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Award Number: W81XWH-13-1-0029 
Title: Regulation of Survival by IKKε  in Inflammatory Breast Cancer Involves EpCAM 
Principal Investigator: Thanh Barbie, MD 
 
1.  INTRODUCTION: 
 
Breast cancer is the leading cause of cancer incidence and second leading cause of cancer deaths in women in 
the United States (1). Despite tremendous advances in screening, surgical management, and targeted therapies 
such as endocrine and HER2-directed treatments, the prognosis for women with advanced disease remains poor. 
 
The IKK-related kinases IĸB kinase epsilon (IKKε) and TANK binding kinase 1 (TBK1) represent an emerging 
link between inflammation and cancer (2). IKKε is overexpressed and/or amplified in approximately 30% of 
breast carcinomas (3-5), where it induces survival signaling associated with NF-kB pathway activation. 
Aberrant IKKε expression facilitates cell transformation, whereas suppression of IKKε in breast cancer cell 
lines that harbor IKKε amplification results in cell death (4). IKKε phosphorylates CYLD and TRAF2 in breast 
cancer cells, which contributes to NF-kB activation and promotes tumorigenesis (6, 7). IKKε also directly 
phosphorylates and activates specific STAT transcription factors (8, 9). Furthermore, cytokines produced by 
TBK1/IKKε can engage downstream JAK/STAT signaling in an autocrine or paracrine fashion (10). 
 
Advances in targeted therapy for patients with breast cancers that express ER/PR and/or ERBB2 have improved 
survival. Limited treatment options exist, however, for the 15-20% of patients with triple negative breast 
cancers (TNBC). Although TNBC may respond to chemotherapy, tumors frequently relapse, resulting in 
decreased survival compared with other breast cancer subtypes (11). Activation of NF-kB and JAK/STAT 
signaling has been implicated in an immune subtype of TNBC (12-16). In preliminary studies we found that, in 
addition to its genomic amplification in luminal breast tumors, IKKε is aberrantly overexpressed in 
immunomodulatory TNBC. IKKε coordinately activates NF-kB and STAT signaling in these cells and sustains 
protumorigenic cytokine production. CYT387, a dual IKKε/TBK1 and JAK inhibitor, potently disrupts this 
inflammatory signaling circuit and impairs tumor progression in preclinical mouse models of TNBC, 
identifying a novel therapeutic strategy for this refractory breast cancer subtype.   
 
  
2. KEYWORDS: 

Epithelial cell adhesion molecule (EpCAM), IKKε, Μitogen-activated protein kinase kinase enzymes ΜΕΚ1 
inhibitor, targeted therapies, cytokine signaling 

 
 
3. ACCOMPLISHMENTS: 
Summary of key research accomplishments:  

• Identified IKKε as a novel driver of an inflammatory subtype of TNBC that maintains features of 
epithelial differentiation. 

• Characterized specific NF-κB, STAT3, and cytokine signaling pathways that contribute to IKKε 
mediated tumorigenesis. 

• Discovered CYT387 as a potent IKKε and JAK inhibitor that inhibits this breast cancer subtype in vitro. 

• Identified therapeutic activity of CYT387 in IKKε driven TNBC patient derived xenografts, particularly 
when combined with MEK inhibition. 
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3a. What were the major goals of the project?  

Major Goal 1: Define the mechanism(s) by which EpCAM is regulated by IKKε.  

Major Goal 2: Define the ability of small molecule inhibitors of IKKε to inhibit breast cancer growth and 
invasion. 

Major Goal 3: Evaluation of IKBKE small molecule inhibitors in vivo using a patient tumor-derived breast 
cancer xenograft model (HAMLET: Human and Mouse Linked Evaluation of Tumors). 
 

3b. What was accomplished under these goals?  
 
Major Goal 1: Define the mechanism(s) by which EpCAM is regulated by IKKε .  
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that is expressed on normal 
epithelial cells and over-expressed in a subset of carcinomas, including breast and ovarian cancer (17). It has 
attracted recent attention as a tool for capture-based detection of circulating cells (18), as well as a marker for 
stem cell-like tumor initiating cells (19). Emerging evidence from the Gillanders’ laboratory also supports the 
concept that EpCAM is not simply a passive cell surface marker, but rather actively regulates breast cancer 
proliferation and invasion (5, 6).  
 

To gain even further insight into EpCAM regulation and function, we first explored EPCAM gene expression 
across a panel of 1062 primary breast cancers (20-22) and cell lines (http://www.broadinstitute.org/ccle/home) 
to identify the specific molecular subtypes of breast cancer in which it is over-expressed.  This analysis showed 
that EPCAM expression was enriched in an inflammatory subtype of triple negative breast cancer. Interestingly, 
this subtype of breast cancer is characterized by over-expression of several immune associated genes, including 
the non-canonical IκB kinase IKBKE (encoding IKKε). IKKε and its homologue TBK1represent an emerging 
link between inflammation and cancer (2). IKKε is overexpressed and/or amplified in approximately 30% of 
breast carcinomas (3-5), where it induces survival signaling associated with NF-κB pathway activation. 
 

Aberrant IKKε expression facilitates cell transformation, whereas suppression of IKKε in breast cancer cell 
lines that harbor IKKε amplification results in cell death (4). IKKε phosphorylates CYLD and TRAF2 in breast 
cancer cells, which contributes to NF-κB activation and promotes tumorigenesis (6, 7). IKKε also directly 
phosphorylates and activates specific STAT transcription factors (8, 9). Furthermore, cytokines produced by 
TBK1/IKKε can engage downstream JAK/STAT signaling in an autocrine or paracrine fashion (10). 
 

Activation of NF-κB and JAK/STAT signaling has also been strongly implicated in this subtype of TNBC (12-
16). IKKε coordinately activates NF-κB and STAT signaling in these cells and sustains protumorigenic 
cytokine production. CYT387, a dual TBK1/IKKε and JAK inhibitor, potently disrupts this inflammatory 
signaling circuit and impairs tumor progression in preclinical mouse models of TNBC, identifying a novel 
therapeutic strategy for this refractory breast cancer subtype. 
 

In addition to being overexpressed in a subset of luminal/ER+ breast cancers as previously reported (4), we also 
found that IKKε mRNA was highly expressed in this EpCAM positive subset of ER- breast cancers and 
particularly in TNBC (Figure 1A). Induction of IKKε mRNA in this subset of TNBC tumors was more closely 
associated with IL-1 pathway activation, as evidenced by co-expression of an IL-1 signature (23) (Fig. 1A). 
Hierarchical clustering with previously reported gene expression subtypes (24) further revealed that IKKε 
expression and IL-1 activation were associated most closely with the immunomodulatory subtype of TNBC 
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(data not shown). We next identified TNBC cell lines with elevated IKKε levels using gene-expression data 
from the Broad/Novartis Cell Line Encyclopedia (25) and validated that these cell lines expressed high levels of 
IKKε protein (Fig 1B, C).  Using two independent IKKε-specific shRNAs, we found that the TNBC cell lines 
MDA-MB-468 cells and MDA-MB-231 were sensitive to suppression of IKKε, whereas specific ablation of 
IKKε failed to affect the proliferation of non-transformed MCF10A cells (Fig. 1B). These findings revealed that 
IKKε is not only overexpressed, but also contributes to the proliferation and survival of this subset of TNBC. 
 
When we examined the relationship between IKKε and STAT3 activation (as measured by Y705 pSTAT3 
levels), we observed a strong correlation between elevated IKKε levels and activated STAT3 in TNBC cell 
lines (Fig. 1C). Further, IKKε overexpression in HEK-293T cells not only induced NF-κB pathway activation 
as measured by S933 pNF-κB p105 levels, but also STAT3 activation as reflected by increased Y705 pSTAT3 
levels (Fig. 1D), as well as CCL5 and IL-6 expression (data not shown). Taken together, these findings confirm 
that IKKε signaling promotes NF-κB, STAT3 and cytokine activation. 
 

Despite our preliminary observations that EpCAM was linked with IKKε expression in this subtype of TNBC, 
subsequent experiments following IKKε suppression or over-expression failed to give consistent results. While 
we still suspect that EpCAM expression in these tumors reflects epithelial differentiation within this 
inflammatory subset of tumors, it is not clear that the relationship with IKKε is direct. Although we remain 
interested in the specific features that delineate this tumor cell state as a means to identify predictive biomarkers, 
our focus has shifted to Aims #2 and #3, in which we have made significant progress towards a novel 
therapeutic strategy for this breast cancer subtype. 

 

Major Goal 2: Define the ability of small molecule inhibitors of IKKε  to inhibit breast cancer growth and 
invasion. 

Since IKKε expressing TNBC cells exhibited STAT3 activation, we considered the possibility that inhibition of 
JAK/STAT signaling by treatment with the clinically advanced JAK inhibitors Ruxolitinib (26) or CYT387 (27) 
might impact their proliferation and survival. 
 
Treatment of MDA-MB-468 cells with several different doses of Ruxolitinib or CYT387 inhibited STAT3 
phosphorylation (Fig. 1E). However, when we treated multiple different cell lines with 5 µM Ruxolitinib, which 
completely inhibited pSTAT3, we failed to observe any effect on cell viability in contrast to CYT387 (Fig. 1F, 
G). These findings suggested an additional activity of CYT387.  
 
Since CYT387 inhibits the IKKε homologue TBK1 (28), we next assessed whether IKKε signaling was 
inhibited by CYT387. Both CYT387 and Ruxolitinib inhibited IKKε-induced Y705 pSTAT3 (Fig. 2A). 
However, CYT387 alone inhibited IKKε-induced NF-κB (Fig. 2B) and also directly impaired IKKε expression 
itself (Fig. 2C). We also collected media from 293T cells following transfection with EGFP or IKKε and 
analyzed levels of 36 different cytokines and chemokines using a antibody array. Expression of IKKε potently 
induced CCL5 levels in the media, which was completely abrogated by CYT387 but not Ruxolitinib treatment 
(Fig. 2D). We confirmed by ELISA that IKKε-induced CCL5 and IL-6 were preferentially inhibited by 
CYT387 (data not shown). Thus, the unique activity of CYT387 in IKKε-driven TNBC relates to its activity as 
a TBK1/IKKε inhibitor. 
 

Major Goal 3: Evaluation of IKKε  small molecule inhibitors in vivo using a patient tumor-derived breast 
cancer xenograft model (HAMLET: Human and Mouse Linked Evaluation of Tumors). 
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Inhibition of TNBC patient-derived xenograft (PDX) growth by CYT387 therapy in vivo.  CYT387 has been 
evaluated in mouse models of myelofibrosis and is undergoing phase II trials for this indication in humans. In 
addition, Ruxolitinib was recently FDA approved for myelofibrosis based upon phase III clinical trial data 
demonstrating significant improvement in splenomegaly. Thus, the favorable pharmacokinetic properties, 
therapeutic window, and elucidation of maximum tolerated dosing (MTD) for each compound enables 
preclinical testing with these compounds in mice. We therefore next explored the therapeutic impact of CYT387 
therapy in clinically relevant models in vivo. After tumors were established in nude mice, CYT387 was 
administered via daily oral gavage at a dose of 100 mg/kg. CYT387 treatment impaired the growth of 
established MDA-MB-468 xenografts, as well as in the Washington University Human-in Mouse (WHIM) line 
WHIM21, derived from a patient with IKKε expressing TNBC (Fig. 2E, Fig. 3A,B). CYT387 treatment 
suppressed IKKε expression in WHIM21 patient derived xenografts in vivo, potently inhibited CCL5 and IL-6 
expression, and suppressed activated STAT3 (Fig 2F, data not shown). Thus, CYT387 effectively inhibits IKKε 
and JAK signaling in vivo, suppresses protumorigenic cytokine expression, and exhibits therapeutic potential 
for IKKε-driven TNBC. 
 
Since CYT387 inhibits IKKε and JAK and is effective as a single agent in TNBC, we considered it might 
synergize even more potently with inhibitors of PI3K/mTOR or MEK/ERK signaling (29). Indeed, we found 
that combination treatment with CYT387 (50 mg/kg) and the MEK inhibitor trametinib (2.5 mg/kg), results in a 
dramatic reduction in tumor size in WHIM21 (Fig. 2G). In addition to WHIM21, another in vivo model of 
TNBC with IKKε expression (WHIM4) showed a similar impressive response to combination therapy (Fig. 4A). 
We also observed moderate responsiveness in another TNBC line	
   (WHIM12E) that expressed lower levels of 
IKKε, suggesting that the synergy with MEK inhibition might extend more broadly across TNBC subtypes (Fig. 
4B), but not to luminal tumors, which remained unresponsive (Fig. 4C). We note that the WHIM21 and 
WHIM4 TNBC models were obtained from patients who succumbed to their disease after multiple 
chemotherapies.  Thus, CYT387/trametinib may represent a highly effective combination therapy for 
chemotherapy resistant TNBCs. Furthermore, in preclinical studies, these WHIM models have been used to 
evaluate the drug efficacy of multiple other targeted approaches that have been unsuccessful to date.  
 
Combination therapy with CYT387/trametinib results in tumor necrosis of TNBC mouse PDX models.  In 
addition to a significant decrease in size of the TNBC xenografts treated with CYT387/trametinib, the tumors 
also appeared particularly pale when compared with vehicle or single agent treated tumors (Fig. 2G, 3B, 4A, 
4B).  We therefore performed a detailed histologic examination of the WHIM21 treated tumors, including 
measures of angiogenesis.  Whereas single agent treatment with trametinib showed preferential impairment of 
proliferation as measured by Ki-67 staining, and CYT387 modestly reduced microvascular density, the 
combination therapy resulted in a striking inhibition of angiogenesis and profound tumor necrosis (Fig. 5).  
Therefore, antitumor activity of this drug combination was not only direct but was also related to the synergistic 
effects of cytokine and MEK inhibition on angiogenesis. Taken together, combined CYT387/trametinib 
treatment impairs tumor progression and angiogenesis, representing a promising novel therapy for TNBC. 
 
Combination therapy with CYT387/trametinib results in inhibition of a cytokine circuit as demonstrated in a 3D 
microfluidic cell culture system. We previously utilized a novel cell culture system to demonstrate the role of 
CCL5/IL6 in promoting tumor cell spheroid dispersal and endothelial cell migration, and the activity of 
CYT387 in vitro (Fig. 6A, B). By incorporating the 3D culture of TNBC cell line spheroids in a collagen matrix, 
along with endothelial cell co-culture to recapitulate the tumor microenvironment more faithfully than 
traditional 2D culture systems, this system enables more physiologic analysis of the effects of these cytokines 
on tumor and endothelial cell biology as they occur in vivo. Recently, we further adapted this system to the 
culture of actual primary tumor explants. By correlating drug therapy responses in this model with identical 
studies of engrafted tumors in mice, the goal is to validate this cost-effective system as a way to supplant PDX 
systems for performing predictive patient-based therapeutic studies. To assess whether this system is able to 
recapitulate the PDX response to CYT387 and trametinib treatment ex vivo, we compared control with CYT387 
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(1 mM), trametinib (10 nM), or combination treatment of a TNBC PDX in the device and monitored the effect 
on spheroid dispersal/viability using phase contrast microscopy. Notably, this PDX was obtained after only one 
passage in mice, and the derived spheroids still retained human immune cells (T cells, dendritic cells, and 
monocytes) by flow cytometric analysis (data not shown).   Interestingly, similar to what we observed in vivo 
(Figs. 4, 5), we found that treatment with CYT387 or trametinib alone for 5 d inhibited spheroid dispersal with 
remaining viable cells. However, combination treatment resulted in potent synergy leaving only residual 
cellular debris (Fig. 7).   
 

In short, these data demonstrate promising response of TNBC preclinical models to CYT387, particularly when 
combined with MEK inhibition.  Given that this IKKε inhibitor is currently in human clinical trials for the 
treatment of myelofibrosis and has a favorable side-effect profile, we are working to translate these findings 
into a clinical trial, with the hopes of achieving a positive patient-related outcome for its use in breast cancer.  

 
3c. What opportunities for training and professional development has the project provided?  

This award has allowed me to obtain mentorship in basic science research as a breast cancer surgeon.  It also 
allowed me to attend multiple basic science research conferences including the annual conferences at AACR 
and ASCO.   
 

3d. How were the results disseminated to communities of interest?   
Nothing to report.  

 
3e. What do you plan to do during the next reporting period to accomplish these goals?  

Nothing to report.  
 

4. IMPACT   
4a. What was the impact on the development of the principal discipline(s) of the project?   

These data have not only identified a novel approach to target a subset of TNBC patients, but also one with 
realistic clinical potential. We are working with Gilead Sciences to extend these preclinical findings, with the 
hope of moving this drug combination forward into an actual clinical trial in advanced refractory metastatic 
TNBC patients. Thus, our data have significant potential to have a positive impact on patients suffering from 
this terrible disease.  
4b. What was the impact on other disciplines?  
Nothing to report. 
 
4c. What was the impact on technology transfer?   
Nothing to report. 
 
4d. What was the impact on society beyond science and technology?   
Nothing to report. 
 

5. CHANGES/PROBLEMS 
5a. Changes in approach and reasons for change: Nothing to report.  
5b. Actual or anticipated problems or delays and actions or plans to resolve them: Nothing to report. 
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5c. Changes that had a significant impact on expenditures: Nothing to report. 
5d. Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select 
agents: Nothing to report. 
5e. Significant changes in use or care of human subjects: Nothing to report. 
5f. Significant changes in use or care of vertebrate animals: Nothing to report. 
5g. Significant changes in use of biohazards and/or select agents: Nothing to report. 

 
6. PRODUCTS: 

6a. Publications, conference papers, and presentations:  
Journal publications 
Manuscript: Barbie TU, Alexe G, Aref AR, Li S, Zhu Z, Zhang X, Imamura Y, Thai TC, Huang Y, Bowden 
M, Herndon J, Cohoon TJ, Fleming T, Tamayo P, Mesirov JP, Ogino S, Wong KK, Ellis MJ, Hahn WC, Barbie 
DA, Gillanders WE. Targeting an IKBKE cytokine network impairs triple-negative breast cancer growth. J Clin 
Invest. 2014; 124(12):5411-23. PMID: 25365225. PMCID: PMC4348940.  (Status: Published. 
Acknowledgement of federal support: Yes.) 
 
Other publications, conference papers, and presentations 
Poster Award: “CYT387 as a Novel Treatment for Triple Negative Breast Cancer.” Washington University 
Breast Cancer Retreat – Award Winning Poster (2013).   
 
 
6b. Website or other internet site:  

Nothing to report. 
6c. Technologies or techniques:  

Nothing to report. 
6d. Inventions, patent applications, and/or licenses:  

Nothing to report. 
6e. Other Products: 

Nothing to report. 
  
7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS 
7a. What individuals have worked on the project?  

Name:  Thanh Barbie, M.D. 
Project Role: Principal Investigator 
Researcher Identifier: Does not have an ORCID 
Nearest person month worked:  3  
Contribution to project: Design, execution, and reporting of the research overall.  
Funding support: N/A (this award). 
 
7b. Has there been a change in the active other support of the PD/PI or senior/key personnel since the last 
reporting period?   
Yes. The subject grant W81XWH-13-0029 has ended, and the following award was received since the last 
report:  
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Robert T. Osteen Fellowship (PI: Barbie)      07/01/15 – 06/30/16        (No effort commitment) 
Harvard Medical School/BWH Department of Surgery     $30,000 
Therapeutic targeting of triple negative breast cancer by dual cytokine/MEK inhibition 
 Goals: Although triple negative breast cancers (TNBC) are defined by the absence of hormone receptor 
expression and ERBB2 amplification, they represent a heterogeneous set of cancers. We recently found that 
inducible expression of the IkB kinase (IKK) related-kinase IKKε and JAK/STAT pathway activation 
underlies a cytokine signaling network in the immune activated subset of TNBCs.  CYT387, a novel potent 
inhibitor of TBK1/IKKε and JAK signaling, disrupts this circuit. Combined therapy with the MEK 
inhibitor trametinib is particularly effective, abrogating tumor growth and angiogenesis.  The goal of this 
research is to perform additional mechanistic studies to determine the subset of patients who will respond 
to this combination therapy. 
 Specific Aims: 1) Correlates of response in momelotinib/trametinib TNBC clinical trial; 2) Prospective 
analysis of momelotinib/trametinib therapy in TNBC PDX models; 3) Development of an in vitro culture 
system for studies of patient-derived explants.  
 Funding Agency Contact: Brigham and Women’s Hospital, Department of Surgery, 75 Francis St., 
Boston, MA 

 
7c. What other organizations were involved as partners?  

Nothing to report.  
 

8. SPECIAL REPORTING REQUIREMENTS 
N/A 

 
	
    

Page 10



	
   8	
  

9. APPENDICES 
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Figure 1. A. Heatmap of IKKε mRNA levels vs amplification or IL-1 signature expression in TCGA breast 
tumor data. B. TNBC cell line dependence on IKKε expression. C. STAT3 activation correlates with IKKε 
over-expression in TNBC cell lines. D. IKKε directly induces NF-κB and STAT3 activation. E. Ruxolitinb 
or CYT387 treatment inhibits STAT3 activation in TNBC cells. F. Phase contrast images of TNBC cells 
treated with 5 µM Ruxolitnib or CYT387. G. Cell viability data following JAK inhibitor treatment of TNBC 
cells. 
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Figure 2. A. Immuno-blot of IKKε, pSTAT3, STAT3, and Actin levels following EGFP or IKKε 
expression and inhibitor treatment of 293T cells. B. Immunoblot of p-pl05, p105 and Actin levels 
following EGFP or IKKε expression and inhibitor treatment of 293T cells. C. IKKε and Actin levels 
following treatment of TNBC cells with inhibitors. D. Cytokine levels of 293T cell media following 
IKKε expression and inhibitor treatment. E. Effects of CYT387 treatment on cell-line or patient-derived 
TNBC xenografts. F. IKKε, CCL5, and IL-6 levels in treated tumors. G. Effects of combination CYT387 
and trametinib therapy on TNBC PDX growth. 
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Figure 3.  A. Identification of a Washington University human-in-mouse 
line (WHIM21) derived from a human TNBC that overexpressed IKKε.  
B.  Established WHIM21 tumors were then treated with vehicle only, 
CYT387 at 50mg/kg/d, Trametinib at 2.5 mg/kg/d, or combination 
therapy with CYT387 and trametinib.   
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Figure 4.  A.  Established WHIM4 (TNBC with high IKKε expression) were 
treated with control or vehicle only versus combination therapy with 
CYT387/trametinib.  B. Established WHIM12E (TNBC with low IKKε 
expression) were treated with vehicle only versus combination therapy with 
CYT387/trametinib.  C. Established WHIM20 (Luminal breast cancer with low 
IKKε expression) were treated with vehicle only versus combination therapy 
with CYT387/trametinib. 
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Figure 5.  Histologic examination of WHIM21 treated tumors with 
control, CYT387 alone, Trametinib alone, or combination therapy.  
Markers of proliferation (Ki-67) and angiogenesis (CD31 and ERG) 
were examined.  Whereas, trametinib treatment had a more 
profound effect on proliferation and CYT387 on microvascular 
density,the combination resulted in striking inhibition of angiogenesis 
and profound tumor necrosis.  
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Figure 6.  A. MDA-MB-468 spheroids in microfluidic 3D culture 0, 24 
and 48 h after addition of CCL5/IL6, EGF or both. In contrast to DMSO, 
CYT387 treatment inhibited EGF-induced spheroid dispersal but was 
rescued by CCL5 and IL6. B.  Compared with control media, CCL5/IL6 
attracted HUVECs into collagen over 24 h.  Cotreatment trametinib 
(MEKi) strongly inhibited this effect.  Mean and SD of cell migration 
from 3 independent devices shown.  
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Figure 7. TNBC PDX treatment response ex vivo in microfluidic 3D 
culture. Phase contrast images 5 d following treatment of TNBC PDX 
derived tumor spheroids with DMSO control, CYT387, trametinib, or 
combination. Whereas cells from control treated spheroids dispersed, 
proliferated, and migrated throughout the collagen over time, those 
from single agent CYT387 or trametinib treated devices were inhibited 
and failed to disperse. Combination of CYT387 and trametinb 
synergized and resulted in strong cell death, leaving only residual 
cellular debris. Images are representative of spheroids analyzed from 2 
independent devices for each condition.  
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Introduction
Advances in targeted therapy for patients with breast cancers 
that express estrogen/progesterone receptors and/or HER2 have 
improved patient outcomes and survival. Limited treatment options 
exist, however, for the 15% to 20% of patients with triple-negative 
breast cancers (TNBCs). Although TNBCs may respond to anthra-
cycline-based chemo therapy or cisplatin, tumors frequently relapse, 
resulting in decreased disease-free and overall survival compared 
with other breast cancer subtypes (1).

The diversity of somatic mutations, gene amplifications, and 
deletions observed in TNBC has hampered efforts to elucidate 
a common drug target in this breast cancer subtype (2). Recent 
evidence suggests that a significant fraction of TNBCs exhibit 
immune cell infiltration, with features of stem cells and epithelial- 
mesenchymal transition (3–5). Indeed, a refined classification of 
TNBC based on gene expression profiling recently identified an 
immunomodulatory (IM) subtype that corresponds with this cat-
egory of tumors (6). However, the specific genetic drivers of this 
and other TNBC subtypes remain poorly defined.

The IκB kinase–related (IKK-related) kinases TANK-binding 
kinase 1 (TBK1) and IĸB kinase ε (IKBKE, also known as IKKε) 
represent an emerging link between inflammation and cancer (7). 
In response to pathogen exposure, induction of IKBKE reinforces 
TBK1 signaling and promotes sustained activation of the type 1 
interferon pathway (8–11). Furthermore, IKBKE directly phospho-
rylates and activates specific STAT transcription factors (12, 13), 
and cytokines produced by TBK1/IKBKE can engage downstream 
JAK/STAT signaling in an autocrine or paracrine fashion (14).

IKBKE is also aberrantly expressed and/or amplified in 
approximately 30% of breast carcinomas (15–17), in which it 
induces survival signaling associated with NF-κB pathway acti-
vation. IKBKE activation facilitates cell transformation, whereas 
suppression of IKBKE in breast cancer cell lines that harbor IKBKE 
amplification or overexpression results in cell death (16). IKBKE 
phosphorylates CYLD and TRAF2 in breast cancer cells, which 
induces NF-κB activation and contributes to cell transformation 
(18, 19). However, a comprehensive understanding of how IKBKE 
promotes tumorigenicity is lacking, and the therapeutic efficacy of 
targeting IKBKE signaling in vivo has yet to be defined.

Activation of NF-κB and JAK/STAT signaling has been strongly 
implicated in the pathogenesis of certain TNBCs and closely related 
basal-like breast cancers (20–24). Markers of JAK/STAT pathway 
activation are particularly enriched in the IM TNBC gene expres-

Triple-negative breast cancers (TNBCs) are a heterogeneous set of cancers that are defined by the absence of hormone 
receptor expression and HER2 amplification. Here, we found that inducible IκB kinase–related (IKK-related) kinase IKBKE 
expression and JAK/STAT pathway activation compose a cytokine signaling network in the immune-activated subset of 
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IKBKE and JAK signaling, impairs proliferation, while inhibition of JAK alone does not. CYT387 treatment inhibited 
activation of both NF-κB and STAT and disrupted expression of the protumorigenic cytokines CCL5 and IL-6 in these 
IKBKE-driven breast cancer cells. Moreover, in 3D culture models, the addition of CCL5 and IL-6 to the media not only 
promoted tumor spheroid dispersal but also stimulated proliferation and migration of endothelial cells. Interruption of 
cytokine signaling by CYT387 in vivo impaired the growth of an IKBKE-driven TNBC cell line and patient-derived xenografts 
(PDXs). A combination of CYT387 therapy with a MEK inhibitor was particularly effective, abrogating tumor growth 
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transformed MCF-10A cells, we identified several TNBC cell lines 
that expressed high levels of IKBKE protein (Figure 1B). Whereas 
ZR751 cells exhibited copy number gain at the IKBKE locus as 
expected, multiple IKBKE-expressing TNBC cell lines failed to 
show evidence of genomic IKBKE amplification (Table 1). These 
findings recapitulated what we had observed in primary tumors 
and confirmed that IKBKE is not only amplified in luminal breast 
cancers but also aberrantly overexpressed in a subset of TNBC.

IKBKE-amplified ZR751 cells depend on IKBKE expression 
for their proliferation and survival (16). Using 2 independent 
IKBKE-specific shRNAs, we found that TNBC MDA-MB-468 cells 
were at least as sensitive to suppression of IKBKE as ZR751 cells 
(Figure 1C). Indeed, whereas specific depletion of IKBKE failed 
to affect the proliferation of nontransformed MCF10A cells, we 
confirmed that suppression of IKBKE expression inhibited the 
proliferation of multiple IKBKE-amplified (ZR751 and MCF7) and 
IKBKE-overexpressing TNBC cell lines (MDA-MB-231 and MDA-
MB-468) (Figure 1D). These findings revealed that IKBKE is not 
only overexpressed but also contributes to the proliferation and 
survival of this subset of TNBC.

IKBKE expression in TNBC is associated with STAT3 activation 
and cytokine production. IKBKE promotes NF-κB (7) and STAT sig-
naling (12, 13) both directly and indirectly via autocrine cytokine 
production (14). Indeed, we confirmed that IKBKE overexpression 
in HEK-293T (293T) cells not only induced NF-κB pathway activa-
tion, as measured by S933 phosphorylated NF-κB p105 levels, but 
also STAT3 activation, as reflected by increased Y705 phosphory-
lated STAT3 (pSTAT3) levels (Figure 2A). Activation of these sig-
naling pathways by IKBKE was associated with induction of CCL5 
expression in a kinase-dependent manner (Figure 2B). When we 
measured IKBKE levels and activated STAT3 (as measured by Y705 
pSTAT3 levels) across breast cancer cell lines, we observed correla-
tion preferentially in TNBC cell lines (Figure 2C). These findings 
suggested that engagement of IKBKE signaling in TNBC occurred 
within the context of a broader cytokine signaling network. Since 
elevated IKBKE expression in TNBC tumors correlated with IL-1 
and other markers of inflammation (Figure 1A and Supplemental 
Figures 1, A–C), we assessed the role of IL-1β in engaging IKBKE 
signaling in this context. Indeed, treatment of multiple TNBC cell 
lines with IL-1β led to a substantial further increase in IKBKE pro-
tein levels (Figure 2D) and enhanced the secretion of CCL5 (Figure 
2E). Depletion of IKBKE alone in MDA-MB-468 cells failed to pre-
vent IL-1β–induced CCL5 production but modestly reduced IL-6 
levels (Supplemental Figure 3, A and B). These observations sup-
port the view that functional redundancy exists between multiple 
components of this network, including TBK1, which together with 
IKBKE promotes CCL5 and IL-6 production (30).

Sensitivity of IKBKE-driven TNBC cells to CYT387 treatment. 
We next compared the effects of selective inhibition of JAK/STAT 
signaling on TNBC cell proliferation and survival by treatment 
with the JAK inhibitor ruxolitinib (31) or the multitargeted JAK/
TBK1/IKBKE inhibitor CYT387 (30, 32, 33). Treatment of MDA-
MB-468 cells with ruxolitinib or CYT387 over a range of doses 
inhibited STAT3 phosphorylation (Figure 3A). Despite comparable 
inhibition of JAK signaling, treatment of these cells with CYT387 
but not ruxolitinib impaired the viability of multiple different 
TNBC cell lines (Figure 3, B and C).

sion subtype (6). Here, we report that, in addition to its genomic 
amplification in luminal breast tumors, IKBKE is aberrantly over-
expressed in TNBC and coordinately activates NF-κB, STAT, and 
cytokine signaling in this subset of cancers. Furthermore, we iden-
tify combined TBK1/IKBKE, JAK, and MEK inhibition as a novel 
potent therapeutic strategy for this class of tumors.

Results
Identification of an IKBKE-driven TNBC subtype. IKBKE is amplified 
in approximately 30% of human breast tumors, and luminal breast 
cancer cell lines that harbor IKBKE copy gain are dependent upon 
its expression (16). IKBKE overexpression has also been observed 
in breast cell lines and cancers without IKBKE amplification, such 
as the TNBC cell lines, MDA-MB-231 and MDA-MB-468 (17). To 
gain further insight into IKBKE regulation and function in breast 
cancer, we analyzed gene expression data from primary breast 
cancers profiled in the The Cancer Genome Atlas (TCGA) data set 
(2). Whereas IKBKE expression was linked with IKBKE amplifica-
tion in luminal tumors, a substantial additional fraction of breast 
cancers overexpressed IKBKE in the absence of gene amplifica-
tion (Figure 1A). Since IKBKE is also induced by multiple differ-
ent cytokines (25), we examined correlation between the levels of 
several different cytokine gene expression signatures and IKBKE 
mRNA expression across these samples (26, 27). Among these sig-
natures, IL-1 induction correlated most strongly with high IKBKE 
levels in a subtype of TNBC, followed by TNFA (P < 0.001 for 
both, normalized mutual information (NMI) statistic) (Figure 1A 
and Supplemental Figure 1, A and B). Hierarchical clustering with 
previously reported gene expression subtypes (6) and B lympho-
cyte markers (28) further revealed that IKBKE expression and IL-1 
activation most closely associated with the IM subtype of TNBC 
and with lymphocytic infiltration (P < 0.001 and P < 0.02, respec-
tively, NMI statistic) (Supplemental Figure 1C). IKBKE mRNA lev-
els correlated with mutant TP53 status across all TCGA tumors, 
but this did not reach statistical significance within the TNBC sub-
set (Supplemental Figure 2A). Response to neoadjuvant cisplatin 
therapy failed to correlate with IKBKE expression status in another 
cohort of patients with TNBC (Supplemental Figure 2A).

To explore this observation further, we next identified cell 
lines that express elevated IKBKE levels using gene expression 
data from the Broad/Novartis Cell Line Encyclopedia (29). Similar 
to ZR751, a luminal breast cancer cell line that harbors IKBKE copy 
number gain (16), and in contrast to HER2+ BT474 cells or non-

Table 1. IKBKE copy number in ZR-751– and IKBKE-expressing 
TNBC cell lines from the Broad/Novartis Cell Line Encyclopedia

Cell line IKBKE CN (log2 [CN/2])
ZR751 1.23
MDA-MB-231 0.12
MDA-MB-468 0.36
HCC70 0.47
HCC1143 0.49
HCC1187 0.53

CN, copy number.

Downloaded from http://www.jci.org on February 25, 2016.   http://dx.doi.org/10.1172/JCI75661



The Journal of Clinical Investigation   R e s e a R c h  a R t i c l e

5 4 1 3jci.org   Volume 124   Number 12   December 2014

IL-1β and found that CYT387 treatment inhibited proliferation and 
caused cells to aggregate (Supplemental Figure 4B). These findings 
demonstrate that CYT387 treatment uniquely impairs not only cell 
viability in 2D culture but also growth factor– and cytokine- driven 
TNBC cell proliferation and dispersal in 3D culture.

Next, we treated a panel of 15 breast cancer cell lines with CYT387 
over a range of concentrations and found that TNBCs that exhibited 
high levels of IKBKE and pSTAT3 exhibited the greatest sensitivity, 

We further examined the effects of CYT387 treatment on 
MDA-MB-468 cells in a 3D culture tumor spheroid dispersal assay 
that captures features of the tumor microenvironment and also 
models aspects of the epithelial-mesenchymal transition (34). EGF- 
induced proliferation of MDA-MB-468 breast cancer cells in this 
assay was completely suppressed by CYT387 treatment at concen-
trations as low as 800 nM (Supplemental Figure 4A). We also cul-
tured several other TNBC cell lines in 3D suspension together with 

Figure 1. IKBKE overexpression defines a subset of TNBCs. (A) IKBKE amplification and mRNA expression in the TCGA breast cancer data set, compared 
with IL-1 signature enrichment by single-sample gene set enrichment analysis (ssGSEA). Light purple represents basal but progesterone receptor–positive 
tumors. Black lines indicate IKBKE amplification on 1q32, red indicates high expression, and blue indicates low expression. (B) Immunoblot of IKBKE and 
β-actin levels across a panel of TNBC cell lines compared with BT474 (HER2+), ZR-751 (luminal, IKBKE-amplified), and MCF-10A (basal-like, nontrans-
formed) cells. (C) Relative cell viability by CellTiter-Glo (CTG) Luminescent Cell Viability Assay on day 3 or day 10 following expression of 2 different IKBKE 
shRNAs compared with shGFP control in ZR-751 or MDA-MB-468 cells. Values represent mean and SEM of triplicate samples. (D) Crystal violet–stained 
cells and immunoblots of IKBKE and β-actin levels from parallel wells following control shGFP expression or that of 2 different IKBKE-specific shRNAs in 
the indicated cell lines.
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MDA-MB-468 cells with CYT387 or ruxolitinib, we were unable to 
observe significant changes in this marker, which suggests a lack of 
a direct relationship between p38α and IKBKE or JAK activity (Sup-
plemental Figure 5, C and D).

We next examined the effects of CYT387 or ruxolitinib treat-
ment on IKBKE-induced NF-κB signaling. IKBKE-induced p105 
phosphorylation in 293T cells was inhibited by CYT387 treatment 
but not ruxolitinib treatment (Figure 4B). We confirmed that p105 
was phosphorylated at a baseline low level in both MDA-MB-468 
cells and MDA-MB231 cells and that CYT387 treatment also selec-
tively inhibited phosphorylated p105 (p-p105) levels in these TNBC 
cell lines compared with ruxolitinib treatment (Figure 4C). IL-1β 
stimulation further induced S933 p105 phosphorylation in MDA-
MB-468 cells, which was also selectively inhibited by CYT387 
treatment, in contrast to ruxolitinib treatment, and resulted in 
p105 stabilization (Figure 4D). CYT387 treatment also suppressed 
IKBKE expression in MDA-MB-468 cells, in contrast to that of 
IKKβ or IKKα (Figure 4E). We further confirmed that CYT387 
treatment inhibited p-p105, pSTAT3, and IKBKE levels in multiple 
other IKBKE-driven TNBC cell lines (Supplemental Figure 5, E and 
F). Thus, in contrast to ruxolitinib treatment, CYT387 treatment 
inhibits multiple components of the inflammatory signaling net-
work that sustain proliferation and survival of this TNBC subtype.

suggestive of a relationship between IKBKE activation and CYT387 
treatment (Figure 2A and Figure 3D). Corroborating these find-
ings, immortalized human mammary epithelial cells that expressed 
IKBKE (16) were more sensitive to CYT387 treatment than isogenic 
cells expressing a control vector, whereas ruxolitinib exposure had no 
effect on these cells (Figure 3E). Taken together, these observations 
reveal that CYT387, unlike ruxolitinib, selectively impairs TNBC cell 
viability in a manner that correlates with IKBKE expression.

Activity of CYT387 in TNBC directly involves inhibition of IKBKE 
signaling. To assess the direct consequences of CYT387 treatment 
on IKBKE activity, beyond CYT387’s TBK1-specific effects (30), 
we transiently transfected 293T cells with IKBKE and measured 
downstream signaling pathways in the absence or presence of this 
inhibitor. Compared with expression of an EGFP control vector, 
exogenous overexpression of IKBKE primarily activated multi-
ple STAT family members as well as p38α, and these effects were 
inhibited by CYT387 treatment (Supplemental Figure 5A). Both 
CYT387 and ruxolitinib inhibited IKBKE-induced Y705 pSTAT3 
levels, consistent with suppression of autocrine cytokine signal-
ing through JAK kinases (Figure 4A). IKBKE-induced pSTAT5 was 
also inhibited by CYT387 and ruxolitinib treatment (Supplemental 
Figure 5B). In contrast, when we measured phosphorylated p38α 
levels following treatment of IKBKE-expressing 293T cells or 

Figure 2. IKBKE promotes inflammatory signaling and is induced by IL-1 in TNBC cells. (A) Immunoblot of IKBKE, S933 p-p105, total p105, Y705 pSTAT3, 
total STAT3, and β-actin in 293T cells transiently transfected with IKBKE or a control EGFP-expressing vector. (B) CCL5 mRNA expression in 293T cells follow-
ing transient transfection with EGFP, IKBKE-WT, and IKBKE-K38A. Values were normalized to EGFP and represent the mean and SEM of triplicate samples. 
(C) Immunoblot of IKBKE, Y705 pSTAT3, total STAT3, and β-actin in a panel of 15 breast cancer cell lines. (D) Immunoblot of IKBKE and β-actin in a panel of 
TNBC cell lines with or without exogenous IL-1β (25 ng/ml) for 24 hours. (E) CCL5 levels in the media measured by ELISA following IL-1β (25 ng/ml) treatment 
of IKBKE-expressing TNBC cell lines for 24 hours. Values represent mean and SD of duplicate samples.
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CYT387 treatment disrupts IKBKE-induced protumorigenic 
cytokine expression. Given the unique ability of CYT387 to target 
this signaling network, we next tested its impact on autocrine 
cytokine expression. We collected media from 293T cells 24 
hours following transient transfection with EGFP or IKBKE and 
analyzed levels of 36 different cytokines and chemokines using a 
cytokine antibody array. Enforced expression of IKBKE potently 
induced CCL5 levels in the media, consistent with what was 
observed at the mRNA level (Figure 2B), and was the dominant 
secreted factor at this time point (Figure 5A). IKBKE-dependent 
CCL5 production was completely abrogated by CYT387 treatment 
but was negligibly affected by ruxolitinib treatment (Figure 5A). 
To confirm these observations, we used ELISA to measure CCL5 
levels in addition to those of IL-6 and found that IKBKE-induced 
CCL5 and IL-6 were strongly inhibited by CYT387 treatment, 
whereas they were only partially suppressed by ruxolitinib treat-

To examine more directly the role of IKBKE inhibition by 
CYT387 in TNBC proliferation and survival, we used a CYT387- 
resistant allele, IKBKE-Y88C, identified by homology to JAK2 (30, 
35). We stably expressed the IKBKE-Y88C allele in MDA-MB-468 
cells and selected the cells in the presence of 2.5 μM CYT387 for 
3 weeks. We confirmed that the cells that emerged markedly over-
expressed IKBKE-Y88C compared with control EGFP-expressing 
MDA-MB-468 cells (Figure 4F). CYT387 treatment of MDA-MB-
468-IKBKE-Y88C cells failed to suppress IKBKE expression or 
baseline levels of p-p105, consistent with downstream resistance 
to this activity (Figure 4F). Treatment of MDA-MB468-IKBKE-
Y88C cells with CYT387 resulted in enhanced proliferation and 
survival in vitro compared with control cells that expressed EGFP 
(Figure 4G). These observations confirm that inhibition of IKBKE 
by CYT387 directly contributes to its antiproliferative activity in 
IKBKE-driven TNBC cells.

Figure 3. Sensitivity of IKBKE-expressing TNBC cells to CYT387. (A) Immunoblot of Y705 pSTAT3, total STAT3, and β-actin in MDA-MB-468 cells following 
ruxolitinib or CYT387 treatment at the indicated concentrations for 1 hour. (B) Phase-contrast microscopy (original magnification, ×10) of crystal violet–
stained MDA-MB-468 or MDA-MB-231 cells treated with DMSO, 5 μM ruxolitinib, or 5 μM CYT387 for 3 days. (C) Relative viability by CTG assay of multiple 
IKBKE-driven TNBC cell lines following CYT387 or ruxolitinib treatment for 5 days, normalized to control DMSO treatment. Values represent mean and 
SEM of triplicate samples. (D) IC50 values for CYT387 treatment across a panel of 15 breast cancer cell lines treated with serial dilutions of CYT387 or DMSO 
as a control. Cell viability was measured after 5 days using CTG and normalized to values obtained from DMSO-treated cells. TNBC cell lines are indicated 
in purple. (E) Relative cell viability of immortalized human mammary epithelial cells (HMLE) isogenic for IKBKE expression (myristolated-Flag-IKBKE or 
vector control) treated with 5 μM CYT387 or ruxolitinib for 5 days, normalized to control DMSO treatment. Mean and SEM of triplicate samples shown.  
**P < 0.001 by t test.
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Figure 4. Inhibition of JAK and 
IKBKE signaling by CYT387. (A) 
Immunoblot of IKBKE, Y705 
pSTAT3, total STAT3, and β-actin 
following transient transfection 
of 293T cells with IKBKE and 
treatment with 5 μM ruxolitinib 
or CYT387. Lysates were obtained 
24 hours after transfection and 
12-hour inhibitor treatment. (B) 
Immunoblot of S933 p-p105, 
p105, and β-actin following 
IKBKE overexpression in 293T 
cells and 5 μM ruxolitinib or 
CYT387 treatment. (C) Immuno-
blot of S933 p-p105, p105, and 
β-actin in MDA-MB-468 or MDA-
MB-231 cells with endogenous 
IKBKE overexpression following 
1-hour treatment with 5 μM 
ruxolitinib or CYT387. (D) Immu-
noblot of S933 p-p105, p105, 
p50, and β-actin in MDA-MB-468 
cells pretreated with DMSO, 5 
μM ruxolitinib, or 5 μM CYT387 
for 1 hour and stimulated with 
IL-1β for the indicated times. (E) 
Immunoblot of IKBKE, IKKα, and 
IKKβ in MDA-MB-468 cells 24 
hours following treatment with 
DMSO, ruxolitinib, or CYT387 at 
the indicated concentrations, 
each compared with β-actin as a 
loading control. (F) MDA-MB-468 
cells were stably infected with 
IKBKE-Y88C and selected in 
2.5 μM CYT387 for 3 weeks. 
Immunoblot shows IKBKE, 
S933 p-p105, p105, and β-actin 
in these cells compared with 
control EGFP-expressing MDA-
MB-468 cells following DMSO 
or CYT387 treatment. (G) Cell 
viability measured by CTG on day 
3 or day 10 following treatment 
of MDA-MB-468-EGFP or IKBKE-
Y88C cells with DMSO or CYT387. 
Values were normalized to DMSO 
as a control and represent mean 
and SEM of triplicate samples. 
Crystal violet–stained wells are 
shown below.
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ment (Figure 5B). These findings reveal that CYT387 treatment 
not only inhibits both STAT3- and IKBKE-induced p105 phospho-
rylation but also uniquely ablates the production of CCL5 and IL-6 
following IKBKE overexpression.

We next assessed whether CYT387 inhibition of this network 
also impaired the production of CCL5 and IL-6 in TNBC cell lines. 
Treatment of MDA-MB468, MDA-MB231, HCC1187, or HCC70 
cells with CYT387 in general prevented IL-1β–induced CCL5 and 
IL-6 (Figure 5C and Supplemental Figure 6A). To examine the con-
sequences downstream of CCL5 and IL-6 production on TNBC 
proliferation, we first tested whether the addition of exogenous 
CCL5 and/or IL-6 rescued the viability of CYT387-treated MDA-
MB-468 cells in 2D culture. We observed a modest but significant 
rescue following treatment with either cytokine or the combina-
tion of both (P < 0.001) (Supplemental Figure 6B). In contrast, 
in 3D culture, CCL5 and IL-6 not only promoted MDA-MB-468 
cell migration and proliferation as effectively as EGF but they also 
completely rescued the inhibition of spheroid dispersal by CYT387 
(Figure 5D). Taken together, these observations demonstrate that 
IKBKE-driven CCL5 and IL-6 directly contribute to TNBC migra-
tion and proliferation of tumor spheroids, which is disrupted by 
CYT387 treatment.

TBK1/IKBKE-regulated cytokines also influence the tumor 
microenvironment and angiogenesis in particular (36). We 
therefore used another 3D device optimized to study the effects 
of IKBKE-induced CCL5/IL-6 on HUVEC behavior in collagen 
(Figure 5E and ref. 37). First, we overexpressed IKBKE-WT in 
293T cells, seeded them in the opposing channel, and found 
that expression of IKBKE-WT induced HUVEC migration, in 
contrast to EGFP and IKBKE-KD controls (Supplemental Fig-
ure 6C). Next, we directly supplemented media with CCL5 and 
IL-6 and observed that these cytokines induced both endothe-
lial cell migration and proliferation (Figure 5F and Supplemen-
tal Figure 6D). Because of the proliferation, we tested whether 
cotreatment of CCL5/IL-6 with the MEK inhibitor GSK1120212 
prevented this phenotype, and indeed HUVEC migration was 
abrogated (Figure 5F). Taken together, IKBKE-regulated CCL5 
and IL-6 induce the proliferation and migration of TNBC and 
endothelial cells, consistent with both autocrine and paracrine 
tumor-promoting activities.

Inhibition of IKBKE by CYT387 contributes to its therapeutic 
potential in vivo. To determine efficacy of CYT387-based treat-
ment in vivo, we first tested its therapeutic impact on MDA-
MB-468 tumor xenograft growth and the relationship with 
IKBKE inhibition. After tumors were established in immuno-
deficient mice at an average volume of 50 mm3, CYT387 was 
administered via daily oral gavage at a dose of 100 mg/kg (33). 
Compared with a vehicle control, CYT387 treatment at this 
dose effectively inhibited pSTAT3 expression in tumors (Figure 
6A) and strongly suppressed tumor progression (Figure 6B). 
In consonance with our observations in vitro, CYT387 treat-
ment did not affect the growth of MDA-MB-468 IKBKE-Y88C 
xenografts (Figure 6B).

We next explored single-agent CYT387 activity in a system 
that more closely recapitulates human tumor physiology using 
patient-derived breast cancer xenografts (PDXs). First, we exam-
ined therapy in two different Washington University human- 

in-mouse (WHIM) lines (WHIM4 and WHIM21) that were 
derived from patients with TNBC that overexpressed IKBKE (ref. 
38 and Supplemental Figure 7A). Similar to what we observed fol-
lowing treatment of MDA-MB-468 xenografts, CYT387 treatment 
impaired the growth of established PDX WHIM4 tumors and 
WHIM21 tumors, the latter a particularly aggressive model that 
recurred rapidly following neoadjuvant doxorubicin/cyclophos-
phamide and paclitaxel chemotherapy (ref. 38 and Figure 6C). 
Inhibition of WHIM21 PDX growth was associated with disruption 
of human IKBKE, CCL5, and IL6 expression, confirming effec-
tive interruption of autocrine cytokine signaling in these tumors 
(Figure 6D). Taken together, these findings reveal that inhibition 
of TBK1/IKBKE and JAK signaling by CYT387 suppresses protu-
morigenic cytokine expression and exhibits therapeutic potential 
for IKBKE-driven TNBC.

Synergistic response to combined CYT387 and GSK1120212 
therapy. MEK inhibition in TNBC not only results in feedback 
activation of receptor tyrosine kinases but also induces cytokine 
expression, suggesting the possibility of synergy with CYT387 
treatment (39). In addition the requirement of MEK signaling for 
CCL5/IL-6–induced proliferation/migration of endothelial cells 
(Figure 5F) indicated the potential for dual impairment of angio-
genesis. We therefore treated established WHIM21 tumors with 
CYT387 (50 mg/kg/d), GSK1120212 (2.5 mg/kg/d), or combina-
tion CYT387/GSK1120212 therapy by oral gavage. The drug com-
bination was well tolerated, and, in contrast to either of the single 
agents, markedly impaired tumor progression (Figure 7A). Indeed, 
several of the largest established tumors also showed evidence of 
tumor regression (Supplemental Figure 7B). We confirmed that 
dual CYT387 and GSK1120212 treatment effectively inhibited 
both phosphorylated ERK (pERK) and pSTAT3 levels in treated 
WHIM21 tumors, confirming suppression of multiple pathways by 
this drug combination in vivo (Figure 7B).

To assess the dose-dependent effect of this impressive activ-
ity, we further reduced CYT387 to 10 mg/kg daily and compared 
results with vehicle or high-dose ruxolitinib treatment (Supple-
mental Figure 6A). Treatment of WHIM21 tumors with just a 
2-week course of low-dose CYT387/GSK1120212 led to marked 
and persistent inhibition of tumor progression at 4 weeks, in con-
trast to continuous vehicle or ruxolitinib treatment at 100 mg/kg  
daily over the entire time period (Supplemental Figure 8A). 
Response to this low-dose CYT387 regimen was also examined 
in WHIM12 PDX tumors, derived from a patient with TNBC with 
low IKBKE levels (Supplemental Figure 6A). WHIM12 tumors 
responded to CYT387/GSK1120212 treatment though not as 
dramatically as WHIM21 tumors, with some tumors progressing 
despite therapy (Supplemental Figure 8B).

In addition to their small size, we also noted that WHIM21 
tumors treated with the combination of CYT387 and GSK-
1120212 appeared particularly pale compared with vehicle- or 
single-agent–treated tumors (Figure 7C and Supplemental Fig-
ure 7C). We therefore performed a detailed histologic exami-
nation of treated tumors, including measures of angiogenesis. 
Whereas single-agent treatment with GSK1120212 showed 
preferential impairment of proliferation, as measured by Ki67 
staining, and CYT387 modestly reduced microvascular density, 
the combination resulted in a striking inhibition of angiogene-
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Figure 5. Inhibition of this network by CYT387 suppresses protumorigenic 
cytokines. (A) Cytokine antibody array incubated with media from 293T cells 
transfected with EGFP or IKBKE for 24 hours and pretreated with DMSO,  
5 μM CYT387, or 5 μM ruxolitinib for 12 hours. Circles represent the location of 
CCL5, the predominant cytokine induced by IKBKE and inhibited by CYT387, 
compared with ruxolitinib. (B) ELISA measurement of CCL5 or IL-6 levels in 
293T cells expressing IKBKE and treated with DMSO, 5 μM ruxolitinib, or  
5 μM CYT387. Mean and SD of duplicate samples shown. (C) ELISA measuring 
CCL5 or IL-6 levels in MDA-MB-468 cells or MDA-MB-231 cells stimulated with 
IL-1β for 24 hours following pretreatment with DMSO or 5 μM CYT387 for  
1 hour. Mean and SD of duplicate samples shown. (D) Phase-contrast images 
(original magnification, ×20) of MDA-MB-468 spheroids in microfluidic 3D 
culture at baseline and 24 and 48 hours following addition of CCL5/IL-6, EGF, 
or the combination of both, together with DMSO as a control (left). Treatment 
with 1 μM CYT387 inhibited EGF-induced MDA-MB-468 spheroid dispersal, 
but this was rescued by the addition of CCL5 and IL-6 (right). (E) Schematic of 
angiogenesis microfluidic device. HUVECs were seeded in central channel and 
subjected to cytokine/chemokine diffusion as indicated. (F) Compared with 
control media, diffusion of CCL5/IL-6–attracted HUVECs into collagen (original 
magnification, ×20) over the course of 24 hours. Cotreatment with the MEK 
inhibitor (MEKi), GSK1120212, at 10 nM strongly inhibited this effect. Mean 
and SD of cell migration per number from 3 independent devices shown.
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naling and lymphocytic infiltration. Despite engagement of the 
JAK/STAT pathway (24), treatment with the potent and selec-
tive JAK1/2 inhibitor ruxolitinib was insufficient to impair viabil-
ity of these TNBCs. Instead, another clinical stage JAK inhibitor, 
CYT387, impaired the proliferation of TNBC cells in vitro and 
prevented tumor spheroid dispersal in 3D culture. The efficacy 
of CYT387 was directly related to its additional ability to inhibit 
IKBKE activity and the production of protumorigenic cytokines, 
since exogenous CCL5 and/or IL-6, or expression of a CYT387 
inhibitor–resistant allele of IKBKE, rescued these effects. These 
observations suggest a promising therapeutic option for a subset 
of patients with IKBKE-driven TNBC.

Integrative genomic studies identified a key role for aberrant 
IKBKE activation in breast cancer by virtue of its amplification in a 
subset of luminal tumors (16). IKBKE is unique among IKK family 
members in that cytokines such as IL-1 that promote NF-κB signal-
ing (25) and STAT3 activation (41), which induces its expression. 
The finding that high level IKBKE expression in the IM subtype 
of TNBC was linked more closely to engagement of inflammatory 

sis and profound tumor necrosis (Figure 7D and Supplemental 
Figure 9). Thus, antitumor activity of this drug combination was 
not only direct but was also related to the synergistic effects of 
cytokine and MEK inhibition on angiogenesis. Taken together, 
combined CYT387 and GSK1120212 treatment impairs tumor 
progression and angiogenesis and represents a promising novel 
therapy for this IKBKE-driven subtype of TNBC.

Discussion
TNBC has been defined by the lack of ER and HER2 expression, 
but several lines of evidence suggest that TNBCs are a hetero-
geneous set of breast cancers (40). Here, we identify a specific 
TNBC subset characterized by aberrant expression of the IKK- 
related kinase IKBKE and production of protumorigenic cytok-
ines CCL5 and IL-6. These tumors show substantial overlap with 
the IM subtype of TNBC, recently identified by gene expression 
profiling studies (6). In contrast to luminal tumors, which exhibit 
IKBKE amplification (16), these triple-negative tumors exhibit 
inducible IKBKE expression associated with markers of IL-1 sig-

Figure 6. CYT387 inhibits IKBKE signaling and tumor progression in vivo. (A) MDA-MB-468 cells were implanted subcutaneously in nude mice, and 
following the development of established xenograft tumors, vehicle or CYT387 100 mg/kg was administered daily by oral gavage. Levels of pSTAT3 were 
measured by immunohistochemistry following short-term treatment. HE, hematoxylin eosin stain. Scale bar: 25 μM. (B) Mean tumor volume ± SEM 
following vehicle (n = 4) or CYT387 (n = 5) treatment over time in MDA-MB-468 or MDA-MB-468 IKBKE-Y88C xenografts. (C) Mean tumor volume ± SEM 
following vehicle (n = 5) or CYT387 100 mg/kg/d (n = 5) treatment over 14 days in WHIM4 and WHIM21 primary human tumor xenografts. (D) Relative 
mRNA levels of human IKBKE, CCL5, and IL6 in WHIM21 tumors following short-term vehicle or CYT387 treatment. Values represent mean and SEM of 
triplicate samples from 2 different animals.
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otropic effects on NF-κB target gene expression (43) and AKT 
activation (44, 45) and, like IL-6, directly engages JAK/STAT 
signaling (46). Thus, NF-κB and STAT3 not only induce the 
production of CCL5 and IL-6, but they also engage these same 
pathways and activate IKBKE expression itself (41) to amplify 
and sustain their expression as components of an inflammatory 
circuit (30). Induction of CCL5, which promotes cell survival 
and metastasis, has also been observed in breast cancer follow-
ing coculture with mesenchymal stem cells (44). These findings 
suggest that paracrine effects due to interactions within tumor 
microenvironment likely facilitate engagement of this signaling 
pathway. Since we observed an important role of IL-1 signaling in 
driving this phenotype, it will be interesting to examine whether 

signaling than to genomic amplification reveals an alternative 
route to oncogenic IKBKE activation in TNBC, similar to what was 
recently described in a subset of lung cancers (41). While IKBKE 
drives the expression of these cytokines, engagement of other 
kinases, including TBK1, likely also contributes to inflammatory 
signaling in this subtype, since multitargeted IKBKE, TBK1, and 
JAK signaling was required to disrupt this circuit. Since other non- 
TNBC breast cancers also overexpress IKBKE and also activate 
TBK1 signaling (42), such tumors could also respond to TBK1/
IKBKE and JAK inhibition by CYT387.

Our studies also identified key downstream roles for CCL5 
and IL-6 as IKBKE-driven mediators of cell proliferation, sur-
vival, and migration of breast cancer cells. CCL5 induces plei-

Figure 7. Activity of CYT387/GSK1120212 combination therapy in an aggressive TNBC PDX model. (A) Spider plot depicting the percentage of 
change in tumor volume of individual WHIM21 tumors treated with vehicle (n = 8), 50 mg/kg/d CYT387 (n = 3), 2.5 mg/kg/d GSK1120212 (n = 4), or 
CYT387 and GSK1120212 (n = 9). (B) Immunoblot of pERK1/2, ERK1/2, Y705 pSTAT3, STAT3, and β-actin levels in tumors from vehicle-treated mice 
or 2 different mice treated short term with vehicle, CYT387 (CYT), GSK1120212 (GSK), or the combination of CYT387 and GSK1120212 (CYT+GSK). (C) 
Representative WHIM21 tumors dissected from vehicle or CYT387/GSK1120212-treated mice after 30 days. (D) Quantification of proliferation (Ki67), 
microvascular density (CD31 or ERG), and tumor necrosis of tumors dissected after 30 days of the indicated treatments. Data represent mean and 
SD values quantified from >5 distinct tumor regions from vehicle- (n = 3), CYT387- (n = 2), GSK1120212- (n = 2), or CYT387/GSK1120212-treated (n = 2) 
mice. COMBO, CYT387 and GSK1120212.
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Methods
Gene expression profiling. Analyses were performed using TCGA 
data (2) and applied single-sample gene set enrichment analysis of 
an IL-1 signature as described previously (26, 52). For details, see 
the Supplemental Methods.

Cell culture. Breast cancer cell lines and 293T cells were cultured 
using standard conditions. MDA-MB-468 cells were maintained in the 
absence of CO2. MDA-MB-468 tumor spheroids were generated and 
assayed in 3D culture as described previously (34). Detailed methods 
are described in the Supplemental Methods.

Immunoblotting and ELISA. Immunoblotting was performed 
according to standard protocols. Proteome Profiler and Cytokine Anti-
body Arrays were from R&D Systems. The Proteome Profiler Human 
Cytokine Array Kit, Panel A (catalog no. ARY005), the Human CCL5/
Rantes Quantikine ELISA Kit (catalog no. DRN00B), and the Human 
IL-6 ELISA Kit (catalog no. D6050) were also purchased from R&D 
Systems. Details are provided in the Supplemental Methods.

ORF and shRNA expression. 293T cells were transiently transfected 
with the indicated ORF expression constructs using FuGENE 6 (Pro-
mega). Using stable lentiviral transduction as previously described (52), 
shRNA (shIKBKE-1, shIKBKE-2, shGFP) was successfully expressed 
and its effects on the various breast cancer cell lines were analyzed using 
stable lentiviral transduction as described previously (52). For detailed 
methods and shRNA sequences see the Supplemental Methods.

Quantitative real-time PCR. mRNA was purified and qRT-PCR 
was performed according to a standard protocol using the LightCycler 
480 SYBR Green I Master (Roche). Data were normalized to 36B4. For 
detailed methods and primer sequences see the Supplemental Methods.

Animal studies. Patient-derived human breast xenografts were 
cultured as described previously (38, 53). pSTAT3 immunohistochem-
istry and pSTAT3/pERK immunoblotting were performed following 
short-term treatment with CYT387. Tumor measurement was con-
ducted in a blinded fashion over time. Details are provided in the Sup-
plemental Methods.

Statistics. Statistical analysis was carried out using an IBM soft-
ware package, SPSS V.22.0. Cell viability data are presented as mean 
± SEM. Histology data are presented as mean ± SD of independent 
results. Overall differences among the 4 groups (vehicle, GSK1120212, 
CYT387, and CYT387 plus GSK112012) for all variables were deter-
mined by ANOVA. Differences between groups were examined using 
the nonparametric independent-samples t test to determine the statis-
tical significance. Two-sided P values of less than 0.05 were consid-
ered statistically significant.

Study approval. Human breast cancer tissues for the present 
studies were obtained via core needle, skin punch biopsy, or surgical 
resection following informed consent and processed in compliance 
with NIH regulations and with approval from the Institutional Review 
Board at Washington University in St. Louis. All mouse experiments 
were conducted in accord with a Washington University Institutional 
Animal Care and Use Committee–approved protocol.
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the source of this cytokine in primary breast tumors is derived 
from mesenchymal stem cells, tumor-associated macrophages, 
and/or other cell types in the tumor microenvironment.

IKBKE-induced CCL5 and IL-6 expression also stimulated 
HUVEC proliferation, consistent with a previous report showing 
that conditioned media from TBK1-transfected cells promotes 
vascular cell proliferation (36). Our findings confirm and extend 
these data, revealing a particular role for MEK signaling down-
stream of these cytokines in mediating endothelial cell prolifer-
ation and identifying synergistic inhibition of angiogenesis by 
CYT387 and MEK inhibition in vivo. Cytokines such as CCL5 
may also promote TNBC growth by influencing the local immune 
microenvironment, since it also influences recruitment of mye-
loid-derived suppressor cells to tumors and promotes local immu-
nosuppression (47). Analysis of such cells is challenging in PDX 
models, given the altered immune background of nude mice, but 
will be important to evaluate in future studies. Thus, CYT387 
therapy may be particularly effective in vivo due to the additional 
disruption of these tumor-stromal interactions.

Clinical trials of selective JAK1/2 inhibitors such as rux-
olitinib have been initiated in patients with breast cancer (48). 
While JAK/STAT signaling is clearly active in this subset of 
TNBC, our data suggest that JAK inhibition alone may not be 
sufficient to disrupt this cytokine circuit. Furthermore, although 
certain markers, such as CD44+CD24– positivity or the IM gene 
expression profile, have been associated with this particular 
TNBC phenotype (6, 24, 49), the underlying driver of cytokine 
activation in these cancers has remained elusive. The identifica-
tion of IKBKE as a key driver of this cytokine signaling network 
provides not only provides an additional marker of this emerg-
ing TNBC subtype but also a discrete molecular target. It is also 
becoming increasingly apparent that targeting the source of 
these upstream cytokines represents an equally important strat-
egy to target TNBC growth compared with JAK inhibition (50). 
Indeed, our data suggest that the capacity of CYT387 to inhibit 
TBK1/IKBKE and JAK/STAT signaling, resulting in a particularly 
potent anti-cytokine effect, may be advantageous over more 
selective JAK1/2 inhibitors.

It is also clear that inhibition of any one pathway in genet-
ically complex tumors typically results in feedback signaling 
that limits the effectiveness of single-agent therapy. Indeed, 
treatment of TNBC with MEK inhibitors leads to feedback acti-
vation of both receptor tyrosine kinase signaling and cytokines 
(39). Conversely, CYT387 treatment modestly inhibited IKBKE-
driven TNBC growth as a single agent but dramatically impaired 
tumor growth and angiogenesis when combined with a MEK 
inhibitor, revealing cooperativity of targeting these pathways 
in vivo. Combination CYT387 and MEK inhibitor therapy was 
also synergistic and resulted in tumor regressions in aggressive 
Kras-p53 mutated murine lung cancer (30). Since cytokine sig-
naling similarly limits the efficacy of PI3K/mTOR inhibitors in 
breast cancer (51), further strategies for combination therapy 
may be possible. Regardless, the particularly impressive syn-
ergy of CYT387 and GSK1120212 in an aggressive PDX model, 
coupled with their advanced stages of clinical development, pro-
vides a strong rationale for pursuing clinical trials of this drug 
combination in patients with TNBC.
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