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Overview 

There is speculation about the applicability of current aircraft rescue firefighting (ARFF) 
protection standards for New Large Aircraft (NLA) such as the Airbus A380 and Boeing 777. 
Current protocol is based on traditional aircraft; in comparison NLA are characterized by 
unusually large dimensions, composite material integration, as well as enhanced passenger and 
wing loading, and stored fuel in non-conventional locations.  A study is underway to develop an 
aircraft-crash-fuel spill-fire-suppression (ACFFS) simulation framework to quantify fuel 
dispersal and to estimate firefighting agent application requirements for accidental scenarios of 
high interest.  This approach is favorable because it is less expensive and more practical than 
conducting full-scale experiments. The current work discusses the results of partial NLA fire-
suppression experiments conducted in moderately controlled, indoor environmental conditions at 
1:10-scale.  The purpose of this work was to generate an in-house experimental validation data 
set to support development of the aircraft pool fire-suppression component of the ACFFS 
simulation framework.  Preliminary design, set-up, and performance of the aircraft pool fire-
suppression model is also discussed.    

Introduction 

NFPA 403 reports the minimum extinguishing agent discharge requirements and response 
capability for ARFF services at airports based on the theoretical critical area-practical critical 
area (TCA/PCA) method.  The TCA/PCA method is based on ARFF response estimates from 
over 40 years ago, has questionable validity with respect to NLA, and does not account for non-
linear, three-dimensional aircraft crash dynamics or modern aircraft designs.  The ACFFS 
simulation framework is an alternative approach to the TCA/PCA method that uses high-fidelity 
finite element analysis (FEA) and computational fluid dynamics (CFD).  It enables the 
consideration of physical dynamics that occur during an actual ACFFS event, including post-
crash aircraft geometry, fuel spill distribution, wind velocity effects, and fire suppression 
techniques.  The program objective is to predict the severity of ACFFS scenarios so that an 
alternative or potential modification to the TCA/PCA method may be considered.   

The technical approach is as follows: (1) perform dynamic FEA of survivable aircraft crashes, 
(2) perform high-fidelity CFD analysis of resultant pool fire and suppression, (3) evaluate the 
severity of ACFFS scenarios, and (4) validate the simulation methodology using aircraft crash, 
fire, and suppression experiments to determine its degree of reliability.  The current work 
discusses progress on Part 4 and preliminary findings on Part 2 of the ACFFS approach.  

Experimental Set‐up 

Fire-suppression experiments were conducted on a 1:10-scale partial NLA steel mockup 
designed to resemble the major mid-body features of the Airbus A380 engulfed in a 3.05-m (10-
ft) diameter JP-8 pool fire.  The current experiments were carried out in a quonset-style indoor 
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fire test facility in a calm atmosphere.  A fuel pan scale recorded the change in fuel mass to 
determine the fuel regression rate.  Thirty-one K-type thermocouples recorded a combination of 
fire perimeter (4), fuel surface (5), mockup surface (15), and axial centerline fire plume 
temperatures (7).  Four water-cooled, Gardon-style dual heat flux gages positioned 90-degrees 
apart and around the fire perimeter recorded total and radiation heat flux.  A single infrared and 
two standard cameras were positioned ±45-degrees off-axis with respect to the mockup hull to 
record each fire test. 

Ten pool fire-suppression trials were conducted, five with the fire pool only and five that 
included the 1:10 NLA mockup.  A trial began by floating 76 liters (20 gal) of JP-8 overtop 371 
liters (98 gal) of tap water and then manually igniting the JP-8 with a propane torch.  A 60-s pre-
burn period then occurred so that fire conditions could fully-develop.  Four fire suppression 
nozzles positioned 90-degrees apart near the base and perpendicular to the fuel pan then 
discharged agent.  The nozzles delivered a combined 43 lmin-1 (11.3 galmin-1) of agent at 480 
kPa (70 lbin-2) until the fire was extinguished.  The nozzles were 30-degree stainless steel fan 
nozzles manufactured by BETE.  The agent was premixed Mil-spec 3% AFFF discharged via a 
modified (no air injection) Tri-Max 30 acting as a pressurized cylinder.  The agent had an 
approximate 3:1 expansion ratio, and the fixed nozzle system delivered approximately 78 percent 
of the agent to the fuel pan.  

Experimental Results 

Key experimental results are summarized in Table 1.  In general, it was found in pool fire only 
suppression trials that JP-8 burned at an increased rate, thus generating a greater heat release rate 
compared to trials that included the mockup.  The increased heat release rate caused the relative 
total and radiation heat flux measurements along the fire perimeter to similarly increase.  The 
mockup presence also caused the extinguishment time to increase significantly thereby 
decreasing extinguishment efficiency.  Fire intensification was observed immediately after 
suppression started.  This phenomena resulted in a peak total heat flux rise of 126 and 170 
percent over the mean heat flux recorded during the pre-burn period for the pool fire only and 
mockup cases, respectively.  Fire perimeter thermocouple measurements recorded a minor lag in 
temperature rise while the mockup was present.  Fire plume thermocouple measurements did not 
record a significant disparity with and without the mockup during the pre-burn period.  However, 
mockup trials consistently recorded fire plume temperature peaks during fire intensification on 
the order of 100 K higher compared to pool fire only measurements.  Mockup surface 
thermocouple measurements consistently recorded increased temperature magnitudes toward the 
interior of the mockup hull and lesser values closer to its extremities.   

Table 1: Test Results Summary 

Case 

Mean 
Fuel Regression 

Rate  
(gm2s‐1) 

Mean Total 
Heat Release 

Rate 
(MW) 

Mean Total 
Perimeter 
Heat Flux 
(kWm‐2) 

Mean Radiation 
Perimeter Heat 

Flux  
(kWm‐2) 

99% 
Extinguishment 

Time 
(s) 

Extinguishment 
Efficiency 
(lm‐2) 

Pool Fire Only  38.2±1.4  12.8±0.45  26.7±0.93  21.2±1.4  30.4±4.5  2.30±0.34 
1:10 NLA Mockup  31.8±1.3  10.6±0.43  24.8±0.65  17.1±1.0  40.2±6.9  3.04±0.52 
% Difference  16.8  16.8  6.94  19.3  32.2  32.2 

Note:  The values reported are in terms of mean  standard deviation 

Computational Model Set‐up 

DISTRIBUTION A: Approved for public release; distribution unlimited. AFCEC-201603; 26 January 2016 



The fire-suppression model used was based on an Euler-Lagrange CFD framework available in 
ANSYS Fluent v16.x to govern the combustion and agent application processes, respectively.  A 
partially-premixed combustion model using the flamelet generated manifold approach was used 
to govern chemical reaction kinetics.  A 22-species Jet A surrogate skeletal reaction mechanism 
based on the composite combustion of 72.7-percent decane, 18.2-percent hexane, and 9.1-percent 
benzene by mass was used to generate the flamelet.  The SST - Reynolds-Averaged Navier-
Strokes (RANS) turbulence model was chosen for its accuracy in resolving turbulent flow 
around bluff bodies such as the mockup.  The discrete ordinates radiation and single step Khan 
and Greeves soot model provided radiation and soot interaction.  Agent spray dynamics were 
accounted for using the discrete phase model (DPM) to simulate AFFF solution droplet transport, 
as well as its heating, evaporation, and boiling.  Two-way turbulence, heat, and mass transfer 
coupled the gaseous combustion and agent droplet phases. 

The indoor fire test facility was approximated using a three-dimensional, cylindrical-shaped 
domain.  The domain floor and ceiling boundaries were modeled as an adiabatic no-slip wall and 
the surrounding far-field as a pressure outlet.  A fuel vapor velocity inlet defined the fire inlet 
boundary with its conditions extrapolated from the fuel regression rate and the thermodynamic 
properties of JP-8 fuel vapor at its boiling point.  The mockup surface was modeled as a thin wall 
with shell heat conduction thermally coupled to the surrounding gaseous flow field.  Agent spray 
conditions were defined as DPM flat-fan-atomizer injection types with delivery conditions 
consistent with the experiment.   

Computational Model Preliminary Findings 

Preliminary CFD model findings of note show that the mean fire perimeter temperature, fire 
plume temperature, and mean heat release rate values are similar to experimental results given 
the range of uncertainty associated with each experimentally measured value in a fire test 
environment (i.e., 10 to 20 percent for temperature comparisons and 20 to 40 percent for heat 
flux comparisons).  Mean perimeter heat flux, fire intensification, fire plume puffing frequency, 
mockup surface profile trends compared to infrared camera data, and agent delivery efficiency 
are among other parameters that compared well with preliminary CFD model results.  Notable 
differences observed showed a modeled increase in the mockup surface heat-up rate as well as a 
modeled decreased rate of soot production compared to experiments.  Quantification of CFD 
model uncertainty and other factors to quantify its ability to accurately predict flame extinction is 
currently in progress. 

Conclusions 

Experimental results suggest major full-scale aircraft pool fire suppression characteristics were 
reproducible in an indoor 1:10-scale test environment with extinguishment efficiencies reported 
similar to that of an analogous full-scale aircraft pool fire environment.  A fixed ARFF-style 
agent delivery system provided reliable extinguishment results while removing the uncertainty 
added by man-in-the-loop firefighting.  Fire intensification was shown to be significant, likely 
due to the rapid increase in air entrainment coupled with the agitation of the fuel surface-vapor 
interface by the agent spray.  The presence of the mockup significantly lowered the fire heat 
release rate while still extending the extinguishment time compared to pool fire only conditions. 
This phenomena was likely due to the blockage effect imposed by the mockup to not only limit 
the effective range of the agent spray, but also in hindering the turbulent fuel-air mixing in the 
flow regime adjacent to the fuel pan.  Preliminary CFD model findings suggested that aircraft 
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pool fire-suppression behavior can be modelled to estimate most of the significant parameters 
that govern fire suppression for a particular aircraft-pool fire environment.  Analysis of the CFD 
model’s overall uncertainty as well as its ability to accurately predict flame extinction is 
currently in progress. 
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Experiments
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Experiments
1:10 NLA Fire Suppression Nozzle Details

BETE SS NF2030

30 Spray Pattern

BETE Estimated Droplet Size Information:
10.7 lpm (2.82 gpm) @ 480 kPa (70 psi)

SG = 1

1 cp

Q = 10.7 lpm

V = 27.7 ms-1

D32 = 340

DV0.5 = 430

DV0.1 = 190

DV0.9 = 780



13 
     

Experiments
1:10 NLA Fuel Regression Results
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Experiments
1:10 NLA Fuel Surface & Perimeter Temperature Results
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Experiments

1:10 NLA Axial Fire Plume Temperature Results
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Experiments

1:10 NLA Mockup Surface Temperature Results
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Experiments

1:10 NLA Fire Suppression Results
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Experiments

1:10 Pool Fire Only Test Photos

1 – Pre-Burn 

3 – Mid-Suppression 4 – Almost Extinguished

2 – Suppression Start Fire Intensification
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Experiments

1:10 NLA Test Photos

1 – Pre-Burn 

3 – Mid-Suppression 4 – Almost Extinguished

2 – Suppression Start Fire Intensification
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Simulations
1:10 NLA Simulation Overview

Software
 Geometry created using Solidworks 2016

 Mesh generated using Pointwise v17.x

 CFD model developed using ANSYS Fluent v16.x

Hardware
 Advanced Clustering MicroHPC2 Workstation

 CentOS 7 (Linux)

 28-core Intel Xeon 2.6 GHz / 128 GB RAM (shared memory)

 Air Force Research Laboratory HPC

 Red Hat Enterprise (Linux)

 SGI Ice X 4,590-node (16-core per node) Intel Xeon 2.6-GHz / 
64 GB RAM per node (distributed memory)
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Simulations
1:10 NLA CFD Physical Sub-Model Summary

 Eulerian (Combustion) Model Framework

 Partially premixed combustion based on the flamelet 
generated manifold diffusion flamelet approach

 22-species Jet A surrogate skeletal reaction mechanism based on
the combustion of C10H22, C6H14, and C6H6 (Strelkova et al. 2008)

 SST - (RANS) turbulence

 Discrete ordinates radiation

 One-step Khan and Greeves soot

 Lagrangian (Agent Spray) Model Framework

 Discrete phase model with AFFF solution droplet transport,
heating, evaporation, and boiling

 Two-way turbulence, heat, and mass transfer coupled to gas
phase
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Far-Field

1:10 NLA Mock-Up

Near-Field

Far-Field

Cross-Section

Near-Field Cross-Section

Simulations
1:10 NLA Model Domain Summary

Multi-Block Hybrid Mesh Topology
 Structured (hexahedral)

high aspect ratio cells
used for far-field atmosphere
and boundary layer growth

 Unstructured (tetrahedral) cells
used to link structured blocks

Pool Fire Only Mesh

 1.46M Cells / 1.48M Nodes

1:10 NLA Mockup Mesh

 3.05M Cells / 1.60M Nodes
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Simulations
1:10 NLA Boundary Condition Summary

 TBOIL = 488 K

 Pool Fire Only VINLET = 0.01 m/s

 1:10 NLA Mockup VINLET = 0.008 m/s

 Low carbon steel mockup & fire

pan wall material properties

 DPM injection properties derived

from nozzle and agent delivery

specifications and measurements

Fuel Vapor Velocity Inlet

VINLET = (mFUEL,PATM,MFUEL,TBOIL) @ TBOIL
 

Adiabatic No-slip wall

Adiabatic No-slip wall

Pressure Outlet

PATM @ TATM

Pressure Outlet 

PATM @ TATM

No-Slip Wall with Shell Heat

Conduction Thermally Coupled 

to Surrounding Flow Field

DPM

Injection

DPM 

Injection
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Simulations
1:10 NLA CFD Model Preliminary Findings

Notable Similarities to Experiments
 Mean (pre-burn) perimeter air temperature, fire plume temperature,

and total HRR

 Mean (pre-burn) perimeter heat flux

 Post-suppression start fire intensification

 Fire plume puffing frequency

 Mockup surface temperature profile trends compared to infrared
camera data

 (Isothermal) agent delivery efficiency

Notable Differences to Experiments
 Increased mockup surface

heat-up rate

 Decreased rate of soot production
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Simulations
1:10 NLA CFD Model Sample Results

Pool Fire Only Instant Temperature (K) 

1:10 NLA Mockup Instant Temperature (K) 1:10 NLA Mockup Mean Temperature (K)

Pool Fire Only Mean Temperature (K)
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Conclusions

 Results suggest major full-scale aircraft pool fire characteristics 
can be reproduced in an indoor 1:10 scale test environment.

 A fixed ARFF-style agent delivery system provided reliable
extinguishment results while removing the uncertainty added by
man-in-the-loop firefighting.

 Fire intensification post suppression start was significant, likely
due to the rapid increase in air entrainment coupled with
agitation of the fuel surface-vapor interface by the agent spray.

 Fire-immersed objects can significantly lower the fire HRR while 
still extending the extinguishment time compared to open pool 
fire conditions, likely due to blockage effects.

 High-quality foam production at laboratory scale to match the 
full-scale performance of non-aspirated nozzles remains a 
challenge.
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