
TRUSTED REMOTE OPERATION OF PROXIMATE EMERGENCY
ROBOTS (TROOPER): DARPA ROBOTICS CHALLENGE

LOCKHEED MARTIN ADVANCED TECHNOLOGY LABORATORIES

DECEMBER 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-264

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-264 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
ROGER J. DZIEGIEL, JR MICHAEL J. WESSING
Work Unit Manager Deputy Chief, Information Intelligence

 Systems and Analysis Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2012 – NOV 2015
4. TITLE AND SUBTITLE
TRUSTED REMOTE OPERATION OF PROXIMATE EMERGENCY
ROBOTS (TROOPER): DARPA Robotics Challenge

5a. CONTRACT NUMBER
FA8750-12-2-0311

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702E

6. AUTHOR(S)
Steven Gray, Robert Chevalier,
Nicholas DiLeo, Aron Rubin, Benjamin Caimano, Kenneth Chaney II,
Todd Danko, Michael Hannan, David Kotfis, Daniel Donavanik, Alex
Zhu

5d. PROJECT NUMBER
ROBO

5e. TASK NUMBER
PR

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Advanced Technology Laboratories
3 Executive Campus, Suite 600, Cherry Hill, NJ 08002
University of Pennsylvania, 220 S. 33rd Street, Philadelphia, PA 19104
Rennselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIED
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-264
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Recent robotics efforts have led to automating simple, repetitive manipulation tasks to speed up execution and lessen an
operator's cognitive load, allowing them to focus on higher level objectives. However, the robot will eventually encounter
something unexpected, and if this exceeds the tolerance of automated solutions there must be a way to fall back
gracefully to teleoperation. To address this challenge, we present our human-guided autonomy solution in the context of
the DARPA Robotics Challenge (DRC) Finals. We describe the software architecture that Team TROOPER developed
and used on an Atlas humanoid robot. Our design emphasizes human-on-the-loop control where an operator simply
expresses a desired high level goal for which the reasoning component assembles an appropriate chain of subtasks.
We employ perception, planning, and control automation for execution of subtasks. If subtasks fail, or if changing
environmental conditions invalidate the planned subtasks, the system automatically generates a new chain. The operator
is also able to intervene at any stage of execution, enabling operator involvement to increase as confidence in
automation decreases. We present our performance at the DRC Finals as well as lessons learned.
15. SUBJECT TERMS
collaborative autonomy, human-guided autonomy, emergency response, legged robots, mobile manipulation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
ROGER J. DZIEGIEL, JR

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

99

02

i

TABLE OF CONTENTS
Section Page
List of Figures .. iii
List of Tables .. v

1 Summary ... 1

2 Introduction ... 1

2.1 Collaboration, FOSS, and Partnership .. 1

2.2 Simplicity and Autonomy ... 2

3 Methods, Assumptions, and Procedures ... 2

3.1 System Overview .. 2

3.1.1 Robotic Hardware Components .. 3

3.1.2 Software. ... 9

3.2 Capabilities ... 37

3.2.1 Controls. .. 37

3.2.2 Planning. ... 41

3.2.3 Perception. .. 51

3.3 DRC Task Solutions ... 57

3.3.1 Driving. ... 58

3.3.2 Vehicle Egress. ... 62

3.3.3 Door. ... 65

3.3.4 Valve. .. 69

3.3.5 Wall. .. 71

3.3.6 Terrain. .. 76

3.3.7 Stairs. .. 82

4 Results and Discussion ... 83

4.1 Approach to the Competition .. 83

4.1.1 Driving. ... 83

4.1.2 Egress. ... 83

4.1.3 Door. ... 84

4.1.4 Valve. .. 84

4.1.5 Wall. .. 84

4.1.6 Mystery Task. ... 84

4.1.7 Terrain. .. 84

ii

4.1.8 Stairs. .. 84

4.2 Competition Results .. 84

4.2.1 Driving. ... 84

4.2.2 Egress. ... 85

4.2.3 Door. ... 86

4.2.4 Valve. .. 87

5 Conclusions ... 87

6 References ... 89
7 List of Symbols, Abbreviations and Acronyms……………………………………...91

iii

LIST OF FIGURES

Figure Page
Figure 1. The TROOPER System for the DRC Finals ... 3
Figure 2. Atlas Robot .. 4
Figure 3. Atlas Joint Model .. 5
Figure 4. Robot Emergency Stops .. 5
Figure 5. MultiSense SL ... 6
Figure 6: Robotiq 3-Finger Manipulator... 7
Figure 7. POKEY Stick... 8
Figure 8. VI Sensor ... 9
Figure 9. Software Architecture Diagram .. 10
Figure 10. Multi-Level Controller Layers .. 11
Figure 11. Reasoner Task Chain ... 14
Figure 12. The Observe-Orient-Decide-Act (OODA) Loop Decision Cycle 15
Figure 13. Context-Driven Observation Model .. 16
Figure 14. Adaptive Perception Client-Server Mechanism .. 17
Figure 15. Example Processing Flow inside the Perception Server ... 17
Figure 16. Event-Based Timing System ... 18
Figure 17. Framework Scales across Distributed Sensing and Computing Architectures 19
Figure 18. DRC Finals Communications Setup .. 20
Figure 19. Image Blocks ... 21
Figure 20. The World Model Sync Process .. 21
Figure 21. The UI with Annotated Elements .. 24
Figure 22. The Panda Interactive Scene ... 26
Figure 23. The World Model Tab ... 27
Figure 24. The Controller Monitor Tab .. 28
Figure 25. The Adaptive Perception Manager Tab ... 29
Figure 26. The Image Streams Tab ... 30
Figure 28. The Bandwidth Monitor Tab ... 31
Figure 29. The Subscriptions Tab ... 32
Figure 30. The Logging Tab ... 33
Figure 31. Sidebar Panes... 34
Figure 32. Quick Action Bar ... 35
Figure 33. Atlas Gazebo Simulation ... 36
Figure 34. Atlas in IHMC Simulation Construction Set ... 37
Figure 35. Overview of the Balancing Controller .. 38
Figure 36. The IHMC Whole Body Controller .. 40
Figure 37. Three Inverse Kinematic Solutions for Box Pre-Grasps ... 43
Figure 38. Interactive Inverse Kinematics .. 44
Figure 39. Task Space Regions ... 46
Figure 40. Interpolated Footsteps ... 47
Figure 41. Safe and Unsafe Foot Configurations.. 47
Figure 42. Forward and Backward Interpolation .. 48
Figure 43. Iterative Closest Point Representation... 52

iv

Figure 44. Octomap Representation. .. 53
Figure 45. Atlas Maps a Valve ... 54
Figure 46. The Processing Flow for a Single Node of the Pipeline .. 55
Figure 47. The Approximate Pipeline for the TROOPER System ... 56
Figure 48. The TROOPER Fiducial Bangle ... 57
Figure 49. The DRC Course Layout ... 58
Figure 50. WASD Driving Commands ... 59
Figure 51. Throttle Control in Hand ... 59
Figure 52. Pedal Mechanism ... 60
Figure 53. Steering Mechanism .. 61
Figure 54. Stereo Obstacle Detection and Vehicle Model .. 62
Figure 55. Highway Stereo Example .. 62
Figure 56. Driving Mechanism ... 63
Figure 57. Atlas Vehicle Egress Progression .. 64
Figure 58. A Task Chain to Detect and Walk through a Door ... 65
Figure 59. Charleston, SC Mockup of Door Task .. 67
Figure 60. Atlas Autonomously Detects the Door Pose Using LIDAR Sensing 68
Figure 61. A Task Chain to Detect and Turn a Valve .. 69
Figure 62. A Task Chain to Cut a Hole in a Wall ... 72
Figure 63. Cutting Tool Detection .. 74
Figure 64. Drill Activation Tool ... 75
Figure 65. Color Histograms for Mean-Shift Tracking .. 76
Figure 66. A Task Chain to Walk Over Cinder Blocks .. 77
Figure 67. DRC Cinder Block Field as Recreated in Pennsauken Lab .. 78
Figure 68. Effects of Dynamic Range Occlusion due to Midday Shadows 78
Figure 69. Simulated LIDAR Data from Cinder Block Field ... 79
Figure 70. SAC Segmentation Results on Individual Cinderblocks (Simulated) 80
Figure 71. Cinderblock Field Detection.. 80
Figure 72. A Simulated Path over the Field .. 81
Figure 73. Atlas at a Joint Limit when Descending Cinderblocks ... 82
Figure 74. Atlas at the Stairs ... 83
Figure 75. Atlas Reaches Driving Goal (Run 2) ... 85
Figure 76. Atlas Egresses (Run 2) .. 86
Figure 77. Atlas Opens and Clears Door (Run 1) ... 86
Figure 78. Atlas Ready to Turn Valve (Run 1) ... 87

v

LIST OF TABLES

Table Page
Table 1. Atlas Joint Descriptions .. 4
Table 2. List of Perception Modules Developed for DRC, Sorted by Category 19
Table 3: List of Annotated UI Elements ... 25
Table 4. Perception Responsibility Breakdown .. 51
Table 5. The Door Task Chain .. 66
Table 6. The Valve Task Chain .. 70
Table 7. The Wall Task Chain .. 73
Table 8. The Terrain Task Chain .. 77

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 SUMMARY

The motivation for the DARPA Robotics Challenge has been to develop robots and
software capable of competent, semi-autonomous performance of tasks in a disaster scenario.
Our experience on the DARPA Robotics Challenge began with the Virtual Robotics Challenge,
where we wrote the software to allow a simulated Boston Dynamics Atlas robot to navigate
rough terrain, drive a vehicle, and manipulate both a hose and valve. We placed 8th in the
competition held in June 2013, qualifying us to receive a physical Atlas robot. Four months after
receiving the Atlas robot, we competed in the DRC Trials in December 2013. Here, the robot
had eight tasks: turning valves, opening doors, cutting drywall, driving a vehicle, climbing a
ladder, manipulating a hose, handling debris, and traversing rough terrain. Again, we placed 8th
and secured a funded spot for the 2015 DRC Finals. For the Finals, the robot had to complete
simplified versions of the previous tasks in one continuous, hour-long run. We designed and
implemented a system that is autonomous, though with the ability to ask a human operator for
guidance when necessary. Lack of robustness in the underlying controls, as well as time lost on
the driving task, resulting in our placing 18th in the DRC Finals.

Team TROOPER is composed of researchers from Lockheed Martin Advanced
Technology Laboratories, the University of Pennsylvania (Professors Vijay Kumar and Kostas
Daniilidis), and Rensselaer Polytechnic Institute (Professor Jeff Trinkle). This document details
our system and performance in the DRC Finals in June 2015. Section 2 details our collaboration
and design philosophy. Section 3 details the hardware, control, planning, and perception
capabilities of the system. Section 4 discusses our performance in the Finals and Section 5
presents conclusions.

2 INTRODUCTION

The DARPA Robotics Challenge galvanized the robotics community to build and demonstrate
field-ready robots that can be remotely operated to perform tasks in a disaster scenario unsafe for
human presence. We believe that more important than winning the DRC competition was
engaging with its community of researchers, and building the technology foundation for systems
with the capability of accessing and altering complex human-engineered environments.

We believe that systems developed for the DRC provide the core capability necessary for
continued research in advanced robotic platforms. These platforms are capable of operating in
both human accessible, as well as otherwise inaccessible environments. They can also perform
physical manipulation tasks that today require humans, and can one day replace the human in
cases that would put them in harm’s way. Our continued research in autonomy, intelligence, and
perception will enable these robots to be reliably supervised by humans to achieve these
missions.

2.1 Collaboration, FOSS, and Partnership

We recognize that the challenges of intelligent automation and control of a humanoid robot are
larger than a single research organization can hope to achieve in the near future. For this reason,
we have focused on synchronizing our efforts with the rest of the robotics community to
maximize our impact. To do this, we identified and leveraged state of the art technologies to
provide key capabilities, and we targeted our efforts on system integration and test as well as

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

research for key capability gaps. This required a continuous assessment of community research,
as several key developments were produced during the span of the DRC program.

To work effectively with the robotics community, we have adopted the open source
Robot Operating System (ROS). ROS provides standards and practices that expedite the process
of integration and testing of new software and hardware components. As a relatively small team,
we heavily leveraged existing ROS components for the Virtual Robotics Challenge. As we
proceeded on with the DRC Trials and later Finals, we decreased our reliance on stock ROS
components and wrote our own. For example, we initially used the ROS SMACH state-machine
framework before writing our own behavior managing framework. Additionally, we have
wrapped existing ROS components in ways that add functionality, such as our adaptive
perception manager, which provides easy methods to start, stop, and chain sequences of
perception algorithms.

The DRC teams using the Boston Dynamics Atlas robot have embraced the spirit of
cooperation by sharing solutions to hardware challenges. Several of the Atlas teams have
provided system components as Free Open Source Software (FOSS), and we have made use of
and contributed to those initiatives. We would like to see these collaborations continue to grow
to enable our organizations to solve challenging research problems.

2.2 Simplicity and Autonomy

Fully autonomous humanoid robots were not feasible to develop for the DRC. However, a
heavily teleoperated robot requiring significant operator expertise, training, and cognitive burden
would not have been suitable for most operations. These robots would have been too slow, and
the scenarios would not always have been rehearsable. To speed up operations of remotely
deployed robots, increased automation is required. The human operator must be able to trust the
robot with making most decisions without a human in the action loop.

To do this, we have designed a system that is meant to be autonomous, though with the
ability to ask a human operator for guidance when necessary. This system design is intended to
be platform agnostic; the philosophy and software components will later be applied to
autonomous and unmanned platforms outside of humanoid robots.

3 METHODS, ASSUMPTIONS, AND PROCEDURES

We begin by discussing our particular hardware solution, including both the DARPA-provided
Atlas hardware and our own modifications. We then detail our software solution, covering
algorithms and capabilities pertaining to low-level control, planning, and perception. Lastly, we
detail which of the previous capabilities made their way into our competition-ready system and
discuss our solutions on a task-by-task basis.

3.1 System Overview

The TROOPER system is designed to control the Atlas humanoid robot. Each arm of the robot
can be mounted with a third-party end effector. Our left hand is equipped with a Robotiq 3-
fingered adaptive gripper, and our right hand with a custom sensor hand. The head has a
MultiSense SL stereo camera from Carnegie Robotics which includes a spinning Hokuyo
LIDAR. This sensor package is mounted with an electric motor to tilt up and down. We

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

integrated an additional VI-sensor from Skybotix to provide grayscale stereo vision to the left
side of the robot for use in the driving task.

The TROOPER software runs on the Boston Dynamics Perception Box onboard the
Atlas, which contains 3 Intel Quad Core i7-4700EQ processors. These computers are connected
to the peripheral devices (such as the hands and MultiSense SL head) through Ethernet. A
wireless router onboard Atlas connects the Perception Box to a remote operator control unit
(OCU) with some packet loss. The OCU runs the user interface software. Some of the Atlas
control software is replicated on the OCU in order to minimize data transferred over a low-
bandwidth connection. The overall system diagram is shown in Figure 1.

Figure 1. The TROOPER System for the DRC Finals

3.1.1 Robotic Hardware Components
Most disaster relief scenarios occur in human-engineered environments. Typical elements seen in
a human environment include doorways, narrow hallways, stairs and ladders. Some of these
elements are incorporated into specific tasks within the DARPA Robotics Challenge. In order to
complete tasks within a human engineered environment, we decided to use a robot with a human
form factor. The strength of this approach is apparent when performing tasks such as walking
over a cinderblock pile. This task causes many pitfalls for wheeled robots, but a legged robot is
able to walk over obstacles and place its feet at desired locations. Furthermore, the way in which
the robot completes a given task can easily take inspiration from how a human would approach
the same task. The Atlas robot, shown in Figure 2, satisfied the human form factor as described
above. It also has the strength and dexterity to complete manipulation-based tasks such as
turning a valve or cutting through a wall.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

Figure 2. Atlas Robot

It was clear, however, that some modifications to the basic Atlas platform were needed to
effectively compete in the DRC Finals. The robot itself comes with no standard set of hands.
Instead, it was left up to individual teams to decide which set of manipulators they would use as
end effectors. For the final configuration, the team elected to use a Robotiq 3-Finger Gripper on
the left hand and a custom designed rod with accompanying sensors for the right hand. This
configuration allowed for quick and robust solutions for the manipulation tasks.

3.1.1.1 Atlas Mechanical. The Atlas robot developed by Boston Dynamics is a bipedal
humanoid robot that stands approximately 6 ft. 2 in. tall and weighs 390 lbs. The robot includes
30 actuated degrees of freedom. While most joints are hydraulically controlled, a select few are
controlled with electric motors. The breakdown is shown in Table 1 and visually displayed in
Figure 3.

Table 1. Atlas Joint Descriptions

Joint Name Degrees of Freedom Electric / Hydraulic
Neck 1 Electric
Back 3 Hydraulic

Right Leg 6 Hydraulic
Left Leg 6 Hydraulic

Right Upper Arm 4 Hydraulic
Left Upper Arm 4 Hydraulic

Right Lower Arm 3 Electric
Left Lower Arm 3 Electric

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

Figure 3. Atlas Joint Model

On each of the Atlas’s wrists are 6-axis force/torque sensors as well as a 3-axis force/torque
sensor in each of the robot’s feet. Additionally, there is a 6-axis IMU that sits in the robot’s
pelvis cage. While testing before the Finals, the Atlas robot was equipped with a surrogate
battery pack that would mimic the mass and center of mass of the actual battery pack. A battery
emulator was connected to the robot via tether that would emulate the performance and profile of
the battery. At the DRC Finals in June 2015, a 3.7kWh 165 VDC battery pack was attached to
the robot to supply the robot with untethered power during each trial run.

For safety, the robot was equipped with 3 emergency stops (E-Stop), as shown in Figure
4. There exists one E-Stop on the back of Atlas, one wired E-Stop that would sit next to the OCU
and a third wireless E-Stop that would be held by a testing assistant. These E-Stops could be
engaged if the robot was ever in an unsafe or undesirable position.

Figure 4. Robot Emergency Stops

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

3.1.1.2 Atlas Computing. The onboard computer system consists of three high performance
computers and a closed hardware control box (provided and maintained by Boston Dynamics).
No single computer was able to run the entire system due to the inherit complexity and number
of peripheral components required. Each of the three computers runs a separate portion of the
system (real-time whole body controller, perception computer, and autonomy computer).
Accordingly, dedicated high speed links between each of the computers are used to communicate
between components of the system. Each computer was also linked through a switch. While the
outside connection was primarily used for communication from the robot to the user, it also
allowed for a convenient way to debug and access each computer directly.

3.1.1.3 MultiSense SL. The main perception sensor onboard the Atlas robot is the
MultiSense SL sensor head, shown in Figure 5. Developed and maintained by Carnegie
Robotics, this sensor package is connected to the frame of the robot via a one degree-of-freedom
electric joint in the neck. This allows the operator to tilt the sensor head up and down in order to
get a better understanding of the robot’s environment. There is unfortunately no pan degree-of-
freedom; instead, the robot must yaw at its waist to look left or right.

Figure 5. MultiSense SL

The sensor head includes a Hokuyo UTM-30LX-EW LIDAR on a rotating spindle to gather
dense point clouds of the world. The MultiSense SL also outputs both stereo and monocular
camera feeds. The real advantage of this sensor head is that most of the computationally
intensive processes involved with collecting and processing perception data occur on an FPGA
located inside the sensor. Specifically, the process of image rectification, stereo disparity
mapping, and laser scan synchronization occur onboard, and are then output in an easy-to-use
format. Furthermore, the MultiSense SL ships with a ROS-based API allowing for easier
integration into the TROOPER system. The included API made it easy to not only receive
perception data from the MultiSense SL, but also to change important onboard perception

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

parameters. For instance, the operator was able to turn on the illumination lights on the
MultiSense SL when working in a dark environment or change brightness and contrast settings
when working in an extremely light environment. This flexibility allows the robot to get useful
information from the camera in a variety of work environments.

3.1.1.4 Robotiq Manipulator. The Robotiq manipulator is a multi-finger underactuated
industrial gripper. It provided an out-of-the-box solution to robustly grip arbitrary objects that fit
within the hand itself. The gripper was also designed so that all of the contact surfaces are easily
modified, which enabled a modification to turn on the rotary tool upon successfully grasping it.
The two main downsides to this hand are its limited maximum aperture and its substantial
weight. The small aperture is due to the limited range of motion of its fingers; the fingers in
Figure 6 are shown fully open.

We also found that when grasping an object that is not perfectly aligned in the palm of the
gripper, the fingers will not exert the forces necessary to pull the object tightly into the center of
the gripper. When manipulating the arm configuration, this can cause the object to shift in the
hand and slip out of the grasp. While grasping objects, we command a cinching motion to the
fingers that constantly relaxes and tightens the fingers at 1 Hz. This will enhance the grasp of an
object when orientation shifts move it.

The Robotiq gripper proved to be useful in the driving, door, and wall task. During
driving, this hand held onto the throttle mechanism (as described later) and was used to
accelerate or decelerate the Polaris Ranger vehicle. In the door task, the gripper was put into a
closed position allowing the end effector to push down on the door handle and unlatch it. In the
wall task, the Robotiq gripper with 3D printed attachment was used to clench and activate the
rotary tool.

Figure 6: Robotiq 3-Finger Manipulator

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

3.1.1.5 POKEY Stick. The Pointed Object for Kinematic Extension without Yielding
(POKEY) stick, shown in Figure 7, is a custom designed hand designed and built at Lockheed
Martin ATL. This manipulation device provides both additional sensor information and
capabilities to robustly complete several challenge tasks. The POKEY stick is equipped with an
IDS UI-1005XS-C small form factor USB camera. The camera is positioned within the hand so
that the center of camera frame is aligned with the stick. This design makes tasks involving
visual servoing much easier to accomplish.

Figure 7. POKEY Stick

Since the camera is mounted at a more maneuverable position (i.e., end effector of the
hand) than the MultiSense SL, the operator is able to use the hand camera stream to get
perspectives of the environment not otherwise available. Using the camera in this way becomes
very useful when performing manipulation work (for instance, when opening a door) that would
otherwise occlude the view of the MultiSense SL. In addition to the available camera stream, the
POKEY stick also includes a laser range finder to determine distance to an object, a force
sensitive resistor to detect contact, and a microphone to determine if the drill has been activated.
These peripheral sensors are connected to a Teensy microcontroller, which relays the sensor
streams to one of the onboard Atlas computers via USB. The four main tasks in which the
POKEY stick proved to be useful were the driving, valve, wall, and mystery tasks.

While driving, the POKEY stick allowed a connection to the steering mechanism with
little slip. The setup allowed for the steering of the vehicle by only moving one joint in the wrist.
More information about the driving mechanism is available in the following section. The
POKEY stick was also valuable in the valve task; aligning one single rod in between the spokes
of the valve was determined to be a quicker and more repeatable process than aligning a hand.
By inserting the POKEY stick into the valve until the base of the hand touched the outer rim of
the valve, the attached rod would remain in the valve throughout the turning motion. In the wall
task, the cutting tool can be activated using a visual servoing approach to find the button with the
hand camera then steadily move towards it with the rod until the force sensors and microphone
indicate that the drill is on. Finally, the POKEY stick is useful in several of the mystery tasks
including pulling an emergency shower chain or opening an electrical box.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

3.1.1.6 VI Sensor. Skybotix's VI Sensor, shown in Figure 8, is a stereo camera system with
an onboard FPGA currently used to stream both cameras and onboard sensors over a common
interface. In the future, the FPGA will be used to calculate a disparity map and other vision
elements to alleviate the load on a CPU. The sensor was oriented to look out the left of the robot,
primarily for driving. This hardware addition is used to alleviate the fact that the MultiSense SL
cannot pan left and right. Since the driving position of the robot is perpendicular to the direction
of motion of the vehicle (to fit Atlas on our deployment slide), it was determined to be necessary
to add another perception sensor to the Atlas in order to get a forward view of its environment.
The slim profile of the VI allows for easy mounting within the protective cage that surrounds the
MultiSense SL.

Figure 8. VI Sensor

3.1.2 Software. Robotic systems have great potential to assist humans in unsafe
environments such as natural or man-made disaster sites. Their utility has already been
demonstrated as rescue robots (Murphy, Kravitz, Peligren, Milward, & Stanway, 2008) and as
bomb disposal robots (Carey, Kurz, Matte, Perrault, & Padir, 2012). However, these systems all
relied heavily on a human operator to manually control a robot. Recent advances in sensing and
autonomy have allowed for semi-autonomous systems (Chaomin, Yang, Krishnan, & Paulik,
2014)(Zhang, Lee, Yang, & Mylonas, 2014), relieving some of the cognitive burden on the
human operator. Robotic systems will undoubtedly continue to become less reliant on
teleoperation; however, due to the unstructured nature of real-world environments and the
complexity of the required tasks, it is impractical to expect fully autonomous systems in the
foreseeable future. The desired amount of human intervention and guidance is highly dependent
upon the situation and will likely change throughout an operation. This has prompted research
into the area of sliding levels of autonomy (Desai, Ostrowski, & Kumar, 1998) (Goodrich &
Schultz, 2007) whereby a human operator may have varying levels of influence on a robotic
system. Another related field of research is mixed-initiative interaction (Cacace, Finzi, &
Lippiello, 2014) (Lomas de Brun, et al., 2008) in which the human and the robot collaboratively
achieve goals by leveraging each other’s strengths.

The TROOPER software system implements a paradigm that we refer to as human-
guided autonomy. Human-guided autonomy incorporates ideas from both sliding levels of
autonomy and mixed-initiative interactions. It further extends these concepts by incorporating a
notion of confidence, which allows the robot to intelligently reason over multiple potential ways
to achieve a goal, and to realize when it is appropriate to request human intervention. Every
component in the TROOPER software framework, shown in Figure 9, was designed to support

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

human-guided autonomy. All of the operator control unit components ran on a single desktop
computer while the robot control unit components were split between two of the Atlas’s onboard
computers. We wrote all portions of the human-guided autonomy framework as part of the
DARPA Robotics Challenge.

Figure 9. Software Architecture Diagram

3.1.2.1 Multi-Level Controller. The multi-level controller incorporates low-level
controllers, high-level behaviors, and goal-based reasoning into a hierarchical framework that
promotes re-usability and allows for operator intervention at all levels of the hierarchy. There
are three distinct layers as shown in the overall software diagram above (Figure 9). Figure 10
shows some of the components from each layer that may be involved in commanding the robot
to “grasp a drill”. The interconnectedness of the layers can be seen as well as some of the
knowledge base rules that would have been used to automatically generate the given task chain.
Knowledge base rules and monitors are used in the reasoning layer to generate a sequence of
tasks which dictate the parameters that are passed to the behaviors and controllers in the
behavioral and autonomic layers.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

Figure 10. Multi-Level Controller Layers

Each of these layers is extensible using plug-in components. Multi-level controller plug-ins are
only visible to the layers that are above them in the hierarchy. Most interactions with the multi-
level controller are through the reasoning layer; however, the operator has the ability to interact
directly with plug-ins in every layer.

3.1.2.1.1 Autonomic Layer. The lowest layer of the multi-level controller contains plug-ins
that deal most directly with the hardware, or simulated hardware. Three different types of plug-
ins can be found at this layer: hardware components, controllers, and real-time services.

Hardware Components. Most robots consist of multiple pieces of hardware, each with its own
control interface. For instance, the Atlas robot has a unique control interface for the MultiSense
SL head sensor as well as each different type of hand. Every individual type of hardware that has
a unique control interface is represented by a corresponding hardware component in our system.
A hardware component is responsible for sending commands to the hardware and receiving
observed data from the hardware. On startup, each component registers itself with a generic
robot object which makes the individual hardware components available to the rest of the
system. This modular design lets us rapidly switch between various hardware configurations and
allows the rest of the system to remain mostly platform agnostic. We created the following
hardware component plug-ins for the DRC:

• BDI Atlas
• IHMC Atlas

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

• MultiSense SL head
• iRobot hand
• Robotiq hand
• Sandia hand
• SRI hand

Controllers. Controllers are responsible for generating joint-level commands and passing them
to the appropriate hardware components. Since some controllers may be designed for a specific
hardware component, each controller has the ability to specify one or more required hardware
components. If these hardware components are not available on startup, the controller will not
be initialized. Multiple controllers may be active at any given time so to avoid conflicts, a
controller is required to reserve a joint before commanding it. When multiple controllers attempt
to simultaneously reserve the same joint, a priority scheme is used to determine which controller
is allowed to take ownership of the joint. We used the following controllers during the DRC:

• Balancing
• Boston Dynamics Proxies (locomotion, manipulation, stand prep)
• Cartesian Velocity
• Hand Cinching
• IHMC Proxies (locomotion, balancing)
• Maintain Current Joint Position
• Execute Joint Trajectory

Real-time Services. Many of the controllers in the autonomic layer have overlapping
requirements, such as filtered IMU and force torque data from the robot. Additionally, the
autonomic layer is responsible for providing information such as joint states and robot pose to
the rest of the system. These tasks are accomplished using plug-in services. The services
provide a simple method of broadcasting information at rates other than that of the autonomic
layer’s main control loop. These services also allow for the consolidation of any computations
that are required by multiple controllers. We used the following services during the DRC:

• IMU Filtering
• Force Torque Filtering
• Joint State Publishing
• TF (Transform) Broadcasting
• Robot Pose Publishing
• Robot State Encoding

3.1.2.1.2 Behavioral Layer. The behavioral layer contains a collection of simple actions and
perception routines, all of which are referred to as behaviors. We have implemented behaviors
as hierarchical state machines using Boost Meta State Machine (Henry, 2009). Each behavior is
parameterized, allowing it to be customized for the particular task at hand. For instance, in
addition to a 2D goal, the Walk To behavior accepts parameters such as swing height, foot
spacing, and step distance. Behaviors utilize controllers from the autonomic layer as well as
perception streams from the adaptive perception manager. Multiple behaviors can be executed in
parallel, assuming that the controllers they utilize do not conflict with each other.

Components in the behavioral layer often require information about the current state of
the robot. This information is made available through an object called the Robot Model. The
Robot Model is a kinematic representation of the robot that is updated from joint state messages

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

that are published from the autonomic layer. Components can use the Robot Model to monitor
the current state of the robot as well as to plan for feasible robot configurations. The Robot
Model provides inverse kinematics utilities, access to the robot’s pose in the world, and
convenience methods for determining its center-of-mass when in a given configuration.

3.1.2.1.3 Reasoning Layer. The reasoning layer utilizes behaviors from the previous layer to
achieve complex goals. A behavior can be thought of somewhat like a re-usable template. A
specific instantiation of behavior, whose parameters have been specified to achieve a particular
goal, is something that we refer to as a task. To achieve a complex goal, one that itself contains
multiple sub-goals, several of these tasks must execute in sequence. We refer to these sequences
as task chains.

Several components are involved in building and executing task chains. These include:
A knowledge base with information that allows a task chain to be automatically generated for a
given goal; monitors which continuously check for conditions that indicate that goals, or sub-
goals, have been satisfied; a reasoner, which interacts with the user interface to generate and
modify task chains, and then interacts with the behavioral level to manage tasks during
execution.

The knowledge base, which is defined in a configuration file, contains rules, which
describe the pre-conditions and post-conditions of all tasks. For instance, the detect drill task
has a pre-condition that the “robot is in a pose that allows it to see drill x”, and after executing
this task, the post-condition will be that “drill x’s pose is known”. Multiple pre-conditions can
be defined for a task but the knowledge base currently only supports a single post-condition for
each task. These pre-conditions and post-conditions eventually become goals and sub-goals in a
task chain. The knowledge base also contains information that maps variables in pre-conditions
to corresponding variables in post-conditions. In the previous example, there is only a single
variable, “x”, which identifies a specific drill, but many rules contain multiple variables. These
variable mappings are used to automatically propagate behavior parameter values from the top-
level goal provided by the operator to all of the sub-goals in a task chain.

Every goal and sub-goal in a task chain has an associated monitor. Monitors are created
when a task chain is being built and they persist for the lifetime of the task chain. There are
multiple flavors of monitors but, once created, monitors continuously evaluate their conditions.
This allows a task chain to be opportunistically modified if a sub-goal becomes satisfied earlier
than expected. Conversely, if a pre-condition which had previously been satisfied becomes
unsatisfied during execution, additional sub-goals can be added to the task chain to deal with this
contingency.

The reasoner is the main executive of the reasoning layer. It builds task chains and then
manages them throughout their lifetimes. Task chains are actually composed of a combination
of goal links and task links. A goal link represents a pre/post-condition from the knowledge base
and a task link represents the task that will be executed to achieve the associated goal.
An operator has the ability to create a custom task chain by manually specifying all of its steps,
in which case the reasoner simply handles execution of the task chain. Alternatively, the
operator can send the reasoner a high-level goal, and the steps in the task chain will be
automatically inferred by the reasoner. In either case, the operator always has the ability to
modify a task chain once it is created. Task chains are automatically inferred using a process
similar to backward-chaining (Russell & Norvig, 2003, pp. 337-344). Given a high-level goal,
the knowledge base is queried for all rules whose post-condition matches the goal. Monitors are
created and evaluated for the pre-conditions in these rules, and if any of the pre-conditions are

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

unsatisfied, the process is repeated with the pre-condition as a sub-goal. This continues until a
rule is reached whose pre-conditions are all satisfied. Figure 11 shows an example of how this
process may work to generate a task chain for picking up a drill. Label (a) shows a sample
knowledge base. In (b) a goal link and monitor is created for the given goal of “holding drill”. In
(c), because the monitor is unsatisfied, a matching post-condition is found in the knowledge base
and the corresponding task is added to the chain along with goals and monitors for the
corresponding pre-conditions. Lastly, (d) shows the process is repeated until every sub-goal is
either satisfied or has a child task which will be used to satisfy it.

Figure 11. Reasoner Task Chain

When multiple rules are found with the same post-condition, they are both added to the task
chain as children of the same goal link. This fork in the chain represents a decision point, with
both sub-chains capable of achieving the same goal. Once the entire task chain has been built,
all of these decision points are evaluated and the optimal path through the chain is presented to
the operator for approval. The optimal path is determined by calculating a confidence value for
each goal link and then, at each decision point, selecting the sub-chain that results in the highest
confidence that the overall goal will be achieved. Confidence for a particular goal link is
calculated using Equation (1). Where Cmonitor is the confidence that the goal condition has
actually been satisfied, Csub-goals represent the confidence values of all pre-conditions of the given
goal, and Crule is a pre-determined measure of the confidence that the goal can be achieved if all
of the pre-conditions have been met. The rule confidence is currently specified in the knowledge
base, but future research should enable this value to be learned over time.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

 𝑪𝑪𝒈𝒈𝒈𝒈𝒂𝒂𝒂𝒂 = �
𝑪𝑪𝒎𝒎𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎𝒈𝒈𝒎𝒎 𝒎𝒎𝒊𝒊 𝒈𝒈𝒈𝒈𝒂𝒂𝒂𝒂 𝒎𝒎𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎𝒈𝒈𝒎𝒎 𝒔𝒔𝒂𝒂𝒎𝒎𝒎𝒎𝒔𝒔𝒊𝒊𝒎𝒎𝒔𝒔𝒔𝒔

𝐦𝐦𝐦𝐦𝐦𝐦�𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔−𝒈𝒈𝒈𝒈𝒂𝒂𝒂𝒂𝒔𝒔� ∗ 𝑪𝑪𝒎𝒎𝒔𝒔𝒂𝒂𝒔𝒔 𝒎𝒎𝒊𝒊 𝒈𝒈𝒈𝒈𝒂𝒂𝒂𝒂 𝒎𝒎𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎𝒈𝒈𝒎𝒎 𝒔𝒔𝒎𝒎𝒔𝒔𝒂𝒂𝒎𝒎𝒎𝒎𝒊𝒊𝒎𝒎𝒔𝒔𝒔𝒔 (1)

During execution of a task chain, as sub-goals are completed and monitors become satisfied, goal
link confidence values are updated. If the updated confidence values result in one of the
currently selected sub-chains becoming sub optimal, the reasoner is able to dynamically modify
the task chain. The reasoner also uses these updated confidence values to determine if it is safe
to proceed with the next task in the sequence or if confidence has dropped too low and the
operator should be asked to intervene.

Interventions can also be initiated by the operator. For instance, if the robot is attempting
to unlatch the door and the operator notices that the robot is not quite aligned with the door
handle, the operator can pause the task chain, and then either modify existing task parameters or
manually teleoperate the robot’s hand into a new start position before unpausing the task chain
and allowing the robot to continue. Another way that the operator collaborates with the robot is
by updating objects that exist in the world model. Many of the behaviors that the robot performs
are with respect to some object in the world. For instance, the goal for a walk to behavior may
be relative to a door that has been identified in the shared world model. The operator can
influence this behavior by simply updating the pose of the door in the shared world model. This
update will automatically trigger an update to the parameters of all relevant behaviors in an
existing task chain.

3.1.2.2 Adaptive Perception. Traditionally autonomous systems follow an Observe-Orient-
Decide-Act (OODA) model, shown in Figure 12. This paradigm involves receiving information
about the state of the world from raw sensors then continuously processing the data to determine
how to effectively control actuators to modify the world and transition into a new state. Through
continuous perception and action, the system converges towards reaching and observing its goal
state.

Figure 12. The Observe-Orient-Decide-Act (OODA) Loop Decision Cycle

This paradigm has worked well for autonomous systems with a small responsibility set, where
the number of goals is relatively small (e.g. less than 50). From a perception standpoint, the
autonomous system needs adequate sensing to correctly recognize the world state to determine
progress towards and completion of a goal. For a small number of goals, it is very common for
perception to be achieved through a single sensing modality (e.g. vision) with a high degree of
overlap and reuse of algorithms that can be engineered into the system’s processing. It is also
common to use highly specialized sensors designed for observation of specific events,
eliminating the need for complex processing by directly observing the quantity of interest.
However, multi-mission autonomous systems that are capable of a diverse set of actions and
goals will have perception needs with varying degrees of overlap, and redundantly processing all

Actuation Sensing
Observe Orient Decide Act

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

of the tasks simultaneously becomes computationally intractable with onboard computing
resources.

We have observed in nature that sensing is context-driven. For example, when walking
on the streets of a crowded city, a person will assume the ground is flat pavement and can place
footsteps open-loop, while focusing their attention of observing the motion of other people and
predicting their trajectories to avoid collision. In another context, a person hiking through the
woods does not need to predict motion of other actors, but needs to focus attention on
classification of terrain and precise placement of footfalls. We believe that autonomous systems
need to similarly be context-driven in deciding how to process sensor data (as shown in Figure
13), and adaptive to identify and exploit redundancy in concurrent processing. We also wrote
the adaptive perception manager as part of the TROOPER effort. The underlying processing
modules utilize functionality found in ROS, but the perception manager is a new creation.

Figure 13. Context-Driven Observation Model

Our adaptive perception system contains a centralized perception server responsible for

managing sensor processing to generate information streams at the request of perception clients.
The perception clients can request and subscribe to data streams. They are provided with a
mechanism for describing the processing required to generate their data, including the sensor
source(s), algorithms, and parameters. The perception server dynamically generates the
necessary processing chain, reusing existing computation when possible, and publishes the
resulting data for the clients to consume. The client-server mechanism is illustrated in Figure 14.

Sensors

… State 1 State 2
(Active) State N State N-1

(Active)

Perception C

Perception A

Perception B

Actuators

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
17

Figure 14. Adaptive Perception Client-Server Mechanism

A suitable analogy to the perception system is that of a restaurant. Customers at a
restaurant are given a menu of items that can be served, along with a finite set of parameters that
can be adjusted (e.g. substitute French Fries for a side salad). The kitchen staff is responsible for
servicing these requests, and they optimize their kitchen workflow based on the current set of
orders. They allocate their time and resources across multiple items, and duplicate tasks when
possible. For example, French Fries will likely be replicated across multiple orders.

The perception server is responsible for executing all sensor data processing for a system.
On startup, the server initially executes only a 1 Hz spin cycle to check for incoming stream
requests and publish server status. When a perception client requests a stream, the request
describes the input stream name(s), modules to process on the stream(s) along with their
parameters, and the desired rate of the resulting data. If needed, the server will subscribe to the
data stream from the sensor, instantiate processing modules with the requested parameters, and
publish the requested resulting data. An example flow can be seen in Figure 15. The perception
client requests Input 1 processed by Module 2 and Input 2 processed by Module 1. The
perception server creates the subscribers, processing modules, and publishers if they do not
already exist, otherwise it will use the existing streams. From the request, the Server also knows
that Module 2 requires both Input 1 and Input 2 to function.

Figure 15. Example Processing Flow inside the Perception Server

Perception Server

Process

Process

Process

Raw
Sensor
Data

Perception
Client

Perception
Client

Stream
Request

Data
Streams

Perception Server

Streams

 /in1/m2_1

/in2/m1

/in2

/in1

Module
2 Sub.

1

Sub.
2

Pub.
1

Pub.
2

 Thread

Module
1

/in1/m2_2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
18

Internally, our perception server executes processing modules in separate threads. These
threads pass data between one another through streams. Streams contain perception data in raw
or processed forms along with meta-data. Because all of the modules share the same process,
their threads can share the data in their streams by maintaining locks rather than copying
memory. This also avoids the need to serialize data for intra-process communication, which is
generally an expensive operation for point clouds and camera images. Streams maintain count of
the number of modules and publishers that are listening, and modules will automatically
deconstruct their threads when all output streams have no listeners.

The timing of threads in the perception server maintains regular synchronization despite
variability in processing time through use of condition variables. Condition variables are objects
that block the calling thread until notified to resume. When a module or publisher listens to a
stream, it passes its condition variable to a list maintained by the stream. When a subscriber or
module updates the data in a stream, it notifies the condition variable of all listeners. This
guarantees that the thread of every listener will become active when new input data is available.
However, when woken up early, our threads will choose to go back to sleep for the remainder of
their cycle time to maintain their desired rate. The alternative would be to blindly spin at the
desired rate, potentially processing old data on late arrivals. This event-based throttling
framework ensures regularity in data processing rates in complex multi-threaded processing
chains. Shown in Figure 16, the timing system is throttled to maintain steady timing across
arbitrarily large multi-threaded processing chains with low latency.

Figure 16. Event-Based Timing System

For distributed systems, rather than a single perception server, we expect to develop a
mechanism for multiple servers to coordinate their processing. Each server may have some
subset of sensors available locally, while others can be accessed by requesting streams from
another server. In bandwidth restrictive networks, they will need to use compression modules
and other techniques to minimize the size of the stream that is sent through the network. There is
also the possibility that these servers are separated from an end user by a restrictive network. For
this case, we developed a perception associate as shown in Figure 17. This is a light-weight
variant of the perception server that is useful for building streams on behalf of a human operator.

Triggered Throttling Maintains Stable Output Timing

Varying Processing Time

Steady Rate Input Signal

Early notification is ignored, and thread sleeps the remainder of the cycle.

Time

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
19

Figure 17. Framework Scales across Distributed Sensing and Computing Architectures

Importantly, the adaptive perception system contains a large number of perception modules,
ready to process any type of sensor data produced within the TROOPER system and be chained
as requested by a perception client. The available perception modules are collected in Table 2
below.

Table 2. List of Perception Modules Developed for DRC, Sorted by Category
Point Cloud

Utilities Robot Self Filter Point Cloud
Coloring ROI Crop Scan Assembler Downsampler

Localization Point Cloud
Registration

Visual
Odometry

Mapping OctoMap Traversability Height Map
Segmentation Plane Fitting Clustering

Tracking JPL Fiducials Alvar Markers
Detection Door Valve Cutting Tool Tool Button Terrain Field

Compression Octree H.264 JPEG Image Patches Point Cloud
Sampling

3.1.2.3 Communications. DARPA specified the allowed communications between the
robot, optional field computers, and operator stations as shown in Figure 18. The Atlas robot
maintained bidirectional 300Mbps wireless communications with an access point. At this point,
an optional field computer could be placed; we chose instead to keep all of our robot-side
computation onboard the Atlas platform. Two logical links were provided between the robot
control unit (RCU) and operator control unit (OCU) networks, keyed by UDP port number. The
first logical link is intended for low bandwidth telemetry and robot control data and is a bi-
directional connection limited to 9600 bps. The second logical link is intended for high
bandwidth sensory data from the RCU to the OCU unidirectionally at 300 Mbps.
 Beginning a run, and until the robot had passed through the door to the simulated indoor
environment, link 3 functions without blackout. Once the robot is through the door, the
unidirectional link operates in isolated, intermittent one second bursts. Blackouts between bursts
vary in length, but begin at approximately 30 seconds in length and decrease in time as the run
continues. At 45 minutes into a run, the blackouts decrease to zero and the unidirectional link
functions unimpeded.

Perception Server 1 Perception Associate

Perception Server 2

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
20

Figure 18. DRC Finals Communications Setup

ROS provides a communications API designed to deliver information between well

connected components of a robot. However, the underlying network protocol is not well suited
for the poor connectivity between RCU and OCU within the DARPA specified communications
setup. In order to allow ROS messaging to serve the whole TROOPER system, we split ROS
cores between RCU and OCU and then bridge the gap with the TROOPER communications
manager. This network protocol bridge uses a combination of reliable and unreliable protocols
on top of UDP to connect ROS messaging between the RCU and OCU. The TROOPER
communications manager adds robustness to the connection of the links between RCU and OCU
allowing reconnection without interruption should either side need to be restarted. The
communications manager maintains channels that correspond to ROS topics and the fair queuing
of messages from different topics.

In addition to link level control, the parameters of the DRC Finals resulted in the need for
heavy compression and conservation of bits. The control data is compressed to minimize
bandwidth consumption. For example, joint position data from the robot is represented by 8-bits
per joint, providing nearly 1 degree resolution for most joints. We also use deterministic
planning mechanisms so that both the operator and robot can generate the same motion plan, and
only the start, goal, and plan label need to be communicated.

Our perception data is separated into pieces that individually contain all necessary meta-
data with less than our 1440 byte payload MTU size. This allows data to reach the operator even
in the presence of severe packet loss. For example, our camera images are separated into patches
that are at most 20 by 20 pixels, and each of these patches contains meta-data for the size of the
complete image, as well as the location of the patch relative to the image. Thus, even if the
operator does not receive all of the data packets, they are able to view the parts of the image that
were received. We randomize the order of transmission to minimize the spatial correlation
between lost packets. The resulting image, despite heavy packet loss, is shown below in Figure
19.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
21

Figure 19. Image Blocks

3.1.2.4 Shared World Model. Controlling a robot using task-level commands necessitates a
symbolic language that describes the robot’s environment and can be used by the human to
identify objects that the robot should interact with. This allows the human operator to specify a
task such as “pick up the drill” and the robot to understand what a drill is and where it exists in
the world. For our purposes, this symbolic language took the form of ROS messages. The role
of the shared world model is to facilitate a process in which the robot and the human
collaboratively refine a shared view of the robot’s environment.

A robot with perfect perception capabilities could simply tell the human operator what is
in its world. However, this is not possible with current technology. Conversely, it is not
desirable to place the burden of interpreting sensor data solely on the human. The shared world
model allows for collaboration between the two. For instance, it is possible for the robot to
provide an initial estimation of an object’s pose and for the operator to simply refine that
estimate. The shared world model is essentially a distributed data store whose key feature is a
mechanism for resolving conflicts between the robot's view of the world and the human's view of
the world. The TROOPER system contained two instances of the shared world model: one on
the operator control unit and one on the robot. Each instance consists of multiple layers as
shown in Figure 20.

Figure 20. The World Model Sync Process

Changes to the robot's view are added to the robot world model while changes to the operator's
view are added to the operator world model. These views are then shared with the other world

Operator World Model Robot World Model

Operator View

Robot View

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
22

model instance through a syncing process. After syncing, both instances will contain identical
operator and robot views. Whenever another system component, such as planning or collision
detection, requests information about an object in the shared world model, the operator and robot
views are merged together to provide the shared view of that object. In the simplest case, the
merging process is simply a union of the two views. When there is a conflict between the
operator and robot view for a particular object, however, one of several merging strategies must
be employed. Currently these strategies include:

• Priority is given to whichever layer is currently specified as the “authority” for a given
object.

• Priority is given to the most recent update.
The currently designated “authority” for a particular object can be specified at any time. For
instance, if an operator modifies the orientation of an object that was detected by the robot, the
authority would be set to human. However, if the perception system then begins to track the
object, the robot would once again become the authority.

The contents of the shared world model are not restricted to physical objects in the world.
Any type of data that may be modified by both the human and the robot is a potential candidate
for inclusion in the shared world model. At the time of the Robotics Challenge Finals, the shared
world model contained objects (drills, doors, walls, etc...) as well as information about the slope
of cinder blocks and the status of monitors that are used by our high-level reasoner to coordinate
task sequences.

3.1.2.5 User Interface. As a practical interface, the UI offers direct windows to important
parts of the multilevel controller, adaptive perception manager, and world model. It gives the
user full input into the reasoner, enabling construction of tasks and task chains. It informs the
user about the state of the controller manager: the running controllers and actively controlled
joints. It renders the state of the world model and the published ROS topics of the adaptive
perception manager: renderings of known objects, point clouds, and other 3D visualization data.
These facets combine to allow the user to be an effective actor in a dynamic human-guided
autonomy system. The UI is our own creation as part of the TROOPER effort, utilizing the
Panda3D open source rendering engine and Qt libraries. In retrospect, we would have saved
development effort by instead modifying the existing ROS visualization tools (rviz) rather than
pursuing UI and rendering development from scratch.

The UI was designed to maximize essential concepts pertaining to the user experience:
• Direct – The UI presents information as quickly and straight-forwardly as possible.
• Evolving – The UI is meant to be updated quickly as new features are added or modified.
• Simulating – The UI provides previews of motion plans and expected odometry

whenever possible. The user is able to preview what the system believes will result from
the commands it is given.

• Partitioned – The UI is removed from processor-intensive features whenever possible.
Data is read from ROS topics that are generally available. Most dialogs send command
information directly to a controller or manager on the robot.

• Analytical – The UI should provide as much data as possible in such a way that informs
the user.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
23

• Intelligent – The UI helps the user with more complex concepts such as task chains and
the perception pipeline with graphical cues and presetting parameters based on
contextual knowledge.

• Robust – The UI is not dependent on connection to the robot and vice-versa. Crashes on
either side are not to affect the other.

These concepts drive toward the goal of streamlining the human aspect of human-guided
autonomy. The user must have as much information as possible about what actions the robot
believes it will undertake while still interfacing with an interface removed from the robot system.

The UI utilizes a tabbed main view, a side pane, and a full bar of quick actions. Tabs are
comprehensive representations of a single aspect of the TROOPER system. For instance, the
Interactive Scene tab shows the current kinesthetic and visual knowledge of the robot and has
shortcuts to planning based upon this information. The Controllers tab shows the lower-level
perspective of which control algorithms are running and on which actuators. Combined, these
tabs could flood the user with information that is irrelevant to their current focus, so only one is
shown at a time. The side pane lists active processes running on the robot: task chains/behaviors,
controllers, and telemetry data being parsed. All of these subsections possess shortcuts to do
important actions directly on these processes (e.g. stopping the MultiSense SL streaming data) or
initialize new ones. The quick action bar focuses on making certain immediately needed
functionality accessible in one or two clicks.

Typically, tabs are spread across two windows with the side panel and quick action bar
duplicated on both. The secondary window contains tabs that focus on analysis and system
information, i.e. the Bandwidth tab or the Controllers tab. The primary window contains tabs that
focus on direct user interaction, the Interactive Scene and World Model tabs. This philosophy
means that the user can glance at the secondary window to supervise the lower-level system
while utilizing the primary window to direct the robot. No matter where the user has focused
their attention, they can quickly access immediate concerns via the side pane and the quick
action bar. The images in this document show the UI elements combined onto a single screen for
easier reading. Figure 21 shows the combined UI window, with callouts for the tabs (A), side
panel (B), and quick action bar (C). The annotated UI elements are also gathered in Table 3.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
24

Figure 21. The UI with Annotated Elements

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
25

Table 3: List of Annotated UI Elements

Annotation Description
A1 Controller Monitor Tab
A2 Adaptive Perception Manager Tab
A3 Image Streams Tab
A4 Bandwidth Monitor Tab
A5 Subscription Management Tab
A6 Logging Tab
A7 Panda Interactive Scene Tab
A8 World Model Tab
B1 Tasks Sidebar Pane
B2 Running Controllers Sidebar Pane
B3 Data Streams Sidebar Pane
C1 Panda View Interaction Quick Action
C2 Panda View Presets Quick Action
C3 Stand Up Quick Action
C4 Hand Control Quick Action
C5 Insert World Model Object Quick Action
C6 Camera Management Quick Action
C7 World Model Synchronization Quick Action

3.1.2.5.1 Tabs. Each UI tab focuses on a presenting a single aspect of the TROOPER system to
the user. We detail the functionality of each tab.

Panda Interactive Scene. The interactive scene tab allows the user to view the robot, live sensor
feeds, world model objects, and previews any planned or pending robot motion. It uses the
Panda3D open source rendering engine for display. In conjunction with the various task sidebar
panes mentioned later, this view allows the user to direct the motion of the robot, from placing
footsteps, to indicating objects to grasp, to posing the robot by dragging targets for its end
effectors.

The rendering view can be changed through mouse commands and options in the quick
action bar. The robot is always rendered at its position in the world frame with its joints in the
configuration currently found in the RobotModel. There is a semi-transparent ‘ghost robot’
which shows a desired robot location. When generating motion plans, the ghost will cycle
through the plan until the operator approves or rejects the plan. The rendering features
visualizations for ROS message topics such as point clouds, cost maps, OctoMaps, and convex
hulls along a 2D plane. These renderers can be turned off and on through the Data Streams pane
in the sidebar. Additionally, certain visual aids for the operator will be displayed when
appropriate actions are being used or manually turned on: There is a semi-cylindrical “shield”
that shows the limits of manipulator reachability, a variety of interactive markers for positioning
objects and end effectors, footsteps that show a created walking path, and a pyramid-like line of
sight indicator.

When running the robot, the operator will spend the vast majority of his or her time with
this tab open. The interactive scene is shown in Figure 22.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
26

Figure 22. The Panda Interactive Scene

World Model. The world model tab is a simple view of the current list of world model objects
and their properties. It shows the name of the object, its pose in the world reference frame,
whether the human or robot has most recently updated that object in the shared world model, and
which hand, if any, the object is attached to. It is mostly used for ad-hoc debugging. The world
model tab is shown in Figure 23.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
27

Figure 23. The World Model Tab

Controller Monitor. The controller monitor tab displays statistics from the controller manager
(update rate, battery capacity, and current operating mode) as well as allowing modification of
many of its settings. It allows the user to enable or disable the hydraulics, change the desired
pump pressure, switch pose estimation modes, and transition between different controller states.
It also displays the ownership, use state, and priority of the robot’s joints in the controller
manager. Many of the initial commands at startup are set through this panel. The Controller
Monitor is shown in Figure 24.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
28

Figure 24. The Controller Monitor Tab

Adaptive Perception Manager. The adaptive perception manager tab shows statistics published
from the adaptive perception manager. It provides three categories of information: a table of
sensor streams (topic, type, rate, and publishing flags); a table of active perception processing
modules (id, type, input topics, and output topics); and a network graph showing how the streams
and modules connect. Visualization of certain sensor streams in the interactive scene tab can be
turned on and off via right clicking the corresponding component on the network graph. The
adaptive perception manager tab is shown in Figure 25.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
29

Figure 25. The Adaptive Perception Manager Tab

Image Streams. The image streams tab allows the operator to view the various image streams
that the robot’s sensors capture. A simple dropdown box allows the user to select which stream
should be rendered. This tab is used during driving as the primary source of information. It is
also used during manipulation and locomotion as a supplement to the interactive scene –
typically the left screen will display the image stream and the right will have the interactive
scene. This allows the operator to teleoperate or diagnose reasons for an automated step to fail.
The image streams tab is shown in Figure 26.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
30

Figure 26. The Image Streams Tab

Bandwidth Monitor. The bandwidth monitor tab shows statistics from the communications
manager. It graphs the bandwidth transmitted and received as a function of time. It also has
views of messages types being transmitted and received along with the transmission rate thereof.
Given the strict communications restrictions, this tab was mainly used to identify bandwidth
intensive processes in our communications structure. The bandwidth monitor tab is shown in
Figure 27.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
31

Figure 27. The Bandwidth Monitor Tab

Subscriptions. The subscriptions tab, shown in Figure 28, displays the current status of sensor
streams and allows enabling/disabling streams. It also allows updating the FPS and bitrate.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
32

Figure 28. The Subscriptions Tab

Logging. The logging tab, shown in Figure 29, displays a table of logged messages from the
ROS system on the OCU. These messages are color coded on Level. Important messages also
show up as pop-ups in the upper right of the interactive scene tab.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
33

Figure 29. The Logging Tab

3.1.2.5.3 Sidebar Panes. The UI sidebar panes provide the operator access to common
functionality required regardless of the active tab. They allow for adding and updating tasks,
enabling or disabling controllers, and modifying sensor subscriptions and perception processing.
The panes panel is shown in Figure 30.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
34

Figure 30. Sidebar Panes

Tasks. The tasks pane (1) lists all current reasoner-level tasks in the system. Single tasks
may be added by clicking the plus sign button on the top right. (Tasks may also be added
by right clicking on the robot in the interactive scene tab.) Task chains may be added by
clicking the box stack to the right of the plus sign. Either option brings up the task link
widget to the left of the interactive scene. If a chain was selected, first the user specifies
the goals for the chain and clicks the approve button. Then a task ribbon is created above
the interactive scene and monitors in use are displayed in a bay at the bottom. The task
ribbon has a chevron for each task in the chain. If a task is running, the gear icon to the
left of the task name will change to a right arrow. If a chevron is clicked, the task
parameters will be displayed in the task link widget. Monitors can be set to a desired
condition manually by right clicking.
Controllers. The controllers pane (2) lists all running controllers. By right clicking on
these controllers, they can be started, stopped, or paused as on the controller monitor tab.
The plus button in the upper right allows the user to start controllers that are not currently
running.
Data Streams. The data streams pane (3) displays three different types of rows:
• The “Point Cloud” row can be right clicked to switch the set of streams that are

rendered in the interactive scene.
• The image stream rows are actively captured image streams. These streams can be

stopped by right clicking on the row and selecting stop. They can be added through
the plus button in the upper right.

• The adaptive perception stream rows are the same streams that are listed in the
adaptive perception tab. The rendering of these streams can be turned off and on via a
right click menu.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
35

3.1.2.5.4 Quick Action Bar. The quick action bar is located on the upper right of the UI
window and contains menus and buttons for common tasks. The quick action bar is shown in
Figure 31.

Figure 31. Quick Action Bar

1. Panda View Interaction. The view interaction dropdown (1) allows the user to change
the left click function of the panda interactive scene.

2. Panda View Presets. The view presets dropdown (2) allows the user to switch to a
selection of viewpoints in the panda interactive scene.

3. Stand up. The stand button (3) toggles between walking and balancing modes. If the
robot has been squatting in balancing mode, the transition will cause it to return to a
walking height.

4. Hand Control. The hand control dropdown (4) allows the user to open and close the left
hand.

5. World Model Objects. The world model objects menu (5) allows the user to insert
various world model objects. Once one is selected, the user can click anywhere in the
scene to add the object there.

6. Camera Management. The camera management menu (6) allows the user to show
various aids in the panda interactive scene and creates popup windows for the different
camera streams.

7. World Model Sync. The world model sync button (7) attempts to synchronize the world
model on the OCU with the world model on the RCU.

3.1.2.6 Simulation. Our choice of which simulator to use for each DRC task split cleanly
along the lines of supported features of each simulation package. Simulating upper body
motions and anything requiring hands was done using DRCSim and Gazebo. Simulating
walking was done using IHMC's Simulation Construction Set (SCS). We had mockups of the
DRC Finals setup in both simulators, as well as the ability to spawn the robot in front of each
task setup.

Gazebo Simulation. We had used Gazebo DRCSim simulation extensively for the VRC and
DRC Trials in 2013. For the VRC, the simulation had been tuned to allow it to run at near-real-
time rates, albeit with simplified robot collision models and masses tuned for stability rather than
resemblance to the physical Atlas. For the DRC Trials, we received updated robot models and a
gait model from Boston Dynamics for the walking behavior they provided, though these dropped
the simulation real-time factor to under 30 percent of real-time when running with the rest of the
TROOPER system on one machine. The DRC Finals 2015 Atlas is able to walk in Gazebo
simulation, though it is much more unsteady than the physical Atlas and is unable to handle any
steps or otherwise uneven terrain.

The Gazebo simulation supports collision checking all simulated objects, though often

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
36

with separate visual and collision models (either different fidelity meshes or just simple shapes
for the collision model). It uses Open Dynamics Engine (ODE) as underlying physics
simulation, though it now has nominal support for other physics engines. That said, DRCSim
robot behaviors have been tuned for ODE and do not function using the other engines.

The Gazebo simulation supported all available hand types and hand physics (namely
collision checking), which meant that we used it to test manipulation planning. Unfortunately, it
was never very robust for interacting with simulated objects after the VRC; the tendency was for
the simulation to go unstable when solving contact constraints for multi-fingered hands grasping
objects. The simulation also did not model the soft contacts inherent in real robotic grippers,
which we believe to be a critical factor in stable grasping. Gazebo also simulated all sensors
present on Atlas, complete with noise, in large part because support has been developed in ROS.
Thus, we conducted our perception manager tests in Gazebo when the real robot was
unavailable. The LIDAR simulation used a ray-casting model with additional Gaussian noise,
and we found this to be consistent with hardware experiments. The visual complexity of the
simulated environments was insufficient, and thus the stereo simulation was not used for testing.
Future robot simulation should leverage physically based rendering techniques and
environmental assets developed by the video game and motion picture industries. Lastly, Gazebo
supported writing plugins, which we used to allow robot teleportation to speed up simulation
tests. Atlas in gazebo simulation is shown in Figure 32.

Figure 32. Atlas Gazebo Simulation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
37

IHMC Simulation Construction Set (SCS). IHMC generously released their controllers and
simulation package to any Atlas teams who chose to use them. Gazebo did not support the IHMC
controllers; the only way to test them in simulation was to use IHMC’s bundled Simulation
Construction Set (SCS), shown in Figure 33. IHMC tuned their SCS simulation to match the
performance of the controller on the real robot, and as such their simulated Atlas was capable of
walking over cinderblocks and other uneven terrain. That said, IHMC’s primary focus was on
walking and led to the exclusion of other key features. The SCS did not support simulating
hands and thus was unusable for practicing manipulation tasks. It also only performed collision
checking between the feet and the ground; so if it had had hands, they would not have been able
to grasp anything. Lastly, it did not simulate LIDAR noise and the camera model simulation did
not accurately match the MultiSense SL, making it unable to test much of our perception system.

Figure 33. Atlas in IHMC Simulation Construction Set

3.2 Capabilities

This section details the TROOPER system’s control, planning, and perception functionality.
Control ranges in sophistication from controlling the position or torque at each joint to
sophisticated balancing and walking. Planning includes both motion planning for the upper
body, enabling grasping and manipulation, as well as walking trajectory planning. The
perception category is broad, including our perception manager framework and components
therein, such as localization, mapping, plane detection, and object detection.

3.2.1 Controls. When Atlas first arrived, we were given controllers produced by Boston
Dynamics. These controllers had specific modes, including walking, manipulation, and user.
Walking mode did not allow control of the upper body; manipulation mode kept the robot
balanced while moving the upper body and changing the pelvis height; and user mode provided
the operator with joint-level control over the entire robot. For the DRC Trials, we chose to
include our own balancing controller, initially written for the Virtual Robotics Challenge. This
controller operated in the user mode provided by the Boston Dynamics software. Lastly, through
an agreement with DARPA, IHMC released their controllers that completely replace those

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
38

provided by Boston Dynamics. We modified our system to be compatible with both control
frameworks and ended up using the IHMC controllers in competition. We were the only team to
do so for the DRC Finals.

3.2.1.1 TROOPER Balancing Controller. This is the controller we implemented and used
in the VRC for balancing and walking, as well as in the DRC Trials for balancing. For a robot to
statically balance, the projection of the center-of-mass to a plane perpendicular to the gravity
vector (for simplicity, we will call this the ground plane) must lie within the support polygon of
the robot. For a robot on flat ground, the support polygon can be defined as the convex hull of
all contacts with the ground. When frictional contacts are made upon sloped surfaces, the center
of mass must lie above a nonlinear convex set that depends on the properties of the contacts. In
this work we do not use zero moment point (ZMP) methods, but rather a balancing approach
adapted from the field of robot grasping, as demonstrated by Christian Ott at the German
Aerospace Center, DLR.

We begin by outlining the balancing controller described in (Ott, Roa, & Hirzinger,
2011). The method is based on frictional grasping; forces f are applied at contact points P to
generate a net wrench F on the on the object being grasped sufficient to keep it restrained. In the
case of balancing, the desired wrench is applied to the robot center of mass (COM) and is used to
track a desired pelvis orientation and COM location; i.e., the robot should remain relatively
upright, compensating for gravity, with its projected COM within the support polygon. The
contact forces used to do this are those on the feet of the robot.

Figure 34. Overview of the Balancing Controller

Center of Mass Position and Posture Controller. The desired center of mass (COM) force is
given by:

 f𝒄𝒄𝒔𝒔 = 𝒎𝒎𝒈𝒈− 𝑲𝑲𝒑𝒑�𝒎𝒎 − 𝒎𝒎𝒔𝒔� − 𝑲𝑲𝑫𝑫(�̇�𝒎 − �̇�𝒎𝒔𝒔) (2)

where the gravity compensation term contains m the total mass of the robot and g the gravity
vector, while the latter terms are a PD feedback law to drive the center of mass to a desired
location. 𝑲𝑲𝑃𝑃,𝑲𝑲𝐷𝐷 > 0 are proportional and differential gain matrices, and 𝒎𝒎𝑑𝑑 , �̇�𝒎𝑑𝑑 are the desired
position and velocity of the center of mass.

The desired COM torque is used to track a desired pelvis orientation. Let 𝑹𝑹𝑏𝑏be the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
39

current and 𝑹𝑹𝑑𝑑 be the desired pelvis orientation. From the quaternion representation of 𝑹𝑹𝑑𝑑𝑇𝑇𝑹𝑹𝑏𝑏 =
(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤), let 𝛿𝛿 = 𝑤𝑤 and 𝜖𝜖 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧). Then an orientation controller for pelvis orientation is
given by:

 𝝉𝝉𝒔𝒔 = −𝑹𝑹𝒔𝒔(𝟐𝟐(𝜹𝜹𝜹𝜹 + 𝝐𝝐�)𝑲𝑲𝒎𝒎𝝐𝝐 + 𝑫𝑫𝒎𝒎�𝝎𝝎 −𝝎𝝎𝒔𝒔�) (3)

where 𝑲𝑲𝑟𝑟 ,𝑫𝑫𝑟𝑟 are symmetric, positive definite stiffness and damping matrices, respectively. This
controller acts as a damped spring to align the current orientation 𝑹𝑹𝑏𝑏 with the desired 𝑹𝑹𝑑𝑑.
Together, f𝑑𝑑 and 𝝉𝝉𝑑𝑑 comprise the desired wrench acting at the center of mass, 𝑭𝑭𝑑𝑑

Contact Force Distribution. Now that we have a desired wrench to apply at the COM, we need
to find the contact forces at the feet that will produce it. The following is a brief review of multi-
contact grasping.

The contact forces at the feet are subject to the positivity restriction; they can push but
not pull the ground. Coulomb's friction model is used, stating that the contacts do not slip when:

 𝒊𝒊𝒎𝒎 ≤ 𝝁𝝁𝒊𝒊𝒎𝒎 (4)

where 𝑓𝑓𝑛𝑛 is the magnitude of the normal component of the contact force, 𝑓𝑓𝑡𝑡 the tangential
component, and 𝜇𝜇 the coefficient of friction. In ℝ3 this restricts the set of allowable contact
forces to a cone called the friction cone, whose axis is along the surface normal with a semi-
angle of ∅ = tan−1 𝜇𝜇.

The total wrench on the object, 𝑭𝑭𝑂𝑂 is the sum of the wrenches from all of the contacts
expressed in the object's coordinate frame, O. For a system with η contacts, let f𝑐𝑐 be a vector
stacking all the individual contact forces, f𝑐𝑐 = (f1 … fη)𝑇𝑇. Then the expression for the total
wrench is:

 𝑭𝑭𝑶𝑶 = 𝑮𝑮f𝒄𝒄 (5)

where G is the grasp map, mapping the wrenches from the local contact point coordinate frame
𝑃𝑃𝑖𝑖 to the object frame O and multiplying by the wrench basis characterizing the contact model.
With all frictional point contacts, the grasp map becomes:

 𝑮𝑮 = �
𝑹𝑹𝒑𝒑𝟏𝟏 ⋯ 𝑹𝑹𝒑𝒑𝛈𝛈
⋮ ⋱ ⋮

𝒎𝒎�𝒑𝒑𝟏𝟏𝑹𝑹𝒑𝒑𝟏𝟏 ⋯ 𝒎𝒎�𝒑𝒑𝛈𝛈𝑹𝑹𝒑𝒑𝛈𝛈
� (6)

where 𝑹𝑹𝑝𝑝𝑖𝑖 and 𝒎𝒎�𝑝𝑝𝑖𝑖 represent the orientation and cross product matrix of the position of the
contact i in the object reference frame O.

When standing, the grasp map G is known and we need to solve for the contact forces f𝑐𝑐
at the feet. Because the problem is underconstrained, we cast this problem as a quadratic
optimization:

 arg 𝐦𝐦𝐦𝐦𝐦𝐦
𝒒𝒒∈ℝ𝒎𝒎

𝜶𝜶𝟏𝟏�𝑭𝑭𝒔𝒔 − 𝑮𝑮f𝒄𝒄�𝟐𝟐
𝟐𝟐

+ 𝜶𝜶𝟐𝟐 f𝒄𝒄𝑻𝑻f𝒄𝒄 (7)

subject to:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
40

 f𝒄𝒄𝒎𝒎 = �𝝈𝝈𝒎𝒎𝒊𝒊𝒎𝒎𝒎𝒎𝒊𝒊, 𝝈𝝈𝒎𝒎𝒊𝒊 ≥ 𝟎𝟎
𝒌𝒌

𝒊𝒊=𝟏𝟏

, 𝒎𝒎 = 𝟏𝟏, … ,𝛈𝛈 (8)

The constraints above come from approximating the friction cone as a polyhedron; 𝒎𝒎𝑖𝑖𝑖𝑖is the j-th
edge of the convex cone at the i-th contact point. The first term of the cost function penalizes
distance between the effective center of mass wrench 𝑭𝑭 = 𝑮𝑮𝒊𝒊𝑐𝑐 and the desired center of mass
wrench; the second term attempts to evenly distribute the contact forces. Weights 𝛼𝛼1 and 𝛼𝛼2 are
chosen such that 𝛼𝛼1 ≫ 𝛼𝛼2 > 0.

Now that we have the contact forces at the feet, we can find the equivalent wrenches in
each foot's frame. The wrenches can then be mapped to joint torques using the Jacobian for each
leg, using:

 𝑱𝑱𝒄𝒄 = 𝑱𝑱𝒔𝒔 − 𝑹𝑹𝑭𝑭𝑭𝑭𝑱𝑱 (9)

 𝝉𝝉 = 𝑱𝑱𝒄𝒄𝑻𝑻𝑭𝑭 (10)

where 𝑱𝑱𝑏𝑏 is the body Jacobian for each foot with the pelvis as the root link, 𝑹𝑹𝐹𝐹𝑃𝑃 is the rotation
from foot to pelvis, 𝑱𝑱 the center of mass Jacobian for each leg, and 𝝉𝝉 the joint torque vector.

3.2.1.2 IHMC Whole Body Controller. The IHMC controller ran on two separate
computers inside Atlas. One machine was dedicated to running the high speed control loop and
ran a real-time Linux kernel. The other machine handled ROS messaging (both sending and
receiving messages from the rest of the system).

Figure 35 below shows the components running in the real-time control loop. The
walking high-level controller interprets the commands from ROS messages. The resulting
desired motions and actions are sent to the quadratic program (QP) solver in the form of
objectives. The QP solver translates them into desired joint accelerations and contact wrenches.
The inverse dynamics calculator takes in the accelerations and wrenches and calculates the
desired robot joint torques. The low-level controller controls the individual joints and attempts
to track a desired torque trajectory.

Figure 35. The IHMC Whole Body Controller

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
41

There are two scenarios which bypass the flow shown in the diagram. In the case of the
arms, the QP solver is not used and the desired joint angle and velocity trajectories are sent to the
low level controller (which will track these instead of joint torques in this case). Additionally,
when the robot is in whole body position control mode (rather than 'walking' mode, which is
actively balancing), all the joint angles are tracked directly by the low level controller.

More details on the workings of the controller can be found in (Pratt, 2015) At the high level,
the robot can be placed in ‘walking mode' which is actively balancing, or 'whole body position
mode' which allows all joint angles to be specified by the user. Whole body position mode was
only used while in the vehicle. The walking mode had multiple interfaces to control different
portions of the robot:

• Chest orientation – specified chest orientation in world frame (we ran forward kinematics
using desired joint angles to fill this out)

• Head orientation – specified head orientation in world frame (we ran forward kinematics
using desired joint angles to fill this out)

• Pelvis height – control the pelvis height relative to a reference value
• Arm control – specify either a joint angle trajectory (positions and velocities) for an arm

or specify a desired end effector pose and let the controller handle the approach
• Footstep placement – specify a path of footsteps to take. Allows specifying world frame

foot placement and walking gait parameters
• Desired pump PSI – allowed using lower pump pressures (<2000psi) while only walking,

while ramping up to higher pressures (>2300psi) when using the upper body to perform
manipulation tasks.

3.2.2 Planning. We consider planning to include: how to pose the robot body to achieve
goals such as end effector placement; how to generate goal poses that are valid for grasping or
otherwise interacting with objects; and how to create a motion trajectory that will get us from our
current configuration to that goal configuration. We utilize single-chain and whole-body inverse
kinematics solvers, task space regions, and bi-directional rapidly exploring random trees to
provide these functionalities.

3.2.2.1 Inverse Kinematics. Solving the inverse kinematics problem for a single end
effector on Atlas, calculating the joint angles required to place the end effector at a desired pose
with respect to the world frame, was an 11-dimensional problem. Specifically, it required
solving for the 3 back joints angles (roll, pitch, and yaw of the upper torso with respect to the
pelvis), 7 arm joint angles, and what we referred to as a ‘pseudo-joint’, a prismatic joint
representing the height of the pelvis. Solving whole-body inverse kinematics involved solving
for the full 30 degrees-of-freedom; using a nonlinear optimization solver allowed us to solve for
multiple end effector positions and apply other constraints.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
42

Initial (Traditional) IK Approach. In general, the fastest method to solve inverse kinematics is
to use a closed-form solution, which can be done as long as the manipulator has six or fewer
degrees of freedom. This also immediately gives feedback as to the existence of a solution.
With redundant degrees of freedom (greater than six), we lose the ability to use closed-form
solutions directly. In cases where there are few additional degrees of freedom, one can perform a
line search over ranges of the additional joints, solving the closed-form equations at each point
until a solution is found. This can be quite slow, however, depending on the discretization of the
additional freedoms. Another option, and one that works for any number of additional freedoms,
is to compute a local IK solution using Jacobian-based iterative solvers. Though they can be
used to solve for tree topologies, at their heart these algorithms solve for a single chain at time
(and enforce constraints between iterations).

For the initial, 6 degree-of-freedom arm version of Atlas, our IK approach was to
combine an analytic IK solver with an iterative, Jacobian-based IK solver. We used IKFAST,
part of the Open Robotics Automation Virtual Environment (Diankov, 2010) to generate closed-
form solution for the 6 degree-of-freedom arm. For queries involving the back or squatting, we
used Kinematics and Dynamics Library's (KDL's) iterative, Jacobian-based IK solver (Smits,
2015). To speed up the iterative search, we created a library of IK solutions with respect to the
upper torso for use in seeding the iterative solver. The IK solutions were stored by 6-
dimensional pose coordinates. We stored approximately 50,000 solutions in a lookup table,
spaced in a 3D grid every 10cm and every 90 degrees. These IK solutions were encoded as a k-d
tree for efficient lookup. For solving higher-dimensional queries, those including the back joints
and pelvis heights, we iterated over pelvis heights and back joint yaws – each time looking for a
close match IK solution in the k-d tree. If one existed, we would use that to seed the IK solver.
To simplify the problem, we assumed that the pelvis roll and pitch remained zero.

Atlas ran its own balancing controller onboard (initially one that we implemented and
later one provided by IHMC as part of their whole body control package). Thus, when we would
move the upper body, the lower part of the body would shift to keep the robot's center of mass in
a fixed location. If the motion involved leaning or large arm displacements, the mass distribution
could shift dramatically, leading to a pelvis displacement of over 10cm. This motion needed to
be accounted for to accurately solve the inverse kinematics problem and get the end effector to a
desired location. The solution was to add another layer of iteration, solving the IK solution for a
fixed pelvis position, calculating the updated center of mass, then shifting the pelvis position to
keep the center of mass position (in the X-Y plane) unchanged – the center of mass height was
allowed to change as the pelvis height was controlled separately.

The downsides of this traditional IK method are that it inherently acts upon a single chain
and does not handle arbitrary constraints well. Tree topologies can be handled by solving one
chain at a time and then adjusting the constraints on child chains in the next iteration. Handling
the balancing constraints likewise required large modifications. We also used weighted damped
least squares to penalize using certain joints, such as the back joints, but had no other mechanism
to punish deviation from a desired reference configuration. That said, with our system we were
able to produce single end effector, 11 degree-of-freedom IK solutions at > 60Hz.
Representative solutions are shown in Figure 36. Note that these only move the left arm; the
joint angles of the right arm remain unchanged.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
43

Figure 36. Three Inverse Kinematic Solutions for Box Pre-Grasps

Whole Body (Drake) IK. The primary restriction of our initial inverse kinematics pipeline was
its restriction to solving a single chain and its inability to easily handle arbitrary constraints. It
could handle solving for one end effector position, keeping the center of mass in the same
location, but would not be of use if the end effector pose was only partially satisfied or if we
wanted to constrain both end effectors. To overcome these limitations and allow for solving
whole-body postures, we adopted the inverse kinematics framework from MIT is Drake package
(Tedrake, 2014). While Drake is primarily written in MATLAB, there is a C++ version of the
robot model and inverse kinematics solvers.

The Drake solver casts inverse kinematics as a nonlinear optimization problem and uses
sequential quadratic programming (SQP) to solve for a local minimum. Our integrated version is
capable of producing whole-body configurations for Atlas at > 20Hz; that is solving for Atlas's
30 degrees-of-freedom (technically 36, given that the pelvis is treated as a floating base, free to
move in 6 dimensions). The optimizer's objective function was to minimize the weighted
distance from a nominal configuration:

arg min
𝑞𝑞∈ℝ𝑛𝑛

(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑞𝑞)𝑇𝑇𝑊𝑊(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑞𝑞)

subject to
𝑓𝑓𝑖𝑖(𝑞𝑞) ≤ 𝑏𝑏𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚

where W is the weighting matrix, 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 the nominal robot configuration in generalized
coordinates (so for Atlas, 𝑛𝑛 = 36), q the solution robot configuration, and 𝑓𝑓𝑖𝑖 a set of kinematic
constraint functions.

The user is free to choose from as many or as few of the allowed supported constraint
types; the solver takes in an arbitrary length vector of these constraints. The allowed constraint
types are:
• Joint limits
• End effector position (with allowed upper and lower bounds)
• End effector orientation (with allowed tolerance)
• Cone constraints ('gaze' constraint allowing rotation about an axis)
• Distance between bodies
• Center of mass position

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
44

• Symmetry
These constraints can be combined easily in any query without requiring any modification to the
algorithm code, a huge advantage compared to the traditional approach. Typically, we specify
different constraints on each hand while fixing the location of the feet and fixing the X-Y
location of the center of mass while allowing it to move vertically. The floating pelvis is
effectively constrained to have zero roll and pitch by placing a large weight on orientation
deviations. In the case of turning a valve, we used gaze constraints to constrain the stick to
remain perpendicular to the valve face while allowing rotation about the stick axis.

Interactive IK. We created the ability to pose the robot on the fly and give the operator real-time
feedback on IK solutions prior to motion execution. This allowed for fine, detailed adjustment
of robot poses. Additionally, we allowed clicking on an object to quickly place the hand a
certain distance removed along the object's outward normal. Figure 37 shows the interactive IK
in action. The left image shows the 6 degree-of-freedom markers on the wrists that allow the
user to pose the robot and have the solver give solutions in real time. On the right, shift-clicking
the pole places the end effector in a grasp pose near the contact normal specified by the mouse
click.

Figure 37. Interactive Inverse Kinematics

3.2.2.3 Manipulation Planning. To keep the TROOPER system general-purpose, we
eschewed hard-coded or object-specific grasps. Instead, grasps were generated dynamically at
run time using the currently encountered object models. This allows flexibility and enables the
system to grasp any object at any time, regardless of whether or not the object has been
previously encountered.

Task Space Regions. Our overall planning framework utilized Task Space Regions (TSRs) to
encode graspable regions around objects (Berenson, Srinivasa, & Kuffner, 2011). TSRs describe
end effector constraint sets as subsets of special Euclidean group SE(3). This representation
combines the constraints upon the end effector with the available affordances; a sample from the
TSR is guaranteed to be a valid grasp (unless in collision).

TSRs consist of 3 parts: (Note that 𝑇𝑇𝑏𝑏𝑎𝑎 is the homogeneous transformation matrix from a to

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
45

b.)
• 𝑇𝑇𝑡𝑡𝑡𝑡𝑟𝑟

𝑛𝑛𝑏𝑏𝑖𝑖– transform from the object origin to the TSR origin
• 𝑇𝑇𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑟𝑟– transform for the end effector offset in the TSR origin frame
• 𝐵𝐵𝑡𝑡𝑡𝑡𝑟𝑟– a 6 x 2 matrix of the bounds in the coordinates of the TSR origin frame

 𝑩𝑩𝒘𝒘 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒙𝒙𝐦𝐦𝐦𝐦𝐦𝐦 𝒙𝒙𝐦𝐦𝐦𝐦𝐦𝐦
𝒚𝒚𝐦𝐦𝐦𝐦𝐦𝐦 𝒚𝒚𝐦𝐦𝐦𝐦𝐦𝐦
𝒛𝒛𝐦𝐦𝐦𝐦𝐦𝐦 𝒛𝒛𝐦𝐦𝐦𝐦𝐦𝐦
𝝈𝝈𝐦𝐦𝐦𝐦𝐦𝐦 𝝈𝝈𝐦𝐦𝐦𝐦𝐦𝐦
𝜽𝜽𝐦𝐦𝐦𝐦𝐦𝐦 𝜽𝜽𝐦𝐦𝐦𝐦𝐦𝐦
𝝋𝝋𝐦𝐦𝐦𝐦𝐦𝐦 𝝋𝝋𝐦𝐦𝐦𝐦𝐦𝐦⎦

⎥
⎥
⎥
⎥
⎤

 (11)

Matrix 𝐵𝐵𝑤𝑤 bounds to rotation and translation about the TSR origin frame, which is related to the
object origin by 𝑇𝑇𝑡𝑡𝑡𝑡𝑟𝑟

𝑛𝑛𝑏𝑏𝑖𝑖. The end effector offset, 𝑇𝑇𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑟𝑟, easily allows for the use of different hands.
TSRs have some very useful properties. It is easy to calculate the distance from a TSR,

which is useful when monitoring whether or not an object is graspable before attempting to close
the hand around it. They are also straightforward to sample, requiring only generating 6 random
numbers from a specified range (or 7, in the case of selecting one TSR to sample from in larger
set of TSRs). As the constraint manifold is often lower-dimensional than the state space, the
ability to sample from the constraint manifold makes sampling-based planners practical.

Object Decomposition. Complex objects are simplified and decomposed into simple primitive
shapes: cylinders, spheres, and cuboids. Each of these simple shapes has an associated set of
Task Space Regions that encode the types of allowed grasps. For example, consider a hand
grasping a cylinder. The hand may grab the side of the cylinder with the thumb at the top of the
hand or with the hand rotated 180 degrees so the thumb is at the bottom. The hand may also
grasp the top or bottom of the cylinder (the hand would be allowed to rotate freely about the
palm in this case). Thus, we get 4 TSRs representing the set of valid grasps on a cylinder.
Figure 38 shows valid grasps obtained by regularly sampling tasks space regions for simple
shapes. Each red dot represents the palm location (with origin as shown on the right half of the
figure) of a grasp.

Additionally, we compare the dimensions of the object against the maximum grasp
aperture of the hand. The following graphic shows possible grasp locations on a set of simple
shapes arrived at by regularly sampling from the TSRs. Each red dot represents the palm frame
origin of a grasp.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
46

Figure 38. Task Space Regions

3.2.2.4 Motion Planning. We sample from the Task Space Regions comprising the object to
be manipulated. Each TSR sample is equivalent to a full 6 degree-of-freedom end effector pose.
For each sample, we generated not only a final grasp pose (near the object) but also a pregrasp
pose 10cm further out from the object. We first check that an inverse kinematics solution exists
for the pregrasp, then perform a collision check, and last verify that a similar inverse kinematics
solution exists for the final grasp. The final grasp is not collision checked because the hand will
always be in collision with the object. Our collision checking routines make use of the Flexible
Collision Library (Pan, Chitta, & Manocha, 2012) to perform both broad and narrow phase
checks of simple geometric primitives such as boxes and cylinders.

Once we have a valid goal, we generate a motion plan from the robot's current
configuration to the pregrasp pose. We use the RRTConnect algorithm as implemented in the
Open Motion Planning Library (Sucan, Moll, & Kavraki, 2012). Afterwards, the resulting
trajectory is smoothed using shortcut smoothing and splined. The balancing controller is
simulated during planning; for each new sampled configuration, the center of mass location is
updated and the robot pelvis shifted to keep the center of mass in the same world-frame position.
This is done prior to collision checking the new configuration. Once we have a valid plan to the
pregrasp, we interpolate to reach the grasp pose. The RRT plan is combined with the
interpolated portion.

Had we required additional constraints during motion planning, such as keeping a held
cup of water upright so as not to spill, these would have been encoded in the TSR for the object
and used to generate samples for the RRT planner. This would have been effectively the
Constrained Bi-Directional RRT algorithm (Berenson, Srinivasa, & Kuffner, 2011).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
47

3.2.2.5 Footstep Planning. We developed both simple footstep interpolation and an A*
based planner for generating walking paths. Unlike the A* planner, the interpolation does not
perform collision checking and, hence, the plans it generates must be validated by the operator.

Footstep Interpolator. We developed simple footstep interpolation schemes that generate
sequences of foot placement goals that will move the robot from point A to point B without any
consideration for avoiding obstacles in the environment. We use a constant stride length to
determine the spacing between each step. Our initial interpolation scheme linearly interpolates
both X-Y position in the ground plane and rotation about the Z-axis, then samples steps using
our stride length. This interpolation method results in the robot tripping and falling for most goal
positions. A more conservative scheme involves first turning in place to face the goal position,
walking forward toward the goal, then turning in place again to achieve the goal orientation. This
method was very reliable, but required a substantial number of steps. Both methods are shown in
Figure 39; the left image shows the linear interpolation and the right image shows straight-
stepping to the same goal position then turning to achieve the desired orientation.

Figure 39. Interpolated Footsteps

The cause of failure in the original interpolation scheme was that the Atlas robot is kinematically
incapable of taking a step in a “toe-in” configuration where the two feet orientations create an
intersection point in front of the robot, illustrated in Figure 40 with a safe foot configuration on
the left and an unsafe configuration on the right.

Figure 40. Safe and Unsafe Foot Configurations

Our final method avoids toe-in configurations with few footsteps by leading with the proper foot.
Unlike our conservative turn-in-place method, this approach initially turns in place only when

1
2

1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
48

the heading toward the goal position deviates more than 40 degrees from the current heading.
Otherwise, it steps off with the right foot to head to the right and vice versa. The same process is
used in reverse when reaching the goal position. This scheme results in footstep patterns that
resemble natural human behavior.

We not only support patterns that walk forward to the goal, but also backwards and side-
stepping. We generate paths with each of these 3 methods then reorder them to prioritize the path
requiring the fewest steps. We often found that a backwards walk takes fewer steps than turning
around and walking forward, but we rarely found the sidestepping scheme to be beneficial other
than for very short distances. This is because the stride length for side-stepping is more
constrained than in the forward direction. Forward and backward stepping plans are shown in
Figure 41.

Figure 41. Forward and Backward Interpolation

Future research will use terrain maps to adapt these interpolated steps to conform to the
environment. This will avoid a slow global search problem in favor of fast local adaptation of an
efficient seeded set of steps.

A* Footstep Planner. For intelligent footstep planning through terrain and obstacles, we use a
discrete search approach with the A* algorithm. This took in 3-DoF start/end poses and a map of
anticipated costs for each square of terrain at a specified resolution. Each node allowed
transitions to a new node selected by the final X-Y plane location of the step foot. Two nodes
were considered equivalent if they had the same X-Y position for both the step foot and the
support foot. The support foot is the step foot of the node from which the current node
transitioned. Filtering and cost depend on the initial and final positions of the step foot and the
position and yaw of the support foot. (Step foot yaw is aligned with the line between initial and
final step foot positions, rotated by 180 degrees if greater than absolute 90 degrees from the
support foot yaw, and finally set to the support foot yaw if “toed in”.) In terms of complexity for
A*, basic transitions happen on a 2d space, equality happens on a 4d space, and analysis happens
on a 7d space. This separation allows us to build and maintain our open and closed lists quickly
without substantial quality loss.

The path cost function included weighted measures of:
• Total number of steps taken
• Traversability cost at the new step position
• Squared error from desired stance width (length of normal from support foot axis to the

new foot position)
• Squared error from the length of the last step

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
49

These measures ideally combine to create a path that is quick, smooth, and on safe ground.
However, they do nothing to assure kinematic safety in terms of ZMP. The naïve transition
function allows the new foot to be evaluated to be anywhere within a maximum step distance of
the support foot. In order to create a path that was safe to traverse, we had to filter our transition
function. Five metrics proved important bases upon which to filter:

1. The shortest distance between the support foot center and the line between the initial and
final positions of the step foot.

2. The X and Y intercepts of the boundary line of safe absolute difference between the
initial center of mass and the support foot.

3. The X and Y intercepts of the boundary line of safe absolute difference between the
support foot and the final center of mass.

The first metric is used to prevent collisions between the support leg/foot and the step
leg/foot. The minimum distance between the center of the support foot and any point on the line
between the initial and final step foot positions must be greater than the maximum diameter of
the foot. The other four metrics are used to qualify how able the support leg kinematic chain will
be able to control the transition between one-legged ZMP and two-legged ZMP.
In each transition, the support leg experiences angular momentum similar to:

 𝒑𝒑��⃗ (𝒎𝒎) = 𝒑𝒑��⃗ (𝟎𝟎) + �𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × �𝒈𝒈��⃗ + 𝑭𝑭��⃗ 𝒂𝒂𝒔𝒔𝒈𝒈(𝒎𝒎)� 𝒔𝒔𝒎𝒎 (12)

And thus the leg must be able to provide force such that:

 𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × 𝑭𝑭��⃗ 𝒂𝒂𝒔𝒔𝒈𝒈(𝒎𝒎) − 𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × 𝒈𝒈��⃗ = 𝑪𝑪���⃗ (𝒎𝒎) (13)

Which provides the set of equations:

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒛𝒛(𝒎𝒎) + 𝒈𝒈𝒛𝒛� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) + 𝒈𝒈𝒚𝒚� = 𝑪𝑪𝒙𝒙(𝒎𝒎) (14)

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) + 𝒈𝒈𝒙𝒙� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒛𝒛(𝒎𝒎) + 𝒈𝒈𝒛𝒛� = 𝑪𝑪𝒚𝒚(𝒎𝒎) (15)

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) + 𝒈𝒈𝒚𝒚� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) + 𝒈𝒈𝒙𝒙� = 𝑪𝑪𝒛𝒛(𝒎𝒎) (16)

These equations can be simplified by several assumptions. Since we assume that our frame is
decently aligned with the normal of the earth, we say that 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑦𝑦 = 0. As is common for these
movements in quasi-static walking, we will assume our CoM height and yaw about the pelvis to
be approximately constant (𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑧𝑧(𝑡𝑡) = 𝑐𝑐,𝑀𝑀𝑧𝑧(𝑡𝑡) = 0). Finally, since our CoM height is not
moving, we are assumed to be counteracting gravity (𝐹𝐹𝑙𝑙𝑒𝑒𝑙𝑙,𝑧𝑧(𝑡𝑡) = −𝑔𝑔𝑧𝑧).This allows the three
equations to be rephrased as:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
50

 𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) =
−𝑪𝑪𝒙𝒙(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (17)

 𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) =
𝑪𝑪𝒚𝒚(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (18)

𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎)

=
𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)

 (19)

Which combines with the third equation to be:

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛 ∙ �
𝑪𝑪𝒚𝒚

𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎)
+

𝑪𝑪𝒙𝒙

𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)
� = 𝟎𝟎 (20)

Since we need to account for a pre-existing angular momentum, we integrate to:

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛 ∙ �𝑪𝑪𝒚𝒚 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) + 𝑪𝑪𝒙𝒙 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)� = 𝒄𝒄(𝒎𝒎) (21)

Where 𝑐𝑐(𝑡𝑡) is the desired momentum against which to compensate.
The actual force and thus the actual moment that can be provided from our 7 degree of

freedom leg kinematic chain is a kernel of the configuration space. This is a complicated
calculation alone, but the abstractions and restrictions of the walking controller are also
unknown. Thus we approximate the maximum value trace we would need to ensure safety.
Given a maximum trace of this kernel in X and Y with fixed Z, we can find a line for which we
can guarantee that any needed force is achievable:

 𝑪𝑪𝒚𝒚 = 𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙 −
𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙

𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙
∙ 𝑪𝑪𝒙𝒙 (22)

Thus we can express the safe region of steps as:

 𝑪𝑪𝒚𝒚 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) + 𝑪𝑪𝒙𝒙 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) <
𝒄𝒄𝒎𝒎𝒂𝒂𝒙𝒙
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (23)

Depending on the actuatable moments, center of mass height, and desired momentum, the
boundary for this region is:

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙 = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑪𝑪𝒙𝒙

�𝜶𝜶(𝑪𝑪𝒙𝒙) ∙ 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚
−𝒌𝒌(𝑪𝑪𝒙𝒙)� (24)

𝜶𝜶 = 𝒔𝒔

𝒄𝒄𝒎𝒎𝒂𝒂𝒙𝒙
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛∙𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙�𝟏𝟏−

𝑪𝑪𝒙𝒙
𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙

�

(25)

 𝒌𝒌 =
𝑪𝑪𝒙𝒙

𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙 �𝟏𝟏 −
𝑪𝑪𝒙𝒙

𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙
�
 (26)

This boundary typically forms a concave upward curve which goes to 0 in Y as X goes to infinity
and goes to infinity in Y as X goes to 0. As such, again, a linear asymptote can be fit to the
curve. This asymptote is in the space of 𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑥𝑥 and 𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑦𝑦 and so can be found experimentally
on the robot.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
51

This scheme of A* does not constrain the orientation of the final footstep. This can be
corrected trivially. If the first goal step can be achieved with correct yaw without “toeing in”,
then simply alter the yaw. If it cannot, take that step and then alter the yaw of the second step.
Then take an additional step to correct the yaw of the first goal step.

3.2.3 Perception. Our perception algorithms are responsible for providing situation
awareness information to our operator and for enhancing the autonomous capability of our robot.
The breakdown of operator and robot perception responsibilities is listed in Table 4.

Table 4. Perception Responsibility Breakdown

Operator Assistance Robot Autonomy
Data Compression Closed-Loop Control
Data Representation Mapping for Safe Motion Planning
 Monitoring Task Progress

Perception algorithms can reduce the environmental data representation by replacing raw sensor
data with symbolic and geometric descriptions. This will provide the operator with situational
awareness even in bandwidth constrained communications environments. They can also
represent and visualize data in forms that assist an operator in remotely operating a task.

The robot can become more autonomous by perceiving its environment while executing
an action to ensure that an action is resulting in the intended effect. It can also create
representations of the environment to plan its actions. We believe that increased autonomy will
also require robots to reliably monitor key task events, allowing them to autonomously assess
their own effectiveness in performing a task that involves interaction with the environment.

Many of our 3D perception techniques rely heavily on the Point Cloud Library (PCL) that
was originally developed by Willow Garage (Rusu & Cousins, 2011).

3.2.3.1 Localization – Point Cloud Registration. A critical closed-loop perception function
in a mobile robot is localization. In order for a robot to follow a long term mobile plan
accurately, the robot needs to measure its own motion through the world. Using only dead
reckoning estimates such as inertial and kinematic sensing will produce drift in positioning over
time due to integration of sensing errors. Visual localization allows the robot to perceive its
environment to measure motion against the fixed world.

Our primary localization mechanism is through registration of incremental LIDAR point
clouds against an accumulated map. We assemble the scans of our spinning LIDAR, and register
each assembled cloud against the map. Using a full 360° cloud generates a more reliable iterative
motion estimate by constraining the incremental transform with points sampled evenly from all
directions relative to the robot.

However, the LIDAR’s position may change within the period of rotation of the
assembled LIDAR, so we need a coarse estimate of motion to assemble the scans properly. We
use a dead reckoning estimate from our kinematics and inertial sensors to generate this estimate,
which is reliable for short time scales. To avoid map deformations or incorrect pose estimates
that could occur from improperly assembled clouds, we spin our LIDAR at 5.0 rad/sec so that we
receive fully assembled clouds at roughly 1.6 Hz. The trade-off is that each assembled cloud is
sparser than if the LIDAR was spun at a slower rate, but we found that reliable estimates were
generated by these sparse point clouds.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
52

The point cloud registration process uses an Iterative Closest Point (ICP) algorithm. This
incrementally minimizes an error function that aligns each incoming point cloud with the
surfaces of a reconstructed point cloud map.

 𝑬𝑬 = �[�𝑹𝑹𝒑𝒑𝒊𝒊���⃗ + �⃗�𝒎 − 𝒒𝒒𝒊𝒊���⃗ � ∙ 𝒎𝒎𝒊𝒊���⃗]𝟐𝟐
𝒎𝒎

 (27)

For each point, each iteration selects the nearest neighbor in the point cloud map and calculates
the projection of the separation between the two points onto the normal contained in the map at
that point. We solve for a rotation and translation that can be applied uniformly across the new
point cloud to minimize this error totaled over all points. This process is illustrated in Figure 42.
We use the libpointmatcher C++ library developed by ETH Zurich Autonomous Systems
Laboratory for the core iterative closest point (ICP) and nearest neighbor algorithm
implementations (Pomerlau, Colas, Siegwart, & Magnenat, 2011).

Figure 42. Iterative Closest Point Representation

To ensure that LIDAR point returns from the robot itself are not considered to be part of the
static environment, we continuously filter points that we believe to be part of the robot based on
our geometric and kinematic model in addition to our joint angle sensing.

To improve the quality of our map and filter the small amount of noise that our
registration process can produce, we deactivate the ICP calculation process unless our robot is
actively walking. Our dead reckoning estimate will only drift while the robot is walking.

3.2.3.2 Mapping. We build maps of the robot’s environment to create a consistent 3D
representation that accumulates knowledge from sensor data received from multiple points of
view. We use the OctoMap framework from the University of Freiburg to represent our map as a
probabilistic sparse octree. This structure avoids allocating memory for large empty regions of
space. It also scales well to increasing environment size by creating a new root node at a lower
level of resolution and re-parenting the old root node to it.

The process of updating the map from a point cloud source involves ray-casting from the
sensor origin point to each sensed point in the cloud. We register the endpoint as a “hit”
observation, and the points along the ray from the camera up to the end point as “misses.” We
give each sensor a model which defines its probability of hit and miss, and tune this according to
its noise model. A typical OctoMap and population of an OctoMap via a sensor are shown in
Figure 43.

New Point

Nearest Neighbor
Point in Map

Point-to-Plane
Projected Error

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
53

Figure 43. OctoMap Representation.

We store the log odds of occupancy in each node to speed up the update computation.

 𝑳𝑳(𝒎𝒎|𝒛𝒛𝟏𝟏:𝒎𝒎) = 𝑳𝑳(𝒎𝒎|𝒛𝒛𝟏𝟏:𝒎𝒎−𝟏𝟏) + 𝑳𝑳(𝒎𝒎|𝒛𝒛𝒎𝒎) (28)

To further speed up this process, we only execute the ray-casting and free-space update step
within 3 meters of the robot where manipulation requires that non-static objects to be updated
over short time scales. The free-space processing step becomes computationally expensive at
longer distances since the rays become longer and more accesses become necessary. We also
remove points that we associate with the robot, the ground plane, and wall planes. This
dramatically reduces the size of the map, and allows this data to be represented in a more
efficient manner.

Sensor Origin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
54

 The data payload of our map contains not only occupancy, but also color and a timestamp
of the most recent update. The color allows us to update the map with color observations within
the view frustum of a color camera, but occupancy values only for LIDAR points that fall
outside of any color information. The color value is integrated over multiple observations to
smooth out any noise. When extracting occupied cells and rendering the map, we are able to use
the color information for the operator’s benefit. The timestamp data allows us to prune old data
in our map, as the quality of data unobserved over a long timescale tends to be low. This is what
allows us to avoid processing free space data at long distances because invalidated data will
eventually be cleared out naturally over time. Figure 44 below shows the OctoMap
representation of a valve and pipe after the walls and floor have been identified by plane
detection and removed.

Figure 44. Atlas Maps a Valve

3.2.3.3 Plane Detection Our plane detection is based upon the PCL parallel plane and
perpendicular plane sample consensus models. While the system defaults to using RANSAC,
most of the other sample consensus algorithms are available as options. The plane detection
module first segments its input cloud based on proximity through a k-d tree. For each segment,
we run the parameter-selected sample consensus algorithm on the segment. If the sample
consensus algorithm achieves a certain amount of inliers, we store its model parameters and
convex hull before remove its inliers from the working cloud. (The working cloud is a copy of
the initial input cloud.) Otherwise, we simply move on to the next segment. We store each pair of
convex hull and associated parameters into a plane data structure and return an array of these
structures and the remaining working cloud.

3.2.3.4 Shape/Object Detection Our object detection solution took the form of a hierarchical
system of partitioning steps. The framework of the adaptive perception manager leads to
pipelines of processing and recognition steps.

RANSAC is our preferred method for simple shape recognition. However, RANSAC is
prone to false positives when there is a simpler shape in the environment that can encompass the
convex hull of the desired shape. For example, a disc model will be placed on a low-error wall
before it is fitted on a high error disc and a torus model will fit a disc before a torus. The easy

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
55

solution is to detect the simpler shape and remove it from the actively considered cloud.
RANSAC will also perform better on a more restricted cloud, thus filtering (spatial or otherwise)
and segmentation (typically via k-d tree) will improve the end result. Each of these processes
partition their input set into a set of outliers and at least one set of inliers. We found that the
structure of each node of our partitioning tree was similar. A typical node is a pipeline of a
filtering process, a segmenting process, and a more advanced process such as RANSAC. The
inliers selected by the node are the inliers of the final process; the outliers are the relative
complement of the inliers in the input set—the union of the outliers of each process. This flow is
shown in Figure 45.

Figure 45. The Processing Flow for a Single Node of the Pipeline

These nodes can be connected so that uninteresting features are partitioned out of the
pipeline in order of how easily and accurately they can be recognized. For instance, cropping to
the 5cm above and below the floor is trivial if the robot has its feet on the floor and the transform
from sensor frame to foot frame is available. This allows the floor plane to be detected quickly;
then the next steps are done on the outlier cloud – the cloud with the floor removed. Each feature
in the cloud is partitioned away until the only points in the actively considered cloud partition are

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
56

either objects with which the robot must interact, obstacles to interacting with said objects, or
dispersed noise points of a negligible number. Pruning the original cloud this way lets us more
accurately detect these relatively unique objects. This hierarchical technique was employed for
one of our door detectors, our valve detector, and our terrain field detector. The approximate
pipeline for these three detectors is shown in Figure 46. Note that the door, valve, and terrain
field detectors share processing steps removing the floors and walls; the adaptive perception
manager guarantees that those shared steps are not duplicated in the system.

Figure 46. The Approximate Pipeline for the TROOPER System

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
57

3.2.3.5 Fiducial Tracking To provide more accurate end effector positioning for
manipulation, we use vision to directly measure the end effector pose. This eliminates any error
accumulation that exists in joint angle encoding throughout the kinematic chain. We use a
fiducial detection library from NASA JPL that, using a stereo camera, can quickly search for and
detect the 6-DOF pose of a specific fiducial marker given a pose that we seed through our
kinematics and robot model. We have designed a wrist collar, pictured in Figure 47, which can
be mounted between our robot forearm and end effector with repeated redundant markers that
allow for detection from nearly all viewing angles. This approach decoupled the marker
placement from the end effector itself, allowing us to use the same hand tracking configuration
for arbitrary end effectors.

Figure 47. The TROOPER Fiducial Bangle

3.3 DRC Task Solutions

The DRC Finals were setup as shown in Figure 48. The course, from right to left, included:
A. Driving a Polaris Ranger
B. Exiting the Polaris Ranger
C. Opening and passing through a door
D. Locating and closing a valve
E. Picking up a drill and cutting through a wall
F. Surprise task
G. Rubble: clearing debris or walking over rough terrain
H. Climbing stairs

The robot was placed into the Polaris Ranger by the field team prior to starting a run. After
driving and exiting the vehicle, the robot opened and passed through a non-spring-loaded push
door. The robot then closed a valve by turning it at least one full revolution counterclockwise.
Next, the robot picked up a cutting tool from a shelf and used it to cut out a black circle on a
piece of drywall. The possible surprise tasks consisted of opening a small door and pushing a
button, pulling an electric shutoff lever, or moving a power plug between sockets. The rubble
task presented the option of passing through a debris field or walking over uneven cinderblocks.
Lastly, the robot had to climb a series of stairs to reach a metal platform.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
58

Figure 48. The DRC Course Layout

Practicality dictated solutions that were tailored to each task and worked around the
limitations of the Atlas platform. For instance, our approach to driving and egress took into
consideration the difficulty of getting Atlas to fit inside the vehicle. The approach for turning the
valve used a radially symmetric end effector to allow wrist rotation. Actuating the drill was done
using insets on the gripping hand, because positioning inaccuracy in the arms made pushing the
button with a separate stick hand difficult.

3.3.1 Driving. The approach of team TROOPER for the driving tasks was partly shaped by
the egress mechanism and partly by the overall size of the Atlas robot. After several tests, it was
determined that the robot would have difficulty egressing the Polaris vehicle when sitting so that
the Atlas was facing forward. Sitting the robot sideways in the vehicle would allow for less
development time to be spent on the egress task as well as a higher success rate. The position of
the robot for a sideways egress then directed the way in which the team pursued the driving task.

At the beginning of the run, the robot was positioned in a way such that it could
manipulate its throttle and steering mechanism, described further in the following section. For
the operator, an overhead map of the scene is presented. This map shows both the detected
obstacles and the projected path of the vehicle given its current steering angle. Using the WASD
commands shown in Figure 49, the operator is able to accelerate and steer the vehicle.

A

B C
D

E F G

H

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
59

Figure 49. WASD Driving Commands

This configuration allows a comfortable interface that is common to many driving-based
computer games. The general strategy for driving was slowly moving down the course. As the
vehicle passed each obstacle, the operator would stop the vehicle, turn in the desired direction,
and throttle up again. Throughout the task, the operator would view the overhead map in order to
choose the steering direction. The process was then iterated on each turn until crossing the finish
line.

3.3.1.1 Driving Mechanism. As described by DARPA competition rules, teams were
allowed to use passive devices to aid in the driving of the Polaris Ranger. The stipulation was
that this device must be installed within a five minute time window and must be installed without
the use of tools. With these regulations in mind, the team developed a mechanism for driving the
vehicle that independently operated the steering of the vehicle and the throttle. The left arm
equipped with the Robotiq hand controlled the throttle while the right hand with the POKEY
stick controlled the steering. First, the throttle mechanism (shown for the hand in Figure 50 and
at the gas pedal in Figure 51) will be covered.

Figure 50. Throttle Control in Hand

Throttle Up

Turn Right

Stop

Turn Left

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
60

After the robot was positioned to drive, a rubber compliant object was placed in the Robotiq
hand and the hand was closed. Attached to the rubber object with a Bowden cable is a device to
press the accelerator pedal in the Polaris. When the wrist turns, the Bowden cable is tensioned,
which engages the pedal mechanism. The lever arm of the mechanism is positioned and shaped
in such a way that twisting the wrist a small amount will result in the Polaris accelerating to a
slow, desirable speed. Upon resetting the wrist, the spring on the pedal mechanism would restore
the device to the disengaged position so that the vehicle would no longer move forward.

Figure 51. Pedal Mechanism

The steering of the Polaris is controlled using the right arm with the attached POKEY stick. The
steering mechanism is made up of a chain and sprocket system, pictured in Figure 52. One side
of the device is directly connected to the steering wheel and the other is connected to a device
that fits around the end of the POKEY stick. The end of the POKEY stick is machined in a
hexagonal shape that is complemented by the hexagonal hole in the steering mechanism. This
works to keep the end effector snugly in position and move the connected steering wheel with
little slip. When positioning the robot for driving, the wrist is put at its zero position and inserted
into the steering hole. Using only the last joint on the wrist to control the steering has proven to
give the range of motion necessary to complete the driving task.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
61

Figure 52. Steering Mechanism

3.3.1.2 Stereo Obstacle Detection and Mapping Due to the ATLAS' sidesaddle seated
position within the vehicle, we were unable to use the MultiSense SL for obstacle detection
while driving. Instead, we mounted a VI-Sensor, a stereo camera system with an onboard IMU,
to the ATLAS as our main sensing unit while driving. By computing stereo disparities, we were
able to obtain accurate depth information which allowed us to generate an overhead map of
upcoming obstacles for the operator.

From the disparity image, computed using the ROS stereo image processing node, we
performed ground plane detection with a modified RANSAC procedure. Between each frame,
we maintained a global estimate of the ground plane by rotating our prior estimate according to
the angular velocity measurements from the IMU. This estimate was then used during the
random sampling stage by computing the angle between the normal of each triplet of points and
the estimated normal and rejecting samples with angle greater than a fixed value. This procedure
improved our inlier percentage significantly, reducing the number of RANSAC iterations needed
and providing robustness against other, potentially larger, planes in the scene.

After we removed the ground plane, we filtered out noise by enforcing minimum blob
sizes and temporal consistency for obstacles. We then converted the disparity map into a point
cloud and used the RANSAC estimated ground normal to synthesize an image taken above the
scene along the normal. On this image, we also plotted the instantaneous projected path of the
vehicle given the current steering angle (read from the robot's wrist joint), using a simple bicycle
model. The result can be seen in Figure 53 (right). In addition, we returned to the operator the
left camera image with each non-zero disparity point colored by the type of point it represents, as
shown in Figure 53 (left). The image shows a replica of the barriers used in the DRC, green
points are ground, blue points are obstacles within the displayed range, and red points are
obstacles above the displayed range.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
62

Figure 53. Stereo Obstacle Detection and Vehicle Model

Finally, we fused subsequent overhead maps together by tracking the vehicle's position using
stereo visual odometry from the libviso2 package (Geiger, Ziegler, & Stiller, 2011). This fused
map provided the operator information about obstacles all around the vehicle, rather than simply
within the sensor's field of view. Unfortunately, we were unable to tune this method in time for
the competition, but a sample fused map from a later sequence is shown in Figure 54. The left
shows a color-highlighted image from a driving sequence on the highway; the center the
corresponding overhead map; and the right a fused overhead map using libviso2.

Figure 54. Highway Stereo Example

3.3.2 Vehicle Egress. For egress from the Polaris vehicle, a solution was conceived to rely
heavily on a mechanical appliqué without much need for intricate software development and
testing. By placing the robot into a series of tested and known poses, the robot sat up out of its
driving position and began sliding out of the egress mechanism (as explained later). As the robot
began sliding out, it assumed a stand-prep pose and gently touched the ground. The robot then
raised its pelvis height to unlatch itself from the mechanism and took several steps away from the
vehicle.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
63

3.3.2.1 Egress Mechanism The mechanism for egress was focused around the robot having
to move as little as possible in order to leave the vehicle. This inspired a design that allows for
the robot to have one key frame for driving, then transition to a stand prep pose that would
engage a linear slide to lower the robot to the ground. The mechanism is shown in Figure 55.

Figure 55. Driving Mechanism

During loading a series of quick releases are put into place, which lock both the slide and the
robot into place. These remain secure throughout the driving event; upon completion of driving,
the robot transitions into the stand prep key frame. At this point, the quick releases engage and
the robot begins to slide down the mechanism. The slide mechanism was tested and iterated to
ensure the device has the proper amount of throw to slowly and safely lower the robot to the
ground. The slide itself has two degrees of freedom – one to slide out of the vehicle and one to
lower the robot until its feet touched the ground. This setup allowed for a more compact and
robust design than if just one degree of freedom was used. Each degree of freedom had its
motion impeded by a hydraulic piston with a unidirectional flow restriction valve, allowing for a
smooth motion to set the approximately 400 lb. robot down to a stable position on the ground.

3.3.2.2 Whole Body Egress Exit. The stages of vehicle egress are shown in Figure 56. In the
left-most image, the robot begins the procedure by assuming a statically stable (stand-prep) pose.
As the robot completes the motion the robot pulls the pin on the quick-release shackles that held
the pelvis and seat anchored to the base. This is similar to disengaging a seatbelt. The robot’s
weight begins to slide the robot forward. The slides are attached to hydraulic resistance to control
the rate and prevent the robot from being thrust forward.

In the central image of Figure 56, the robot passes the pivot point and the slides begin to
rotate. The rotation is slightly eccentric to allow the slides to clear the edge of the vehicle.
Rotation uses hydraulic resistance to control the rate and prevent the robot from being rolled
from the vehicle. Forks protruding from the seat to the robot waist also keep the robot aligned to
the slide. Around 30 degrees the forks naturally disengage for upward and forward motion.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
64

The slide and rotation are designed to allow for different vehicle angles including
deflection of the vehicles off-road suspension system. In the right image, as the vehicle sheds the
weight of the robot, its roll is absorbed by the slide which is now pitched 35 degrees upward.
When the robot’s feet are squarely on the ground, the egress slide either naturally loses contact
with the robot or can be nudged out of the way with some squats.

Figure 56. Atlas Vehicle Egress Progression

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
65

3.3.3 Door. The door task is the first task in which the principles of human-guided
autonomy were applied to allow the operator and the robot to collaboratively complete a high-
level goal. This task was initiated by the human specifying only that the robot should walk
through a door and that it should use its left hand to open the door. The robot then provided the
operator with a proposed task chain, such as the one pictured in Figure 57 below, which could
accomplish this goal. Goals are shown in blue and tasks are shown in red. A sub-goal that is not
colored indicates that it is a duplicate of a goal that appears elsewhere in the chain and it is
expected that it will already be achieved by the time execution reaches that point in the chain.
The numbers indicate the order of execution of the tasks. An explanation of each of these steps
is given in Table 5. The door task chain includes 9 distinct tasks that make use of 5 different
types of behaviors.

Figure 57. A Task Chain to Detect and Walk through a Door

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
66

Table 5. The Door Task Chain

Task Behavior Description
Detect Door Detect Object Find a door and add a corresponding door

frame to the shared world model (detailed
description provided in following section)

Close Hand Control Hand Close the left hand to prevent damage to
the fingers when pushing on door handle

Keyframe – Walk to Door Keyframe Execute a pre-recorded set of joint
positions to lift the arms above the robot’s
waist

Walk to Door Walk To Plan and execute a series of footsteps
from robot’s current location to just
outside the door

Move Hand Over Door
Handle

Task Space Move
Hand

Plan and execute a collision free motion to
move left hand from its current pose to
just above the door handle

Unlatch Door Task Space Move
Hand

Plan and execute a motion to move left
hand from its current pose to just below
and beyond the door handle

Crack Door Open Task Space Move
Hand

Plan and execute a motion to move the
left hand from its current pose to further
inside of the door frame

Keyframe – Walk Thru
Door

Keyframe Execute a pre-recorded set of joint
positions to hold the door open with the
right hand and retract the left hand

Walk Thru Door Walk To Plan and execute a series of footsteps
from the robot’s current location to just
inside of the door

3.3.3.1 Door Detection. We initially employed SAC plane model segmentation for the door
detection task. The DRC door task was sufficiently constrained such that three discrete planar
surfaces; a plain wall, the door itself, and surrounding frame, could be teased apart provided the
segmentation distance function was parameterized to sufficiently discriminate between the
depths of the surfaces (while not over-discriminating for finely-textured features on the surface
of the door or wall themselves). The door itself is shown in Figure 58. As an initial step, a
generalized perception module for plane detection was run so as to subtract the ground plane and
remove extraneous features on the ground plane or above the course (similar to the preprocessing
step taken in the case of cinder block field characterization).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
67

Figure 58. Charleston, SC Mockup of Door Task

While generally good at localizing the door plane, early experiments showed that despite
the geometric regularity of the surfaces involved and the overall lack of clutter, SAC
segmentation could not be guaranteed to provide the 2cm accuracy necessary for planning the
unlatching movements of the arm and allowing the wide ATLAS platform to traverse the
threshold. The principal reason for this has to do with the nature of the RANSAC algorithm. It is
possible for RANSAC to converge on a plane model which is rotated slightly about the Z axis,
resulting in a detection which is sufficiently imprecise to impede correct localization of the
unlatching mechanism with odometry.

The solution to this problem was to eschew SAC segmentation in favor of exploiting the
simple structure of the door frame and the reliable depth offsets. We developed a door detection
perception module that uses LIDAR to find a consistent set of points set back from the rest of a
wall surface. The module applies the following algorithm to detect the door.

1. Crop LIDAR point cloud at waistline
2. View frustum culling at 60 degrees
3. Project into XY-plane
4. Principle component analysis (PCA) to transform into Eigen-basis
5. Create threshold based on mid-point in minor dimension
6. Reorder points along major dimension
7. Increment through points, look for at least 1m of continuous points above the threshold
8. Use upper/lower bound transition points to determine the door position and yaw

The results from this door detection are shown in Figure 59 below.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
68

Figure 59. Atlas Autonomously Detects the Door Pose Using LIDAR Sensing

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
69

3.3.4 Valve. This task was initiated by the human specifying only that the robot should use
its right hand to turn a valve. The robot then provided the operator with a proposed task chain,
such as the one pictured below in Figure 60, which could accomplish this goal. Goals are shown
in blue and tasks are shown in red. A sub-goal that is not colored indicates that it is a duplicate
of a goal that appears elsewhere in the chain and it is expected that it will already be achieved by
the time execution reaches that point in the chain. The numbers indicate the order of execution of
the tasks. The steps in this chain are described in Table 6; the chain includes 9 distinct tasks that
use 4 different types of behaviors.

Figure 60. A Task Chain to Detect and Turn a Valve

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
70

Table 6. The Valve Task Chain

 Task Behavior Description
Keyframe – Detect Valve Keyframe Execute a pre-recorded set of joint

positions to move the arms out of the
robot’s field of view

Detect Valve Detect Object Find a valve and add a corresponding
object to the shared world model (detailed
description provided in following section)

Keyframe – Approach
Valve

Keyframe Execute a pre-recorded set of joint
positions to move the arms into a stable
pose for walking

Walk to Valve Walk To Plan and execute a series of footsteps
from robot’s current location to just in
front of the valve

Move Hand To Valve Pre-
Grasp

Task Space Move
Hand

Plan and execute a collision free motion to
move the POKEY stick from its current
pose to the valve

Move Hand To Valve
Grasp

Task Space Move
Hand

Plan and execute a collision free motion to
move the POKEY stick from its current
pose to a small stand-off distance from the
valve

Move Hand To Edge of
Valve

Task Space Move
Hand

Plan and execute a motion to move the
POKEY stick from its current pose to the
outer edge of the valve

Turn Valve Task Space Move
Hand

Plan and execute a circular trajectory for
the POKEY stick (detailed description
provided in later section)

Retract Hand From Valve Task Space Move
Hand

Plan and execute a motion to retract the
POKEY stick from the valve

3.3.4.1 Valve Detection. Valve detection presented a difficult problem with existing
infrastructure. Within our group, some had called it impossible. One major difficulty is that the
major recognizable volume of a valve is either a flat ring or a torus. These volumes are concave
and, worse, occupy a low percentage of the volume of their convex hull. The sample consensus
answer to this situation is to also select based on the normal difference of each point from the
model. Unfortunately, our vision pipeline sits upon compiled LIDAR scans—which did not
produce especially accurate or useful normals.

Thus, we pursued a modified tactic. We created a PCL sample consensus model for tori
that would actively detect the wheel of the valve as usual for a point-based sample consensus.
This model detects as model coefficients: the radius to the middle of the wheel rim, radius from
that middle to the edge of the rim, and the position and orientation in three dimensional space.
To combat the false positives, we removed all anticipatable shapes that would produce false
positives on the convex hulls of our target volume. In addition to removing all walls and the floor
from the working cloud, we removed all vertical cylinders over a certain radius to exclude the
pipe from the working cloud

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
71

Since a torus is symmetric around an axis, we also needed some determiner for the angle
at which the valve was initially detected. The angle was intended to be used for avoiding the
spokes of the valve, so we used PCL cylinder detection at a small max radius. The angle between
the rejection of the cylinder axis from the torus axis and the rejection of the Z-axis from the torus
axis is the angle for our valve about its axis.

3.3.4.2 Circular Trajectory for Turning Valve. In the case of turning a valve, we used the
Drake IK with gaze constraints to constrain the stick to remain perpendicular to the valve face
while allowing rotation about the stick axis. We used a circular series of poses and solved both
on the UI and robot side of the communications divide so we didn’t need to send the plan over a
narrow communications channel.

3.3.5 Wall. This task was initiated by the human specifying only that the robot should use
its left hand to pick up a cutting tool off of a particular shelf and use it to cut a particular pattern
in a specified wall. The robot then provided the operator with a proposed task chain, such as the
one pictured below in Figure 61, which could accomplish this goal. Goals are shown in blue and
tasks are shown in red. A sub-goal that is not colored indicates that it is a duplicate of a goal that
appears elsewhere in the chain and it is expected that it will already be achieved by the time
execution reaches that point in the chain. The numbers indicate the order of execution of the
tasks. The steps in this chain are described in Table 7, including 13 distinct tasks that make use
of 6 different types of behaviors.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
72

Figure 61. A Task Chain to Cut a Hole in a Wall

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
73

Table 7. The Wall Task Chain

Task Behavior Description
Keyframe – Detect Drill Keyframe Execute a pre-recorded set of joint

positions to move the arms out of the
robot’s field of view

Detect Drill Detect Object Find a cutting tool on the specified shelf
and add a corresponding object to the
shared world model (detailed description
provided below)

Keyframe – Approach
Shelf

Keyframe Execute a pre-recorded set of joint
positions to move the arms into a stable
pose for walking

Walk to Shelf Walk To Plan and execute a series of footsteps
from robot’s current location to just in
front of the shelf

Move Hand To Drill Pre-
Grasp

Task Space Move
Hand

Plan and execute a collision free motion to
move the left hand from its current pose to
a small stand-off distance from the cutting
tool

Move Hand To Drill Grasp Task Space Move
Hand

Plan and execute a motion to move the
left hand from its current pose to the
cutting tool

Grasp Drill Grasp Drill Close hand around cutting tool, lift the
tool, and continue to cinch the tool until
the tool is powered on (detailed
description provided below)

Keyframe – Cut Hole Keyframe Execute a pre-recorded set of joint
positions to move the left hand to a
cutting pose

Walk To Wall Walk To Plan and execute a series of footsteps
from robot’s current location to just in
front of the wall

Cut Wall Task Space Move
Hand

Plan and execute a circular trajectory for
the left hand (detailed description
provided below)

Walk Away from Wall Walk To Plan and execute a series of footsteps to
walk backwards from the robot’s current
location

Bend Over Task Space Move
Hand

Plan and execute a motion to squat down
and place the left hand near the ground

Drop Drill Control Hand Open the hand to allow the cutting tool to
drop to the ground

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
74

3.3.5.1 Cutting Tool Detection. Our cutting tool detection module uses a colored stereo
point cloud. We preprocess the point cloud to focus it on the height suitable for manipulation,
roughly from the robot’s pelvis to its head. Region growing segmentation with color separates
the point cloud into chunks that are clustered spatially and have similar color features. We first
down-sample the points using a voxel grid filter at 0.5 cm resolution to speed up the
segmentation process. Figure 62 shows the drill detection in action. The left image shows the
raw colored stereo cloud with a coordinate frame representing the detected tip frame of the
cutting tool; the right image shows the voxelized cloud, colored by segment.

Figure 62. Cutting Tool Detection

Our detection process loops through the point cloud segments to find a strong match for a cutting
tool. We require that the principal dimension of the cluster be roughly 28 cm, and the minimum
dimension roughly 9 cm. We also require that the tool be standing vertically, so its angle must
match the gravity vector with a small tolerance. This will not work if the tool falls flat on the
table, in which case the segmentation algorithm would struggle to cluster the tool separately
from the shelf. We would be forced to rely upon operator-driven drill detection in this scenario.

Both of the DRC cutting tools were primarily yellow, so our detector also prefers to
select clusters that are primarily made up of yellow points. We represent the color yellow in
YCrCb color space so that we are robust to illumination variation.

This module adds a cutting tool object to the world model to notify the rest of the system
(along with the operator) of the position of the tool. The origin of the tool is at its tip. Small
position errors, along with error in orientation about the principal axis, can easily be corrected by
the operator in the 3D interactive scene. Errors in roll and pitch result in substantial operator
burden.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
75

3.3.5.2 Cutting Tool Grasp. We ended up encoding a small set of valid grasp configurations
for the drill as a Task Space Region centered behind the drill handle. The most crucial part was
to get the height just right such that the 3D printed pieces attached to the fingers would activate
the drill.

3.3.5.3 Tool Activation. Our primary method for activating the cutting tool is to grip it in
such a way that a 3D printed attachment is able to press the trigger. The Robotiq hand is opened
and wrapped around the back of the cutting tool. Upon closing the hand, the 3D printed
attachment makes contact with and depresses the button. At this point, the cinching behavior
begins by opening the hand slightly and moving the hand up slightly. From here, the hand will
open and close several times until the cutting tool is activated. This method has proven to be
fairly robust in turning on the drill. The hand with attachment is visible in Figure 63.

Figure 63. Drill Activation Tool

 Our fallback method for activating the drill is to press the button by visual servoing in
with the POKEY stick, described below.

3.3.5.4 Button Tracking and Stick Press. The task of visual identification and tracking of
the drill button for manipulation and actuation is a well-constrained problem even under the
varying lighting conditions at the Finals venue. It is well-suited to the popular mean-shift
tracking algorithm. Mean-shift is an appearance-based tracking algorithm which uses histograms
of pixel values, as in Figure 64, associated with a particular feature to track that feature across
multiple frames. Histograms may make use of color features or more complex features such as
line orientations and gradients. The algorithm functions as a non-parametric density estimator
which generalizes to the problem of finding modes in a set of data samples.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
76

Figure 64. Color Histograms for Mean-Shift Tracking

The power tool used in the DRC drill task has a conspicuous circular black button
surrounded by the yellow chassis of the tool; this color combination is unique in the scene and
the circular contours present a robustly trackable feature. Provided lighting variations do not
exceed the dynamic range capability of the sensor mounted on the robot’s hand, these features
are also generally invariant to rotation. We use a variant of mean-shift, continuously-adaptive
mean-shift (or CAMshift), which uses continuously adaptive probability distributions computed
for each individual frame. This makes the algorithm more robust, but requires the use of spatial
moments to climb the gradient rather than target and candidate distributions as in the
conventional implementation.

3.3.5.5 Cutting Tool Activation Detection. Our robot and operator needed a method to
determine whether the cutting tool was successfully activated before proceeding to cut the wall.
We found that addition of a microphone to the POKEY-stick allowed the robot to monitor local
sound intensity and detect a volume increase that corresponds with tool activation. In our testing,
we found that providing the intensity data to the operator would enable them to recognize
activation, even in the proximity of the active Atlas robot hydraulic pump.

3.3.5.6 Circular Trajectory for Cutting. The goal of the wall cutting task was to make a
series of cuts such that the piece of drywall containing a black circle could be removed from the
rest of the wall. Different teams made different shapes, though most could be categorized as
either a large circle or square. We chose to go the circle route, and thus required something that
could trace a large circle with the tip of the cutting tool. We used the Drake IK for this task.
First, we created a circle to be traced in the hand frame and used the gaze constraints to constrain
the cutting tool to remain perpendicular to wall while allowing rotation about the tool axis. Each
successive IK pose to solve was seeded using the solution for the previous waypoint in the
trajectory. Because a large number of waypoints were used, this planner ran on both the UI side
and the robot side of the communications barrier; that way the trajectories were generated on
both sides and did not have to be piped over a narrow communications channel.

3.3.6 Terrain. The terrain task was initiated by the human specifying only that the robot
should walk to the other side of a cinder block field. The robot then provided the operator with a
proposed task chain, such as the one pictured in Figure 65 below, which could accomplish this
goal. Goals are shown in blue and tasks are shown in red. A sub-goal that is not colored
indicates that it is a duplicate of a goal that appears elsewhere in the chain and it is expected that
it will already be achieved by the time execution reaches that point in the chain. The numbers
indicate the order of execution of the tasks. The steps in this chain are described in Table 8,
including 13 distinct tasks that make use of 6 different types of behaviors.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
77

Figure 65. A Task Chain to Walk over Cinder Blocks

Table 8. The Terrain Task Chain

Task Behavior Description
Detect Cinder Blocks Detect Object Find a cinder block field and add a

corresponding object to the shared world
model (detailed description provided
below)

Generate Cinder Blocks
Path

Walk To (planning
only)

Use the description of the cinder block
field to generate a footstep plan (detailed
description provided below)

Walk to Cinder Blocks
Start

Walk To Plan and execute a series of footsteps
from robot’s current location to the
location of the first two footsteps in the
previously generated footstep plan

Walk Over Cinder Blocks Teleop Walk Execute the previously generated footstep
plan to traverse the cinder blocks field

3.3.6.1 Terrain Field Detection. We represent the DRC terrain field as a rectangular grid of
cinder block cells, as is fitting given that it appears in Figure 66. To find the terrain field, we use
Euclidean distance clustering of a LIDAR point cloud focused at foot to knee height of the robot.
We project each of the clusters into the X-Y plane and compute the convex hull of the points.
We then iterate around the convex hull, searching for two long continuous edges separated by
180 degrees in orientation. We use these edges as the orientation of the field and compute the
centroid of the cluster for its 2D position within the plane.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
78

Figure 66. DRC Cinder Block Field as Recreated in Pennsauken Lab

3.3.6.2 Field Characterization. The geometric regularity of the DRC cinder block field
traversal task admits some highly tailored ad hoc techniques for segmentation and
characterization. Characterization for the purposes of path planning involves determining the
height, incline, and extent of each discrete surface comprising the field in order to assist the robot
with footstep placement.

The approach to characterization was predicated on DARPA’s design for the field; a
regular grid of cells, each consisting of the same surface area with a constant incline of 13º in
one of four directions and at one of four discrete heights. In general, segmentation of planar
surfaces at close range is easier with stereo disparity point cloud data. Experiments performed
during the Charleston test event suggested that the dynamic range of the MultiSense SL head
would prove problematic in the event of severe shadows as anticipated around midday in
Pomona. The effects are shown in Figure 67, where half the field is not visible due to being in
shadow.

Figure 67. Effects of Dynamic Range Occlusion due to Midday Shadows

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
79

Segmentation of the cinder block field would then be performed primarily using LIDAR data
which is more robust (albeit not entirely immune) to variations in outdoor lighting conditions. A
Gazebo simulation LIDAR scan of the cinderblock field is shown in Figure 68.

Figure 68. Simulated LIDAR Data from Cinder Block Field

Sampling and Consensus (SAC) model planar segmentation developed for the purposes of wall
and ground plane subtraction is generally the preferred segmentation method; as implemented in
the Point Cloud Library (PCL), it provides an automatic means to obtain the plane equation for
each segmented surface and thus to determine the orientation of each discrete grid cell. SAC
segmentation works by selecting an initial sample set of points, computing a model (planar
model in this case), computing and counting inliers, and iterating until a specified maximum
number of iterations or confidence threshold is achieved. An important point here is that the
initial selection of sample points is random; thus, it is equally likely that SAC segmentation will
result in a model being fitted to an area covering multiple planar surfaces at different orientations
as to what the user identifies as a discrete planar object.

Early experiments with this segmentation showed that basic plane model segmentation
with SAC as applied to the entire cinder block field would prove inappropriate for the particular
task. While the cinder block field appears to us to be a highly regular sequence of highly discrete
cells, SAC segmentation of the entire field is prone to try to fit surfaces to the entire field, a high-
frequency jagged surface. In most cases, basic SAC plane model segmentation found
characterized discrete surfaces only for the most elevated flat grid cells (on average, 2 or 3 per
6x7 grid), as visible in Figure 69.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
80

Figure 69. SAC Segmentation Results on Individual Cinderblocks (Simulated)

The solution to this problem was to apply a two-step segmentation process. Region growing
segmentation is not subject to the same tendencies towards overfitting large planar surfaces to
high frequency components, and was successfully used to segment individual grid cells. The
algorithm then iterates over the segments found via region-growing and applies a SAC plane
model fitting to each segment, yielding the geometry of the individual grid cells. Orientation is
computed as the arctangent of the Z component of the surface normal, with the point cloud
already transformed into the proper coordinate space. Figure 70 shows the output of this two-
step process, the left being the results of region growing segmentation and the right the
subsequent SAC plane fitting.

Figure 70. Cinderblock Field Detection

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
81

3.3.6.3 Footstep Planning. We solved the problem of planning footsteps over cinderblock
terrain using an A* search with a set of allowed transitions informed by experimentation and
advice from IHMC. The 4D state space consisted of the location of the left and right foot (left
foot XY, right foot XY). The cinderblock field itself was discretized by each half (split left/right)
stack of cinderblocks, so a 6x6 field of cinderblocks would be represented by 6x12 possible
locations for either foot. Each transition consisted of a stance foot (the foot remaining
stationary) and a swing foot moving to a new location. The cost assigned to each transition
encoded the difference in height between the stance foot and the final step location.

We used the following transition rules found through experimentation and advice from
IHMC to generate the underlying graph:

• Allowed table of transitions include stepping forward one cinderblock and stepping one
half cinderblock to the side.

• Disallowed transitions that left stance foot on downslope when stepping down
cinderblocks

• Disallowed any changes in step height of over a one cinder block height
• Disallowed leaving a stance foot on an upslope because we would hit the ankle torque

limits
A sample path found by the planner is shown in Figure 71.

Figure 71. A Simulated Path over the Field

In practice, we also attempt to follow the seam between cinderblock columns as that was
more stable than staying completely on one column. Straddling the seam allowed for more
separation between feet as opposed to squeezing both feet onto one block. Figure 72 highlights
the importance of not leaving a stance foot on an upslope when stepping down. Atlas is hitting a
joint limit on his left foot, which causes him to slide on the blocks and could have easily resulted
in a fall.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
82

Figure 72. Atlas at a Joint Limit when Descending Cinderblocks

3.3.7 Stairs. Atlas faced a couple of issues when walking up the stairs. The stairs
themselves were very close to the physical limits of what Atlas could traverse, specifically:

• Stair depth comparable to the foot length
• Stairs overhang catches toe when raising foot
• Shins collide with the next step when transitioning weight
The solution was alternating between half and full steps to surmount the stairs, all the while

keeping the pelvis height at the maximum possible value. Only placing the front half of the foot
on one stair allows enough room such that the shin does not collide with the beginning of the
next stair when transferring the weight to the other foot. This said, only using half the foot
required changes to IHMC's balancing algorithms; they exposed a method to allow specifying
contact points that cover a limited subset of the foot. Figure 73 shows Atlas at the stairs. The
left image shows a narrow stance with the pelvis raised, and the right image shows Atlas placing
half its right foot on the first step. The right shin touches the next step, but is still within
recoverable limits.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
83

Figure 73. Atlas at the Stairs

We noticed other teams had different approaches; i.e., we saw that the Worcester Polytechnic
Institute (WPI) team walked bowlegged, placing one foot at an outward yaw of approximately 45
degrees. This allowed them to place the whole foot on the step while still not hitting the shin.

4 RESULTS AND DISCUSSION

4.1 Approach to the Competition

As the competition approached, we knew we were one of the smaller teams competing. We
debated internally as to which events we should focus on, possibly to the exclusion of others.
We considered skipping driving, egress, and the wall task. In the end, we determined to drive
and egress, but only attempt the wall task if we had extra time.

In this section, we detail the differences between the approaches written in previous
sections and the approaches we decided to use in the competition.

4.1.1 Driving. Driving was carried out as described in Section 3.3.1. Much of the difficulty
of the task was in properly installing Atlas inside the Polaris. The gas pedal had to be properly
calibrated such that the vehicle RPM were in a certain range when the throttle mechanism was at
maximum tension. The steering had to be properly centered as well. The operator steered using
imagery from the stereo camera and a top-down view showing the anticipated vehicle curve
given the steering angle and obstacles found using the stereo disparities. The camera gave a
narrow view of the vehicle, making it difficult to judge the vehicle extents; more practice would
have helped to alleviate this.

4.1.2 Egress. We carried out egress using the mechanism described in Section 3.3.2. We
had planned to trigger the release mechanism for the slide using a solenoid attached to the pelvis,
but testing showed that friction often caused this to fail. Instead, we used a series of quick
releases that would trigger when the robot shifted its configuration inside the vehicle. Most
initial tests ended in failure, with the robot falling sideways off the slide or getting caught on the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
84

slide when trying to walk away. It was only on the last day before the competition that we found
a reliable, repeatable setup.

4.1.3 Door. We planned to use the task chain as described in the Section 3.3.3. In practice,
we switched to teleoperation to open the door handle. We were able to unlatch the door with the
operator in-the-loop. The locations for where to stand to unlatch and to move through the door
proved very useful. We were able to walk forward through the door as long as the operator
remembered to narrow the footstep width parameter in the user interface.

4.1.4 Valve. We planned to use a truncated version on the task chain described in Section
3.3.4 for the valve. The truncated chain would have included detecting the valve, deciding
where to stand, entering an appropriate keyframe, and walking to the valve. The rotation of the
valve would have been entered manually by the user as a circular end effector trajectory. In
practice, we did not use the valve detection and instead relied upon teleoperation for the entire
valve task.

4.1.5 Wall. We decided to skip this task in the competition. We had practiced picking up
the drill and turning it on, but had not successfully cut the hole out of the drywall. With our
limited manpower and time, we were unable to devote the necessary resources to this task.

4.1.6 Mystery Task. We did not practice the mystery tasks and resolved to teleoperate
them in the competition.

4.1.7 Terrain. We decided to use teleoperation and manual footstep placement to cross the
cinderblock terrain. We tested using the results of the A* terrain footstep planner described in
Section 3.3.6 and found that the foot placements were slightly too far apart and that localization
drift prevented the robot from traversing the entire field at once. Moreover, we learned simple
heuristics from IHMC regarding foot placement, but decided the time it would take to translate
them into a working planner was better spent on other critical issues. Additionally, in practice,
we often encountered situations requiring intervention, such as needing to approach the edge of a
cinderblock first before stepping down.
4.1.8 Stairs. We decided to use teleoperation and manual footstep placement to climb the
stairs. We had debated about using the cinderblock planner to generate a trajectory for the stairs,
but ultimately decided against it. We could have used a hard-coded footstep trajectory since the
stair measurements were known, but our practice runs showed that it was easier and more
reliable for the operator to place the steps. We used the strategy of alternating half steps and full
steps to avoid hitting the robot’s shins on the next step.

4.2 Competition Results

Our final results proved disappointing. Technical difficulties, hardware failures, and a lack of
practice with our own system prevented us from progressing far into the interior course in either
of our two runs. In the end, we completed the driving, egress, and door tasks and attempted the
valve. Both of our runs resulted in 2 points being scored before we ran out of time.

4.2.1 Driving. On our first run, throttle was not properly calibrated, so when the robot
attempted fully open the throttle it was not sufficient to move the vehicle. This led to our first
reset. During the reset, the wireless network then went down course-wide and we lost our
connection to the onboard computers. Afterward, we managed to successfully reach the goal

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
85

area. Our stereo object detection and mapping proved poorly tuned for the environment and we
found that our view through the VI sensor was not sufficient to gain an accurate idea of how
much clearance was available for the Polaris. Consequently, we drove along the left edge of the
track until the friction stalled the Ranger. Once the Ranger stalled, our issue became apparent
and we were able to drive it away from the edge and complete the course.
 On our second run, our now-functional stereo object detection and mapping allowed us to
handily drive the course. However, halfway through the course, our driving mechanism detached
from the Ranger unexpectedly forcing a reset. The detachment was not apparent from the
operator interface, causing lost time. Once reset at the starting line, we attempted to drive
forward, pulling increasingly harder on the throttle, while the vehicle remained stationary. The
vehicle was not properly in gear; once the officials put it in gear we drove the course
successfully, but it is likely this event caused one of the joints in our left wrist to become
inoperable. Despite the broken left wrist, we reached the driving goal, shown in Figure 74.

Figure 74. Atlas Reaches Driving Goal (Run 2)

4.2.2 Egress. On our first run, we initiated egress without issue. However, our field team
noted that our Atlas was in an unsafe situation once the initial stage linear guide had extended. It
is suspected that our Atlas was incorrectly seated on its mount initially and fell backwards off of
the mount when the mechanism actuated. A reset was called, denying us of the task point. On the
second run, egress worked flawlessly. As pictured in Figure 75, the slide lowered Atlas smoothly
onto its feet. As our most operator-intensive task, our many hours of practice obviously showed
their reward.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
86

Figure 75. Atlas Egresses (Run 2)

4.2.3 Door. On both runs, we were able to place and walk to our door using the automated
detection and walk to behaviors. On our first run, we found that the door handle for the course
was difficult to turn (as had been noted by our walkthrough team). It took several attempts
teleoperating the left hand against the handle to open the door. We walked through without issue
and scored the task point. This successful opening and passing through the door is shown in
Figure 76.

On the second run, we found that the left wrist was inoperable post vehicle egress.
Because our operator had some practice opening the door with right hand POKEY stick, we were
able to open the door through a combination of arm teleoperation and squatting commands. We
had not recently practiced rising from the resulting extremely low squat height and our Atlas
robot fell as we attempted to do so.

Figure 76. Atlas Opens and Clears Door (Run 1)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
87

4.2.4 Valve. We only made it to the valve task on the first run. We placed our POKEY
stick between the spokes of the valve. However, we found that we were unable to successfully
send our valve-turning trajectory command over our communication link successfully. We had
gotten the communications working only the night before and had not been able to practice with
the competition communications restrictions at this point. As we were attempting to send the
command, the trial came to an end, denying us the point. Figure 77 shows our position at the end
of the run. We addressed the issue that night, planning the motion trajectories on both the UI and
robot sides of the system, so as not to have to send the trajectory over the narrow bandwidth
channel.

Figure 77. Atlas Ready to Turn Valve (Run 1)

5 CONCLUSIONS

We believe we took a different approach from most teams. Rather than starting with a purely
teleoperated system and automating only the simple or repetitive tasks, we envisioned a system
that would default to automated actions and only request operator input or teleoperation when it
determined itself to be incapable of completing an objective. Instead of asking “What is the bare
minimum we need to automate to accomplish the tasks in the time allotted?” we asked “How can
we make the system as autonomous as possible while still guaranteeing task completion amidst
uncertainty?”

To work effectively with the robotics community, we adopted the open source Robot
Operating System (ROS). As a relatively small team, we heavily leveraged existing ROS
components for the Virtual Robotics Challenge. This was very important for us in order to
deliver a working system with the time constraints imposed by the competition. As we proceeded
on with the DRC Trials and Finals, we decreased our reliance on stock ROS components and
wrote our own. For example, we initially used the ROS SMACH state-machine framework
before writing our own behavior manager. We initially used the ROS Move-It motion planning
stack before creating our own lighter-weight version that incorporated additional features like
Task Space Regions for grasp sampling. Additionally, we have wrapped existing ROS
components in ways that add functionality, such as our adaptive perception manager, which

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
88

provides easy methods to start, stop, and chain together sequences of perception algorithms. One
lesson we learned is that UI development is very time-intensive. We would have saved time had
we started with the ROS rviz visualization tool and modified it, rather than writing our own UI
from scratch.

While we would have liked to have performed better in the DRC Finals, we have a good
foundation for a system that utilizes the human as more of a supervisor than a teleoperator. We
refer to this as human-guided autonomy. We have not yet utilized the notion of task execution
confidence. Instead, when pressed, we reverted to teleoperation and did not give our autonomy
framework a chance. This can also be attributed to lack of practice time. We needed more time
and practice to determine reliable parameters for the knowledge base used by the reasoner.
There is also potential here to use demonstration learning to teach the robot new tasks.

To be more useful, automation components such as ours need to be more generalizable.
For a competition like the DRC Finals, it was tempting (and feasible) to over-fit the solution to
the problem. We were able to encode many properties of the task setup before the robot ever
entered the field. One avenue for future research is to better gather this information from vision
and other sensor data to create more robust low level behaviors in mobility and manipulation.

In the competition, we ended up spending so much time on driving and egress (over half
of our allotted time) that we were unable to test the rest of our system. We needed to spend more
time and effort developing the driving components. Indeed, our biggest takeaway was that we
needed more time to practice all the tasks. Not practicing the tasks under competition settings
was very detrimental, as it would have given us time to address the bugs exposed. Unfortunately,
our communications manager only became functional the day before the competition began.

Future research needs to focus on robust perception capabilities to provide monitors that
can close the loop on autonomous behaviors. For example, automated vision to recognize that a
door has been opened and vibro-tactile perception to feel that a cutting tool is activated are
critical functionalities for the robot to become more autonomous. More advanced low-level
humanoid controls incorporating visual feedback are necessary for platforms like Atlas to
operate at higher speeds and in dynamic environments. Dexterous manipulation with multi-
fingered grippers is required for robots to be able to perform more than a limited subset of
manipulation tasks. Algorithms for in-hand object estimation and control incorporating tactile
sensing are necessary, in addition to robust tactile sensors that last more than a few minutes.
Finally, automated population of a knowledge base through observation of humans would speed
up the process of adapting a robot to a new problem domain.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
89

6 REFERENCES

Berenson, D., Srinivasa, S., & Kuffner, J. (2011). Task Space Regions: A Framework for Pose-
Constrained Manipulation Planning. International Journal of Robotics Research, 1435-
1460.

Cacace, J., Finzi, A., & Lippiello, V. (2014). A mixed-initiative control system for an Aerial
Service Vehicle supported by force feedback. Intelligent Robots and Systems (IROS), (pp.
1230 - 1235).

Carey, M. W., Kurz, E. M., Matte, J. D., Perrault, T. D., & Padir, T. (2012). Novel EOD robot
design with dexterous gripper and intuitive teleoperation. World Automation Congress,
(pp. 1-6). Puerto Vallarta.

Chaomin, L., Yang, S. X., Krishnan, M., & Paulik, M. (2014). An effective vector-driven
biologically-motivated neural network algorithm to real-time autonomous robot
navigation. Robotics and Automation (ICRA), (pp. 4094 - 4099).

Desai, J. P., Ostrowski, J., & Kumar, V. (1998). Controlling formations of multiple mobile
robots. Robotics and Automation (ICRA), (pp. 2864 - 2869).

Diankov, R. (2010). Automated Construction of Robotic Manipulation Programs. PhD Thesis.
Robotics Institute, Carnegie Mellon University.

Geiger, A., Ziegler, J., & Stiller, C. (2011). Stereoscan: Dense 3D Reconstruction in Real-Time.
Intelligent Vehicles Symposium.

Goodrich, M. A., & Schultz, A. C. (2007). Human-robot interaction: a survey. Foundations and
Trends in Human-Computer Interaction, 203 - 275.

Henry, C. (2009). The meta state machine (MSM) library. Boost Libraries Conference. Aspen.
Lomas de Brun, M., Zaychik Moffitt, V., Franke, J. L., Yiantsios, D., Housten, T., Hughes, A., et

al. (2008). Mixed-initiative adjustable autonomy for human/unmanned system teaming.
AUVSI Unmanned Systems North America.

Murphy, R., Kravitz, J., Peligren, K., Milward, J., & Stanway, J. (2008). Preliminary report:
Rescue robot at Crandall Canyon, Utah, mine disaster. Robotics and Automation (ICRA),
(pp. 2205-2206). Pasadena.

Ott, C., Roa, M., & Hirzinger, G. (2011). Posture and Balance Control for Biped Robots Based
on Contact Force Optimization. IEEE-RAS International Conference on Humanoid
Robots, 26-33.

Pan, J., Chitta, S., & Manocha, D. (2012). FCL: A General Purpose Library for Collision and
Proximity Queries. IEEE International Conference on Robotics and Automation, (pp.
3859-3866).

Pomerlau, F., Colas, F., Siegwart, R., & Magnenat, S. (2011). Tracking a Depth Camera:
Parameter Exploration for Fast ICP. IEEE/RSJ International Conference on Intelligent
Robots and Systems, (pp. 3824-3829).

Pratt, J. (2015). Team IHMC's Lessons Learned from the DARPA Robotics Challenge Trials.
Journal of Field Robotics, 192-208.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. Pearson Education.
Rusu, R., & Cousins, S. (2011). 3D Is Here: Point Cloud Library (PCL). IEEE International

Conference on Robotics and Automation.
Smits, R. (2015, June). KDL: Kinematics and Dynamics Library. Retrieved from

http://www.orocos.org/kdl

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
90

Sucan, I., Moll, M., & Kavraki, L. (2012, December). The Open Motion Planning Library. IEEE
Robotics and Automation Magazine, pp. 72-82.

Tedrake, R. (2014). Drake: A Planning, Control, and Analysis Toolbox for Nonlinear Dynamical
Systems. Retrieved from http://drake.mit.edu.

Zhang, L., Lee, S.-L., Yang, G.-Z., & Mylonas, G. P. (2014). Semi-autonomous navigation for
robot assisted tele-echography using generalized shape models and co-registered RGB-D
cameras. Intelligent Robots and Systems (IROS), (pp. 3496-3502).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
91

7 LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

Air Force Research Laboratory (AFRL)
DARPA Robotics Challenge (DRC)
DRC Simulator (DRCSim)
Emergency Stop (E-Stop)
Free Open Source Software (FOSS)
Institute for Human & Machine Cognition (IHMC)
Inverse Kinematics (IK)
Iterative Closest Point (ICP)
Kinematics and Dynamics Library’s (KDL’s)
Observe-Orient-Decide-Act (OODA)
Open Dynamic Engine (ODE)
Operator Control Unit (OCU)
Pointed Object for Kinematic Extension without Yielding (POKEY) Stick
Point Cloud Library (PCL)
Robot Control Unit (RCU)
Robot Operating System (ROS)
ROS State-Machine (ROS SMACH)
Simulation Construction Set (SCS)
Trusted Remote Operation of Proximate Emergency Robots (TROOPER)
User Interface (UI)
Virtual Robotics Challenge (VRC)
Worcester Polytechnic Institute (WPI)
Zero Moment Point (ZMP)

	List of Figures
	List of Tables
	1 Summary
	2 Introduction
	2.1 Collaboration, FOSS, and Partnership
	2.2 Simplicity and Autonomy

	3 Methods, Assumptions, and Procedures
	3.1 System Overview
	3.1.1 Robotic Hardware Components
	3.1.1.1 Atlas Mechanical.
	3.1.1.2 Atlas Computing.
	3.1.1.3 MultiSense SL.
	3.1.1.4 Robotiq Manipulator.
	3.1.1.5 POKEY Stick.
	3.1.1.6 VI Sensor.

	3.1.2 Software.
	3.1.2.1 Multi-Level Controller.
	3.1.2.1.1 Autonomic Layer.
	Hardware Components.
	Controllers.
	Real-time Services.
	3.1.2.1.2 Behavioral Layer.
	3.1.2.1.3 Reasoning Layer.

	3.1.2.2 Adaptive Perception.
	3.1.2.3 Communications.
	3.1.2.4 Shared World Model.
	3.1.2.5 User Interface.
	3.1.2.5.1 Tabs. Each UI tab focuses on a presenting a single aspect of the TROOPER system to the user. We detail the functionality of each tab.
	Panda Interactive Scene.
	3.1.2.5.2
	3.1.2.5.3 Sidebar Panes.
	Tasks. The tasks pane (1) lists all current reasoner-level tasks in the system. Single tasks may be added by clicking the plus sign button on the top right. (Tasks may also be added by right clicking on the robot in the interactive scene tab.) Task ch...
	Controllers. The controllers pane (2) lists all running controllers. By right clicking on these controllers, they can be started, stopped, or paused as on the controller monitor tab. The plus button in the upper right allows the user to start controll...
	Data Streams. The data streams pane (3) displays three different types of rows:
	3.1.2.5.4 Quick Action Bar.

	3.1.2.6 Simulation.
	Gazebo Simulation.
	IHMC Simulation Construction Set (SCS).

	3.2 Capabilities
	3.2.1 Controls.
	3.2.1.1 TROOPER Balancing Controller.
	Center of Mass Position and Posture Controller. The desired center of mass (COM) force is given by:
	Contact Force Distribution. Now that we have a desired wrench to apply at the COM, we need to find the contact forces at the feet that will produce it. The following is a brief review of multi-contact grasping.
	3.2.1.2 IHMC Whole Body Controller.

	3.2.2 Planning.
	3.2.2.1 Inverse Kinematics.
	Initial (Traditional) IK Approach.
	3.2.2.2 In general, the fastest method to solve inverse kinematics is to use a closed-form solution, which can be done as long as the manipulator has six or fewer degrees of freedom. This also immediately gives feedback as to the existence of a solu...
	Whole Body (Drake) IK. The primary restriction of our initial inverse kinematics pipeline was its restriction to solving a single chain and its inability to easily handle arbitrary constraints. It could handle solving for one end effector position, k...
	Interactive IK. We created the ability to pose the robot on the fly and give the operator real-time feedback on IK solutions prior to motion execution. This allowed for fine, detailed adjustment of robot poses. Additionally, we allowed clicking on a...
	3.2.2.3 Manipulation Planning.
	Task Space Regions.
	Object Decomposition. Complex objects are simplified and decomposed into simple primitive shapes: cylinders, spheres, and cuboids. Each of these simple shapes has an associated set of Task Space Regions that encode the types of allowed grasps. For e...
	3.2.2.4 Motion Planning.
	3.2.2.5 Footstep Planning.
	A* Footstep Planner.

	3.2.3 Perception.
	3.2.3.1 Localization – Point Cloud Registration.
	3.2.3.2 Mapping.
	3.2.3.3 Plane Detection
	3.2.3.4 Shape/Object Detection
	3.2.3.5 Fiducial Tracking

	3.3 DRC Task Solutions
	3.3.1 Driving.
	3.3.1.1 Driving Mechanism.
	3.3.1.2 Stereo Obstacle Detection and Mapping

	3.3.2 Vehicle Egress.
	3.3.2.1 Egress Mechanism
	3.3.2.2 Whole Body Egress Exit.

	3.3.3 Door.
	3.3.3.1 Door Detection.

	3.3.4 Valve.
	3.3.4.1 Valve Detection.
	3.3.4.2 Circular Trajectory for Turning Valve.

	3.3.5 Wall.
	3.3.5.1 Cutting Tool Detection.
	3.3.5.2 Cutting Tool Grasp.
	3.3.5.3 Tool Activation.
	3.3.5.4 Button Tracking and Stick Press.
	3.3.5.5 Cutting Tool Activation Detection.
	3.3.5.6 Circular Trajectory for Cutting.

	3.3.6 Terrain.
	3.3.6.1 Terrain Field Detection.
	3.3.6.2 Field Characterization.
	3.3.6.3 Footstep Planning.

	3.3.7 Stairs.

	4 Results and Discussion
	4.1 Approach to the Competition
	4.1.1 Driving.
	4.1.2 Egress.
	4.1.3 Door.
	4.1.4 Valve.
	4.1.5 Wall.
	4.1.6 Mystery Task.
	4.1.7 Terrain.
	4.1.8 Stairs.

	4.2 Competition Results
	4.2.1 Driving.
	4.2.2 Egress.
	4.2.3 Door.
	4.2.4 Valve.

	5 Conclusions
	6 References
	7 List of Symbols, Abbreviations and Acronyms

