodeHawk JSON Exchange Example

Figure 11 illustrates a sample JSON input file (portion thereof) for a filter analysis. This file
contains information about the filters found in a model. A given C application may contain a
number of filter functions, and any one filter function may be used by multiple “instances” of
that filter. The JSON file for filter analysis consequently uses a series (JSON array) of
filterInstanceSpec objects. Each instance represents a particular set of parameters for the filter,
theoretical bounds on the inputs to the filter, references to the C sources and their algorithmic
parts (init and step functions) that implement the filter, and placeholder JSON objects
representing the value and error bounds on the outputs from the filter. CodeHawk will consume
the input characteristics, and rewrite the JSON output objects to record the results of analysis.

Note that the HiLiTE JSON output refers to other files. These files may be the source code for
standard functionality referenced by the analyzed model or it may be the source code generated
for the model itself.

The JSON format for integrating accumulators explored in the second year of this project is
different than that for filters since different information is required for these two types of
analyses. We avoid confusion in the exchange both by using different files for each type of
analysis data and by the creation of a ‘filterInstances’ list for filter analysis data and an
‘accumulatorInstances’ list for accumulator analysis data.

Approved for Public Release; Distribution Unlimited.
21

3.3.4. Tool Software Integration Architecture
The toolset integration has several ‘levels’. There is the integration of the entire system of tools
(CodeHawk + HiLiTE) as well as the integration of each of the tool’s internal systems within
itself.

HiLiTE is a Windows .NET application comprised of multiple C# and J# assemblies, some
statically linked and others dynamically loaded. In addition, HiLiTE links to COM libraries for
its interface to MATLAB Simulink to open and process the contents of a model.

CodeHawk is normally an OCaml application specialized to a particular source language (C,
Java, x86 binary) and a particular set of program conjectures to be proved. This project required
specializing Kestrel’s existing C analyzer to a new abstract domain of floating point numbers.
The libraries for this domain, however, are written in C++, so our original architectural plan was
to write Ocaml “wrapper” code for these C++ libraries to bring them into the existing Ocaml
architecture. This proved to be infeasible, so we were forced to write an entirely new abstract
interpretation engine in C++ and split the erstwhile monolithic CodeHawk architecture into
several pipelined pieces. Because of the exigencies of developing and integrating these pieces
from multiple languages at multiple sites, the resulting SANA-specialized CodeHawk (currently)
only runs reliably under MacOS. Its constituent pieces are assembled from C, C++, and Ocaml
compiled binaries, plus a Unix shell script, and integrated into a single application as a runnable
Java jar file.

A consequence of this mixed-language/mixed-operating-system configuration is that the
combined HiLiTE/CodeHawk system typically runs on separate Windows and Mac machines,
with round-trip communication implemented via shared C source and JSON files.

The source code for the library of standard functionality that can be referenced is installed as part
of the CodeHawk installer. Currently this set of standard functionality consists of all the known
filters.

Approved for Public Release; Distribution Unlimited.
22

HiLiTE Machine CodeHawk Machine

File Server

JSON interchange file

Figure 12 HiLiTE <-> CodeHawk Comm Process

The system of tools is integrated through the use of the files described above. Since these JSON
files also reference ‘C’ source files, those files must either already be present on the CodeHawk
machine or must be transferred along with the JSON file that references them. The filter source
code is installed along with CodeHawk and thus need not be transferred. HiLiTE recognizes this
and bundles model specific source code along with the JSON in a package that can be easily
made accessible to the CodeHawk machine.

Because the HiLiTE machine already has all the source code, the only information that need be
transmitted back from the CodeHawk machine is the result JSONfile.

The actual mechanism for transfer can be through use of a file server, email or any other
mechanism convenient to the user. As part of moving files, they will need to be placed where
CodeHawk/ HiLiTE can find them. See the User Guide for details.

Approved for Public Release; Distribution Unlimited.
23

4. RESULTS AND DISCUSSION

4.1. Discoveries in Abstract Interpretation

As discussed in the previous section, our approach was to explore various abstract domains
within an abstract interpretation framework, implemented by CodeHawk, for analyzing linear
digital filters and accumulating integrators. The analytic results that we desire are

(1) bounds on the output of a filter,
(2) bounds on the floating-point errors in the output of a filter,
(3) bounds on the output of an accumulating integrator as a function of the number of

iterations, and
(4) bounds on the floating-point errors in the output of an accumulating integrator as a

function of the number of iterations.

4.1.1. Interval Abstract Domain
As always in analyzing a program, the first question is what kinds of invariants are required to
establish the desired results. Since we obviously want bounds as results, the first abstract
domain to try is intervals.

As a running example, we will use a simple first-order linear digital filter (called a Lead Lag
filter, see Section 4.2.1):

𝑦𝑦𝑛𝑛+1 =

9
13

𝑢𝑢𝑛𝑛+1 −
7

13
𝑢𝑢𝑛𝑛 +

11
13

𝑦𝑦𝑛𝑛 (3)

where the input stream is written 𝑢𝑢0,𝑢𝑢1, … and the output stream is 𝑦𝑦0,𝑦𝑦1, … We are given that
the range of the input values is [-1,1], and that 𝑦𝑦0 = 0. What are the possible values for the
output stream? If we use the interval abstract domain, representing 𝑦𝑦0 as [0,0] and iterate the
recurrence we get

𝑦𝑦1 =

9
13

[−1,1] −
7

13
[−1,1] +

11
13

[0,0] = [
−16
13

,
16
13

] (4)

𝑦𝑦2 =

9
13

[−1,1] −
7

13
[−1,1] +

11
13

�
−16
13

,
16
13
� = �

−192
169

,
192
169

�
(5)

Note that the sequence is growing and we have gone through the iterative loop twice. A typical
step in abstract interpretation is to speed up convergence to a fixpoint by applying a widening
operator. There are standard widening operators for each abstract domain and their choice is
somewhat of an art. A widening operator suggested in earlier work on filters [3] is to jump up
to the nearest power of ten, so [-10,10] in our case. This does in fact converge since

 9
13

[−1,1] −
7

13
[−1,1] +

11
13

[−10,10] ⊆ [−10,10]. (6)

Approved for Public Release; Distribution Unlimited.
24

The actual range of the output is [-1,1], so this inferred range is very imprecise, although sound.
The best that can be obtained using the interval domain is [-8,8] which is better, but far from the
exact bound.

4.1.2. Cancellation Abstract Domain
The essential reason for the imprecision when using the interval domain is that there are
cancellation possibilities if we simply unroll the recurrence:

𝑦𝑦2 =

9
13

𝑢𝑢2 −
7

13
𝑢𝑢1 +

11
13

𝑦𝑦1

 =

9
13

𝑢𝑢2 −
7

13
𝑢𝑢1 +

11
13

�
9

13
𝑢𝑢1 −

7
13

𝑢𝑢0 +
11
13

𝑦𝑦0�
(7)

 =

9
13

𝑢𝑢2 +
8

169
𝑢𝑢1 −

77
169

𝑢𝑢0

where some of the contribution of 𝑢𝑢1 to 𝑦𝑦2 has been cancelled out. This phenomenon suggests
an approach to constructing an abstract domain that generates stronger invariants for linear
recurrences: supplement intervals with symbolic expressions to allow cancellation as part of the
abstract operators of the domain. As an example, instead of abstracting 𝑦𝑦2 to an interval, we
abstract it to a symbolic sum (where Abs(x) denotes the abstract value of variable x):

𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦2) =

9
13

𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢2) + [−
8

169
,

8
169

] (8)

which will allow us to partially cancel 𝐴𝐴𝐴𝐴𝐴𝐴(𝑢𝑢2) in the next iteration (to generate 𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦3)). We
implemented an abstract domain of this type and indeed it converges to the exact bound [-1,1] in
our example. It generally performs well for first-order linear filters since there are a fixed
number of terms to be carried between iterations to harvest all the cancellation possibilities.
Unfortunately, for higher-order linear filters, there is no fixed bound on the number of terms to
be carried so this approach won’t work as stated. We explored several ways to further elaborate
the approach for second-order filters, but the result is very complex and of unclear benefit.

Fortunately, the idea of unrolling the recurrence carries the seed of an alternate approach that
proved successful. Intuitively, we can imagine fully unrolling the recurrence until any output 𝑦𝑦𝑛𝑛
is expressed as a linear sum of all preceding inputs (i.e. all previous outputs in the recurrence are
eliminated by unrolling). Before we turn to the approach based on that concept, we first review
our parallel efforts to analyze the error due to floating-point representations.

4.1.3. Analyzing for Error Bounds
In addition to wanting bounds on the values of the output of a filter or accumulator, we also want
to know bounds on the accumulated errors due to floating point implementation of real values.
Using simple intervals for error analysis will result in a non-converging series of bounds. In
practice the errors are bounded and fairly small, at least for first-order filters, so once again the
interval domain proves to be too imprecise for this application.

Approved for Public Release; Distribution Unlimited.
25

As mentioned earlier, if the standard abstract domains do not provide a useful time/precision
tradeoff, then the skilled abstract interpretationist explores the type of invariants that are required
to obtain the desired results and develops abstract domains to generate those invariants.

We define the error as

 𝑓𝑓(𝑥𝑥, 𝑛𝑛) − 𝑟𝑟(𝑥𝑥,𝑛𝑛) ≤ 𝜖𝜖(𝑥𝑥,𝑛𝑛) (9)

where 𝑟𝑟(𝑥𝑥,𝑛𝑛) denotes the real value of variable x at the nth iteration, 𝑓𝑓(𝑥𝑥,𝑛𝑛) is the floating point
value of x after n iterations, and 𝜖𝜖(𝑥𝑥, 𝑛𝑛) is the error, expressed as a bound on the difference of the
two.

If we view the output 𝑦𝑦𝑛𝑛 as a linear sum of all preceding inputs, we get a sense that the net error
due to floating point can be calculated as a linearly weighted sum of the error contributions of
each of the inputs and the operations performed upon them. This leads, after some trial and
error, to seeking an invariant of the form

 𝜖𝜖(𝑥𝑥, 𝑛𝑛) = 𝐴𝐴𝑥𝑥 + 𝑀𝑀𝑥𝑥𝑏𝑏𝑝𝑝𝑥𝑥� 𝛽𝛽𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (10)

where 𝜖𝜖(𝑥𝑥,𝑛𝑛) is the error range of variable x at a code location. The sum conveys the effect of
the errors from all earlier inputs. The invariant is parametric on A, M, p, b, and 𝛽𝛽, where Ax, Mx,
and px vary per variable x. As we simulate the concrete program (implementing the recurrence)
via abstract operators, the effect will be to update the current abstract values of Ax, Mx, and px .

We have been able to derive the abstract operations that preserve the form of the invariant by
changing the parameters. To illustrate, consider the case that the concrete program performs a
sum of two variables

 𝑣𝑣 = 𝑤𝑤 + 𝑧𝑧 (11)

where the invariant holds before the assignment. We want to calculate updates to the parameters
of the invariant such that the invariant holds after the assignment.

We assume that

 𝜖𝜖(𝑤𝑤) = 𝐴𝐴𝑤𝑤 + 𝑀𝑀𝑤𝑤𝑏𝑏𝑝𝑝𝑤𝑤� 𝛽𝛽𝑤𝑤𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (12)

 𝜖𝜖(𝑧𝑧) = 𝐴𝐴𝑧𝑧 + 𝑀𝑀𝑧𝑧𝑏𝑏𝑝𝑝𝑧𝑧� 𝛽𝛽𝑧𝑧𝑖𝑖
𝑛𝑛

𝑖𝑖=0
 (13)

then (letting 𝜖𝜖𝑚𝑚 denote the machine error for the chosen floating-point representation)

Approved for Public Release; Distribution Unlimited.
26

𝑓𝑓(𝑣𝑣,𝑛𝑛) − 𝑟𝑟(𝑣𝑣,𝑛𝑛)

 = �𝑓𝑓(𝑤𝑤,𝑛𝑛) + 𝑓𝑓(𝑧𝑧,𝑛𝑛)�(1 + 𝛿𝛿) − �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝑟𝑟(𝑧𝑧,𝑛𝑛)� where |𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚

= �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝜖𝜖(𝑤𝑤) + 𝑟𝑟(𝑧𝑧,𝑛𝑛) + 𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿) − �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝑟𝑟(𝑧𝑧,𝑛𝑛)�

= �𝑟𝑟(𝑤𝑤,𝑛𝑛) + 𝑟𝑟(𝑧𝑧,𝑛𝑛)�𝛿𝛿 + �𝜖𝜖(𝑤𝑤) + 𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿)

 = 𝑟𝑟(𝑣𝑣,𝑛𝑛)𝛿𝛿 + �𝜖𝜖(𝑤𝑤) + 𝜖𝜖(𝑧𝑧)�(1 + 𝛿𝛿) (14)

≤ max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 + 𝑀𝑀𝑤𝑤𝑏𝑏𝑝𝑝𝑤𝑤 ∑ 𝛽𝛽𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=0 + 𝐴𝐴𝑧𝑧 + 𝑀𝑀𝑧𝑧𝑏𝑏𝑝𝑝𝑧𝑧 ∑ 𝛽𝛽𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=0)(1 + 𝛿𝛿)

≤ [max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 + 𝐴𝐴𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)]

+
(𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)

𝑏𝑏
𝑏𝑏max(𝑝𝑝𝑤𝑤,𝑝𝑝𝑧𝑧)+1� 𝛽𝛽𝑧𝑧𝑖𝑖

𝑛𝑛

𝑖𝑖=0

= 𝜖𝜖(𝑣𝑣,𝑛𝑛)

where we update the parameters according to

 𝐴𝐴𝑣𝑣 = [max�𝑟𝑟(𝑣𝑣,𝑛𝑛)� 𝜖𝜖𝑚𝑚 + (𝐴𝐴𝑤𝑤 + 𝐴𝐴𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)] (15)

𝑀𝑀𝑣𝑣 =

(𝑀𝑀𝑤𝑤 + 𝑀𝑀𝑧𝑧)(1 + 𝜖𝜖𝑚𝑚)
𝑏𝑏

 (16)

 𝑝𝑝𝑣𝑣 = max(𝑝𝑝𝑤𝑤,𝑝𝑝𝑧𝑧) + 1. (17)

That is, when the concrete implementation assigns a sum of two variables to a variable, we
perform the updates above in the abstract domain. Similar abstract operators have been derived
and implemented for other concrete operations: subtraction, multiply by a constant, divide, and
so on.

Using this abstract domain resulted in finite error bounds that were surprisingly small. One
might intuit that floating-point errors should accumulate without bound as a linear recursion
progresses. However, it seems that filters inherently have a discounting mechanism so that the
contribution of previous inputs increasingly diminish with age. The same mechanism seems to
apply to errors: the effects of older errors are discounted with age, so that the age-weighted
errors form a series that converges.

4.1.4. Closed-form Solutions
The explorations discussed in previous subsections pointed to the conceptual value of fully
unrolling the recursion and expressing the current output 𝑦𝑦𝑛𝑛 as a linear sum of all preceding
inputs. Anca Browne discovered that the coefficients of that linear sum are fixed by the linear
recurrence, and, moreover, are themselves characterized by a homogeneous linear recurrence
relation. This remarkable fact allows us to find a closed-form expression of the coefficients and
then to symbolically calculate exact bounds on the output values. A generalization of this
approach can also be applied to calculating bounds on error values and to find bounding

Approved for Public Release; Distribution Unlimited.
27

functions on the range and errors of accumulating integrators. The effect is that through
symbolic analysis of the linear recurrences that characterize linear digital filters and
accumulating integrators, we can derive exact or tight bounds on the range of outputs and their
floating point errors, in essentially constant time. This stands in contrast, say, to 20 hours of
analysis time needed to perform sophisticated abstract interpretation-based analysis for just one
Airbus-related analysis in [3].

Let
 𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0𝑢𝑢𝑛𝑛+1 + 𝑎𝑎1𝑢𝑢𝑛𝑛 + . . . + 𝑎𝑎𝑁𝑁𝑢𝑢𝑛𝑛−𝑁𝑁+1 + 𝑏𝑏1𝑦𝑦𝑛𝑛 + . . . + 𝑏𝑏𝑁𝑁𝑦𝑦𝑛𝑛−𝑁𝑁+1 (18)

be the recurrence equation for the output of a digital filter of order N that defines the output 𝑦𝑦𝑛𝑛+1
in terms of N + 1 present and past inputs and N past outputs. Unfolding the equation, 𝑦𝑦𝑛𝑛+1can
be expressed as a linear combination of 𝑢𝑢𝑛𝑛+1 … 𝑢𝑢1:

 𝑦𝑦𝑛𝑛+1 = 𝑐𝑐0𝑛𝑛+1𝑢𝑢𝑛𝑛+1 + 𝑐𝑐1𝑛𝑛+1𝑢𝑢𝑛𝑛 + ⋯+ 𝑐𝑐𝑛𝑛𝑛𝑛+1𝑢𝑢1 (19)

Notice that for any n, 𝑐𝑐0𝑛𝑛+1 = 𝑎𝑎0. Therefore for any n, 𝑐𝑐1𝑛𝑛+1= 𝑎𝑎1 + 𝑏𝑏1𝑐𝑐0𝑛𝑛 = 𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0, etc.
The key point to notice is that 𝑐𝑐𝑘𝑘𝑛𝑛 does not depend on n, for any k. Without the superscript,

 𝑦𝑦𝑛𝑛+1 = 𝑐𝑐0𝑢𝑢𝑛𝑛+1 + 𝑐𝑐1𝑢𝑢𝑛𝑛 + . . . + 𝑐𝑐𝑛𝑛𝑢𝑢1 (20)

The first N+1 terms 𝑐𝑐0, … , 𝑐𝑐𝑁𝑁 depend on both 𝑎𝑎0, … ,𝑎𝑎𝑁𝑁 and 𝑏𝑏1, … , 𝑏𝑏𝑁𝑁. However, for any 𝑛𝑛 ≥ 𝑁𝑁,

 𝑐𝑐𝑛𝑛+1 = 𝑏𝑏1𝑐𝑐𝑛𝑛 + 𝑏𝑏2𝑐𝑐𝑛𝑛−1 + . . . + 𝑏𝑏𝑁𝑁𝑐𝑐𝑛𝑛−𝑁𝑁+1 (21)

This homogeneous linear recursion formula of order N has the general solution

 𝑐𝑐𝑛𝑛+1 = 𝑃𝑃1(𝑛𝑛)𝑟𝑟1𝑛𝑛 + 𝑃𝑃2(𝑛𝑛)𝑟𝑟2𝑛𝑛 + … + 𝑃𝑃𝑗𝑗(𝑛𝑛)𝑟𝑟𝑗𝑗𝑛𝑛 (22)

where 𝑟𝑟1, … , 𝑟𝑟𝑗𝑗 are solutions of the characteristic equation

 𝑥𝑥𝑁𝑁 = 𝑏𝑏1𝑥𝑥𝑁𝑁−1 + 𝑏𝑏2𝑥𝑥𝑁𝑁−2 + . . . + 𝑏𝑏𝑁𝑁
 (23)

with respective multiplicities 𝑚𝑚1,𝑚𝑚2, . . . ,𝑚𝑚𝑗𝑗 and 𝑃𝑃𝑖𝑖 's are polynomials of degree 𝑚𝑚𝑖𝑖 − 1. See
e.g. [4] for more background on solving (in)homogeneous linear recurrence equations.

The initial conditions that determine the solution are given by 𝑐𝑐1, … , 𝑐𝑐𝑁𝑁.

4.1.5. Range Analysis for First-order Linear Digital Filters

The general form of a first-order linear filter is

Approved for Public Release; Distribution Unlimited.
28

𝑦𝑦0 = 0 (24)

𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0𝑢𝑢𝑛𝑛+1 + 𝑎𝑎1𝑢𝑢𝑛𝑛 + 𝑏𝑏1𝑦𝑦𝑛𝑛 for 𝑛𝑛 ≥ 0 (25)

where 𝑢𝑢0 = 0. The coefficients 𝑐𝑐𝑖𝑖 are given by
𝑐𝑐0 = 𝑎𝑎0 (26)

𝑐𝑐1 = 𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0 (27)

𝑐𝑐𝑛𝑛+1 = 𝑐𝑐1𝑏𝑏1𝑛𝑛 (28)

and therefore the output is

𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0𝑢𝑢𝑛𝑛+1 + (𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)(𝑢𝑢𝑛𝑛 + 𝑏𝑏1𝑢𝑢𝑛𝑛−1 + ⋯+ 𝑏𝑏1𝑛𝑛−1𝑢𝑢1) (29)

or

𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0𝑢𝑢𝑛𝑛+1 + (𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)�𝑏𝑏1𝑖𝑖𝑢𝑢𝑛𝑛−𝑖𝑖

𝑛𝑛−1

𝑖𝑖=0

 (30)

Since we are assuming that all inputs have the same range, we can omit the subscript on inputs
for purposes of computing the range bounds of the output:

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛+1) = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑎𝑎0𝑢𝑢) + 𝑚𝑚𝑚𝑚𝑚𝑚((𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0)�𝑏𝑏1𝑖𝑖𝑢𝑢
𝑛𝑛−1

𝑖𝑖=0

)

= 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)(𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙ 1− 𝑏𝑏1𝑛𝑛

1− 𝑏𝑏1
�)

≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)�𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙
1

1 − 𝑏𝑏1
�� (31)

when 𝑏𝑏1 < 1. Similarly,

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛+1) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)�𝑎𝑎0 + �(𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0) ∙
1

1 − 𝑏𝑏1
��.

As an example, consider the lead lag filter (see Section 4.2.1) described by

𝑦𝑦0 = 0 (32)

𝑦𝑦𝑛𝑛+1 =
9

13
𝑢𝑢𝑛𝑛+1 −

7
13

𝑢𝑢𝑛𝑛 +
11
13

𝑦𝑦𝑛𝑛 (33)

Approved for Public Release; Distribution Unlimited.
29

with 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈ [−1, 1]. Then the coefficients 𝑐𝑐𝑖𝑖 are given by

𝑐𝑐0 =

9
13

 (34)

𝑐𝑐1 =

7
13

 +
11
13

9

13
 =

 8
169

 (35)

𝑐𝑐𝑛𝑛+1 =

8
169

 (
11
13

)𝑛𝑛 (36)

and the range of the output by

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛) ≤

 9
13

+
8

169
1

1 − 11
13

 = 1 (37)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛) ≤ −

 9
13

−
8

169
1

1 − 11
13

 = −1 (38)

4.1.6. Range Analysis for Second-order Linear Digital Filters

A similar, slightly more complex treatment computes the range bound for second-order linear
filters:

 𝑦𝑦0 = 𝑦𝑦1 = 0
 (39)

 𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0𝑢𝑢𝑛𝑛+1 + 𝑎𝑎1𝑢𝑢𝑛𝑛 + 𝑎𝑎2𝑢𝑢𝑛𝑛−1 + 𝑏𝑏1𝑦𝑦𝑛𝑛 + 𝑏𝑏2𝑦𝑦𝑛𝑛−1 𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ≥ 1.
 (40)

Suppose that the characteristic equation has two distinct solutions 𝑟𝑟1 and 𝑟𝑟2. Then

 𝑐𝑐0 = 𝑎𝑎0 (41)

 𝑐𝑐1 = 𝑎𝑎1 + 𝑏𝑏1𝑎𝑎0 (42)

 𝑐𝑐2 = 𝑏𝑏1 + 𝑏𝑏12𝑎𝑎0 + 𝑏𝑏2𝑎𝑎0 (43)

 𝑐𝑐𝑛𝑛+1 = 𝑠𝑠𝑟𝑟1𝑛𝑛 + 𝑡𝑡𝑟𝑟2𝑛𝑛 (44)

where s and t are the solutions of
 𝑐𝑐1 = 𝑠𝑠 + 𝑡𝑡 (45)

 𝑐𝑐2 = 𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2 (46)

Approved for Public Release; Distribution Unlimited.
30

The output is

𝑦𝑦𝑛𝑛+1 = 𝑎𝑎0 𝑢𝑢𝑛𝑛+1 + (𝑠𝑠 + 𝑡𝑡) 𝑢𝑢𝑛𝑛 + (𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2) 𝑢𝑢𝑛𝑛−1+ . .. (47)

In the case when 𝑠𝑠, 𝑡𝑡, 𝑟𝑟1, 𝑟𝑟2 are all positive the range is given by

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0 𝑢𝑢) + 𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟1 + 𝑟𝑟12+ . . .) + 𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟2
+ 𝑟𝑟22 + . . .)

(48)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑛𝑛) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑎𝑎0 𝑢𝑢) + 𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟1 + 𝑟𝑟12+ . . .) + 𝑡𝑡(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢))(1 + 𝑟𝑟2
+ 𝑟𝑟22 + . . .)

(49)

For example, consider the following quadratic filter (discussed in Section 4.2.4)

𝑦𝑦0 = 𝑦𝑦1 = 0 (50)

𝑦𝑦𝑛𝑛+1 =
592841

78010601
𝑢𝑢𝑛𝑛+1 +

1185682
78010601

𝑢𝑢𝑛𝑛 +
592841

78010601
𝑢𝑢𝑛𝑛−1 +

126814318
78010601

𝑦𝑦𝑛𝑛 −
51175081
78010601

𝑦𝑦𝑛𝑛−1

(51)

where 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈ [−100, 100].

The first coefficients are

𝑐𝑐0 =
592841

78010601
(52)

𝑐𝑐1 =
167676492512320

6085653868381201
(53)

𝑐𝑐2 =
22504866023935154502080

474745515750392387111801
(54)

and the others are determined by the solutions of the characteristic equation

𝑥𝑥2 =
126814318
78010601

𝑥𝑥 −
51175081
78010601

(55)

which are

Approved for Public Release; Distribution Unlimited.
31

𝑟𝑟1,2 =

63407159 ± 160 √1104257321
78010601

 ≈ {0.744646, 0.880957} (56)

The general solution is

 (57)

𝑐𝑐𝑛𝑛+1 = 𝑠𝑠 (
63407159 − 160 √1104257321

78010601
)𝑛𝑛 + 𝑡𝑡 (

63407159 + 160 √11042573211
7801060

)𝑛𝑛

where s and t are solutions of the system

 𝑠𝑠 + 𝑡𝑡 = 𝑐𝑐1 (58)

𝑠𝑠 (
63407159 – 160 √1104257321

78010601
) + 𝑡𝑡 (

63407159 + 160 √1104257321
78010601

) = 𝑐𝑐2
(59)

which are

 (60)

𝑠𝑠 = −
5579860(−976009979996381 + 391157262321 √1104257321)

39530163748423009547191
≈ −0.169695

𝑡𝑡 =
 5579860 � 17

64956313 (391157262321 + 883861 √1104257321)

6085653868381201
 ≈ 0.197247

(61)

The expansion of 𝑦𝑦𝑛𝑛+1 is

 𝑦𝑦𝑛𝑛+1 = 𝑐𝑐0𝑢𝑢𝑛𝑛+1 + (𝑠𝑠 + 𝑡𝑡) 𝑢𝑢𝑛𝑛 + (𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2)𝑢𝑢𝑛𝑛−1 + ⋯ + (𝑠𝑠 𝑟𝑟1𝑛𝑛−1 + 𝑡𝑡 𝑟𝑟2𝑛𝑛−1)𝑢𝑢1 (62)

Notice that 𝑠𝑠 𝑟𝑟1𝑘𝑘 + 𝑡𝑡 𝑟𝑟2𝑘𝑘 > (𝑠𝑠 + 𝑡𝑡)𝑟𝑟2𝑘𝑘 > 0 since 𝑠𝑠 < 0, 𝑠𝑠 + 𝑡𝑡 > 0 and 𝑟𝑟2 > 𝑟𝑟1. As all the
coefficients are positive, the maximum is attained for 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢) and the minimum for 𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢)

 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑛𝑛) = 100 (𝑐𝑐0 + (𝑠𝑠 + 𝑡𝑡) + (𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2) + . . .)

 = 100 (𝑐𝑐0 + 𝑠𝑠
1

1 − 𝑟𝑟1
 + 𝑡𝑡

1
1 − 𝑟𝑟2

) = 100 (63)

𝑚𝑚𝑚𝑚𝑚𝑚 (𝑦𝑦𝑛𝑛) = −100 (𝑐𝑐0 + (𝑠𝑠 + 𝑡𝑡) + (𝑠𝑠 𝑟𝑟1 + 𝑡𝑡 𝑟𝑟2) + . . .)

 = −100 �𝑐𝑐0 + 𝑠𝑠

1
1 − 𝑟𝑟1

 + 𝑡𝑡
1

1 − 𝑟𝑟2
� = −100. (64)

Approved for Public Release; Distribution Unlimited.
32

4.1.7. Digital Filters: Error Range

The filter recursive formula does not immediately translate into a constant-term recursive
formula for the floating-point output or its accumulated error. Different inputs, with different
errors, will influence the constants differently. The solution we adopt is to use intervals.
However, just reproducing our approach for finding the real bounds does not work because the
characteristic equation cannot be solved in the same way over intervals.

As before, the error for variable 𝑥𝑥 is

 𝑓𝑓(𝑥𝑥, 𝑛𝑛) − 𝑟𝑟(𝑥𝑥,𝑛𝑛) ≤ 𝜖𝜖(𝑥𝑥,𝑛𝑛) (65)

where 𝑟𝑟(𝑥𝑥,𝑛𝑛) denotes the real value of variable x at the nth iteration for some particular
sequence of inputs, 𝑓𝑓(𝑥𝑥,𝑛𝑛) is the floating point value of x after n iterations, and 𝜖𝜖(𝑥𝑥, 𝑛𝑛) is the
error, expressed as a bound on the difference of the two. We will assume that all the variables
are bounded over all iterations and we will denote by 𝑅𝑅(𝑥𝑥) an interval that includes all possible
real values for 𝑥𝑥 and by 𝐸𝐸𝐸𝐸(𝑥𝑥) an interval that includes all the possible errors for variable 𝑥𝑥. For
inputs 𝑢𝑢𝑖𝑖, we will take 𝐸𝐸𝐸𝐸(𝑢𝑢𝑖𝑖) to be a symmetric interval.

4.1.7.1. Symbolic Interval Combinations

Let ℐ be the set of intervals over real numbers. Let 𝒮𝒮 be a set of symbols and 𝒜𝒜 be the set of
affine combinations

 𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺 (66)

where 𝐺𝐺0, . . .𝐺𝐺𝑝𝑝,𝐺𝐺 ∈ ℐ and 𝑆𝑆0, . . . , 𝑆𝑆𝑝𝑝 ∈ 𝒮𝒮. Two combinations that differ only by the order of
their terms or by a zero-coefficient term as in

 𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺 ≡ 𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + [0,0]𝑆𝑆𝑝𝑝+1 + 𝐺𝐺 (67)

are considered identical.

We will assume that 𝒮𝒮 contains all the symbols that we need, among which are symbols for the
infinite sequence of input errors and output errors.

We define the following operations on 𝒜𝒜:

1. multiplication by an interval

 (𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺) ∗ 𝐼𝐼 = (𝐺𝐺1 ∗ 𝐼𝐼) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 ∗ 𝐼𝐼) 𝑆𝑆𝑝𝑝 + 𝐺𝐺 ∗ 𝐼𝐼 (68)

2. division by an interval

 𝐺𝐺1 𝑆𝑆1 + . . .𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺)/𝐼𝐼 = (𝐺𝐺1/𝐼𝐼) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝/𝐼𝐼) 𝑆𝑆𝑝𝑝 + 𝐺𝐺/𝐼𝐼 (69)

Approved for Public Release; Distribution Unlimited.
33

3. addition

 (𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺) + �𝐺𝐺′1 𝑆𝑆1 + . . .𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺′�

= (𝐺𝐺1 + 𝐺𝐺′1) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 + 𝐺𝐺′𝑝𝑝) 𝑆𝑆𝑝𝑝 + (𝐺𝐺 + 𝐺𝐺′)
(70)

Notice that we can always assume two combinations have the same symbols because we
can always add zero-coefficient terms.

4. subtraction

 (𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺) − �𝐺𝐺′1 𝑆𝑆1 + . . .𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺′�

= (𝐺𝐺1 − 𝐺𝐺′1) 𝑆𝑆1 + . . . (𝐺𝐺𝑝𝑝 − 𝐺𝐺′𝑝𝑝) 𝑆𝑆𝑝𝑝 + (𝐺𝐺 − 𝐺𝐺′)
(71)

5. Simultaneous substitution. Here is the result of one symbol being substituted:

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺; 𝑆𝑆1 → 𝐻𝐻1𝑆𝑆1 + . . .𝐻𝐻𝑝𝑝𝑆𝑆𝑝𝑝 + 𝐻𝐻
= 𝐺𝐺1 �𝐻𝐻1𝑆𝑆1 + . . .𝐻𝐻𝑝𝑝𝑆𝑆𝑝𝑝 + 𝐻𝐻� + 𝐺𝐺2 𝑆𝑆2 + ⋯ 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺

(72)

Any 𝑉𝑉: 𝒮𝒮 → ℐ can be extended to 𝑉𝑉: 𝒜𝒜 → ℐ by

 𝑉𝑉�𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺� = 𝐺𝐺1 ∗ 𝑉𝑉(𝑆𝑆1) + . . . + 𝐺𝐺𝑝𝑝 ∗ 𝑉𝑉(𝑆𝑆𝑝𝑝) + 𝐺𝐺 (73)

We will call such a 𝑉𝑉, a value function. Notice that for any value function 𝑉𝑉 and any interval 𝐺𝐺,
𝑉𝑉(𝐺𝐺) = 𝐺𝐺.

Lemma 1. If V associates with each symbol a singleton interval 𝑉𝑉(𝑆𝑆) = [𝑠𝑠, 𝑠𝑠] then for any
[𝐴𝐴,𝐴𝐴′] ∈ 𝒜𝒜, and 𝐽𝐽 ∈ ℐ.

 𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴),𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴′) ⇒ 𝑎𝑎 + 𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴 + 𝐴𝐴′) (74)

 𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴),𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴′) ⇒ 𝑎𝑎 − 𝑎𝑎′ ∈ 𝑉𝑉(𝐴𝐴 − 𝐴𝐴′) (75)

 𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴), 𝑖𝑖 ∈ ℐ ⇒ 𝑎𝑎𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴 ∗ 𝐼𝐼) (76)

 𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴), 𝑖𝑖 ∈ ℐ ⇒ 𝑎𝑎/𝑖𝑖 ∈ 𝑉𝑉(𝐴𝐴/𝐼𝐼) (77)

 𝑎𝑎 ∈ 𝑉𝑉(𝐴𝐴), 𝑠𝑠𝑖𝑖 ∈ 𝑉𝑉(𝐴𝐴′) ⇒ 𝑎𝑎 ∈ 𝑉𝑉(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆[𝐴𝐴, 𝑆𝑆𝑖𝑖 → 𝐴𝐴′) (78)

Proof: Let
 𝐴𝐴 = 𝐺𝐺1 𝑆𝑆1 + … 𝐺𝐺𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺 (79)
 𝐴𝐴′ = 𝐺𝐺′1 𝑆𝑆1 + … 𝐺𝐺′𝑝𝑝 𝑆𝑆𝑝𝑝 + 𝐺𝐺′ (80)

 𝑎𝑎 = 𝑔𝑔1𝑠𝑠1 + . . . + 𝑔𝑔𝑝𝑝𝑠𝑠𝑝𝑝 + 𝑔𝑔 with 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺𝑖𝑖,𝑔𝑔 ∈ 𝐺𝐺 (81)

 𝑎𝑎′ = 𝑔𝑔′1𝑠𝑠1 + . . . + 𝑔𝑔′𝑝𝑝𝑠𝑠𝑝𝑝 + 𝑔𝑔′ with 𝑔𝑔′𝑖𝑖 ∈ 𝐺𝐺𝑖𝑖 ,𝑔𝑔′ ∈ 𝐺𝐺 (82)

Approved for Public Release; Distribution Unlimited.
34

Then, using distributivity, we get

 𝑎𝑎 + 𝑎𝑎′ = �𝑔𝑔11 + 𝑔𝑔′1�𝑠𝑠1 + … + �𝑔𝑔𝑝𝑝 + 𝑔𝑔′𝑝𝑝� 𝑠𝑠𝑝𝑝 + (𝑔𝑔 + 𝑔𝑔′)
∈ (𝐺𝐺1 + 𝐺𝐺′1)𝑆𝑆1 + … + �𝐺𝐺𝑝𝑝 + 𝐺𝐺′𝑝𝑝�𝑆𝑆𝑝𝑝 + (𝐺𝐺 + 𝐺𝐺′)

∈ 𝑉𝑉(𝐴𝐴 + 𝐴𝐴)

(83)

The other cases are similar. Notice that the first two implications do not necessarily hold if
𝑉𝑉(𝑆𝑆) is not a singleton interval as interval multiplication is not distributive over interval addition.
QED

4.1.7.2. Error Set Abstractions

For each variable 𝑥𝑥, we will define 𝐸𝐸(𝑥𝑥) ∈ 𝒜𝒜 and then show how it represents an abstraction of
the set of errors for variable 𝑥𝑥. More precisely, 𝐸𝐸(𝑥𝑥) will represent a symbolic combination of
the inputs and outputs.

Definition of 𝑬𝑬(𝒙𝒙). For constants 𝑐𝑐, let 𝐸𝐸(𝑐𝑐) be a constant interval that includes all possible
error values for 𝑐𝑐.

For any input 𝑢𝑢𝑖𝑖, let 𝑈𝑈𝑖𝑖 ∈ 𝒮𝒮 and let 𝐸𝐸(𝑢𝑢𝑖𝑖) = 𝑈𝑈𝑖𝑖 = [1,1] 𝑈𝑈𝑖𝑖 ∈ 𝒜𝒜.

Similarly, for output 𝑦𝑦𝑖𝑖, let 𝑌𝑌𝑖𝑖 ∈ 𝒮𝒮 and 𝐸𝐸(𝑦𝑦𝑖𝑖) = 𝑌𝑌𝑖𝑖 = [1,1]𝑌𝑌𝑖𝑖 ∈ 𝒜𝒜.

Suppose that for all 𝑥𝑥 that were assigned a value before 𝑣𝑣 in the filter code, 𝐸𝐸(𝑥𝑥) ∈ 𝒜𝒜 was
defined. Then the definition for 𝐸𝐸(𝑣𝑣) depends on the statement that assigns it a value.

𝑣𝑣 = 𝑤𝑤 ∶

 𝐸𝐸(𝑣𝑣) = 𝐸𝐸(𝑤𝑤) (84)

𝑣𝑣 = 𝑐𝑐 ∶
 𝐸𝐸(𝑣𝑣) = 𝐸𝐸(𝑐𝑐) (85)

𝑣𝑣 = 𝑤𝑤 + 𝑧𝑧 ∶
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + (𝐸𝐸(𝑤𝑤) + 𝐸𝐸(𝑧𝑧)) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (86)

𝑣𝑣 = 𝑤𝑤 − 𝑧𝑧 ∶
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + (𝐸𝐸(𝑤𝑤) − 𝐸𝐸(𝑧𝑧)) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (87)

𝑣𝑣 = 𝑐𝑐 ∗ 𝑤𝑤 ∶
 𝐸𝐸(𝑣𝑣) = 𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + �𝐸𝐸(𝑐𝑐) ∗ 𝑅𝑅(𝑤𝑤) + �𝑅𝑅(𝑐𝑐) + 𝐸𝐸(𝑐𝑐)� ∗ 𝐸𝐸(𝑤𝑤)� ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (88)

𝑣𝑣 = 𝑤𝑤 / 𝑐𝑐 ∶

𝐸𝐸(𝑣𝑣) =
− 𝑅𝑅(𝑣𝑣) 𝐸𝐸(𝑐𝑐) + 𝑅𝑅(𝑤𝑤) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + 𝐸𝐸(𝑤𝑤) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]

𝑅𝑅(𝑐𝑐) + 𝐸𝐸(𝑐𝑐)
 (89)

Approved for Public Release; Distribution Unlimited.
35

Lemma 2. Let 𝜖𝜖𝑖𝑖(𝑢𝑢) and 𝜖𝜖𝑖𝑖(𝑦𝑦) be the error for input i and output i respectively and 𝑉𝑉 the value
function with 𝑉𝑉(𝑈𝑈𝑖𝑖) = [𝜖𝜖𝑖𝑖(𝑢𝑢), 𝜖𝜖𝑖𝑖(𝑢𝑢)] and 𝑉𝑉(𝑌𝑌𝑖𝑖) = [𝜖𝜖𝑖𝑖(𝑦𝑦), 𝜖𝜖𝑖𝑖(𝑦𝑦)]. Then for any variable 𝑥𝑥

∀ 𝑛𝑛 ≥ 0. 𝜖𝜖𝑖𝑖(𝑥𝑥) ∈ 𝑉𝑉�𝐸𝐸(𝑥𝑥)�. (90)

Proof: From the definition of 𝐸𝐸(𝑥𝑥), the statement is trivially true for the state variables and
constants. Assume that the statement is true for the variables given a value before 𝑣𝑣. Then the
first two cases are obvious.

Case 𝑣𝑣 = 𝑤𝑤 + 𝑧𝑧:
𝑓𝑓𝑛𝑛(𝑣𝑣) − 𝑟𝑟𝑛𝑛(𝑣𝑣)
= (𝑓𝑓𝑛𝑛(𝑤𝑤) + 𝑓𝑓𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿) − (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝑟𝑟𝑛𝑛(𝑧𝑧)) where |𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚
= (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑤𝑤)) + (𝑟𝑟𝑛𝑛(𝑧𝑧) + 𝜖𝜖𝑛𝑛(𝑧𝑧))) (1 + 𝛿𝛿) − (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝑟𝑟𝑛𝑛(𝑧𝑧)) (91)

= (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝑟𝑟𝑛𝑛(𝑧𝑧)) 𝛿𝛿 + (𝜖𝜖𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿)
= 𝑟𝑟𝑛𝑛(𝑣𝑣) 𝛿𝛿 + (𝜖𝜖𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑧𝑧)) (1 + 𝛿𝛿)

then,
𝑟𝑟𝑛𝑛(𝑣𝑣) ∈ 𝑅𝑅(𝑣𝑣) = 𝑉𝑉�𝑅𝑅(𝑣𝑣)�,
𝛿𝛿 ∈ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] = 𝑉𝑉([−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚]),
1 + 𝛿𝛿 ∈ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] = 𝑉𝑉([1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚])

and from the inductive hypothesis we have, 𝜖𝜖𝑛𝑛(𝑤𝑤) ∈ 𝑉𝑉(𝐸𝐸(𝑤𝑤)) and 𝜖𝜖𝑛𝑛(𝑧𝑧) ∈ 𝑉𝑉(𝐸𝐸(𝑧𝑧)). Therefore,
by Lemma 1,

𝑓𝑓𝑛𝑛(𝑣𝑣) − 𝑟𝑟𝑛𝑛(𝑣𝑣) ∈ 𝑉𝑉(𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + (𝐸𝐸(𝑤𝑤) + 𝐸𝐸(𝑧𝑧)) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚])

 = 𝑉𝑉�𝐸𝐸(𝑣𝑣)�.
(92)

Case 𝑣𝑣 = 𝑤𝑤 − 𝑧𝑧: similar to previous case

Case 𝑣𝑣 = 𝑐𝑐 ∗ 𝑤𝑤:

𝑓𝑓𝑛𝑛(𝑣𝑣)– 𝑟𝑟𝑛𝑛(𝑣𝑣)

= 𝑓𝑓(𝑐𝑐) 𝑓𝑓𝑛𝑛(𝑤𝑤) (1 + 𝛿𝛿) − 𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤) where | 𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚

= (𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)) (𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿) − 𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤)

= 𝑟𝑟(𝑐𝑐) 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝛿𝛿 + (𝜖𝜖(𝑐𝑐)𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝑟𝑟(𝑐𝑐) 𝜖𝜖𝑛𝑛(𝑤𝑤) + 𝜖𝜖(𝑐𝑐) 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)

= 𝑟𝑟𝑛𝑛(𝑣𝑣) 𝛿𝛿 + (𝜖𝜖(𝑐𝑐)𝑟𝑟𝑛𝑛(𝑤𝑤) + �𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)� 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)

∈ 𝑉𝑉(𝑅𝑅(𝑣𝑣) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + (𝐸𝐸(𝑐𝑐) ∗ 𝑅𝑅(𝑤𝑤) + �𝑅𝑅(𝑐𝑐) + 𝐸𝐸(𝑐𝑐)� ∗ 𝐸𝐸(𝑤𝑤)) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚])
= 𝑉𝑉(𝐸𝐸(𝑣𝑣))

Case 𝑣𝑣 = 𝑤𝑤 / 𝑐𝑐:

𝑓𝑓𝑛𝑛(𝑣𝑣)– 𝑟𝑟𝑛𝑛(𝑣𝑣)

Approved for Public Release; Distribution Unlimited.
36

= (𝑓𝑓𝑛𝑛(𝑤𝑤) / 𝑓𝑓(𝑐𝑐)) (1 + 𝛿𝛿) − 𝑟𝑟𝑛𝑛(𝑤𝑤) / 𝑟𝑟(𝑐𝑐) where | 𝛿𝛿| ≤ 𝜖𝜖𝑚𝑚

=
(𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿)

𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)
 −

𝑟𝑟𝑛𝑛(𝑤𝑤)
𝑟𝑟(𝑐𝑐)

=
(𝑟𝑟𝑛𝑛(𝑤𝑤) + 𝜖𝜖𝑛𝑛(𝑤𝑤)) (1 + 𝛿𝛿) − 𝑟𝑟𝑛𝑛(𝑤𝑤) (𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)) / 𝑟𝑟(𝑐𝑐)

𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)
 (93)

=
(𝑟𝑟𝑛𝑛(𝑤𝑤) 𝑟𝑟(𝑐𝑐) − 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝑟𝑟(𝑐𝑐) − 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝜖𝜖(𝑐𝑐)) / 𝑟𝑟(𝑐𝑐) + 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝛿𝛿 + 𝜖𝜖𝑛𝑛(𝑤𝑤) (1 + 𝛿𝛿)

𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)

=
− 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝜖𝜖(𝑐𝑐) / 𝑟𝑟(𝑐𝑐) + 𝑟𝑟𝑛𝑛(𝑤𝑤) 𝛿𝛿 + 𝜖𝜖𝑛𝑛(𝑤𝑤) (1 + 𝛿𝛿)

𝑟𝑟(𝑐𝑐) + 𝜖𝜖(𝑐𝑐)

∈ 𝑉𝑉(
 − 𝑅𝑅(𝑣𝑣) ∗ 𝐸𝐸(𝑐𝑐) + 𝑅𝑅(𝑤𝑤) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + 𝐸𝐸(𝑤𝑤) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]

𝑅𝑅(𝑐𝑐) + 𝐸𝐸(𝑐𝑐)
)

= 𝑉𝑉�𝐸𝐸(𝑣𝑣)�.

QED

Notice that, for any 𝑥𝑥,𝐸𝐸(𝑥𝑥) is either a symbol (in the case when x is an input or a past output),
a constant interval (in the case x is a constant value) or is defined as a linear expression over
other error set abstractions. Therefore any 𝐸𝐸(𝑥𝑥) can be expressed as a linear combination of
input symbols 𝑈𝑈𝑖𝑖 and past output symbols 𝑌𝑌𝑖𝑖.

Suppose that for the output variable 𝑦𝑦, 𝐸𝐸(𝑦𝑦) ∈ 𝒜𝒜 is

 𝐸𝐸(𝑦𝑦) = 𝐴𝐴0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐴𝐴𝑁𝑁 𝑈𝑈𝑛𝑛−𝑁𝑁+1 + 𝐵𝐵1 𝑌𝑌𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁 𝑌𝑌𝑛𝑛−𝑁𝑁+1 + 𝑃𝑃 (94)

Without loss of generality we can assume 𝑃𝑃 is symmetric about 0. Indeed, we can always enlarge
P into a symmetric interval and the effect will be a larger 𝐸𝐸(𝑦𝑦). We can treat 𝑃𝑃 similar to an
input error at iteration 𝑛𝑛 + 1 by introducing a symbolic variable 𝑃𝑃𝑛𝑛+1.

 𝐸𝐸(𝑦𝑦) = 𝐴𝐴0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐴𝐴𝑁𝑁 𝑈𝑈𝑛𝑛−𝑁𝑁+1 + 𝐵𝐵1 𝑌𝑌𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁 𝑌𝑌𝑛𝑛−𝑁𝑁+1 + [1,1] 𝑃𝑃𝑛𝑛+1 (95)

We will define recursively 𝐸𝐸𝑛𝑛(𝑦𝑦) ∈ 𝒜𝒜 to be the unfolded version of 𝐸𝐸(𝑦𝑦) of “depth” 𝑛𝑛.

 𝐸𝐸𝑘𝑘(𝑦𝑦) = [0,0] if 𝑘𝑘 = 0, . . . ,𝑁𝑁 − 1 (96)

 𝐸𝐸𝑘𝑘+1(𝑦𝑦) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐸𝐸(𝑦𝑦),𝑌𝑌𝑛𝑛 → 𝐸𝐸𝑘𝑘(𝑦𝑦), . . . ,𝑌𝑌𝑛𝑛−𝑁𝑁+1 → 𝐸𝐸𝑘𝑘−𝑁𝑁+1(𝑦𝑦)) for 𝑘𝑘 ≥ 𝑁𝑁 (97)

With these definitions,

 𝐸𝐸𝑛𝑛+1(𝑦𝑦) = 𝐶𝐶0 𝑈𝑈𝑛𝑛+1+ . . . + 𝐶𝐶𝑁𝑁 𝑈𝑈1 + 𝐷𝐷0 𝑃𝑃𝑛𝑛+1 + . . . + 𝐷𝐷𝑛𝑛𝑃𝑃1 (98)

where 𝐶𝐶𝑛𝑛, 𝐷𝐷𝑛𝑛are intervals and for 𝑛𝑛 > 𝑁𝑁,

 𝐶𝐶𝑛𝑛+1 = 𝐵𝐵1𝐶𝐶𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁𝐶𝐶𝑛𝑛−𝑁𝑁+1 (99)

 𝐷𝐷𝑛𝑛+1 = 𝐵𝐵1𝑃𝑃𝑛𝑛 + . . . + 𝐵𝐵𝑁𝑁𝑃𝑃𝑛𝑛−𝑁𝑁+1 (100)

Approved for Public Release; Distribution Unlimited.
37

4.1.7.3. Error Bounds for First-Order Linear Filters

For a first order filter, the recurrence equations are

𝐶𝐶0 = 𝐴𝐴0 (101)

𝐶𝐶1 = 𝐴𝐴1 + 𝐵𝐵1𝐴𝐴0 (102)

𝐶𝐶𝑛𝑛+1 = 𝐵𝐵1𝐶𝐶𝑛𝑛 (103)

𝐷𝐷0 = [1,1] (104)

𝐷𝐷1 = 𝐵𝐵1[1,1] = 𝐵𝐵1 (105)

𝐷𝐷𝑛𝑛+1 = 𝐵𝐵1𝐷𝐷𝑛𝑛 (106)

which have the solution

𝐶𝐶𝑛𝑛+1 = 𝐶𝐶1𝐵𝐵1𝑛𝑛 (107)

𝐷𝐷𝑛𝑛+1 = 𝐷𝐷1𝐵𝐵1𝑛𝑛 = 𝐵𝐵1𝑛𝑛+1 (108)

Let 𝑉𝑉 the value function for which 𝑉𝑉(𝑈𝑈𝑖𝑖) = 𝐸𝐸𝐸𝐸(𝑢𝑢𝑖𝑖) (the set of error values for 𝑢𝑢𝑖𝑖) and 𝑉𝑉(𝑃𝑃𝑖𝑖) =
 𝑃𝑃. Then

𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦)) = 𝐶𝐶0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + 𝐶𝐶1 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛) + . . .𝐶𝐶1𝐵𝐵1𝑛𝑛𝐸𝐸𝐸𝐸(𝑢𝑢1) +
 𝐷𝐷0 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1) + 𝐷𝐷1 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) + . . .𝐷𝐷1𝐵𝐵1𝑛𝑛𝐸𝐸𝐸𝐸(𝑝𝑝1)

(109)

For an interval 𝐼𝐼 = [𝑎𝑎, 𝑏𝑏], let 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐼𝐼| = max{ |𝑥𝑥| | 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]} = 𝑚𝑚𝑚𝑚𝑚𝑚(|𝑎𝑎|, |𝑏𝑏|).

As 𝐸𝐸𝐸𝐸(𝑢𝑢) and 𝑃𝑃 are symmetric about 0,

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) +
 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) +

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)(1 + . . . + (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛)
 = 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) +

 (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1| 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃))(1 + . . . + (𝑚𝑚𝑚𝑚𝑚𝑚 |𝐵𝐵1|)𝑛𝑛)

For example, let’s reconsider the lead lag filter described by

𝑦𝑦0 = 0 (110)

𝑦𝑦𝑛𝑛+1 =
9

13
𝑢𝑢𝑛𝑛+1 −

7
13

𝑢𝑢𝑛𝑛 +
11
13

𝑦𝑦𝑛𝑛 (111)

with 𝑢𝑢0 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈ [−1, 1].

The analysis produces the following recurrence equation for the accumulated error after 𝑛𝑛 + 1
iterations

Approved for Public Release; Distribution Unlimited.
38

 𝐸𝐸𝑛𝑛+1(𝑦𝑦) = 𝐴𝐴0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + 𝐴𝐴1𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛) + 𝐵𝐵1𝐸𝐸𝐸𝐸(𝑦𝑦𝑛𝑛) + 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1) (112)

where

 𝐴𝐴0 = �0.69230720700609994212820001624950,
0.69230816632349415561292123758108

� (113)

 𝐴𝐴1 = [−0.53846195604689442353836541364470,

 −0.53846117730685048103835362264472]
(114)

 𝐵𝐵1 = [0.84615337425443068269699198003444,

 0.84615438577002839040341485924719]
(115)

 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛) = 𝑃𝑃 = [−0.00000073359592004213967781243823, (116)

 0.00000073359592004213967781243823]
Therefore,

 �𝑉𝑉�𝐸𝐸𝑛𝑛+1(𝑦𝑦)�� ≤ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + . . . + 𝛽𝛽𝑛𝑛) (117)

where
𝐶𝐶0 = 𝐴𝐴0 = [0.69230720700609994212820001624950,

 0.69230816632349415561292123758108] (118)

𝐶𝐶1 = 𝐴𝐴1 + 𝐵𝐵1𝐶𝐶0 = [0.04733612318197767638922552809080,

 0.04733841393218037023261187048824] (119)

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶0|𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸𝐸𝐸(𝑢𝑢)� + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) = 0.00000081612548469976751733157194
𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶1|𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸𝐸𝐸(𝑢𝑢)� + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐵𝐵1|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) = 0.00000062637858381997158563381300
β = max|𝐵𝐵1| = 0.84615438577002839040341485924719

4.1.7.4. Error Bounds for Second-Order Linear Filters

For a second-order filter, the recurrence equations are
 𝐶𝐶0 = 𝐴𝐴0 (120)

 𝐶𝐶1 = 𝐴𝐴1 + 𝐵𝐵1𝐶𝐶0 (121)

 𝐶𝐶2 = 𝐴𝐴2 + 𝐵𝐵1𝐶𝐶1 + 𝐵𝐵2𝐶𝐶0 (122)

 𝐶𝐶𝑛𝑛+1 = 𝐵𝐵1𝐶𝐶𝑛𝑛 + 𝐵𝐵2𝐶𝐶𝑛𝑛−1 (123)

 𝐷𝐷0 = [1,1] (124)

 𝐷𝐷1 = 𝐵𝐵1[1,1] = 𝐵𝐵1 (125)

 𝐷𝐷2 = 𝐵𝐵1𝐷𝐷1 + 𝐵𝐵2[1,1] = 𝐵𝐵12 + 𝐵𝐵2 (126)

 𝐷𝐷𝑛𝑛+1 = 𝐵𝐵1𝐷𝐷𝑛𝑛 + 𝐵𝐵2𝐷𝐷𝑛𝑛−1 (127)

Approved for Public Release; Distribution Unlimited.
39

Consider all the solutions 𝑟𝑟1 < 𝑟𝑟2 of the equation
 𝑥𝑥2 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 (128)

with 𝑏𝑏1 ∈ 𝐵𝐵1 and 𝑏𝑏2 ∈ 𝐵𝐵2. Then

𝑅𝑅1 =
𝐵𝐵1 − � 𝐵𝐵12 + 4𝐵𝐵2

2
 (129)

𝑅𝑅2 =

𝐵𝐵1 + � 𝐵𝐵12 + 4𝐵𝐵2
2

 (130)

and therefore
 {𝑟𝑟1 | 𝑟𝑟1 the smaller solution of 𝑥𝑥2 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 for 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖} ⊆ 𝑅𝑅1
 {𝑟𝑟2 | 𝑟𝑟2 the larger solution of 𝑥𝑥2 = 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2 for 𝑏𝑏𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖} ⊆ 𝑅𝑅2

In the case when 𝑅𝑅1and 𝑅𝑅2 do not intersect, we can define a few constants that are needed in
what follows

𝛽𝛽1 =

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅2)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

 (131)

𝛽𝛽2 =

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 − 𝑅𝑅1) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

 (132)

 𝛽𝛽 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽1,𝛽𝛽2) (133)

𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚(

𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1𝑅𝑅2 − 𝐶𝐶2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2 − 𝐶𝐶1𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

) (134)

𝑁𝑁 = 𝑚𝑚𝑚𝑚𝑚𝑚(

𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1𝑅𝑅2 − 𝐷𝐷2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2 − 𝐷𝐷1𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

) (135)

Theorem: If 0 < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) then for any 𝑛𝑛 > 1,

|𝐸𝐸𝑛𝑛+2(𝑦𝑦)| ≤ [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶0| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2| + 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) (1 + . . . + 𝛽𝛽𝑛𝑛−1)] 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) +

 [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷0| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2| + 2 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2)(1 + . . . + 𝛽𝛽𝑛𝑛−1)] 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)
 (136)

The theorem implies that
 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))| ≤ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1 + ⋯+ 𝛽𝛽𝑛𝑛) (137)

where

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = [max|𝐶𝐶0| + max|𝐶𝐶1| + max|𝐶𝐶2|] max�𝐸𝐸𝐸𝐸(𝑢𝑢)� +
 [𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷0| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1| + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2|] max(P) (138)

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 2 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + 2 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) (139)

Approved for Public Release; Distribution Unlimited.
40

Notations: Let 𝑐𝑐0, 𝑐𝑐1, . .. be such that 𝑐𝑐0 ∈ 𝐶𝐶0, 𝑐𝑐1 ∈ 𝐶𝐶1 and ∀ 𝑛𝑛 > 0. 𝑐𝑐𝑛𝑛+1 = 𝑏𝑏𝑛𝑛+1,1 𝑐𝑐𝑛𝑛 +
 𝑏𝑏𝑛𝑛+1,2 𝑐𝑐𝑛𝑛−1 with 𝑏𝑏𝑛𝑛+1,𝑖𝑖 ∈ 𝐵𝐵𝑖𝑖. For each 𝑛𝑛 > 0, let 𝑟𝑟𝑛𝑛+1,1 < 𝑟𝑟𝑛𝑛+1,2 be the solutions of

 𝑥𝑥2 = 𝑏𝑏𝑛𝑛+1,1𝑥𝑥 + 𝑏𝑏𝑛𝑛+1,2 (140)

and let 𝑠𝑠𝑛𝑛+1 and 𝑡𝑡𝑛𝑛+1 be the solutions of

 𝑐𝑐𝑛𝑛−1 = 𝑠𝑠𝑛𝑛+1 + 𝑡𝑡𝑛𝑛+1 (141)

 𝑐𝑐𝑛𝑛 = 𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2 (142)

Lemma 3: If 0 < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) then

𝑚𝑚𝑎𝑎𝑥𝑥 (|𝑠𝑠3|, |𝑡𝑡3|) ≤ 𝑀𝑀
𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+2|, |𝑡𝑡𝑛𝑛+2|) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) ∗ 𝛽𝛽

Proof: 𝑠𝑠3 and 𝑡𝑡3 are the solutions of the system

 𝑐𝑐1 = 𝑠𝑠3 + 𝑡𝑡3 (143)

 𝑐𝑐2 = 𝑠𝑠3 𝑟𝑟3,1 + 𝑡𝑡3𝑟𝑟3,2 (144)

Therefore

 𝑠𝑠3 =
𝑐𝑐1𝑟𝑟3,2 − 𝑐𝑐2
𝑟𝑟3,2 − 𝑟𝑟3,1

 (145)

𝑡𝑡3 =

𝑐𝑐2 − 𝑐𝑐1𝑟𝑟3,1

𝑟𝑟3,2 − 𝑟𝑟3,1
 (146)

which imply the first inequality of Lemma 3. Now, for any 𝑛𝑛 > 1,

 𝑐𝑐𝑛𝑛+1 = 𝑏𝑏𝑛𝑛+1,1 𝑐𝑐𝑛𝑛 + 𝑏𝑏𝑛𝑛+1,2 𝑐𝑐𝑛𝑛−1 = 𝑏𝑏𝑛𝑛+1,1(𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2) + 𝑏𝑏𝑛𝑛+1,2 (𝑠𝑠𝑛𝑛+1 + 𝑡𝑡𝑛𝑛+1)
 = 𝑠𝑠𝑛𝑛+1 (𝑏𝑏𝑛𝑛+1,1 𝑟𝑟𝑛𝑛+1,1 + 𝑏𝑏𝑛𝑛+1,2) + 𝑡𝑡𝑛𝑛+1(𝑏𝑏𝑛𝑛+1,1 𝑟𝑟𝑛𝑛+1,2 + 𝑏𝑏𝑛𝑛+1,2) (147)

 = 𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1
2 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2

2

From the definitions of 𝑟𝑟𝑛𝑛+1,𝑖𝑖 and 𝑟𝑟𝑛𝑛+2,𝑖𝑖,

 𝑐𝑐𝑛𝑛 = 𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2 = 𝑠𝑠𝑛𝑛+2 + 𝑡𝑡𝑛𝑛+2 (148)

 𝑐𝑐𝑛𝑛+1 = 𝑠𝑠𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,1
2 + 𝑡𝑡𝑛𝑛+1 𝑟𝑟𝑛𝑛+1,2

2 = 𝑠𝑠𝑛𝑛+2 𝑟𝑟𝑛𝑛+2,1 + 𝑡𝑡𝑛𝑛+2 𝑟𝑟𝑛𝑛+2,1 (149)

Approved for Public Release; Distribution Unlimited.
41

and by solving this system for 𝑠𝑠𝑛𝑛+2 and 𝑡𝑡𝑛𝑛+2 we get

∀𝑛𝑛 > 0. 𝑠𝑠𝑛𝑛+2 = 𝑠𝑠𝑛𝑛+1
 𝑟𝑟𝑛𝑛+1,1� 𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+1,1�

 𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+2,1
+ 𝑡𝑡𝑛𝑛+1

 𝑟𝑟𝑛𝑛+1,2(𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+1,2)
 𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+2,1

 (150)

∀𝑛𝑛 > 0. 𝑡𝑡𝑛𝑛+2 = 𝑠𝑠𝑛𝑛+1

 𝑟𝑟𝑛𝑛+1,1� 𝑟𝑟𝑛𝑛+1,1 − 𝑟𝑟𝑛𝑛+2,1�
 𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+2,1

+ 𝑡𝑡𝑛𝑛+1
 𝑟𝑟𝑛𝑛+1,2(𝑟𝑟𝑛𝑛+1,2 − 𝑟𝑟𝑛𝑛+2,1)

 𝑟𝑟𝑛𝑛+2,2 − 𝑟𝑟𝑛𝑛+2,1
 (151)

therefore

|𝑠𝑠𝑛𝑛+2| ≤ |𝑠𝑠𝑛𝑛+1|

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

 + |𝑡𝑡𝑛𝑛+1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅2)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
 (152)

|𝑡𝑡𝑛𝑛+2| ≤ |𝑠𝑠𝑛𝑛+2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 − 𝑅𝑅1)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
 + |𝑡𝑡𝑛𝑛+1|

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

(153)

and thus

 |𝑠𝑠𝑛𝑛+2| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) 𝛽𝛽1 (154)

 |𝑡𝑡𝑛𝑛+2| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|) 𝛽𝛽2 (155)

which imply the second inequality of Lemma 3. QED

Proof of Theorem: From Lemma 3,

 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+2|, |𝑡𝑡𝑛𝑛+2|) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (|𝑠𝑠𝑛𝑛+1|, |𝑡𝑡𝑛𝑛+1|)𝛽𝛽 ≤ 𝑀𝑀 𝛽𝛽𝑛𝑛−1 (156)

Thus

 |𝑐𝑐𝑛𝑛+2| ≤ 𝑀𝑀𝛽𝛽𝑛𝑛−1 𝑟𝑟1 + 𝑀𝑀𝛽𝛽𝑛𝑛−1 𝑟𝑟2 < 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (157)

which implies

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶𝑛𝑛+2| ≤ 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (158)

Similarly, for the sequence 𝐷𝐷𝑛𝑛,

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷𝑛𝑛+2| ≤ 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑅𝑅2) 𝛽𝛽𝑛𝑛−1 (159)

Thus

𝐸𝐸𝑛𝑛+2(𝑦𝑦) ∈ 𝐶𝐶0 𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + . . . + 𝐶𝐶𝑛𝑛 𝐸𝐸𝐸𝐸(𝑢𝑢1) + 𝐷𝐷0 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1) + . . . + 𝐷𝐷𝑛𝑛 𝐸𝐸𝐸𝐸(𝑝𝑝1)

Approved for Public Release; Distribution Unlimited.
42

|𝐸𝐸𝑛𝑛+2(𝑦𝑦)| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐶𝐶0| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) + . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐶𝐶𝑛𝑛| 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) +

 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐷𝐷0|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)+ . . . + 𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐷𝐷𝑛𝑛|𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) (160)

 = (𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶0| + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶1| + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐶𝐶2| + 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑅𝑅2)(1 + ⋯+ 𝛽𝛽𝑛𝑛−1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸(𝑢𝑢)) +

 𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷0| + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷1| + 𝑚𝑚𝑚𝑚𝑚𝑚|𝐷𝐷2| + 2𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑅𝑅2) (1 + ⋯+ 𝛽𝛽𝑛𝑛−1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)

QED

Example: consider again the second-order filter (from Section 4.2.4)

𝑦𝑦0 = 𝑦𝑦1 = 0 (161)

 (162)

𝑦𝑦𝑛𝑛+1 =
592841

78010601
𝑢𝑢𝑛𝑛+1 +

1185682
78010601

𝑢𝑢𝑛𝑛 +
592841

78010601
𝑢𝑢𝑛𝑛−1 +

126814318
78010601

𝑦𝑦𝑛𝑛 −
51175081
78010601

𝑦𝑦𝑛𝑛−1

where 𝑢𝑢0 = 𝑢𝑢1 = 0 and for any 𝑖𝑖 > 0, 𝑢𝑢𝑖𝑖 ∈ [−100, 100].

The analysis produces the following recurrence equation for the accumulated error of the output

𝐸𝐸𝑛𝑛+1(𝑦𝑦) = 𝐴𝐴0𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛+1) + 𝐴𝐴1𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛) + 𝐴𝐴2𝐸𝐸𝐸𝐸(𝑢𝑢𝑛𝑛−1) + 𝐵𝐵1𝐸𝐸𝐸𝐸(𝑦𝑦𝑦𝑦) + 𝐵𝐵2𝐸𝐸𝐸𝐸(𝑦𝑦𝑛𝑛−1) + 𝐸𝐸𝐸𝐸(𝑝𝑝𝑛𝑛+1)

where
𝐴𝐴0 = [0.00759948777424905218315802011899,
 0.00759950078268356597649013476543]
𝐴𝐴1 = [0.01519897917221431452601296749856,
 0.01519900518909170492103914110864]
𝐴𝐴2 = [0.00759948868017869869646495929948,
 0.00759949987675258472756483898753]
𝐵𝐵1 = [1.62560296051380471713218194062187,
 1.62560458404225805892680063197886]
𝐵𝐵2 = [-0.65600182747582427514452884015165,
 -0.65600128735740701548264934562427]
𝑃𝑃 = [-0.00003958948071918890118042099520,
 0.00003958948071918890118042099520]

𝐶𝐶0 = 𝐴𝐴0 = [0.00759948777424905218315802011899,
 0.00759950078268356597649013476543]
𝐶𝐶1 = 𝐴𝐴1+ 𝐵𝐵1𝐶𝐶0 = [0.02755272899642203819834661633796,
 0.02755278849785483774577685006890]
𝐶𝐶2 = 𝐴𝐴2 + 𝐵𝐵1𝐶𝐶1 + 𝐵𝐵2𝐶𝐶0

= [0.04740400010565253933432332363906,
 0.04740416539884795655834288117112]

𝐷𝐷0 = [1,1]

 (163)

Approved for Public Release; Distribution Unlimited.
43

𝐷𝐷1 = 𝐵𝐵1 [1,1] = 𝐵𝐵1 = [1.62560296051380471713218194062187,
1.62560458404225805892680063197886]

𝐷𝐷2 = 𝐵𝐵1 𝐷𝐷1 + 𝐵𝐵2 [1,1] = 𝐵𝐵12 + 𝐵𝐵2
 = [1.98658315775542226318354179506256,
 1.98658897630179582912383485351786]

𝑅𝑅1 =
𝐵𝐵1 − �𝐵𝐵12 + 4 𝐵𝐵2

2

(164)

 = [0.74463786417476000521570285455046,
 0.74465231893245232206672049472825]

𝑅𝑅2 =
𝐵𝐵1 + �𝐵𝐵12 + 4 𝐵𝐵2

2
 (165)

 = [0.88095145334557906596277079157211,
 0.88096590810327138281378843174991]

𝛽𝛽1 =
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅2)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
(166)

 = 0.74490369020164437255103955622501

𝛽𝛽2 =
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅1 − 𝑅𝑅1) + 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2) 𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
(167)

 = 0.88123173566310767125443267351180

𝛽𝛽 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝛽𝛽1,𝛽𝛽2) = 0.88122124050850451432751993407794 (168)

𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚(
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶1 𝑅𝑅2 − 𝐶𝐶2|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐶𝐶2 − 𝐶𝐶1 𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

) (169)

 = 0.19726728451018537213720993866727

𝑁𝑁 = 𝑚𝑚𝑚𝑚𝑚𝑚(
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷1 𝑅𝑅2 − 𝐷𝐷2|}{}

𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)
,
𝑚𝑚𝑚𝑚𝑚𝑚 |𝐷𝐷2 − 𝐷𝐷1 𝑅𝑅1|
𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅2 − 𝑅𝑅1)

) (170)

 = 5.69411877140933861544292553129993

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.00018357849766142422504207973351 (171)

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.00040133074049677426939408818760 (172)

4.1.8. Accumulating Integrators: Error Range Functions
In contrast to digital filters, accumulating integrators have no discounting mechanism for past
inputs. Instead, the output range intentionally grows without bound. An analysis of the
floating-point errors can only give bounds as a function of the number of iterations. The analyst
can then decide how many iterations to allow before the error becomes unacceptable.
Let

Approved for Public Release; Distribution Unlimited.
44

 𝑥𝑥0 = 0 (173)

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑐𝑐 (174)

be the recursive equation of an integrator. In this case, we are interested in the range of values
after at most 𝑛𝑛 iterations, which is [0, 𝑛𝑛𝑛𝑛] or [𝑛𝑛𝑛𝑛, 0] depending whether 𝑐𝑐 is a positive or negative
constant.

To find the error range after 𝑛𝑛 iterations or less, we cannot use the same expressions as for the
analysis of filters. In that case, we used the fact that all the variables involved have finite ranges
which we computed in advance. However, we can adapt the method by changing the symbolic
interval combinations used for filters with symbolic combinations over linear expressions in 𝑛𝑛,
the number of iterations.

The real value after 𝑛𝑛 iterations is 𝑅𝑅𝑛𝑛(𝑥𝑥) = 𝑛𝑛𝑛𝑛. In the simple case when 𝑐𝑐 is found to be
representable then the error found is 0. Otherwise, the analysis finds the following recurrence
relation.

 𝐸𝐸𝑛𝑛+1(𝑥𝑥) = 𝐸𝐸𝑛𝑛(𝑥𝑥) 𝐵𝐵1 + 𝑄𝑄𝑛𝑛 + 𝑃𝑃 (175)

 𝐵𝐵1 = [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (176)

 𝑄𝑄 = 𝑐𝑐 ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] (177)

 𝑃𝑃 = 𝐸𝐸(𝑐𝑐) ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚] (178)

from which we get the closed form

|𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑥𝑥))| ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑄𝑄| (𝑛𝑛 + (𝑛𝑛 − 1)𝛽𝛽 + ⋯ + 𝛽𝛽𝑛𝑛) + 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃| (1 + 𝑏𝑏𝑏𝑏 + ⋯ + 𝛽𝛽𝑛𝑛)
 (179)

where 𝛽𝛽 = 1 + 𝜖𝜖𝑚𝑚. Notice that

𝑛𝑛 + (𝑛𝑛 − 1)𝛽𝛽 + ⋯ + 𝛽𝛽𝑛𝑛

= (1 + 𝑏𝑏𝑏𝑏 + ⋯ + 𝛽𝛽𝑛𝑛) + (1 + 𝑏𝑏𝑏𝑏 + ⋯ + 𝛽𝛽𝑛𝑛−1) + … + 1

=

𝛽𝛽𝑛𝑛+1 − 1
𝛽𝛽 − 1

 +
𝛽𝛽𝑛𝑛 − 1
𝛽𝛽 − 1

 + ⋯ +
 𝛽𝛽 − 1
𝛽𝛽 − 1

 (180)

=
𝛽𝛽 + ⋯ + 𝛽𝛽𝑛𝑛+1 − 𝑛𝑛

𝛽𝛽 − 1

=
 𝛽𝛽

𝛽𝛽 − 1
(1 + ⋯+ 𝛽𝛽𝑛𝑛) −

𝑛𝑛
𝛽𝛽 − 1

Approved for Public Release; Distribution Unlimited.
45

and therefore

�𝑉𝑉�𝐸𝐸𝑛𝑛+1(𝑥𝑥)�� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|
𝛽𝛽

𝛽𝛽 − 1
(1 + 𝛽𝛽 + ⋯ + 𝛽𝛽𝑛𝑛) −𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|

𝑛𝑛
𝛽𝛽 − 1

 +

 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃| (1 + 𝛽𝛽 + ⋯+ 𝛽𝛽𝑛𝑛)

or

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))| ≤ 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + 𝛽𝛽 + ⋯+ 𝛽𝛽𝑛𝑛) + 𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛

where

𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0

𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚|𝑄𝑄|
𝛽𝛽

𝛽𝛽 − 1
+ 𝑚𝑚𝑚𝑚𝑚𝑚 |𝑃𝑃| = (|𝑐𝑐| + 𝐸𝐸(𝑐𝑐))(1 + 𝜖𝜖𝑚𝑚)

𝑁𝑁𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = −
𝑚𝑚𝑚𝑚𝑚𝑚 |𝑄𝑄|
𝛽𝛽 − 1

Example: Consider the integrator described by

 𝑥𝑥0 = 0 (181)

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 0.1 (182)

with the output variable given by 𝑦𝑦𝑛𝑛 = 𝑥𝑥𝑛𝑛 ∗ 3.2. This is the essence of the integrator that
caused the Patriot Missile failure. The error bound for the integrator is then

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑥𝑥))| ≤ 𝐴𝐴𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + ⋯ + 𝛽𝛽𝑛𝑛) + 𝑁𝑁𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛
where

𝐴𝐴𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0

𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (|𝑐𝑐| + 𝐸𝐸(𝑐𝑐))(1 + 𝜖𝜖𝑚𝑚) = 0.10000001788139414315992326010019

𝑁𝑁𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = − |𝑐𝑐| = − 0.1

The error bound on the output is

𝐸𝐸𝑛𝑛(𝑦𝑦) = 𝑅𝑅𝑛𝑛(𝑦𝑦) ∗ [−𝜖𝜖𝑚𝑚, 𝜖𝜖𝑚𝑚] + [𝐸𝐸(3.2) ∗ 𝑅𝑅𝑛𝑛(𝑥𝑥) + (3.2 + 𝐸𝐸(3.2)) ∗ 𝐸𝐸𝑛𝑛(𝑥𝑥)] ∗ [1 − 𝜖𝜖𝑚𝑚, 1 + 𝜖𝜖𝑚𝑚]
 (183)

and thus

𝑚𝑚𝑚𝑚𝑚𝑚 |𝑉𝑉(𝐸𝐸𝑛𝑛+1(𝑦𝑦))| ≤ 0.32 𝜖𝜖𝑚𝑚𝑛𝑛
 + [𝐸𝐸(3.2) ∗ 0.1 𝑛𝑛 + �3.2 + 𝐸𝐸(3.2)� ∗ (𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(1 + ⋯ + 𝛽𝛽𝑛𝑛) − 0.1 𝑛𝑛)] (1 + 𝜖𝜖𝑚𝑚)

 = 𝐴𝐴𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑀𝑀𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (1 + ⋯ + 𝛽𝛽𝑛𝑛) + 𝑁𝑁𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 (184)

Approved for Public Release; Distribution Unlimited.
46

where
𝐴𝐴𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0
𝑀𝑀𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = �3.2 + 𝐸𝐸(3.2)�(1 + 𝜖𝜖𝑚𝑚)𝑀𝑀𝑥𝑥,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 = 0.32000011444093274803971696172939 (185)

𝑁𝑁𝑦𝑦,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.32 𝜖𝜖𝑚𝑚 + 0.1 𝐸𝐸(3.2)(1 + 𝜖𝜖𝑚𝑚) − �3.2 + 𝐸𝐸(3.2)�0.1 (1 + 𝜖𝜖𝑚𝑚)
 = 0.32 𝜖𝜖𝑚𝑚 − 0.32 (1 + 𝜖𝜖𝑚𝑚) = − 0.32

4.2. Summary of Filter Test Suite Results

The development of the first year analysis of Linear Digital Filters was guided by, tuned, and
ultimately tested for round trip integration by a suite of test cases designed by the Honeywell
team. These consisted of Simulink models of representative filter applications, their generated C
implementations and their generated JSON files describing model-level properties of the
generated code to be exploited by CodeHawk. This section summarizes the results of each of
these test cases.

General Significance and Organization of the Results.

As discussed in Section 3.1, the goal of the combined model-level and code-level analysis is to
derive precise, consistent bounds for the range and numerical error of the filter outputs. Both the
range and error need to be bounded in order to guarantee stability of the control algorithm. As we
have pointed out earlier in this report, most static analysis tools are not able to compute such a
bound and can thus report high bounds. This forces current practices to rely upon informal,
empirical manual analysis/reviews and simulations of the code. Our results demonstrate that our
combined analysis technique proves precise, conservative bounds for both variable range and
numerical error – representing a definite advancement in the state-of-art of static analysis
approaches for numerical algorithms.

Range Bounds Results: The range at the output of the filter is theoretically expected to be
bounded. The bounds should be stable over time – often proportionally related to the input range
bound based upon the filter coefficients which are derived from the time constants (Tn and Td) of
the filter and the sample period (Ts). As presented in the following subsections, the results
returned by the CodeHawk analysis of filter range bounds on he source code confirm the
theoretically expected properties. Furthermore the bounds are precise (tight), yet conservative –
i.e., representing the worst case if value at the filter input is varied within its range arbitrarily
over time.

Numerical Error Bounds Results: For a properly designed filter, the numerical error at the
output of the filter is expected to be bounded to a small value (less than 1% of the range) in order
to achieve control stability. The error bounds should be convergent over time. The ideal dynamic
scenario is that the numerical error should approach 0 as time approaches infinity if the filter
input is held at a constant value. This ideal dynamic scenario, however, is hard to achieve in a
static analysis framework. Thus, industry practice relies on empirically testing the tolerance for
error to be within 1% of the variable value. Our analysis proves the error bound to be well within

Approved for Public Release; Distribution Unlimited.
47

this tolerance even for 2nd order (quadratic) filter; furthermore the error bound remains constant
with time.

4.2.1. Filter Example using a Resettable Lead Lag Filter

Figure 13 Resettable Lead Lag Filter - Test Model Diagram

Figure 13 shows ‘errorcomp’, a model with two resettable lead lag filters in series, creating a 2nd
order filter. The next subsection describes the transfer function and difference equation
derivation for this class of filters. Following subsection shows the analysis results assuming the
filter runs for 72,000 seconds at 40 Hz (25 ms period).

4.2.1.1. Resettable Lead Lag Filter Transfer Function

Figure 14 shows the Resettable Lead Lag filter as it appears as a block in MATLAB Simulink.
This class of filters has two time constants, Tn and Td, that are both constants for a particular
filter instance. There are additional reset (IC) and reset value (ICV) inputs that allow the filter to
be reset.

Figure 14 Resettable Lead Lag Filter

Approved for Public Release; Distribution Unlimited.
48

The following is the transfer function derivation for this filter class:

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏): 𝒚𝒚 = 𝑰𝑰𝑰𝑰𝑰𝑰

Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):

General form:

Continuous domain: 𝑯𝑯(𝒔𝒔) = 𝑻𝑻𝒏𝒏𝒔𝒔+𝟏𝟏
𝑇𝑇𝑑𝑑𝒔𝒔+𝟏𝟏

 Discrete domain: 𝑯𝑯(𝒛𝒛) = 𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏

Coefficient definitions (all coefficients are constant)

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒅𝒅
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟑𝟑 = 𝟏𝟏 +
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟒𝟒 = 𝟏𝟏 −
𝟐𝟐𝑻𝑻𝒏𝒏
𝑻𝑻𝒔𝒔

Difference equation:
 𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (186)

Approved for Public Release; Distribution Unlimited.
49

4.2.1.2. Analysis results after 72,000 Seconds (20 hrs)

Figure 15 Resettable Lead Lag Filter - 72000 Seconds

In Figure 15, variable CMP_ERROR shows the analysis for the final output of the model in
Figure 13 for a run time of 72000 seconds. Cmp3 and cmp4 show the analysis for the outputs of
filters cmp3 and cmp4 respectively. The output of cmp4 matches the values of CMP_ERROR
because there is no intervening functionality. For the filter cmp3, the normal (operational) range
of the filter input is [-2, 2] which also happens to be a hard range constraint since there is a limit
block before cmp3, constraining the range not to exceed [-2, 2] even if abnormal values are
present at the input variable of the model named ERROR. Note that the range bounds reported in
Figure 15 are convergent over time; i.e. filter output range is bounded by the values shown when
input value varies arbitrarily within its range over infinite time. The range bounds of [-3.9506,
3.9506] for cmp3 output are precise and compliant with the theoretically expected bounds for the
specific values of filter coefficients for cmp3. Likewise for cmp4.

The worst case numerical error bound (WCEB) for cmp3 output, after 72000 seconds of
operation, is [-2.29e-004, -2.29e-004] over the range of [-3.9506, 3.9506] – this is two orders of
magnitude less than the empirical practice tolerance of 1%.

Approved for Public Release; Distribution Unlimited.
50

4.2.2. Filter Example using a Variable Lag Filter

Figure 16 Variable Lag Filter - Test Model Diagram

Figure 16 shows ‘high_lim_setpoint’, a model containing a variable lag filter with a fixed tau.
The next subsection describes the transfer function and difference equation derivation for this
class of filters. Following subsection shows the analysis results assuming the filter runs for
72,000 seconds at 10 Hz (100 ms period).

4.2.2.1. Variable Lag Filter Transfer Function

Figure 17 shows the Variable Lag filter as it appears as a block in MATLAB Simulink. This
class of filters has a variable tau, τ, that determines the lag according to the transfer function.
There are additional reset (IC) and reset value (ICV) inputs that allow the filter to be reset.

Figure 17 Variable Lag Filter

varLag

In

ICV

IC

Approved for Public Release; Distribution Unlimited.
51

The following is the transfer function derivation for this filter class:

Reset Mode (when 𝐈𝐈𝐈𝐈 = 𝟏𝟏): 𝐲𝐲 = 𝐈𝐈𝐈𝐈𝐈𝐈

Filter Mode Transfer Function (when 𝐈𝐈𝐈𝐈 = 𝟎𝟎):
General form:

Continuous domain: 𝑯𝑯(𝒔𝒔) = 𝟏𝟏
𝝉𝝉𝝉𝝉+𝟏𝟏

 Discrete domain: 𝑯𝑯(𝒛𝒛) = 𝟏𝟏+𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏

Coefficient definitions (𝝉𝝉 is given as an input)

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝟐𝟐
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝟐𝟐
𝑻𝑻𝒔𝒔

Difference equation:
 𝒚𝒚𝒏𝒏 = (𝒖𝒖𝒏𝒏 + 𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (187)

4.2.2.2. Analysis results after 72,000 Seconds (20 hrs)

Figure 18 Variable Lag Filter - 72000 Seconds

In the above figure, CLOSED_LOOP is Boolean, and thus incurs no numerical error. HI_LIM_C
shows the analysis for the final output of the model in Figure 16. Variable varLag shows the
analysis for the output of the variable lag filter. The results are similar to that of the example in
Section 4.2.1.2 and do not require further discussion.

Approved for Public Release; Distribution Unlimited.
52

4.2.3. Filter Example using a Lag Filter

Figure 19 Lag Filter - Test Model Diagram

Figure 19 shows ‘lag_filter_quantized’, a model with a lag filter with a fixed time constant. The
next subsection describes the transfer function and difference equation derivation for this class of
filters; followed by the transfer function equations. Following subsection shows the analysis
results assuming the filter runs for 72,000 seconds at 20 Hz (50 ms period).

4.2.3.1. Lag Filter Transfer Function

Figure 20 shows the Lag filter as it appears as a block in MATLAB Simulink. This class of
filters has a time constant tau that is set for each filter instance. It is not resettable.

Figure 20 Lag Filter

The following is the transfer function derivation for this filter class:

Transfer Function:

General form:

Continuous domain: 𝑯𝑯(𝒔𝒔) = 𝟏𝟏
𝜏𝜏𝒔𝒔+𝟏𝟏

 Discrete domain: 𝑯𝑯(𝒛𝒛) = 𝟏𝟏+𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏

Coefficient definitions (all coefficients are constant)

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

Difference equation:
 𝒚𝒚𝒏𝒏 = (𝒖𝒖𝒏𝒏 + 𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (188)

lag

 1

 Tau s +1

Approved for Public Release; Distribution Unlimited.
53

4.2.3.2. Analysis results after 72,000 Seconds (20 hrs)

Figure 21 Lag Filter - 72000 Seconds

In the above figure, h_cabin_rate_out_fpm has numerical error bounds of zero because it is
processed through a ‘round’ing block . The only other input affecting the value at
h_cabin_rate_out_fpm is a whole number (the RATE_QUANTIZER constant of 25), which can
be represented without loss. The values for lag3 above show the analysis as applicable to the
output of the lag3 filter. The results are similar to that of the example in Section 4.2.1.2 and do
not require further discussion.

Approved for Public Release; Distribution Unlimited.
54

4.2.4. Filter Example using a Quadratic Filter

Figure 22 Quadratic Filter - Test Model Diagram

Figure 22 shows ‘sensor_feedback_selection’, a model with two quadratic filters. The next
subsection describes the transfer function and difference equation derivation for this class of
filters. Following subsection shows the analysis results assuming the filter runs for 72,000
seconds at 10 Hz (100 ms period).

4.2.4.1. Quadratic Filter Transfer Function

Figure 23 shows the Quadratic filter as it appears as a block in MATLAB Simulink. This class of
filters has six constants specified for each instance: a,b,c, p,q,r that form the coefficients of two
quadratic equations, a numerator: as^2 + bs+ c, and a denominator: ps^2+qs+r. There is also a
reset (IC) that resets the filter to a pre-specified value.

Figure 23 Quadratic Filter

The following is the transfer function derivation for this filter class:

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏): 𝒚𝒚 = 𝒖𝒖 ∗ 𝒄𝒄/𝒓𝒓 (𝒄𝒄/𝒓𝒓 is the DC gain of the filter)
Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):

quadraticFilter

In

IC

 as^2+bs+c

 ps^2+qs+r

Approved for Public Release; Distribution Unlimited.
55

General form:

Continuous domain: 𝑯𝑯(𝒔𝒔) = 𝒂𝒂𝒔𝒔𝟐𝟐+𝒃𝒃𝒃𝒃+𝒄𝒄
𝒑𝒑𝒔𝒔𝟐𝟐+𝒒𝒒𝒔𝒔+𝒓𝒓

 Discrete domain: 𝑯𝑯(𝒛𝒛) = 𝑨𝑨+𝑩𝑩𝒛𝒛−𝟏𝟏+𝑪𝑪𝒛𝒛−𝟐𝟐

𝑫𝑫+𝑬𝑬𝒛𝒛−𝟏𝟏+𝑭𝑭𝑭𝑭−𝟐𝟐

Coefficient definitions (all coefficients are constant)

𝑨𝑨 = 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐 𝑩𝑩 = −𝟐𝟐(𝟒𝟒𝟒𝟒 − 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐) 𝑪𝑪 = 𝟒𝟒𝟒𝟒 − 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒄𝒄𝑻𝑻𝒔𝒔𝟐𝟐

𝑫𝑫 = 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐 𝑬𝑬 = −𝟐𝟐(𝟒𝟒𝟒𝟒 − 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐) 𝑭𝑭 = 𝟒𝟒𝟒𝟒 − 𝟐𝟐𝟐𝟐𝑻𝑻𝒔𝒔 + 𝒓𝒓𝑻𝑻𝒔𝒔𝟐𝟐

Difference equation:

 𝒚𝒚𝒏𝒏 = (𝑨𝑨𝒖𝒖𝒏𝒏 + 𝑩𝑩𝑩𝑩𝒏𝒏−𝟏𝟏 + 𝑪𝑪𝑪𝑪𝒏𝒏−𝟐𝟐 − 𝑬𝑬𝒚𝒚𝒏𝒏−𝟏𝟏 − 𝑭𝑭𝒚𝒚𝒏𝒏−𝟐𝟐)/𝑫𝑫 (189)

4.2.4.2. Analysis results after 72,000 Seconds (20 hrs)

Figure 24 Quadratic Filter - 72000 Seconds

Approved for Public Release; Distribution Unlimited.
56

The range bounds of the filter output variables in the above figure are compliant with the
theoretically expected results, similar to that of the example in Section 4.2.1.2, and do not require
further discussion.

In the above figure, FAIL_CONFIG has numerical error bounds of zero because it is a Boolean.
DISCHARGE_C and MAX_C have the same numerical error bounds because they come from
the results of the two quadratic filters. MAX_UNFILT_C has the error bound of a 32-bit floating
point representation because it uses values straight from input without any processing. As you
can see the error bounds on MAX_C and DISCHARGE_C are the max of the error bounds on
the two quadratic filters, since both of them can end up with a value from either filter. It is
remarkable that our static analysis techniques were able to prove numerical error bounds on the
2nd order (quadratic) filter. The error bound of [-6.58e-003, 6.58e-003] on quadraticFilter1 output
is within the practical tolerance guideline of 1% of the range. We conducted the analysis run for
72 seconds, 720 seconds, 7200 seconds, and 72000 seconds of operation. In all cases the error
bounds is the same ([-6.58e-003, 6.58e-003]); implying it converges and stabilizes over time;
thus supporting the theoretical analysis expectations.

Approved for Public Release; Distribution Unlimited.
57

4.2.5. Filter Example using a Variable Washout Filter

Figure 25 Variable Washout Filter - Test Model Diagram

Figure 25 shows ‘VarWashoutFilter’, a model with a variable washout filter. The next section
(subsection 4.2.5.1) shows the transfer function diagram Figure 26 followed by the transfer
function equations. Subsection 4.2.5.2 shows the analysis results assuming the filter runs for
72,000 seconds at 10 Hz (100 ms period). Subsection 4.2.5.3 shows the actual ‘C’ code for the
filter.

4.2.5.1. Variable Washout Filter Transfer Function

Figure 26 shows the Variable Washout filter as it appears as a block in MATLAB Simulink. This
class of filters has a variable tau, τ, that determines the lag according to the transfer function.
There are additional reset (IC) and reset value (ICV) inputs that allow the filter to be reset.

Figure 26 Variable Washout Filter

The following is the transfer function derivation for this filter class:

Reset Mode (when 𝑰𝑰𝑰𝑰 = 𝟏𝟏): 𝒚𝒚 = 𝑰𝑰𝑰𝑰𝑰𝑰
Filter Mode Transfer Function (when 𝑰𝑰𝑰𝑰 = 𝟎𝟎):

General form:

Continuous domain: 𝑯𝑯(𝒔𝒔) = 𝜏𝜏𝒔𝒔
𝜏𝜏𝒔𝒔+𝟏𝟏

 Discrete domain: 𝑯𝑯(𝒛𝒛) = 𝒌𝒌𝟑𝟑+𝒌𝒌𝟒𝟒𝒛𝒛−𝟏𝟏

𝒌𝒌𝟏𝟏+𝒌𝒌𝟐𝟐𝒛𝒛−𝟏𝟏

Coefficient definitions (𝜏𝜏 is given as an input)

varWashout

In

ICV

IC

Approved for Public Release; Distribution Unlimited.
58

𝒌𝒌𝟏𝟏 = 𝟏𝟏 +
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟐𝟐 = 𝟏𝟏 −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟑𝟑 =
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

 𝒌𝒌𝟒𝟒 = −
𝟐𝟐𝜏𝜏
𝑻𝑻𝒔𝒔

Difference equation:
𝒚𝒚𝒏𝒏 = (𝒌𝒌𝟑𝟑𝒖𝒖𝒏𝒏 + 𝒌𝒌𝟒𝟒𝒖𝒖𝒏𝒏−𝟏𝟏 − 𝒌𝒌𝟐𝟐𝒚𝒚𝒏𝒏−𝟏𝟏)/𝒌𝒌𝟏𝟏 (190)

4.2.5.2. Analysis results after 72,000 Seconds (20 hrs)

Figure 27 Variable Washout Filter -72000 Seconds

In the above figure, you can see that output has an error bound of 3 times the error bound of
varWashout, because they are separated by a gain of 3.

Approved for Public Release; Distribution Unlimited.
59

4.3. Summary of Accumulator Test Suite Results

The development of the second year analysis of Integrating Accumulators was guided by, tuned,
and ultimately tested for round trip integration by a suite of test cases designed by the Honeywell
team. These consisted of Simulink models of representative accumulator applications, their
generated C implementations and their generated JSON files describing model-level properties
of the generated code to be exploited by CodeHawk. This section summarizes the results of these
test cases.

Motivation and Significance of the Results

The Patriot Missile system suffered an infamous failure [5] when its computation of time drifted
over the course of two days of continuous operation. The computations using the 24-bit floating
point unit introduced error in the calculation of elapsed time accumulated since system start.
After 8 hours of operations, this resulted in a 20 percent error in the "range gate" – the expected
position of the target. After 20 hours, the error was as much as 50 percent, resulting the Patriot
missile’s failure to intercept an incoming Scud missile. Figure 28 shows the increase in absolute
error with elapsed time.

Figure 28. The error in accumulated time due to floating point multiplication and the resulting distance by which the
computed range gate was off

Using the combination of model-level and code-level analysis, we have addressed the problem of
automated detection and analysis of such constructions. HiLiTE performance an analysis of
cyclic path (feedback loop) invariants in the Simulink model to detect a counter type of
invariants and provide this information to CodeHawk in terms of the accumulator variable and
nature of the invariant. CodeHawk then applies novel code analysis techniques to derive precise
closed-form mathematical bounds for the both the range and numerical error as a function of
time. The results presented in the following subsections clearly show how the numerical error
grows with system operational time.

Hours Seconds Calculated Time (sec) Inaccuracy (sec)
Approx. shift in

Range Gate
(meters)

0 0 0 0 0
1 3600 3599.9966 .0034 7
8 28800 8799.9725 .0251 55

20(a) 72000 71999.9313 .0687 137
48 172800 172799.8352 .1648 330
72 259200 259199.7528 .2472 494

100(b) 360000 359999.6667 .3433 687

Approved for Public Release; Distribution Unlimited.
60

4.3.1. Accumulator Example using a Fixed Integer Increment

Figure 29. Fixed Increment Accumulator – abstract diagram for the Patriot Missile Bug

Figure 29 shows a model with an accumulator with a fixed integer increment which abstracts the
essential elements of the Patriot Missile bug. At each periodic execution frame (at 10 Hz rate)
the counter (output of sum block) counts by 1. The numerical error occurs when the counter
value is multiplied by 0.1 to get the value of elapsed time; note that 0.1 is not accurately
representable in any binary-based floating point notation. This numerical error is shown in the
results.

The next subsection shows the analysis results assuming the filter runs for 72, 720, 7200 and
72,000 seconds at 10 Hz (100 ms period). The JSON files exchanged between HiLiTE and
CodeHawk and the actual ‘C’ code.

4.3.1.1. Analysis results after different periods (72, 720, 7200, 72000 seconds)

Figure 30 Fixed Increment Accumulator - 72 Seconds

Approved for Public Release; Distribution Unlimited.
61

Figure 31 Fixed Increment Accumulator - 720 Seconds

Figure 32 Fixed Increment Accumulator - 7200 Seconds

Figure 33 Fixed Increment Accumulator - 72000 Seconds

In the above figure, the range and error bounds for the time variable are provide for different
system operational times; both grow as a linear function of time as theoretically expected. (note
that variable outport in this example is unrelated to the accumulator and thus its error bound
remains fixed with the operational time).

Approved for Public Release; Distribution Unlimited.
62

4.3.2. Accumulator Example using Variable Increments

Figure 34 Variable Increment Accumulator - Test Model Diagram

The figure above shows ‘CounterWithoutLimitsWithExternalInputs’, a model with a floating-
point accumulator with a variable increment with the input range constrained to [0.1, 0.2] . The
next subsection shows the analysis results assuming the filter runs for 72, 720, 7200 72,000
seconds at 20 Hz (50 ms period). This example was created to ensure that both HiLiTE can
CodeHawk can properly identify and analyze accumulators with floating-point variable
increment. The results are consistent with the theoretical analysis.

4.3.2.1. Analysis results after different periods (72, 720, 7200, 72000 seconds)

Figure 35 Variable Increment Accumulator - 72 Seconds

Approved for Public Release; Distribution Unlimited.
63

Figure 36 Variable Increment Accumulator - 720 Seconds

Figure 37 Variable Increment Accumulator - 7200 Seconds

Approved for Public Release; Distribution Unlimited.
64

Figure 38 Variable Increment Accumulator - 72000 Seconds

5. CONCLUSIONS

We have demonstrated a combined model-level and code-level analysis approach to prove
precise, yet conservative bounds for variable ranges and numerical error on two classes of
numerical algorithms: linear digital filters and accumulators. Our novel analysis approach uses
the semantics of control algorithms available in the Simulink models to identify and classify the
properties of filter blocks and accumulator patterns. The HiLiTE tool introduced a novel
technique to analyze cyclic path (feedback loop) expressions in models to automatically detect
patterns and reduce them to temporal invariants in terms of a single accumulator variable that
could then be provided to CodeHawk. We defined extensible formats for representing variable
ranges, properties of filters and accumulators, functions for error bounds. These were used in
developing a flexible JSON interchange infrastructure in the tool chain that allowed the
automated round-trip analysis and presentation of the results to the user.

At the code-level analysis, Anca Browne discovered a technique, based on classical discrete
mathematics, for computing the exact (real) bounds on linear discrete filters, and applied it to
first-order and second-order filters supplied by Honeywell. The time to analyze a filter is
negligible. This contrasts with analyses performed for Airbus that take on the order of 20 hours
to get less precise results.

Extending this technique to floating point error analysis, she discovered how to generate a
closed-form solution for the error as a function of the number of iterations of the recurrence that
are performed. Again, this result was applied to first-order and second-order filters supplied by
Honeywell. The result of the error analysis were sufficiently precise and valid even for second-
order filters the numerical error stabilized within practically acceptable tolerance bounds even
for very large periods of run time. These precise bounds prove the essential characteristics of

Approved for Public Release; Distribution Unlimited.
65

variable ranges and numerical error in the control algorithms, as discussed in detail in Section
4.2.

These techniques were slightly generalized to analyze a different class of numerical algorithms
used in control systems, namely accumulators. Accumulators, such as counters, are used in
many control systems – a prime example is the Patriot Missile system where the accumulated
numerical error resulted in an infamous failure. Again, our techniques allow almost
instantaneous generation of an analysis function that gives (1) accumulator results as a function
of the number of iterations performed, and (2) accumulated floating-point error as a function of
the number of iterations performed.

As avionics software becomes increasingly complex, the need for automated analysis becomes
critical to verify correct algorithm behavior and absence of potential failures. The current static
analysis tools and proposed techniques may handle discrete types of algorithms well, but fall
short of providing a precise analysis for numerically intensive algorithms. This can result in large
range bounds (or no error bounds) provided by the tools which then leave it to the developer to
analyze the problem by manual reviews or empirical means. This is already proving to be a
problem in current avionics system when deploying large amounts of software with frequent
configuration changes. For example, developers may need to do extensive analysis to ascertain
that the new set of values of filter parameters is not degenerate and will indeed make the range
and error bounds converge.

We believe this work is a significant step towards improving the automation and quality of
results provided by static analysis techniques. Our novel analysis techniques can automatically
analyze the code implementations of a variety of first and second order linear filter and derive
not only precise range bounds but also numerical error bounds. This allows quick verification of
normal algorithm behavior as well as detection of erroneous combinations filter parameters (time
constant values) that can make bounds diverge, and defective implementations that can give rise
to large numerical error. Our techniques for the analysis of accumulator patterns would have
detected the bug that led to Patriot Missile failure, and may hopefully prevent such faulty
software in the future.

Approved for Public Release; Distribution Unlimited.
66

6. REFERENCES

[1] Patrick Cousot and Radhia Cousot, Abstract Interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints, POPL, 1977, pp 238-252.

 [2] Cousot, Patrick, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. "The ASTRÉE analyzer." In Programming Languages and
Systems, pp. 21-30. Springer Berlin Heidelberg, 2005.

[3] Feret, Jérôme. "Static analysis of digital filters." In Programming Languages and Systems,
pp. 33-48. Springer Berlin Heidelberg, 2004.

 [4] K. Eriksson, A Summary of Recursion Solving Techniques, KTH technical note,
https://www.math.kth.se/math/GRU/2012.2013/SF1610/CINTE/mastertheorem.pdf .

[5] The Patriot Missile Failure, http://www.ima.umn.edu/~arnold//disasters/patriot.html.

Approved for Public Release; Distribution Unlimited.
67

7. LIST OF ACRONYMS

COM Common Object Model
HiLiTE Honeywell Integrated Lifecycle Tool Environment
JSON JavaScript Object Notation
LDF Linear Digital Filters
MBD Model-Based Development
Ocaml O Collaborative Application Markup Language
PI Proportional-Integrator
SANA Static Analysis of Numerical Algorithms
SoW Statement of Work
WCEB Worst Case Error Bound

	List(s) of Figures and Tables
	1. Summary
	2. Introduction
	2.1. Original SOW Vision
	2.2. Discoveries about Abstract Interpretation of Filters
	2.2.1. Filter-specific widening
	2.2.2. Floating Point Error Bounds

	2.3. Re-orientation of Year 2

	3. Methods, Assumptions, and Procedures
	3.1. Control Algorithm Capture in Models and Analysis / Code Verification
	3.1.1. Use of Semantics at the Design Model Level to Aid Analysis
	3.1.2. Exploration of Model-Based Code Generation Approach

	3.2. Abstract Interpretation
	3.3. Integration of Model Analysis and Code Analysis
	3.3.1. Original HiLiTE Platform
	3.3.2. Original CodeHawk Platform
	3.3.3. JSON Interchange Architecture
	3.3.4. Tool Software Integration Architecture

	4. Results and Discussion
	4.1. Discoveries in Abstract Interpretation
	4.1.1. Interval Abstract Domain
	4.1.2. Cancellation Abstract Domain
	4.1.3. Analyzing for Error Bounds
	4.1.4. Closed-form Solutions
	4.1.5. Range Analysis for First-order Linear Digital Filters
	4.1.6. Range Analysis for Second-order Linear Digital Filters
	4.1.7. Digital Filters: Error Range
	4.1.7.1. Symbolic Interval Combinations
	4.1.7.2. Error Set Abstractions
	4.1.7.3. Error Bounds for First-Order Linear Filters
	4.1.7.4. Error Bounds for Second-Order Linear Filters

	4.1.8. Accumulating Integrators: Error Range Functions

	4.2. Summary of Filter Test Suite Results
	4.2.1. Filter Example using a Resettable Lead Lag Filter
	4.2.1.1. Resettable Lead Lag Filter Transfer Function
	4.2.1.2. Analysis results after 72,000 Seconds (20 hrs)

	4.2.2. Filter Example using a Variable Lag Filter
	4.2.2.1. Variable Lag Filter Transfer Function
	4.2.2.2. Analysis results after 72,000 Seconds (20 hrs)

	4.2.3. Filter Example using a Lag Filter
	4.2.3.1. Lag Filter Transfer Function
	4.2.3.2. Analysis results after 72,000 Seconds (20 hrs)

	4.2.4. Filter Example using a Quadratic Filter
	4.2.4.1. Quadratic Filter Transfer Function
	4.2.4.2. Analysis results after 72,000 Seconds (20 hrs)

	4.2.5. Filter Example using a Variable Washout Filter
	4.2.5.1. Variable Washout Filter Transfer Function
	4.2.5.2. Analysis results after 72,000 Seconds (20 hrs)

	4.3. Summary of Accumulator Test Suite Results
	4.3.1. Accumulator Example using a Fixed Integer Increment
	4.3.1.1. Analysis results after different periods (72, 720, 7200, 72000 seconds)

	4.3.2. Accumulator Example using Variable Increments
	4.3.2.1. Analysis results after different periods (72, 720, 7200, 72000 seconds)

	5. Conclusions
	6. References
	7. List of Acronyms

