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Abstract 

 

Low-density hybrid materials, which contain organic and inorganic molecular components, can be 

engineered over a wide range of length scales to exhibit unique combinations of mechanical, 

thermal, and optical properties desirable for use in mechanically-robust, multifunctional aerospace 

applications.  In this AFOSR program, we have investigated the effects of molecular confinement 

in low-density hybrids which provides new opportunities to tailor properties.  Our research focuses 

on the smallest molecular length scales of this confinement, where new mechanisms of 

strengthening and toughening exist that are not found in traditional composite materials.  By 

focusing on the behavior of molecules confined at length scales of ~1-10 nm, we are able to probe 

the fundamental limits of strengthening and toughening in nanostructured low-density materials 

and find new avenues for innovation.  We have also demonstrated the possibility of creating 

hybrids with confined polyimide molecules and have gathered evidence of both the imidization 

and cross-linking of the polyimide precursors occurring in the highly confined nanoporous matrix. 

This exciting new direction for our program opens the door to high-temperature, low-density 

hybrids for next-generation technologies.  
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This is the final report on our program entitled “Molecular Design and Mechanical Behavior of 

Low-Density Multifunctional Hybrid Materials”.  The report summarizes progress over the course 

of the program. 

 

Motivation 

Our AFOSR-supported research addresses fundamental questions related to the mechanical and 

fracture properties of molecular hybrid materials that have application for emerging aerospace 

technologies (Fig. 1). Low-density hybrid materials, which contain organic and inorganic 

molecular components, can be engineered over a wide range of length scales to exhibit unique 

combinations of mechanical, thermal, and optical properties desirable for use in mechanically-

robust, multifunctional aerospace applications. Hybrid materials are therefore ideally suited to a 

bottom-up materials design where molecular structure and resulting properties can be engineered 

and tailored to achieve desired property sets. 

In this AFOSR program, we have investigated the effects of molecular confinement in low-density 

hybrids which provides new opportunities to tailor properties. Confinement of the organic phase 

is a common phenomenon in composite materials, which often use intimately mixed hard and soft 

components to achieve desired properties.  This confinement can occur on a wide range of length 

scales, from macro-scale polymer confinement in fiber-reinforced composites, to molecular-scale 

confinement in advanced nanocomposite materials. 

 

 

Fig. 1.  The bottom-up design of low-density hybrid materials combine organic and inorganic components 

at molecular to macro length scales, enabling materials with multifunctional property sets. Increasing 

molecular confinement provides new opportunities to tailor mechanical, thermal, and optical properties. 

Increasing Molecular Confinement

nanoparticle composites fiber-reinforced composites

confined/hyper-confined

hybrid nanocompositesultra-confined hybrids

mmμmnmÅ

Bottom-Up Design of Multifunctional Hybrid Materials
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Our research focuses on the smallest molecular length scales of this confinement, where new 

mechanisms of strengthening and toughening exist that are not found in traditional composite 

materials (left side in Fig. 1).  By focusing on the behavior of molecules confined at length scales 

of ~1-10 nm (referred to as “hyper-confined”), we are able to probe the fundamental limits of 

strengthening and toughening in nanostructured low-density materials and find new avenues for 

innovation, which we describe in this proposal. 

In our AROSR program, we have demonstrated the possibility of creating hybrids with confined 

polyimide molecules and have gathered evidence of both the imidization and cross-linking of the 

polyimide precursors occurring in the highly confined nanoporous matrix. This exciting new 

direction for our program (described later) opens the door to high-temperature, low-density hybrids 

for next-generation technologies.   

Our program has thus focused on developing a fundamental understanding of the effects of 

molecular confinement in low-density hybrids and exploring the limits of strengthening and 

toughening to create mechanically robust hybrids for aerospace applications.  We have also 

exploited the opportunity of creating high-temperature hybrids that can withstand elevated 

operating temperatures not compatible with current polymer composites. 

AFRL Interactions 

A particularly relevant new direction for this AFOSR program has beeen based on an active 

collaboration with Dr. Jeffrey Baur (Organic Matrix Composite M&P, Wright-Patterson Air Force 

Base) to synthesize low-density high-temperature hybrids with molecularly-confined AFRL 

polyimide precursors. The combination of our high-temperature low-density hybrid nanoporous 

matrix together with the inherently superior temperature capabilities of polyimides has the 

potential for an entirely new class of high-temperature hybrids for aerospace applications. In 

addition, these polyimide-based hybrids provide an excellent platform for studying the 

fundamental polymer science and reaction kinetics of polyimides under molecular-scale 

confinement, which has not previously been attempted. 

Objectives and Approach  

The objective of our program was to explore the fundamental limits of hybrid material 

strengthening and toughening, especially as it relates to the mechanical and fracture properties of 

highly confined organic phases in low-density hybrids. We employed a synergistic combination 

of materials synthesis, experimental characterization, and molecular modeling to realize new 

classes of hybrids with unique property combinations. 

Our research was concentrated in two related Focus Areas most relevant to the AFOSR Low-

Density Materials program: 

 Focus Area 1: High-Toughness Low-Density Hyper-Confined Hybrids 

 Focus Area 2: High-Temperature Molecularly-Confined Polyimide Hybrids 
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Research Accomplishments 

This program has brought together an interdisciplinary research team with a unique combination 

of internationally recognized hybrid materials synthesis, nanomechanical characterization and 

modeling capabilities, along with established collaborations with several AFOSR Labs and 

Investigators, and a number of additional academic and industry partners. Research was conducted 

by 2 Stanford graduate students working in each of the two Focus Areas, as well as our partners 

at WPAFB, IBM, and Princeton.   

Research Accomplishment 1: High-Toughness Low-Density Hyper-Confined Hybrids  

The nanoporous “matrix” for our hyper-confined hybrids are made from an organosilicate material, 

itself an organic/inorganic hybrid, that we have engineered to be strong, tough, and chemically 

stable.  They have high operating temperature capabilities above 400 °C in inert environments and 

above 280 °C in air. 

To make low-density hyper-confined molecular 

hybrids, we have focused on a strategy that 

involves “backfilling” the nanoporous matrix 

through molecular diffusion of a polymer phase 

Fig. 4(a). A large potential “library” of polymer 

fill molecules are possible as we discuss below and 

remarkably uniform filling of the layer can be 

achieved to any desired level of fill (Fig. 4(b)). 

Such molecular impregnation into the connected 

nanoporosity of the low-density hybrid matrix has 

several advantages, including the exceptional 

nanometer-precision control of the confinement 

and volume fraction of polymer molecules. This 

derives from the well-established routes to 

creating the defined nanoporosity with porogen or 

templating species and then filling with a second 

polymer phase after the hybrid matrix has been 

vitrified or cured. Internal layer stresses related to 

differential curing shrinkage can also be greatly 

mitigated. 

In our current AFOSR program, we have begun to 

use the pore structure of nanoporous hybrids to 

confine polymers to dimensions much smaller 

than their bulk radius of gyration (equilibrium 

molecular size). This confinement provides a 

means to rationally alter the conformations and intermolecular interactions of the polymer phase, 

thus leveraging the full breadth of macromolecular science in the design of hybrid materials.   

We developed the capability to uniformly fill nanoporous hybrids with polymers ranging in 

molecular weight from 103 to more than 106 Da.  This enables unprecedented levels of molecular 

confinement, in which chains are up to ten times larger than the pores in which they are confined 

(Fig. 5). We used these materials to perform the first-ever measurements of the fracture and 

mechanical properties of polymers in molecular-scale confinement.  

 
a) 

 
b) 

Fig. 4. Schematic of a) the pore filling process 

used to synthesize the hybrid nanocomposite 

films, and b) the remarkably uniform filling 

that is achieved. 
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In our recent work published in Nature Materials, we showed that incorporation of high molecular 

weight polymers into a nanoporous hybrid matrix leads to an outstanding five-fold improvement in 

cohesive fracture properties while maintaining a low density (Fig. 6) [1].  This dramatic 

enhancement in toughness is enabled by a novel “molecular bridging” toughening mechanism in 

which individual confined polymer chains are stretched and pulled out of a nanoporous matrix 

behind an advancing crack tip.  In essence, this mechanism translates the successes of traditional 

macroscale fiber reinforcement down to molecular length scales, allowing for unprecedented 

control over the interactions between phases. Our recent work has focused on discovery and 

characterization of this new toughening mechanism, and we expect significant optimization of the 

hybrid’s mechanical and fracture properties will be possible through improved polymer chemistry, 

incorporation of higher molecular weight chains, and tuning of the polymer/matrix interaction. 

 
a)       b) 

Fig. 5. The local environment of polymer chains in the matrix changes considerably with molecular 

weight. (a) Polystyrene chains with Mw ≳ 11 kDa are larger than the pore diameter and experience an 

increasing degree of confinement at higher molecular weights.  The molecular weights and end-to-end 

distances of the polystyrene used in this study are shown as filled squares. (a) The scaling of the end-

to-end distance of confined polymers remains the same as in the bulk until Mw ≳ 1210 kDa. 
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Throughout this work we have pioneered new molecular mechanical models and simulation 

techniques that provide insight into nanomechanical processes occurring on the length scale of 

individual polymer chains and describe the fracture behavior of the nanocomposites over almost 

three orders of magnitude of polymer molecular weight (Fig. 6). The combination of these models 

and the unique nature of the confined molecular bridging process has allowed us to measure the 

pullout force, pullout length, and even the tensile strength of individual polymer chains (Fig. 7).  

In addition to their relevance to high-toughness hybrid materials, these measurements also 

represent a significant advance in the field of mechanochemistry, where the measurement of 

polymer backbone strength has proven challenging.   

We verified the physical plausibility of these molecular strength measurements by developing a 

new molecular simulation technique that estimates the strength of confined polymer chains based 

on backbone bond strength and the presence of inter-chain entanglements (Figs. 7).  The limits of 

molecular strength as measured by our mechanical models and our molecular simulations are in 

excellent agreement, lending further credibility to the novel confined molecular bridging 

toughening mechanism.  

 
Fig. 6. Cohesive fracture energy of hybrid nanocomposites with varying confined polymer molecular 

weights. A dramatic five-fold over the matrix fracture resistance is observed where the strength of 

individual polymer chains ultimately limits the fracture energy. The solid curves are predictions of 

molecular strength-limited bridging models (inserted equation). 
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Research Accomplishment 2: High-Temperature Molecular-Confined Polyimide Hybrids  

A particularly relevant new direction for our AFOSR program has been to demonstrate the 

possibilities for creating heat-resistant hybrids capable of high temperature service for several 

AFOSR applications (Fig. 8). As previously noted, the short chain reinforced organisilicate 

nanoporous matrix we employ has demonstrated continuous high-temperature capabilities to 

above 400oC in inert environments and above 280oC for continuous operation in air. This is due to 

the short chain (ethylene or methylene) carbon reinforcement bridge in the silicate molecular 

structure which imparts significant mechanical, chemical and heat resistance [2, 3]. The key then 

is to seek a similar high-temperature-capable polymer that can be used as the backfilling material 

to create a very low-density but temperature resistant hybrid.  

To this end, we have recently begun a collaborative effort with Dr. Jeffery Baur and his team at 

Wright-Patterson Air Force Base in the design, fabrication, and characterization of high-

temperature hybrids backfilled with heat-resistant AFRL polyimide precursors. Thermosetting 

polyimides are of course the ideal choice due to their known thermal stability, chemical resistance 

and impressive mechanical properties in the bulk or as thin films (best example is Kapton, 

produced by the condensation of pyromellitic dianhydride and 4,4'-oxydianiline). 

 
a)          b) 
Fig. 7: Our molecular models describing a) full chain bridging without chain scission (blue squares) 

and molecular strength-limited bridging that incorporates chain scission (red circles).  These models 

indicate the fundamental limits of toughening that can be achieved based on the calculations of the b) 

tensile strength of ~38 nN/molecule for individual confined polymer chains (Mw = 1,210 kDa). 
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In this very promising new direction for our AFOSR program, we have adapted our proven hybrid 

synthesis techniques (Fig. 3 and 4) to a variety of polyimide precursor materials in order to create 

low-density hybrids capable of withstanding high operating temperatures. The approach, however, 

has several associated challenges, including the poor solubility of most polyimides, the relative 

stiffness and size of the polyimide molecular backbone (contributing to low molecular mobilities), 

and the completely unknown effects of extreme molecular confinement on the imidization and 

crosslinking reactions. 

To mitigate these risks, we have undertaken some preliminary studies to address these challenges. 

We have received several AFOSR polyimides and polyimide precursors from the Baur Organic 

Matrix Composite M&P group at Wright-Patterson Air Force Base (Fig. 8). The basic chemical 

structure of the precursors are shown in the figure together with an estimate of the molecular size 

of the AFR-PE-4 precursor. We reiterate the challenge related to the relative stiffness of these 

molecules compared to other polymer molecules we have studied as well as estimates of their size 

(~7 nm) that is comparable to the nanopore size. Despite these concerns, our initial attempts at 

fabrication of polyimide backfilled hybrids have been successful, and preliminary characterization 

of these materials described below has been extremely promising. 

 
Fig. 8. We will explore the possibility of making heat-resistant low-density polyimide hybrids with an 

unprecedented combination of low-density and high operating temperatures. Several AFOSR polyimide 

precursors will be evaluated in a collaborative effort with the WPAFB Baur composites group. 
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Based on evidence from XPS depth profiling 

through the film thickness, we now have 

conclusive evidence that AFR-PE-4 

polyimide precursor molecules can be made 

to infiltrate and fill the nanoporous matrix 

(Fig. 9).  This is the first demonstration that 

this type of filling process is compatible with 

materials that are not readily soluble in 

common solvents, opening the door to an 

even wider array of filler materials. Using 

FTIR spectroscopy and selected fill and 

curing temperatures, we have found the very 

interesting result that imidization of the 

precursors are possible under such nano-

confinement (Fig. 10). FTIR peaks indicative 

of the imidization reaction products were 

clearly apparent. A detailed analysis of FTIR 

peaks has allowed us to characterize the 

reactions of polyimides in confinement in 

greater detail, including approximating 

reaction rates and monitoring side product 

formation (Fig. 11). 

 

 
 

Fig. 10.  FTIR spectra provide evidence that imidization of the AFR-PE-4 polyimide poly(amic ethyl 

ester) precursor can be achieved in under nanoscale confinement in the hybrid nanoporous matrix.  

Characteristic peaks at 1850 and 1780 cm-1 that appear after thermal curing provide unambiguous 

evidence for cyclized polyimide formation.  Clear increases in the carbonyl (1725 cm-1) and C–N (1360 

cm-1) peaks are also consistent with the desired reaction.    
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Furthermore, we now have additional FTIR 
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of the molecular bridging energy dissipation mechanism and provide the foundation for further 

improvements of polyimide nanocomposite strength and toughness.  

 

With the synthesis process for high-temperature polyimide hybrids proven, we have begun a 

systematic study involving both synthesis and characterization to create a new polyimide-based 

platform for stable high-temperature hybrids. Of chief interest is the measurement and 

optimization of the mechanical strength, modulus, and fracture toughness of these materials with 

respect to fill level, degree of crosslinking, polymer chemistry, and polymer-pore interactions.  

Due to their combination of low density, high thermal stability, and potential for high toughness, 

these polyimide hybrids hold extraordinary potential for numerous aerospace applications. 
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Other Significant Research Accomplishments 

Several research areas are common to both Focus Areas and these are described below. In addition 

to our interests in strengthening and toughening behavior, the hyper-confinement of polymer 

molecules in our hybrids engenders other fundamentally interesting properties relevant to our 

proposed research and these are also briefly reviewed below.  

Glass Transition Behavior of Confined Molecules: Our hybrids are ideally suited for fundamental 

studies of confined molecule glass transition behavior as they incorporate low-polydispersity and 

high molecular weight polymers with equilibrium size far in excess of the nanometer pores (~7nm) 

into which they are confined, leading to extraordinary levels of molecular confinement.  

Preliminary data has shown that confined polymers in our hybrids exhibit glass transition 

temperatures that are markedly different from 

those of the bulk (Fig. 12). Such confinement 

appears to stabilize the glass transition 

temperature of polymers with respect to their 

molecular weight.  We hypothesize that this is due 

to the combined influence of adsorption and 

confinement effects on the polymer chains. We 

have initiated a collaboration with Professor 

Rodney Priestley (Princeton University) who has 

been recognized by the AFOSR for his pioneering 

studies of the glass transition and non-equilibrium 

dynamics of confined polymeric materials. Our 

hybrids provide a much higher level of molecular 

constraint than they have previously been able to 

study and his group is currently probing the glass 

transition temperature and structural relaxation of 

our hybrids below the glass transition. 

Optimizing Polymer/Matrix Interactions:  In nanoporous hybrids the internal pore surfaces occupy 

a disproportionally large surface to volume ratio (compared to macroscopic porosity). We have 

previously reported on how the internal pore surfaces themselves play a very important role in 

mechanical properties and interactions with environmental species [4-7]. For our polymer filled 

hybrids, the polymer/matrix interaction should then clearly be expected to play a significant role 

on molecular mechanisms of strengthening and toughening, although these have not yet been 

characterized or exploited.  

Controlling the internal pore chemistry by functionalizing with polar, non-polar, or conjugated 

groups therefore provides a simple and potentially tunable way to control the interactions between 

the matrix and the polymer phase (Fig. 15). The concept is of course similar to what is now routine 

materials chemistry and manufacturing in macroscopic fiber-reinforced composites where the 

matrix-fiber interface is carefully tuned to allow controlled debonding. We are applying this 

concept at the level of single molecules. When the nanoporous hybrid matrix is imbibed with large 

polymer molecules, we have seen that one fundamental limit for toughening involves the strength 

of individual bridging polymer molecules. By controlling the polymer/matrix interaction, we have 

the potential of decreasing the maximum molecular pullout force, while at the same time increasing 

the pullout distance. The resulting molecular stress-separation relation is shown in Fig. 15(b) and 

indicates that much larger energy dissipation may be possible. 

 
Fig. 12. The glass transition behavior of pore-

confined polymers differs greatly from that of 

bulk polymers. 
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Hybrid Degradation and Fracture in 

Hostile Environments: Our research 

involves not only fundamental studies 

related to the role of hybrid molecular 

structure and constraint on mechanical and 

fracture properties, but also the synergistic 

interactions of reactive chemical and 

simulated solar UV environments with the 

hybrid film which leads to unexpected 

mechanical and fracture behavior. Our 

research has demonstrated that reactive 

chemical environments including moisture 

can, depending on composition, have 

dramatic effects on fracture properties. The 

kinetics of crack growth are sensitive to 

gaseous and aqueous environments where 

solution pH, electrolyte type, and other 

organic components (like surfactant 

molecules) can result in marked effects on 

the fracture process [4, 5, 8-10].  We have 

even provided the first quantitative 

characterization of a “true” mechanical fatigue phenomena in the hybrid films where we used a 

combined experimental and molecular modeling approach to characterize and describe the 

molecular mechanisms responsible for susceptibility to fatigue [11]. Inclusion of the organic phase 

makes the fatigue-insensitive organosilicate matrix prone to fatigue like any other polymer.  

However, inclusion of the hyper- or ultra-confined polymer molecular phase can also be used to 

great advantage to reduce the sensitivity of fracture in hostile operating environments. For example, 

we have recently demonstrated how ultra-confined adhesive hybrid layers at the interface between 

a toughened epoxy (TUF) and a metal-oxide (in this case SiO2 on a Si substrate) in the presence 

 
a)   b)                c) 

Fig. 15. Tuning polymer/matrix interactions for enhancements of strength and toughness by a) 

changing the chemical functionality of the pore surfaces with single covalently-bound monolayers to 

b) carefully control the maximum stress experienced by the molecular bridges, which in turn 

influences the total amount of energy dissipated by each chain. c) A variety of surface chemistries will 

be used to tune matrix-filler interactions. 
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Fig. 17. Subcritical debonding of epoxy/Si interfaces 

with and without the presence of a hybrid adhesion 

film layer exposed to hot and humid environments. 
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threshold four-fold. 
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of hot and humid (70oC/85%RH) environments [12, 13]. The hybrid layer dramatically improves 

the threshold strain energy release rate (G) values for the debonding of the epoxy/Si interface by 

a factor of four from ~20 J/m2 to ~80 J/m2 (Fig. 17). The resulting interface is significantly more 

reliable than one formed with current silane-adhesion promoters.  

We have demonstrated similar behavior for hyper-confined hybrids where, in addition to 

identifying and exploiting the molecular mechanisms of toughening that we described in the 

preceding sections, we have also observed just how markedly the constrained polymer molecules 

can increase the resistance to cracking in reactive moist environments, where the low-density 

matrix is prone to moisture assisted cracking. Crack growth thresholds can again be increased by 

four-fold over the unreinforced matrix (Fig. 18).  

Note that tailoring nanostructures at molecular dimensions introduces exceptionally high internal 

surface to volume ratios between the matrix and polymer phases that can result in enhanced 

diffusion of environmental species [5, 6, 8, 14, 15].  The ability demonstrate improved resistance 

to the potentially deleterious effects of reactive environmental species like moisture is therefore 

important for low-density hybrids which will be exposed to reactive operating environments.  

Ultra-Confined Hybrids: In our AFOSR 

program we have also made significant 

progress in developing a new understanding 

of ultra-confined hybrid materials (far left 

Fig. 1), which contain organic phases 

subjected to even stronger confinement than 

in the hyper-confined hybrids discussed 

previously (< 1 nm).  The adhesive and 

cohesive strength of these hybrid materials 

are strongly dependent on precursor 

materials, sol-gel processing parameters, 

cure time and temperature [9, 16, 17]. They 

form a compositionally-graded high-

performance hybrid adhesive film that, 

when deposited onto an underlying 

substrate, is ideal for bonding to adjacent 

hybrids or epoxy resins. We have 

demonstrated significantly higher adhesive 

properties and moisture resistance 

compared to traditional silane-based 

adhesion promoters and have shown how 

their fracture properties scale inversely with the isoelectric point (IEP) of the underlying surface 

(Fig. 19).  If the IEP of the substrate surface (e.g. metal oxide) or sol-gel solution ion is less than 

the solution pH, the surface will take on a net negative charge; conversely, for IEP values greater 

than the solution pH, a net positive charge will exist. By carefully controlling solution pH, 

favorable electrostatic interactions can be encouraged resulting in the development of hybrid 

networks that possess a unique compositionally graded structure with strong interfacial 

connectivity with the top and bottom substrates [18]. For example, we have demonstrated graded 

hybrid compositions with strong oxide interactions with an underlying oxide surface and with 

 

Fig. 19. Cohesive fracture energy of sol-gel hybrid 

layers to oxides of silicon, titanium, aluminum, 

zirconium bulk metallic glass and indium tin as a 

function of substrate IEP. 
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organic epoxy rings segregated towards the 

top surface that bond covalently to a top 

epoxy layer [9, 17, 19]. 

Broader Implications 

Engineering of molecular hybrids at the level 

of individual molecules has broad 

implications for hybrid materials design and 

discovery. We have already begun to show 

that novel toughening mechanisms can be 

activated when molecules are confined at 

nanometer length scales. As noted above, 

other properties including glass transition 

temperatures, high-temperature resistance 

and chemical stability are all similarly 

affected. The possibility of engineering 

unique mechanical, thermal and optical 

property combinations in such low-density 

materials are therefore possible, and have yet 

to be exploited. 

The experimental and computational tools we will develop for bottom-up hybrid materials design 

will have application beyond the target low-density hybrids for aerospace applications.  Related 

applications include hybrid coupling layers for high-performance structural adhesive bonds.  The 

hybrid materials significantly increase the resistance to moisture degradation and we already have 

a very successful program with several microelectronic companies demonstrating how these 

hybrid materials can be used in future high-density microelectronic packages and 3D device 

structures. 

Hybrid film technologies can similarly be directly applied to embedded sensor networks for 

structural health (damage evolution and diagnosis) and performance (temperature, surface 

pressures, etc.) monitoring of high performance aerospace systems. A crucial aspect of embedding 

the sensor network is to ensure optimized adhesion to the epoxy or reinforced polymer composite 

layers to ensure that the sensor network does not become a source of damage initiation.  The hybrid 

processing, screening and optimization capabilities we are developing are particularly well suited 

to designing the optimal hybrid interphase region for enhanced adhesion and thermomechanical 

reliability in such multifunctional device structures. 

Finally, we note that the versatile property combinations of hybrids make many other 

technologically important applications possible including microelectronic interlayer dielectrics, 

antireflective coatings for solar cells, optical waveguides, size-selective membranes, biosensors, 

micro-fluidic structures, and membranes in fuel cells. A critical aspect for all of these applications 

is that the hybrids must be mechanically robust and able to operate reliably in harsh mechanical, 

chemical and thermal environments.  That is the focus of our program.  The program will therefore 

have broad implications for the successful integration with high yield of low-density hybrid 

materials into a range of technologies and ensure that the fundamental hybrid materials science is 

available to optimize hybrid material mechanical reliability in complex service and processing 

environments.  

 

Fig. 18.  Markedly increased resistance to moisture-

assisted subcritical cracking of molecular-confined 

hybrids with higher molecular weight polymers with 

increased levels of molecular constraint. 
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matrix. This exciting new direction for our program opens the door to high-temperature, low-density hybrids
for next-generation technologies.
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