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SUMMARY 
A methodology for multi-scale multi-domain predictive simulation of structural sensing in metallic 
aerospace structures was developed. The methodology is able to predict the signal response of structural 
sensors as a function of the structural state and/or the presence of structural flaws or damage, in linear and 
nonlinear regimes. The approach has been to combine analytical solutions with numerical analysis (e.g., 
finite element method, FEM) into a hybrid global-local (HGL) analysis. This novel approach allows one 
to keep the computational effort at a manageable level while preserving the fidelity needed to capture the 
local interaction between ultrasonic guided waves and structural damage.  
The major achievements of this project are: 

• One to two orders of magnitude increase in computational speed compared with conventional 
FEM modeling of wave propagation in interaction with damage  

• Development of an unique analytical framework and predictive tool for simulation of multi-
modal guided wave propagation and interaction with damage – WaveFormRevealer for both 
straight-crested (WFR-1D) and circular-crested (WFR-2D) guided Lamb waves 

• Inclusion of multi-physics piezoelectric effects in both analytical and FEM models for both axial-
active and shear-active piezoelectric wafer active sensors (PWAS)  

• Novel combination of time-domain and frequency-domain approaches to the HGL 
implementation 

• Development, for the first time, of nonreflective boundaries (NRB) for Lamb wave FEM 
modeling 

• Efficient extraction of wave-damage interaction coefficients (WDIC) from small NRB FEM local 
models 

• Modeling of nonlinear higher-harmonics wave-damage interactions in cracks and joints using 
nonlinear FEM  

This fundamental research project has high relevance to USAF because it has produced a methodological 
framework for coupling global and local models to achieve the concurrent analysis of the structure in 
interaction with coupled-field phenomena and efficient treatment of nonlinearities.  
The results of this project can be used to generate virtual data sets for testing data-driven models and 
filling data gaps will allow the autonomous model updating of the “digital-twins” models to predict future 
performance for new mission profiles. 
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LONG-TERM GOAL 
• Predict the signal response of structural sensors as a function of the structural state and/or 

the presence of structural flaws or damage for aerospace applications 
 
OBJECTIVES 

• Develop a predictive methodology for multi-scale multi-domain modeling of structural 
sensing 

• Develop linear and nonlinear finite element local model for wave-damage interaction  
• Validate and verify (V&V) through experiments on geometrically tractable specimens 

APPROACH 
Our approach has been to combine analytical solutions with numerical analysis (e.g., finite element 
method, FEM) into a hybrid global-local (HGL) analysis. This is a novel approach, which allows one to 
keep the computational effort at a manageable level while preserving fidelity. The performed work 
consisted of three tasks covering a 4-year period:  

 

 
 

The scope of Task 1 was to develop reduced-order analytical models of structural sensing in the presence 
of nonlinearities in damaged material regions and/or structural joints/interfaces. The reduced order 
models have adjustable parameters and nonlinearity thresholds to be used as control variables. These 
models are able to predict higher harmonic response resulting from guided waves interacting with 
damage. The reduced-order nonlinear models developed in this task are incorporated in the HGL analysis 
to be performed in the next task. 
Task 2 pursued the integration between analytical solutions in the global region and numerical solutions 
(e.g., FEM) in discretized local regions drawn around structural features, damage sites, sensor 
attachments, etc. The main difference between the prediction work done in this task and that done in Task 
1 is that of scale of complexity. The present task addresses the challenges associated with the analysis of 
realistically sized specimens with the structural complexity representative of actual aerospace structures. 
This task went beyond the state of the art and achieved an HGL modeling with the following attributes: 
(a) 2-D guided waves travelling in thin-wall structures typical of aerospace applications; (b) local-global 
boundary of generic shape based on Saint- Venant’s principle; (c) generalized matching condition on the 
global-local boundary; (d) zoom-in/zoom-out capabilities; (e) reduced-order nonlinearity treatment. 
Task 3 verified that the methodology developed in the previous two tasks gives accurate and trustworthy 
results and will validate that this methodology can be applied to solving actual problems of interest to 
AFRL. The results of this V&V procedure were used as feedback to improve the approach taken in the 
previous Task 1 and Task 2. 



WORK COMPLETED 
All the work planned in this project has been completed.  

• Fast analytical modeling of guided waves propagation  (WFR-1D and WFR-2D algorithms) 
• 1D and 2D hybrid global-local (HGL) algorithm for ultrasonic wave propagation in structures 

with damage and discontinuities 
• Nonlinear FEM analysis of guided wave interaction with damage 

 
 
RESULTS 
The scientifical and technical results of this project are described in full detail in the 11 refereed archival 
journal articles attached to this report and will not be repeated here for the sake of brevity. 
 
MAJOR ACHIEVEMENTS 
The major achievements of this project are: 

• One to two orders of magnitude increase in computational speed compared with conventional 
FEM modeling of wave propagation in interaction with damage 

• Development of an unique analytical framework and predictive tool for simulation of multi-
modal guided wave propagation and interaction with damage – WaveFormRevealer for both 
straight-crested (WFR-1D) and circular-crested (WFR-2D) guided Lamb waves 

• Inclusion of multi-physics piezoelectric effects in both analytical and FEM models for both axial-
active and shear-active piezoelectric wafer active sensors (PWAS)  

• Novel combination of time-domain and frequency-domain approaches to the HGL 
implementation 

• Development, for the first time, of nonreflective boundaries (NRB) for Lamb wave FEM 
modeling 

• Efficient extraction of wave-damage interaction coefficients (WDIC) from small NRB FEM local 
models 

• Modeling of nonlinear higher-harmonics wave-damage interactions in cracks and joints using 
nonlinear FEM  

 
IMPACT/APPLICATIONS 
The impact of this project consists in the following contributions made to the fundamental 
scientific understanding of this area of research: 

(a) Physics-based understanding of SHM detection process 
(b) Foundation for solving the inverse problem to determine structural state from sensor signals 

 
PUBLICATIONS 
This project has generated a large number of publications: 7 peer-reviewed archival journal articles and 
20 conference papers as listed below (the J and C numbers are the journal article and conference paper 
number found on the LAMSS websites http://www.me.sc.edu/research/lamss/html/journals.html 
and http://www.me.sc.edu/research/lamss/html/conferences.html , respectively): 
 
The list of peer-reviewed archival journal articles and conference papers follows. Copies of selected 
archival peer-reviewed journal articles resulting from this grant are attached at the end. 
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Time-domain hybrid global–local
concept for guided-wave propagation
with piezoelectric wafer active sensor

Matthieu Gresil and Victor Giurgiutiu

Abstract
This article presents a combined finite element method and analytical process to predict the one-dimensional guided-
wave propagation for nondestructive evaluation and structural health monitoring application. Analytical methods can per-
form efficient modeling of wave propagation but are limited to simple geometries. In response to today’s most complex
cases not covered by the simulation tools available, we aim to develop an efficient and accessible tool for structural
health monitoring application. This tool will be based on a hybrid coupling between analytical solution and time-domain
numerical codes. Using the principle of reciprocity, global analytical calculation is coupled with local finite element
method analysis to utilize the advantages of both methods and obtain a rapid and accurate simulation method. The phe-
nomenon of interaction between the ultrasonic wave, the defect, and the structure, leading to a complex signature, is
efficiently simulated by this hybrid global–local approach and is able to predict the specific response signal actually
received by sensor. The finite element mesh is used to describe the region around the defects/flaws. In contrast to other
hybrid models already developed, the interaction between Lamb waves and defects is computed in the time domain using
the explicit solver of the commercial finite element method software ABAQUS.

Keywords
Lamb waves, finite element modeling, global–local, structural health monitoring, piezoelectric wafer active sensors

Introduction

Guided-wave techniques for nondestructive evaluation
(NDE) and structural health monitoring (SHM) appli-
cations are increasingly popular due to their ability to
cover large areas with a relatively small number of sen-
sors. Miniaturized guided-wave transducers, such as
piezoelectric wafers attached directly to structural ele-
ments, have gained large popularity due to their low
cost, simplicity, and versatility. These transducers can
actively interrogate the structure using a variety of
guided-wave methods such as pitch–catch, pulse-echo,
phased arrays, and electromechanical (E/M) impedance
technique. SHM is an emerging technology with multi-
ple applications in the evaluation of critical structures.
Numerous approaches have been utilized in recent
years to perform SHM. One of the promising active
SHM methods utilizes arrays of piezoelectric wafer
active sensors (PWASs) bonded to a structure in order
to achieve damage detection. The objective of this arti-
cle is to present the framework for the development of
a methodology for multi-scale multi-domain predictive
simulation of structural sensing. Such methodology
would be able to predict the signal response of

structural sensors as a function of the structural state
and/or the presence of structural flaws or damage in
linear and nonlinear regimes.

Many authors have already investigated the interac-
tion of Lamb modes with a single-defect-like crack,
notch, or circular cavity. Some of them used analytical
(Grahn, 2003) or semi-analytical resolutions (Castaings
et al., 2002), whereas others chose a finite element
(FE), a boundary element modeling, or spectral ele-
ment method (Alleyne and Cawley, 1992; Diligent
et al., 2001; Galan and Abascal, 2005; Giurgiutiu et al.,
2012; Gresil et al., 2011a, 2011d; Guo and Cawley,
1993; Peng et al., 2009). Analytical or semi-analytical
resolutions can be used when the geometry of the defect
is regular and when the problem presents symmetries
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except for the distributed point source method
(DPSM)-based semi-analytical technique (Banerjee and
Kundu, 2008) when an internal anomaly was immersed
in fluid. FE or boundary element modeling allows
studying the interaction of Lamb modes with irregular
defects but requires respecting spatial and temporal dis-
cretization that can cause numerical problems at high
frequency–thickness product. In addition, to obtain
accurate wave propagation solution at ultrasonic fre-
quencies is computationally intensive and may become
prohibitive for realistic structures.

The need for a predictive modeling methodology
that could relate directly the presence of structural flaws
to changes in the signal of structural sensors is appar-
ent. Such predictive methodology would be able to
simulate various structural scenarios (configuration
changes, different flaws, temperature changes, etc.). A
predictive modeling methodology would enable identi-
fying the sensors’ sensitivity and specificity to structural
changes (intentional or accidental), determining best
sensor placement layout, running parameter studies,
and so on. To date, such a predictive modeling metho-
dology does not exist, although some initial attempts
have been made in simple cases by using finite element
method (FEM) (Blackshire et al., 2006; Gresil et al.,
2011b, 2011c, 2012; Kitts and Zagrai, 2009; Olson et
al., 2006) and model updating (Zagrai et al., 2010). A
major difficulty in developing a predictive modeling
methodology for structural sensing is related to the
multi-scale multi-domain aspects of the problem. The
problem is multi-scale because it has to incorporate (a)
the macroscale structural features, (b) the microscale
flaw/damage, and (c) the mesoscale interfaces between
structural parts and between sensor and structure. The
modeling is multi-domain because the analysis is inte-
grated over several physical domains, that is, (a) aero-
space structural mechanics, (b) E/M transduction in the
sensors, (c) guided-wave ultrasonics, (d) power and sig-
nal electronics, and so on (Figure 1). Our approach

would be to combine them all into an integrated multi-
scale multi-domain analysis.

It is apparent that simply bolting together existing
software codes (multi-physics FEs, ultrasonics model-
ing, electronic circuit modeling) is not a credible option
without an understanding of the interaction between
the multi-domain variables native in each code and the
multi-scale aspects of the problem. Fundamental stud-
ies are needed to clarify the multi-scale multi-domain
interaction between structure, sensors, guided-wave
patterns, damage progression, and signal processing
and interpretation. In this way, one would achieve an
understanding of the hierarchical variables interplay,
designation of what variables need to be passed
between physical domains/codes, and an understanding
of how multiple scales are to be addressed.

A hybrid formulation is used wherein the FEM is
employed to model small regions near the defect,
whereas regions away from the defect are modeled
using a suitable set of wave functions. Goetschel et al.
(1982) developed a global–local FE formulation for
modeling axisymmetric scattering of a steady, compres-
sive, incident elastic wave in a homogeneous, isotropic
host medium with an axisymmetric inclusion. In the
area of SHM of aircraft components, the method has
been applied to model wave interaction with defected
lap–shear joints (Chang and Mal, 1995), as well as
notches in plates (Mal and Chang, 2000). Many aircraft
components are complex in either their geometry or
their material properties. In this case, theoretical wave
solutions for the global portion are either nonexistent
or hard to determine. The semi-analytical finite element
(SAFE) method can help handle these cases because of
its ability to extract modal solutions of complex struc-
tures in a computationally efficient manner (Bartoli et
al., 2005; Hayashi, 2004; Hayashi et al., 2003, 2006).
Sabra et al. (2008) demonstrated the application of the
SAFE-aided hybrid formulation to the detection of
holes in aluminum plates. Srivastava (2009) extends the

Electric/electronics analysis
Transmitter electronics 

and power amplifier 

PWAS A: transmitter
(Wave exciter) 

Electric/electronics analysis 

PWAS B: receiver  
(Wave detector)

Receiver electronics 
and data processing 

V1 V2

STRUCTURAL-ULTRASONIC ANALYSIS

Guided Waves Damaged region:
nonlinearities, bolts,
cracks/disbonds, etc.

Figure 1. Conceptual schematic of a multi-scale multi-domain study: structural ultrasonics and electric/electronic parts of the
analysis are indicated. Our approach would be to combine them all into an integrated multi-scale multi-domain analysis.
PWAS: piezoelectric wafer active sensor.
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global–local approach to model notches in aluminum
plates and delamination-like defects in composite
panels. The SAFE approach has been previously devel-
oped for ultrasonics waveguides of complicated geome-
tries, such as concrete reinforcing bars, tendons, track
rails, one-dimensional (1D) stiffeners, and so on
(Bartoli et al., 2005; Loveday, 2008; Marzani et al.,
2008). In the SAFE approach, the 1D wave propaga-
tion along the waveguide is modeled analytically,
whereas the waveguide modes are found numerically
through FEM discretization of the cross section.

Figure 2 shows the SHM functional diagram to
achieve a great accuracy of the output in order to mini-
mize false alert on this system. This model prediction is
based on the correlation between the analytical calcula-
tion, the FEM, and the hybrid global–local (HGL)
results. Then, the physics-based prediction is compared
and updated with the experimental database in order to
obtain a damage definition with a high level of
accuracy.

This article presents and discusses the challenges and
opportunities related to the use of PWAS transducers
in generating and sensing ultrasonic guided waves in
structure and how they can be used to detect damage.
This article starts with the principles of the HGL con-
cept and then reviews the general principles of PWAS-
based SHM. It discusses the analytical and FEM
modeling of pitch–catch ultrasonic waves between a
transmitter PWAS (T-PWAS) and a receiver PWAS
(R-PWAS). Then, it compares the received signal
between the analytical, the HGL, and the experimen-
tal results.

This article addresses these fundamental research
gaps and strives to develop an overall methodology for
multi-scale multi-domain modeling of structural sen-
sing. The methodology will be first validated on bench-
mark examples that are simple to understand but
sufficiently representative to convey the concept. A
HGL approach is developed to keep the computational
resources manageable.

HGL principles

A HGL approach will be developed to keep the compu-
tational resources manageable. The HGL approach
uses local FEM discretization only in the critical
regions (structural joints, discontinuities, flaws, etc.)
while using global analytical solutions in the uniform
outside region. Srivastava (2009) used the HGL
approach to model the effect of notches and delamina-
tion in 1D waveguides. Figure 3 illustrates this concept,
whereby only the local material region close to the
defect needs to be FEM modeled, whereas the global
waveguide to the left and right of the FEM region is
modeled semi-analytically.

In contrast to other hybrid models already presented
in the literature by Srivastava (2009), this article pre-
sents the Lamb waves propagation in time domain.
Moreover, the SAFE method involves a FE computa-
tion in the guide section for the global part that is
slower than the analytical model developed in this arti-
cle. Another potential disadvantage of the SAFE
method, used by Srivastava (2009), is that the necessary
specialized elements are not available as standard in

Figure 2. Structural health monitoring functional diagram shows the importance of the model prediction to obtain accurate results
for the SHM output.
HGL: hybrid global–local; FEM: finite element method; SHM: structural health monitoring.
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many commercial FEM packages and may need to
be defined by the user. The SAFE method includes
the wave propagation as a complex exponential in
the element formulation, and therefore, only a two-
dimensional (2D) mesh of the cross section of the
waveguide is required.

As shown in Figure 4, our model consists of one ana-
lytical model (not semi-analytical as compared to
Srivastava (2009)), that is, WaveFormRevealer (WFR;
Gresil et al., 2011b), and FEM domain, and connected
by a hybrid interface. This interface is based on input
stresses and displacements monitored at a rectangular
‘‘box’’ surrounding the source in a time domain and
then used to predict the forward field quantities. Since
this interface was separately coded up, it did not require
the modification of the basic FEM program, thus exem-
plifying a generic hybrid modeling paradigm. However,
for application to practical Lamb wave inspection, it
was essential for the method to be extended to work in
the time domain. This is achieved by the use of inverse
Fourier transforms, which also help retain the power
and versatility of the method. The analytical frequency
interface is used to obtain predictions at a number of
frequencies within a required bandwidth, and these can
then be inverse transformed to obtain the time-domain
signals. Thus, the original frequency-domain interface
remains at the core of the new time-domain hybrid
interface, and it is now simply located within an addi-
tional frequency loop. In the section ‘‘Results and

discussion,’’ we consider a simple application example
that serves to demonstrate the approach, helps appreci-
ate important features and limitations, and also seeks
validation in the process.

This new approach is realized in three steps using
our propriety analytical software WFR and commercial
FEM software. The first step of this method consists of
using the WFR software developed for this application.
The second step consists of using the output from the
WFR software as two inputs (one for the symmetric
mode and the second for the antisymmetric mode) to
the FEM model. The third step of this method consists
of using again the WFR software developed for this
application. The FEM output serves as input into the
global region. This hybrid global–local–global received
PWAS signal will be compared with our homemade
analytical model and experimental results in the last
section. Compared to usual FEM model, the main
advantage of the hybrid method is to reduce meaning-
fully the length of the mesh used to investigate the
interaction of Lamb modes with defects and hence the
computing time.

In our future approach, the HGL method from 1D
geometries will be developed into 2D geometries. This
is not an easy task because the 1D interface conditions
of Figure 3 are much easier to formulate than the fully
2D conditions illustrated in Figure 5. The waves origi-
nating from the T-PWAS propagate in circular wave
fronts toward the local region containing the disconti-
nuity under investigation (crack, inclusion, flaw, etc.).
The incoming waves enter the circumferential bound-
ary of the local region and interact with the FEM
model generating a complicated scattering pattern due
to the presence of the discontinuity inside the FEM
model. The scattered waves will be picked up by the R-
PWAS (as well as by the T-PWAS acting in pulse-echo
mode). If the discontinuity is not present inside the
FEM model, then no wave scatter should take place.

Figure 5. General 2D setup for hybrid global–local modeling of
structural sensing.
FEM: finite element method; PWAS: piezoelectric wafer active sensor.

Figure 4. Illustration of our procedure to obtain time-domain
model interface.

Figure 3. Waveguide scattering problem in 1D solved by the
hybrid global–local (HGL) method in frequency domain
(Srivastava, 2009).
FEM: finite element method; SAFE: semi-analytical finite element.
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However, it is quite possible that numerical artifacts
associated with the FEM discretization will generate
scatter even in a defect-free situation. The existence of
such false-scatter artifacts will be an indication of defi-
cient numerical modeling that needs to be corrected.
Therefore, a possible figure of merit of the HGL mod-
eling will be the relative smallness of the residual wave
scattering in the case of a defect-free FEM region.
Another possible figure of merit of our modeling would
be the energy balance between incoming and outgoing
wave fronts. It is expected that a major part of our
effort will be concentrated on developing the proper
interfacing formulation for the fully 2D analytical solu-
tion of guided-wave propagation in circular–radial geo-
metry in interaction with the FEM model developed
for the local region.

Background information

Fundamental Lamb waves

Guided waves or Lamb waves are formed by the inter-
ference of multiple reflections and mode conversions of
longitudinal and shear waves at the free surfaces of a
plate. These waves are typically generated and detected
using conventional PWASs and are used to detect
defects and measure elastic properties of thin isotropic
aluminum materials. Two types of waves propagate a
symmetric wave and an antisymmetric wave. Each of
these wave types propagates with multiple modes.

By solving a boundary value problem for a free plate
or by considering the reflection of waves at plate
boundaries, the Rayleigh–Lamb frequency equations
(dispersion equations) can be found (Achenbach, 1973;
Auld, 1973; Rose, 1999; Viktorov, 1967). For a uni-
form traction-free isotropic plate, the equations for
symmetric and antisymmetric modes are

tan (qh)

tan (ph)
= � 4k2pq

(q2 � k2)2
,

tan (qh)

tan (ph)
= � (q2 � k2)

2

4k2pq

ð1Þ

where

p2 =
v2

c2
L

� k2, q2 =
v2

c2
T

� k2, k =
v

cp

ð2Þ

and h, k, cL, cT , cp, and v are the half-plate thickness,
wave number, velocities of longitudinal and transverse
modes, phase velocity, and wave circular frequency,
respectively.

The phase velocity is found numerically by solving
the real roots of the dispersion equation as a function
of material properties, frequency, and material thick-
ness. Group velocity dispersion curves are found from
the phase velocity (Rose, 1999). Phase and group velo-
city dispersion curves for a 3.2-mm-thick aluminum
plate are shown in Figure 6, where longitudinal and
transverse velocities of the plate are equal to 6211 and
3129 m/s, respectively. These curves were generated and
plotted using our homemade software ‘‘Wavescope’’
developed using the graphical user interface (GUI) of
MATLAB. Figure 6 shows the first two symmetric and
antisymmetric mode dispersion curves. At low frequen-
cies, the wave velocity of the first symmetric mode (S0)
is nearly nondispersive, while the wave velocity of the
first antisymmetric mode (A0) is highly dispersive. At
higher frequencies, group velocity of both zero-order
modes approaches the Rayleigh wave velocity, cR,
which has a value of ;2.9 km/s for aluminum.

PWASs

Pitch–catch method is a fundamental way of detecting
the structural changes that take place between a
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Figure 6. Dispersion curves for 3.2-mm-thick aluminum plate: (a) phase velocity curves and (b) group velocity curves.
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transmitter transducer and a receiver transducer; pitch–
catch has been widely used in SHM and NDE. A diag-
nosis could be made by comparing the time of flight
(TOF) and amplitude between the sensing signal and
the pristine signal. A standard pitch–catch setup is
shown in Figure 7.

One PWAS serves as the transmitter transducer,
which excites the plate and generates a disturbance in
the plate structure. The disturbance propagates along
the plate. The second PWAS acts as the receiver, which
picks up the signal at the sensing point, converting
mechanical signal into electric signal.

PWASs are the enabling technology for active
SHM systems. PWAS couples the electrical and
mechanical effects (mechanical strain, Sij, mechanical
stress, Tkl, electrical field, Ek , and electrical displace-
ment, Dj) through the tensorial piezoelectric constitu-
tive equations

Sij = sE
ijklTkl + dkijEk

Dj = djklTkl + eT
jkEk

ð3Þ

where sE
ijkl is the mechanical compliance of the material

measured at zero electric field E= 0ð Þ, eT
jk is the dielec-

tric permittivity measured at zero mechanical stress
(T = 0), and djkl represents the piezoelectric coupling
effect. PWASs utilize the d31 coupling between in-plane
strains, S1 and S2, and transverse electric field, E3. Just
like conventional ultrasonic transducers, PWASs utilize
the piezoelectric effect to generate and receive ultraso-
nic waves. However, PWASs are different from con-
ventional ultrasonic transducers in several aspects:

� PWASs are firmly coupled with the structure
through an adhesive bonding, whereas conven-
tional ultrasonic transducers are weakly coupled
through gel, water, or air.

� PWASs are nonresonant devices that can be
tuned selectively into several guided-wave
modes, whereas conventional ultrasonic transdu-
cers are resonant narrow-band devices.

� PWASs are inexpensive and can be deployed in
large quantities on the structure, whereas con-
ventional ultrasonic transducers are expensive
and used one at a time.

PWAS transducers can be served several purposes
(Giurgiutiu, 2008): (a) high-bandwidth strain sensors,
(b) high-bandwidth wave exciters and receivers, (c)
resonators, and (d) embedded modal sensors with the
E/M impedance spectroscopy method. By application
types, PWAS transducers can be used for (a) active
sensing of far-field damage using pulse-echo, pitch–
catch, and phased-array methods, (b) active sensing
of near field damage using high frequency electrome-
chanical impedance spectroscopy (EMIS) and thick-
ness gage mode, and (c) passive sensing of damage-
generating events through detection of low-velocity
impacts and acoustic emission at the tip of advancing
cracks.

The main advantage of PWASs over conventional
ultrasonic probes is in their small size, lightweight, low
profile, and small cost. In spite of their small size,
PWASs are able to replicate many of the functions per-
formed by conventional ultrasonics probes.

Tuning of Lamb waves and PWAS transducers

The tuning between PWAS transducers and guided
waves in isotropic metallic plates is relatively well
understood and modeled (Giurgiutiu, 2008). The gift of
the concept is that manipulation of PWAS size and fre-
quency allows for selective preferential excitation of a
certain guided-wave modes and the rejection of other
guided-wave modes, as needed by the particular SHM
application.

The tuning formula for the case of ideal bonding is
defined by (Giurgiutiu, 2008)

ex(x, t)= � at0

m

sin jSa
� � NS jS

� �
D9S jS
� � ei(jSx�vt) + sin jAa

� � NA jA
� �

D9A jA
� � ei(jAx�vt)

" #

ð4Þ

For simplicity, we have considered only the first
symmetric and antisymmetric modes. NS ,NA,DS , and
DA are defined in the study by Giurgiutiu (2008). An
example of PWAS tuning is presented in Figure 8 for a
7-mm square PWAS installed on a 3.2-mm aluminum
alloy 2024-T3 plate.

Figure 7. Pitch–catch configuration.
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Analytical model for the global domain

The analytical modeling of the pitch–catch process
between two PWAS transducers separated by a dis-
tance x was carried out in frequency domain in four
steps (Gresil et al., 2011a, 2011b):

� Fourier transform the time-domain excitation
signal Ve(t) taken into the frequency-domain
spectrum, ~Ve(v)

� Calculate the frequency-domain structural trans-
fer function at the receiver location, G(x,v)

� Multiply the structural transfer function by
frequency-domain excitation signal to obtain the
frequency-domain signal at the receiver, that is,
~Vr x,vð Þ=G x,vð Þ � ~Ve vð Þ

� Perform inverse Fourier transform to obtain the
time-domain receiver signal, Vr(x, t)= IFFT

f~Vr(x,v)g= IFFTfG(x,v) � ~Ve(v)g.

In this article, the main interest is in symmetric fun-
damental mode (S0) and antisymmetric fundamental
mode (A0). For Lamb waves with only two modes (A0
and S0) excited, the structure transfer function G vð Þ is
given by equation (99) (Giurgiutiu, 2008: 327), which
gives the in-plane strain at the plate surface as

ex x, tð Þ y= d = � i
at0

m

���� ( sin kSa)
NS kS
� �

D9
S kSð Þ

e�i kSx�vtð Þ

�i
at0

m
( sin kAa)

NA kA
� �

D9
A kAð Þ

e�i kAx�vtð Þ ð5Þ

G vð Þ= S vð Þe�ikSx +A vð Þe�ikAx ð6Þ

S vð Þ= � i
at0

m
( sin kSa)

NS kS
� �

D9
S kSð Þ

,

A vð Þ= � i
at0

m
( sin kAa)

NA kA
� �

D9
A kAð Þ

ð7Þ

DS(v, d)= k2 � b2
� �2

cosad sinbd + 4k2ab sinad cosbd

DA(v, d)= k2 � b2
� �2

sinad cosbd + 4k2ab cosad sinbd

ð8Þ

NS = kb k2 � b2
� �

cos (ad) sin (bd),

NA = kb k2 � b2
� �

sin (ad) cos (bd) ð9Þ

a2 =
v2

c2
p

� k2, b2 =
v2

c2
s

� k2 ð10Þ

where a is the half length of the PWAS, d is the half
thickness of the plate; t0 is the shear stress between
PWAS and the plate; m is Lame’s constant; kS and kA

are the wave numbers for S0 and A0, respectively; x

denotes the distance between the two PWAS transdu-
cers; k represents the wave number for S0 or A0 accord-
ingly; and cp and cs are the wave speed for pressure
wave and shear wave, respectively. In the transfer

function, it could be observed that S vð Þ and A vð Þ will
determine the amplitude of S0 and A0 modes. In both
S vð Þ and A vð Þ terms, there is sin kSa

� �
and sin kAa

� �
,

which represent the tuning effect.
The wave speed dispersion curve is obtained by sol-

ving Rayleigh–Lamb equations (1), which are transcen-
dental equations that require numerical solution. The
usual form of Rayleigh–Lamb equations (1) expressed
as

DS v, dð Þ= 0 and DA v, dð Þ= 0 ð11Þ

After getting the wave speed dispersion curve, the
wave number for each frequency component, that is,
j =v=c, is known. Thus, all the terms involved in the
plate transfer function could be solved, and the plate
transfer function G(v) is obtained. After the plate trans-
fer function G(v) is obtained, the excitation signal is
Fourier transformed.

The software program WFR has been developed in
MATLAB GUI environment to predict the waveform
of the analytical modeling. The WFR software is
described in detail in the study by Shen and Giurgiutiu
(in press). This software allows users to get the desired
analytical solution by inputting material properties,
specimen geometry, excitation signal count number,
excitation signal frequency, and time range. It can also
show a continuous waveform change by clicking on the
frequency control slider, which is just like the wave-
form shown on an oscilloscope when adjusting the exci-
tation signal frequency. The time range to show a
waveform could also be set by users through entering
the ‘‘range’’ information.

FE model for the local domain

The effectiveness of conventional FE modeling of elas-
tic waves propagating in structural components has
been shown in the past. The case of Lamb waves in free
plates is a classic example (Alleyne and Cawley, 1990;
Moser et al., 1999). The package used in this study,
ABAQUS/Explicit, uses an explicit integration based
on a central difference method (ABAQUS, 2008). The
stability of the numerical solution is dependent upon
the temporal and the spatial resolution of the analysis.
To avoid numerical instability, ABAQUS/Explicit
recommends a stability limit for the integration time
step (Moser et al., 1999)

Dt =
1

20fmax
ð12Þ

The maximum frequency of the dynamic problem, fmax,
limits both the integration time step and the element
size. The size of the mesh in FE, Le, is typically derived
from the smallest wavelength to be analyzed, lmin. For
a good spatial resolution, 20 nodes per wavelength are
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required (Moser et al., 1999). This condition can be
written as

Le =
lmin

20
ð13Þ

To generate the appropriate pure Lamb mode (S0 or
A0) in the structure, boundary conditions are imposed
on the left of the plate (Figure 9). This simplification is
available only for the low frequency. The plate length is
defined to prevent that reflections from the edges of the
mesh disturb the analysis of the calculated waveforms
and is minimized to reduce the computing time.

FEM codes: most commercially available FEM
codes have a multi-physics capability. In our prelimi-
nary work, we have experimented with ANSYS and
ABAQUS capabilities and obtained acceptable results.
We were able to simulate both pitch–catch/pulse-echo
wave propagation as well as E/M impedance standing
waves using direct excitation of the piezoelectric wafer
bonded to the structure. During these preliminary stud-
ies, some convergence differences between two commer-
cial codes were discovered, whereas the same geometry
analyzed with the same element type did not have same
convergence characteristics.

One-dimensional wave propagation FEM modeling,
which discretizes the local area, is done under the
z-invariant (plane-strain) assumption. Hence, only the

plate cross section needs to be meshed. For wave pro-
pagation modeling, the choice of the solving technique,
mesh density, and time step influences the outcomes
and level of accuracy with which the phenomenon is
simulated. The time-domain explicit solver of the
ABAQUS software and the linear quadrilateral
CPE4R element were used. We investigated (Gresil
et al., 2011b) how the group velocities of the S0 and A0
waves vary with mesh density (nodes per wavelength)
N = l=L, where l is the wavelength and L is the size of
the element. Figure 10 shows the convergence study
using ABAQUS/Explicit for both modes, S0 and A0.
For the A0 mode, the error varies from ;4.7% for
N = 25 to ;0% for N =180. For the S0 mode, the
error varies from ;2.2% for N = 25 to ;0% for
N = 75. A mesh density N = 180 was chosen, which
gives a very good accuracy.

Experimental results

Experimental setup

The test specimen is designed to develop and calibrate
the damage detection methodology using a simple geome-
try specimen and also to validate the analytical and the
HGL results. Thin aluminum plate specimens were con-
structed from 3.2-mm-thick 2024-alloy stock in the form
of a square plate 1118mm31118mm33:2mmð Þ. The
specimen is instrumented with arrays of 7-mm square and
7-mm circular PWAS (Figure 11). The x, yð Þ sensor loca-
tions are given in Table 1. The PWAS network is not used
for this study particularly but will be used to detect and
locate defect in the plate for future study.

An HP33120A arbitrary signal generator is used to
generate a 150-kHz windowed harmonic burst excita-
tion to active sensors with a 10-Hz repetition rate.
Under harmonic burst excitation, the active sensor gen-
erates a package of elastic waves that spread out into
the entire plate according to a circular wave front pat-
tern. A Tektronix TDS210 four-channel digital oscillo-
scope, synchronized with the signal generator, was used
to collect the response signals from the active sensors.

The results for the rectangular plate were remark-
ably clear and easy to interpret. Reflection wave pack-
ets could be easily avoided because the edges of the
rectangular plate were far away from the source.

(a) (b)

Figure 9. Lamb mode excitation for (a) S0 mode and (b) A0 mode.
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Comparison of prediction and
experiments

Using the principle of reciprocity, global analytical cal-
culation is coupling with the local FEM analysis to uti-
lize the advantages of both methods and obtain a rapid
and accurate simulation method. Figure 12 illustrates
the HGL setup for this example, whereby only the local
material region close to the defect needs to be FEM
modeled, whereas the global waveguide to the left and
right of the FEM region is modeled analytically with
compatibility being ensured at the interface.

The first step of this method consists of using the
WFR software developed for this application. The sec-
ond step consists of using the output from the WFR
software as two inputs (one for the S0 mode and the
second for the A0 mode) in the FEM model. In order
to avoid the reflections from the edges of the FEM
domain, the FEM domain was extended outside the
100-mm local region to a total length of 250 mm.
Finally, the third step consists of using the output from
the FEM as input in the WFR (global 2).

Comparison between analytical, FEM, and HGL

Figure 13 shows the signal received after a travel of 250
mm; the analytical model is compared with the HGL

approach and the full FEM model. A very good match-
ing is observed between these three results, which means
that the interface between the global 1 and the local do
not create scatter or any reflection on the received sig-
nal. The signal from the HGL approach will be the
input for the global 2 analytical region.

Figure 14 shows the signal received after a travel of
565 mm; the analytical model is compared with the
HGL approach and the full FEM model. A very good
matching is observed between these three results specif-
ically between the HGL and the analytical results, that
means that the two interfaces, that is, between global 1
to local and local to global 2, do not create interference
or any reflection on the received signal. As shown in
Figures 13 and 14, the received signal with the HGL
method in time domain gives us a rapid and accurate
simulation method.

The analytical resolution can be used when the geo-
metry of the specimen is regular and when the problem
presents symmetries. The analytical approach gives us
the capacity to create very simple damage in compari-
son of the FEM advantage that gives us the capability
to integrate complex and irregular defects. But as
described in the introduction, to obtain accurate wave
propagation solution at ultrasonic frequencies is

Figure 11. Arrangement of PWAS transducers bonded on the
plate.

Figure 10. Convergence study of the group velocity for a 2D
plane-strain problem in ABAQUS/Explicit. The excitation is
modeled by two equilibrated forces.

Table 1. Locations of PWAS transducers on the square plate specimen.

PWAS# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x (mm) 31 31 31 31 51 51 51 51 71 71 71 71 91 91 91 91
y (mm) 31 51 71 91 91 71 51 31 31 51 71 91 91 71 51 31
Square X X X X X X X X
Circular X X X X X X X X

PWAS: piezoelectric wafer active sensor.
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computationally intensive and may become prohibitive
for realistic structures.

HGL method validation by comparison with
experiments

This hybrid global–local–global R-PWAS signal is
compared with the analytical model and the experimen-
tal results, after a length path of 565 mm (Figure 15). A
good agreement for the S0 wave packet is observed.
For the A0 mode, a good agreement is also observed
but a slight time shift exists at the end of the A0 wave
packet. We can conclude that this time-domain HGL
approach is in good agreement with the experimental
results and with our analytical model. The slight differ-
ence in the A0 packet can be explained by the fact that
these models, analytical and HGL, are 1D guided
waves that are not exactly representative of the experi-
mental results, that is, 2D guided waves.

HGL advantages for inclusion of structural damage

Metal structures exhibit a wide range of corrosion
types including uniform, pitting, galvanic, crevice,

concentration cell, and graphite corrosion (Roberge,
2007). When the guiding structure has changes due to
corrosion in the geometry, materials properties, sup-
ports, or attachments, the guided waves that propagate
through will be modified accordingly. Hence, loss of
material due to corrosion presents geometrical changes
that will cause the guided-wave scattering and can be
used for inspection of corrosion.

In this study, corrosion is simulated by a uniform
notch on an aluminum plate. The depth and the width
were increased gradually in order to simulate corrosion
progression. This thickness loss produced a change in
the waveguide impedance and thus caused (a) scatter-
ing and reflection, (b) modification of the wave speed
of the Lamb waves crossing the corrosion area, and (c)
conversion mode propagation. In practice, corrosion
defects are geometrically complex and require multiple
parameters to describe them and their scattering beha-
viors. Simplified shapes were used, as a uniform notch,
for propagating Lamb wave paths to reduce number of
parameter in order to better understand the changes
caused by material loss. In the HGL model, simulated
corrosion was made on 3.2-mm-thick aluminum plate.

Figure 12. Waveguide problem in 1D solved by the hybrid global–local (HGL) method in time domain: (a) step 1: global 1 using the
software ‘‘WaveFormRevealer’’; (b) step 2: local using FEM software discretization including extended regions for reflection
avoidance in time domain; (a) step 3: global 2 using the software ‘‘WaveFormRevealer.’’
FEM: finite element method; PWAS: piezoelectric wafer active sensor; R: receiver; T: transmitter.

Figure 13. Comparison between the analytical, HGL, and FEM
results of the received signal after a length path of 250 mm; in
this case, HGL means global 1 then local.
HGL: hybrid global–local; FEM: finite element method.

Figure 14. Comparison between the analytical, HGL, and FEM
results of the received signal after a length path of 565 mm; in
this case, HGL means global 1, local, and then global 2.
HGL: hybrid global–local; FEM: finite element method.
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The location of the corrosion was on the middle of the
local zone as described in Figure 16.

Transient analysis of Lamb wave interaction with a
surface notch in a plate is conducted using our HGL
approach using our analytical software WFR and the
commercial ABAQUS software.

Incident wave from the T-PWAS will propagate and
then interact with the notch, undergoing mode conver-
sion. Hence, there will be reflected waves traveling
toward the left edge to be captured by T-PWAS and
transmitted waves traveling toward the right edge to be
captured by the R-PWAS. If the incident wave is fixed,
the reflection and transmission coefficients are affected
by the severity of the structural discontinuity, which, in
this case, is the notch geometry. These coefficients,
when measured experimentally, can be used as a quan-
titative measure to characterize the discontinuity. To
analyze the sensitivity of the Lamb waves to the size of
the notch, the reflection coefficients of A0 and S0 from
the notch are computed using our HGL approach. The
rectangular notches have a constant width of 1 mm
and depth varying from 1 to 3 mm. The results are
shown in Figure 17 for A0 input and in Figure 18 for
S0 input. The reflection coefficients of A0 and S0 from

a notch have been studied by Lowe et al. (2002) and
Lowe and Diligent (2002) by using an in-house FEM
software. The results in Figures 17(a) and 18(a) agree
with their results. Experiments to verify these theoreti-
cal predictions are under way, and the results will be
presented comparatively in a future publication.

The case of A0 input is first discussed based on
Figure 17. The notch depth is normalized by the plate
thickness, d=h. As shown in Figure 17(a), for d=h\0:6,
the notch depth is around 1/20 the wavelength of A0
(which is 12.4 mm). Hence, the wave will transmit
through the notch almost completely with negligible
reflection, which agrees well with the low coefficients
obtained for the reflected A0 wave components. If the
notch spans over the full depth, then the A0 wave is
fully reflected with no conversion. The coefficient for
the reflected A0 wave component approaches 1 and
that for the reflected S0 wave approaches 0. In between
these two extremes, the incident A0 wave will undergo
mode conversion, partially transmitted and partially
reflected containing both A0 and S0 components. It is
also not surprising that in Figure 17(c), the transmitted
S0 coefficient first increases and then decreases with
depth, with the maximum value occurring when the
notch depth is close to half the thickness of the plate.

The reflection, transmission, and mode conversion
coefficients for S0 input are plotted in Figure 18. A
phenomenon similar to the A0 case can be observed
where mode conversion is maximum when notch depth
is about half-plate thickness (Figure 18(b)). Unlike A0,
S0 exhibits good sensitivity even for a shallow notch.
For d=h.0:4, the notch depth is around 1/100 wave-
length of S0 (which is 35.9 mm) and the reflection can
be distinctly observed. This could be due to its small
value at the surface that any change becomes signifi-
cant. The existence of surface crack destroys the sym-
metry of the wave, resulting in mode conversion. It is
shown here that the mode shape also contributes signif-
icantly to the sensitivity of the detection.

Similar analysis can be performed to evaluate the
dependence of the coefficients on notch width, which
for concise reasons will not be discussed in detail. They

Figure 15. Comparison of the signal received after a travel of
565 mm for the analytical model, the experimental results, and
the HGL three-step approach (global–local–global).
HGL: hybrid global–local.

Figure 16. Waveguide problem in 1D solved by the hybrid global–local (HGL) method in time domain: (a) overall HGL setup and
(b) FEM discretization including extended regions to avoid reflection and also a notch in the middle of the interest area.
FEM: finite element method; PWAS: piezoelectric wafer active sensor; R: receiver; T: transmitter.
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Figure 17. Coefficients versus normalized notch depth/thickness ration for A0 input: (a) reflection A0, (b) transmission A0, and (c)
transmission S0 mode conversion.

Figure 18. Coefficients versus normalized notch depth ration for S0 input: (a) reflection S0, (b) transmission S0, and (c)
transmission A0 mode conversion.
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agree well with the results presented by Lowe et al.
(2002) and Lowe and Diligent (2002). The variation of
the coefficients exhibited against notch width is some-
what periodic and relates to the wave numbers of the
Lamb modes.

A damage index (DI) can be computed using the
ratio of the amplitudes of the original and mode-
converted waves as received at the R-PWAS. Figure 19
shows the DI for S0 and A0 input. For d=h<0:2, the
ratio based on the S0 input would be more sensitive
than the A0 input mode. However, for d=h.0:6, the
DI is bigger for A0 mode input. So using the S0 and
the A0 modes, the notch dimension is quantified.

Changes caused by the damage were also quantified
with the root mean square deviation (RMSD) algo-
rithm. The RMSD DI is a scalar quantity that results
from a statistical comparison between the signal in the
present state and the signal in the reference state (base-
line). Such a scalar reveals the difference between pris-
tine data and measurement caused by the presence of
damage and provides an overall change of the structure
between sensors. This feature would be ideal for

corrosion or notch detection since it carries informa-
tion of both the amplitude and the phase changes from
the growth of the corrosion. The RMSD DI is defined
as the relative ratio of the difference between each mea-
surement and baseline signals as follows:

RMSDDI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1

j= 0

si jð Þ � s0 jð Þ½ �2

PN
j= 0

s2
0 jð Þ

vuuuuuut ð14Þ

where si is the ith measurement, s0 the baseline signal
and N the data length.

RMSD DI defined in equation (17) is applied on
each mode (windowed parts). The plotted curves in
Figure 20 show clearly that the RMSD DI of A0 mode
changes significantly with the thickness loss in the plate
between the two PWASs, whereas that for S0 was
almost unchanged. In addition, as shown in Figure 20,
the DI is the same for all the widths. In other term, the
notch detection is not sensitive of the widths but only
on the depths of the notch.

Alleyne and Cawley (1992) investigated the interac-
tion of Lamb waves with notches in plates from both
an FE simulation viewpoint and by experiment. Among
the conclusions of this article was the fact that Lamb
waves could be used to detect notches when the wave-
length to notch depth ratio was of the order of 40. The
wavelength of the 3.2-mm-thick plate at a center fre-
quency of 150 kHz is

� For S0 mode: c= 5388m=s, so l= 35:9mm
� For A0 mode: c= 1853m=s, so l= 12:4mm

Using the conclusion of Alleyne and Cawley, the
minimum of the depth notch detection is R= l=40, so
R= 0:31mm. In our time-domain HGL approach, and

Figure 19. Damage index based on the ratio of the transmitted
mode conversion and the input transmitted for S0 and A0 input.

Figure 20. Root mean square deviation damage index curves versus the depths of the notch for various widths from 0.01 to 0.1
mm of (a) S0 mode and (b) A0 mode.
RMSD: root mean square deviation; DI: damage index.
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using the RMSD DI, the minimum detection of the
depth notch is around 0.1 mm, corresponding to the
wavelength-to-notch ratio with an order of 120 in the-
ory. From these simulations, it is found that, with 99%
of confidence, the minimum detectable depth notch size
is around 0.1 mm.

Conclusion

This article has presented a combined FE and analyti-
cal method to predict the 1D guided-wave propagation
for NDE and SHM application. The FE mesh is used
to describe the region around the defects/flaws. On the
contrary to other hybrid models already developed, the
interaction between Lamb waves and defects is com-
puted in the time domain using the explicit solver of
the commercial FEM software ABAQUS. Compared
to usual FEM model, the main advantage of the hybrid
method is to reduce meaningfully the length of the
mesh used to investigate the interaction of Lamb modes
with defects and hence the computing time. Theory of
guided-wave propagation between two PWAS transdu-
cers was studied and analytical model was built to give
the theoretical waveforms of pitch–catch signals.
Analytical modeling and FE modeling have good
match with experimental results and can well describe
guided-wave propagation between two PWAS
transducers.

A time-domain HGL approach was realized using
the analytical and the FEM for the global area and
the local area, respectively. Lamb wave interaction
with a notch is investigated by using this method, and
the results obtained are consistent with the physical
consideration of Lamb mode shape and energy con-
servation with respect to transmission, reflection, and
mode conversion. Because of the symmetric mode
shape, S0 is more sensitive to the shallow notch than
A0. By making use of the fact that the reflection
increases with increase in notch depth and mode con-
version are maximized when the notch is around half
through the thickness of the plate, the reflection and
conversion coefficients can be used to characterize the
depth of the notch.

For the future work, the analytical model will be
extended to three-dimensional (3D) circular PWAS
analysis using, for example, Bessel function represen-
tation. Thus, we will realize the modeling of the
guided-wave propagation between two circular
PWAS transducers in an arbitrary 2D geometry. The
analytical modeling is expected to include damage/
flaw in the plate structure, more complex structure
(plate with double stiffener), and also include the sec-
ond modes A1 and S1 for higher frequency excitation.
The competitive complexity would be to develop a
time-domain HGL for 2D wave propagation in
structures.
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Predictive modeling of nonlinear wave
propagation for structural health
monitoring with piezoelectric wafer
active sensors

Yanfeng Shen and Victor Giurgiutiu

Abstract
This article presents predictive modeling of nonlinear guided wave propagation for structural health monitoring using
both finite element method and analytical approach. In our study, the nonlinearity of the guided waves is generated by
interaction with a nonlinear breathing crack. Two nonlinear finite element method techniques are used to simulate the
breathing crack: (a) element activation/deactivation method and (b) contact analysis. Both techniques are available in
ANSYS software package. The solutions obtained by these two finite element method techniques compare quite well. A
parametric analytical predictive model is built to simulate guided waves interacting with linear/nonlinear structural dam-
age. This model is coded into MATLAB, and the WaveFormRevealer graphical user interface is developed to obtain fast
predictive waveform solutions for arbitrary combinations of sensor, structural properties, and damage. The predictive
model is found capable of describing the nonlinear wave propagation phenomenon. This article finishes with summary
and conclusions followed by recommendations for further work.

Keywords
Piezoelectric wafer active sensors, nonlinear ultrasonics, Lamb waves, damage detection, structural health monitoring,
nondestructive evaluation, breathing crack, higher harmonics

Introduction

Nonlinear ultrasonic technique, which uses distinctive
higher harmonics and subharmonics features, proves
itself a promising approach to detect incipient changes
which are precursors to structural damage (Jhang,
2009; Kruse and Zagrai, 2009). The combined use of
guided Lamb waves and nonlinear methods is drawing
increasing interest because the nonlinear Lamb waves
are endowed with both sensitivity of nonlinear methods
and large inspection ranges of guided waves.

To date, most studies on nonlinear ultrasonics have
been experimental, demonstrating the capability of
nonlinear Lamb waves to detect structural damage
(Bermes et al., 2007; Cantrell, 2009; Dutta et al., 2009;
Kumar et al., 2009; Nagy, 1998). However, few theore-
tical predictive studies exist especially for nonlinear
Lamb waves. Generation of higher harmonics of Lamb
waves has been investigated theoretically (Deng, 1999,
2003), and the existence of antisymmetric or symmetric
Lamb waves at nonlinear higher harmonics has been
discussed via modal analysis approach and the method
of perturbation (Srivastava and di Scalea, 2009).

However, these theoretical studies considered only the
situations where nonlinearity are present over the
whole domain of wave propagation in the material
(mesoscopic nonlinearity); other cases of nonlinear
wave propagation, such as wave propagation through
localized breathing cracks, are also possible.

When structures are under cyclic fatigue loading,
microscopic cracks will begin to form at the structure
surface, as shown in Figure 1. They need to be found
out before they grow to the critical size and cause cata-
strophic failures. In our study, we want to know what
characteristics the inspection waves will have after inter-
acting with this kind of microscopic cracks, especially
when they behave as nonlinear breathing cracks under
wave cycles.
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When ultrasonic waves reach a microscopic crack,
the crack can be closed and opened under compression
and tension, with the compression part of the waves
penetrating the crack, while the tension part cannot.
The nonlinear phenomenon lies in the fact that the
apparent local stiffness of the crack region changes
under tension and compression.

The interaction of elastic waves with clapping
mechanisms has been studied in the past. Researches
on clapping-induced nonlinearities and higher harmo-
nics have been carried out (Biwa et al., 2004, 2006;
Richardson, 1979). However, most of these investiga-
tions aim at the nonlinearity of elastic bulk waves. Our
study focuses on the modeling aspect of contact acous-
tic nonlinearity (CAN) of Lamb waves, which is a loca-
lized nonlinear phenomenon of dispersive guided waves
and is different from the previous theoretical studies of
nonlinear Lamb waves (Deng, 1999, 2003; Srivastava
and di Scalea, 2009).

Generation of higher harmonics in nonlinear
ultrasonics

A distinctive beneficial feature of nonlinear ultrasonics
is the generation of nonlinear higher harmonics, which
allows us to diagnose the presence and severity of non-
linear damage in structures. There are various mechan-
isms behind generation of higher harmonics in
ultrasonics, for example, nonlinear mesoscopic (hys-
teretic) nonlinearity and CAN. The phenomena of
higher harmonics generation can be illustrated in a sim-
ple way by using a general nonlinear dynamic system
(Hagedorn, 1988; Lee and Choi, 2008; Naugoslnykh
and Ostrovsky, 1998)

U =Ax 1+bx+ gx2 + � � �
� �

ð1Þ

where U is the output of the system, A is a scale factor,
and b and g are the second and third nonlinear coeffi-
cients. Consider a harmonic input

X vð Þ= x̂ � eivt ð2Þ

By substituting equation (2) into equation (1), the out-
put of the nonlinear system takes the form

U =Ax̂eivt +Ab(x̂eivt)2 +Ag(x̂eivt)3 + � � �
=Ax̂eivt +Abx̂x̂ei2vt +Agx̂2x̂ei3vt + � � �
=AX (v)+Abx̂ � X (2v)+Agx̂2 � X (3v)+ � � �

ð3Þ

Equation (3) shows that the output of the nonlinear
system contains higher harmonics 2v, 3v, . . . , while the
input to the system contains only one frequency com-
ponent v. This distinctive feature allows us to detect
material degradation, fatigue, microcracks, or state of
clamping surfaces, which introduce nonlinearity to
structures.

Finite element simulation of Lamb waves
interacting with nonlinear breathing
cracks

A pitch–catch method may be used to interrogate a
plate with a breathing crack which opens and closes
under tension and compression. The ultrasonic waves
generated by the piezoelectric wafer active sensor
(PWAS) propagate into the structure, interact with the
breathing crack, acquire nonlinear features, and are
picked up by the receiver PWAS. This process is shown
in Figure 2.

Two methods are used to model the breathing crack:
(a) element activation/deactivation method and (b) con-
tact analysis. The solving scheme and results from both
methods are discussed and compared.

Element activation/deactivation method

Element activation/deactivation technique could be
described as deactivating and reactivating selected ele-
ments according to certain criteria. To deactivate ele-
ments, the stiffness matrices of the elements are

Figure 1. Microscopic cracks nucleated at structural surface (Corrosion Testing Laboratories, Inc., 2007).
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multiplied by a severe small reduction factor, h (usually
1E26 or smaller), while mass, damping, loads, and
other such effects are set to zero. Thus, upon deactiva-
tion, the element stiffness matrix, mass matrix, and
associated loads will no longer contribute to the assem-
bled global matrices. It should be noted that, through
this approach, the deactivated elements are not
removed from the model, but left in place in a dormant
state with a greatly diminished participation. Similarly,
when elements are activated, they are not added to the
model. Instead, the dormant elements are simply reacti-
vated, recovering their original stiffness, mass, damp-
ing, element loads, and so on. The assembled global
equation will take the following form
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Deactivated global equation
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where Me,Ce,Ke, and, Qe are the elemental mass
matrix, damping matrix, stiffness matrix, and external
loads, respectively. The reduction factor h is very small
(h\\1, typically h\1E � 6). And the symbol F

denotes a zero matrix or vector. Comparing equation
(5) with equation (4), it is apparent that the elements,
after deactivation, will no longer contribute to the
structure because hKe’½F� with h\\1. The nonlinear
effect is imparted by the periodical change of matrices
M ,C, and K.

The solving scheme for this transient dynamic prob-
lem using element activation/deactivation method is
shown in Figure 3. The crack opening or closing status
is judged for each calculation step in the transient anal-
ysis; calculation configuration of the current step is
based on the results of the previous step.

The crack open/close criterion is developed based on
the tension and compression status of the thin layer of
nonlinear elements simulating the breathing crack.
When these elements are under tension, the crack is
considered open. The criterion is shown in the follow-
ing equation

(U2� U1\0) \ (e=

Pn
1

en

n
\0) ð6Þ

where U1 and U2 are the displacements of the two
nodes located on the two edges of the selected element
in crack opening direction. e is the average strain of the
selected elements in crack opening direction. This cri-
terion is developed based on the contact behavior of
the breathing crack and through numerical experi-
ments. Details of this criterion can be found in Shen
and Giurgiutiu (2012). It should be noted that for
mode shapes at high-frequency big plate thickness com-
bination (high fd value), this criterion needs to be mod-
ified by taking into account more nodes across the
crack surface to consider the more complicated contact
behavior.

Steps 2, 3, 4… 

Crack close Crack open 

Step 1 

Initial State 
(Crack Open) 

Criterion 

Crack open calculation 
configuration 

(Elements deactivated) 

Crack close calculation 
configuration 

(Elements reactivated) 

Results

Figure 3. Solving scheme of element activation/deactivation
method.

Figure 2. Pitch–catch method for the detection of breathing crack; the mode conversion at the crack is illustrated by the two
arrows.
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Contact analysis with finite element methods

In the physical world, no penetration will happen
between contact surfaces; however, in finite element
analysis, hypothetical penetration is allowed to ensure
equilibrium. The contact parameters are determined by
(a) Lagrange multiplier or (b) penalty methods. In this
research, the penalty method is adopted. The relation-
ship of penetration and contact tractions is illustrated
in Figure 4, where k is the contact stiffness and DN and
DT are the normal and tangential penetrations.

The choice of contact stiffness is an important part
of contact analysis, because it influences both the accu-
racy and convergence of the solution, and usually calls
for previous experience. When analyzing contact prob-
lem, a dilemma will come to us: a small amount of
penetration will render more accurate results, so we
should chose large contact stiffness; however, this may
lead to ill conditioning of the global stiffness matrix
and to convergence difficulties. Lower stiffness values
can lead to a certain amount of penetration/slip and
make the solution easier to converge but give a less
accurate solution. Thus, we are searching for a high
enough stiffness that the penetration/slip is acceptably

small and render a relatively accurate result, but a low
enough stiffness that the problem will be well behaved
in terms of convergence. ANSYS provides a suggested
value of contact stiffness, which will modified by the
penalty coefficient to achieve both convergence and
accuracy. A common practice is to start from a low
contact stiffness which ensures convergence, check if
the penetration of the contact surfaces is reasonable,
and then increase the penalty coefficient until the sur-
face penetration is reasonably small and solutions
between two sequent penalty coefficients do not
change. The final contact stiffness used in this study is
7.051 31015 Pa.

Finite element model for pitch–catch analysis

Figure 5 shows the finite element model of pitch–catch
method for detection of nonlinear breathing crack.
Two 7mm3 7mm3 0:2mm PWAS are considered ide-
ally bonded on a 2-mm-thick aluminum plate. The
plate is long enough to ensure the received signals are
not influenced by boundary reflections. The crack is
located at 200 mm from the transmitter, such that the
S0 and A0 wave packets have already separated before
they arrive at the crack location; hence the S0 and A0
wave packets interact with the breathing crack indivi-
dually, which allows us to see how the crack interacts
with S0 and A0 waves.

The plate is made of aluminum 2024-T3 with
Young’s modulus of 72.4 GPa, density of 2700 kg/m3,
and Poisson’s ratio of 0.33. The APC-850 material
properties are assigned to the PWAS as follows

Cp

� �
=

97 49 49 0 0 0

49 84 49 0 0 0

49 49 97 0 0 0

0 0 0 24 0 0

0 0 0 0 22 0

0 0 0 0 0 22

2
6666664

3
7777775
GPa ð7Þ

Figure 5. Nonlinear finite element model of breathing crack.

N  

T

k

nornal normal NF k= Δ

Δ

Δ slip slip TF k= Δ

Figure 4. Penetration between contact surfaces showing
contact tractions (Hughes et al., 1975).
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� �
=
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2
4

3
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ð9Þ

where Cp

� �
is the stiffness matrix, ep

� �
is the dielectric

matrix, and ep

� �
is the piezoelectric matrix. The

density of the PWAS material is assumed to be
r= 7600 kg/m3.

The finite element model is built under the plane
strain assumption. PWAS transducers are modeled
with coupled field elements (PLANE13) which couple
the electrical and mechanical variables (ANSYS 13.0
Multi-Physics). The plate is modeled with four-node
structure element PLANE182 with ‘‘element birth and
death’’ capability. A 20 vpp 5-count Hanning window
modulated sine tone burst signal centered at 100 kHz is
applied on the top electrode of the transmitter PWAS.
The plate is under free boundary condition.

To solve this problem with good accuracy and high
efficiency, a meshing strategy of varying density needs
to be performed. The maximum acceptable element size
and time step to ensure accuracy are shown in the fol-
lowing equations (Moser et al., 1999)

le =
lmin

20
ð10Þ

Dt =
1

20 fmax
ð11Þ

For the excitation centered at 100 kHz, we considered
the maximum frequency of interest up to 400 kHz, con-
taining up to the third higher harmonic. The dispersion
curve is calculated by solving the Rayleigh–Lamb equa-
tion and shown in Figure 6(a). The frequency–
wavelength relationship is obtained using equation (12)
from the dispersion data and plotted in Figure 6(b). The

minimum wavelength at 400 kHz appears in A0 mode at
5.478 mm. According to equation (10), the maximum
element size should be 0.275 mm. According to equation
(11), for 400 kHz, the maximum time step is 0.125 ms

l=
c

f
ð12Þ

Since the mechanical response at crack zone is very
complicated, the crack zone is more densely meshed.
The region between the breathing crack and the recei-
ver has a mesh size of 0.25 mm (smaller than 0.275) to
accurately depict up to the third higher harmonic. A
time step of 0.125 ms is adopted. In the element activa-
tion/deactivation method, a very thin layer of nonlinear
elements (0.1 mm thick) at the crack zone are selected
to be deactivated and reactivated. For the contact anal-
ysis, the contact pair is constructed using contact ele-
ments (CONTA172 and TARGE169).

The severity of damage is represented by the number
of elements selected to be deactivated and reactivated.
We define the damage severity as the index where
r = a=h (a and h are the crack size and plate thickness,
respectively). An index of r = 0:0 corresponds to pris-
tine condition, where there is no crack in the plate. In
our simulation, we used 20 elements across the thick-
ness at the crack zone. Different damage severities
r = 0:6, 0:5, 0:4, 0:3, 0:2, 0:1, and 0:0 are generated by
selecting 12, 10, 8, 6, 4, 2, and 0 elements. ANSYS uses
an average nodal solution for data postprocessing.
Hence, the deactivated elements must be excluded from
the average process to avoid result contamination. To
highlight the effect of nonlinear wave propagation
through a breathing crack, the linear wave propagation
through the crack is also investigated.

Finite element method simulation results and
discussions

The r = 0:6 case is used as a representative for demon-
strating Lamb waves interacting with a breathing crack

0 1000 2000 3000 4000
0

2

4

6

8

10
Dispersion Curve

Frequency (kHz)

W
av

e 
sp

ee
d 

(k
m

/s
)

0 200 400 600 800 1000
0

20

40

60

80

100

X: 400
Y: 5.478

Frequency wavelength curve

Frequency (kHz)

W
av

el
en

gt
h 

(m
m

)

(a) (b)

A0

S0

A1 S1

A2

S2

A0

S0 A1

Figure 6. (a) Dispersion curve and (b) frequency wavelength curve.
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and is shown in Figure 7. The same crack behavior
could be observed from both the element activation/
deactivation method and contact analysis. It is noticed
that the tension part of the Lamb waves opens the crack
and do not penetrate through it. On the contrary, the
compression part of the Lamb waves closes the crack
with collision between crack surfaces; hence, the com-
pression part of the Lamb wave can penetrate into the
crack.

Figure 8 shows the waveforms of Lamb waves after
linear interaction with the crack (Figure 8(a)) and the
waveforms of Lamb waves after nonlinear interaction
with a breathing crack (Figure 8(b)).

It can be observed that compared with pristine con-
dition, the cracked plate signal has a slight amplitude
drop and phase shift in both S0 and A0 packets.
Another difference is that a new wave packet appears
due to the presence of the crack. This new packet is
introduced by mode conversion and contains both S0
packet converted A0 mode and A0 packet converted
S0 mode. The linear crack signal is smooth, but the
nonlinear breathing crack signal has small zigzags.

The S0, A0, and new wave packets were extracted
from the whole time-history using Hanning window
and then Fourier transformed. Frequency spectrums of
S0, A0, and the new wave packets of r = 0.6 case for

Crack opens under tension for S0 mode

Crack closes under compression for A0 modeCrack closes under compression for S0 mode

Crack opens under tension for A0 mode

Tensile part of Lamb wave 
does not penetrate

Stress concentration at 
the crack tip

Compressional part of Lamb 
wave penetrates the crack

Collision between crack surfaces

(Pa)

Figure 7. Finite element method simulation of Lamb waves interacting with breathing crack.

Figure 8. Superposed time-domain simulation signals at receiver piezoelectric wafer active sensor for pristine (r = 0) and cracked
(r = 0.6) cases: (a) linear crack analysis and (b) nonlinear breathing crack analysis.
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linear crack signal and nonlinear breathing crack signal
are carried out and plotted in Figures 9 and 10, respec-
tively. For all the wave packets, the pristine signal does
not show any higher frequency components. Figure 9
shows, for the linear crack case, all the wave packets
show only the fundamental excitation frequency at 100
kHz. It should be noted that there are no higher har-
monics for linear interaction between Lamb waves and
the crack.

However, the signal from breathing crack plate
shows distinctive nonlinear higher harmonics. Figure
10(a) shows nonlinear higher harmonics in the S0 wave
packet. Since the excitation frequency is centered at 100
kHz, the 102.8-kHz peak corresponds to the excitation
frequency, and the 203.1 and 300.5 kHz correspond to
second and third higher harmonics, respectively. It
should be noted that the higher harmonics below 400
kHz can be accurately simulated according to the dis-
cussions on the mesh size and time step. The frequency
components calculated beyond 400 kHz cannot be cor-
rectly described and predicted by the finite element
mesh employed. For the A0 wave packet (Figure
10(c)), the first peak corresponds to the excitation fre-
quency, and the second higher harmonic could be
clearly observed at 198.2 kHz, but the third harmonic
is somehow missing. This phenomenon is due to the
tuning effect of PWAS and plate structure combina-
tion (Giurgiutiu, 2005). The tuning curve shown in
Figure 10(d) indicates that at around 300 kHz, where
the third harmonic should appear, the A0 mode
reaches its rejection point. In other words, for the
given PWAS and plate structure, this frequency could
not be detected due to the rejection effect at the recei-
ver PWAS. Analysis of the observed ‘‘new packet’’
(Figure 10(b)) also reveals the nonlinear higher har-
monics pattern. In this new packet, the feature of
nonlinear higher harmonics seems to be more obvious
than in the S0 and A0 packets. And the spectral

amplitudes of the higher harmonics are closer to that
of the excitation.

To diagnose the severity of this nonlinear damage,
the results of all the damage severities are compared.
The square root of spectral amplitude ratio of second
harmonic to excitation frequency is adopted to show
the degree of signal nonlinearity, which may serve as a
damage index (DI), that is

DI=

ffiffiffiffiffiffiffiffiffiffiffiffi
A(2fc)

A(fc)

s
ð13Þ

where A(fc) and A(2fc) denote the spectral amplitude at
the excitation frequency and the second higher harmo-
nic. The variation of DI with crack damage intensity is
shown for S0 and A0 packets in Figure 11(a) and for
the new packet in Figure 11(b). It can be observed that
the amplitude ratio DI is relatively small for both S0
and A0 packets, but it is quite big for the new wave
packet even at small damage severity. The DI for S0
and A0 has a monotonically increasing relationship
with the crack damage intensity. So the DI from the
new packet could serve as an early indicator for the
presence of a breathing crack, and the DI for the S0
and A0 packets can serve as an indicator of damage
severity.

Comparison of numerical results between two
nonlinear finite element methods

The numerical results from element activation/deacti-
vation method and the contact analysis are compared.
The superposed time-domain simulation signals and
frequency spectrum from the two finite element meth-
ods for r = 0:6 case are shown in Figure 12(a) and (b).
It could be observed that the solutions from these two
methods agree well with each other. S0 packet has bet-
ter accuracy; A0 and new packet have slight phase and
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Figure 9. Frequency spectrum of the Lamb wave signals after linear interaction with a crack: (a) S0 mode, (b) new packet, and (c)
A0 mode. Note the absence of higher harmonics.

512 Journal of Intelligent Material Systems and Structures 25(4)



amplitude difference. In the frequency spectrum, it
could be noticed that at lower frequency range (with
two harmonics range) the two methods have good
match, but at higher frequency they deviate from each
other.

The difference between two solutions are measured
and presented by the nondimensional L2 norm

ue � uck k=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1

ue � ucð Þ2

PN
1

u2
c

vuuuuuut ð14Þ

where ue and uc are the solutions from element
activation/deactivation method and contact analysis and
N is the number of solution points in the time-domain
signal. The L2 norm values for r = 0:1, 0:2, 0:3, 0:4,
0:5, and 0:6 cases are plotted in Figure 13. It could be
observed that for all the damage severity cases, both
methods match stably well with each other.

Analytical modeling of Lamb waves
interacting with nonlinear structural
damage

Figure 14 shows the pitch–catch active sensing method
for damage detection: the T-PWAS transducer gener-
ates ultrasonic-guided waves which propagate into the
structure, interact with structural damage at x= xd ,
carry the damage information with them, and are
picked up by the R-PWAS transducer at x= xr.

To model the damage effect on Lamb wave propa-
gation, we consider the damage as a new wave source
at x= xd and we add mode conversion and nonlinear
sources at the damage location through damage inter-
action coefficients. The predictive analytical model for
Lamb wave interaction with damage is constructed in
frequency-domain in the following steps:

Step 1. Perform Fourier transform of the time-
domain excitation signal VT (t) to obtain the
frequency-domain excitation spectrum, ~VT (v).

0 200 400 600 800 1000

10-2

100

102
Fourier transform of S0

Frequency  (kHz)

M
ag

ni
tu

de
prisitne
r = 0.6

0 200 400 600 800 1000
10-4

10-2

100

Fourier transform of new packet

Frequency  (kHz)

M
ag

ni
tu

de

pristine
r = 0.6

0 200 400 600 800 1000

100

Fourier transform of A0

Frequency  (kHz)

M
ag

ni
tu

de

pristine
r = 0.6

0 200 400 600 800 1000
0

50

100

150

200
Tuning curve for S0 and A0

Frequency (kHz)

A
m

pl
itu

de

S0
A0

Rejecting point 

Peak missing 

102.8 

203.1 

300.5 

103.1 

201.2 
296.1 

96.2 

198.2 A0
S0 

(a)

(d)(c)

(b)

Nonlinear breathing crack analysis 

Pristine 

Pristine Pristine

Nonlinear crack r = 0.6

Nonlinear crack r = 0.6 

Nonlinear crack r = 0.6

Figure 10. Frequency spectrum of the Lamb wave signals after nonlinear interaction with a crack: (a) S0 mode, (b) new packet, (c)
A0 mode, and (d) tuning curves for A0 and S0 modes explaining the missing A0 peak in (c). Note the presence of distinctive
nonlinear higher harmonics.

Shen and Giurgiutiu 513



Step 2. Calculate the frequency-domain structural
transfer function G(xr,v) from T-PWAS to R-
PWAS. The structure transfer function G xr,vð Þ is
given by equation (99) of Giurgiutiu (2007: 327),
which gives the in-plane wave strain at the plate sur-
face as

ex x, tð Þ= � i
at0

m

X
jS

( sin jSa)
NS jS
� �

D9
S jS
� � e�i jSx�vtð Þ

8<
:

+
X

jA

( sin jAa)
NA jA
� �

D9
A jA
� � e�i jAx�vtð Þ

9=
; ð15Þ

where j is the frequency-dependent wavenumber of
each Lamb wave mode and the superscripts S and A
refer to symmetric and antisymmetric Lamb wave
modes. If only the two fundamental modes, S0 and A0,
are present, then G xr,vð Þ can be written as

G xr,vð Þ= S vð Þe�ijSxr +A vð Þe�ijAxr

S vð Þ= kPWAS sin jSa
NS jS
� �

D9
S jS
� � ,

A vð Þ= kPWAS sin jAa
NA jA
� �

D9
A jA
� � ð16Þ

where
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Figure 12. Comparison between signals from element activation/deactivation method and contact analysis (a) time-domain signal
and (b) frequency spectrum.
PWAS: piezoelectric wafer active sensor.
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Ns jð Þ= jb j2 +b2
� �

cosad cosbd;

Ds = j2 � b2
� �2

cosad sinbd + 4j2ab sinad cosbd

NA jð Þ= jb j2 +b2
� �

sinad sinbd;
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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r
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at0

m

ð17Þ

where kPWAS is the complex transduction coefficient
that converts applied voltage into guided wave strain at
the T-PWAS, a half length of PWAS size, and d plate
half thickness. The modal participation functions S(v)
and A(v) determine the amplitudes of the S0 and A0

wave modes. The terms sin (jSa) and sin (jAa) control
the tuning between the PWAS transducer and the
Lamb waves. l and m are Lame’s constants of the
structural material; r is the material density. The wave-
number j of a specific mode for certain frequency v is
calculated from Rayleigh–Lamb equation

tanbd

tanad
=

�4abj2

j2 � b2
� �2

" #61

ð18Þ

where +1 exponent corresponds to symmetric Lamb
wave modes and 21 exponent corresponds to antisym-
metric Lamb wave modes.

Step 3. Multiply the structural transfer function by
frequency-domain excitation signal to obtain the
frequency-domain signal at the damage location,
that is, ~VD xd ,vð Þ=G xd ,vð Þ � ~VT vð Þ. Hence, the sig-
nal at the damage location is

~VD xd ,vð Þ= S vð Þ~VT (v)e
�ijS xd +A vð Þ~VT (v)e

�ijAxd ð19Þ

This signal could be decomposed into symmetric and
antisymmetric components

~V S
D xd ,vð Þ= S vð Þ~VT (v)e

�ijSxd ð20Þ

~V A
D xd ,vð Þ=A vð Þ~VT (v)e

�ijAxd ð21Þ

Step 4. The wave signal at the damage location takes
the damage information by considering transmis-
sion, reflection, mode conversion, and higher har-
monics. Each of these addition phenomena is
modeled as a new wave source at the damage loca-
tion using damage interaction coefficients
(Figure 15). We distinguish two damage interaction
types: (a) linear and (b) nonlinear, as discussed next.

Figure 14. A pitch–catch configuration between a transmitter PWAS and a receiver PWAS.
PWAS: piezoelectric wafer active sensor.
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Linear damage interaction. Wave transmission,
reflection, and mode conversion are realized by
using complex-amplitude damage interaction coeffi-
cients. Our notations are as follows: we use three let-
ters to describe the interaction phenomena, with the
first letter denoting the incident wave type, the sec-
ond letter standing for resulting wave type, and
the third letter meaning propagation direction
(transmission/reflection). For instance, SST (sym-
metric-symmetric-transmission) means the incident
symmetric waves transmitted as symmetric waves,
while SAT (symmetric-antisymmetric-transmission)
means incident symmetric waves transmitted and
mode converted to antisymmetric waves. Thus, the
complex-amplitude damage interaction coefficient
CSST � e�iuSST denotes the transmitted symmetric mode
generated by incident symmetric mode with magni-
tude CSST and phase uSST . Similarly, CSAT � e�iuSAT rep-
resents the transmitted antisymmetric mode generated
by incident symmetric mode with magnitude CSAT

and phase uSAT . These coefficients are determined by
the features of the damage and are to be imported
into the WaveFormRevealer (WFR) model.
Nonlinear damage interaction. The center frequency
of waves arriving at the damage location can be
obtained from equations (20) and (21) as vc. The
second and third higher harmonics act as wave
sources with center frequencies of 2vc and 3vc,
respectively. Modeling of higher harmonics is
achieved by moving the frequency-domain signal at
the damage location to the right-hand side of
the frequency axis by vc and 2vc, that is,
~V2D xd ,vð Þ= ~VD xd ,v� vcð Þ and ~V3D xd ,vð Þ= ~VD

xd ,v� 2vcð Þ represent the second and third higher
harmonics nonlinear wave source.

The nonlinear damage interaction coefficients are
defined in the same way as the linear ones. For instance,
the complex-amplitude damage interaction coefficient
CM

SST
� e�iuM

SST denotes the Mth higher harmonics

transmitted symmetric mode generated by incident
symmetric mode with magnitude CM

SST
and phase uM

SST
.

Step 5. The guided waves from the new wave
sources created at the damage location propagate
through the rest of the structure and arrive at the R-
PWAS. The received wave signal is calculated in
frequency-domain as

~V R xd , xr,vð Þ=Xm

M = 1

CM
SST e�iuM

SST � ~V S
MD xd ,vð Þ+CM

AST e�iuM
AST � ~V A

MD xd ,vð Þ
h i

e�ijS xr�xdð Þ

+
Xm

M = 1

CM
AAT e�iuM

AAT � ~V A
MD xd ,vð Þ+CM

SAT e�iuM
SAT � ~V S

MD xd ,vð Þ
h i

e�ijA xr�xdð Þ

ð22Þ

whereM is the number of higher harmonics considered.
For linear interaction with damage, M equals to one.

Step 6. Perform inverse Fourier transform to obtain
the time-domain receiver sensing signal

VR(xd , xr, t)= IFFTf~VR(xd , xr,v)g ð23Þ

The analytical procedure is coded in MATLAB and
resulted in the graphical user interface (GUI) called
WFR as shown in Figure 16(a). Full details of this
GUI and MATLAB code are available in Shen and
Giurgiutiu (2012). The linear interaction between
guided waves and damage is described by the transmis-
sion, reflection, and mode conversion parameters as
shown in Figure 16(b). For example, SST represents
the magnitude of transmitted S0 mode generated by an
incoming S0 mode; whereas SAT and phi-SAT repre-
sent the magnitude and phase of the transmitted A0
mode resulting from the mode conversion of an incom-
ing S0 mode.

For the purpose of this study, we have also intro-
duced nonlinear parameters representing the result of
the nonlinear interaction between the incoming guided

Figure 15. Modeling wave transmission, reflection, mode conversion, and higher harmonics components.
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waves and the nonlinear damage. The nonlinear para-
meters are represented by the magnitude and phase of
the second and third harmonic waves (transmitted,
reflected, mode converted).

The values of these damage-interaction coefficients
are not calculated by the WFR code. These coefficients
may be determined experimentally or calculated
through other methods: analytical, finite element
method (FEM), boundary element method (BEM), etc.
In this study, we used a trial-and-error approach to
tune the WFR coefficients to the data simulated by the
FEM analysis (similar tuning could be done with
experimental data, and this approach may be tried in a
future study). The tuning procedure is taken out via
comparing the analytical solution with FEM results and
adjusting the damage interaction coefficients in WFR
until both results match with each other. The beneficial
aspect of this analytical model is that one would not need
to run the FEM model for the whole geometric domain.
A local FEM mesh can provide the damage interaction
coefficients. A local–global method then could be applied
to find the predictive sensing signal (Gresil and
Giurgiutiu, 2013a, 2013b). This will greatly enhance the
computational efficiency of the target problem.

WFR allows users to conduct fast parametric stud-
ies. It may take several hours for commercial finite ele-
ment software to obtain an acceptable-accuracy
solution for high-frequency, long-distance propagating
waves; but it takes only several seconds to obtain the

same predictive solution with WFR. Besides, the WFR
allows the user to play with all the parameters: PWAS
size, plate material properties, sensor/damage locations,
and damage type (linear/nonlinear damage with vari-
ous severities).

Predictive solution of parametric analytical model for
nonlinear wave propagation

The parametric analytical model is used to predict the
nonlinear waveform of finite element simulations. The
transmission, mode conversion coefficients, and phase
information are obtained from the finite element
results. In our analytical model, only the first three har-
monics are considered (totally 12 variables need to be
defined). The coefficients are shown in Table 1 and
input into the WFR.

Figure 17 shows the comparison between finite ele-
ment simulation and analytical solution from WFR. It
is noticed that once the parameters for the analytical
solution are given, the finite element simulation result
and the analytical solution agree well with each other.
The time-domain waveforms share the same nonlinear
characteristics of noticeable zigzags in the new packet,
and the frequency spectrums match well with each
other as well. Since we only consider up to the third
higher harmonic in this parametric analytical case
study, the frequency-domain of analytical solution
shows only the first three peaks, while the finite element

Figure 16. Graphical user interface of WFR. (a) General penal showing transmission and reception signals and (b) panel for
insertion of damage interaction parameters.
WFR: WaveFormRevealer.
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solution have even higher harmonics. But the solution
up to the third higher harmonics is accurate enough to
render a decent waveform in time-domain. Given the
damage-interaction parameters (DIPs), this predictive
model can well describe high-frequency, long-distance,
linear/nonlinear wave propagation.

Summary, conclusions, and future work

Summary

In this study, we presented predictive modeling of non-
linear guided wave propagation for structural health
monitoring using both FEM and analytical approach.

The nonlinearity of the guided waves was generated by
interaction with a nonlinear breathing crack. Two non-
linear FEM techniques were used to simulate the
breathing crack: (a) element activation/deactivation
method and (b) contact analysis. The solutions
obtained by these two FEM techniques compared
quite well. A linear FEM analysis of this situation
was also performed. A parametric analytical predic-
tive model was built to simulate guided waves interac-
tion with linear/nonlinear structural damage. This
model was coded into MATLAB, and the WFR GUI
was developed to obtain fast predictive waveform
solutions for arbitrary combinations of sensor, struc-
tural properties, and damage.

Table 1. Magnitude and phase parameters to input into analytical solution.

Magnitude coefficient C1
SST C1

SAT C1
AAT C1

AST C2
SST C2

SAT C2
AAT C2

AST C3
SST C3

SAT C3
AAT C3

AST

Value (normalized) 0.900 0.420 0.820 0.100 0.082 0.100 0.050 0.110 0.032 0.038 0.005 0.025
Phase coefficient u1

SST u1
SAT u1

AAT u1
AST u2

SST u2
SAT u2

AAT u2
AST u3

SST u3
SAT u3

AAT u3
AST

Value (�) 0 100 235 90 0 0 120 90 0 0 0 0

0 50 100 150 200 250 300 350

-1

-0.5

0

0.5

1

Comparison between FEM and WFR

Time (microsecond)

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 200 400 600 800 1000

10
-5

10
0

Frequency spectrum of S0 packet

Frequency  (kHz)

M
ag

ni
tu

de

0 200 400 600 800 1000

10
-5

10
0

Frequency spectrum of A0 packet

Frequency  (kHz)

M
ag

ni
tu

de

0 200 400 600 800 1000

10
0

Frequency spectrum of new packet

Frequency  (kHz)

WFR

FEM

FEM

WFR

FEM FEM

WFR WFR

Figure 17. Comparison between FEM and analytical simulation (WFR).
FEM: finite element simulation; WFR: WaveFormRevealer.
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Conclusions

It was found that the two FEM methods considered in
this study can simulate equally well the nonlinear beha-
vior of the breathing crack. It was found that the non-
linear interaction between guided waves and the
breathing crack generates higher harmonics which were
not found in the linear FEM simulation. A DI was pro-
posed based on the amplitude ratio of the signal spec-
tral harmonics to relate the signal nonlinearity with
damage severity. This DI was applied to the S0 and A0
wave packets as well as to a new packet resulting from
the interaction between the guided waves and the dam-
age. It was found that the DI of the new packet is more
sensitive to the presence of the crack, while the DIs of
the S0 and A0 packets can provide monitoring infor-
mation on the damage severity. It was found that the
analytical predictive model WFR can predict the non-
linear effect in the signal using DIPs which were
obtained by ‘‘trial and error.’’ It was also found that
computational time savings of several orders of magni-
tude are obtained by using the analytical model WFR
instead of FEM methods.

Future work

The behavior of breathing crack under different interro-
gating wave amplitude should be studied, as well as the
transition requirement from initially opened or closed
crack into breathing crack. Experiments should be per-
formed to verify these theoretical predictions. Rational
methods of determining DIP values need to be found
(not trial and error). Work should be carried out to
extend the analysis to two-dimensional (2D) wave pro-
pagation (three-dimensional (3D) FEM and 2DWFR).
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WaveFormRevealer: An analytical
framework and predictive tool for the
simulation of multi-modal guided wave
propagation and interaction with
damage

Yanfeng Shen and Victor Giurgiutiu

Abstract
This article presents the WaveFormRevealer—an analytical framework and predictive tool for the simulation of guided
Lamb wave propagation and interaction with damage. The theory of inserting damage effects into the analytical model is
addressed, including wave transmission, reflection, mode conversion, and nonlinear higher harmonics. The analytical
model is coded into MATLAB, and a graphical user interface (WaveFormRevealer graphical user interface) is developed
to obtain real-time predictive waveforms for various combinations of sensors, structural properties, and damage. In this
article, the main functions of WaveFormRevealer are introduced. Case studies of selective Lamb mode linear and non-
linear interaction with damage are presented. Experimental verifications are carried out. The article finishes with sum-
mary and conclusions followed by recommendations for further work.

Keywords
Guided waves, structural health monitoring, damage detection, piezoelectric wafer active sensors, analytical model, non-
linear ultrasonics

Introduction

Guided waves retain a central function in the develop-
ment of structural health monitoring (SHM) systems
using piezoelectric wafer active sensor (PWAS) princi-
ples. The modeling of Lamb waves is challenging,
because Lamb waves propagate in structures with
multi-mode dispersive characteristics. At a certain
value of the plate thickness-frequency product, several
Lamb modes may exist simultaneously, and their phase
velocities vary with frequency.1–3 When Lamb waves
interact with damage, they will be transmitted,
reflected, scattered, and mode converted. Nonlinear
interaction with damage may also exist, and this will
introduce distinctive features like higher harmonics.4–6

These aspects give rise to the complexity of modeling
the interaction between Lamb waves and damage. To
solve such complicated problems, numerical methods
like finite element method (FEM) and boundary ele-
ment method (BEM) are usually adopted. However, to
ensure the accuracy of simulating high-frequency waves
of short wavelengths, the transient analysis requires
considerably small time step and very fine mesh

(T=Dt; l=lFEM � 20 ; 30), which is expensive both in
computational time and computer resources.7,8

Analytical model provides an alternative approach to
attack the same problem with much less cost.9

PWAS transducers are a convenient way of transmit-
ting and receiving guided waves in structures for SHM
applications.3 The analytical model of PWAS-generated
Lamb waves and its tuning effect has been investigated,
and a close-form solution for straight crested guided
Lamb wave was derived by Giurgiutiu.10 Extension of
tuning concepts to 2D analytical models of Lamb waves
generated by finite-dimensional piezoelectric transdu-
cers was given in Raghavan and Cesnik.11 These analy-
tical developments facilitate the understanding of
PWAS-coupled Lamb waves for SHM applications.
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However, these analytical solutions only applied to
guided wave propagation in pristine structures, whereas
the use of Lamb waves in SHM applications requires
that their interaction with damage also be studied.
After interacting with damage, Lamb waves will carry
damage information resulting in waveforms with spe-
cial characteristics (phase change, new wave packets
generation through mode conversion, higher harmonic
components, etc.), which need to be investigated for
damage detection.

Several investigators have studied the interaction
between guided waves and damage analytically using
normal-mode expansion and boundary-condition
matching.12–18 Damage interaction coefficients were
derived to quantify the guided wave transmission,
reflection, mode conversion, and scatter at the damage
site. Due to their mathematical complexity, these analy-
tical solutions are restricted to simple damage geome-
tries: notches, holes, and partially through holes.
Extension to more complicated damage geometries has
been attempted through series expansion of the rugged
damage contour. In the generic case of arbitrary-shape
damage, the numerical approaches using space discreti-
zation (FEM, BEM) are used due to their convenience,
but on the expense of orders of magnitude increase in
computational time and/or computer resources.

The design of a SHM system requires computation-
ally efficient predictive tools that permit the exploration
of a wide parameter space to identify the optimal com-
bination between the transducers type, size, number,
and guided wave characteristics (mode type, frequency,
and wavelength) to achieve best detection and quantifi-
cation of a certain damage type. Such parameter space
exploration desiderate can be best achieved with analy-
tical tools which are fast and efficient.

In this article, we describe an analytical approach
based on the one-dimensional (1D) (straight crested)
guided wave propagation analysis. In our study, we
inserted the damage effect into the analytical model by
considering wave transmission, reflection, mode con-
version, and higher harmonics components described
through damage interaction coefficients at the damage
site. We do not attempt to derive these damage interac-
tion coefficients here, but assume that they are available
either from literature or from FEM, BEM analysis per-
formed separately in a separate computational module.
This analytical approach was coded into MATLAB
and the WaveFormRevealer (WFR) graphical user
interface (GUI) was developed. The WFR can generate
fast predictions of waveforms resulting from Lamb
wave interaction with damage for arbitrary positioning
of PWAS transmitters and receivers with respect to
damage and with respect to each other. The users may
choose their own excitation signal, PWAS size, struc-
tural parameters, and damage description. The current

version of the WFR code is limited to 1D (straight
crested) guided wave propagation; extension of this
approach to two-dimensional (2D) (circular crested)
guided wave propagation will be attempted in the
future.

PWAS Fundamentals

PWAS couple the electrical and mechanical effects
(mechanical strain, Sij; mechanical stress, Tkl; electrical
field, Ek ; and electrical displacement, Dj) through the
tensorial piezoelectric constitutive equations

Sij ¼ sE
ijklTkl þ dkijEk

Dj ¼ djklTkl þ eT
jkEk

ð1Þ

where sE
ijkl is the mechanical compliance of the material

measured at zero electric field (E ¼ 0), eT
jk is the dielec-

tric permittivity measured at zero mechanical stress
(T ¼ 0), and djkl represents the piezoelectric coupling
effect. PWAS utilize the d31 coupling between in-plane
strains, S1; S2, and transverse electric field E3.

PWAS transducers can be used as both transmitters
and receivers. Their modes of operation are shown in
Figure 1. PWAS can serve several purposes3: (a) high-
bandwidth strain sensors, (b) high-bandwidth wave
exciters and receivers, (c) resonators, and (d) embedded
modal sensors with the electromechanical (E/M) impe-
dance method. By application types, PWAS transducers
can be used for (a) active sensing of far-field damage
using pulse-echo, pitch-catch, and phased-array meth-
ods, (b) active sensing of near-field damage using high-
frequency E/M impedance method and thickness gage
mode, and (c) passive sensing of damage-generating
events through detection of low-velocity impacts and
acoustic emission at the tip of advancing cracks
(Figure 1). The main advantage of PWAS over conven-
tional ultrasonic probes is in their small size, light-
weight, low profile, and small cost. In spite of their
small size, PWAS are able to replicate many of the
functions performed by conventional ultrasonic probes.

Analytical modeling of Lamb waves
interacting with damage

Analytical modeling of guided Lamb waves
propagation in a pristine structure

One aspect of the difficulties in modeling Lamb wave
propagation is due to their multi-mode feature. WFR
is capable of modeling multi-mode Lamb wave propa-
gation in structures. From Rayleigh–Lamb equation, it
is found that the existence of certain Lamb mode
depends on the plate thickness-frequency product. The
fundamental S0 and A0 modes will always exist, but
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the higher modes will only appear beyond the cutoff
frequencies.1

This section describes how an electrical tone burst
applied to a transmitter PWAS (T-PWAS) transducer
propagates through a structural waveguide to the recei-
ver PWAS (R-PWAS) transducer in pitch-catch mode
(Figure 2).

The propagation takes place through ultrasonic
guided Lamb waves which are generated at the
T-PWAS through piezoelectric transduction and then
captured and converted back into electric signal at the
R-PWAS. Since several Lamb wave modes traveling
with different wave speeds exist simultaneously, the
electrical tone-burst applied on the T-PWAS will

generate several wave packets. These wave packets will
travel independently through the waveguide and will
arrive at different times at the R-PWAS where they are
converted back into electric signals through piezoelec-
tric transduction. The predictive analytical model for
Lamb wave propagation between the T-PWAS and R-
PWAS is constructed in frequency domain in the fol-
lowing steps (Figure 3(a)).

Step 1. Perform Fourier transform of the time-domain
excitation signal VT ðtÞ to obtain the frequency-domain
excitation spectrum, ~VT ðvÞ. For a tone burst, the signal
VT ðtÞ and its Fourier transform ~VT ðvÞ are shown in
Figure 4.

Step 2. Calculate the frequency-domain structural trans-
fer function Gðxr;vÞ from T-PWAS to R-PWAS. The
structure transfer function Gðxr;vÞ is given in equation
(99) in the study by Giurgiutiu,3 page 327, which gives
the in-plane wave strain at the plate surface as

ex x; tð Þ ¼ �i
at0

m

X
jS

ðsin jSaÞ
NS jS
� �

D
0
S jS
� � e�i jSx�vtð Þ

8<
:

þ
X

jA

ðsin jAaÞ
NA jA
� �

D0A jA
� � e�i jAx�vtð Þ

)
ð2Þ

Figure 1. Schematic of PWAS application modes (from Giurgiutiu19): (a) propagating Lamb waves, (b) standing Lamb waves (E/M
impedance), and (c) PWAS phased arrays.
E/M: electromechanical; PWAS: piezoelectric wafer active sensor; AE: acoustic emission.
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transduction
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Ultrasonic guided waves from T-PWAS 
undergo dispersion according to structural 

transfer function ( ),rG x ω

Receiver PWAS 
Signal: ( ),R rV x ω

T-PWAS R-PWAS 

x = 0 x=xr

Figure 2. A pitch-catch configuration between a transmitter
PWAS (T-PWAS) and a receiver PWAS.
PWAS: piezoelectric wafer active sensor.
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where j is the frequency-dependent wavenumber
of each Lamb wave mode and the superscripts S and
A refer to symmetric and antisymmetric Lamb
wave modes. If only the two fundamental modes,
S0 and A0, are present, then Gðxr;vÞ can be written
as

G xr;vð Þ ¼ S vð Þe�ijS xr þ A vð Þe�ijAxr

S vð Þ ¼ kPWAS sin jSa
NS jS
� �

D0S jS
� � ;

A vð Þ ¼ kPWAS sin jAa
NA jA
� �

D0A jA
� � ð3Þ

Perform inverse Fourier transform

( ) ( ){ }, ,T r R rV x t IFFT V x ω= �

Mul�ply excita�on with 
structural transfer func�on

( ) ( ) ( ), ,R r r TV x G x Vω ω ω=� �i

Calcula�on of structural 
transfer func�on

( ),rG x ω

Fourier transform of 
excita�on signal

( ) ( )
FFT

T TV t V ω→ �
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structural transfer func�on from damage 
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New wave source
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Figure 3. WaveFormRevealer flow charts: (a) propagation in a pristine structural waveguide and (b) propagation and interaction
with damage at location xd.
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where

Ns jð Þ ¼ jb j2 þ b2
� �

cosad cosbd;

Ds ¼ j2 � b2
� �2

cosad sinbd þ 4j2ab sinad cosbd

NA jð Þ ¼�jb j2 þ b2
� �

sinad sinbd;

DA ¼ j2 � b2
� �2

sinad cosbd þ 4j2ab cosad sinbd

a2 ¼ v2

c2
p

� j2; b2 ¼ v2

c2
s

� j2; cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
;

cs ¼
ffiffiffiffi
m

r

r
; kPWAS ¼ �i

at0

m
ð4Þ

kPWAS is the complex transduction coefficient that con-
verts applied voltage into guided wave strain at the
T-PWAS, a is half length of PWAS size, and d is plate
half thickness. The modal participation functions SðvÞ
and AðvÞ determine the amplitudes of the S0 and A0
wave modes. The terms sinðjSaÞ and sinðjAaÞ control
the tuning between the PWAS transducer and the
Lamb waves. l and m are Lame’s constants of the
structural material, and r is the material density. The
wavenumber j of a specific mode for certain frequency
v is calculated from Rayleigh–Lamb equation

tanbd

tanad
¼ �4abj2

j2 � b2
� �2

" #61

ð5Þ

where +1 exponent corresponds to symmetric Lamb
wave modes and 21 exponent corresponds to antisym-
metric Lamb wave modes.

Step 3. Multiply the structural transfer function by
frequency-domain excitation signal (Figure 4(b)) to
obtain the frequency-domain signal at the R-PWAS,

that is, ~VRðxr;vÞ ¼ Gðxr;vÞ � ~VT ðvÞ. Hence, the wave
arriving at the R-PWAS location is

~VR xr;vð Þ ¼ S vð Þ~VT ðvÞe�ijSxr þ A vð Þ~VT ðvÞe�ijAxr ð6Þ

This signal in equation (6) can be decomposed into
symmetric and antisymmetric components

~V S
R xr;vð Þ ¼ S vð Þ~VT ðvÞe�ijSxr ð7Þ

~V A
R xr;vð Þ ¼ A vð Þ~VT ðvÞe�ijAxr ð8Þ

Step 4. Perform the inverse Fourier transform to
obtain the time-domain wave signal at the R-PWAS,
that is

VRðxr; tÞ ¼ IFFTf~VRðxr;vÞg ð9Þ

Due to the multi-mode character of guided Lamb
wave propagation, the received signal has at least two
separate wave packets, S0 and A0 (Figure 5).

This analysis can be extended to include higher
guided wave modes (S1, A1, etc.), that is

Figure 4. Tone burst signal: (a) time domain and (b) frequency domain (From Giurgiutiu,3 p. 153).

Figure 5. (a) T-PWAS signal and (b) R-PWAS signal.
T-PWAS: transmitter piezoelectric wafer active sensor; R-PWAS:

receiver piezoelectric wafer active sensor.
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~VR xr;vð Þ ¼
X

jS

S vð Þ~V T ðvÞe�ijS xr þ
X

jA

A vð Þ~V T ðvÞe�ijAxr

ð10Þ

All the wave modes propagate independently in the
structure. The final waveform will be the superposition
of all the propagating waves and will have the contribu-
tion from each Lamb mode.

Insertion of damage effects into the analytical model

Figure 6 shows the pitch-catch active sensing method
for damage detection: the T-PWAS transducer gener-
ates ultrasonic guided waves which propagate into the
structure, interact with structural damage at x ¼ xd ,
carry the damage information with them, and are
picked up by the R-PWAS transducer at x ¼ xr.

To model the damage effect on Lamb wave propa-
gation, we consider the damage as a new wave source
at x ¼ xd , and we add mode conversion and nonlinear
sources at the damage location through damage inter-
action coefficients. The predictive analytical model for
Lamb wave interaction with damage is constructed in
frequency domain in the following steps:

Step 1. This step is identical to step 1 of the pristine
case. Perform Fourier transform of the time-domain
excitation signal VT ðtÞ to obtain the frequency-domain
excitation spectrum, ~VT ðvÞ.
Step 2. Calculate the frequency-domain structural trans-
fer function up to the damage location, Gðxd ;vÞ. The
structure transfer function Gðxd;vÞ is similar to equa-
tion (3) of previous section, only that x ¼ xd , that is

G xd ;vð Þ ¼ S vð Þe�ijSxd þ A vð Þe�ijAxd ð11Þ

Step 3. Multiply the structural transfer function by
frequency-domain excitation signal to obtain the

frequency-domain signal at the damage location, that
is, ~VDðxd ;vÞ ¼ Gðxd ;vÞ � ~VT ðvÞ. Hence, the signal at
the damage location is

~VD xd ;vð Þ ¼ S vð Þ~VT ðvÞe�ijSxd þ A vð Þ~VT ðvÞe�ijAxd ð12Þ

This signal could be decomposed into symmetric and
antisymmetric components

~V S
D xd ;vð Þ ¼ S vð Þ~VT ðvÞe�ijS xd ð13Þ

~V A
D xd ;vð Þ ¼ A vð Þ~VT ðvÞe�ijAxd ð14Þ

Step 4. The wave signal at the damage location takes
the damage information by considering transmission,
reflection, mode conversion, and higher harmonics.
Each of these addition phenomena is modeled as a new
wave source at the damage location using damage
interaction coefficients (Figure 7). We distinguish two
damage interaction types: (a) linear and (b) nonlinear,
as discussed next.

Linear damage interaction. Wave transmission, reflection,
and mode conversion are realized by using complex-
amplitude damage interaction coefficients. Our nota-
tions are as follows: we use three letters to describe the
interaction phenomena, with the first letter denoting
the incident wave type, the second letter standing for
resulting wave type, and the third letter meaning propa-
gation direction (transmission/reflection). For instance,
symmetric-symmetric-transmission (SST) means the
incident symmetric waves transmitted as symmetric
waves, while symmetric-antisymmetric-transmission
(SAT) means incident symmetric waves transmitted and
mode converted to antisymmetric waves. Thus, the
complex-amplitude damage interaction coefficient
CSST � e�iuSST denotes the transmitted symmetric mode
generated by incident symmetric mode with magnitude
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Figure 6. A pitch-catch configuration between a transmitter PWAS and a receiver PWAS.
PWAS: receiver piezoelectric wafer active sensor.
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CSST and phase uSST . Similarly, CSAT � e�iuSAT represents
the transmitted antisymmetric mode generated by inci-
dent symmetric mode with magnitude CSAT and phase
uSAT . These coefficients are determined by the features of
the damage and are to be imported into the WFR model.

Nonlinear damage interaction. The center frequency of
waves arriving at the damage location can be obtained
from equations (13) and (14) as vc. The second and
third higher harmonics act as wave sources with center
frequencies of 2vc and 3vc, respectively. Modeling of
higher harmonics is achieved by moving the frequency-
domain signal at the damage location to the right-hand
side of the frequency axis by vc and 2vc, that is,
~V2Dðxd ;vÞ ¼ ~VDðxd ;v� vcÞ and ~V3Dðxd ;vÞ ¼
~VDðxd ;v� 2vcÞ represent the second and third higher
harmonics nonlinear wave source.

The nonlinear damage interaction coefficients are
defined in the same way as the linear ones. For instance,
the complex-amplitude damage interaction coefficient
CM

SST
� e�iuM

SST denotes the Mth higher harmonics trans-
mitted symmetric mode generated by incident sym-
metric mode with magnitude CM

SST
and phase uM

SST
.

Step 5. The guided waves from the new wave sources cre-
ated at the damage location propagate through the rest
of the structure and arrive at the R-PWAS. The received
wave signal is calculated in frequency domain as

~V R xd ; xr;vð Þ ¼
Xm

M¼1

CM
SST e�iuM

SST � ~V S
MD xd ;vð Þ þ CM

AST e�iuM
AST � ~V A

MD xd ;vð Þ
h i

e�ijS xr�xdð Þ

þ
Xm

M¼1

CM
AAT e�iuM

AAT � ~V A
MD xd ;vð Þ þ CM

SAT e�iuM
SAT � ~V S

MD xd ;vð Þ
h i

e�ijA xr�xdð Þ
ð15Þ

whereM is the number of higher harmonics considered.
For linear interaction with damage, M equals to one.

Step 6. Perform inverse Fourier transform to obtain
the time-domain receiver sensing signal

VRðxd ; xr; tÞ ¼ IFFTf~VRðxd ; xr;vÞg ð16Þ

It should be noted that the above analysis only con-
siders S0 and A0 modes. But the principle could be eas-
ily extended to higher modes (S1, A1, etc.). The
difficulty with extending to higher modes will be on
defining the increasing number of transmission, reflec-
tion, and mode conversion coefficients. For each
excited Lamb mode, the interaction with damage may
result in more mode conversion possibilities. In this
study, the WFR has been designed to simulate (a)
multi-mode (S0, A0, S1, A1) Lamb waves propagation
in pristine plates and (b) fundamental modes (S0 and
A0) Lamb wave interaction with damage.

WFR interface and main functions

The analytical representation of this process was coded
in MATLAB and resulted in the GUI called WFR
shown in Figure 8.

Figure 7. Modeling wave transmission, reflection, mode conversion, and higher harmonics components.
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WFR allows users to control several parameters:
structure material properties, PWAS size, location of
sensors, location of damage, damage type (linear/non-
linear damage of various severities), and excitation sig-
nal (frequencies, count numbers, signal mode
excitation, arbitrary waveform type, etc.). Dual display
of waveforms allows for the sensing signals to be shown
at two different sensor locations. For instance, Figure 8
shows two receiver waveforms at locations x1 ¼ 0 mm
and x2 ¼ 500 mm as measured from the transmitter (in
this case x1 ¼ 0 mm means that R-PWAS-1 collocated
with the T-PWAS). Thus, PWAS-1 shows the reflec-
tions from damage, and PWAS-2 shows the signal
modified after passing through the damage. Users are
able to conduct fast parametric studies with WFR. It
may take several hours for commercial finite element
software to obtain an acceptable-accuracy solution for
high-frequency, long distance propagating waves, but it
takes only several seconds to obtain the same solution
with WFR. Besides analytical waveform solutions, the
WFR can also provide users with wave speed

dispersion curves, tuning curves, frequency components
of received wave packets, structure transfer function,
and so on. All the calculated results are fully available
to the user, and could be saved in Excel files by clicking
the ‘‘SAVE’’ button. Figure 9 shows a case study for
Lamb wave propagation of a 100 kHz tone burst in a
1-mm-thick aluminum plate. Figure 9(a) shows the dis-
persion curves; Figure 9(b) shows the excitation spec-
trum overlap with the S0 and A0 tuning curves. Figure
9(c) shows the spectra of the S0 and A0 packets dis-
playing frequency shifts to the right and to the left,
respectively, due to the interaction between excitation
spectrum and the tuning curves. Figure 9(d) shows the
structure transfer function Gðx;vÞ.

Besides the main interface, WFR has two sub-
interfaces shown in Figure 10: (a) damage information
platform and (b) guided wave spatial propagation sol-
ver. The damage information platform allows users to
input the damage location and damage interaction
coefficients. For example, SST represents the magni-
tude of transmitted S0 mode generated by an incoming

Figure 8. Main GUI of WaveFormRevealer.
GUI: graphic user interface.
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S0 mode, whereas SAT and phi-SAT represent the mag-
nitude and phase of the transmitted A0 mode resulting
from the mode conversion of an incoming S0 mode. The
values of these damage interaction coefficients are not
calculated by the WFR. This gives the users the freedom
to define their own specific problem. For instance, a par-
ticular type of damage (plastic zone, fatigue, cracks)
with certain degree of severity will have different interac-
tion characteristics with the interrogating guided waves.
These coefficients may be determined experimentally or
calculated through other methods (analytical, FEM,
BEM, etc.). Among all the above methods, FEM
approach shows good results for obtaining the interac-
tion coefficients of arbitrary shaped damage. Successful
examples and details can be found in Velichko and
Wilcox20,21 and Moreau et al.22 In an example presented
later in this study, we used a trial-and-error approach to
tune the WFR coefficients to the data obtained from
experiments and finite element simulations.

The spatial propagation solver is like a B-scan. Using
the analytical procedure, we obtain the time-domain
waveform solution at various locations along the struc-
ture. Thus, the time-domain waveform solutions of a
sequence of points along the wave propagation path are

obtained. If we select the sequence of solution points
fine enough, a time-spatial domain solution of the wave
field is obtained. The spatial solution of wave field at a
particular instance in time is available as shown in
Figure 10(b). After the time-spatial solution of wave
field is obtained, we can do the frequency–wavenumber
analysis23 to see the wave components of the signal
(Figure 11). These will be illustrated in the case studies
discussed later in this article.

Case studies

Linear interaction with damage of selective Lamb
wave modes

WFR allows users to select single mode (S0 and A0) or
multi-mode (S0 and A0) to be excited into the struc-
ture. Three test cases were conducted: (a) incident S0
wave linear interaction with damage, (b) incident A0
wave linear interaction with damage, and (c) combined
S0 and A0 waves linear interaction with damage. The
test case setup is shown in Figure 12. The T-PWAS and
R-PWAS are placed 600 mm away from each other on
a 1-mm-thick aluminum 2024-T3 plate. The damage is
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Figure 9. Calculation of various quantities in Lamb wave propagation: (a) wave speed dispersion curve, (b) tuning curve, (c)
frequency contents of received wave packets, and (d) structure transfer function.
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placed 200 mm from the T-PWAS. A 5-count Hanning
window modulated tone burst centered at 100 kHz is
used as the excitation. The time-domain and the time–
frequency domain signals of the test cases are shown in
Figure 13.

Figure 13 shows that new wave packets appear due
to the interaction between interrogation Lamb waves
and damage. Incident S0 wave will generate A0 wave
from mode conversion at the damage, whereas incident
A0 wave will generate S0 wave from mode conversion
at the damage. However, from the time-frequency anal-
ysis, it could be observed that after linear interaction,
the frequency spectrum of the waves still center around
the excitation frequency 100 kHz.

Nonlinear interaction with damage of selective Lamb
wave modes

As test cases for nonlinear interaction between Lamb
waves and damage, three simulations were carried out:

Figure 10. User interfaces: (a) damage information platform and (b) guided wave spatial propagation solver.

Figure 11. Frequency–wavenumber display window.
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(a) incident S0 wave nonlinear interaction with damage,
(b) incident A0 wave nonlinear interaction with dam-
age, and (c) combined S0 and A0 waves nonlinear inter-
action with damage. The test case setup is the same as
shown in Figure 12, only the interaction with damage is
nonlinear. The time signals and the time-frequency
analysis of the test cases are shown in Figure 14.

It can be observed in Figure 14 that after nonlinear
interaction with the damage, the waveforms become
distorted and contain distinctive nonlinear higher har-
monics. For S0 waves which are less dispersive at the
given frequency range, the nonlinear higher harmonics
stay inside the wave packet. However, for A0 waves
which are dispersive at the given frequency range, the

higher harmonic components travel faster, leading the
way and may escape from the fundamental wave
packet.

Experimental verifications

Multi-mode Lamb wave propagation in a pristine
plate

In our study, two PWAS transducers were mounted on
a 3.17-mm-thick aluminum 7075-T6 plate. Figure 15
shows the experiment setup. The T-PWAS sends out
ultrasonic guided waves into the structure. The guided
waves, that is, Lamb waves propagate in the plate,
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Figure 13. Simulation of linear interaction between Lamb waves and damage: (a) S0 mode excitation, (b) A0 mode excitation, and
(c) S0 and A0 modes excitation. It should be noted that no higher harmonics are observed.
WFR: WaveFormRevealer.
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Figure 12. Test case setup for pitch-catch Lamb wave interaction with damage.
T-PWAS: transmitter piezoelectric wafer active sensor; R-PWAS: receiver piezoelectric wafer active sensor.
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undergoing dispersion and are picked up by the
R-PWAS. The Lamb waves are multi-modal, hence
several wave packets appear in the received signal.
Agilent 33120A Arbitrary Waveform Generator is used
to generate 3-count Hanning window modulated tone
burst excitations. A Tektronix Digital Oscilloscope is
used to record the experimental waveforms. The excita-
tion frequency is increased from 300 to 600 kHz.

Corresponding plate material, thickness, PWAS size,
and sensing location information is input into the
WFR. The analytical waveforms of various frequencies
are obtained. Figure 16 shows the comparison between
analytical solution from WFR and experimental data.

It can be observed that at 300 kHz, only S0 and A0
modes exist. The WFR solution matches well with
experimental data. At 450 kHz, S0 mode becomes more

dispersive; besides S0 and A0 modes, A1 mode starts to
pick up with highly dispersive feature. At 600 kHz, S0,
A0, and A1 modes exist simultaneously. The simula-
tion results and the experimental data have slight dif-
ferences due to the fact that 1D analytical formulas
and pin force excitation assumptions are used in this
study. To further validate WFR predictions, we also
conducted 2D FEM simulation with pin force excita-
tion (1D Lamb wave propagation simulation). Figure
17 shows the comparison between WFR and FEM
simulations. It can be observed that the 300 and
450 kHz waveforms match very well between WFR
and FEM. Signals of 600 kHz also have reasonably
good agreement. It should be noted, even for 1D Lamb
wave propagation simulation, that the 600 kHz wave
computation requires considerably small element size
and time marching step. The FEM simulation for such
high-frequency, short-wavelength situation is becoming
prohibitive due to the heavy consumption of computa-
tion time and computer resources. On the contrary,
WFR only requires several seconds to obtain the same
results due to its highly efficient analytical formulation.

The guided wave spatial propagation solver in WFR
is used to obtain the time–space wave field (B-scan) as
shown in Figure 18(a). The frequency–wavenumber
analysis is conducted next, as shown in Figure 18(b).
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Figure 15. Experiment setup for multi-mode Lamb wave
propagation.
WFR: WaveFormRevealer.
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The 600 kHz case is used as an example. From the B-
scan, S0, A0, and A1 wave components can be
observed. Frequency–wavenumber analysis gives very
clear information on the wave mode components of the
wave field. Transmitted S0 wave (S0-T), A0 wave
(A0-T), and A1 wave (A1-T) are clearly noticed in
Figure 18(b).

Linear interaction between Lamb waves and damage

Pitch-catch mode. Figure 19 shows the experimental spe-
cimen (3.17-mm-thick Aluminum-7075-T6 plate), with
PWAS #3 used as the transmitter (T-PWAS) and
PWAS #4 used as the receiver (R-PWAS). A notch
(h1 ¼ 2:5 mm; d1 ¼ 0:25 mm) is machined on the plate,
143.5 mm from the T-PWAS. The wave propagation
path from T-PWAS to R-PWAS is 303 mm. The 3-
count Hanning window modulated tone burst signals
with center frequencies varying from 150 to 300 kHz
are used as the excitation.

S0 and A0 waves are transmitted by the T-PWAS.
At the notch, S0 waves will be transmitted as S0 waves

and also will be mode converted to transmitted A0
waves. A0 waves will be transmitted as A0 waves and
also will be mode converted to transmitted S0 waves.
All these transmitted waves will propagate along the
rest of the structure and be picked up by the R-PWAS.
The damage interaction coefficients are physically
determined by the size, severity, type of the damage. In
this study, we used a trial-and-error approach to tune
the WFR damage interaction coefficients to the data
obtained from the experiments. The adjusted damage
interaction coefficients which gave best match with
experiments for 150 kHz excitation case are shown in
Table 1.

Figure 20 shows the WFR simulation results com-
pared with experiments. It can be noticed that the ana-
lytical waveforms agree well with experimental data. A
new wave packet is generated due to mode conversion
at the notch.

Pulse-echo mode. Figure 21 shows the experimental
setup for pulse-echo active sensing method. The same
specimen is used, with an R-PWAS bounded side by

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1 Experiment
WFR

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1 Experiment
WFR

0 20 40 60 80 100 120 140 160 180

-1

-0.5

0

0.5

1

Time (microsecond)

Experiment
WFR

450 kHz 

600 kHz 

300 kHz 

N
or

m
al

iz
ed

 A
m

pl
itu

de

S0 A0 

S0 dispersive wave A0 A1 dispersive wave 

S0 dispersive wave 
A0 

A1 dispersive wave 

Figure 16. Comparison between WFR and experiment for multi-mode Lamb wave propagation in a pristine 3.17-mm aluminum
plate.
WFR: WaveFormRevealer.
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side to the T-PWAS. The 3-count Hanning window
modulated tone burst signals with the center frequency
of 95.5 kHz is used as the excitation. Guided Lamb

waves generated by the T-PWAS will propagate into
the structure, reach the notch, and be reflected back as
echoes. At the notch, S0 waves will be reflected as S0
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Figure 17. Comparison between WFR and FEM for multi-mode Lamb wave propagation in a pristine 3.17-mm aluminum plate.
WFR: WaveFormRevealer; FEM: finite element method.
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Figure 19. Experiment for Lamb wave linear interaction with a notch (pitch-catch mode).
T-PWAS: transmitter piezoelectric wafer active sensor; R-PWAS: receiver piezoelectric wafer active sensor.
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waves and also will be mode converted to reflected A0
waves. A0 waves will be reflected as A0 waves and also
will be mode converted to reflected S0 waves. All the
echoes will reach the R-PWAS and be picked up.

The adjusted damage interaction coefficients which
gave best match with the experiment are shown in
Table 2.

Figure 22 shows the WFR simulation result com-
pared with the experiment. The reflected S0 and A0
wave packets could be observed. The new waves
between S0 and A0 wave packets are from mode

conversion at the notch. The analytical simulation
matches the experiment data. Differences are noticed:
first, the direct waves have a phase shift due to the fact
that the R-PWAS and T-PWAS are some distance
away from each other, while in our analytical model,
we consider them to be at the same location; second,
the boundary reflections are present and mixed with
the weak echoes from the notch in the experiment, but
in our model, the boundary reflections are not
considered.

Figure 23 shows the results from WFR spatial pro-
pagation solver. The wave transmission, reflection, and
mode conversion can be clearly noticed in both the B-
scan and frequency–wavenumber analysis. It is appar-
ent that the wave field contains transmitted S0 and A0
modes, and reflected S0 and A0 modes.

Nonlinear interaction between Lamb waves and
damage

A guided wave pitch-catch method may be used to
interrogate a plate with a breathing crack which opens
and closes under tension and compression.6,24 The
ultrasonic waves generated by the T-PWAS propagate
into the structure, interact with the breathing crack,
acquire nonlinear features, and are picked up by the R-
PWAS. This process is shown in Figure 24. The non-
linear interaction between Lamb waves and the breath-
ing crack will introduce nonlinear higher harmonics
into the interrogation waves. A multi-physics transient
finite element model was used to simulate the Lamb
wave interaction with a nonlinear breathing crack. The
damage interaction coefficients obtained from fitting
the FEM solution (Table 3) were input into the WFR
simulator.

Figure 25 shows the comparison between FEM and
the WFR analytical solution. It is noticed that the
FEM results and the analytical solution agree very well
because the damage interaction coefficients were fitted
to the FEM solution. The time-domain waveforms
show nonlinear characteristics of noticeable nonlinear
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Figure 22. Comparison between WFR simulations and experiments for Lamb wave interaction with a notch in pulse-echo mode.
WFR: WaveFormRevealer.
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Figure 21. Experiment for Lamb wave linear interaction with a
notch (pulse-echo mode).
T-PWAS: transmitter piezoelectric wafer active sensor; R-PWAS:

receiver piezoelectric wafer active sensor.

Table 2. Damage interaction coefficients for pulse-echo mode.

Magnitude coefficient C1
SSR C1

SAR C1
AAR C1

ASR
Value (normalized) 0.2 0.04 0.12 0.04
Phase coefficient u1

SSR u1
SAR u1

AAR u1
ASR

Value (�) 60 60 260 60

Table 1. Damage interaction coefficients for pitch-catch mode.

Magnitude coefficient C1
SST C1

SAT C1
AAT C1

AST
Value (normalized) 0.55 0.11 0.8 0.06
Phase coefficient u1

SST u1
SAT u1

AAT u1
AST

Value (�) 230 30 0 30
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distortion in S0 packet and zigzags in the new packet.
The frequency spectrums show distinctive nonlinear
higher harmonics (200 and 300 kHz). Since we only
consider up to the third higher harmonic in this case
study, the frequency domain of analytical solution
shows only the first three peaks, while the finite element
solution have even higher harmonics. But the solution
up to the third higher harmonics is accurate enough to
render an acceptable waveform in time domain.

The guided wave spatial propagation solver in WFR
was used to obtain the time–space wave field. Figure 26
shows the time–space wave field and frequency–
wavenumber analysis of Lamb wave interaction with
nonlinear breathing crack.

Transmission, reflection, and mode conversion phe-
nomena at the damage can be clearly noticed. The
frequency–wavenumber analysis reveals the wave com-
ponents during the interaction process. The wave field
contains transmitted S0 and A0 waves and reflected S0
and A0 waves. Nonlinear higher harmonics can be
observed at 200 kHz.

The WFR-guided wave spatial propagation solver
can provide the spatial wave pattern at any instance of
time. The spatial waveforms at 0, 25, 50, 75, 100, 125,
150, 175, and 200 ms are displayed in Figure 27. The
spatial waveforms shows (a) Lamb waves propagating
into the structure at T ¼ 25 ms, (b) Lamb modes separ-
ating into distinct packets at T ¼ 50 ms, (c) Lamb wave
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Figure 23. (a) Time–space domain solution (B-scan) and (b) frequency–wavenumber analysis from WFR with transmission,
reflection, and mode conversion damage effects.
WFR: WaveFormRevealer.

T-PWAS R-PWAS Breathing crack

……..Generation of 
higher harmonics

Figure 24. Pitch-catch method for the detection of breathing crack; the mode conversion at the crack is illustrated by the two
arrows.
T-PWAS: transmitter piezoelectric wafer active sensor; R-PWAS: receiver piezoelectric wafer active sensor.

Table 3. Nonlinear interaction coefficients.

Magnitude coefficient C1
SST C1

SAT C1
AAT C1

AST C2
SST C2

SAT C2
AAT C2

AST C3
SST C3

SAT C3
AAT C3

AST
Value (normalized) 0.900 0.420 0.820 0.100 0.082 0.100 0.050 0.110 0.032 0.038 0.005 0.025
Phase coefficient u1

SST u1
SAT u1

AAT u1
AST u2

SST u2
SAT u2

AAT u2
AST u3

SST u3
SAT u3

AAT u3
AST

Value (�) 0 100 235 90 0 0 120 90 0 0 0 0
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packet, (c) frequency spectrum of new packet and (d) frequency spectrum of A0 packet.
WFR: WaveFormRevealer; FEM: finite element method.
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packets interaction with the damage also at T ¼ 50 ms,
and (d) wave transmission, reflection, mode conversion,
and nonlinear distortion of waveforms at various
instances (T ¼ 75; 100; 125; 150; and 200 ms).

Summary, conclusions, and future work

Summary

In this study, we presented the WFR—an analytical
framework and predictive tool for the simulation of
guided Lamb wave interaction with damage. The the-
ory of inserting damage effects into the analytical
model was addressed, including wave transmission,
reflection, mode conversion, and nonlinear higher har-
monics components. The analytical model was coded
into MATLAB, and the WFR GUI was developed to
obtain fast predictive waveforms for arbitrary combi-
nations of sensors, structural properties, and damage.
Main functions of WFR were introduced, including the
calculation for dispersion curves, tuning curves, fre-
quency spectrum of sensing signal, plate transfer func-
tion, time–space domain waveforms with damage
effects, frequency–wavenumber analysis, and the capa-
bility of considering arbitrary user defined excitation
signals. Test cases were carried out. Experimental veri-
fications were presented. The predictive solution from
WFR agreed well with experiments and finite element
simulations. WFR can be downloaded from: http://
www.me.sc.edu/Research/lamss/html/software.html.

Conclusion

The WFR was capable of calculating dispersion curves,
tuning curves, frequency components of wave packets,
and structural transfer function. It could be used to
obtain time–space domain waveforms with damage
effects and frequency–wavenumber analysis. WFR
could provide fast predictive solutions for multi-mode
Lamb wave propagation and interaction with linear/
nonlinear damage. The solutions compared well with
experiments and finite element simulations. It was also
found that computational time savings of several orders
of magnitude are obtained by using the analytical
model WFR instead of FEM methods. WFR allowed
users to conduct fast parametric studies with their own
designed materials, geometries, and excitations.

Future work

Rational methods for determining damage interaction
coefficient values need to be found (not trial and error).
Work should be carried out to extend the analysis to
2D wave propagation (three-dimensional (3D) FEM
and 2D WFR). The 2D WFR with damping effect

should be built to simulate wave attenuation in wave-
guides. Boundary reflection and damage effects in 2D
wave propagation should be investigated. Attempts for
simulating guided wave propagation in composite
structures should be made using WFR.
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a b s t r a c t

This article presents a new approach to designing non-reflective boundary (NRB) for in-
hibiting Lamb wave reflections at structural boundaries. Our NRB approach can be effec-
tively and conveniently implemented in commercial finite element (FE) codes. The paper
starts with a review of the state of the art: (a) the absorbing layers by increasing damping
(ALID) approach; and (b) the Lysmer–Kuhlemeyer absorbing boundary conditions (LK ABC)
approach is briefly presented and its inadequacy for Lamb wave applications is explained.
Hence, we propose a modified Lysmer–Kuhlemeyer approach to be used in the NRB design
for Lamb wave problems; we call our approach MLK NRB. The implementation of this MLK
NRBwas realized using the spring–damper elements which are available inmost commer-
cial FE codes. Optimized implementation parameters are developed in order to achieve the
best performance for Lamb wave absorption. Our MLK NRB approach is compared with
the state of the art ALID and LK ABC methods. Our MLK NRB shows better performance
than ALID and LK ABC for all Lamb modes in the thin-plate structures considered in our
examples. Our MLK NRB approach is also advantageous at low frequencies and at cut-off
frequencies, where extremely longwavelengths exist. A comprehensive studywith various
design parameters and plate thicknesses which illustrates the advantages and limitations
of our MLK NRB approach is presented. MLK NRB applications for both transient analysis in
time domain and harmonic analysis in frequency domain are illustrated. The article finishes
with conclusions and suggestions for future work.
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1. Introduction

Finite element method (FEM) has been widely investigated as a convenient easy-to-use tool for the study of ultrasonic
wave propagation and its interaction with structural flaws and damage [1]. However, FEM is computationally intensive: to
ensure computational accuracy, strict rules of spatial and temporal discretization need to be adhered to, i.e., the element
sizemust be smaller than one twentieth of the smallest wavelength and the time stepmust be smaller than one twentieth of
the smallest period [2]. Thus, the propagation of high-frequency short-wavelength waves over long distances may become
computationally prohibitive to model because of the very fine mesh and very small time step required to ensure validity of
the simulated wave signals, especially in interaction with structural flaws and damage [3].

In order tomake the computational burdenmanageable, one notices that the FEMmodel is mainly necessary in the study
of the scattering interaction betweenwaves and structural damage because the FEM approach allows the detailedmodeling
of the damage geometry that is not possible analytically. However, outside the damage area, the wave propagation can be
modeled analytically and the use of large plate models has only been justified by the need to avoid boundary reflections
contaminating the scatter signal. Hence, researchers have developed the concept of non-reflective boundaries (NRB), which
would eliminate the unwanted boundary reflections and allow the use of a finite size FEMmodel to simulate infinitemedium
conditions. The benefit of an NRB approach is that computational resources can be focused on the region of interest without
modeling the redundant outside domain merely for the purpose of avoiding boundary reflections.

Current techniques for removing boundary reflections fall into three main categories: (i) infinite element methods;
(ii) non-reflective boundary conditions [4]; and (iii) absorbing layer methods [5]. The infinite element methods use only
one layer of specialty elements around the boundary to absorb the incident waves. This technique is available in commercial
software such as ABAQUS. But discrepancies have been reported in elastic wave scattering problemswhen both the pressure
and shear wavemodes are present [6,7]. Lysmer and Kuhlemeyer [4] introduced the absorbing boundary condition (LK ABC)
which imposesmatching reaction forces at the boundaries to simulate time domainwave propagation into infinitemedium.
This technique is only available in special commercial software package such as ANSYS LS-DYNA solver in time domain
simulations. LK ABC was found to work well with bulk waves, but its application to Lamb waves experiences noticeable
reflections and poor performance for antisymmetric Lamb modes. Other successful non-reflective boundary conditions
have been developed by Givoli and Keller in the frequency domain [8,9]. This approach was extended by Moreau et al. [10]
to solve scattered waves from irregular defects using a frequency domain small-size FEM. However, these non-reflective
boundary conditions require the modification of standard FEM solving procedure and the development of specialist codes.
The absorbing layer techniques can be classified into twomain subcategories: (iiia) the PerfectlyMatched Layers (PMLs); and
(iiib) Absorbing Layers by IncreasingDamping (ALID). Both techniques extend the boundary using several layers of absorbing
elementswith gradually varying properties. The dampingmechanismcontributes to the imaginary part of thewavenumbers,
which results in the attenuation of the wave amplitudes along the propagation path. The PML technique optimizes the
material properties to match the acoustic impedance of successive layers, so that no reflections occur between adjacent
layers [5,11,12]. PML works well in both the frequency and time domain analyses but it is only available in a very limited
number of commercial FE packages such as the COMSOL RF Module, which is an optional COMSOL add-on package. On the
other hand, the ALID method adopts increasing damping along wave propagation to absorb incident waves, accompanied
by impedance mismatches between successive layers [13–17]. The impedance-mismatch reflections may be minimized by
optimizing the damping properties. It has been reported that ALID is much easier to be implemented in commercial FE
software packages, because the users only need to define the increasing damping properties of the layer materials, which
can be achievedwith the standard techniques. Amore recent contribution toALID-typemethodwas given by Pettit et al. [18],
who develop a stiffness reduction method (SRM) to further optimizing its performance. The SRM showed improved results
compared with traditional ALID.

It is apparent that the state of the art in removing boundary reflections has generally focused on bulk waves, while only
a few results have so-far been reported on removing boundary reflections for Lamb waves and other guided waves [10,12,
19–21]. Current solutions for Lamb wave absorption mainly stem from the absorbing-layer family of methods, while other
techniques are also desired to develop more effective solutions. In this article, we propose a different and new approach
which employs an absorbing mechanism that is custom-built for the suppression of Lamb wave reflections. In developing
this method, we started with the conventional LK ABC method and endeavored to modify it to address the issues stemming
from the multi-modal dispersive character of Lamb waves propagating in thin-plate structures. We call our method ‘‘modi-
fied LK non-reflective boundaries (MLK NRB)’’. We have also noticed that most of the existing studies used the time domain
simulations, while frequency domain simulations are only a few and sometimes limited to specialist FE codes. OurMLK NRB
approach, which is specially designed for Lambwaves, is effective for both time-domain and frequency-domain simulations
and is easy to implement in commercial FE packages. In this article, we will present and discuss three aspects of our MLK
NRB approach:
(1) The theoretical background for designingNRB conditions specific for Lambwave applications:wewill first briefly review

the LK ABC theory and identify the reason behind its inadequacy for Lamb wave applications. Then, we will develop the
theory of our MLK NRB method that underpins its suitability for Lamb wave absorption. Parametric studies are used to
develop guidelines for the choice of effective MLK NRB design variables.

(2) The MLK NRB implementation in commercial FE packages and performance tests: we will demonstrate the MLK NRB
implementation in both 2-D and 3-D FE models. Performance tests and comparison with conventional LK ABC and ALID
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Fig. 1. Lamb wave formation: multiple reflections of P-wave and S-wave.

Fig. 2. Schematic of P-wave and S-wave incidence at the plate boundary: (a) incident P-wave; (b) incident S-wave.

methods will be given for multiple Lambmodes at various frequencies. The advantages and limitations of our proposed
MLK NRB method will be evaluated through a parametric study to assess plate thickness and implementation length
effects.

(3) The capability of the MLK NRB method in both time domain and frequency domain will be demonstrated using two
application case studies: (a) time domain simulation of Lamb wave generation, propagation, and interaction with
a structural feature; (b) frequency domain simulation of Lamb wave scattering from damage and determination of
optimum interrogation frequency.

2. Modification of the Lysmer–Kuhlemeyer method to overcome Lamb wave related difficulties

This section discusses the difficulties encountered when trying to apply the conventional LK ABC method to Lamb wave
problems and then develops our proposed MLK NRB method. Guidelines for the proper choice of MLK NRB parameters are
also developed.

2.1. Theory of conventional Lysmer–Kuhlemeyer absorbing boundary condition

Lysmer and Kuhlemeyer [4] developed a dynamic model for the absorption of P-wave and S-wave reflections at the
boundary of an semi-infinite half plane using two coefficients, a and b, first proportional with the P-wave speed cP =√

(λ + 2µ) /ρ, the other proportional with the S-wave speed cS =
√

µ/ρ, where λ and µ are Lame’s constants and ρ
is the material density. They demonstrated that the proper choice of these a and b coefficients will result in the maximum
energy absorption capability of a viscous boundary impinged upon by P and S waves. They also extended their method to
Rayleigh wave absorption.

2.2. Inadequacy of conventional LK ABC for Lamb waves absorption

However, the Lysmer and Kuhlemeyer paper [4] did not consider the case of Lamb wave reflections at a plate boundary.
To understand the intricacies of such a problem, recall that Lambwaves, by their nature, are the constructive and destructive
interferences and superposition of pressurewave (P-wave) and shear verticalwave (S-wave) undergoingmultiple reflections
between the top and bottom plate surfaces. As illustrated in the LK theory [4], it is apparent that the absorbing capability of
a conventional LK viscous boundary placed at the edge of the plate is sensitive to the incident wave angle, which makes it
improper for Lamb wave absorption. Fig. 1 shows the multiple reflections of P-wave and S-wave in the formation of Lamb
waves. The reflection angles of P-wave and S-wave are denoted by α and β , respectively. Their incident angle to the plate
boundary are denoted by θ and γ .

Hence, when analyzing the Lamb wave reflection at a plate boundary, one should actually analyze the reflections of the
P-wave and S-wave components as shown in Fig. 2.

It is apparent from Fig. 2 that the incident P and Swaves interacting at a plate boundary get reflected andmode converted
both at the free-end surface which is normal to the midplane and at the upper and lower free surfaces of the plate which
are adjacent to the free end. If these reflected and mode-converted waves are to be suppressed by an absorbing viscous
boundary, then this absorbing boundary has to extend around the complete contour at the end of the plate and not just be
placed on the free-end surface as implied by the LK ABC method.
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Recall the potential formulation of z-invariant Lamb waves [22]. The displacements are expressed as

ux =
∂Φ

∂x
+

∂Hz

∂y
; uy =

∂Φ

∂y
−

∂Hz

∂x
(1)

where Φ and Hz are the displacement potentials of the P and S waves, respectively. Assuming a unit-amplitude harmonic
incident P-wave, we can write the total-wave potentials as a superposition of incident and reflected waves, i.e.,

ΦP
= 1ei(ξP cos θx+ξP sin θy−ωt)

+ APei(−ξP cos θx+ξP sin θy−ωt)

HP
z = BPei(−ξS cos γ x+ξS sin γ y−ωt)

(2)

where θ , ξP and γ , ξS are the reflection angles and the wavenumbers of the P-wave and S-wave, respectively, whereas ω
and t are the angular frequency and time. Note that AP and BP are the amplitudes of the reflected P and S waves generated
by a unit-amplitude incident P-wave.

Similarly, for a unit-amplitude incident S-wave case, we can express the total-wave potentials as

ΦS
= ASei(−ξP cos θx+ξP sin θy−ωt)

HS
z = 1ei(ξS cos γ x+ξS sin γ y−ωt)

+ BSei(−ξS cos γ x+ξS sin γ y−ωt)
(3)

where AS and BS are the amplitudes of the reflected P and S waves generated by a unit-amplitude incident S-wave. Note that
in Eqs. (2) and (3), the superscripts on the wave potentials indicate the incident wave type, i.e., ΦP represents the P-wave
potential for a P-type incident wave, ΦS represents the P-wave potential for an S-type incident wave, etc.

Next, we use the wave potentials to write the stress components [22,23] and impose the viscous boundary conditions as

σxx = (λ + 2µ)


∂2Φ

∂x2
+

∂2Φ

∂y2


− 2µ


∂2Φ

∂y2
−

∂2Hz

∂x∂y


= −aρcP


∂Φ̇

∂x
+

∂Ḣz

∂y


τxy = µ


2

∂2Φ

∂x∂y
−

∂2Hz

∂x2
+

∂2Hz

∂y2


= −bρcS


∂Φ̇

∂y
−

∂Ḣz

∂x

 (4)

where a and b are the previously discussed viscous coefficients for direct stress and shear stress as introduced by Lysmer
and Kuhlemeyer [4]. Impose Snell’s law and recall the wave speed ratio k to write

sin θ

sin γ
=

ξS

ξP
=

cP
cS

= k (5)

For incident P-wave (Fig. 2(a)), substitution of Eqs. (2) and (5) into Eq. (4) yields a set of linear algebraic equations in the
reflected wave amplitudes AP and BP , i.e.,

2 sin2 θ − k2 − ak2 cos θ k2 sin 2γ + ak3 sin γ

sin 2θ + bk sin θ k2 cos 2γ + bk2 cos γ

 
AP
BP


=


k2 − 2 sin2 θ − ak2 cos θ

sin 2θ − bk sin θ


(6)

Similarly, for incident S-wave (Fig. 2(b)), substitution of Eqs. (3) and (5) into Eq. (4) yields a system of linear algebraic
equations in AS and BS , i.e.,

2 sin2 θ − k2 − ak2 cos θ k2 sin 2γ + ak3 sin γ

sin 2θ + bk sin θ k2 cos 2γ + bk2 cos γ

 
AS
BS


=


k2 sin 2γ − ak3 sin γ

bk2 cos γ − k2 cos 2γ


(7)

Lysmer and Kuhlemeyer [4] reported that when a = b = 1, the viscous boundary will achieve the best energy absorption
capability. This may be so for the case of bulk waves at a half plane boundary [4], but not necessarily so for Lamb waves
reflecting at the end of a plate as shown in Fig. 2. In this latter case, the incident angles θ and γ also play an important role
in this process besides a and b. Fig. 3 shows the reflected wave amplitudes versus the incident wave angle in an aluminum
plate. It can be observed that for both incident P-wave and incident S-wave cases, the reflected wave amplitudes depend
strongly on the incident wave angle. When the incident wave angle is very small, the reflected wave amplitudes approaches
zero, demonstrating that the LK approach is effective in absorbing the wave energy. However, as the incident wave angle
increases, the conventional LK viscous boundary begins to lose its absorbing capability.

In order to calculate the incident angles θ and γ of Fig. 2, recall the following notations used in the derivation of the
Rayleigh–Lamb equation [22–24]

η2
P = ω2/c2P − ξ 2

; η2
S = ω2/c2S − ξ 2 (8)

where ξ is the wavenumber of Lamb wave, and ηP and ηS may be interpreted as the vertical wavenumbers of the P and S
waves that make up the Lamb waves (see p. 315 of Ref. [23]). Thus, for the benefit of Fig. 2, the incident angles θ and γ of
the P and S waves that make up the Lamb waves can be calculated as

θ = arctan


ηP

ξ


; γ = arctan


ηS

ξ


(9)
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Fig. 3. Reflected wave amplitudes versus incident wave angle calculated with the conventional LK ABC method (viscous boundary a = b = 1) in an
aluminum plate: (a) P-wave incidence; (b) S-wave incidence.

Fig. 4. Incident angles of P-wave (θ ) and S-wave (γ ) at the plate edge in aluminum plates: (a) S0 Lamb wave case; (b) A0 Lamb wave case.

Note: when solving Eq. (9), proper choice of real and imaginary solution should be made on ηP and ηS according to various
regions the Rayleigh–Lamb equation (see p. 447 in Ref. [23]).

Fig. 4 shows the incident angles of P-wave and S-wave at the plate edge for both fundamental S0 Lamb mode and A0
Lamb mode in aluminum plates. The unit fd is the combination of frequency and half plate thickness. It can be noticed that
both S0 and A0 Lamb waves contain bulk wave components beyond the effective absorption angles shown in Fig. 3. This
illustrates the inadequacy of the conventional LK ABC approach for avoiding Lamb wave reflections at a plate boundary.

2.3. Development of the modified Lysmer–Kuhlemeyer (MLK) approach for Lamb wave NRB design

Noticing that the conventional LK ABC approach is inadequate for effective absorption of Lambwaves at a plate boundary,
we developed aMLK NRB approach that would effectively absorb the Lambwaves at plate free edges. Our concept takes into
account that Lamb waves result from the superposition of P and S waves that undergo multiple reflections at the top and
bottom surfaces of the plate. Hence, we want to inhibit these top and bottom reflections near the plate boundary. In order
to achieve this, we added viscous boundaries on the top and bottom surfaces near the plate edge and smoothed them out
by adopting a gradually increasing viscosity parameter from the inner region toward the plate edge (Fig. 5). Thus, one part
of our contribution is to extend the absorbing medium from the plate edge over the top and bottom surfaces of the plate
in order to absorb the P and S wave reflection on these top and bottom surfaces. The other part of our contribution is to
design a smooth-out law by which the top and bottom absorbing interfaces gradually participate in the absorption toward
the plate edge; this second part is needed in order to prevent reflections from the Lamb waves interacting with the top and
bottom viscous boundaries. Our MLK NRB design has the absorbing interface placed both at the plate edge and on its top
and bottom surfaces as shown in Fig. 5.

In this MLK NRB design, the P and S wave components of the Lamb wave interact with the viscous boundary multiple
times, both at the plate surfaces and at the plate edge. This design of the absorbing boundary takes advantage of themultiple
reflection character of the bulk waves forming the Lambwaves; thus the effective absorption of the Lambwaves is achieved
through themultiple absorptions of the bulkwave components. Since the reflection angles at the plate surfaces and the plate
boundary are complementary, the effective absorbing capability are also complementary at these two locations. This will
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Fig. 5. Extended viscous boundary on top and bottom surfaces for effective absorption of Lamb waves. The variation of coefficients a and b is described by
the filled profile.

ensure that the MLK NRB is effective for all the bulk wave angles of all the Lamb modes. Fig. 5 shows the extended viscous
boundary on the top and bottom surfaces, as well as the variation of coefficients a and b around the plate edge. It should
be noted that the plate edges have the full value of the absorption coefficients (a = b = 1) as suggested by Lysmer and
Kuhlemeyer [4] for the best absorption capability at the plate vertical edge. However, at the top and bottom surfaces, the
value of these a, b absorption coefficients is not constant along the plate but it is smoothed out such as to avoid Lamb wave
reflections due to the impedance mismatch that would be introduced by an abrupt change in the boundary viscosity at the
plate top and bottom surfaces. To achieve this smooth transition, we used a transition function f (x), which introduces the
viscosity gradually over a length nλ consisting of several wavelength.

3. Guidelines for the proper choice of MLK NRB parameters

The choice of the MLK NRB parameters directly influences its performance. There are three major aspects to consider
when constructing the MLK NRB, namely, the absorbing profile shape f (x), the maximum damping parameter of the profile
δ, and the minimum coverage length nλ where λ is the longest wavelength under consideration.

3.1. The choice of the absorbing function f (x)

In our study, we considered three possible transitional profile functions f (x): a linear function, a half Hanning window
function, and a cubic function, i.e.,

f (x) = δ
x
nλ

, x ∈ (0, nλ) (Linear function) (10)

f (x) =
δ

2


1 − cos

πx
nλ


, x ∈ (0, nλ) (Half Hanning window function) (11)

f (x) = δ
 x
nλ

3
, x ∈ (0, nλ) (Cubic function) (12)

These three function profiles have different orders of smoothness, which can be evaluated using the Taylor series
expansion: the order of smoothness for the linear function Eq. (10) is one; the order of smoothness for the half Hanning
window Eq. (11) is two; the order of smoothness for the cubic function Eq. (12) is three.

To test the performance of the profile functions of Eqs. (10), (11), and (12), we conducted a parametric study on an 8-mm
thick aluminum plate that has the phase velocity and wavelength curves shown in Fig. 6. The parametric study was con-
ducted with the FEM model shown in Fig. 7 using ANSYS 14.0. The coverage length L was set to 50 mm for all three profile
functions. The maximum damping parameter δ was increased from zero to 0.5 with a step of 0.05. The S0 and A0 modes
were selectively excited by the application of a pair of symmetric and antisymmetric point forces at the top and bottomplate
surfaces. A 100 kHz 10-cycle smoothed tone burst excitation was used to generate narrow-band Lamb waves. The analy-
sis was performed in the time domain. The excited and reflected waves were recorded at the bottom node. The amplitude
reflection coefficient was used as a performance and effectiveness metric.

The results of this parametric study are shown in Fig. 8. In general, all three profile functions seemed to achieve better
performance with higher δ values. However, the linear and half Hanning window profiles achieve better performance than
the cubic profile. The performance also depends on the excitation mode, i.e., a clear difference can be noticed between S0
excitation (Fig. 8(a)) and A0 excitation (Fig. 8(b)).

For S0 excitation, the linear profile function has the best result quality at low δ values (0 < δ < 0.2). Beyond δ = 0.2,
the half Hanning function seems to achieve a marginally better performance than the linear function. The cubic function is
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Fig. 6. Dispersion curves and wavelengths in an 8-mm thick aluminum plate: (a) phase velocity plot; (b) wavelength plot.

Fig. 7. Schematic of the FEM model used in the parametric study: (a) S0 mode excitation; A0 mode excitation.

Fig. 8. Performance of various profile functions for a 100 kHz narrow-band signal: (a) S0 mode excitation; (b) A0 mode excitation.

consistently worst because its reflection coefficients stay higher than the other two functions for all tested values of δ. In
addition, the cubic function plateaus out beyond δ = 0.3.

ForA0 excitation, the halfHanning function seems to offer the best performance although the linear functionperformance
is almost as good except at high δ where it plateaus out while the half Hanning function continues to improve.

The case of the conventional LK ABC is recovered at δ = 0; as indicated in Fig. 8, the LK ABC method achieves some
effectiveness for S0 excitation (only 2% reflection) but worse results for A0 excitation (10% reflection).

It should be noted that in this case study the coverage length was L = 50 mm, which is approximately one wavelength
of the S0 mode at 100 kHz (see Fig. 6(b)). We expect that a longer coverage length would diminish the difference between
the half Hanning window function and the linear function at low values of δ.

3.2. The choice of δ value and the coverage length L

After the discussion for the proper choice of the smoothing function f (x), the next important aspect to discuss is the
proper choice of δ, i.e., maximum value of the damping parameter in the top and bottom plate surfaces. Recall that in the LK
ABC approach, the damping was applied only to the vertical end of the plate and that its value was a = b = 1. In the MLK
NRB approach, we apply additional damping of value f (x) to the top and bottom surfaces of the plate. In our study, we took
various δ values between 0 and 0.5 and studied their effect on reflection suppression. (Please note that this damping applied
to the plate top and bottom surfaces does not exceed 50% of the LK ABC damping applied to the vertical end of the plate.)



Y. Shen, V. Giurgiutiu / Wave Motion 58 (2015) 22–41 29

Fig. 9. High values of δ show poor performance at low-frequency range with long wavelengths.

According to Fig. 8, a higher δ leads to a better performance for a 100-kHz narrow-band wave signal. The question that
was investigated next was this: What happens at lower frequencies where the wavelengths are much longer?

To study this effect, we used the same FEM model of an 8-mm thick aluminum plate but with a signal of 100 kHz
2-cycle smoothed tone burst excitation which has amuch broader frequency band. TheMLK NRB coverage lengthwas taken
L = 100 mm. After signal processing, we were able to identify the wave components belonging to various frequencies in
the broad-band signal.

The results shown in Fig. 9 indicate that the absorbing effectiveness becomes worse at low frequency where long wave-
length Lambwaves exist. It was also noticed that, in these low-frequency long-wavelength cases, the higher damping values
(e.g., δ = 0.5 in Fig. 9) gaveworse results than the lower damping (e.g., δ = 0.1). It was also noticed that the cubic smoothing
function had better performance in these low-frequency long-wavelength cases, but worse performance otherwise.

3.3. Optimal MLK NRB design parameters

In many practical applications, multimodal Lamb waves at various frequency ranges with different wavelength contents
(S0, A0, S1, A1, etc.) propagate simultaneously. The choice of optimal MLK NRB design parameters should be made taking
all these factors into consideration.

Based on the results of Figs. 8 and 9 and on the authors’ experience, the choice of half Hanning window profile f (x) =
δ
2


1 − cos


πx
nλ


with δ value between 0.15 and 0.3 will, in general, ensure satisfactory results. The third important choice

is a proper coverage length of the MLK NRB. The top and bottom viscous interface covers a length L = nλ, where λ is the
longest wavelength of the Lamb mode under consideration. In general, an effective coverage requires n ≥ 2.

Note that the lower δ values would apply to long wavelength components in which case a longer MLK NRB coverage
length will also be necessary.

When broad band Lamb waves containing extremely long wavelength components participate in the interaction with
MLK NRB, a high value of δ usually results in poor performance in the absorption of such components. This aspect will be
further illustrated with parametric studies on coverage length L and plate thickness H presented later in Section 5.2.

4. MLK NRB implementation in commercial FE codes

The implementation of the MLK NRB method in commercial FE codes can be readily realized using spring–damper
elements or dashpot elements, which are usually available in most commercial FE codes. (This approach does not require
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Fig. 10. Implementation of viscous boundary using COMBIN14 spring–damper element: (a) COMBIN14 element [26]; (b) 2-D FEM implementation;
(c) 3-D FEM implementation.

specialized FE codes or the modification of standard solving procedure.) Lysmer and Kuhlemeyer [4] have shown the
successful implementation of the conventional LK ABC in a 2-D FEmodel with dashpot elements. Liu et al. [25] implemented
a time domain viscoelastic artificial boundary for bulk waves in a 3-D FE model. In this section, the details and guidelines of
MLK NRB implementation with spring–damper elements in both 2-D and 3-D FE ANSYS models will be presented.

4.1. Selection of spring-dashpot parameters

According to Eq. (4), the viscous boundary reaction stresses should satisfy the following conditions:

σxx = −aρcP
∂ux

∂t
; τxy = −bρcS

∂uy

∂t
(13)

where the reaction stresses depends on the normal and tangential particle velocities at the boundary. In this study,
COMBIN14 spring–damper elements in ANSYS were used to construct the MLK NRB. Similar element options such as
dashpot elements can be found in ABAQUS. Fig. 10 shows the schematic of COMBIN14 element in ANSYS, the 2-D FEM
implementation, and the 3-D FEM implementation. Since the viscous reaction forces must be proportional to the boundary
particle velocity, we only keep the damping coefficient and set the spring coefficient to zero.

For 2-D FEM implementation, a pair of COMBIN14 elements are used, one in the normal direction, and the other in the
tangential direction. One side of the elements are attached to the structural boundary node, while the degrees of freedom
(DOFs) of the other side are fixed. Thus, themotion of the structural boundary nodewill cause reaction forces in both normal
and shear directions from the spring–damper elements, which are proportional to the nodal velocities. The spring–damper
coefficients KN , KT , CN , CT , which will generate reaction forces that correspond to the equivalent boundary stresses
presented in Eq. (13), are as follows:

KN = 0; CN =
a
2

(L1 + L2) ρcP

KT = 0; CT =
b
2

(L1 + L2) ρcS
(14)

where L1 and L2 are the element sizes in the neighborhood of the boundary node, and subscripts N and T represent normal
and tangential directions. The spring coefficients are set to zero, while the damping coefficients depend on the bulk wave
speeds cP , cS , the material density ρ, and the average element size (L1 + L2)/2. Coefficients a and b are the damping
parameters; they are equal to one at the vertical boundary and follow the f (x) function along the top and bottom surfaces
of the plate. It should be noted that all the nodes along the defined MLK NRB should be connected to COMBIN14 element
pairs; the drawing in Fig. 10(b) demonstrates the implementation for only one boundary node.

For 3-D implementation, three COMBIN14 elements should be used, with one in the normal direction, and the other two
along twomutually orthogonal tangential directions. One side of the three elements are attached to the structural boundary
node, and the DOFs of the other side are fixed. The corresponding spring–damper coefficients are taken as

KN = 0; CN =
a
4

(A1 + A2 + A3 + A4) ρcP

KT = 0; CT =
b
4

(A1 + A2 + A3 + A4) ρcS
(15)

whereA1,A2,A3,A4 are the neighboring element facet areas surrounding the boundary node. Again, it should be noted that all
the nodes on the NRB should be restricted by COMBIN14 elements, while Fig. 10(c) only demonstrated the implementation
for one of the boundary nodes.
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Fig. 11. Different FE meshes with the same wavelength to element size ratio. It should be noted that the total computational burden does not change.

4.2. Selection of mesh size

Fig. 6(b) has shown that large wavelengths may be encountered for the S0 mode at low frequencies and for the higher
modes near the cutoff frequencies. To effectively absorb Lamb modes with large wavelength, longer MLK NRB coverage is
required. However, the longer wavelengths also allows us to achieve good accuracy with a coarser mesh. Hence, the total
computational burden (degrees of freedom) should not change if one keeps the ratio between the wavelength and themesh
size constant and equal to the value that ensures computational accuracy. An illustration of this concept is given in Fig. 11
which shows a finer MLK NRB mesh for shorter wavelengths and a coarser one for longer wavelengths.

Another concept depicted in Fig. 11 is that the MLK NRB region may have a much coarser mesh than the FEM region
modeling the phenomenon of interest. In addition, this NRB region mesh can become even coarser as we approach the
plate boundary. The rationale for this is that the function of the NRB region is only to eliminate boundary reflections and
thus the accuracy of the wave phenomena inside the MLK NRB coverage region is not of interest. Hence, we can relax the
accuracy criteria in the MLK NRB coverage region by increasing the mesh size gradually toward the plate edge. This leads to
a varying-density mesh strategy that can further minimize the computational burden caused by the MLK NRB region.

Whenmultiple Lambmodes exist simultaneously, the largest mesh size within themodeling region (as shown in Fig. 11)
should be smaller than one twentieth of the shortest wavelength. But the mesh density in the MLK NRB extended region
toward the plate end does not need to satisfy this accuracy requirement and hence may have a coarse mesh. However, the
coverage length in this MLK extended region should be larger than twice the longest wavelength.

4.3. Considerations for frequency domain analysis

Mesh-size considerations discussed in the previous section may become even more important for frequency-domain
analysis, where a wide frequency range needs to be explored. In our experience, it is useful to identify several separate fre-
quency regions within the whole frequency range and, for each region, choose different mesh sizes according to the wave-
length to element size ratio criteria. Thus, the problem can be solved in the most efficient way using an adaptive FE mesh:
the frequency ranges containing very long wavelengths can be treated separately using a large extended region with fairly
coarse mesh, while the frequency ranges containing short wavelengths will use a small extended region with a dense mesh.

5. Performance and effectiveness tests

To demonstrate the performance and effectiveness of the proposed MLK NRB, we conducted a case study comparing it
with two existing methods: ALID and conventional LK ABC. We also carried out a parametric study on the coverage length
and plate thickness with an asymptotic case, followed by the discussion on the advantages and limitations of the MLK NRB.

5.1. Comparison with existing techniques

Fig. 12 shows the setup for the comparative study between our MLK NRB method and the existing ALID and LK ABC
methods. We used the same plate thickness, material properties, and parameters as used by Drozdz et al. [19] for the
ALID method. An 8-mm thick aluminum plate was used, with 135-mm extended absorbing region. The loss factor η was
determined by the cubic function shown in Fig. 12(c). Drozdz et al. [19] also suggested that, when K = 5, the ALID method
would work well for both symmetric and antisymmetric modes. For our MLK NRB, the coverage length L was set to be the
same length as the ALID extended region. For this comparative study, we chose MLK profile to be the half Hanning window
function of Eq. (11) with δ equals 0.15. Similar to Fig. 7, symmetric and antisymmetric excitations were used to selectively
generate symmetric and antisymmetric Lamb modes. The left side of the model extended to a very long distance to avoid
reflections from the left boundary. The transmitted and reflected waves passing the same location were recorded. A large
modelwas first used to obtain the excitedwave signal. Then, the subtractionmethodwas used to extract thewaves reflected
from the boundary.
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Fig. 12. Comparative case study with existing ALID method and conventional LK ABC.

Fig. 13. Time domain excitation signal and its frequency spectrum.

A broad-band 2-cycle 300 kHz smoothed tone burst was used for Lambwave excitation. Fig. 13 shows the time trace and
frequency spectrum of the excitation signal. The dispersion curves of Fig. 6(a) indicates that such a broad-band excitation
will produce higher Lamb modes. Thus, this case study allows us to examine the MLK NRB performance in the presence of
multimodal Lamb waves near the cut-off frequencies.

As in previous sections, two situations were examined: (a) symmetric modes; (b) antisymmetric modes. The symmetric
mode results are shown in Fig. 14 (time traces) and Fig. 15 (frequency spectra). The signal amplitudeswere normalized to the
full reflection condition, where no absorbingmechanismwas applied. Three boundary absorptionmethodswere compared:
(i) our MLK NRB; (ii) conventional LK ABC; and (iii) ALID. Examination of the time traces presented in Fig. 14 indicates that
ourMLKNRB achievesmuch better performance than both ALIDmethod and the conventional LK ABC, because ourMLKNRB
method yields almost insignificant reflections amplitudes whereas the other two method have quite significant reflection
signals. Examination of the frequency spectra of Fig. 15 shows the frequency components of the reflections. It shows that the
conventional LK ABC works generally well for symmetric modes at low frequency ranges, but its performance deteriorates
whenhighermodes appear. ALIDmethod achieves better performance than the conventional LKABC at high frequency range
and cut-off frequencies, but poor performance can be noticed for low frequency components. Compared with ALID method,
theMLKNRB achievesmuch better performance, in general, for all the frequency components. The full-reflection energy has
the maximum magnitude just after the cut-off frequencies of the S1 and S2 modes where these modes begin to participate
in the wave propagation process. At these frequencies, our MLK NRB method yields very low reflection amplitudes, much
smaller than both LK and ALID. It is thus clear that our MLK NRB is better than the existing methods both at low frequencies
for the fundamental modes and near the cut-off frequencies for the higher order modes.

The antisymmetric mode results are shown in Fig. 16 (time traces) and Fig. 17 (frequency spectra). Examination of the
time traces presented in Fig. 16 indicates that both our MLK NRB method and the existing ALID method perform much
better than the LK ABC. The frequency spectra of the reflected waves are shown in Fig. 17. At low frequencies, where the
fundamental A0mode has a long wavelength, the conventional LK ABC and ourMLK NRB give excellent results, much better
than ALID. At the A1 cut-off frequency, where the ‘newcomer’ A1 mode has a very long wavelength, our MLK NRB method
behaves again much better than ALID and LK ABC methods. Thus, it can be said that our MLK NRB method is better than the
existing ALID and LK ABC methods at all frequencies.

This comparative study demonstrates the effectiveness of the proposed MLK method and its advantage over conven-
tional/existing techniques for both symmetric and antisymmetric Lamb wave modes, both fundamental and higher order.

5.2. Parametric study on coverage length and plate thickness

Section 3 provided some guidelines for the proper choice of MLK NRB parameters, with the coverage length L identified
as very important for good performance. In this section, we present a parametric study on the coverage length L and plate
thickness H in order to substantiate these guidelines and to further demonstrate the effectiveness of our MLK NRB method.
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Fig. 14. Symmetric mode waves reflected from different boundary conditions.

Fig. 15. Frequency spectra of the reflected symmetric waves.

We used the FE model shown in Fig. 7. The coverage length L was varied from 20 mm to 100 mm in steps of 20 mm.
The plate thickness was changed from 2 mm to 10 mm in steps of 2 mm. The other parameters were consistent with those
presented in Section 5.1. We used a 100 kHz 10-cycle tone burst to generate narrow-band Lamb waves in the plates. The
transmitted and reflected waves were recorded and the refection coefficients were calculate to serve as the evaluating
metric. Fig. 18 shows the results of this parametric study for both symmetric and antisymmetric modes: our MLK NRB is
comparedwith theALIDmethod. Each bar represents a numerical casewith a specific combination of the L andH parameters.
The bar height and color are indicative of the reflection coefficient amplitude.

It can be noticed that when the coverage length goes beyond L = 2λ, the MLK NRB method achieves good performance
for all the plate thicknesses with the reflection coefficients staying below 0.01, which implies that only 0.01% of the wave
energy is reflected. This observation applies to both symmetric (S0) and antisymmetric (A0) Lamb wave modes. In contrast,
the ALID method displays worse performance for S0 Lamb wave mode in thin plates (2–6 mm), although it works well for
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Fig. 16. Antisymmetric mode waves reflected from different boundary conditions.

Fig. 17. Frequency spectra of the reflected antisymmetric waves.

the A0 Lamb wave mode in thick plates. Based on this parametric study, we can conclude that the MLK NRB has advantages
over the ALID method in thin plates, which are extensively used in aerospace and many mechanical engineering structures.
For thick plates, which are found in naval and nuclear engineering structures, ALID method remains a better choice. This
parametric study also confirms the guideline of L = 2λ coverage for the effective absorption of Lamb waves with MLK NRB.
As an illustration, the 2λ curves corresponding to the S0 and A0 modes were plotted on the charts to serve as a reference
for when the MLK NRB method starts to become strongly effective.

5.3. An asymptotic case with discussion on MLK NRB limitations

Although the focus of this article is on Lambwave absorption, the case of Rayleighwaveswas also considered because the
Rayleigh waves can be viewed as the asymptotic behavior of Lamb waves at high-frequency in thick plates. We considered
the wave propagation in a semi-infinite medium with an end boundary. In such a situation, excitations will introduce both
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Fig. 18. Parametric study results for MLK coverage length and plate thickness. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

bulk waves and surface guided Rayleigh waves (Fig. 19). The finite element model of this situation consisted of MLK NRB
absorbing layers on the right and upper free surface and ALID boundary conditions at the bottom of the model to simulate
the semi-infinite extension of the medium as shown in Fig. 19. We used two excitation points: one placed on the surface
(F1) and the other placed at a certain depth (F2). The surface excitation F1 would produce Rayleigh waves whereas the
subsurface excitation F2 would producemostly bulk waves. A 500-kHz 5-cycle smoothed tone burst was used. The response
was recorded at three depth locations, R1, R2, and R3 (Fig. 19).

The simulation results are presented in Fig. 20 in the form of wave propagation snapshots. When surface excitation F1
was applied, P-wave and strong Rayleigh wave were generated. The Rayleigh waves showed dominant surface motion with
rapid amplitude decrease along the depth. TheMLK NRB displayed good absorbing capability for the surface Rayleigh waves
(Fig. 20(a)).

When sub-surface excitation F2 was applied, three wave types (P-wave, strong S-wave, and Rayleigh wave) were gen-
erated. When Rayleigh waves entered the MLK NRB region, they were again effectively absorbed. However, it was noticed
that the S-wave reflection was not completely eliminated. When the S-wave entered the MLK NRB region, it did not decay
much along the coverage path due to the fact that its dominant motion was far away from the absorbing top surface. Then,
the S-wave interacted with LK ABC layer at the right hand end of the domain where it was damped significantly but not
completely eliminated.

Time traces of the receiver signals at three locations R1, R2, and R3 are shown in Fig. 21. When surface excitation was
applied, the signal recorded close to the surface at R1 had the highest amplitude as expected from the surface-dominant
motion of the Rayleigh wave. Since the Rayleigh wave decays rapidly with the depth, the signals recorded at R2 and R3 are
progressively smaller. A zoom-in was applied to the signal tail to identify reflections. As shown in the top of Fig. 21, these
reflections are indeed very small which indicates that the MLK NRB method has a good performance for the absorption
of Rayleigh waves. When sub-surface excitation was applied (bottom of Fig. 21), the reflections were found to be much
stronger. We attribute this behavior to the fact that, in this case, S-waves also exist in addition to Rayleigh waves. As already
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Fig. 19. Finite element model for wave absorption in a semi-infinite medium.

Fig. 20. MLK NRB effectiveness in a semi-infinite medium: (a) surface excitation generating predominantly Rayleigh waves; (b) sub-surface excitation
simultaneously generating P-waves, S-waves, and Rayleigh waves.

shown in Fig. 20(b), these S-waves had large motion deep into the medium. This was especially clear at the R3 receiver,
where strong reflected S-waves were picked up.

From this asymptotic example, we learned that ourMLKNRB is also effective in absorbing surface guidedwaves (Rayleigh
waves) in addition to absorbing plate guided waves (Lambwaves). However, its performance in absorbing bulk waves is not
better than that of the conventional LK ABC method.

6. MLK NRB application to time domain and frequency domain analyses

In this section, we will demonstrate the application of our MLK NRB method to two 3-D FEM Lamb wave damage
interaction examples in which its effectiveness was found particularly useful. The first example will be the time-domain
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Fig. 21. Receiver signals (uy) at three locations R1, R2, and R3 for surface excitation (top) and sub-surface excitation (bottom).

transient analysis of Lamb wave propagation and interaction with a structural feature. The second example will be the
frequency-domain harmonic analysis of Lamb wave scattering from a structural damage.

6.1. Time domain transient analysis of Lamb wave interaction with a structural feature

Wewanted to analyze the interaction between Lamb waves and a structural feature such as a 5-mm diameter rivet hole
in a 2.032-mm thick aluminum plate. The Lambwaves were generated by a transmitter piezoelectric wafer active sensor (T-
PWAS) surface-mounted at a location 100mm away from the hole. The measured signal was picked up at a sensing location
placed onto the 100-mmwave propagation path between the transmitter and the hole. The pickup point was 10 mm away
from the transmitter. The Lamb waves were generated by a 200-kHz 3-cycle smoothed tone burst excitation applied on the
T-PWAS, which, because of its surface mounted location, generates both S0 and A0 Lamb waves. The measured signal was
the in-plane strain along the wave propagation direction. The analysis was 3D using SOLID45 ANSYS elements with a 1-mm
mesh size along in-plane directions and an approximately 0.5-mm mesh size in the thickness direction.

In a conventional FEM analysis, one would have to consider a plate at least 0.5-m long and wide in order to avoid the
boundary reflections from contaminating the signal scattered from the hole. This would likely lead to very large problem
of approximately 3 ∗ 106 DOFs which would take considerable time and much computer resources. However, with our
implementation of the MLK NRB method, we were able to use only a small model of 0.28 m by 0.18 m. Our MLK NRB
boundary absorbing layer extended 40 mm inward away from the plate edges all the way around the plate.

Fig. 22 presents snapshots of the 3-D transient simulation showing Lamb wave generation, propagation, and interaction
with the rivet hole. Two wave propagation cases were simulated: (a) a clean plate; (b) a plate with a rivet hole. In the clean
plate (Fig. 22(a)), the absorption of each of the S0 and A0 wave modes at the boundary can be clearly noticed; no boundary
reflections are present. In the plate with a rivet hole (Fig. 22(b)), the interaction between the incoming Lamb waves and the
rivet hole resulted in scattered S0, SH0, and A0waves. These waves are clearly identifiable in Fig. 22(b). Again, no reflections
from the boundaries were present, hence the scattered waves are easy to pick up. A time-trace of the signal picked up at
the sensing location is given in Fig. 23; the reflected S0 and A0 wave packets are clearly shown. The SH0 reflection is not
shown in this signal because the scattered SH0 wave reaches its minimum amplitude along the sensing direction (as shown
in Fig. 22(b)). This example has demonstrated that important wave interaction phenomena can be efficiently modeled with
a small FEM model by using the MLK NRB method to avoid boundary reflection contaminations to the scatter signal.

6.2. Frequency-domain harmonic analysis of Lamb wave scattering from a structural damage

Another important use of our MLK NRB method can be found in the frequency domain wave scatter analysis. Such fre-
quency domain analysis would be used to compute the damage scatter coefficients to be used in a normal modes expansion
(NME) representation of the wave-damage interaction phenomenon.
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Fig. 22. Transient analysis of the interaction between Lamb waves and a rivet hold in a 3D FEMmodel using the MLK NRB method: (a) wave propagation
in a pristine plate; (b) wave propagation in a plate with a rivet hole.

Fig. 23. Distinctive scatter effect identified by comparing with baseline pristine signal.

Fig. 24. Schematic of the small-size local FEM for a 1.6 mm thick aluminum plate and the rivet hole with butterfly cracks.

For example, consider the interaction of Lamb waves with the butterfly cracks emanating from a rivet hole as shown in
Figs. 24 and 25. The difficulty of the problem resides in the fact that the rivet hole, even if pristine, is a scatterer. Hence,
when crack damage occurs around the hole, the nature of this scatterer will change, but not very much. The challenge of the
problem is to separate from the scattered field the effect of the crack from the effect of the pristine hole.

For this problem, the analysis is conducted in the frequency domain. Using our MLK NRB technique, we constructed a
small-size local FEM using the frequency domain harmonic analysis module of a commercial FE software. The schematic
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Fig. 25. (a) WDIC directivity plots under various frequencies; (b) WDIC in the forward direction as a function of frequency.

of this small-size local FEM model for the analysis of a rivet hole with butterfly cracks is shown in Fig. 24. The MLK NRB
treatment was applied around this local FEM model such that the incident wave and the scattered waves will be fully
absorbed at the model boundaries. The loading nodes were used to selectively generate the desired Lamb modes into the
local FEM. A circular sensing boundary was used to pick up the scattered waves propagating in all the directions. Harmonic
analysis was carried out to get the frequency domain response of the structure. It should be noted that the harmonic wave
field will not support standing waves between the scatterer and the boundaries because the boundaries are fully absorbent.
Instead, a propagating harmonicwave fieldwill be created since theMLKNRB treatment simulates an infinite region outside
the small FEMmodel. Due to its small size, the local FEMwith MLK NRB treatment is very fast and efficient. The benefit of a
harmonic analysis lies in the fact that it can provide the structural response under all the frequencies of interest with only
one run of the simulation, i.e., in commercial FE software packages, one only needs to define the specific frequency range
and step size, and the software will calculate the results for all the specified frequencies. This is an important benefit and
advantage compared with time-domain transient analysis in which one has to conduct the simulation separately again and
again to cover all the frequencies of interest. Of course, Fourier transform based post-processing of the transient analysis
results may be applied to cover a wider frequency band, but this would require additional effort.

The scatter field was described in terms of wave-damage interaction coefficients (WDICs), as discussed in Ref. [27,28]. In
our study, two situations were computed: (1) a plate with undamaged rivet hole generating theWDICundamaged scatter field;
and (2) a plate with a damaged rivet hole containing butterfly cracks generating the WDICdamaged scatter field. The scatter
field of the butterfly crackWDIC crack was extracted from the total scatter fieldWDICdamaged by subtraction of the undamaged
scatter fieldWDICundamaged, i.e.,

WDIC crack = WDICdamaged − WDICundamaged (16)

For illustration, Fig. 25 present a few results from our analysis for the case of an S0 Lamb wave incident.
Fig. 25(a) shows the scattered S0wave amplitude CSS (ω, θ) from an incident S0mode impinging upon the damage. It can

be observed that the scattered wave amplitude is a function of frequency ω and the azimuthal angle θ . Directivity plots are
presented at various frequencies; one notices that the azimuthal scatter pattern of the directivity plots changes dramatically
with frequency. It can be noticed that, when the butterfly cracks are directly facing the transmitter direction, the best sensing
location seems to be along the wave propagation direction as indicated by the red arrows in Fig. 25. Similar results can be
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obtained for the A0 incidence [27,28], but they will not be presented here for sake of brevity. For the same reason, mode
conversion effects are not presented here either.

Since, the additional scatter field due to the butterfly crack damage is frequency dependent, the possibility of an optimal
interrogation frequency arises. Fig. 25(b) presents a frequency plot of scatter field amplitude measured along the wave
propagation direction. This frequency plot indicates that the best interrogation frequency seems to be around 482 kHzwhen
the damage scatter field amplitude reaches a peak. Also noticed in Fig. 25(b) is the fact that certain frequencies might be bad
choices because the scatter fieldwould be very small, e.g., the 326 kHz frequencywhen the scatter amplitude is very small. It
should be noted that the result and discussion was specific for this example. For different damage types, crack orientations,
and interrogating wave modes, the results and best detection strategy may vary from case to case.

7. Summary and conclusions

This article presented a newmethod for constructing non-reflective boundaries (NRB)when using finite elementmethod
(FEM) analysis to simulate Lambwave interaction with structural defects and damage. Our method is an extension of the LK
ABCmethod that was developed for absorbing P and S waves at the edge of a semi-infinite half space. Our new contribution
consists in extending the LK concept to the case of a plate. In ourmodification of the LK concept,wewrapped the LK absorbing
interface to the top and bottom surfaces of the plate. (In the LKmodel, the absorbing interfacewas only applied to the vertical
end of the semi-infinite half space.)We call our approach themodified Lysmer–Kuhlemeyer non-reflective boundaries (MLK
NRB).

The main idea of our MLK NRB method is to take into account the fact that Lamb waves, by their nature, are the
superpositions of P and S bulk waves that undergo multiple reflections at the top and bottom surfaces of the plate. Hence,
we extended the LK absorbing interface over the top and bottom surfaces of the plate in order to attenuate these multiple
bulk wave reflections in addition to attenuating their reflections at the vertical edge of the plate.

The paper started with a review of the existing non-reflective boundary literature and identified three major directions
(i) infinite elementmethods; (ii) non-reflective boundary conditions, e.g., the conventional LK ABCmethod; and (iii) absorb-
ing layer methods, e.g., the ALID family of methods. Current Lamb wave absorption techniques were found to stem mainly
from the ALID family. The paper continued to discuss why the LK ABC approach is inadequate for Lamb waves and how it
could be modified to compensate for this inadequacy. Subsequently, the paper presented details of our MLK NRB method.
Several parametric studies were conducted to develop guidelines for the proper choice of MLK NRB parameters. Details of
the implementation method and strategy of MLK NRB was provided in a systematic manner.

Comparative studies between ourMLKNRBmethod and the existing ALID NRB and LK ABCmethodswere conducted. The
studies showed that our MLK NRB method has better performance for all Lamb modes. The case of long wavelength Lamb
waves that may appear at low frequencies for the fundamental S0, A0 modes and near the cut-off frequencies for the higher
modes was also studied. It was again found that MLK NRB gives better performance.

Parametric study on the coverage length and plate thicknesswere also conducted. It was found that ourMLKNRBmethod
is better than the ALID method when applied to thin plate structures. However, in thicker plates, the ALID method seems to
work better than our MLK NRB method.

Two application examples of our MLK NRB method were given. One example was performed in the time-domain and
showed how a Lambwave package scatters from a structural feature such as a rivet hole. The other example was performed
in the frequency domain and illustrated how additional scatter due to butterfly crack damage in a rivet hole can be extracted
from the scatter field of the pristine hole. Interesting effects related to the variation of the damage scatter with frequency
were noticed and desirable interrogation frequencies (as well as undesirable ones) were identified. The application of our
MLK NRB method to reflection suppression in a semi-infinite half space was also studied. It was found that our MLK NRB
method can effectively suppress Rayleigh wave reflections, but is not very effective in suppressing S-wave reflections.

Since our MLK NRB method is based on a totally different mechanism than the ALID family of methods, the question
arises as to whether these two methods could be combined to get an even better performance for suppressing Lamb wave
reflections at the plate boundaries. We believe that themechanisms behindMLK NRB and ALIDmethods are complimentary
to each other; hence, the investigation of a hybrid technique combining these two mechanisms is fully justified and should
be pursued in future work.
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Abstract
This article discusses shear horizontal (SH) guided-waves that can be excited with shear type
piezoelectric wafer active sensor (SH-PWAS). The paper starts with a review of state of the
art SH waves modelling and their importance in non-destructive evaluation (NDE) and
structural health monitoring (SHM). The basic piezoelectric sensing and actuation equations
for the case of shear horizontal piezoelectric wafer active sensor (SH-PWAS) with electro-
mechanical coupling coefficient d35 are reviewed. Multiphysics finite element modelling (MP-
FEM) was performed on a free SH-PWAS to show its resonance modeshapes. The actuation
mechanism of the SH-PWAS is predicted by MP-FEM, and modeshapes of excited structure
are presented. The structural resonances are compared with experimental measurements and
showed good agreement. Analytical prediction of SH waves was performed. SH wave
propagation experimental study was conducted between different combinations of SH-PWAS
and regular in-plane PWAS transducers. Experimental results were compared with analytical
predictions for aluminium plates and showed good agreement. 2D wave propagation effects
were studied by MP-FEM. An analytical model was developed for SH wave power and
energy. The normal mode expansion (NME) method was used to account for superpositioning
multimodal SH waves. Modal participation factors were presented to show the contribution
of every mode. Power and energy transfer between SH-PWAS and the structure was
analyzed. Finally, we present simulations of our developed wave power and energy analytical
models.

Keywords: shear horizontal (SH), piezoelectric wafer active sensor (PWAS), structural health
monitoring (SHM), wave power and energy, dispersion wave speeds

(Some figures may appear in colour only in the online journal)

1. Introduction

A conventional piezoelectric wafer active sensor (PWAS) is a
thin and rectangular or circular wafer that is poled in thick-
ness direction with electrodes on the top and bottom surfaces.
Those types of PWAS transducers are either used in in-plane
or thickness mode. In the in-plane mode, applying an electric
field in thickness direction causes the sensor lateral dimen-
sions to increase or decrease, and a longitudinal strain will
occur ε = d E1 13 3, where d13 is the piezoelectric coupling
coefficient measured in [nm kV−2]. Thickness mode is a mode

that occurs simultaneously with extension mode, but dom-
inates at higher frequencies in MHz. In the thickness mode,
strain in the thickness direction will occur ε = d E3 33 3, where
d33 is the piezoelectric coupling coefficient in thickness
direction. A different mode of oscillation can be achieved
when the applied electric field direction is perpendicular to
the poling direction, and it is referred to as shear mode. The
common piezoelectric coupling coefficient known for this
mode is defined as d15; however, this coupling coefficient
occurs only when the electric current is applied in E1 direction
and the poling is along thickness direction. The shear coupled
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PWAS presented in this study is associated with the d35

coupling coefficient, in which electric current is applied
across thickness (i.e., in x3 direction), and the poling is in x1

direction. A few studies considered this (d35-mode) [1]. For
most piezoelectric materials, the coupling coefficients asso-
ciated with shear mode have the largest value of all coeffi-
cients [2–4]. The higher values of shear coupling coefficients
make SH-PWAS superior in actuation and sensing [5]. SH
waves are also preferable because the first symmetric mode is
non-dispersive in isotropic materials, i.e., wave speed is
constant at different frequencies. On the other hand, one of
the important disadvantages of SH-PWAS is that thicker
transducers are needed to sustain and generate the shear
actuation. Due to the high density of piezoceramic materials
≈( 7600 kg m−3 for APC850 piezoceramic Navy II type),
using shear mode piezoelectric elements increases the mass of
the system.

Shear mode piezoelectric transducers were used as an
actuator element in a cantilever adaptive sandwich beam
setup [6]. The stress distribution under mechanical and elec-
trical loading was investigated across thickness and length. A
similar study on using shear-type piezoelectric as a shear
bender was studied by [7]. A piezoelectric device was also
used for designing torsional actuators generating angular
displacement [2], where the torsional element consists of
different segments, and the neighbouring segments are of
opposite poling. The application of a torsional actuator was
applied in a later study by [8] to control rotor blade trailing
edge flaps.

For SHM and NDE applications, shear horizontal (SH)
guided waves showed high potential for quantitative detec-
tion of structure defects [9–11]. In [11], it was shown that
SH wave mode conversion occurs at the damage from fun-
damental incident S0, and it was shown that SH0 could be
used for quantitative identification of delamination in com-
posite beams. In another application, SH polarized waves
were used for evaluating the quality of bonding between the
transducer and the structure [12]. This can be compared to
the method of using an imaginary component of PWAS
impedance analysis to test the bonding between the trans-
ducer and the structure [13]. Shear horizontal waves are
usually associated with electromagnetic acoustic transdu-
cers, or EMAT [14], where SH waves were used for
detection of weld defects. SH waves excited by EMAT have
shown superiority over conventional shear vertical (SV) and
longitudinal waves for detection of weld defects [15];
however, it was suggested that piezoelectric-based transdu-
cers generating SH would show better acoustic generation
than EMAT [15]. Also, one point to consider is that EMAT
needs conductive structures, while PWAS can be used for
conductive metallic structures and non-conductive compo-
sites (e.g., glass fibre reinforced polymers), not including the
fact that SH-PWAS is inexpensive. In terms of effectiveness,
EMAT always showed reliability for detecting damages,
especially magnetostrictive MsS®, which have been devel-
oped by Southwest Research institute (http://www.swri.org).

Nevertheless, fibre optics were also used for detecting SH
waves, [16] used fibre optic sensors for detection of SH0
wave type generated from mode conversion from excited
Lamb waves, and this was used for detecting delamination in
CFRP composites.

SH-PWAS can be used as an alternative for spiral wave
ultrasonic conventional transducers in applications such as
detecting weep holes in wing spars [17, 18]. This application
is not necessarily used for weep holes, but it is used for holes
with fasteners. SH-PWAS can be used as a torsional wave
exciter and/or recipient for pipe crack damage detection. SH-
PWAS can also be used in applications that require the
detection of shear waves for finding adhesive shear stiff-
ness [12].

This study focuses on generation of SH waves by
piezoelectric wafer-type shear transducer; we call it SH-
PWAS. The objectives are: (i) predictive modelling of SH-
PWAS response and (ii) performing extensive experimental
studies to support the predictive models. The study is
structured into three main parts. In the first part, basic
piezoelectric sensing and actuation equations for the case of
SH-PWAS are discussed. A finite element model was per-
formed to show how the transducer resonates. FEM is also
used to show the excitability of SH waves and the axial-
flexural waves. The second part presents generation and
reception of SH waves and compares dispersion wave
speeds with analytical predictions. Experimental studies
investigate (1) different possible pitch–catch configurations
between SH-PWAS and regular in-plane PWAS and (2)
directivity of SH-PWAS and its effect on wave amplitudes.
Moreover, FEM was performed to show the 2D effects
associated with excitation and reception of SH waves.
Finally, in the third part, predictive models for power and
energy of SH waves were analytically developed based on
the normal modes theory. In this study, it is shown how to
superimpose SH wave power when multi-modes exist
(typically at high excitation frequencies and in thick struc-
tures). Power is the time rate of change of wave energy. We
developed energy models to verify our analytical models by
showing that potential energy and kinetic energy are equal.
Modelling the total wave power is important to better
understand the power consumption of the electric source for
practical SHM and NDT systems. Also, the developed
power model shows how different modes contribute to the
total power.

2. SH-PWAS constitutive relations and actuation
mechanism

2.1. Constitutive relations

Most literature mentioned earlier dealt with shear dielectric
coupling coefficient d15; however, this is only applicable if
the electric field (E1) is applied in the in-plane direction and
the piezoelectric poling is in the thickness direction. In such a
case, the transducer electrodes are installed on two of the
vertical sides. In our model and in FEM simulations, we use
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d35 as the SH-PWAS we used [3] is having its electrodes on
top and bottom and hence electric field is applied along x3
direction, and the poling is applied longitudinally (refer to
figure 1(a)). From main constitutive equations of piezo-
electricity, we have

= +S s T d E (1)ij ijkl
E

kl kij k

ε= +D d T E (2)i ikl kl ik
T

k

where Sij are the strain components, sijkl
E denotes compliance

matrix under a constant electric field condition, Tkl are stress
components, dkij are piezoelectric coupling coefficients, Ek

represents the electric field vector, Di is the electric dis-

placement vector, and εik
T are electric permittivity constants

of the PWAS material. Equation (1) is considered the
piezoelectric converse effect, where an applied electric
field will result in induced strains. Equation (2) is the
direct piezoelectric mechanism, where applied stresses
will result in output electrical displacements. In the con-
tracted Voigt contraction form, equations (1), (2) can be
written as
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The mechanical compliance matrix of the piezoelectric
material takes an orthotropic form. The electrical permittivity
matrix is a diagonal matrix, corresponding to the three pos-
sible directions of the applied electric field. The piezoelectric
coupling matrix contains coefficient d33 corresponding to the
thickness strain, i.e., ε = d E3 33 3 and coefficients correspond-
ing to the lateral strain, i.e., d13 and d23. Also, the d24 coef-
ficient relates the electric field in lateral direction E2 with
shear motion (in 2–3 direction, i.e., T4, S2 4), while d15 relates
the electric field in lateral direction E1 with shear motion (in
1–3 direction, i.e., T5, S2 5). In our SH-PWAS, provided by
APC piezoceramic Int., Ltd. (figure 1(b)), the electric field is
applied in E3 direction, resulting in shear motion (in 1–3
direction, i.e., T5, S2 5). So, the d35 term appears. For the SH-
PWAS transducer in this study, we have an electric field in 3-
direction, and the poling is in longitudinal direction, as shown
in figure 1(a); the two equations (3), (4) reduce to

= ′ = +( )S u s T d E2 (5)E
5 1 55 5 35 3

ε= +D d T E . (6)3 35 5 33 3

2.2. Free SH-PWAS response

A multiphysics finite element model was constructed for the
free SH-PWAS using COMSOL Multiphysics. The coupled
physics incorporates the induced mechanical strain due to an
applied electrical field across the thickness in x3 direction.

Figure 1. (a) Schematic diagram for SH-PWAS; shaded areas are the electrodes. Reproduced with permission from [13]. Copyright 2008
Elsevier. (b) provided transducer schematic from manufacturer, (source: APC Piezoceramic Int., Ltd [3]).
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The SH-PWAS dimensions are 15 mm×15 mm×1mm. One
square side of the SH-PWAS was grounded, and a 10 volt
was applied to the other side. A sweep of frequencies was
performed from 100 kHz to 4MHz, and the resulting dis-
placement response was reported in figure 2 for two example
frequencies: a) at 200 kHz and b) at 950 kHz, where the
transducer’s first resonance occurs. PWAS material is
APC850; detailed properties can be found on the APC web-
site (http://www.americanpiezo.com). Figure 2 shows a finite
element analysis of the vibrations’ modeshapes of SH-PWAS.
It can be observed that at low frequency (figure 2(a)), the
vibration has a linear shape across the thickness. Whereas at
higher frequencies, e.g., ≈1MHz, (figure 2(b)), the mode-
shape shows nonlinearities and a more complicated shape.

The modeshape of vibration of the shear horizontal coupled
PWAS is important, as it controls the excitation of guided
waves in the structure, which is discussed in the next section.

2.3. Bonded SH-PWAS to beam structures

When SH-PWAS is bonded to the structure (figure 3(a)), SH
waves are excited in the direction perpendicular to poling
direction. Poling direction is the direction where the trans-
ducer vibrates when excited by electrical voltage. Because of
this actuation mechanism, axial-flexural response can be
obtained in the direction of poling P. Figure 3(b) shows the
shear actuation of the transducer. Normal load transfer as well
as bending moment transfer lead to an axial and flexural
response in 1-direction.

Figure 2. Mode shapes of vibrations for SH-PWAS using finite element analysis, (a) mode shape at 200 kHz, (b) mode shape at resonance
frequency 950 kHz.

Figure 3. (a) Schematic of SH-PWAS bonded on the structure, (b) Axial–flexural response excited by SH-PWAS parallel to poling direction.
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Electromechanical (E/M) impedance is measured for
bonded SH-PWAS on 1 mm thick aluminium beams. A fre-
quency sweep is performed up to 160 kHz to capture structure
resonances. The objective is to study structure response when
SH-PWAS is bonded in either one of two configurations: (a)
transducer poling is parallel to the beam length or (b) trans-
ducer poling is perpendicular to the beam length (figure 4).

Finite element models are constructed for bonded SH-
PWAS on 1mm thick aluminium beams. Three models are
constructed: (a) 2D model for the case where poling of the SH-
PWAS is along the beam length, (b) 3D model for the same
case of having poling direction parallel to the beam length, and
(c) 3D model for the case of transducer poling perpendicular to
the beam length. Figure 5 shows detailed finite element setups.
The transducer top electrode is excited by electric voltage of
1 V. A sweep of frequency is performed up to 160 kHz. E/M
impedance is calculated for different models and compared
with bonded SH-PWAS experimental results.

2.4. Discussion of bonded SH-PWAS electromechanical
response results

The elecromechanical impedance of bonded SH-PWAS in
configuration-1 shows peaks at 42 kHz, 90 kHz, and 136 kHz
(figure 6). Structure modeshapes at these frequencies indicate

that these frequencies correspond to the axial-flexural
response (figure 7). The modeshapes at 42 kHz and 136 kHz
are width independent (z-invariant). However, the captured
modeshape at 90 kHz has some width coupled vibration.

These results agree with the suggested mechanism of
actuation of SH-PWAS for the response in the same direction
of poling direction (figure 3(b)).

The SH-PWAS installed in configuration-2 showed SH
response, where the beam length is perpendicular to the

Figure 4. Experimental setup for SH-PWAS bonded on 1 mm aluminium beams (a) configuration-1, (b) configuration-2, (the black arrow
indicates poling direction).

Figure 5. FEM for bonded SH-PWAS on 1 mm thick aluminium beams: SH-PWAS configuration-1: (a) 2D model, (b) 3D model, (c) SH-
PWAS configuration-2, 3D model.

Figure 6. Comparison between experimental results and finite
element simulations for E/M impedance of SH-PWAS bonded on
1 mm thick aluminium beam (configuration-1).
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poling direction. The electromechanical impedance of the
bonded transducer to the structure (figure 8) shows peaks at
22 kHz, 47 kHz, 77 kHz, 107 kHz, and 136 kHz. Figure 9
shows the finite element simulation of displacement in the z-
direction, which is a shear horizontal response.

3. Guided wave excitation by SH-PWAS

3.1. Analytical review

Consider SH-PWAS bonded to the structure shown in
figure 3(a). The structure half thickness is d, and μ is the shear
modulus of the structure. SH PWAS dimensions are: length l,
width b, and thickness h. Shear horizontal waves have a
shear–type particle motion contained in the horizontal plane.
Cartesian coordinates are defined such that the x-axis is
placed along the wave propagation direction, whereas the z-
axis is the direction of particle motion, and y is along the plate
thickness. The poling direction of the piezoelectric transducer
is in x1 direction (coincides with global z-axis coordinate of
the structure). An approximated 1D analytical model with a z-
invariant assumption is well-developed in many previous
studies [19–21]. The analytical model only predicts SH wave
motion of particle oscillation along z direction and propa-
gating in x direction. We use the analytical model to predict

dispersion wave speeds of SH waves. The displacement is
assumed to be harmonic

= ξ ω− −u x y t U y e( , , ) ( ) (7)z z
i x t( )

where ξ is the wave number in x direction. Guided SH waves
in plates (similar to guided Lamb waves) are multimodal in
nature; as the frequency of excitation increases, new modes
are excited in the plate. The frequencies at which new modes
appear are called cut-off frequencies. The cut-off frequency
can be determined by solving the characteristic equation

η η =d dsin( ) cos( ) 0S A for ηd values and by substituting in

π
η=−f

c

d
d

1

2
( ) (8)s

cut off

where η is defined from η ω ξ= −c/ s
2 2 2 2, and cs is the shear

wave speed. We define cut-off frequency in units of Hz or
normalized frequency fd c( / )s . The nth symmetric mode dis-
placement is

η= ξ ω−( )u x y t B y e e( , , ) cos (9)z
n

n n
S i x i tn

S

and the nth antisymmetric mode displacement is

η= ξ ω−( )u x y t A y e e( , , ) sin . (10)z
n

n n
A i x i tn

A

The total displacement is
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The amplitudes An, Bn are normalized with respect to
power flow and found to be [22]

ωμξ ωμξ
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1
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A

Solving the characteristic equation

η η =d dsin( ) cos( ) 0S A results in finding wave speeds and
group velocities.

Analytical evaluation for shear horizontal wave speeds
and group velocities is presented in figure 10 for a 1 mm
thick aluminium plate. Wave speeds are normalized with
respect to shear (transverse) wave speed, which equals
3129 m s−1 for our case study aluminium 2024-T3 alloy. The

Figure 7.Modeshapes of vibrations of 1 mm thick aluminium beam with bonded SH-PWAS in configuration-1 (axial-flexural orientation) at
excitation frequency: (a) 42 kHz, (b) 90 kHz, (c) 136 kHz. Plotted FEM variable is the total displacement.

Figure 8. Comparison between experimental results and finite
element simulations for E/M impedance of SH-PWAS bonded on
1 mm thick aluminium beam (configuration-2).
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predicted SH wave modes were three modes in the 4000 kHz
frequency window (corresponds to =fd c/ 0.64s ). The first
SH mode is SH0; it is a symmetric mode of vibration and
has a constant propagation speed at any excitation fre-
quency. The second SH mode is SH1; it is an antisymmetric
mode with a cut-off frequency ≈ =0.25( 1565 kHz). The third
mode in our simulation results is SH3; it is symmetric like
SH0. However, it is dispersive, i.e., does not have a constant
propagation speed. The cut-off frequency of SH3 is
≈ =0.5( 3130 kHz).

3.2. Experimental studies

3.2.1. Proof of concept. Three sets of experiments are
performed. The first set of experiments was a proof of

concept that was performed on 3.4 mm thick aluminium 7075
T6 alloy plate (figure 11). The SH-PWAS was
15 mm× 15mm×1mm, and its material was APC850. SH-
PWAS poling direction was along the z-direction
(figure 11(c)). The distance between the two SH-PWAS
was 150 mm, and the excitation was a 3-count tone burst
signal with 10 V amplitude. The excitation frequencies used
were 30, 45, 60, 75, and 90 kHz, as shown in the waveforms
(figure 12). It was noticed that the received signals in
figure 12 waveforms were non-dispersive, (i.e., they had
shown the same shape as the excitation signal, ≈3 count tone
burst), especially at frequencies 60, 75, and 90 kHz; this
implies that the wave packet speed does not change with
frequency, and that this is the intrinsic property of SH0 (the
first shear horizontal guided wave in isotropic materials).

Figure 9.Modeshapes of vibrations of 1 mm thick aluminium beam with bonded SH-PWAS in configuration-2 (SH orientation) at excitation
frequency: (a) 22 kHz, (b) 47 kHz, (c) 77 kHz, (d) 107 kHz, (e) 136 kHz. Plotted FEM variable is the Z-displacement field.

Figure 10. Shear horizontal wave velocities in aluminium: (a) phase velocities, (b) group velocities.
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In addition, it was observed that no waves propagate along
(path 2) in figure 11(c). The actuation mechanism of SH-
PWAS that is shown from free transducer mode shapes
(figure 2) implies that the SH-PWAS resonates in the z-
direction, and the generated waves propagate along the x-
direction. Comparison between analytical and experimental
results is shown in figure 13.

3.2.2. Pitch–catch experiments between combinations of SH-
PWAS and in-plane PWAS transducers. The second set of
experiments were a rigorous combination of pitch–catch
experiments between (a) SH-PWAS transducers with
different orientations (to study effect of poling direction)
and (b) pitch–catch experiments between SH-PWAS
transducers and regular PWAS. SH-PWAS materials was
APC850, and the dimensions were 15 mm×15 mm× 1mm.
The regular PWAS material was APC850, and a circular
PWAS of diameter 15 mm and 0.2 mm thickness was used. A
detailed set up is shown in figure 14(b). The aim behind those
combinations of experiments was to have a better
understanding of the following cases:

1. Does the SH-PWAS transmit only SH waves to another
SH-PWAS?

2. Can regular PWAS receive SH waves transmitted by
SH-PWAS?

3. How does SH-PWAS behave when excited by waves
coming from regular PWAS? (The opposite situation of
question 2.)

4. How does SH-PWAS behave if oriented 90 degrees; does
it transmit SH waves in this case? Does it receive SH
waves?

Seven experiments were performed on a 1 mm thick
aluminium 2024-T3 square plate 1220 × 1220 mm with a
frequency sweep up to 300 kHz. Table 1 summarizes the
experiments and captured waves in each case.

The experiment between two SH-PWAS transducers
showed the generation of shear horizontal waves, providing
that both transducers are installed such that their polarization
vectors are parallel to each other (experiment #1), (figure 15(a)).

However, for two SH-PWAS transducers installed such
that their polarization directions are perpendicular to each
other, the signals that SH-PWAS4 received from SH-PWAS6
had the speeds of S0 for the first symmetric Lamb wave
modes, (experiment #4) (figure 15(c)).

Experiment #6 (the reverse situation of experiment #4)
showed identical results to experiment #4. This was done to
verify reciprocity and lack of nonlinear effects. The exciter
SH-PWAS6 was oriented in the correct direction to send SH
waves towards the receiver SH-PWAS4. SH-PWAS4 was the
one oriented with 90°. In such a situation, we expected that
transmitter SH-PWAS6 was sending out SH waves; however,
receiver SH-PWAS4 neither responded nor picked SH waves,
but rather picked S0 waves (figure 15(c)). This suggests that
the transmitter excites the S0 wave in the measured direction.
This observation is further explained in the discussion section
of guided wave propagation results.

Another feature was observed: when SH-PWAS5 excites
SH waves, the regular extensional mode PWAS2 picked up
two types of guided waves: a Lamb wave antisymmetric A0
mode as well as a SH0 wave (experiment #2) (figure 15(b)). It
was not expected that extensional type PWAS transducers
resonate in shear mode and convert shear-mode waves to
output voltage. This observation is further discussed in the
discussion of guided wave propagation results section.

Finally, regular PWAS2 was excited, and the signal was
caught by SH-PWAS5 (experiment #3). Similarly, PWAS2
was excited, and the signal was caught by SH-PWAS4
(experiment #7).

Experiment #3 was identical to experiment #2, where the
SH-PWAS5 picked up SH waves (exactly like figure 15(b)).
In experiment #7, where PWAS2 was excited, and the signal

Specimen

33120A HP function
generator

Tektronix
TSD 5034B
Oscilloscope

(a)

(b)

(c)

SH-PWAS #1
15x15x1mm

SH-PWAS #2
15x15x1mm

Path-2

Path-1

Path-3
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125 mm

15
0 

m
m

150 mm 125 mm

x

Figure 11. Pitch–catch experiment to excite SH waves and catch with another SH-PWAS.
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was caught by SH-PWAS4, the received waveforms corre-
sponded to guided Lamb waves only (figure 15(d)).

3.2.3. Directivity of SH-PWAS. The third set of experiments
involves a similar setup to that of set #2, but with added
transducers at 30° and 60° degree angles. The complete setup
is shown in figure 14(a). Experiment #1 (SH-PWAS5→SH-
PWAS6) indicates the zero angle direction pitch–catch,
experiment #1(30) indicates the 30° pitch–catch, and
experiment #1(60) indicates the 60° pitch–catch.

Receiver SH-PWAS6 transducers in experiment #1(30)
and (60) are no longer having parallel poling direction to
transmitter SH-PWAS5.

Similarly, experiments #2 and #4 are performed at
different angles: 0°, 30°, and 60°. Figure 16 shows the

Figure 12. Waveforms associated with pitch–catch SH waves experiment on 3.4 mm thick aluminium.

Figure 13. Experimental versus analytical wave group velocity
curves (SH-PWAS experiment on 3.4 mm thick aluminium plate).
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directivity patterns for received wave amplitudes at different
experiments.

Figure 16(a) shows SH wave amplitudes for a pitch–
catch experiment between two SH-PWAS transducers.
Starting from parallel poling directions (at 0°), the SH
wave amplitude is the maximum (e.g., at 60 kHz). At 30°,
the SH wave amplitude decreases and then it further
decreases at 60°. This is not observed with all the
frequencies. On the other hand, A0 wave amplitudes
received at SH-PWAS for the same experiment show an
increase in amplitude as the angle increases from 0° to 30°
to 60°. This agrees with the previous results of exciting an
axial-flexural response along the poling direction. As the
angle of the pitch–catch experiment changes towards 60°, a
stronger A0 mode is obtained.

Experiment #2 (SH-PWAS5→ regular PWAS2) showed
similar patterns to experiment #1. However, the received
signals at 60° were noisy. Figure 16(c) shows amplitudes of
SH waves received by PWAS2 and generated by SH-PWAS5
for experiment #2, 2(30), and 2(60). Figure 16(d) shows
amplitudes of received A0 waves. Experiments #3 are the
opposites of experiments #2. Those are not performed in this
study.

Experiment #4 (SH-PWAS4→ SH-PWAS6) involves the
pitch–catch experiments between two SH-PWAS transducers

having poling directions perpendicular to each other (for 0°
case). Figure 16(e), f are for the same received S0 wave
amplitudes but at different frequencies. They are plotted on
two polar plots because of considerable change in amplitude
values in [mV] between 45 kHz, 75 kHz, and 255, 300 kHz. It
is observed that the S0 amplitudes are much less at lower
frequencies. Also, it is observed that the perpendicular
poling directions—experiment #4(0)—cause the least S0
wave amplitudes. S0 wave amplitudes are much higher at
30° and 60° angles between poling directions of the two
transducers.

Figure 14. Numbering and directions of pitch–catch experiments on aluminium plate: (a) directivity experiment, (b) separated experiments
for combination of SH-PWAS–regular PWAS pitch–catch configurations.

Table 1. Description of experiments showing excitation and receiver
PWAS transducers for each experiment and the possible paths of
wave propagation.

Experiment No. and description of Captured
pitch–catch configuration waves

Experiment (#1) SH5→SH6 SH0, A0
Experiment (#2) SH5→PWAS2 SH0, A0
Experiment (#3) PWAS2→SH5 SH0, A0
Experiment (#4) SH4→SH6 S0
Experiment (#6) SH6→SH4 S0
Experiment (#7) PWAS1→SH4 A0, S0
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3.3. Finite element simulations

The models in section 2.3 predict SH-PWAS effects at 0° and
90°, separately. Also, it is hard to combine (axial-flexural)
and (shear horizontal) separate responses of figure 3(b) into a
2D analytical model. Hence, 2D multiphysics FEM simula-
tions are constructed to better understand the possible excited
waves by SH-PWAS and to verify directivity experiments.
Shear horizontal SH0, symmetric S0 and antisymmetric A0
Lamb waves were picked by FEM simulations.

The finite element model was constructed for the bonded
SH-PWAS to the structure. The SH-PWAS dimensions were
15 mm×15 mm×1mm, while in-plane PWAS dimensions
were 7 mm×7mm×0.2 mm. The mesh size of SH-PWAS
elements was 0.5 mm and 4 elements, per the 1 mm thickness.
A 1 mm aluminium 2024 alloy plate was used in our simu-
lations. The plate was a 450 mm square plate. The structure
maximum element size was set to 4 mm and 2 elements
through the 1 mm thick aluminium plate. The plate was
modelled with free BC, and the SH-PWAS was perfectly
bonded from the bottom surface and free from the upper
surface.

Excitation signal was 3-count tone burst with canter
frequency 60 kHz and voltage amplitude of 10 V. The time
step selected was 0.5 μs, and simulation time was 200 μs.
Figure 17 shows the results of the simulations. Figure 17(a)
shows the displacement field in the z-direction, i.e., the
direction of shear horizontal particle oscillation. SH0 waves

had a strong oscillation in the z-direction and propagated in
the x-direction between the transmitter and receiver SH
PWAS transducers. Antisymmetric A0 and symmetric S0
modes were observed propagating in the z-direction. For
comparison, the waves excited by in-plane PWAS
(figure 17(b)) are reported; only A0 and S0 existed. The
simulations in figure 17 are both captured at a simulation time
that equals 77 μs. The displayed parameter in figure 17(b) is
eZ the out of plane strain; it was selected rather than the
displacement fields to be able to show S0 and A0 modes
together.

When FEM simulation was repeated between the two
SH-PWAS transducers, but with the transmitter SH-PWAS
oriented by 90 degrees (figure 18), the waves that propagated
toward the receiver SH-PWAS were S0 and a noisy A0. This
was in good agreement with the observed results from
experiment #4 (figures 14(b) and 15(c)). Figure 18 shows the
displacement fields in the x-direction at 40 μs. Particle motion
in the x-direction was selected because, for such a config-
uration, SH waves had a particle oscillation in the x-direction
and propagated in the z-direction. Besides, the S0 Lamb wave
was propagating in the x-direction–with dominant particle
motion in the x-direction.

3.4. Discussion of guided wave propagation results

The FEM simulations of SH wave propagation between two
SH-PWAS transducers (figure 17(a)) validate the transducer

Figure 15. Dispersion group velocity curves for received wave signals (SH-PWAS experiment on aluminium).
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actuation mechanism of exciting SH waves in the direction
perpendicular to the poling direction. SH wave amplitude
decreases as the direction of the measured response changes
from 0° towards 90°; this agrees with figure 16(a) at excita-
tion frequency 60 kHz. Recalling experiment #6 in the pitch–
catch experiments, i.e., the opposite of experiment #4
(figure 14(b)), the receiving of the S0 waves seem to

contradict with the results of figure 15(a), where SH0 and A0
were only captured along the direction perpendicular to the
poling direction of transmitter SH-PWAS. Referring to
figure 17(a), a very weak S0 mode appears along 45 degrees
from the x-direction (and almost vanishes along the x-direc-
tion). Hence, one can conclude that the SH-PWAS actually
excites S0 waves in the same direction of exciting the SH

Figure 16. Amplitudes of different waves at different angles of pitch–catch experiments, associated with directivity experiment.
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waves; and this is due to 2D effects and to the fact that
structure particle vibrations at one side of the transducer
definitely affect vibrating particles at the other sides. The
considerably reduced S0 wave amplitudes are proven from
figure 16(e), f along the 0° direction.

The feature observed in experiment #2 in section 3.2.2
was that the regular in-plane PWAS was able to pick up SH
waves. This means that it resonates in its extensional-con-
traction mechanism when the shear wave front hits the
transducer. Two dimensional effects can be the reason; that is,
SH waves excited by SH-PWAS (with structure particles
vibrations in the z-direction) arrive at regular PWAS with the
z-direction vibrations; and, due to 2D effects, z-direction
oscillations are actually considered extension-contraction
oscillations (if viewed from another diameter of the receiver
PWAS). In addition to the 2D effects, SH waves can be
mode converted at the receiver PWAS because the transducer
itself is considered an inhomogeneity in the wave field. A

similar observation in [11] suggested that the S0 wave mode
converts to SH0. SH0 can be mode converted (at the time of
flight of receiving SH0) to a mode that regular PWAS inter-
acts with.

4. Power and energy transduction with SH-PWAS

The study of power and energy transduction between
PWAS and a bonded structure has been presented in [23],
where exact guided Lamb waves’ power and energy are
studied. Energy transfers from electrical to mechanical in
the transducer; then, the mechanical energy causes the
wave to propagate. This paper presents an analytical
model for the SH waves’ power and energy based on the
normal mode expansion (NME) technique. The solution
assumes straight crested harmonic waves and that no
evanescent (i.e., non propagating) waves exist. Mode
amplitudes are normalized with respect to power flow;
and the actual amplitudes can be determined from
equation (12).

Considering that only SH waves are propagating; the
surviving strains are

=
∂
∂

=
∂
∂

S
u

y
S

u

x
2 , 2 . (13)yz

z
xz

z

Strains and stresses can be evaluated given the total
displacement, equation (11); however, as we will show later,
the symmetric and the antisymmetric displacements can be in
separate solutions because the orthogonality condition cancels
the terms involving multiplications between cosine and sine
terms from symmetric and antisymmetric modes. Hence, we
can proceed with a separate analysis. This can be useful to
separate wave energy and power and to quantify the partition
of symmetric modes as well as antisymmetric ones. Following
the method presented in [22], modal participation factors are

Figure 17. FEM simulations for waves excited at 60 kHz by (a) SH-PWAS, (b) in-plane PWAS.

Figure 18. FEM simulation for the case of a 90° orientation
difference between two SH-PWAS.
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Noting that equation (13) is valid for the forward pro-
pagating mode only, b is the width of SH-PWAS, and it is the
transducer dimension along x direction in our study. d is half
the plate thickness, Pnn is power flow factor, ṽ (.)z

n is the

conjugate of velocity field in z direction for the mode n, and tz
is the PWAS traction or shear stress. We denote +a x( )n by a +
sign to show that it is for the forward propagating mode.
Modal participation factor is an extra term to be multiplied by
the wave amplitudes. It is a function of the distance x and also

accounts for the transducer dimension b. We define an
S as the

modal participation factor for nth symmetric mode, and

similarly an
A for the nth antisymmetric mode. Equations (11),

(14) yield the strains and stresses as
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The total strain response (due to symmetric and
antisymmetric waves) and the conjugate values of the strain
are
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It needs to be mentioned that strain quantities in
equation (16) are a summation for one single symmetric mode

and one single antisymmetric mode, taking into account the
modal participation factors.

From the displacement equation (11), we obtain the
velocity and the conjugate velocity as
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The time averaged power is defined as
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Substituting equations (16), (17) in equation (18) and
simplifying yields the time averaged power as

ð19Þ
First, terms with multiplied sine and cosine functions

from the symmetric mode and the antisymmetric mode are
cancelled; for the characteristic equations of the symmetric
and the antisymmetric modes, either sine or cosine terms
will be zero at a time. Hence, there is no dependency
between symmetric and antisymmetric modes. Second,
terms with η dsin(2 )

n
appearing with the analysis of single

types of waves are also crossed out because
η η η=d d dsin(2 ) 2 sin( ) cos( )

n n n
, and for our characteristic

equations for symmetric and antisymmetric, either sine or
cosine terms will be zero at a time. The final result for
wave power takes the form
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The time-averaged power varies at different x values, as
the x dependency comes from the modal participation factors.
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All the following numerical illustrations are shown at the top
surface of the structure (y = d) and at the edge of the trans-
ducer, where (x= b/2).

With similar analysis, we define time-averaged kinetic energy
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and the final analytical form will be
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Time averaged potential energy is defined as
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Using similar analysis to the one we followed in power
and kinetic energy, then cancelling η dsin 2
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Using the relation η ω ξ= −c/ s
2 2 2 2, we can then prove that

time -averaged potential energy equals time averaged kinetic energy

ð25Þ

Figure 19. Guided SH wave power for three SH modes: two symmetric SH0, SH2, and one antisymmetric SH1: (a) individual wave power
for SH0, SH2, (b) SH1 wave power, (c) total symmetric wave power, (d) total antisymmetric wave power.
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4.1. Discussion of power and energy model results

Numerical simulations for developed analytical models were
shown in figures 19 and 20. Figure 19 shows simulation
results of our analytical model for wave power. The SH0
power flow oscillates as a function of frequency with constant
amplitude (because of having constant dispersion wave
speed). However, the peaks and valley response are due to
SH-PWAS finite dimension effect (what is commonly refer-
red to as tuning of the transducer). SH1 (antisymmetric shear
horizontal mode) kicked off at 1560 kHz (figures 19(b), (d)).
SH2 (symmetric mode) started at 3150 kHz (figures 19(a),
(c)). Both SH1 and SH2 are dispersive modes with variable
power consumption at different frequencies (because their
wave speeds are not constant along the frequency spectrum).
Similar conclusions are drawn from simulated results of wave
energies (figure 20).

5. Summary and conclusions

The paper discussed the excitation and reception of SH
waves using SH-PWAS; that is, piezoelectric wafer active
sensor poled in shear direction. The paper also presented
predictive models for power and energy of multimodal SH
waves.

Excitation of SH waves was analyzed by finite element
simulations and experiments. SH0 non-dispersive waves were

captured in aluminium plates. Multiple experiments were
performed to show the SH waves excitation and receiving
capabilities of both SH-PWAS and regular in-plane PWAS
transducers. It was shown that positioning and orientation of
SH-PWAS affects the generation of SH waves: (1) SH-PWAS
excites SH waves in the direction perpendicular to poling
direction, and (2) Regular in-plane PWAS can sense SH
waves. Additionally, (3) SH-PWAS transducers can sense A0
and S0 Lamb waves. Directivity analysis showed that excited
SH wave amplitude gradually decreases as the measuring
direction deviates from the maximum received amplitude
direction.

A predictive model for a guided SH wave’s power and
energy was analytically developed based on a normal mode
expansion technique. The model assumed that (a) waves are
of straight crested harmonic type, (b) evanescent non-propa-
gating waves are ignored, and (c) the modes are of orthogonal
functions. The amplitudes of each mode were normalized
with respect to the power flow, and modal participation fac-
tors were determined. Modal participation factors are a
function of transducer dimension. The wave power, kinetic
energy, and potential energy were modelled, and numerical
results were presented. As expected, the kinetic energy equals
the potential energy in total and for separate modes as well,
due to the fact that modes are orthogonal. SH0 mode wave
power and wave energy oscillate with frequency but have a
constant amplitude due to the constant wave propagation

Figure 20. Guided SH wave energy (kinetic and potential energies) in [J].
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speed of SH0 in isotropic materials. SH1 and SH2 modes are
dispersive shear horizontal modes.

Future work will include investigation of SH waves
excitation in composite materials, a predictive analytical
model for SH-PWAS electromechanical impedance for the
free transducer and when bonded onto the structure, and
further studies on modelling SH wave excitability by the
SH-PWAS.
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Exact analytical modeling of power and
energy for multimode lamb waves
excited by piezoelectric wafer active
sensors

Ayman M Kamal, Bin Lin and Victor Giurgiutiu

Abstract
This article presents an analytical model for power and energy transfer between excited piezoelectric wafer active sen-
sors and host structure. This model is based on exact multimodal Lamb waves, normal mode expansion technique, and
orthogonality of Lamb waves. Modal participation factors are presented to show the contribution of every mode to the
total energy transfer. The model assumptions include the following: (1) straight-crested multimodal ultrasonic guided
wave propagation, (2) propagating waves only, (3) ideal bonding (pin-force) connection between piezoelectric wafer
active sensors and structure, and (4) ideal excitation source at the transmitter piezoelectric wafer active sensors.
Constrained piezoelectric wafer active sensor admittance is reviewed. Electrical active power, mechanical converted
power, and Lamb wave kinetic and potential energies are derived in closed-form formulae. Numerical simulations are
performed for the case of symmetric and antisymmetric excitation of thin aluminum structure. The simulation results
are compared with axial and flexural approximation for the case of low-frequency Lamb waves. In addition, a thick steel
structure example is considered to illustrate the case of multimodal guided waves. A parametric study for different exci-
tation frequencies and different transducer sizes is performed to show the best match of frequency and piezoelectric
wafer active sensor size to achieve maximum energy transfer into the excited structure.

Keywords
Structural health monitoring, piezoelectric wafer active sensors, multimode guided Lamb waves, wave power, wave energy,
nondestructive evaluation, ultrasonic power, impedance, admittance, lead zirconate titanate, normal mode expansion

Introduction

Structural health monitoring (SHM) is crucial for mon-
itoring structure performance and detecting the initia-
tion of flaws and damages in order to predict structural
life. SHM uses permanently attached sensors to the
structure. Using piezoelectric wafer active sensors
(PWAS) has the following advantages: (1) low cost and
(2) they serve as passive sensors, that is, without inter-
acting with the structure, and/or (3) active sensors,
where they interact with the structure to detect the
presence and intensity of damage (Giurgiutiu, 2010).
Guided waves are commonly used in nondestructive
evaluation (NDE) techniques, such as pitch–catch,
pulse–echo, and phased array (Figure 1).

Ultrasonic Lamb waves are used for finding dam-
ages and flaws in plates, pipes, rails, thin-walled struc-
tures, multilayered structures, and composite materials.
The advantage of Lamb waves over other common
ultrasonic techniques is that they travel at large

distance along the structure. Lamb waves can be
‘‘tuned’’ to excite certain modes; some modes are more
sensitive for certain types of defects.

Chinthalapudi and Hassan (2005) showed that
energy loss of guided waves may be due to multiple rea-
sons, among them is existing flaws in the structure.
Impedance mismatch is considered as ‘‘energy-stealing’’
agent, and flaws such as delamination, split, and cav-
ities cause this. In practice, the sensitivity to most sim-
ple defects such as notches and cracks is adequate and
of similar magnitude due to the fairly uniform
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distribution of energy through the thickness of the
plate; the sensitivity considerations become much more
important in anisotropic materials. Wilcox et al. (2001)
showed an example of delamination detection in com-
posites where certain modes were found to be blind to
delamination at certain depths. Other studies (Alleyne
and Cawley, 1992; Koh et al., 2002) gave more insights
on how different defects interact with Lamb waves and
how severity of impact damages can be predicted from
the transmitted power. Generally, failure theories based
on energy methods are more robust in predicting fail-
ure. Hence, it is very important to model Lamb wave
power and energy transduction between PWAS and
host structures. Another application that attracts more
interests recently is energy harvesting applications. The
need of optimizing energy transfer (Kural et al., 2011;
Park et al., 2007) requires accurate models for Lamb
wave energy, rather than simplified axial and flexural
approximation valid only at low frequencies.

Excitation at frequencies beyond the cutoff fre-
quency of A1 and S1 modes will generate multimodal
Lamb waves. This phenomenon appears also for rela-
tively thick structures. In these cases, every mode shares
parts of the supplied power and energy. Our analytical
model is developed based on ‘‘normal modes.’’ Normal
modes represent the possible vibration characteristics
of the structure and are independent on loading scheme
(Rose, 1999). The method of normal mode expansion

(NME) is described in this study. It is worth mention-
ing that there are other methods that can be used to
solve forced loading of a structure, for example, the
integral transform techniques (ITT). Some of the most
popular transforms are Laplace, Fourier, Hankel, and
Mellin. Various integral transforms are used to trans-
form a given function into another; this transforma-
tion is done via integration (over some domain) of the
original function multiplied by a known kernel func-
tion. This is followed by either solving for the exact
solution, for example, with residue theorem, or by
numerically evaluating the integral in the case of com-
plicated problems.

The solution of Lamb wave propagation in a plate
that is excited with surface PWAS was obtained by
Giurgiutiu (2008) with integral transform technique of
the exact solution. NME method determines the
expanded amplitudes. NME can be used for isotropic
or generally anisotropic layers. The difference between
isotropic and anisotropic cases is in evaluating the
quantities appearing in the solution. Therefore, the
NME method can be considered more general because
the physical nature of the excitation process is clear
and independent on the material. ITT method does
have extensive algebra, and Viktorov (1967) discussed
the method of ITT in detail and how the solution is dif-
ferent between isotropic and generally anisotropic
layers.

Figure 1. The various ways in which PWAS are used for structural sensing includes (a) propagating Lamb waves, (b) standing Lamb
waves and (c) phased arrays. The propagating waves methods include: pitch-catch; pulse-echo; thickness mode; and passive detection
of impacts and acoustic emission (Giurgiutiu, 2008).
PWAS: piezoelectric wafer active sensors; AE: acoustic emission.
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Lamb wave NME

NME method is used to (1) find directly the amplitudes
of given mode in terms of loading parameters and (2)
evaluate the contribution factor of every mode to the
total wave power and energy. Normal modes of the
guided waves in the structure serve like the eigenfunc-
tions. The method assumes that the desired solution
can be written in the form of series of known functions,
each with unknown amplitudes. Then, those amplitudes
are to be determined either numerically or by finding a
general expression that is valid for all modes.

Normal modes (eigenfunctions) of the analyzed
structure are assumed ‘‘complete,’’ meaning that any
function can be represented exactly in terms of a finite
or infinite number of functions in the set of ‘‘normal
modes.’’ Second condition for NME method is the
orthogonality of the base functions (Rose, 1999). NME
of the displacement can be written as summation of
mode functions

u(x, y, t)=
X‘

j= 1

CjUj(x, y)eivt ð1Þ

where Cj is the contribution factor for each mode and
Uj is the mode shape. This solution is assumed for the
particular case of time harmonics with angular fre-
quency v.

Lamb waves (guided plate waves) are fully analyzed
in a number of textbooks (Graff, 1991; Rose, 1999).
Here, we reproduce the essentials for power and energy
models. The wave equations are

∂2f

∂x2
+

∂2f

∂y2
+

v2

c2
P

f= 0

∂2c

∂x2
+

∂2c

∂y2
+

v2

c2
S

c= 0

ð2Þ

where f and c are two potential functions;
cp =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l+ 2m)=r

p
and cs =

ffiffiffiffiffiffiffiffiffi
m=r

p
are the pressure

(longitudinal) and shear (transverse) wave speeds,
respectively; l and m are the Lame constants; and r is
the mass density. The time dependence is assumed har-
monic, the displacement solution for symmetric and
antisymmetric wave propagation (Figure 2), and can be
obtained as

ux(x, y, t)= � Bn jSn cosaSny� RSnbSn cosbSnyð Þe�i jSnx�vtð Þ

uy(x, y, t)= iBn aSn sinaSny+RSnjSn sinbSnyð Þe�i jSnx�vtð Þ

(
symmetricð Þ

ð3Þ
ux(x, y, t)= � An jAn sinaAny� RAnbAn sinbAnyð Þe�i jAnx�vtð Þ

uy(x, y, t)= � iAn aAn cosaAny+RAnjAn cosbAnyð Þe�i jAnx�vtð Þ

�
antisymmetricð Þ

ð4Þ

where subscript n denotes the values for each mode; Bn

and An are the amplitudes to be determined using
NME method; jSn and jAn are wave numbers evaluated

using the relation j =v=c,where c is the wave speed; a

and b are functions given by a2 =(v2=c2
p)� j2 and

b2 =(v2=c2
s )� j2; and RSn and RAn are the symmetric

and antisymmetric eigen coefficients calculated from
the solution of the Rayleigh–Lamb equation for sym-
metric and antisymmetric modes

tanad

tanbd
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j2 � b2
� �2

4j2ab

" #61

ð5Þ

For free wave motion, the homogeneous solution is
derived by applying the stress-free boundary conditions
at the upper and lower surfaces (y=6d, where d is the
plate half thickness)

RS =
jS

2 � bS
2

� �
cosaSd

2jSbS cosbSd
, RA =

jA
2 � bA

2
� �

sinaAd

2jAbA sinbAd

ð6Þ

Power flow normalization is used to determine a
closed form for expanded amplitudes Bn and An. This
method is based on the complex reciprocity relation
and orthogonal modes (Auld, 1990; Santoni, 2010).

Reciprocity relation for Lamb waves

Reciprocity relation is more or less an extension of
Newton’s third law of motion, where action and reac-
tion are equivalent. Assume that u12 is the displacement
of point P1 due to force F2 and u21 is the displacement
of point P2 due to force F1. In its most elementary form,
the mechanics reciprocity principle states that (Santoni,
2010) the work done at point P1 by force F1 upon the
displacement induced by force F2 is the same as the
work done at point P2 by force F2 upon the displace-
ment induced by force F1, that is

F1 � u12 =F2 � u21

For Lamb waves, one has real reciprocity and com-
plex reciprocity; we focus on complex reciprocity fol-
lowing Auld (1990).

Considering a generic body O and two sources F1

and F2 applied at points P1 and P2 (Figure 3), the two

uy

ux

uy

ux
uy

ux

uy

ux

Symmetric motion Antisymmetric motiony

Figure 2. Symmetric and antisymmetric particle motion across
the plate thickness.
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force sources produce two wave fields with velocity and
stress v1,T1 and v2,T2. Using equation of motion and
applying the two different sources (1) and (2) and add-
ing the two field equations together, we can prove the
complex reciprocity form that relates the velocity
responses, tractions, and applied sources for harmonic
excitation, that is

r ~v2 � T1 + v1 � ~T2

� �
= � ~v2 � F1 + v1 � ~F2

� �
ð7Þ

For Lamb waves, a similar relation has been derived
in Santoni (2010), with the assumption of time harmo-
nic solution. One important assumption considered
throughout the analysis is that Lamb wave fields are
z-invariant. Hence, the only surviving stresses are nor-
mal stresses Txx and Tyy and shear stress Txy, vx and vy

are the velocity fields, and superscripts 1 and 2 indi-
cate fields due to sources 1 and 2.

The complex reciprocity relation for Lamb waves
takes the form

∂

∂x
~v2

xT1
xx +~v2

yT1
xy + v1

x
~T 2

xx + v1
y
~T2

xy

� �
+

∂

∂y
~v2

xT1
xy +~v2

yT1
yy + v1

x
~T2

xy + v1
y
~T 2

yy

� �
= � ~v2

xF1
x � v1

x
~F2

x � ~v2
yF1

y � v1
y
~F2

y

ð8Þ

This reciprocity relation is the basic formula used to
derive orthogonality condition; in addition, the source
influence (PWAS excitation) determines modal contri-
bution factors for each mode.

Orthogonality of Lamb waves

The definition of orthogonal functions U over given
domain [a, b] can be defined as

ðb
a

UmUndy= 0 form 6¼ n ð9Þ

Recalling the complex reciprocity relation of equa-
tion (7) with the source forces Fx andFy = 0 and assum-
ing 1 and 2 are two solutions for time-harmonic-
propagating Lamb waves, we get

v1(x, y, z, t)= vn
x(y)x̂+ vn

y(y)ŷ
� �

e�ijnxeivt

~v2(x, y, z, t)= ~vm
x (y)x̂+~vm

y (y)ŷ
� �

ei~jmxe�ivt
ð10Þ

T1(x, y, z, t)=

T n
xx(y) Tn

yx(y) 0

T n
yx(y) Tn

yy(y) 0

0 0 T n
zz(y)

2
64

3
75e�ijnxeivt

~T2(x, y, z, t)=

~T m
xx(y)

~Tm
yx(y) 0

~T m
yx(y)

~Tm
yy(y) 0

0 0 ~T m
zz (y)

2
664

3
775ei~jmxe�ivt

ð11Þ

Substituting equations (10) and (11) in the recipro-
city equation (7) with Fx andFy = 0 and integrating
over plate thickness, we get

� i jn � ~jm

� � ðd
�d

ðvn
y(y)

~Tm
xy(y)+~vm

y (y)T
n
xy(y)

+ vn
x(y)

~Tm
xx(y)+~vm

x (y)T
n
xx(y)Þ

dy= � vn
y(y)

~Tm
yy(y)+~vm

y (y)T
n
yy(y)

�
+ vn

x(y)
~T m

xy(y)+~vm
x (y)T

n
xy(y)Þj

d
�d ð12Þ

Using the assumption of traction-free boundary con-
dition, Txy =Tyy = 0, at the top and bottom surfaces,
equation (12) yields

� i jn � ~jm

� � ðd
�d

vn
y(y)

~Tm
xy(y)+~vm

y (y)T
n
xy(y)

�
+ vn

x(y)
~Tm

xx(y)+~vm
x (y)T

n
xx(y)Þdy= 0 ð13Þ

Alternatively, in short form

i jn � ~jm

� �
4Pmn = 0 ð14Þ

where

Pnm = � 1

4

ðd
�d

vn
y(y)

~T m
xy(y)+~vm

y (y)T
n
xy(y)

�
+ vn

x(y)
~Tm

xx(y)+~vm
x (y)T

n
xx(y)Þdy ð15Þ

Recall our assumption of considering only propagat-
ing waves (evanescent waves, which die out away from
the source, are ignored); consequently, jm and jn are
real and ~jm = jm. Since Re ~a � bð Þ=Re a � ~b

� �
, the

orthogonality condition can be further simplified to

Pmn =

0 ifm 6¼ n

Re � 1
2

Ðd
�d

~vn
x(y)T

n
xx(y)+~vn

y(y)T
n
xy(y)

� �
dy

" #
if m= n

8><
>:

ð16Þ

   

1F  
12v  

21v  

Ω

1 

2 

2F  

Figure 3. Reciprocity relation.
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Pmn is a measure of average power flow through the
plate and is used to determine Lamb wave amplitudes
through normalization.

Normalization of wave amplitudes

To apply orthogonality of Lamb waves of equation
(16), velocity fields vn

x and vn
y and stresses Tn

xx and Tn
xy

are required. In addition, stresses are needed to evalu-
ate potential energy and wave power. From elasticity

equations, stresses are related to strains by Lame con-
stants as

Txx = l+ 2mð ÞSxx + lSyy

Tyy = lSxx + l+ 2mð ÞSyy

Txy = 2mSxy

ð17Þ

where Sxx, Syy, and Sxy are normal and shear strains;
they can be derived by differentiating equations (3)
and (4).

For symmetric waves (superscript S)

SS
xx = iBnjSn jSn cosaSny� RSnbSn cosbSnyð Þe�i jSnx�vtð Þ

SS
yy = iBn a2

Sn cosaSny+RSnjSnbSn cosbSny
� �

e�i jSnx�vtð Þ

2SS
xy =Bn 2jSnaSn sinaSny+RSn j2

Sn � b2
Sn

� �
sinbSny

� �
e�i jSnx�vtð Þ

8>><
>>:

ð18Þ

Substituting the strains in Hooke’s law, equation
(17) becomes

TS
xx = iBn l+ 2mð Þj2

Sn + la2
Sn

� �
cosaSny� 2mRSnjSnbSn cosbSny

� 	
e�i jSnx�vtð Þ

TS
yy = iBn lj2

Sn + l+ 2mð Þa2
Sn

� �
cosaSny+ 2mRSnjSnbSn cosbSny

� 	
e�i jSnx�vtð Þ

TS
xy =mBn 2jSnaSn sinaSny+RSn j2

Sn � b2
Sn

� �
sinbSny

� 	
e�i jSnx�vtð Þ

8>><
>>:

ð19Þ

Equations (19) can be rearranged using the
relations

l+ 2mð Þj2 + la2 =m j2 +b2 � 2a2
� �

lj2 + l+ 2mð Þa2 = � m j2 � b2
� � ð20Þ

The stresses for symmetric case become

TS
xx = imBn j2

Sn +b2
Sn � 2a2

Sn

� �
cosaSny� 2RSnjSnbSn cosbSny

� 	
e�i jSnx�vtð Þ

TS
yy = imBn � j2

Sn � b2
Sn

� �
cosaSny+ 2RSnjSnbSn cosbSny

� 	
e�i jSnx�vtð Þ

TS
xy =mBn 2jSnaSn sinaSny+RSn j2

Sn � b2
Sn

� �
sinbSny

� 	
e�i jSnx�vtð Þ

8>><
>>: ð21Þ

Similarly for antisymmetric waves, (superscript A)
for the sake of completeness

SA
xx = iAn j2

An sinaAny� RAnjAnbAn sinbAny
� �

e�i jAnx�vtð Þ

SA
yy = iAn a2

An sinaAny+RAnjAnbAn sinbAny
� �

e�i jAnx�vtð Þ

2SA
xy = � An 2jAnaAn cosaAny+RAn j2

An � b2
An

� �
cosbAny

� �
e�i jAnx�vtð Þ

8>><
>>: ð22Þ

The stresses for antisymmetric case are

TA
xx = imAn j2

An +b2
An � 2a2

An

� �
sinaAny� 2RAnjAnbAn sinbAny

� 	
e�i jAnx�vtð Þ

TA
yy = imAn � j2

An � b2
An

� �
sinaAny+ 2RAnjAnbAn sinbAny

� 	
e�i jAnx�vtð Þ

TA
xy = � mAn 2jAnaAn cosaAny+RAn j2

An � b2
An

� �
cosbAny

� 	
e�i jAnx�vtð Þ

8>><
>>: ð23Þ

Velocity fields are evaluated by taking time deriva-
tive of displacements in equations (3) and (4)

vS
x =

∂uS
x

∂t
= � ivB jS cosaSy� RSbS cosbSyð Þe�i jS x�vtð Þ

vS
y =

∂uS
y

∂t
= � vB aS sinaSy+RSjS sinbSyð Þe�i jS x�vtð Þ

8>><
>>:

ð24Þ

vA
x =

∂uA
x

∂t
= � ivA jA sinaAy� bARA sinbAyð Þe�i jAx�vtð Þ

vA
y =

∂uA
y

∂t
=vA aA cosaAy+ jARA cosbAyð Þe�i jAx�vtð Þ

8>><
>>:

ð25Þ

Substituting equations (21) and (23) to (25) in equa-
tion (16) and performing the integration yields
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Pnn =
vmBn

2

2
WS (symmetric),

Pnn =
vmAn

2

2
WA (antisymmetric)

ð26Þ

where

WS =

jSd R2
S + 1

� �
j2

S +b2
S

� �
� R2

SjS j2
S � 3b2

S

� � sinbSd cosbSd

bS

+ jS j2
S +b2

S � 4a2
S

� � sinaSd cosaSd

aS

+ 4RSaSbS sinaSd cosbSd � 2RS 3j2
S +bS

2
� �

cosaSd sinbSd

2
6666664

3
7777775

ð27Þ

WA =

�

� jAd R2
A + 1

� �
j2

A +b2
A

� �
� R2

AjA j2
A � 3b2

A

� � sinbAd cosbAd

bA

+ jA j2
A +b2

A � 4a2
A

� � sinaAd cosaAd

aA

+ 4RAaAbA cosaAd sinbAd � 2RA 3j2
A +b2

A

� �
sinaAd cosbAd

2
6666664

3
7777775

ð28Þ

The symmetric mode coefficient Bn and the antisym-
metric mode coefficient An can be resolved as

Bn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pnn

vmWSn

s
(symmetric), An=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Pnn

vmWAn

s
(antisymmetric)

ð29Þ

For normal modes, we may assume Pnn = 1; hence

Bn =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

vmWSn

s
(symmetric),

An =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

vmWAn

s
(antisymmetric)

ð30Þ

Modal contribution factors and PWAS excitation

Basic assumptions used in this study are (1) straight-
crested Lamb waves, that is, z-invariant and (2) ideal
bonding (pin-force) connection between PWAS and
structure (Figure 4). After consideration of the ortho-
gonality of Lamb wave modes and after the normali-
zation of mode amplitudes with respect to the power,
modal participation factor for each mode need to be
evaluated (i.e. how much a particular mode contri-
butes to the total wave power and energy). This uses
the reciprocity relation with consideration of excita-
tion forces from the source (e.g. a PWAS on the
excited structure).

Recalling the complex reciprocity equation (7), mul-
tiplying by 21, and upon expansion of the del operator,
we get

∂

∂y
�~v2 � T1 � v1 � ~T2

� �
� ŷ+ ∂

∂x
�~v2 � T1 � v1 � ~T2

� �
�

x̂=~v2F1 + v1
~F2 ð31Þ

where F is a volume source, T � ŷ are the traction
forces, and v are the velocity sources. Solution denoted
by ‘‘1’’ like T1 indicates traction due to source excita-
tion (e.g. by PWAS), while solution denoted by ‘‘2’’ is
representing normal modes, that is, homogeneous solu-
tion of eigenfunctions of the free mode shapes of the
structure—without considering excitation from the
source. Fields due to excitation source can be repre-
sented as normal mode summation over all possible
modes (Rose, 1999; Santoni, 2010), that is

v1 = v1(x, y)=
X

m

am(x)vm(y)

T1 =T1(x, y)=
X

m

am(x)Tm(y)
ð32Þ

where am(x) are the modal participation factors that
must be determined.

Homogeneous solution ‘‘2’’ can be represented as

v2(x, y)= vn(y)e
�ijnx

T2(x, y)=Tn(y)e
�ijnx

ð33Þ

Integrate equation (31) with respect to the plate
thickness y from y= � d to y= + d to get

�~v2 � T1 � v1 � ~T2

� �
� ŷ


d
�d

+

ðd
�d

∂

∂x
�~v2 � T1 � v1 � ~T2

� �
� x̂ dy=

ðd
�d

~v2F1 dy
ð34Þ

F0F0

y

x

y=+d

y=-d

h=2d

x

-a +a

aa

a aτ− [ ( ) ( )]a a x a x aτ τ δ δ= − − +

τ

τ

(a)

(b)

Figure 4. Pin-force model for structurally bonded PWAS: (a)
PWAS pin forces at the ends on the upper surface and (b) shear
stresses developed.
Source: Reproduced from Giurgiutiu (2008).

PWAS: piezoelectric wafer active sensors.
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Substitution of equations (32) and (33) and rearran-
gement yields

�~vn(y) � T1 � v1 � ~Tn(y)
� �

� ŷ


d
�d

ei~jnx

+
∂

∂x
ei~jnx

X
m

am(x)

ðd
�d

�~vn(y) � Tm(y)� vm(y) � ~Tn(y)
� �

� x̂dy

2
4

3
5

= ei~jnx

ðd
�d

~vn(y)F1 dy

ð35Þ

Recall the orthogonality relation in its general form

Pmn = � 1

4

ðd
�d

~vm(y) � Tn(y)+ vn(y) � ~Tm(y)
� �

� x̂ dy ð36Þ

In the absence of a volume force source term F1,
equation (35) yields

�~vn � T1 � v1 � ~Tn

� �
� ŷ


d
�d

ei~jnx+
∂

∂x
ei~jnx

X
m

4am(x)Pmn=0 ð37Þ

Since the modes are orthogonal, the summation in
equation (37) has only one nonzero term corresponding
to the propagating mode n (jn real) for which Pnn 6¼ 0.
Hence, equation (37) becomes

4Pnn

∂

∂x
+ i~jn

� �
an(x)= ~vn � T1 + v1 � ~Tn

� �
� ŷ


d
�d
ð38Þ

This is a general ordinary differential equation (ODE),
which needs to be solved to get the modal participation

factor an(x). ~Tn is the traction force; it must satisfy the
traction-free boundary condition for Lamb waves,

Tn
xy





6d

= 0 and Tn
yy





6d

= 0. T1 is the excitation shear.

We have Txy




d
= tx(x) at the upper surface and

Txy




�d

= 0 on the lower surface since PWAS excitation

is only on the upper surface (Figure 4).
For Lamb waves, equation (38) takes the form

4Pnn

∂

∂x
+ i~jn

� �
an(x)=

v1
y(y)

~Tn
yy(y)+~vn

y(y)T
1
yy(y)

+ v1
x(y)

~Tn
xy(y)+~vn

x(y)T
1
xy(y)

 !d

�d

ð39Þ

Applying traction-free conditions and PWAS excita-
tion, and then solving the ODE, yields

a+
n (x)=

~vn
x(d)

4Pnn

ða
�a

eijn�xtx(�x)d�x

2
4

3
5e�ijnx for x.a ð40Þ

It should be noted that this formula is only for forward
wave solution and outside the excitation region, that is,
for x.a.

The total particle velocity using NME can be written
as

v(x, y)=
X

n

an(x)vn(y) ð41Þ

where vn(y) is the velocity mode shape of the nth mode,

that is, vn(y)=
vn

x(y)
vn

y(y)

� 
. vn(y) can be derived using the

combination of the symmetric particle velocity in equa-
tion (24) with symmetric normalization coefficient of
equation (30) and antisymmetric particle velocity in
equation (25) with antisymmetric normalization coeffi-
cient of equation (30).

We exemplify the NME method for velocity fields
with two examples: (1) 1-mm-thick aluminum plate,
up to 2000 kHz where only S0 and A0 modes exist and
(2) 2.6-mm-thick steel plate, with excitation up to 500
kHz. Figure 5 shows the particle velocity at plate’s
surface in x-axis and y-axis for the two plates. Note
that the values of NME velocities are not multiplied
yet by PWAS excitation. The displayed results are
only for first symmetric S0 and antisymmetric A0

modes; the multimode demonstration will be shown
in a later section.

Considering the ideal bonding assumption (pin-force
model), the load transfer takes place over an infinitesi-
mal region at the PWAS end. Assuming a PWAS with
center at x0 = 0 and length la = 2a, the traction on the
plate surface can be written as

tx(x)= at0½d(x� a)� d(x+ a)�
=F0(v)½d(x� a)� d(x+ a)�

ð42Þ

Here, F0 is the pin-force per unit width. Substitution of
equation (42) into equation (40) gives the mode partici-
pation factor under PWAS excitation as

aPWAS
n (x)=

~vn
x dð Þ

4Pnn

F0(v)½eijna � e�ijna�e�ijnx = gnF0(v)0e�ijnx

ð43Þ

where gn is the coefficient gn =(~vn
x(d)=4Pnn)

½eijna � e�ijna�
The Lamb wave NME of the particle displacement

under PWAS excitation is

u(x, y)=
1

iv

X
n

gnF0(v)e
�ijnxvn(y) ð44Þ

The displacement in x-direction at the PWAS end
(x= a, y= d) is

ux(a, d)=
1

iv

X
n

~vn
x dð Þ

4Pnn

vn
x(d)½eijna � e�ijna�F0(v)e

�ijna

ð45Þ
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PWAS–structure interaction

Consider a PWAS of length l = 2a, width b, and thick-
ness ta; the relation between PWAS pin-force applied
to the structure and the particle displacement is
through the structural dynamic stiffness. The structures
as well as the PWAS stiffness are now analyzed. When
the PWAS transmitter is excited by an oscillatory vol-
tage, its volume expands in phase with the voltage in
accordance with the piezoelectric effect (Figure 6).
Expansion of the PWAS mounted on the surface of the
structure induces a surface reaction from the structure
in the form of a force at the PWAS end. The PWAS
end displacement is constrained by the plate and is
equal to the plate displacement at x= a. The reaction
force along the PWAS edge, F0(v)b, depends on the
PWAS displacement, uPWAS, and on the frequency-
dependent dynamic stiffness, kstr(v), presented by the
structure to the PWAS

F0 vð Þb= kstr vð Þux a, dð Þ ð46Þ

The two stiffness elements on the right and the left
of PWAS are selected to be 2kstr; hence, the overall
structure stiffness is kstr (Figure 6). Under harmonic
excitation, the dynamic stiffness kstr(v) is obtained by
dividing the force by the displacement given by equa-
tion (44), that is

Figure 5. NME for particle velocity fields: (a) aluminum S0, (b) aluminum A0, (c) steel S0, and (d) steel A0 modes.
NME: normal mode expansion.

piezoelectric wafer active sensor

Electric field, E3

x3

2kstrLength l; thickness t; width b2kstr

x1
( ) sin( )v t V tω=

( ) sin( )i t I tω φ= +

Figure 6. PWAS constrained by an overall structural stiffness
kstr.
PWAS: piezoelectric wafer active sensors.
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kstr vð Þ= F0 vð Þb
ûx(a, d)

= ivb
X

n

gne�ijnavn(d)

" #�1

ð47Þ

Define the static stiffness kPWAS of a free PWAS as

kPWAS =
tab

sE
11a

ð48Þ

The dynamic stiffness ratio is defined as the ratio
between kstr(v) and kPWAS , that is

r vð Þ= kstr vð Þ
kPWAS

ð49Þ

The relation between pin-force per unit width and
the static stiffness of the PWAS is

F0 vð Þb= kPWAS ux(a, d)� 1

2
uISA

� �
ð50Þ

where uISA is the ‘‘induced strain actuation’’ displace-
ment (Giurgiutiu, 2008), which is defined as
uISA = ld31V̂=ta, and the quantity ux(a, d)� 1=2uISA rep-
resents the total x-direction displacement at the right
tip of the PWAS (because of symmetry, only forward
propagating wave needs to be considered.)

Substitute ux(a, d) from equation (45) into equation
(50) and solve for F0 using kstr from equation (47) to get

F0 vð Þ= 1

b

r vð Þ
1� r vð Þ

� �
kPWASuISA

2
ð51Þ

The excitation pin-force F0(v) can now be used to
determine the NME fields (displacements–strains–velo-
cities), the modal participation factors aPWAS

n (x), and
the coefficients gn; then the power and energy can be
analyzed.

Power transduction between PWAS and
structure

The power and energy transduction flowchart for a
PWAS transmitter on a structure is shown in Figure 7
(Lin et al., 2012). The electrical energy due to the input
voltage applied at the PWAS terminals is converted
through piezoelectric transduction into mechanical

energy that activates the expansion–contraction motion
of the PWAS transducer. This motion is transmitted to
the underlying structure through the shear stress in the
adhesive layer at the PWAS–structure interface. As a
result, ultrasonic guided waves are excited into the
underlying structure. The mechanical power at
the interface becomes the acoustic wave power, and the
generated Lamb waves propagate in the structure.

PWAS admittance and electrical active power

To calculate the transmitter electrical power and
energy, we need to calculate the input electrical power
by using input admittance of the PWAS when attached
to the structure. Because of the electromechanical cou-
pling, the impedance is strongly influenced by the
dynamic behavior of the structure and is substantially
different from the free-PWAS impedance.

Under harmonic excitation, the time-averaged
power is the average amount of energy converted per
unit time under continuous harmonic excitation. The
time-averaged product of the two harmonic variables is
one half the product of one variable times the conju-
gate of the other. When a harmonic voltage is applied
to the transmitter PWAS, the current is

I = YV̂ ð52Þ

The constrained PWAS admittance can be expressed
(Giurgiutiu, 2008) using the frequency-dependent stiff-
ness ratio of equation (49), that is

Y vð Þ= ivC0 1� k2
31 1� 1

r vð Þ+f(v) cotf(v)

� �� �
ð53Þ

where f(v)= j(v)a. A simplified form of equation (53)
can be obtained under the quasi-static assumption in
which the PWAS dynamics are assumed to happen at
much higher frequencies than the Lamb wave propaga-
tion (f(v)! 0, f(v) cotf(v)! 1), that is

Y vð Þ= ivC0 1� k2
31

r vð Þ
1+ r vð Þ

� �
ð54Þ

Piezoelectric 
transduction: 
Elec.→ Mech.

PWAS-structure
interaction

Shear-stress
excitation 

of structure

Transmitter
Input AV

Transmitter PWAS
(Wave Exciter)

V

Lamb waves

Ultrasonic guided waves
from transmitter PWAS

Figure 7. PWAS transmitter power flow.
PWAS: piezoelectric wafer active sensors.
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This simplified model of admittance was used in Lin
and Giurgiutiu (2012); it was used for axial and flexural
wave propagation at low-frequency excitation. Here,
we use a new definition of r(v) in equation (49) and
kstr(v) in equation (47) based on NME for multimodal
Lamb wave propagation.

The power rating, time-averaged active power, and
reactive power are

Prating =
1

2
Yj jV̂ 2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

active +P2
reactive

q
,

Pactive =
1

2
YRV̂ 2, Preactive =

1

2
YI V̂

2

ð55Þ

where YR is the real part of admittance and YI is the
imaginary part of admittance.

The active power is the power that is converted to
the mechanical power at the interface. The reactive
power is the imaginary part of the complex power that
is not consumed and is recirculated to the power sup-
ply. The power rating is the power requirement of the
power supply without distortion. In induced strain
transmitter applications, the reactive power is the
dominant factor since the transmitter impedance is
dominated by its capacitive behavior (Lin et al., 2012).
Managing high reactive power requirements is one of
the challenges of using piezoelectric induced strain
actuators.

Mechanical power

Due to electromechanical transduction in the PWAS,
the electrical active power is converted into mechanical
power, and through shear effects in the adhesive layer
between PWAS and the structure, the mechanical
power transfers into the structure and excites guided
wave. Santoni (2010) studied shear lag solution for the
case of multiple Lamb wave modes. This solution can
be simplified by considering that the shear stress trans-
fer is concentrated over some infinitesimal distances at
the ends of the PWAS actuator (Figure 4). The concept
of ideal bonding (also known as the pin-force model)
assumed that all the load transfer takes place over an
infinitesimal region at the PWAS ends; the generated
mechanical power is the multiplication of this load
times the structure particle velocity at the PWAS tip.
The time-averaged power is defined as

ph i= 1

T

ðT
0

p tð Þdt ð56Þ

The time-averaged product of two harmonic vari-
ables is one half the product of one variable times the
conjugate of the other. The time-averaged mechanical
power at PWAS–structure interface is

p0h i= � 1

2
~F0 vð Þv̂0 vð Þ ð57Þ

Mechanical power excites both forward and back-
ward propagating waves initiating from the two end
tips at x= a and x= � a. Due to symmetry, we only
need to consider the forward wave, which will contain
only half of the mechanical power converted from the
electrical active power.

Lamb wave power and energy

The mechanically converted power is in turn trans-
ferred into the power of the propagating forward wave.
It is important to mention that evanescent (nonpropa-
gating) waves are not considered in this study. The
time-averaged wave power is

ph i= � 1

2

ð
A

~Txxvx + ~Txyvy

� �
dA ð58Þ

where v denotes particle velocity either in x- or y-direc-
tion, T denotes stress, and ~T is the conjugate, which are
determined from equations (17), (24), and (25). Figure 8
shows all associated stresses and velocities.

The time-averaged wave power can be determined
for a given section x by integration over the cross-
sectional area. Under the z-invariant assumption, the
width b is taken outside the integration; equation (58)
can be further simplified as

ph i= � b

2

ðd
�d

l+ 2mð Þ~Sxx + l~Syy

� �
vx + 2m~Sxy

� �
vy

� �
dy

ð59Þ

Orthogonality of Lamb waves can be used during
the expansion of equation (59) because all the quantities
are defined as summation of symmetric solution plus

x

y PWAS

arbitrary section at x 

Txx

z

Tyy

Txy

b

y=+d

y= -d

vx

vy

Figure 8. Representation of stresses and velocities at arbitrary
section of the structure.
PWAS: piezoelectric wafer active sensors.
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antisymmetric solution, for example, vx is the summa-
tion of vx parts of equations (24) and (25). The same is
true for strains.

When evaluating the multiplication of ~Sxx times vx

and integrating, the quantities generated from multiply-
ing symmetric part times antisymmetric parts end up as
integration of sine times cosine terms and vanish due to
orthogonality of Lamb waves. However, ‘‘cos2’’ and
‘‘sin2’’ terms are retained. The time-averaged wave
power takes the closed form

ph i=
X

n

pS
n

� �
+
X

n

pA
n

� �
ð60Þ

where pS
n

� �
and pA

n

� �
are the time-averaged wave pow-

ers for symmetric mode Sn and antisymmetric mode An,
respectively

pS
n

� �
= � b

2
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� 	2
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( )
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ð62Þ

The terms gSn
n and gAn

n represent the coefficients in
equation (43) for symmetric and antisymmetric modes.

Kinetic energy for Lamb waves is defined as

ke(x, t)=
1

2
r

ð
A

v2
x + v2

y

� �
dA ð63Þ

The time-averaged kinetic energy associated with
velocity components can be calculated as half the velo-
city times the conjugate of itself

keh i=
1

4
r

ð
A

vx:~vx + vy:~vy

� �
dA ð64Þ

The kinetic energy contains both symmetric and
antisymmetric wave energies. Upon rearrangement, the
time-averaged kinetic energy takes the form

keh i=
X

n

kSn

e

� �
+
X

n

kAn

e

� �
ð65Þ

where kSn
e

� �
and kAn

e

� �
are the time-averaged kinetic

energies for symmetric mode Sn and antisymmetric
mode An. Upon multiplication and then integration
over thickness, kinetic energy can be expressed in closed
form as
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4
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Equations (66) and (67) can be further simplified as

kSn

e

� �
=

b

4
gSn

n BnF(v)
� 	2

rv2

ðd
�d

jSn cosaSny� RSnbSn cosbSnyð Þ2
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+ aSn sinaSny+RSnjSn sinbSnyð Þ2�dy
ð68Þ
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ð69Þ

Potential energy of the wave can be evaluated by the
double inner (double dots) product between stress and
strain

ve(x, t)=
1

2

ð
A

T : S dA ð70Þ

ve(x, t)=
1

2

ð
A

Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz

0
@

1
A :

Sxx Sxy Sxz

Syx Syy Syz

Szx Szy Szz

0
@

1
AdA

ð71Þ

Tzz and Szz are ignored due to the z-invariant assump-
tion. Also, Tyx = Txy, Tzx = Txz, and Tzy = Tyz due to
symmetry of both stress and strain tensors; equation
(71) yields
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ve(x, t)=

1

2

ð
A

TxxSxx + TyySyy + 2TxySxy + 2TxzSxz + 2TyzSyz

� �
dA

ð72Þ

Stresses and strains associated with Lamb waves are
Txx, Txy, and Tyy and Sxx, Sxy, and Syy, respectively, and
then Lamb wave potential energy reduces to

ve(x, t)=
1

2

ð
A

TxxSxx + TyySyy + 2TxySxy

� �
dA ð73Þ

The time-averaged potential energy is

veh i=
1

4

ð
A

l+ 2mð ÞSxx
~Sxx + 2lSyy

~Sxx

�
+ l+ 2mð ÞSyy

~Syy + 2 2mSxy

� �
~SxygdA ð74Þ

Similar to the kinetic energy, the time-averaged
potential energy is the summation of the potential
energy of all modes, that is

veh i=
X

n

vSn

e

� �
+
X

n

vAn

e

� �
ð75Þ

where vSn
e

� �
and vAn

e

� �
are the time-averaged potential

energies for symmetric mode Sn and antisymmetric
mode An, respectively, that is
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The total energy for Lamb waves per unit length is
summation of the kinetic and potential energies.

The total time-averaged Lamb wave energy at the plate
cross-section corresponding to the PWAS end is

eeh i= keh i+ veh i ð78Þ

Simulation results

This section gives results of the simulation of power
and energy transduction between PWAS and structure
using the exact Lamb wave model. Comparison is per-
formed between the exact Lamb wave model results
presented here and the simplified axial and flexural
wave model results of Lin and Giurgiutiu (2012). This
is followed by a parametric study to show how wave
power and energy change with different PWAS size and
excitation frequency. The last part of this section will
show the applicability of our model for the case of mul-
timodal Lamb waves, which happen either at higher
frequency or in thicker structures. We exemplify with
simulation of two plates: (1) 1-mm-thick aluminum
plate up to 2000 kHz and (2) 12.7-mm-thick steel plate
(½ in) up to 500 kHz frequency. Figure 9(a) and (b)
shows dispersion curves for the two plates. Figure 9(a)
also shows how the simplified axial and flexural waves
are compared with S0 and A0 Lamb waves at low
frequencies.

For 1-mm-thick aluminum plate, harmonic excita-
tion of 10 V is applied on a 7 mm PWAS with fre-
quency sweep from 1 to 2000 kHz such that only S0

and A0 Lamb waves exist. However, the 12.7-mm-thick
steel plate (Figure 9(b)) is excited up to 500 kHz, such
that three symmetric modes (S0, S1, S2) and three anti-
symmetric modes (A0, A1, A2) exist. Complete simula-
tion parameters are given in Tables 1 and 2.

Thin plate structure (one symmetric and one
antisymmetric mode)

The simulation results for the 1-mm-thick aluminum
structure are given in Figure 10. As expected, the reac-
tive electrical power required for PWAS excitation is
orders of magnitude larger than the active electrical
power. Hence, the power rating of the PWAS transmit-
ter is dominated by the reactive power, that is, by the
capacitive behavior of the PWAS. We note that the
transmitter reactive power is directly proportional to
the transmitter admittance (Y = ivC), whereas the
transmitter active power is the power converted into the
ultrasonic acoustic waves generated into the structure
from the transmitter. A remarkable variation of active
power with frequency is shown in Figure 10(a): we
notice that the active power (i.e. the power converted
into the ultrasonic waves) is not monotonic with fre-
quency but manifests peaks and valleys. As a result, the
ratio between the reactive and active powers is not con-
stant but presents the peaks and valleys. The increase
and decrease of active power with frequency correspond
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to the PWAS tuning in and out of various ultrasonic
waves traveling into the structure. The maximum active
power seems to be ;8 mW at 340 kHz. At ;1460 kHz,
PWAS is not transmitting any power; hence, no power
was delivered into wave power at this frequency. This is
because of tuned rejection Lamb waves at this particu-
lar frequency for both S0 and A0. Figure 5(a) and (b)
shows that vx and vy vanish for both S0 and A0 at
;1460 kHz. Since the electrical active power is equally
divided into forward and backward waves, the Lamb

wave power plot of Figure 10(c) is the half of the electri-
cal active power plot of Figure 10(a). Figure 10(d)
shows the simulation results for Lamb wave kinetic
energies (equations (68) and (69)) and potential energies
(equations (76) and (77)).

Comparison with low-frequency (axial and flexural)
approximation

Figure 9(a) shows that axial wave can be approximated
to S0 mode up to ~700 kHz for this particular case of
excited 1-mm-thick aluminum plate. Flexural wave can
approximate to A0 for up to ~100 kHz. The axial and
flexural models of Lin and Giurgiutiu (2012) compared
with our exact Lamb wave model show good agree-
ment at relatively low-frequency excitation (Figure 11).
At higher frequencies, that is, beyond 700 kHz for S0

and 100 kHz for A0, the differences between exact and
approximate models are very significant.

Parametric study

Figure 12 presents the results of a parametric study for
various PWAS sizes (5–25 mm) and frequencies (1–
1000 kHz). The resulting parametric plots are presented
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Figure 9. Dispersion curves: (a) 1-mm-thick aluminum plate and (b) 12.7-mm-thick steel plate (½ in).

Table 1. Structure simulation parameters.

Symbol 2024 Al alloy AISI 4340 steel

Length L N N
Thickness h 1 mm 12.7 mm (½ in)
Width b 7 mm 7 mm
Young’s modulus E 72.4 GPa 200 GPa
Poisson ratio n 0.33 0.29
Density r 2780 7850
Harmonic input voltage amplitude V̂ 10 V 10 V
Frequency F Sweep: 1–2000 kHz 1–500 kHz

Table 2. Transmitter PWAS (PZT850) properties (as from the
company website www.americanpiezo.com).

Symbol PZT850

Length l 5–25 mm
Thickness ta 0.2 mm
Width b 7 mm
Young’s modulus E 63 GPa
Elastic compliance sE

11 15.8e–12 m2/N
Relative dielectric constant eT

33=e0 1750
Coupling coefficient k31 0.353
Piezoelectric coefficient d31 2175e–12 m/V

PWAS: piezoelectric wafer active sensor.
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as three-dimensional (3D) mesh plots. It indicates that
active power generated from the PWAS to the structure
contains the tuning effect of transmitter size and excita-
tion frequency. A larger PWAS does not necessarily
produce more wave power at a given frequency. The
maximum active power in the simulation is ;8.3 mW.
This can be achieved by different combinations of
PWAS and excitation frequencies (e.g. 5 mm PWAS
size and 610 kHz, 9 mm PWAS and 890 kHz, 20 mm
PWAS and 680 kHz, or 23 mm PWAS and 820 kHz).
These combinations provide guidelines for the design
of transmitter size and excitation frequency in order to
obtain maximum wave power into the SHM structure.
Similarly, the total Lamb wave energy shows the same
tuning trend in relation of PWAS sizes and excitation
frequency as shown in Figure 13.

Thick plate structure (multimode Lamb waves)

Multimodal Lamb wave simulation was performed on
a 12.7-mm-thick steel plate for up to 500 kHz excita-
tion frequency and 10 V harmonic voltage applied to
PWAS. All structural simulation parameters are listed
in Table 1 and PWAS parameters are listed in Table 2.

The objective is to evaluate electrical active power
and reactive power and show how the active power
part is converted to Lamb wave power in the presence
of multimodal Lamb waves. Dispersion curve plots in
Figure 9(b) show that S1 mode starts at ;215 kHz and
S2 starts at ;370 kHz, while A1 starts at ;170 kHz
and A2 starts at 390 kHz. Due to sudden appearance of
Lamb wave modes at cutoff frequencies, the NME solu-
tion encounters sudden jumps due to sudden appear-
ance of new components due to the new modes. For
that reason, a smoothing function is applied as
described in the next section.

Smoothing function. The smoothing function is a
smoothed step function (Sohoni, 1995) as shown in
Figure 14. Mathematical formula is

f (x)=
h1 x\X1

f (x,X1, h1,X2, h2) X1<x<X2

h2 x.X2

8<
: ð79Þ

f (x)= h1 +
Dh

Dx

� �
(x� X1)�

Dh

2p

� �
sin

2p

Dx

� �
(x� X1)

� 
ð80Þ

This is implemented in our NME solution by setting X1

to the cutoff frequency of selected mode and h1 to 0;
hence, the mode is forced to start from 0, and conse-
quently, its contribution to the NME summation is
smoothed Dh= 1; Dx is arbitrary; we selected
Dx= 150kHz for symmetric modes and Dx= 120kHz
for antisymmetric modes. NME for velocity fields after
applying smoothing are shown in Figure 15.

For the sake of clarity, it needs to be mentioned that
the plots in Figure 15 are the absolute values of NME
velocities after applying normalized amplitudes as well
as modal participation factors. Note that the summa-
tion value in some areas is less than the individual

Figure 12. Parametric study for active power for 1 mm
aluminum simulation.

Figure 13. Parametric study for total Lamb wave energy for 1
mm aluminum simulation.
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Figure 14. ADAMS step function.
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values because the individual values are plotted as
absolute values, whereas the summation is done algeb-
raically, which allows for some cancelations. Complex
values of NME velocities are due to phase differences.
Figure 16 shows the summary of the velocity fields; it
displays the summation for the three symmetric modes
as well as antisymmetric modes.

Figure 17 shows the reactive and active electrical
power the PWAS utilizes to excite desired Lamb wave
modes. It can be seen from Figure 17 that the reactive
power is three orders of magnitude larger than the
active power (active power is the power that is further
converted to propagating wave power). The maximum
active power attained in this simulation is ;0.9 mW at
500 kHz; however, if the simulation is evaluated for
larger frequency sweep, active power experiences higher
maximum, but careful consideration is needed as the

fourth symmetric and antisymmetric modes will come
into account.

Multimodal Lamb wave simulations for power are
shown in Figure 18. It can be seen that maximum value
for Lamb wave power is ;0.45 mW at 500 kHz, and
the plot in Figure 18(a) is identical to the half of active
electrical power of Figure 17(a).

Summary and conclusion

The ability to excite certain Lamb wave modes is
important in SHM as different defects respond differ-
ently to various Lamb wave modes. Detection of
through-thickness cracks with pulse–echo method is
much better with S0 mode than A0 mode. While anti-
symmetric modes are better for detection delamina-
tions, it disbonds with pitch–catch techniques. Different

Figure 15. NME for particle velocity fields for 12.7-mm-thick steel plate with three symmetric modes and three antisymmetric
modes (smoothed): (a) particle velocities in x-direction of symmetric modes, (b) x-direction of antisymmetric modes, (c) y-direction
of symmetric modes, and (d) y-direction of symmetric modes.
NME: normal mode expansion.
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Figure 16. Summation of normal mode expanded velocities in x- and y-directions with applied modal participation factors for (a)
symmetric and (b) antisymmetric modes.
NME: normal mode expansion.
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Figure 17. Simulation results for 12.7-mm-thick steel plate: (a) electrical active power and (b) electrical reactive power.

Figure 18. (a) Lamb wave power and (b) Lamb wave power separated as symmetric modes and antisymmetric modes.
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researches studied scattering of wave energy at defects,
for example, cracks; hence, it became important to
develop an analytical model for multimodal Lamb wave
power and wave energy. This study has analyzed the
power and energy transformation from electrical to
mechanical for PWAS bonded to host structures. The
analysis started by reviewing of literature to show the
motivation of modeling power and energy for Lamb
waves for SHM applications. This was followed by the
basics of Rayleigh–Lamb equation and the solution of
Lamb wave symmetric and antisymmetric fields, that is,
displacement strains and velocities. Power flow analysis
is based on complex reciprocity and orthogonality of
Lamb wave modes, and through normalization of
power flow, Lamb wave displacement amplitudes were
determined. The analysis for multimodal waves was
based on NME technique, which was used to determine
modal participation factors, that is, how much each
mode contributes to the final power.

In order to calculate the transmitter electrical power
and energy, we calculated the input electrical power by
using input admittance of the PWAS when attached to
the structure. Because of the electromechanical cou-
pling, the impedance is strongly influenced by the
dynamic behavior of the substructure and is substan-
tially different from the free-PWAS impedance. The
active power is the power that is converted to the
mechanical power at the interface. The reactive power
is the imaginary part of complex power that is not con-
sumed and is recirculated to the power supply. It was
shown that the reactive electrical power required for
PWAS excitation is two orders of magnitude larger
than the active electrical power. Hence, the power rat-
ing of the PWAS transmitter is dominated by the reac-
tive power, that is, by the capacitive behavior of the
PWAS. A remarkable variation of active power with
frequency was noticed. The active power (i.e. the power
converted into the ultrasonic waves) is not monotonic
with frequency but manifests peaks and valleys. As a
result, the increase and decrease of active power with
frequency correspond to the PWAS tuning in and out
of various ultrasonic waves traveling into the structure.
For instance, for single symmetric and single antisym-
metric excitation simulation example, there was a par-
ticular frequency at which almost there was no energy
transfer for waves to propagate. Electrical active power
is further divided and converted to forward propagat-
ing wave power and backward one, and our simulations
were performed for only forward wave and showed that
wave power was the half of electrical active power.

The developed model for Lamb wave case was com-
pared with axial and flexural waves, which approxi-
mate Lamb waves at relatively low frequencies, and the
two simulations showed good agreement. This was fol-
lowed by a parametric study to optimize the transducer
size with excitation frequency to guarantee maximum
energy transfer between source and examined structure.

In this study, it was showed that the maximum wave
power can be achieved with different combinations of
PWAS size and excitation frequencies. Multimodal
wave simulations were presented, and this is a practical
case for most on-site thick structures at which not only
S0 and A0 modes exist when excited by PWAS.
Simulations have been done for thick steel plate. The
results for electrical active/reactive power and Lamb
wave power are presented. This study provided a
closed-form analytical model for Lamb wave power as
well as kinetic and potential energies.

Future work is to validate this model through
experimental study and to use the power flow normali-
zation in finding the normalized amplitudes that best
fit experimental data.

Declaration of conflicting interests

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation, Office of Naval Research, and Air Force Office
of Scientific Research.

Funding

This material is based upon the work supported by the
National Science Foundation under grant no. CMS-0925466,
Office of Naval Research under grant no. # N00014-11-1-
0271 (Dr Ignacio Perez, Program Manager), and Air Force

Office of Scientific Research under grant no. #FA9550-11-1-
0133 (Dr David Stargel, Program Manager).

References

Alleyne D and Cawley P (1992) The interaction of Lamb

waves with defects. IEEE Transactions on Ultrasonics Fer-

roelectrics and Frequency Control 39(3): 381–396.
Auld B (1990) Acoustic Fields and Waves in Solids. John Wiley

& Sons, New York, USA.
Chinthalapudi A and Hassan H (2005) Investigation of meth-

ods to detect defects in thin layered materials. Master’s

Thesis, Blekinge Institute of Technology, Karlskrona,

Sweden.
Giurgiutiu V (2008) Structural Health Monitoring with Piezo-

electric Wafer Active Sensors. Elsevier Academic Press,

Amsterdam.
Giurgiutiu V (2010) Predictive simulation of piezoelectric

wafer active sensors for structural health monitoring. In:

APWSHM 2010: 3rd Asia Pacific workshop on structural

health monitoring, Tokyo, Japan, 30 November–2 Decem-

ber 2010.
Graff K (1991) Wave Motion in Elastic Solids. Dover Publica-

tions Inc. New York, USA.
Koh Y, Chiu W and Rajic N (2002) Effects of local stiffness

changes and delamination on Lamb wave transmission

using surface-mounted piezoelectric transducers. Compo-

site Structures 57: 437–443.
Kural A, Pullin R, Featherston C, et al. (2011) Wireless power

transmission using ultrasonic guided waves. Journal of

Physics: Conference Series 305: 012088 (1–11).

Kamal et al. 469



Lin B and Giurgiutiu V (2012) Power and energy transduc-
tion analysis of y active sensors for structural health
monitoring. Structural Health Monitoring: An Interna-

tional Journal 11(1): 109–121.
Lin B, Giurgiutiu V and Kamal A (2012) The use of exact

Lamb waves modes for modeling the power and energy
transduction of structurally bonded piezoelectric wafer
active sensors. In: Proceedings of SPIE: non destructive
evaluation, San Diego, CA, 11–15 March 2012, vol. 8345,
paper no. 8345-0A (1-12).

Park G, Rosing T, Todd M, et al. (2007) Energy harvesting
for structural health monitoring sensor networks, Los Ala-
mos National Laboratory Report LA 14314-MS, Febru-
ary 2007, Los Alamos National Laboratory.

Rose J (1999) Ultrasonic Waves in Solid Media. New York:
Cambridge University Press.

Santoni G (2010) Fundamental studies in the Lamb-wave

interaction between piezoelectric wafer active sensor and
host structure during structural health monitoring. Cam-
pus access Dissertation, paper #256, University of South
Carolina, Columbia, SC.

Sohoni VN (1995) A new smooth step function for ADAMS.
Available at: http://webcache.googleusercontent.com/
search?q=cache:fZ-a–O62ksJ:web.mscsoftware.com/support/
library/conf/adams/na/1995/UC950030.PDF+&cd=1&hl=
en&ct=clnk&gl=us

Viktorov I (1967) Rayleigh and Lamb Waves—Physical The-

ory and Applications. New York: Plenum Press.
Wilcox P, Lowe M and Cawley P (2001) Mode and transducer

selection for long range Lamb wave inspection. Journal of
Intelligent Material Systems and Structures 12: 553–565.

Appendix 1

Notation

a half-length of the piezoelectric wafer
transducer, m

an(x) modal participation factor
An amplitude of nth antisymmetric mode
A0,A1,A2 antisymmetric Lamb wave modes
b width, m
Bn amplitude of nth symmetric mode
c wave speed, m/s
cp pressure (longitudinal) wave speed, m/s
cs shear (transverse) wave speed, m/s
C mode contribution factor
C0 capacitance, F
d plate half thickness, m
d31 piezoelectric coupling coefficient in 31,

m/V

eeh i time-averaged total Lamb wave energy
E Young’s modulus, GPa
f frequency, Hz
F force vector
F0(v) pin-force at PWAS ends
gn coefficient to simplify modal participation

factor

h plate thickness = 2d, m
i

ffiffiffiffiffiffiffi
�1
p

I electric current, A
Im imaginary part of a complex quantity
ke kinetic energy

keh i time-averaged kinetic energy
kPWAS PWAS stiffness, N/m
kstr dynamic stiffness, N/m
k31 electromechanical cross-coupling

coefficient
l, la PWAS length = 2a
p power, W
ph i time-averaged power
Pmn power factor (measure of average power

flow)
r(v) dynamic stiffness ratio
R eigen coefficients
Re real part of a complex quantity
sE

11 mechanical compliance under constant
electric field, m2/N

Sij mechanical strains
S0,S1,S2 symmetric Lamb wave modes
t time, s
ta PWAS thickness, m
tx(x) traction in x-direction
Tij stress in tensor notation
T period time, s
Tn stress tensor for nth guided wave mode,

Pa
u displacement, m
uISA induced strain actuation PWAS

displacement
U displacement amplitudes (also orthogonal

modes), m
v velocity
v velocity vector
ve potential energy

veh i time-averaged potential energy
V voltage
W parameter to simplify normalized mode

formula, m22

x, y, z global coordinates, m
x1, x2, x3 material polarization directions
Y admittance, S

Yj j absolute of admittance
YI imaginary part of admittance
YR real part of admittance

a, b wave numbers, m21

d Kronecker delta
eT

jk dielectric permittivity measured at zero
mechanical stress, T = 0

l Lame constant, Pa
m shear modulus of the material (equivalent

to the engineering constant G), Pa
n Poisson ratio
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j wave numbers, m21

r material density, kg/m3

t, ta shear stress at PWAS tip x = a

f Lamb wave longitudinal potential
function

f(v) dynamic

c Lamb wave shear potential function
v angular frequency, rad/s
O domain

Subscripts

A antisymmetric modes
i, j indices = 1, 2, 3
m, n different normal modes
n nth guided wave mode
S symmetric modes

x, y, z global coordinates, m
1 solution due to source excitation
2 solution due to homogeneous solution

(free mode shapes)

Superscripts

~a conjugate of a

â amplitude of a
A antisymmetric modes
m, n different normal modes
S symmetric modes
1 solution due to source excitation
2 solution due to homogeneous solution

(free mode shapes)
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Abstract. This paper presents a hybrid finite element and analytical method to predict the 1-D 
guided wave propagation interaction with damage for nondestructive evaluation (NDE) and 
structural health monitoring (SHM) application. The finite element mesh is used to describe the 
region around the damage (defects or flaws). In contrast to other hybrid models developed 
elsewhere, the interaction between Lamb waves and defects is computed in the time domain using 
the explicit solver of the commercial finite element method (FEM) software ABAQUS. Analytical 
methods can perform efficient modeling of wave propagation but are limited to simple geometries. 
Realistic structures with complicated geometries are usually modeled with the FEM. However, to 
obtain an accurate wave propagation solution at ultrasonic frequencies is computationally intensive 
and may become prohibitive for realistic structures. In response to today's complex cases not 
covered by the simulation tools available, we aim to develop an efficient and accessible tool for 
SHM applications. This tool will be based on a hybrid coupling between analytical solutions and 
time domain numerical codes. Lamb wave interaction with a notch is investigated by using this 
method, and the results obtained are with respect to transmission, reflection and mode conversion. 
Because of the symmetric mode shape, S0 is more sensitive to the shallow notch than A0. By 
making use of the fact that the reflection increases with increase in notch depth and mode 
conversion are maximized when the notch is around half through the thickness of the plate, the 
reflection and conversion coefficients can be used to characterize the depth of the notch. 

Introduction 

Many authors have already investigated the interaction of Lamb waves with a single defect like 
crack, notch, or circular cavity. Some of them used analytical [1] or semi-analytical [2] solutions, 
whereas others chose a finite element, a boundary element, or spectral element method [3-10]. 
Analytical or semi-analytical solutions can be used when the geometry of the defect is regular and 
when the problem presents symmetries. Finite or boundary element modeling (FEM/BEM) allows 
studying the interaction of Lamb modes with irregular defects but require respecting spatial and 
temporal discretization norms which can cause computational problems at high frequency-thickness 
product values. In addition, to obtain accurate wave propagation FEM/BEM solution at ultrasonic 
frequencies is computationally intensive and may become prohibitive for realistic structures.  
A hybrid formulation can be used wherein the finite element method is employed to model small 
regions near the defect whereas regions away from the defect are modeled using a suitable set of 
analytical wave functions. Goetschel et al. [11] developed a global-local finite element formulation 
for modeling axisymmetric scattering of a steady, compressive, incident elastic wave in a 
homogeneous, isotropic host medium with an axisymmetric inclusion. The method was later applied 
to model wave interaction with defected lap-shear joints [12], as well as notches in plates [13]. 
Many structural components are complex in either their geometry or their material properties. In 
this case, theoretical wave solutions for the global portion are either nonexistent or hard to 
determine. The Semi Analytical Finite Element (SAFE) method can help handle these cases because 
of its ability to extract modal solutions of complex structures in a computationally efficient manner 
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[14-17]. Sabra et al. [18] demonstrated the application of the SAFE-aided hybrid formulation to the 
detection of holes in aluminum plates. Srivastava [19] extends the global-local approach to model 
notches in aluminum plates and delamination-like defects in composite panels. 
In contrast to the above hybrid formulations, this paper calculates the interaction between Lamb 
waves and defects in the time domain. This approach is implemented in three steps using 
propriatary analytical software (WaveFormRevealer) and commercial FEM software. The first step 
of this method uses the WaveFormRevealer software developed for this application. The second 
step uses the output from the WaveFormRevealer software as inputs into the FEM model. The third 
step of our method uses again the WaveFormRevealer software to transfer the output from the FEM 
local damage to the receiver transducer placed in the global region away from damage. The FEM 
output serves as input into the Global region. This hybrid global-local-global approach is compared 
with the analytical solution and experimental results. 

Fundamental of Lamb waves 

Guided waves (Lamb waves) travel at long distances in thin wall structures. Guided waves are 
typically transmitted and received using piezoelectric wafer active sensors (PWAS) [25], and are 
used to detect defects and damage in thin wall structures. Two types of guided waves propagate:  
symmetric waves and antisymmetric waves. Each of these wave types propagates with multiple 
modes. 
By solving a boundary value problem for a free plate or by considering the reflection of waves at 
plate boundaries, the Rayleigh-Lamb frequency equations (dispersion equations) can be found [20-
23]. For a uniform traction-free isotropic plate, the equation for symmetric modes is 

 
2

2 2 2

tan( ) 4

tan( ) ( )

qh k pq

ph q k
= −

−
 (1) 

For antisymmetric modes, we have 

 
2 2 2

2

tan( ) ( )

tan( ) 4

qh q k

ph k pq

−
= −  (2) 

where 

 
2 2

2 2 2 2

2 2
, ,

pL T

p k q k k
cc c

ω ω ω
= − = − =  (3) 

The notations , , , , ,L T ph k c c c ω signify the half plate thickness, wave number, velocities of 

longitudinal and transverse modes, phase velocity, wave circular frequency, respectively. 
The phase velocity is found numerically by solving the roots of the dispersion equation as a 
function of material properties, frequency, and material thickness. Group velocity dispersion curves 
are found from the phase velocity [23]. 
Phase and group velocity dispersion curves for a 3.2 mm-thick aluminum plate are shown in Figure 

1, where longitudinal and transverse velocities of the plate are equal to 6211m/sLc = , and 

3129m/sTc = , respectively.  These curves were generated and plotted using our propriatary 

software “Wavescope” [24]. Figure 1 shows the dispersion curves of the first two symmetric and 
antisymmetric modes.  At low frequencies, the wave velocity of the first symmetric mode (S0) is 
nearly non-dispersive, while the wave velocity of the first antisymmetric mode (A0) is highly 
dispersive.  At higher frequencies, group velocity of both A0 and S0 approaches the Rayleigh wave 

velocity, 2900m/sRc ≈ . 
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Figure 1: Dispersion curves for 3.2-mm thick aluminum plate: (a) phase velocity dispersion 

curves; (b) group velocity dispersion curves. 

Analytical model for the global domain 

PWAS transducers are the enabling technology for active and passive SHM systems [25]. PWAS 
couples the electrical and mechanical effects through the tensorial piezoelectric constitutive 
equations 

 ,E T

ij ijkl kl kij k j jkl kl jk kS s T d E D d T Eε= + = +  (4) 

where, 
ijS  is the mechanical strain; klT  is the mechanical stress; kE  is the electrical field; 

jD  is the 

electrical displacement; E

ijkls  is the mechanical compliance of the material measured at zero electric 

field 0E = , T

jkε  is the dielectric permittivity measures at zero mechanical stress 0T = , and 
kijd  

represents the piezoelectric coupling effect. PWAS utilize the 31d  coupling between in-plane strain 

and transverse electric field. A 7-mm diameter, 0.2mm thick, PWAS weights around 78 mg and 
costs around $1. PWAS transducers are lightweight and inexpensive and hence can be deployed in 
large numbers on the monitored structure. 
PWAS transducers can serve several purposes [25]: (a) high-bandwidth strain sensors; (b) high-
bandwidth wave exciters and receivers; (c) resonators; (d) embedded modal sensors with the 
electromechanical impedance spectroscopy method. By application types, PWAS transducers can 
be used for (i) active sensing of far field damage using pulse-echo, pitch-catch, and phased-array 
methods, (ii) active sensing of near field damage using the high frequency electro-mechanical 
impedance spectroscopy (EMIS) and thickness gage mode, and (iii) passive sensing of damage-
generating events through detection of low-velocity impacts and acoustic emission at the tip of 
advancing cracks. 
The analytical modeling of the pitch-catch process between two PWAS transducers separated by a 

distance x  is carried out in frequency domain in four steps [26-28]:  

• Fourier transform the time-domain excitation signal ( )eV t  into the frequency domain 

spectrum, ( )eV ω� ; 

• Calculate the frequency-domain structural transfer function at the receiver location, ( , )G x ω ;  

• Multiply the structural transfer function by frequency-domain excitation signal to obtain the 

frequency domain signal at the receiver, i.e., ( ) ( ) ( ), ,r eV x G x Vω ω ω= ⋅� � ; 

• Perform inverse Fourier transform to obtain the time-domain receiver signal, 

( , ) { ( , )} { ( , ) ( )}r r eV x t IFFT V x IFFT G x Vω ω ω= = ⋅� � . 
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In this paper, the main interest is in symmetric fundamental mode (S0) and anti-symmetric 
fundamental mode (A0). For Lamb waves with only two modes (A0 and S0) excited, the structure 

transfer function ( )G ω  is given by Eq. (99) of ref. [25], page 327, which gives the in-plane strain at 

the plate surface as 
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where a  is the half length of the PWAS, d  is the half thickness of the plate, 0τ  is the shear stress 

between PWAS and the plate, µ  is Lame’s constant, Sk  and Ak  are the wavenumbers for S0 and 

A0 respectively, x  denotes the distance between the two PWAS transducers, k  represents the 

wavenumber for S0 or A0 accordingly, pc  and sc  are the wave speed for pressure wave and shear 

wave respectively. In the transfer function, it could be observed that ( )S ω  and ( )A ω  will 

determine the amplitude of S0 and A0 mode. In both ( )S ω  and ( )A ω  terms, there is ( )sin Sk a  and

( )sin Ak a , which represent the tuning effect. 

 The wave speed dispersion curve is obtained by solving Rayleigh-Lamb equations (1) and 
(2), which are transcendental equations that require numerical solution. The usual form of Rayleigh-
Lamb equations (1) and (2) expressed as  

 ( ) ( ), 0 and , 0S AD d D dω ω= =  (11) 

After getting the wave speed dispersion curve, the wavenumber for each frequency component i.e. 

cξ ω= is known. Thus, all the terms involved in the plate transfer function could be solved, and 

the plate transfer function ( )G ω  is obtained. After the plate transfer function ( )G ω  is obtained, the 

excitation signal is Fourier transformed. 
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Software development for the global domain 

The analytical  model presented in the previous section was used to develop the software program 
‘WaveFormRevealer’ utilizing the Matlab graphical user interface (GUI) environment to predict the 
waveform for the analytical modeling part of the HGL approach [26, 27]. The GUI of the software 
is shown in Figure 2. 

 
Figure 2: Interface of the analytical software „WaveFormRevealer 1.0“ [27-29]. 

 
This software allows users to get the desired analytical signal prediction by inputting material 
properties, specimen geometry, excitation signal count number, excitation signal frequency, and 
time range. It can also show a continuous waveform change by clicking on the frequency control 
slider, which is just like the waveform shown on an oscilloscope when adjusting the excitation 
signal frequency. The signal range in time domain can be set by entering the ‘Range’ information.  

Finite element model in the local region 

The effectiveness of conventional finite element modeling of elastic waves propagating in structural 
components has been shown for the case of Lamb waves in free plates in [30, 31]. The FEM 
package used in the present study, ABAQUS/Explicit, uses an explicit time integration based on a 
central difference scheme [32]. The stability of the numerical solution is dependent upon the 
temporal and the spatial resolution of the analysis. The maximum frequency of the dynamic 

problem, maxf , limits both the integration time step and the element size. To avoid numerical 

instability, ABAQUS/Explicit [32] recommends a stability limit for the integration time step of [31] 

 
max

1

20
t

f
∆ =  (12) 

The size of the finite element mesh, eL , is typically derived from the smallest wavelength to be 

analyzed, minλ . For a good spatial resolution, 20 nodes per wavelength are advisable [31]. This 

condition can be written as 

 min

20
eL

λ
=  (13) 
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To generate the appropriate Lamb mode (S0 or A0), boundary conditions are imposed on the plate. 
To simulate the time profile of the excitation, a 3-cycle tone burst enclosed in a Hanning window 
centered on the excitation frequency is used. The plate length is defined to prevent reflections from 
the edges and is minimized to reduce the computing time.  

Experimental set-up 

A test specimen was designed to develop and calibrate the damage-detection methodology using a 
simple geometry specimen, and also to validate the analytical, and the hybrid global-local results. 
The aluminum plate specimen was constructed from 3.2-mm-thick 2024-alloy stock in the form of a 

square plate ( )1118mm×1118mm×3.2 mm . The specimen was instrumented with arrays of 7-mm 

square and 7-mm circular PWAS (Figure 3). The ( ),x y  sensor locations are given in Table 1. An 

HP33120A arbitrary signal generator was used to generate a 150 kHz windowed harmonic-burst 
excitation to active sensors with a 10 Hz repetition rate. Under harmonic burst excitation, the 
transmitter PWAS generates a packet of elastic waves that spread out into the entire plate according 
to a circular wave front pattern. A Tektronix TDS210 four-channel digital oscilloscope, 
synchronized with the signal generator, was used to collect the response signals from the receiver 
PWAS transducers.  
The results of the rectangular plate tests were remarkably clear and easy to interpret. Reflections 
wave packets could be easily separated because the edges of the rectangular plate were far away 
from the source.  

 
Figure 3: Arrangment of piezoelectric wafer active sensor (PWAS) transducers bonded on the 

plate specimen. 

 

Table 1: Location of PWAS transducers on the square plate specimen. 
PWAS# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

x (mm) 31 31 31 31 51 51 51 51 71 71 71 71 91 91 91 91 

y (mm) 31 51 71 91 91 71 51 31 31 51 71 91 91 71 51 31 

Square X X     X X   X X X X   

Circular   X X X X   X X     X X 
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Hybrid Global-Local Method 

In response to today's most complex cases not covered by the simulation tools available, we aim to 
develop an efficient and accessible tool simulation for SHM application. This tool is based on a 
hybrid coupling between analytical solution and numerical codes. We couple global analytical 
calculation with local FEM analysis to utilize the advantages of both methods and obtain a rapid 
and accurate simulation method. Figure 4 illustrates this concept, whereby only the local material 
region close to the defect needs to be FEM modeled whereas the global waveguides to the left and 
right of the FEM region are modeled analytically with compatibility being ensured at the interface. 

 
Figure 4: Waveguide problem in 1-D solved by the hybrid global-local (HGL) method in the 

time domain: (a) overall HGL set-up; (b) FEM discretization including extended regions for 

reflection a voidance. 

 
The first step of this method consists in using the WaveFormRevealer software to predict 
analytically the wave propagation in the “Global“ wave guide. The signal received after a path of 
200 mm through global region corresponds to the output signal from the Global 1 region and serves 
as the input data for the local region modeled by  FEM. This analysis takes place in the time 
domain. The second step consists in using the Global 1 output as two inputs (one for the S0 mode 
and the other for the A0 mode) in the FEM model. In order to avoid the reflections from the edges 
of the FEM domain, we extended the FEM domain outside the 100-mm local region to a total length 
of 250 mm (Figure 4). The received signal from the local FEM model is the new input data for the 
Global 2 analytical region. 
The hybrid global-local-global signal is compared with the analytical model, and the experimental 
results, received at R-PWAS after a path length of 565 mm (Figure 5). A good agreement for the S0 
wave packet is observed. For the A0 mode, a good agreement is also observed but a slight time shift 
exists at the end of the A0 wave packet. We can conclude that this time domain HGL approach is in 
good agreement with the experimental results and with the analytical model. The slight difference 
in the A0 packet can be explained by the fact that these models, analytical and HGL, are 1D guided 
waves which are not exactly representative of the experimental results, i.e. 2D guided waves.  

 
Figure 5: Comparison of the received signal after a distance travel of 565 mm for the 

analytical model, the experimental results and for the HGL three-step approach (global-local-

global). 
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Hybrid Global-Local approach for damage detection 

Metal structures exhibit a wide range of damage types including cracks and corrosion. The later 
may be uniform, pitting, galvanic, crevice, concentration cell, and graphite corrosion [33].When a 
waveguide structure has changes in geometry, materials properties, supports, or attachments, the 
guided waves that propagate through it will be modified accordingly. E.g., loss of material due to 
corrosion presents geometrical changes which will cause the guided waves scattering and can be 
used for corrosion inspection. In this study, corrosion is simulated by a uniform notch in an 
aluminum plate. The notch depth and the width were increased gradually in order to simulate 
corrosion progression. This thickness loss produced a change in the waveguide elasto-dynamic 
impedance and thus caused (i) scattering and reflection; (ii) modification of the wave speed of the 
Lamb waves crossing the corrosion area; and (iii) mode conversion. In the HGL model, simulated 
corrosion was made on 3.2-mm thick aluminum plate. The location of the corrosion was on the 
middle of the local FEM area. Transient analysis of Lamb wave interaction with a surface notch in a 
plate is conducted using our HGL approach  as described in the previous section. In practice, 
corrosion defects are geometrically complex and require multiple parameters to describe them and 
their scattering behaviors. We used the simplified shape of a uniform notch to reduce the number of 
parameters in order to better understand the changes causes by material loss.  
Incident wave from the T-PWAS will propagate and then interact with the notch, undergoing mode 
conversion. Hence, there will be reflected waves traveling toward the left edge to be captured by T-
PWAS and transmitted waves traveling towards the right edge to be captured by the R-PWAS. If 
the incident wave is fixed, the reflection and transmission coefficients are affected by the severity of 
the structural discontinuity, which, in this case, is the notch geometry. These coefficients, when 
measured experimentally, can be used as a quantitative measure to characterize the discontinuity. 
To analyze the sensitivity of the Lamb waves to the size of the notch, the reflection coefficients of 
A0 and S0 from the notch are computed using our HGL approach.The rectangular notches have a 
constant width of 1 mm and depth varying from 1 to 3 mm. The results are shown in Figure 6 for 
A0 input and in Figure 7 for S0 input. The reflection coefficients of A0 and S0 from a notch have 
been studied by Lowe et al. [34] and by Lowe and Diligent [35] by using an in-house FEM 
software. The results in Figure 6a and Figure 7a agree with their results. A simpler interpretation of 
the reflection coefficient curves against notch depth can be made here based on Figure 6 and Figure 
7 by considering mode shape and energy conservation with respect to transmission, reflection, and 
mode conversion. 

 
(a) 

 
(b) 

 
(c) 

Figure 6: Coefficients versus normalized notch depth ratio for A0 incident wave packet; (a) 

reflected A0; (b) transmitted A0; (c) transmitted S0 mode conversion. 
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The case of A0 input is first discussed based on Figure 6. The notch depth is normalized by the 

plate thickness, d h . As shown in Figure 6a, for 0.6d h < , the notch depth is around 1/20 the 

wavelength of A0 (which is 12.4 mm). Hence, the wave will transmit through the notch almost 
completely with negligible reflection, which agrees well with the low coefficients obtained for the 
reflected A0 wave components. If the notch spans over the full depth, then the A0 wave is fully 
reflected with no conversion. The coefficient for the reflected A0 wave component approaches 1 
and that for the trnasmitted S0 wave approaches 0. In between these two extremes, the incident A0 
wave will undergo mode conversion, partially transmitted and partially reflected containing both A0 
and S0 components. It is also not surprising that in Figure 6c, the transmitted S0 coefficient first 
increases and then decreases with depth, with the maximum value occurring when the notch depth 
is close to half the thickness of the plate. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Coefficients versus normalized notch depth ratio for S0 incident wave packet. (a) 

reflectd S0; (b) tranmitted S0; (c) transmitted A0 mode conversion. 

 
The reflection, transmission, and mode conversion coefficients for S0 input are plotted in Figure 7. 
A phenomenon similar to the A0 case can be observed where mode conversion is maximum when 
notch depth is about half  plate thickness (Figure 7b). Unlike A0, the S0 exhibits good sensitivity 

even for a shallow notch. For 0.4d h > , the notch depth is around 1/100 wavelength of S0 (which 

is 35.9 mm) and the reflection can be distinctly observed. This could be due to its small value at the 
surface meaning that any change becomes significant. The existence of surface crack destroys the 
symmetry of the wave, resulting in mode conversion. It is shown here that the mode shape also 
contributes significantly to the sensitivity of the detection. This is consistent with the observation by 
Ditri et al. [36] that energy distribution inside a plate for different Lamb modes could be used to 
predict their detectability due to the presence of cracks. 
Similar analysis can be performed to evaluate the dependence of the coefficients on notch width, 
which for conciseness reasons will not be discussed in detail. They agree well with the results 
presented by Lowe et al. [34], and Lowe and Diligent [35]. The variation of the coefficients against 
notch width is somewhat periodic and relates to the wavenumber of the Lamb modes. 
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A damage index can be computed by taking the ratio of the amplitudesd of the original and mode-
converted waves as received at the R-PWAS. Figure 8 shows the damage index for S0 and for A0 

input. For 0.2d h ≤ , the ratio based on the S0 input would be more sensitive than the A0 input 

mode. However, for 0.6d h > , the damage index is bigger for A0 mode input. So using the S0 and 

the A0 mode, we could quantify the dimension of the notch. 
 

 
Figure 8: Damage index based on the ratio of the transmitted mode conversion and the 

undamaged transmitted for S0 and for A0 input. 

Conclusion 

This paper presents a hybrid finite element and analytical method to predict the 1-D guided wave 
propagation interaction with damage for nondestructive evaluation (NDE) and structural health 
monitoring (SHM) application. The finite element mesh is used to describe the region around the 
damage (defects or flaws). In contrast to other hybrid models developed elsewhere, the interaction 
between Lamb waves and defects is computed in the time domain using the explicit solver of the 
commercial finite element method (FEM) software ABAQUS. Compared to usual FEM model, the 
main advantage of the hybrid method is to reduce meaningfully the length of the mesh used to 
investigate the interaction of Lamb modes with defects and hence the computing time. Theory of 
guided wave propagation between two PWAS transducers was studied and an analytical model was 
built to give the theoretical waveforms of pitch-catch signals. Analytical modeling and finite 
element modeling have shown good match with experimental results, and can well describe guided 
wave propagation between two PWAS transducers. Lamb wave interaction with a notch is 
investigated by using this method, and the results obtained are consistent with respect to 
transmission, reflection and mode conversion. Because of the symmetric mode shape, S0 is more 
sensitive to the shallow notch than A0. By making use of the fact that the reflection increases with 
increase in notch depth and mode conversion are maximized when the notch is around half through 
the thickness of the plate, the reflection and conversion coefficients can be used to characterize the 
depth of the notch. 
In future work, the analytical model will be extended to 3D circular PWAS analysis using Bessel 
function representation. Thus, we will realize the modeling of the guided wave propagation between 
two circular PWAS transducers in an arbitrary 2D geometry. The analytical modeling is expected to 
include damage/flaw in the plate structure, more complex structure (plate with double stiffener), 
and also include the second modes A1 and S1. The main complexity would be to develop a time 
domain hybrid global local model for 2-D wave propagation in structures. 
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