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1 SUMMARY 

The motivation for the DARPA Robotics Challenge has been to develop robots and 
software capable of competent, semi-autonomous performance of tasks in a disaster scenario. 
Our experience on the DARPA Robotics Challenge began with the Virtual Robotics Challenge, 
where we wrote the software to allow a simulated Boston Dynamics Atlas robot to navigate 
rough terrain, drive a vehicle, and manipulate both a hose and valve.  We placed 8th in the 
competition held in June 2013, qualifying us to receive a physical Atlas robot. Four months after 
receiving the Atlas robot, we competed in the DRC Trials in December 2013.  Here, the robot 
had eight tasks: turning valves, opening doors, cutting drywall, driving a vehicle, climbing a 
ladder, manipulating a hose, handling debris, and traversing rough terrain.  Again, we placed 8th 
and secured a funded spot for the 2015 DRC Finals.   For the Finals, the robot had to complete 
simplified versions of the previous tasks in one continuous, hour-long run.  We designed and 
implemented a system that is autonomous, though with the ability to ask a human operator for 
guidance when necessary.  Lack of robustness in the underlying controls, as well as time lost on 
the driving task, resulting in our placing 18th in the DRC Finals. 

Team TROOPER is composed of researchers from Lockheed Martin Advanced 
Technology Laboratories, the University of Pennsylvania (Professors Vijay Kumar and Kostas 
Daniilidis), and Rensselaer Polytechnic Institute (Professor Jeff Trinkle). This document details 
our system and performance in the DRC Finals in June 2015.  Section 2 details our collaboration 
and design philosophy.  Section 3 details the hardware, control, planning, and perception 
capabilities of the system.  Section 4 discusses our performance in the Finals and Section 5 
presents conclusions. 

2 INTRODUCTION 

The DARPA Robotics Challenge galvanized the robotics community to build and demonstrate 
field-ready robots that can be remotely operated to perform tasks in a disaster scenario unsafe for 
human presence. We believe that more important than winning the DRC competition was 
engaging with its community of researchers, and building the technology foundation for systems 
with the capability of accessing and altering complex human-engineered environments. 

We believe that systems developed for the DRC provide the core capability necessary for 
continued research in advanced robotic platforms. These platforms are capable of operating in 
both human accessible, as well as otherwise inaccessible environments. They can also perform 
physical manipulation tasks that today require humans, and can one day replace the human in 
cases that would put them in harm’s way. Our continued research in autonomy, intelligence, and 
perception will enable these robots to be reliably supervised by humans to achieve these 
missions. 

2.1 Collaboration, FOSS, and Partnership 

We recognize that the challenges of intelligent automation and control of a humanoid robot are 
larger than a single research organization can hope to achieve in the near future. For this reason, 
we have focused on synchronizing our efforts with the rest of the robotics community to 
maximize our impact.  To do this, we identified and leveraged state of the art technologies to 
provide key capabilities, and we targeted our efforts on system integration and test as well as 
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research for key capability gaps. This required a continuous assessment of community research, 
as several key developments were produced during the span of the DRC program. 

To work effectively with the robotics community, we have adopted the open source 
Robot Operating System (ROS). ROS provides standards and practices that expedite the process 
of integration and testing of new software and hardware components.  As a relatively small team, 
we heavily leveraged existing ROS components for the Virtual Robotics Challenge.  As we 
proceeded on with the DRC Trials and later Finals, we decreased our reliance on stock ROS 
components and wrote our own.  For example, we initially used the ROS SMACH state-machine 
framework before writing our own behavior managing framework.  Additionally, we have 
wrapped existing ROS components in ways that add functionality, such as our adaptive 
perception manager, which provides easy methods to start, stop, and chain sequences of 
perception algorithms. 

The DRC teams using the Boston Dynamics Atlas robot have embraced the spirit of 
cooperation by sharing solutions to hardware challenges. Several of the Atlas teams have 
provided system components as Free Open Source Software (FOSS), and we have made use of 
and contributed to those initiatives. We would like to see these collaborations continue to grow 
to enable our organizations to solve challenging research problems. 

2.2 Simplicity and Autonomy 

Fully autonomous humanoid robots were not feasible to develop for the DRC. However, a 
heavily teleoperated robot requiring significant operator expertise, training, and cognitive burden 
would not have been suitable for most operations. These robots would have been too slow, and 
the scenarios would not always have been rehearsable. To speed up operations of remotely 
deployed robots, increased automation is required. The human operator must be able to trust the 
robot with making most decisions without a human in the action loop. 

To do this, we have designed a system that is meant to be autonomous, though with the 
ability to ask a human operator for guidance when necessary. This system design is intended to 
be platform agnostic; the philosophy and software components will later be applied to 
autonomous and unmanned platforms outside of humanoid robots. 
 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 

We begin by discussing our particular hardware solution, including both the DARPA-provided 
Atlas hardware and our own modifications.  We then detail our software solution, covering 
algorithms and capabilities pertaining to low-level control, planning, and perception.  Lastly, we 
detail which of the previous capabilities made their way into our competition-ready system and 
discuss our solutions on a task-by-task basis. 

3.1 System Overview 

The TROOPER system is designed to control the Atlas humanoid robot. Each arm of the robot 
can be mounted with a third-party end effector. Our left hand is equipped with a Robotiq 3-
fingered adaptive gripper, and our right hand with a custom sensor hand. The head has a 
MultiSense SL stereo camera from Carnegie Robotics which includes a spinning Hokuyo 
LIDAR. This sensor package is mounted with an electric motor to tilt up and down. We 
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integrated an additional VI-sensor from Skybotix to provide grayscale stereo vision to the left 
side of the robot for use in the driving task.  

The TROOPER software runs on the Boston Dynamics Perception Box onboard the 
Atlas, which contains 3 Intel Quad Core i7-4700EQ processors. These computers are connected 
to the peripheral devices (such as the hands and MultiSense SL head) through Ethernet. A 
wireless router onboard Atlas connects the Perception Box to a remote operator control unit 
(OCU) with some packet loss. The OCU runs the user interface software.  Some of the Atlas 
control software is replicated on the OCU in order to minimize data transferred over a low-
bandwidth connection. The overall system diagram is shown in Figure 1. 
 

 
Figure 1. The TROOPER System for the DRC Finals 

 

3.1.1 Robotic Hardware Components 
Most disaster relief scenarios occur in human-engineered environments. Typical elements seen in 
a human environment include doorways, narrow hallways, stairs and ladders. Some of these 
elements are incorporated into specific tasks within the DARPA Robotics Challenge. In order to 
complete tasks within a human engineered environment, we decided to use a robot with a human 
form factor. The strength of this approach is apparent when performing tasks such as walking 
over a cinderblock pile. This task causes many pitfalls for wheeled robots, but a legged robot is 
able to walk over obstacles and place its feet at desired locations. Furthermore, the way in which 
the robot completes a given task can easily take inspiration from how a human would approach 
the same task. The Atlas robot, shown in Figure 2, satisfied the human form factor as described 
above. It also has the strength and dexterity to complete manipulation-based tasks such as 
turning a valve or cutting through a wall. 
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Figure 2. Atlas Robot 

It was clear, however, that some modifications to the basic Atlas platform were needed to 
effectively compete in the DRC Finals. The robot itself comes with no standard set of hands. 
Instead, it was left up to individual teams to decide which set of manipulators they would use as 
end effectors. For the final configuration, the team elected to use a Robotiq 3-Finger Gripper on 
the left hand and a custom designed rod with accompanying sensors for the right hand. This 
configuration allowed for quick and robust solutions for the manipulation tasks.  

3.1.1.1 Atlas Mechanical. The Atlas robot developed by Boston Dynamics is a bipedal 
humanoid robot that stands approximately 6 ft. 2 in. tall and weighs 390 lbs. The robot includes 
30 actuated degrees of freedom. While most joints are hydraulically controlled, a select few are 
controlled with electric motors. The breakdown is shown in Table 1 and visually displayed in 
Figure 3. 

Table 1. Atlas Joint Descriptions 

Joint Name Degrees of Freedom Electric / Hydraulic 
Neck 1 Electric 
Back 3 Hydraulic 

Right Leg 6 Hydraulic 
Left Leg 6 Hydraulic 

Right Upper Arm 4 Hydraulic 
Left Upper Arm 4 Hydraulic 

Right Lower Arm 3 Electric 
Left Lower Arm 3 Electric 
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Figure 3. Atlas Joint Model 

On each of the Atlas’s wrists are 6-axis force/torque sensors as well as a 3-axis force/torque 
sensor in each of the robot’s feet. Additionally, there is a 6-axis IMU that sits in the robot’s 
pelvis cage. While testing before the Finals, the Atlas robot was equipped with a surrogate 
battery pack that would mimic the mass and center of mass of the actual battery pack. A battery 
emulator was connected to the robot via tether that would emulate the performance and profile of 
the battery. At the DRC Finals in June 2015, a 3.7kWh 165 VDC battery pack was attached to 
the robot to supply the robot with untethered power during each trial run.  

For safety, the robot was equipped with 3 emergency stops (E-Stop), as shown in Figure 
4. There exists one E-Stop on the back of Atlas, one wired E-Stop that would sit next to the OCU 
and a third wireless E-Stop that would be held by a testing assistant. These E-Stops could be 
engaged if the robot was ever in an unsafe or undesirable position.  

 

 
Figure 4. Robot Emergency Stops 
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3.1.1.2 Atlas Computing. The onboard computer system consists of three high performance 
computers and a closed hardware control box (provided and maintained by Boston Dynamics). 
No single computer was able to run the entire system due to the inherit complexity and number 
of peripheral components required. Each of the three computers runs a separate portion of the 
system (real-time whole body controller, perception computer, and autonomy computer). 
Accordingly, dedicated high speed links between each of the computers are used to communicate 
between components of the system. Each computer was also linked through a switch. While the 
outside connection was primarily used for communication from the robot to the user, it also 
allowed for a convenient way to debug and access each computer directly. 
 

3.1.1.3 MultiSense SL. The main perception sensor onboard the Atlas robot is the 
MultiSense SL sensor head, shown in Figure 5. Developed and maintained by Carnegie 
Robotics, this sensor package is connected to the frame of the robot via a one degree-of-freedom 
electric joint in the neck. This allows the operator to tilt the sensor head up and down in order to 
get a better understanding of the robot’s environment. There is unfortunately no pan degree-of-
freedom; instead, the robot must yaw at its waist to look left or right. 
 

 
Figure 5. MultiSense SL 

 
The sensor head includes a Hokuyo UTM-30LX-EW LIDAR on a rotating spindle to gather 
dense point clouds of the world. The MultiSense SL also outputs both stereo and monocular 
camera feeds. The real advantage of this sensor head is that most of the computationally 
intensive processes involved with collecting and processing perception data occur on an FPGA 
located inside the sensor. Specifically, the process of image rectification, stereo disparity 
mapping, and laser scan synchronization occur onboard, and are then output in an easy-to-use 
format. Furthermore, the MultiSense SL ships with a ROS-based API allowing for easier 
integration into the TROOPER system. The included API made it easy to not only receive 
perception data from the MultiSense SL, but also to change important onboard perception 
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parameters. For instance, the operator was able to turn on the illumination lights on the 
MultiSense SL when working in a dark environment or change brightness and contrast settings 
when working in an extremely light environment. This flexibility allows the robot to get useful 
information from the camera in a variety of work environments. 

3.1.1.4 Robotiq Manipulator. The Robotiq manipulator is a multi-finger underactuated 
industrial gripper. It provided an out-of-the-box solution to robustly grip arbitrary objects that fit 
within the hand itself. The gripper was also designed so that all of the contact surfaces are easily 
modified, which enabled a modification to turn on the rotary tool upon successfully grasping it. 
The two main downsides to this hand are its limited maximum aperture and its substantial 
weight. The small aperture is due to the limited range of motion of its fingers; the fingers in 
Figure 6 are shown fully open.  
 

 
 
We also found that when grasping an object that is not perfectly aligned in the palm of the 
gripper, the fingers will not exert the forces necessary to pull the object tightly into the center of 
the gripper. When manipulating the arm configuration, this can cause the object to shift in the 
hand and slip out of the grasp. While grasping objects, we command a cinching motion to the 
fingers that constantly relaxes and tightens the fingers at 1 Hz. This will enhance the grasp of an 
object when orientation shifts move it. 

The Robotiq gripper proved to be useful in the driving, door, and wall task. During 
driving, this hand held onto the throttle mechanism (as described later) and was used to 
accelerate or decelerate the Polaris Ranger vehicle. In the door task, the gripper was put into a 
closed position allowing the end effector to push down on the door handle and unlatch it. In the 
wall task, the Robotiq gripper with 3D printed attachment was used to clench and activate the 
rotary tool. 

Figure 6: Robotiq 3-Finger Manipulator 
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3.1.1.5 POKEY Stick. The Pointed Object for Kinematic Extension without Yielding 
(POKEY) stick, shown in Figure 7, is a custom designed hand designed and built at Lockheed 
Martin ATL. This manipulation device provides both additional sensor information and 
capabilities to robustly complete several challenge tasks. The POKEY stick is equipped with an 
IDS UI-1005XS-C small form factor USB camera. The camera is positioned within the hand so 
that the center of camera frame is aligned with the stick. This design makes tasks involving 
visual servoing much easier to accomplish. 
 

 
Figure 7. POKEY Stick 

Since the camera is mounted at a more maneuverable position (i.e., end effector of the 
hand) than the MultiSense SL, the operator is able to use the hand camera stream to get 
perspectives of the environment not otherwise available. Using the camera in this way becomes 
very useful when performing manipulation work (for instance, when opening a door) that would 
otherwise occlude the view of the MultiSense SL. In addition to the available camera stream, the 
POKEY stick also includes a laser range finder to determine distance to an object, a force 
sensitive resistor to detect contact, and a microphone to determine if the drill has been activated. 
These peripheral sensors are connected to a Teensy microcontroller, which relays the sensor 
streams to one of the onboard Atlas computers via USB. The four main tasks in which the 
POKEY stick proved to be useful were the driving, valve, wall, and mystery tasks.  

While driving, the POKEY stick allowed a connection to the steering mechanism with 
little slip. The setup allowed for the steering of the vehicle by only moving one joint in the wrist. 
More information about the driving mechanism is available in the following section. The 
POKEY stick was also valuable in the valve task; aligning one single rod in between the spokes 
of the valve was determined to be a quicker and more repeatable process than aligning a hand. 
By inserting the POKEY stick into the valve until the base of the hand touched the outer rim of 
the valve, the attached rod would remain in the valve throughout the turning motion. In the wall 
task, the cutting tool can be activated using a visual servoing approach to find the button with the 
hand camera then steadily move towards it with the rod until the force sensors and microphone 
indicate that the drill is on. Finally, the POKEY stick is useful in several of the mystery tasks 
including pulling an emergency shower chain or opening an electrical box. 
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3.1.1.6 VI Sensor. Skybotix's VI Sensor, shown in Figure 8, is a stereo camera system with 
an onboard FPGA currently used to stream both cameras and onboard sensors over a common 
interface. In the future, the FPGA will be used to calculate a disparity map and other vision 
elements to alleviate the load on a CPU. The sensor was oriented to look out the left of the robot, 
primarily for driving. This hardware addition is used to alleviate the fact that the MultiSense SL 
cannot pan left and right. Since the driving position of the robot is perpendicular to the direction 
of motion of the vehicle (to fit Atlas on our deployment slide), it was determined to be necessary 
to add another perception sensor to the Atlas in order to get a forward view of its environment. 
The slim profile of the VI allows for easy mounting within the protective cage that surrounds the 
MultiSense SL. 

 
Figure 8. VI Sensor 

3.1.2 Software. Robotic systems have great potential to assist humans in unsafe 
environments such as natural or man-made disaster sites.  Their utility has already been 
demonstrated as rescue robots (Murphy, Kravitz, Peligren, Milward, & Stanway, 2008) and as 
bomb disposal robots (Carey, Kurz, Matte, Perrault, & Padir, 2012).  However, these systems all 
relied heavily on a human operator to manually control a robot.  Recent advances in sensing and 
autonomy have allowed for semi-autonomous systems (Chaomin, Yang, Krishnan, & Paulik, 
2014)(Zhang, Lee, Yang, & Mylonas, 2014), relieving some of the cognitive burden on the 
human operator.  Robotic systems will undoubtedly continue to become less reliant on 
teleoperation; however, due to the unstructured nature of real-world environments and the 
complexity of the required tasks, it is impractical to expect fully autonomous systems in the 
foreseeable future.  The desired amount of human intervention and guidance is highly dependent 
upon the situation and will likely change throughout an operation.  This has prompted research 
into the area of sliding levels of autonomy (Desai, Ostrowski, & Kumar, 1998) (Goodrich & 
Schultz, 2007) whereby a human operator may have varying levels of influence on a robotic 
system.  Another related field of research is mixed-initiative interaction (Cacace, Finzi, & 
Lippiello, 2014) (Lomas de Brun, et al., 2008) in which the human and the robot collaboratively 
achieve goals by leveraging each other’s strengths. 

The TROOPER software system implements a paradigm that we refer to as human-
guided autonomy.  Human-guided autonomy incorporates ideas from both sliding levels of 
autonomy and mixed-initiative interactions.  It further extends these concepts by incorporating a 
notion of confidence, which allows the robot to intelligently reason over multiple potential ways 
to achieve a goal, and to realize when it is appropriate to request human intervention.  Every 
component in the TROOPER software framework, shown in Figure 9, was designed to support 
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human-guided autonomy. All of the operator control unit components ran on a single desktop  
computer while the robot control unit components were split between two of the Atlas’s onboard 
computers.  We wrote all portions of the human-guided autonomy framework as part of the 
DARPA Robotics Challenge. 

 

 
Figure 9.  Software Architecture Diagram 

 

3.1.2.1 Multi-Level Controller. The multi-level controller incorporates low-level 
controllers, high-level behaviors, and goal-based reasoning into a hierarchical framework that 
promotes re-usability and allows for operator intervention at all levels of the hierarchy.  There 
are three distinct layers as shown in the overall software diagram above (Figure 9). Figure 10 
shows some of the components from each layer that may be involved in commanding the robot 
to “grasp a drill”.  The interconnectedness of the layers can be seen as well as some of the 
knowledge base rules that would have been used to automatically generate the given task chain. 
Knowledge base rules and monitors are used in the reasoning layer to generate a sequence of 
tasks which dictate the parameters that are passed to the behaviors and controllers in the 
behavioral and autonomic layers. 
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Figure 10. Multi-Level Controller Layers 

Each of these layers is extensible using plug-in components.  Multi-level controller plug-ins are 
only visible to the layers that are above them in the hierarchy.  Most interactions with the multi-
level controller are through the reasoning layer; however, the operator has the ability to interact 
directly with plug-ins in every layer. 

3.1.2.1.1 Autonomic Layer. The lowest layer of the multi-level controller contains plug-ins 
that deal most directly with the hardware, or simulated hardware.  Three different types of plug-
ins can be found at this layer: hardware components, controllers, and real-time services. 

Hardware Components. Most robots consist of multiple pieces of hardware, each with its own 
control interface.  For instance, the Atlas robot has a unique control interface for the MultiSense 
SL head sensor as well as each different type of hand. Every individual type of hardware that has 
a unique control interface is represented by a corresponding hardware component in our system.  
A hardware component is responsible for sending commands to the hardware and receiving 
observed data from the hardware.  On startup, each component registers itself with a generic 
robot object which makes the individual hardware components available to the rest of the 
system.  This modular design lets us rapidly switch between various hardware configurations and 
allows the rest of the system to remain mostly platform agnostic.  We created the following 
hardware component plug-ins for the DRC: 

• BDI Atlas 
• IHMC Atlas 
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• MultiSense SL head 
• iRobot hand 
• Robotiq hand 
• Sandia hand 
• SRI hand 

Controllers. Controllers are responsible for generating joint-level commands and passing them 
to the appropriate hardware components.  Since some controllers may be designed for a specific 
hardware component, each controller has the ability to specify one or more required hardware 
components.  If these hardware components are not available on startup, the controller will not 
be initialized. Multiple controllers may be active at any given time so to avoid conflicts, a 
controller is required to reserve a joint before commanding it.  When multiple controllers attempt 
to simultaneously reserve the same joint, a priority scheme is used to determine which controller 
is allowed to take ownership of the joint.  We used the following controllers during the DRC: 

• Balancing 
• Boston Dynamics Proxies (locomotion, manipulation, stand prep) 
• Cartesian Velocity 
• Hand Cinching 
• IHMC Proxies (locomotion, balancing) 
• Maintain Current Joint Position 
• Execute Joint Trajectory 

Real-time Services. Many of the controllers in the autonomic layer have overlapping 
requirements, such as filtered IMU and force torque data from the robot.  Additionally, the 
autonomic layer is responsible for providing information such as joint states and robot pose to 
the rest of the system.  These tasks are accomplished using plug-in services.  The services 
provide a simple method of broadcasting information at rates other than that of the autonomic 
layer’s main control loop.  These services also allow for the consolidation of any computations 
that are required by multiple controllers.  We used the following services during the DRC: 

• IMU Filtering 
• Force Torque Filtering 
• Joint State Publishing 
• TF (Transform) Broadcasting 
• Robot Pose Publishing 
• Robot State Encoding 

3.1.2.1.2 Behavioral Layer. The behavioral layer contains a collection of simple actions and 
perception routines, all of which are referred to as behaviors.  We have implemented behaviors 
as hierarchical state machines using Boost Meta State Machine (Henry, 2009).  Each behavior is 
parameterized, allowing it to be customized for the particular task at hand.  For instance, in 
addition to a 2D goal, the Walk To behavior accepts parameters such as swing height, foot 
spacing, and step distance.  Behaviors utilize controllers from the autonomic layer as well as 
perception streams from the adaptive perception manager.  Multiple behaviors can be executed in 
parallel, assuming that the controllers they utilize do not conflict with each other. 

Components in the behavioral layer often require information about the current state of 
the robot.  This information is made available through an object called the Robot Model.  The 
Robot Model is a kinematic representation of the robot that is updated from joint state messages 
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that are published from the autonomic layer.  Components can use the Robot Model to monitor 
the current state of the robot as well as to plan for feasible robot configurations.  The Robot 
Model provides inverse kinematics utilities, access to the robot’s pose in the world, and 
convenience methods for determining its center-of-mass when in a given configuration.    

3.1.2.1.3 Reasoning Layer. The reasoning layer utilizes behaviors from the previous layer to 
achieve complex goals.  A behavior can be thought of somewhat like a re-usable template.  A 
specific instantiation of behavior, whose parameters have been specified to achieve a particular 
goal, is something that we refer to as a task.  To achieve a complex goal, one that itself contains 
multiple sub-goals, several of these tasks must execute in sequence.  We refer to these sequences 
as task chains. 

Several components are involved in building and executing task chains.  These include: 
A knowledge base with information that allows a task chain to be automatically generated for a 
given goal; monitors which continuously check for conditions that indicate that goals, or sub-
goals, have been satisfied; a reasoner, which interacts with the user interface to generate and 
modify task chains, and then interacts with the behavioral level to manage tasks during 
execution. 

The knowledge base, which is defined in a configuration file, contains rules, which 
describe the pre-conditions and post-conditions of all tasks.   For instance, the detect drill task 
has a pre-condition that the “robot is in a pose that allows it to see drill x”, and after executing 
this task, the post-condition will be that “drill x’s pose is known”.  Multiple pre-conditions can 
be defined for a task but the knowledge base currently only supports a single post-condition for 
each task.  These pre-conditions and post-conditions eventually become goals and sub-goals in a 
task chain.  The knowledge base also contains information that maps variables in pre-conditions 
to corresponding variables in post-conditions.  In the previous example, there is only a single 
variable, “x”, which identifies a specific drill, but many rules contain multiple variables.  These 
variable mappings are used to automatically propagate behavior parameter values from the top-
level goal provided by the operator to all of the sub-goals in a task chain.   

Every goal and sub-goal in a task chain has an associated monitor.  Monitors are created 
when a task chain is being built and they persist for the lifetime of the task chain.  There are 
multiple flavors of monitors but, once created, monitors continuously evaluate their conditions.  
This allows a task chain to be opportunistically modified if a sub-goal becomes satisfied earlier 
than expected.  Conversely, if a pre-condition which had previously been satisfied becomes 
unsatisfied during execution, additional sub-goals can be added to the task chain to deal with this 
contingency. 

The reasoner is the main executive of the reasoning layer.  It builds task chains and then 
manages them throughout their lifetimes.  Task chains are actually composed of a combination 
of goal links and task links.  A goal link represents a pre/post-condition from the knowledge base 
and a task link represents the task that will be executed to achieve the associated goal. 
An operator has the ability to create a custom task chain by manually specifying all of its steps, 
in which case the reasoner simply handles execution of the task chain.  Alternatively, the 
operator can send the reasoner a high-level goal, and the steps in the task chain will be 
automatically inferred by the reasoner.  In either case, the operator always has the ability to 
modify a task chain once it is created.  Task chains are automatically inferred using a process 
similar to backward-chaining (Russell & Norvig, 2003, pp. 337-344).  Given a high-level goal, 
the knowledge base is queried for all rules whose post-condition matches the goal.  Monitors are 
created and evaluated for the pre-conditions in these rules, and if any of the pre-conditions are 
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unsatisfied, the process is repeated with the pre-condition as a sub-goal.  This continues until a 
rule is reached whose pre-conditions are all satisfied.  Figure 11 shows an example of how this 
process may work to generate a task chain for picking up a drill.  Label (a) shows a sample 
knowledge base. In (b) a goal link and monitor is created for the given goal of “holding drill”. In 
(c), because the monitor is unsatisfied, a matching post-condition is found in the knowledge base 
and the corresponding task is added to the chain along with goals and monitors for the 
corresponding pre-conditions. Lastly, (d) shows the process is repeated until every sub-goal is 
either satisfied or has a child task which will be used to satisfy it. 
 

 
Figure 11. Reasoner Task Chain  

When multiple rules are found with the same post-condition, they are both added to the task 
chain as children of the same goal link.  This fork in the chain represents a decision point, with 
both sub-chains capable of achieving the same goal.  Once the entire task chain has been built, 
all of these decision points are evaluated and the optimal path through the chain is presented to 
the operator for approval. The optimal path is determined by calculating a confidence value for 
each goal link and then, at each decision point, selecting the sub-chain that results in the highest 
confidence that the overall goal will be achieved.  Confidence for a particular goal link is 
calculated using Equation (1).  Where Cmonitor is the confidence that the goal condition has 
actually been satisfied, Csub-goals represent the confidence values of all pre-conditions of the given 
goal, and Crule is a pre-determined measure of the confidence that the goal can be achieved if all 
of the pre-conditions have been met.  The rule confidence is currently specified in the knowledge 
base, but future research should enable this value to be learned over time.  
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During execution of a task chain, as sub-goals are completed and monitors become satisfied, goal 
link confidence values are updated.  If the updated confidence values result in one of the 
currently selected sub-chains becoming sub optimal, the reasoner is able to dynamically modify 
the task chain.  The reasoner also uses these updated confidence values to determine if it is safe 
to proceed with the next task in the sequence or if confidence has dropped too low and the 
operator should be asked to intervene. 

Interventions can also be initiated by the operator.  For instance, if the robot is attempting 
to unlatch the door and the operator notices that the robot is not quite aligned with the door 
handle, the operator can pause the task chain, and then either modify existing task parameters or 
manually teleoperate the robot’s hand into a new start position before unpausing the task chain 
and allowing the robot to continue.  Another way that the operator collaborates with the robot is 
by updating objects that exist in the world model.  Many of the behaviors that the robot performs 
are with respect to some object in the world.  For instance, the goal for a walk to behavior may 
be relative to a door that has been identified in the shared world model.  The operator can 
influence this behavior by simply updating the pose of the door in the shared world model.  This 
update will automatically trigger an update to the parameters of all relevant behaviors in an 
existing task chain.  
 

3.1.2.2 Adaptive Perception. Traditionally autonomous systems follow an Observe-Orient-
Decide-Act (OODA) model, shown in Figure 12. This paradigm involves receiving information 
about the state of the world from raw sensors then continuously processing the data to determine 
how to effectively control actuators to modify the world and transition into a new state. Through 
continuous perception and action, the system converges towards reaching and observing its goal 
state. 
 

 
Figure 12. The Observe-Orient-Decide-Act (OODA) Loop Decision Cycle 

This paradigm has worked well for autonomous systems with a small responsibility set, where 
the number of goals is relatively small (e.g. less than 50). From a perception standpoint, the 
autonomous system needs adequate sensing to correctly recognize the world state to determine 
progress towards and completion of a goal. For a small number of goals, it is very common for 
perception to be achieved through a single sensing modality (e.g. vision) with a high degree of 
overlap and reuse of algorithms that can be engineered into the system’s processing. It is also 
common to use highly specialized sensors designed for observation of specific events, 
eliminating the need for complex processing by directly observing the quantity of interest. 
However, multi-mission autonomous systems that are capable of a diverse set of actions and 
goals will have perception needs with varying degrees of overlap, and redundantly processing all 

Actuation Sensing 
Observe Orient Decide Act 
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of the tasks simultaneously becomes computationally intractable with onboard computing 
resources.  

We have observed in nature that sensing is context-driven. For example, when walking 
on the streets of a crowded city, a person will assume the ground is flat pavement and can place 
footsteps open-loop, while focusing their attention of observing the motion of other people and 
predicting their trajectories to avoid collision. In another context, a person hiking through the 
woods does not need to predict motion of other actors, but needs to focus attention on 
classification of terrain and precise placement of footfalls. We believe that autonomous systems 
need to similarly be context-driven in deciding how to process sensor data (as shown in Figure 
13), and adaptive to identify and exploit redundancy in concurrent processing.  We also wrote 
the adaptive perception manager as part of the TROOPER effort.  The underlying processing 
modules utilize functionality found in ROS, but the perception manager is a new creation. 

 

 
Figure 13. Context-Driven Observation Model 

 
Our adaptive perception system contains a centralized perception server responsible for 

managing sensor processing to generate information streams at the request of perception clients. 
The perception clients can request and subscribe to data streams. They are provided with a 
mechanism for describing the processing required to generate their data, including the sensor 
source(s), algorithms, and parameters. The perception server dynamically generates the 
necessary processing chain, reusing existing computation when possible, and publishes the 
resulting data for the clients to consume. The client-server mechanism is illustrated in Figure 14. 
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Figure 14. Adaptive Perception Client-Server Mechanism 

A suitable analogy to the perception system is that of a restaurant. Customers at a 
restaurant are given a menu of items that can be served, along with a finite set of parameters that 
can be adjusted (e.g. substitute French Fries for a side salad). The kitchen staff is responsible for 
servicing these requests, and they optimize their kitchen workflow based on the current set of 
orders. They allocate their time and resources across multiple items, and duplicate tasks when 
possible. For example, French Fries will likely be replicated across multiple orders. 

The perception server is responsible for executing all sensor data processing for a system. 
On startup, the server initially executes only a 1 Hz spin cycle to check for incoming stream 
requests and publish server status. When a perception client requests a stream, the request 
describes the input stream name(s), modules to process on the stream(s) along with their 
parameters, and the desired rate of the resulting data. If needed, the server will subscribe to the 
data stream from the sensor, instantiate processing modules with the requested parameters, and 
publish the requested resulting data.  An example flow can be seen in Figure 15.  The perception 
client requests Input 1 processed by Module 2 and Input 2 processed by Module 1.  The 
perception server creates the subscribers, processing modules, and publishers if they do not 
already exist, otherwise it will use the existing streams.  From the request, the Server also knows 
that Module 2 requires both Input 1 and Input 2 to function. 
 

 
Figure 15. Example Processing Flow inside the Perception Server 
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Internally, our perception server executes processing modules in separate threads. These 
threads pass data between one another through streams. Streams contain perception data in raw 
or processed forms along with meta-data. Because all of the modules share the same process, 
their threads can share the data in their streams by maintaining locks rather than copying 
memory. This also avoids the need to serialize data for intra-process communication, which is 
generally an expensive operation for point clouds and camera images. Streams maintain count of 
the number of modules and publishers that are listening, and modules will automatically 
deconstruct their threads when all output streams have no listeners. 

The timing of threads in the perception server maintains regular synchronization despite 
variability in processing time through use of condition variables. Condition variables are objects 
that block the calling thread until notified to resume. When a module or publisher listens to a 
stream, it passes its condition variable to a list maintained by the stream. When a subscriber or 
module updates the data in a stream, it notifies the condition variable of all listeners. This 
guarantees that the thread of every listener will become active when new input data is available. 
However, when woken up early, our threads will choose to go back to sleep for the remainder of 
their cycle time to maintain their desired rate. The alternative would be to blindly spin at the 
desired rate, potentially processing old data on late arrivals. This event-based throttling 
framework ensures regularity in data processing rates in complex multi-threaded processing 
chains. Shown in Figure 16, the timing system is throttled to maintain steady timing across 
arbitrarily large multi-threaded processing chains with low latency. 
 

 
Figure 16. Event-Based Timing System 

For distributed systems, rather than a single perception server, we expect to develop a 
mechanism for multiple servers to coordinate their processing. Each server may have some 
subset of sensors available locally, while others can be accessed by requesting streams from 
another server. In bandwidth restrictive networks, they will need to use compression modules 
and other techniques to minimize the size of the stream that is sent through the network. There is 
also the possibility that these servers are separated from an end user by a restrictive network. For 
this case, we developed a perception associate as shown in Figure 17. This is a light-weight 
variant of the perception server that is useful for building streams on behalf of a human operator. 
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Figure 17. Framework Scales across Distributed Sensing and Computing Architectures 

 
Importantly, the adaptive perception system contains a large number of perception modules, 
ready to process any type of sensor data produced within the TROOPER system and be chained 
as requested by a perception client. The available perception modules are collected in Table 2 
below. 

Table 2. List of Perception Modules Developed for DRC, Sorted by Category 
Point Cloud 

Utilities Robot Self Filter Point Cloud 
Coloring ROI Crop Scan Assembler Downsampler 

Localization Point Cloud 
Registration 

Visual 
Odometry    

Mapping OctoMap Traversability Height Map   
Segmentation Plane Fitting Clustering    

Tracking JPL Fiducials Alvar Markers    
Detection Door Valve Cutting Tool Tool Button Terrain Field 

Compression Octree H.264 JPEG Image Patches Point Cloud 
Sampling 

 

3.1.2.3 Communications.  DARPA specified the allowed communications between the 
robot, optional field computers, and operator stations as shown in Figure 18.  The Atlas robot 
maintained bidirectional 300Mbps wireless communications with an access point.  At this point, 
an optional field computer could be placed; we chose instead to keep all of our robot-side 
computation onboard the Atlas platform. Two logical links were provided between the robot 
control unit (RCU) and operator control unit (OCU) networks, keyed by UDP port number. The 
first logical link is intended for low bandwidth telemetry and robot control data and is a bi-
directional connection limited to 9600 bps. The second logical link is intended for high 
bandwidth sensory data from the RCU to the OCU unidirectionally at 300 Mbps.  
 Beginning a run, and until the robot had passed through the door to the simulated indoor 
environment, link 3 functions without blackout.  Once the robot is through the door, the 
unidirectional link operates in isolated, intermittent one second bursts.  Blackouts between bursts 
vary in length, but begin at approximately 30 seconds in length and decrease in time as the run 
continues.  At 45 minutes into a run, the blackouts decrease to zero and the unidirectional link 
functions unimpeded. 

Perception Server 1 Perception Associate 

Perception Server 2 
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Figure 18. DRC Finals Communications Setup 

 
ROS provides a communications API designed to deliver information between well 

connected components of a robot. However, the underlying network protocol is not well suited 
for the poor connectivity between RCU and OCU within the DARPA specified communications 
setup. In order to allow ROS messaging to serve the whole TROOPER system, we split ROS 
cores between RCU and OCU and then bridge the gap with the TROOPER communications 
manager. This network protocol bridge uses a combination of reliable and unreliable protocols 
on top of UDP to connect ROS messaging between the RCU and OCU. The TROOPER 
communications manager adds robustness to the connection of the links between RCU and OCU 
allowing reconnection without interruption should either side need to be restarted. The 
communications manager maintains channels that correspond to ROS topics and the fair queuing 
of messages from different topics. 

In addition to link level control, the parameters of the DRC Finals resulted in the need for 
heavy compression and conservation of bits. The control data is compressed to minimize 
bandwidth consumption. For example, joint position data from the robot is represented by 8-bits 
per joint, providing nearly 1 degree resolution for most joints. We also use deterministic 
planning mechanisms so that both the operator and robot can generate the same motion plan, and 
only the start, goal, and plan label need to be communicated. 

Our perception data is separated into pieces that individually contain all necessary meta-
data with less than our 1440 byte payload MTU size. This allows data to reach the operator even 
in the presence of severe packet loss. For example, our camera images are separated into patches 
that are at most 20 by 20 pixels, and each of these patches contains meta-data for the size of the 
complete image, as well as the location of the patch relative to the image. Thus, even if the 
operator does not receive all of the data packets, they are able to view the parts of the image that 
were received. We randomize the order of transmission to minimize the spatial correlation 
between lost packets.  The resulting image, despite heavy packet loss, is shown below in Figure 
19. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
21 

 
Figure 19. Image Blocks 

3.1.2.4 Shared World Model. Controlling a robot using task-level commands necessitates a 
symbolic language that describes the robot’s environment and can be used by the human to 
identify objects that the robot should interact with.  This allows the human operator to specify a 
task such as “pick up the drill” and the robot to understand what a drill is and where it exists in 
the world.  For our purposes, this symbolic language took the form of ROS messages.  The role 
of the shared world model is to facilitate a process in which the robot and the human 
collaboratively refine a shared view of the robot’s environment. 

A robot with perfect perception capabilities could simply tell the human operator what is 
in its world. However, this is not possible with current technology.  Conversely, it is not 
desirable to place the burden of interpreting sensor data solely on the human.  The shared world 
model allows for collaboration between the two.  For instance, it is possible for the robot to 
provide an initial estimation of an object’s pose and for the operator to simply refine that 
estimate.  The shared world model is essentially a distributed data store whose key feature is a 
mechanism for resolving conflicts between the robot's view of the world and the human's view of 
the world.  The TROOPER system contained two instances of the shared world model: one on 
the operator control unit and one on the robot.  Each instance consists of multiple layers as 
shown in Figure 20. 

 
Figure 20. The World Model Sync Process 

Changes to the robot's view are added to the robot world model while changes to the operator's 
view are added to the operator world model.  These views are then shared with the other world 

Operator World Model Robot World Model

Operator View

Robot View
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model instance through a syncing process.  After syncing, both instances will contain identical 
operator and robot views.  Whenever another system component, such as planning or collision 
detection, requests information about an object in the shared world model, the operator and robot 
views are merged together to provide the shared view of that object.  In the simplest case, the 
merging process is simply a union of the two views.  When there is a conflict between the 
operator and robot view for a particular object, however, one of several merging strategies must 
be employed.  Currently these strategies include: 

• Priority is given to whichever layer is currently specified as the “authority” for a given 
object. 

• Priority is given to the most recent update. 
The currently designated “authority” for a particular object can be specified at any time.  For 
instance, if an operator modifies the orientation of an object that was detected by the robot, the 
authority would be set to human.  However, if the perception system then begins to track the 
object, the robot would once again become the authority. 

The contents of the shared world model are not restricted to physical objects in the world.  
Any type of data that may be modified by both the human and the robot is a potential candidate 
for inclusion in the shared world model.  At the time of the Robotics Challenge Finals, the shared 
world model contained objects (drills, doors, walls, etc...) as well as information about the slope 
of cinder blocks and the status of monitors that are used by our high-level reasoner to coordinate 
task sequences.  

3.1.2.5 User Interface. As a practical interface, the UI offers direct windows to important 
parts of the multilevel controller, adaptive perception manager, and world model. It gives the 
user full input into the reasoner, enabling construction of tasks and task chains. It informs the 
user about the state of the controller manager: the running controllers and actively controlled 
joints. It renders the state of the world model and the published ROS topics of the adaptive 
perception manager: renderings of known objects, point clouds, and other 3D visualization data. 
These facets combine to allow the user to be an effective actor in a dynamic human-guided 
autonomy system.  The UI is our own creation as part of the TROOPER effort, utilizing the 
Panda3D open source rendering engine and Qt libraries. In retrospect, we would have saved 
development effort by instead modifying the existing ROS visualization tools (rviz) rather than 
pursuing UI and rendering development from scratch. 

The UI was designed to maximize essential concepts pertaining to the user experience: 
• Direct – The UI presents information as quickly and straight-forwardly as possible. 
• Evolving – The UI is meant to be updated quickly as new features are added or modified. 
• Simulating – The UI provides previews of motion plans and expected odometry 

whenever possible. The user is able to preview what the system believes will result from 
the commands it is given. 

• Partitioned – The UI is removed from processor-intensive features whenever possible. 
Data is read from ROS topics that are generally available. Most dialogs send command 
information directly to a controller or manager on the robot. 

• Analytical – The UI should provide as much data as possible in such a way that informs 
the user. 
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• Intelligent – The UI helps the user with more complex concepts such as task chains and 
the perception pipeline with graphical cues and presetting parameters based on 
contextual knowledge. 

• Robust – The UI is not dependent on connection to the robot and vice-versa. Crashes on 
either side are not to affect the other. 

These concepts drive toward the goal of streamlining the human aspect of human-guided 
autonomy. The user must have as much information as possible about what actions the robot 
believes it will undertake while still interfacing with an interface removed from the robot system.  

The UI utilizes a tabbed main view, a side pane, and a full bar of quick actions. Tabs are 
comprehensive representations of a single aspect of the TROOPER system. For instance, the 
Interactive Scene tab shows the current kinesthetic and visual knowledge of the robot and has 
shortcuts to planning based upon this information. The Controllers tab shows the lower-level 
perspective of which control algorithms are running and on which actuators. Combined, these 
tabs could flood the user with information that is irrelevant to their current focus, so only one is 
shown at a time. The side pane lists active processes running on the robot: task chains/behaviors, 
controllers, and telemetry data being parsed. All of these subsections possess shortcuts to do 
important actions directly on these processes (e.g. stopping the MultiSense SL streaming data) or 
initialize new ones. The quick action bar focuses on making certain immediately needed 
functionality accessible in one or two clicks.  

Typically, tabs are spread across two windows with the side panel and quick action bar 
duplicated on both. The secondary window contains tabs that focus on analysis and system 
information, i.e. the Bandwidth tab or the Controllers tab. The primary window contains tabs that 
focus on direct user interaction, the Interactive Scene and World Model tabs. This philosophy 
means that the user can glance at the secondary window to supervise the lower-level system 
while utilizing the primary window to direct the robot. No matter where the user has focused 
their attention, they can quickly access immediate concerns via the side pane and the quick 
action bar.  The images in this document show the UI elements combined onto a single screen for 
easier reading.  Figure 21 shows the combined UI window, with callouts for the tabs (A), side 
panel (B), and quick action bar (C).  The annotated UI elements are also gathered in Table 3. 
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Figure 21. The UI with Annotated Elements 
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Table 3: List of Annotated UI Elements 

Annotation Description 
A1 Controller Monitor Tab 
A2 Adaptive Perception Manager Tab 
A3 Image Streams Tab 
A4 Bandwidth Monitor Tab 
A5 Subscription Management Tab 
A6 Logging Tab 
A7 Panda Interactive Scene Tab 
A8 World Model Tab 
B1 Tasks Sidebar Pane 
B2 Running Controllers Sidebar Pane 
B3 Data Streams Sidebar Pane 
C1 Panda View Interaction Quick Action 
C2 Panda View Presets Quick Action 
C3 Stand Up Quick Action 
C4 Hand Control Quick Action 
C5 Insert World Model Object Quick Action 
C6 Camera Management Quick Action 
C7 World Model Synchronization Quick Action 

3.1.2.5.1 Tabs. Each UI tab focuses on a presenting a single aspect of the TROOPER system to 
the user.  We detail the functionality of each tab. 

Panda Interactive Scene. The interactive scene tab allows the user to view the robot, live sensor 
feeds, world model objects, and previews any planned or pending robot motion.  It uses the 
Panda3D open source rendering engine for display. In conjunction with the various task sidebar 
panes mentioned later, this view allows the user to direct the motion of the robot, from placing 
footsteps, to indicating objects to grasp, to posing the robot by dragging targets for its end 
effectors. 

The rendering view can be changed through mouse commands and options in the quick 
action bar. The robot is always rendered at its position in the world frame with its joints in the 
configuration currently found in the RobotModel. There is a semi-transparent ‘ghost robot’ 
which shows a desired robot location.  When generating motion plans, the ghost will cycle 
through the plan until the operator approves or rejects the plan. The rendering features 
visualizations for ROS message topics such as point clouds, cost maps, OctoMaps, and convex 
hulls along a 2D plane. These renderers can be turned off and on through the Data Streams pane 
in the sidebar. Additionally, certain visual aids for the operator will be displayed when 
appropriate actions are being used or manually turned on: There is a semi-cylindrical “shield” 
that shows the limits of manipulator reachability, a variety of interactive markers for positioning 
objects and end effectors, footsteps that show a created walking path, and a pyramid-like line of 
sight indicator.  

When running the robot, the operator will spend the vast majority of his or her time with 
this tab open. The interactive scene is shown in Figure 22. 
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Figure 22. The Panda Interactive Scene 

 
World Model. The world model tab is a simple view of the current list of world model objects 
and their properties. It shows the name of the object, its pose in the world reference frame, 
whether the human or robot has most recently updated that object in the shared world model, and 
which hand, if any, the object is attached to. It is mostly used for ad-hoc debugging.  The world 
model tab is shown in Figure 23. 
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Figure 23. The World Model Tab 

 
Controller Monitor. The controller monitor tab displays statistics from the controller manager 
(update rate, battery capacity, and current operating mode) as well as allowing modification of 
many of its settings. It allows the user to enable or disable the hydraulics, change the desired 
pump pressure, switch pose estimation modes, and transition between different controller states. 
It also displays the ownership, use state, and priority of the robot’s joints in the controller 
manager. Many of the initial commands at startup are set through this panel. The Controller 
Monitor is shown in Figure 24. 
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Figure 24. The Controller Monitor Tab 

 
Adaptive Perception Manager. The adaptive perception manager tab shows statistics published 
from the adaptive perception manager. It provides three categories of information: a table of 
sensor streams (topic, type, rate, and publishing flags); a table of active perception processing 
modules (id, type, input topics, and output topics); and a network graph showing how the streams 
and modules connect. Visualization of certain sensor streams in the interactive scene tab can be 
turned on and off via right clicking the corresponding component on the network graph. The 
adaptive perception manager tab is shown in Figure 25. 
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Figure 25. The Adaptive Perception Manager Tab 

 
Image Streams. The image streams tab allows the operator to view the various image streams 
that the robot’s sensors capture. A simple dropdown box allows the user to select which stream 
should be rendered. This tab is used during driving as the primary source of information.  It is 
also used during manipulation and locomotion as a supplement to the interactive scene – 
typically the left screen will display the image stream and the right will have the interactive 
scene.  This allows the operator to teleoperate or diagnose reasons for an automated step to fail.  
The image streams tab is shown in Figure 26. 
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Figure 26. The Image Streams Tab 

 
Bandwidth Monitor. The bandwidth monitor tab shows statistics from the communications 
manager. It graphs the bandwidth transmitted and received as a function of time. It also has 
views of messages types being transmitted and received along with the transmission rate thereof. 
Given the strict communications restrictions, this tab was mainly used to identify bandwidth 
intensive processes in our communications structure.  The bandwidth monitor tab is shown in 
Figure 27. 
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Figure 27. The Bandwidth Monitor Tab 

 
Subscriptions. The subscriptions tab, shown in Figure 28, displays the current status of sensor 
streams and allows enabling/disabling streams.  It also allows updating the FPS and bitrate.  
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Figure 28. The Subscriptions Tab 

 
Logging. The logging tab, shown in Figure 29, displays a table of logged messages from the 
ROS system on the OCU. These messages are color coded on Level. Important messages also 
show up as pop-ups in the upper right of the interactive scene tab.  
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Figure 29. The Logging Tab 

 

3.1.2.5.3 Sidebar Panes. The UI sidebar panes provide the operator access to common 
functionality required regardless of the active tab.  They allow for adding and updating tasks, 
enabling or disabling controllers, and modifying sensor subscriptions and perception processing.  
The panes panel is shown in Figure 30.  
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Figure 30. Sidebar Panes 

Tasks. The tasks pane (1) lists all current reasoner-level tasks in the system. Single tasks 
may be added by clicking the plus sign button on the top right. (Tasks may also be added 
by right clicking on the robot in the interactive scene tab.) Task chains may be added by 
clicking the box stack to the right of the plus sign. Either option brings up the task link 
widget to the left of the interactive scene. If a chain was selected, first the user specifies 
the goals for the chain and clicks the approve button. Then a task ribbon is created above 
the interactive scene and monitors in use are displayed in a bay at the bottom. The task 
ribbon has a chevron for each task in the chain. If a task is running, the gear icon to the 
left of the task name will change to a right arrow. If a chevron is clicked, the task 
parameters will be displayed in the task link widget. Monitors can be set to a desired 
condition manually by right clicking.  
Controllers. The controllers pane (2) lists all running controllers. By right clicking on 
these controllers, they can be started, stopped, or paused as on the controller monitor tab. 
The plus button in the upper right allows the user to start controllers that are not currently 
running.  
Data Streams. The data streams pane (3) displays three different types of rows: 
• The “Point Cloud” row can be right clicked to switch the set of streams that are 

rendered in the interactive scene. 
• The image stream rows are actively captured image streams. These streams can be 

stopped by right clicking on the row and selecting stop. They can be added through 
the plus button in the upper right. 

• The adaptive perception stream rows are the same streams that are listed in the 
adaptive perception tab. The rendering of these streams can be turned off and on via a 
right click menu. 
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3.1.2.5.4 Quick Action Bar. The quick action bar is located on the upper right of the UI 
window and contains menus and buttons for common tasks.  The quick action bar is shown in 
Figure 31. 
 

 
Figure 31. Quick Action Bar 

1. Panda View Interaction. The view interaction dropdown (1) allows the user to change 
the left click function of the panda interactive scene.  

2. Panda View Presets. The view presets dropdown (2) allows the user to switch to a 
selection of viewpoints in the panda interactive scene.  

3. Stand up. The stand button (3) toggles between walking and balancing modes.  If the 
robot has been squatting in balancing mode, the transition will cause it to return to a 
walking height. 

4. Hand Control. The hand control dropdown (4) allows the user to open and close the left 
hand. 

5. World Model Objects. The world model objects menu (5) allows the user to insert 
various world model objects. Once one is selected, the user can click anywhere in the 
scene to add the object there.  

6. Camera Management. The camera management menu (6) allows the user to show 
various aids in the panda interactive scene and creates popup windows for the different 
camera streams.  

7. World Model Sync. The world model sync button (7) attempts to synchronize the world 
model on the OCU with the world model on the RCU. 

3.1.2.6 Simulation. Our choice of which simulator to use for each DRC task split cleanly 
along the lines of supported features of each simulation package.  Simulating upper body 
motions and anything requiring hands was done using DRCSim and Gazebo.  Simulating 
walking was done using IHMC's Simulation Construction Set (SCS).  We had mockups of the 
DRC Finals setup in both simulators, as well as the ability to spawn the robot in front of each 
task setup. 

Gazebo Simulation. We had used Gazebo DRCSim simulation extensively for the VRC and 
DRC Trials in 2013.  For the VRC, the simulation had been tuned to allow it to run at near-real-
time rates, albeit with simplified robot collision models and masses tuned for stability rather than 
resemblance to the physical Atlas.  For the DRC Trials, we received updated robot models and a 
gait model from Boston Dynamics for the walking behavior they provided, though these dropped 
the simulation real-time factor to under 30 percent of real-time when running with the rest of the 
TROOPER system on one machine.  The DRC Finals 2015 Atlas is able to walk in Gazebo 
simulation, though it is much more unsteady than the physical Atlas and is unable to handle any 
steps or otherwise uneven terrain. 

The Gazebo simulation supports collision checking all simulated objects, though often 
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with separate visual and collision models (either different fidelity meshes or just simple shapes 
for the collision model).  It uses Open Dynamics Engine (ODE) as underlying physics 
simulation, though it now has nominal support for other physics engines.  That said, DRCSim 
robot behaviors have been tuned for ODE and do not function using the other engines. 

The Gazebo simulation supported all available hand types and hand physics (namely 
collision checking), which meant that we used it to test manipulation planning.  Unfortunately, it 
was never very robust for interacting with simulated objects after the VRC; the tendency was for 
the simulation to go unstable when solving contact constraints for multi-fingered hands grasping 
objects. The simulation also did not model the soft contacts inherent in real robotic grippers, 
which we believe to be a critical factor in stable grasping. Gazebo also simulated all sensors 
present on Atlas, complete with noise, in large part because support has been developed in ROS.  
Thus, we conducted our perception manager tests in Gazebo when the real robot was 
unavailable.  The LIDAR simulation used a ray-casting model with additional Gaussian noise, 
and we found this to be consistent with hardware experiments. The visual complexity of the 
simulated environments was insufficient, and thus the stereo simulation was not used for testing. 
Future robot simulation should leverage physically based rendering techniques and 
environmental assets developed by the video game and motion picture industries. Lastly, Gazebo 
supported writing plugins, which we used to allow robot teleportation to speed up simulation 
tests. Atlas in gazebo simulation is shown in Figure 32. 

 

 
Figure 32. Atlas Gazebo Simulation 
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IHMC Simulation Construction Set (SCS). IHMC generously released their controllers and 
simulation package to any Atlas teams who chose to use them. Gazebo did not support the IHMC 
controllers; the only way to test them in simulation was to use IHMC’s bundled Simulation 
Construction Set (SCS), shown in Figure 33.  IHMC tuned their SCS simulation to match the 
performance of the controller on the real robot, and as such their simulated Atlas was capable of 
walking over cinderblocks and other uneven terrain. That said, IHMC’s primary focus was on 
walking and led to the exclusion of other key features.   The SCS did not support simulating 
hands and thus was unusable for practicing manipulation tasks.  It also only performed collision 
checking between the feet and the ground; so if it had had hands, they would not have been able 
to grasp anything.  Lastly, it did not simulate LIDAR noise and the camera model simulation did 
not accurately match the MultiSense SL, making it unable to test much of our perception system. 
 

 

 
Figure 33. Atlas in IHMC Simulation Construction Set 

 

3.2 Capabilities  

This section details the TROOPER system’s control, planning, and perception functionality. 
Control ranges in sophistication from controlling the position or torque at each joint to 
sophisticated balancing and walking.  Planning includes both motion planning for the upper 
body, enabling grasping and manipulation, as well as walking trajectory planning.  The 
perception category is broad, including our perception manager framework and components 
therein, such as localization, mapping, plane detection, and object detection. 

3.2.1 Controls. When Atlas first arrived, we were given controllers produced by Boston 
Dynamics.  These controllers had specific modes, including walking, manipulation, and user.  
Walking mode did not allow control of the upper body; manipulation mode kept the robot 
balanced while moving the upper body and changing the pelvis height; and user mode provided 
the operator with joint-level control over the entire robot.  For the DRC Trials, we chose to 
include our own balancing controller, initially written for the Virtual Robotics Challenge.  This 
controller operated in the user mode provided by the Boston Dynamics software. Lastly, through 
an agreement with DARPA, IHMC released their controllers that completely replace those 
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provided by Boston Dynamics.  We modified our system to be compatible with both control 
frameworks and ended up using the IHMC controllers in competition. We were the only team to 
do so for the DRC Finals. 
 

3.2.1.1 TROOPER Balancing Controller. This is the controller we implemented and used 
in the VRC for balancing and walking, as well as in the DRC Trials for balancing. For a robot to 
statically balance, the projection of the center-of-mass to a plane perpendicular to the gravity 
vector (for simplicity, we will call this the ground plane) must lie within the support polygon of 
the robot.  For a robot on flat ground, the support polygon can be defined as the convex hull of 
all contacts with the ground.  When frictional contacts are made upon sloped surfaces, the center 
of mass must lie above a nonlinear convex set that depends on the properties of the contacts.  In 
this work we do not use zero moment point (ZMP) methods, but rather a balancing approach 
adapted from the field of robot grasping, as demonstrated by Christian Ott at the German 
Aerospace Center, DLR.   

We begin by outlining the balancing controller described in (Ott, Roa, & Hirzinger, 
2011).  The method is based on frictional grasping; forces f are applied at contact points P to 
generate a net wrench F on the on the object being grasped sufficient to keep it restrained.  In the 
case of balancing, the desired wrench is applied to the robot center of mass (COM) and is used to 
track a desired pelvis orientation and COM location; i.e., the robot should remain relatively 
upright, compensating for gravity, with its projected COM within the support polygon.  The 
contact forces used to do this are those on the feet of the robot. 
 

 
Figure 34. Overview of the Balancing Controller 

Center of Mass Position and Posture Controller. The desired center of mass (COM) force is 
given by: 

 f𝒄𝒄𝒔𝒔 = 𝒎𝒎𝒈𝒈−  𝑲𝑲𝒑𝒑�𝒎𝒎 − 𝒎𝒎𝒔𝒔� − 𝑲𝑲𝑫𝑫(�̇�𝒎 − �̇�𝒎𝒔𝒔) (2) 

where the gravity compensation term contains m the total mass of the robot and g the gravity 
vector, while the latter terms are a PD feedback law to drive the center of mass to a desired 
location. 𝑲𝑲𝑃𝑃,𝑲𝑲𝐷𝐷 > 0 are proportional and differential gain matrices, and 𝒎𝒎𝑑𝑑 , �̇�𝒎𝑑𝑑 are the desired 
position and velocity of the center of mass. 

The desired COM torque is used to track a desired pelvis orientation.  Let 𝑹𝑹𝑏𝑏be the 
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current and 𝑹𝑹𝑑𝑑 be the desired pelvis orientation.  From the quaternion representation of 𝑹𝑹𝑑𝑑𝑇𝑇𝑹𝑹𝑏𝑏 =
(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤), let 𝛿𝛿 = 𝑤𝑤 and 𝜖𝜖 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧).    Then an orientation controller for pelvis orientation is 
given by: 

 𝝉𝝉𝒔𝒔 = −𝑹𝑹𝒔𝒔(𝟐𝟐(𝜹𝜹𝜹𝜹 + 𝝐𝝐�)𝑲𝑲𝒎𝒎𝝐𝝐 +  𝑫𝑫𝒎𝒎�𝝎𝝎 −𝝎𝝎𝒔𝒔�) (3) 

where 𝑲𝑲𝑟𝑟 ,𝑫𝑫𝑟𝑟 are symmetric, positive definite stiffness and damping matrices, respectively.  This 
controller acts as a damped spring to align the current orientation 𝑹𝑹𝑏𝑏 with the desired 𝑹𝑹𝑑𝑑. 
Together, f𝑑𝑑 and 𝝉𝝉𝑑𝑑 comprise the desired wrench acting at the center of mass, 𝑭𝑭𝑑𝑑 

Contact Force Distribution. Now that we have a desired wrench to apply at the COM, we need 
to find the contact forces at the feet that will produce it.  The following is a brief review of multi-
contact grasping. 

The contact forces at the feet are subject to the positivity restriction; they can push but 
not pull the ground. Coulomb's friction model is used, stating that the contacts do not slip when: 

 𝒊𝒊𝒎𝒎 ≤ 𝝁𝝁𝒊𝒊𝒎𝒎 (4) 

where 𝑓𝑓𝑛𝑛 is the magnitude of the normal component of the contact force, 𝑓𝑓𝑡𝑡 the tangential 
component, and 𝜇𝜇 the coefficient of friction.  In ℝ3 this restricts the set of allowable contact 
forces to a cone called the friction cone, whose axis is along the surface normal with a semi-
angle of ∅ = tan−1 𝜇𝜇. 

The total wrench on the object, 𝑭𝑭𝑂𝑂 is the sum of the wrenches from all of the contacts 
expressed in the object's coordinate frame, O.   For a system with η contacts, let f𝑐𝑐  be a vector 
stacking all the individual contact forces, f𝑐𝑐 = (f1 … fη )𝑇𝑇.  Then the expression for the total 
wrench is: 

 𝑭𝑭𝑶𝑶 = 𝑮𝑮f𝒄𝒄  (5) 

where G is the grasp map, mapping the wrenches from the local contact point coordinate frame 
𝑃𝑃𝑖𝑖  to the object frame O and multiplying by the wrench basis characterizing the contact model.  
With all frictional point contacts, the grasp map becomes: 

 𝑮𝑮 = �
𝑹𝑹𝒑𝒑𝟏𝟏 ⋯ 𝑹𝑹𝒑𝒑𝛈𝛈
⋮ ⋱ ⋮

𝒎𝒎�𝒑𝒑𝟏𝟏𝑹𝑹𝒑𝒑𝟏𝟏 ⋯ 𝒎𝒎�𝒑𝒑𝛈𝛈𝑹𝑹𝒑𝒑𝛈𝛈
� (6) 

where 𝑹𝑹𝑝𝑝𝑖𝑖 and 𝒎𝒎�𝑝𝑝𝑖𝑖 represent the orientation and cross product matrix of the position of the 
contact i in the object reference frame O. 

When standing, the grasp map G is known and we need to solve for the contact forces f𝑐𝑐  
at the feet.  Because the problem is underconstrained, we cast this problem as a quadratic 
optimization: 

 arg 𝐦𝐦𝐦𝐦𝐦𝐦
𝒒𝒒∈ℝ𝒎𝒎

𝜶𝜶𝟏𝟏�𝑭𝑭𝒔𝒔 − 𝑮𝑮f𝒄𝒄�𝟐𝟐
𝟐𝟐

+ 𝜶𝜶𝟐𝟐 f𝒄𝒄𝑻𝑻f𝒄𝒄 (7) 

subject to: 
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 f𝒄𝒄𝒎𝒎 = �𝝈𝝈𝒎𝒎𝒊𝒊𝒎𝒎𝒎𝒎𝒊𝒊,   𝝈𝝈𝒎𝒎𝒊𝒊 ≥ 𝟎𝟎
𝒌𝒌

𝒊𝒊=𝟏𝟏

, 𝒎𝒎 = 𝟏𝟏, … ,𝛈𝛈 (8) 

The constraints above come from approximating the friction cone as a polyhedron; 𝒎𝒎𝑖𝑖𝑖𝑖is the j-th 
edge of the convex cone at the i-th contact point.  The first term of the cost function penalizes 
distance between the effective center of mass wrench 𝑭𝑭 = 𝑮𝑮𝒊𝒊𝑐𝑐 and the desired center of mass 
wrench; the second term attempts to evenly distribute the contact forces.  Weights 𝛼𝛼1 and 𝛼𝛼2 are 
chosen such that 𝛼𝛼1  ≫  𝛼𝛼2  > 0. 

Now that we have the contact forces at the feet, we can find the equivalent wrenches in 
each foot's frame.  The wrenches can then be mapped to joint torques using the Jacobian for each 
leg, using: 

 𝑱𝑱𝒄𝒄 = 𝑱𝑱𝒔𝒔 − 𝑹𝑹𝑭𝑭𝑭𝑭𝑱𝑱 (9) 

 𝝉𝝉 = 𝑱𝑱𝒄𝒄𝑻𝑻𝑭𝑭 (10) 

where 𝑱𝑱𝑏𝑏 is the body Jacobian for each foot with the pelvis as the root link, 𝑹𝑹𝐹𝐹𝑃𝑃 is the rotation 
from foot to pelvis, 𝑱𝑱 the center of mass Jacobian for each leg, and 𝝉𝝉 the joint torque vector. 
 

3.2.1.2 IHMC Whole Body Controller. The IHMC controller ran on two separate 
computers inside Atlas.  One machine was dedicated to running the high speed control loop and 
ran a real-time Linux kernel.  The other machine handled ROS messaging (both sending and 
receiving messages from the rest of the system). 

Figure 35 below shows the components running in the real-time control loop.  The 
walking high-level controller interprets the commands from ROS messages.  The resulting 
desired motions and actions are sent to the quadratic program (QP) solver in the form of 
objectives.  The QP solver translates them into desired joint accelerations and contact wrenches.  
The inverse dynamics calculator takes in the accelerations and wrenches and calculates the 
desired robot joint torques.  The low-level controller controls the individual joints and attempts 
to track a desired torque trajectory. 

 

 
Figure 35.  The IHMC Whole Body Controller 
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There are two scenarios which bypass the flow shown in the diagram.  In the case of the 
arms, the QP solver is not used and the desired joint angle and velocity trajectories are sent to the 
low level controller (which will track these instead of joint torques in this case).  Additionally, 
when the robot is in whole body position control mode (rather than 'walking' mode, which is 
actively balancing), all the joint angles are tracked directly by the low level controller. 

More details on the workings of the controller can be found in (Pratt, 2015) At the high level, 
the robot can be placed in ‘walking mode' which is actively balancing, or 'whole body position 
mode' which allows all joint angles to be specified by the user.  Whole body position mode was 
only used while in the vehicle.  The walking mode had multiple interfaces to control different 
portions of the robot: 

• Chest orientation – specified chest orientation in world frame (we ran forward kinematics 
using desired joint angles to fill this out) 

• Head orientation – specified head orientation in world frame (we ran forward kinematics 
using desired joint angles to fill this out) 

• Pelvis height – control the pelvis height relative to a reference value 
• Arm control – specify either a joint angle trajectory (positions and velocities) for an arm 

or specify a desired end effector pose and let the controller handle the approach 
• Footstep placement – specify a path of footsteps to take.  Allows specifying world frame 

foot placement and walking gait parameters 
• Desired pump PSI – allowed using lower pump pressures (<2000psi) while only walking, 

while ramping up to higher pressures (>2300psi) when using the upper body to perform 
manipulation tasks. 

3.2.2 Planning. We consider planning to include: how to pose the robot body to achieve 
goals such as end effector placement; how to generate goal poses that are valid for grasping or 
otherwise interacting with objects; and how to create a motion trajectory that will get us from our 
current configuration to that goal configuration.  We utilize single-chain and whole-body inverse 
kinematics solvers, task space regions, and bi-directional rapidly exploring random trees to 
provide these functionalities. 
 

3.2.2.1 Inverse Kinematics.  Solving the inverse kinematics problem for a single end 
effector on Atlas, calculating the joint angles required to place the end effector at a desired pose 
with respect to the world frame, was an 11-dimensional problem.  Specifically, it required 
solving for the 3 back joints angles (roll, pitch, and yaw of the upper torso with respect to the 
pelvis), 7 arm joint angles, and what we referred to as a ‘pseudo-joint’, a prismatic joint 
representing the height of the pelvis.  Solving whole-body inverse kinematics involved solving 
for the full 30 degrees-of-freedom; using a nonlinear optimization solver allowed us to solve for 
multiple end effector positions and apply other constraints. 
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Initial (Traditional) IK Approach.  In general, the fastest method to solve inverse kinematics is 
to use a closed-form solution, which can be done as long as the manipulator has six or fewer 
degrees of freedom.  This also immediately gives feedback as to the existence of a solution.  
With redundant degrees of freedom (greater than six), we lose the ability to use closed-form 
solutions directly.  In cases where there are few additional degrees of freedom, one can perform a 
line search over ranges of the additional joints, solving the closed-form equations at each point 
until a solution is found.  This can be quite slow, however, depending on the discretization of the 
additional freedoms.  Another option, and one that works for any number of additional freedoms, 
is to compute a local IK solution using Jacobian-based iterative solvers.  Though they can be 
used to solve for tree topologies, at their heart these algorithms solve for a single chain at time 
(and enforce constraints between iterations). 

For the initial, 6 degree-of-freedom arm version of Atlas, our IK approach was to 
combine an analytic IK solver with an iterative, Jacobian-based IK solver.  We used IKFAST, 
part of the Open Robotics Automation Virtual Environment (Diankov, 2010) to generate closed-
form solution for the 6 degree-of-freedom arm.  For queries involving the back or squatting, we 
used Kinematics and Dynamics Library's (KDL's) iterative, Jacobian-based IK solver (Smits, 
2015). To speed up the iterative search, we created a library of IK solutions with respect to the 
upper torso for use in seeding the iterative solver.  The IK solutions were stored by 6-
dimensional pose coordinates.  We stored approximately 50,000 solutions in a lookup table, 
spaced in a 3D grid every 10cm and every 90 degrees.  These IK solutions were encoded as a k-d 
tree for efficient lookup.  For solving higher-dimensional queries, those including the back joints 
and pelvis heights, we iterated over pelvis heights and back joint yaws – each time looking for a 
close match IK solution in the k-d tree.  If one existed, we would use that to seed the IK solver.  
To simplify the problem, we assumed that the pelvis roll and pitch remained zero.  

Atlas ran its own balancing controller onboard (initially one that we implemented and 
later one provided by IHMC as part of their whole body control package).  Thus, when we would 
move the upper body, the lower part of the body would shift to keep the robot's center of mass in 
a fixed location.  If the motion involved leaning or large arm displacements, the mass distribution 
could shift dramatically, leading to a pelvis displacement of over 10cm.   This motion needed to 
be accounted for to accurately solve the inverse kinematics problem and get the end effector to a 
desired location.  The solution was to add another layer of iteration, solving the IK solution for a 
fixed pelvis position, calculating the updated center of mass, then shifting the pelvis position to 
keep the center of mass position (in the X-Y plane) unchanged – the center of mass height was 
allowed to change as the pelvis height was controlled separately. 

The downsides of this traditional IK method are that it inherently acts upon a single chain 
and does not handle arbitrary constraints well.  Tree topologies can be handled by solving one 
chain at a time and then adjusting the constraints on child chains in the next iteration. Handling 
the balancing constraints likewise required large modifications.  We also used weighted damped 
least squares to penalize using certain joints, such as the back joints, but had no other mechanism 
to punish deviation from a desired reference configuration. That said, with our system we were 
able to produce single end effector, 11 degree-of-freedom IK solutions at > 60Hz.  
Representative solutions are shown in Figure 36.  Note that these only move the left arm; the 
joint angles of the right arm remain unchanged. 
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Figure 36. Three Inverse Kinematic Solutions for Box Pre-Grasps 

Whole Body (Drake) IK. The primary restriction of our initial inverse kinematics pipeline was 
its restriction to solving a single chain and its inability to easily handle arbitrary constraints.  It 
could handle solving for one end effector position, keeping the center of mass in the same 
location, but would not be of use if the end effector pose was only partially satisfied or if we 
wanted to constrain both end effectors.  To overcome these limitations and allow for solving 
whole-body postures, we adopted the inverse kinematics framework from MIT is Drake package 
(Tedrake, 2014).  While Drake is primarily written in MATLAB, there is a C++ version of the 
robot model and inverse kinematics solvers. 

The Drake solver casts inverse kinematics as a nonlinear optimization problem and uses 
sequential quadratic programming (SQP) to solve for a local minimum.  Our integrated version is 
capable of producing whole-body configurations for Atlas at > 20Hz; that is solving for Atlas's 
30 degrees-of-freedom (technically 36, given that the pelvis is treated as a floating base, free to 
move in 6 dimensions).  The optimizer's objective function was to minimize the weighted 
distance from a nominal configuration: 

arg min
𝑞𝑞∈ℝ𝑛𝑛

(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑞𝑞)𝑇𝑇𝑊𝑊(𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑞𝑞) 

subject to 
𝑓𝑓𝑖𝑖(𝑞𝑞) ≤ 𝑏𝑏𝑖𝑖, 𝑖𝑖 = 1, … ,𝑚𝑚 

where W is the weighting matrix, 𝑞𝑞𝑛𝑛𝑛𝑛𝑛𝑛 the nominal robot configuration in generalized 
coordinates (so for Atlas, 𝑛𝑛 = 36), q the solution robot configuration, and 𝑓𝑓𝑖𝑖 a set of kinematic 
constraint functions. 

The user is free to choose from as many or as few of the allowed supported constraint 
types; the solver takes in an arbitrary length vector of these constraints.  The allowed constraint 
types are: 
• Joint limits 
• End effector position (with allowed upper and lower bounds) 
• End effector orientation (with allowed tolerance) 
• Cone constraints ('gaze' constraint allowing rotation about an axis) 
• Distance between bodies 
• Center of mass position 
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• Symmetry 
These constraints can be combined easily in any query without requiring any modification to the 
algorithm code, a huge advantage compared to the traditional approach.  Typically, we specify 
different constraints on each hand while fixing the location of the feet and fixing the X-Y 
location of the center of mass while allowing it to move vertically.  The floating pelvis is 
effectively constrained to have zero roll and pitch by placing a large weight on orientation 
deviations.  In the case of turning a valve, we used gaze constraints to constrain the stick to 
remain perpendicular to the valve face while allowing rotation about the stick axis. 

Interactive IK. We created the ability to pose the robot on the fly and give the operator real-time 
feedback on IK solutions prior to motion execution.  This allowed for fine, detailed adjustment 
of robot poses.  Additionally, we allowed clicking on an object to quickly place the hand a 
certain distance removed along the object's outward normal.  Figure 37 shows the interactive IK 
in action.  The left image shows the 6 degree-of-freedom markers on the wrists that allow the 
user to pose the robot and have the solver give solutions in real time.  On the right, shift-clicking 
the pole places the end effector in a grasp pose near the contact normal specified by the mouse 
click. 
 

  
Figure 37. Interactive Inverse Kinematics 

3.2.2.3 Manipulation Planning. To keep the TROOPER system general-purpose, we 
eschewed hard-coded or object-specific grasps.  Instead, grasps were generated dynamically at 
run time using the currently encountered object models.  This allows flexibility and enables the 
system to grasp any object at any time, regardless of whether or not the object has been 
previously encountered. 

Task Space Regions. Our overall planning framework utilized Task Space Regions (TSRs) to 
encode graspable regions around objects (Berenson, Srinivasa, & Kuffner, 2011).  TSRs describe 
end effector constraint sets as subsets of special Euclidean group SE(3). This representation 
combines the constraints upon the end effector with the available affordances; a sample from the 
TSR is guaranteed to be a valid grasp (unless in collision). 

TSRs consist of 3 parts: (Note that 𝑇𝑇𝑏𝑏𝑎𝑎 is the homogeneous transformation matrix from a to 
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b.) 
• 𝑇𝑇𝑡𝑡𝑡𝑡𝑟𝑟

𝑛𝑛𝑏𝑏𝑖𝑖– transform from the object origin to the TSR origin 
• 𝑇𝑇𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑟𝑟– transform for the end effector offset in the TSR origin frame 
• 𝐵𝐵𝑡𝑡𝑡𝑡𝑟𝑟– a 6 x 2 matrix of the bounds in the coordinates of the TSR origin frame 

 𝑩𝑩𝒘𝒘 =

⎣
⎢
⎢
⎢
⎢
⎡
𝒙𝒙𝐦𝐦𝐦𝐦𝐦𝐦 𝒙𝒙𝐦𝐦𝐦𝐦𝐦𝐦
𝒚𝒚𝐦𝐦𝐦𝐦𝐦𝐦 𝒚𝒚𝐦𝐦𝐦𝐦𝐦𝐦
𝒛𝒛𝐦𝐦𝐦𝐦𝐦𝐦 𝒛𝒛𝐦𝐦𝐦𝐦𝐦𝐦
𝝈𝝈𝐦𝐦𝐦𝐦𝐦𝐦 𝝈𝝈𝐦𝐦𝐦𝐦𝐦𝐦
𝜽𝜽𝐦𝐦𝐦𝐦𝐦𝐦 𝜽𝜽𝐦𝐦𝐦𝐦𝐦𝐦
𝝋𝝋𝐦𝐦𝐦𝐦𝐦𝐦 𝝋𝝋𝐦𝐦𝐦𝐦𝐦𝐦⎦

⎥
⎥
⎥
⎥
⎤

  (11) 

Matrix 𝐵𝐵𝑤𝑤 bounds to rotation and translation about the TSR origin frame, which is related to the 
object origin by 𝑇𝑇𝑡𝑡𝑡𝑡𝑟𝑟

𝑛𝑛𝑏𝑏𝑖𝑖.  The end effector offset, 𝑇𝑇𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑟𝑟, easily allows for the use of different hands. 
TSRs have some very useful properties.  It is easy to calculate the distance from a TSR, 

which is useful when monitoring whether or not an object is graspable before attempting to close 
the hand around it.  They are also straightforward to sample, requiring only generating 6 random 
numbers from a specified range (or 7, in the case of selecting one TSR to sample from in larger 
set of TSRs).  As the constraint manifold is often lower-dimensional than the state space, the 
ability to sample from the constraint manifold makes sampling-based planners practical. 

Object Decomposition. Complex objects are simplified and decomposed into simple primitive 
shapes: cylinders, spheres, and cuboids.  Each of these simple shapes has an associated set of 
Task Space Regions that encode the types of allowed grasps.  For example, consider a hand 
grasping a cylinder.  The hand may grab the side of the cylinder with the thumb at the top of the 
hand or with the hand rotated 180 degrees so the thumb is at the bottom.  The hand may also 
grasp the top or bottom of the cylinder (the hand would be allowed to rotate freely about the 
palm in this case).  Thus, we get 4 TSRs representing the set of valid grasps on a cylinder.  
Figure 38 shows valid grasps obtained by regularly sampling tasks space regions for simple 
shapes.  Each red dot represents the palm location (with origin as shown on the right half of the 
figure) of a grasp. 

Additionally, we compare the dimensions of the object against the maximum grasp 
aperture of the hand.  The following graphic shows possible grasp locations on a set of simple 
shapes arrived at by regularly sampling from the TSRs.  Each red dot represents the palm frame 
origin of a grasp. 
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Figure 38. Task Space Regions 

3.2.2.4 Motion Planning. We sample from the Task Space Regions comprising the object to 
be manipulated.  Each TSR sample is equivalent to a full 6 degree-of-freedom end effector pose.  
For each sample, we generated not only a final grasp pose (near the object) but also a pregrasp 
pose 10cm further out from the object.  We first check that an inverse kinematics solution exists 
for the pregrasp, then perform a collision check, and last verify that a similar inverse kinematics 
solution exists for the final grasp.  The final grasp is not collision checked because the hand will 
always be in collision with the object. Our collision checking routines make use of the Flexible 
Collision Library (Pan, Chitta, & Manocha, 2012) to perform both broad and narrow phase 
checks of simple geometric primitives such as boxes and cylinders. 

Once we have a valid goal, we generate a motion plan from the robot's current 
configuration to the pregrasp pose.  We use the RRTConnect algorithm as implemented in the 
Open Motion Planning Library (Sucan, Moll, & Kavraki, 2012).  Afterwards, the resulting 
trajectory is smoothed using shortcut smoothing and splined.  The balancing controller is 
simulated during planning; for each new sampled configuration, the center of mass location is 
updated and the robot pelvis shifted to keep the center of mass in the same world-frame position.  
This is done prior to collision checking the new configuration.  Once we have a valid plan to the 
pregrasp, we interpolate to reach the grasp pose.  The RRT plan is combined with the 
interpolated portion. 

Had we required additional constraints during motion planning, such as keeping a held 
cup of water upright so as not to spill, these would have been encoded in the TSR for the object 
and used to generate samples for the RRT planner. This would have been effectively the 
Constrained Bi-Directional RRT algorithm (Berenson, Srinivasa, & Kuffner, 2011). 
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3.2.2.5 Footstep Planning. We developed both simple footstep interpolation and an A* 
based planner for generating walking paths.  Unlike the A* planner, the interpolation does not 
perform collision checking and, hence, the plans it generates must be validated by the operator. 
 
Footstep Interpolator.  We developed simple footstep interpolation schemes that generate 
sequences of foot placement goals that will move the robot from point A to point B without any 
consideration for avoiding obstacles in the environment. We use a constant stride length to 
determine the spacing between each step. Our initial interpolation scheme linearly interpolates 
both X-Y position in the ground plane and rotation about the Z-axis, then samples steps using 
our stride length. This interpolation method results in the robot tripping and falling for most goal 
positions. A more conservative scheme involves first turning in place to face the goal position, 
walking forward toward the goal, then turning in place again to achieve the goal orientation. This 
method was very reliable, but required a substantial number of steps.  Both methods are shown in 
Figure 39; the left image shows the linear interpolation and the right image shows straight-
stepping to the same goal position then turning to achieve the desired orientation. 
 

   
Figure 39. Interpolated Footsteps 

The cause of failure in the original interpolation scheme was that the Atlas robot is kinematically 
incapable of taking a step in a “toe-in” configuration where the two feet orientations create an 
intersection point in front of the robot, illustrated in Figure 40 with a safe foot configuration on 
the left and an unsafe configuration on the right. 
 

 
Figure 40. Safe and Unsafe Foot Configurations 

Our final method avoids toe-in configurations with few footsteps by leading with the proper foot. 
Unlike our conservative turn-in-place method, this approach initially turns in place only when 

1 
2 

1 
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the heading toward the goal position deviates more than 40 degrees from the current heading. 
Otherwise, it steps off with the right foot to head to the right and vice versa. The same process is 
used in reverse when reaching the goal position. This scheme results in footstep patterns that 
resemble natural human behavior.  

We not only support patterns that walk forward to the goal, but also backwards and side-
stepping. We generate paths with each of these 3 methods then reorder them to prioritize the path 
requiring the fewest steps. We often found that a backwards walk takes fewer steps than turning 
around and walking forward, but we rarely found the sidestepping scheme to be beneficial other 
than for very short distances. This is because the stride length for side-stepping is more 
constrained than in the forward direction.  Forward and backward stepping plans are shown in 
Figure 41. 
 

   
Figure 41. Forward and Backward Interpolation 

Future research will use terrain maps to adapt these interpolated steps to conform to the 
environment. This will avoid a slow global search problem in favor of fast local adaptation of an 
efficient seeded set of steps. 

A* Footstep Planner. For intelligent footstep planning through terrain and obstacles, we use a 
discrete search approach with the A* algorithm. This took in 3-DoF start/end poses and a map of 
anticipated costs for each square of terrain at a specified resolution. Each node allowed 
transitions to a new node selected by the final X-Y plane location of the step foot. Two nodes 
were considered equivalent if they had the same X-Y position for both the step foot and the 
support foot. The support foot is the step foot of the node from which the current node 
transitioned. Filtering and cost depend on the initial and final positions of the step foot and the 
position and yaw of the support foot. (Step foot yaw is aligned with the line between initial and 
final step foot positions, rotated by 180 degrees if greater than absolute 90 degrees from the 
support foot yaw, and finally set to the support foot yaw if “toed in”.) In terms of complexity for 
A*, basic transitions happen on a 2d space, equality happens on a 4d space, and analysis happens 
on a 7d space. This separation allows us to build and maintain our open and closed lists quickly 
without substantial quality loss. 

The path cost function included weighted measures of: 
• Total number of steps taken 
• Traversability cost at the new step position 
• Squared error from desired stance width (length of normal from support foot axis to the 

new foot position) 
• Squared error from the length of the last step 
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These measures ideally combine to create a path that is quick, smooth, and on safe ground. 
However, they do nothing to assure kinematic safety in terms of ZMP. The naïve transition 
function allows the new foot to be evaluated to be anywhere within a maximum step distance of 
the support foot. In order to create a path that was safe to traverse, we had to filter our transition 
function. Five metrics proved important bases upon which to filter: 

1. The shortest distance between the support foot center and the line between the initial and 
final positions of the step foot. 

2. The X and Y intercepts of the boundary line of safe absolute difference between the 
initial center of mass and the support foot.  

3. The X and Y intercepts of the boundary line of safe absolute difference between the 
support foot and the final center of mass. 

The first metric is used to prevent collisions between the support leg/foot and the step 
leg/foot. The minimum distance between the center of the support foot and any point on the line 
between the initial and final step foot positions must be greater than the maximum diameter of 
the foot. The other four metrics are used to qualify how able the support leg kinematic chain will 
be able to control the transition between one-legged ZMP and two-legged ZMP. 
In each transition, the support leg experiences angular momentum similar to: 

 𝒑𝒑��⃗ (𝒎𝒎) = 𝒑𝒑��⃗ (𝟎𝟎) + �𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × �𝒈𝒈��⃗ + 𝑭𝑭��⃗ 𝒂𝒂𝒔𝒔𝒈𝒈(𝒎𝒎)� 𝒔𝒔𝒎𝒎 (12) 

And thus the leg must be able to provide force such that:  

 𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × 𝑭𝑭��⃗ 𝒂𝒂𝒔𝒔𝒈𝒈(𝒎𝒎) − 𝑹𝑹��⃗ 𝑪𝑪𝒈𝒈𝑪𝑪(𝒎𝒎) × 𝒈𝒈��⃗ = 𝑪𝑪���⃗ (𝒎𝒎) (13) 

Which provides the set of equations: 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒛𝒛(𝒎𝒎) + 𝒈𝒈𝒛𝒛� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) + 𝒈𝒈𝒚𝒚� = 𝑪𝑪𝒙𝒙(𝒎𝒎) (14) 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) + 𝒈𝒈𝒙𝒙� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒛𝒛(𝒎𝒎) + 𝒈𝒈𝒛𝒛� = 𝑪𝑪𝒚𝒚(𝒎𝒎) (15) 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) + 𝒈𝒈𝒚𝒚� − 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) ∙ �𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) + 𝒈𝒈𝒙𝒙� = 𝑪𝑪𝒛𝒛(𝒎𝒎) (16) 

These equations can be simplified by several assumptions. Since we assume that our frame is 
decently aligned with the normal of the earth, we say that 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑦𝑦 = 0. As is common for these 
movements in quasi-static walking, we will assume our CoM height and yaw about the pelvis to 
be approximately constant (𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑧𝑧(𝑡𝑡) = 𝑐𝑐,𝑀𝑀𝑧𝑧(𝑡𝑡) = 0). Finally, since our CoM height is not 
moving, we are assumed to be counteracting gravity (𝐹𝐹𝑙𝑙𝑒𝑒𝑙𝑙,𝑧𝑧(𝑡𝑡) =  −𝑔𝑔𝑧𝑧).This allows the three 
equations to be rephrased as: 
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 𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎) =
−𝑪𝑪𝒙𝒙(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (17) 

 𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎) =
𝑪𝑪𝒚𝒚(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (18) 

 
𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒙𝒙(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎)

=
𝑭𝑭𝒂𝒂𝒔𝒔𝒈𝒈,𝒚𝒚(𝒎𝒎)
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)

 (19) 

Which combines with the third equation to be: 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛 ∙ �
𝑪𝑪𝒚𝒚

𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎)
+

𝑪𝑪𝒙𝒙

𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)
� = 𝟎𝟎 (20) 

Since we need to account for a pre-existing angular momentum, we integrate to: 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛 ∙ �𝑪𝑪𝒚𝒚 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) + 𝑪𝑪𝒙𝒙 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎)� = 𝒄𝒄(𝒎𝒎) (21) 

Where 𝑐𝑐(𝑡𝑡) is the desired momentum against which to compensate. 
The actual force and thus the actual moment that can be provided from our 7 degree of 

freedom leg kinematic chain is a kernel of the configuration space. This is a complicated 
calculation alone, but the abstractions and restrictions of the walking controller are also 
unknown. Thus we approximate the maximum value trace we would need to ensure safety. 
Given a maximum trace of this kernel in X and Y with fixed Z, we can find a line for which we 
can guarantee that any needed force is achievable: 

 𝑪𝑪𝒚𝒚 = 𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙 −
𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙

𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙
∙ 𝑪𝑪𝒙𝒙 (22) 

Thus we can express the safe region of steps as: 

 𝑪𝑪𝒚𝒚 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙(𝒎𝒎) + 𝑪𝑪𝒙𝒙 ∙ 𝐥𝐥𝐦𝐦𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚(𝒎𝒎) <
𝒄𝒄𝒎𝒎𝒂𝒂𝒙𝒙
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛

 (23) 

Depending on the actuatable moments, center of mass height, and desired momentum, the 
boundary for this region is: 

 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒙𝒙 = 𝐦𝐦𝐦𝐦𝐦𝐦
𝑪𝑪𝒙𝒙

�𝜶𝜶(𝑪𝑪𝒙𝒙) ∙ 𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒚𝒚
−𝒌𝒌(𝑪𝑪𝒙𝒙)� (24) 

 
𝜶𝜶 = 𝒔𝒔

𝒄𝒄𝒎𝒎𝒂𝒂𝒙𝒙
𝑹𝑹𝑪𝑪𝒈𝒈𝑪𝑪,𝒛𝒛∙𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙�𝟏𝟏−

𝑪𝑪𝒙𝒙
𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙

�
 

(25) 

 𝒌𝒌 =
𝑪𝑪𝒙𝒙

𝑪𝑪𝒚𝒚,𝒎𝒎𝒂𝒂𝒙𝒙 �𝟏𝟏 −
𝑪𝑪𝒙𝒙

𝑪𝑪𝒙𝒙,𝒎𝒎𝒂𝒂𝒙𝒙
�
 (26) 

This boundary typically forms a concave upward curve which goes to 0 in Y as X goes to infinity 
and goes to infinity in Y as X goes to 0. As such, again, a linear asymptote can be fit to the 
curve. This asymptote is in the space of 𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑥𝑥 and 𝑅𝑅𝐶𝐶𝑛𝑛𝐶𝐶,𝑦𝑦 and so can be found experimentally 
on the robot. 
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This scheme of A* does not constrain the orientation of the final footstep. This can be 
corrected trivially. If the first goal step can be achieved with correct yaw without “toeing in”, 
then simply alter the yaw. If it cannot, take that step and then alter the yaw of the second step. 
Then take an additional step to correct the yaw of the first goal step. 

3.2.3 Perception. Our perception algorithms are responsible for providing situation 
awareness information to our operator and for enhancing the autonomous capability of our robot. 
The breakdown of operator and robot perception responsibilities is listed in Table 4. 

Table 4. Perception Responsibility Breakdown 

Operator Assistance Robot Autonomy 
Data Compression Closed-Loop Control 
Data Representation Mapping for Safe Motion Planning 
 Monitoring Task Progress 

 
Perception algorithms can reduce the environmental data representation by replacing raw sensor 
data with symbolic and geometric descriptions.  This will provide the operator with situational 
awareness even in bandwidth constrained communications environments. They can also 
represent and visualize data in forms that assist an operator in remotely operating a task. 

The robot can become more autonomous by perceiving its environment while executing 
an action to ensure that an action is resulting in the intended effect. It can also create 
representations of the environment to plan its actions. We believe that increased autonomy will 
also require robots to reliably monitor key task events, allowing them to autonomously assess 
their own effectiveness in performing a task that involves interaction with the environment. 

Many of our 3D perception techniques rely heavily on the Point Cloud Library (PCL) that 
was originally developed by Willow Garage (Rusu & Cousins, 2011). 

3.2.3.1 Localization – Point Cloud Registration. A critical closed-loop perception function 
in a mobile robot is localization. In order for a robot to follow a long term mobile plan 
accurately, the robot needs to measure its own motion through the world. Using only dead 
reckoning estimates such as inertial and kinematic sensing will produce drift in positioning over 
time due to integration of sensing errors. Visual localization allows the robot to perceive its 
environment to measure motion against the fixed world. 

Our primary localization mechanism is through registration of incremental LIDAR point 
clouds against an accumulated map. We assemble the scans of our spinning LIDAR, and register 
each assembled cloud against the map. Using a full 360° cloud generates a more reliable iterative 
motion estimate by constraining the incremental transform with points sampled evenly from all 
directions relative to the robot.  

However, the LIDAR’s position may change within the period of rotation of the 
assembled LIDAR, so we need a coarse estimate of motion to assemble the scans properly. We 
use a dead reckoning estimate from our kinematics and inertial sensors to generate this estimate, 
which is reliable for short time scales. To avoid map deformations or incorrect pose estimates 
that could occur from improperly assembled clouds, we spin our LIDAR at 5.0 rad/sec so that we 
receive fully assembled clouds at roughly 1.6 Hz. The trade-off is that each assembled cloud is 
sparser than if the LIDAR was spun at a slower rate, but we found that reliable estimates were 
generated by these sparse point clouds. 
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The point cloud registration process uses an Iterative Closest Point (ICP) algorithm. This 
incrementally minimizes an error function that aligns each incoming point cloud with the 
surfaces of a reconstructed point cloud map. 

 𝑬𝑬 = �[�𝑹𝑹𝒑𝒑𝒊𝒊���⃗ + �⃗�𝒎 − 𝒒𝒒𝒊𝒊���⃗ � ∙  𝒎𝒎𝒊𝒊���⃗ ]𝟐𝟐
𝒎𝒎

 (27) 

For each point, each iteration selects the nearest neighbor in the point cloud map and calculates 
the projection of the separation between the two points onto the normal contained in the map at 
that point. We solve for a rotation and translation that can be applied uniformly across the new 
point cloud to minimize this error totaled over all points. This process is illustrated in Figure 42. 
We use the libpointmatcher C++ library developed by ETH Zurich Autonomous Systems 
Laboratory for the core iterative closest point (ICP) and nearest neighbor algorithm 
implementations (Pomerlau, Colas, Siegwart, & Magnenat, 2011). 

 
Figure 42. Iterative Closest Point Representation 

To ensure that LIDAR point returns from the robot itself are not considered to be part of the 
static environment, we continuously filter points that we believe to be part of the robot based on 
our geometric and kinematic model in addition to our joint angle sensing. 

To improve the quality of our map and filter the small amount of noise that our 
registration process can produce, we deactivate the ICP calculation process unless our robot is 
actively walking. Our dead reckoning estimate will only drift while the robot is walking. 

3.2.3.2 Mapping. We build maps of the robot’s environment to create a consistent 3D 
representation that accumulates knowledge from sensor data received from multiple points of 
view. We use the OctoMap framework from the University of Freiburg to represent our map as a 
probabilistic sparse octree. This structure avoids allocating memory for large empty regions of 
space. It also scales well to increasing environment size by creating a new root node at a lower 
level of resolution and re-parenting the old root node to it. 

The process of updating the map from a point cloud source involves ray-casting from the 
sensor origin point to each sensed point in the cloud. We register the endpoint as a “hit” 
observation, and the points along the ray from the camera up to the end point as “misses.” We 
give each sensor a model which defines its probability of hit and miss, and tune this according to 
its noise model.  A typical OctoMap and population of an OctoMap via a sensor are shown in 
Figure 43. 

 

New Point 

Nearest Neighbor 
Point in Map 

Point-to-Plane 
Projected Error 
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Figure 43. OctoMap Representation. 

We store the log odds of occupancy in each node to speed up the update computation. 

 𝑳𝑳(𝒎𝒎|𝒛𝒛𝟏𝟏:𝒎𝒎) =  𝑳𝑳(𝒎𝒎|𝒛𝒛𝟏𝟏:𝒎𝒎−𝟏𝟏) +  𝑳𝑳(𝒎𝒎|𝒛𝒛𝒎𝒎) (28) 

To further speed up this process, we only execute the ray-casting and free-space update step 
within 3 meters of the robot where manipulation requires that non-static objects to be updated 
over short time scales. The free-space processing step becomes computationally expensive at 
longer distances since the rays become longer and more accesses become necessary. We also 
remove points that we associate with the robot, the ground plane, and wall planes. This 
dramatically reduces the size of the map, and allows this data to be represented in a more 
efficient manner. 

Sensor Origin 
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 The data payload of our map contains not only occupancy, but also color and a timestamp 
of the most recent update. The color allows us to update the map with color observations within 
the view frustum of a color camera, but occupancy values only for LIDAR points that fall 
outside of any color information. The color value is integrated over multiple observations to 
smooth out any noise. When extracting occupied cells and rendering the map, we are able to use 
the color information for the operator’s benefit. The timestamp data allows us to prune old data 
in our map, as the quality of data unobserved over a long timescale tends to be low. This is what 
allows us to avoid processing free space data at long distances because invalidated data will 
eventually be cleared out naturally over time. Figure 44 below shows the OctoMap 
representation of a valve and pipe after the walls and floor have been identified by plane 
detection and removed. 
 

 
Figure 44. Atlas Maps a Valve 

3.2.3.3 Plane Detection Our plane detection is based upon the PCL parallel plane and 
perpendicular plane sample consensus models. While the system defaults to using RANSAC, 
most of the other sample consensus algorithms are available as options. The plane detection 
module first segments its input cloud based on proximity through a k-d tree. For each segment, 
we run the parameter-selected sample consensus algorithm on the segment. If the sample 
consensus algorithm achieves a certain amount of inliers, we store its model parameters and 
convex hull before remove its inliers from the working cloud. (The working cloud is a copy of 
the initial input cloud.) Otherwise, we simply move on to the next segment. We store each pair of 
convex hull and associated parameters into a plane data structure and return an array of these 
structures and the remaining working cloud. 

3.2.3.4 Shape/Object Detection Our object detection solution took the form of a hierarchical 
system of partitioning steps. The framework of the adaptive perception manager leads to 
pipelines of processing and recognition steps.  

RANSAC is our preferred method for simple shape recognition. However, RANSAC is 
prone to false positives when there is a simpler shape in the environment that can encompass the 
convex hull of the desired shape. For example, a disc model will be placed on a low-error wall 
before it is fitted on a high error disc and a torus model will fit a disc before a torus. The easy 
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solution is to detect the simpler shape and remove it from the actively considered cloud. 
RANSAC will also perform better on a more restricted cloud, thus filtering (spatial or otherwise) 
and segmentation (typically via k-d tree) will improve the end result. Each of these processes 
partition their input set into a set of outliers and at least one set of inliers. We found that the 
structure of each node of our partitioning tree was similar. A typical node is a pipeline of a 
filtering process, a segmenting process, and a more advanced process such as RANSAC. The 
inliers selected by the node are the inliers of the final process; the outliers are the relative 
complement of the inliers in the input set—the union of the outliers of each process.  This flow is 
shown in Figure 45. 
 

 
Figure 45. The Processing Flow for a Single Node of the Pipeline 

These nodes can be connected so that uninteresting features are partitioned out of the 
pipeline in order of how easily and accurately they can be recognized. For instance, cropping to 
the 5cm above and below the floor is trivial if the robot has its feet on the floor and the transform 
from sensor frame to foot frame is available. This allows the floor plane to be detected quickly; 
then the next steps are done on the outlier cloud – the cloud with the floor removed. Each feature 
in the cloud is partitioned away until the only points in the actively considered cloud partition are 
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either objects with which the robot must interact, obstacles to interacting with said objects, or 
dispersed noise points of a negligible number. Pruning the original cloud this way lets us more 
accurately detect these relatively unique objects. This hierarchical technique was employed for 
one of our door detectors, our valve detector, and our terrain field detector.  The approximate 
pipeline for these three detectors is shown in Figure 46.  Note that the door, valve, and terrain 
field detectors share processing steps removing the floors and walls; the adaptive perception 
manager guarantees that those shared steps are not duplicated in the system. 
 

 
Figure 46. The Approximate Pipeline for the TROOPER System 
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3.2.3.5 Fiducial Tracking To provide more accurate end effector positioning for 
manipulation, we use vision to directly measure the end effector pose. This eliminates any error 
accumulation that exists in joint angle encoding throughout the kinematic chain. We use a 
fiducial detection library from NASA JPL that, using a stereo camera, can quickly search for and 
detect the 6-DOF pose of a specific fiducial marker given a pose that we seed through our 
kinematics and robot model. We have designed a wrist collar, pictured in Figure 47, which can 
be mounted between our robot forearm and end effector with repeated redundant markers that 
allow for detection from nearly all viewing angles. This approach decoupled the marker 
placement from the end effector itself, allowing us to use the same hand tracking configuration 
for arbitrary end effectors. 

 
Figure 47. The TROOPER Fiducial Bangle 

 

3.3 DRC Task Solutions 

The DRC Finals were setup as shown in Figure 48.  The course, from right to left, included: 
A. Driving a Polaris Ranger 
B. Exiting the Polaris Ranger 
C. Opening and passing through a door 
D. Locating and closing a valve 
E. Picking up a drill and cutting through a wall 
F. Surprise task  
G. Rubble: clearing debris or walking over rough terrain 
H. Climbing stairs 

The robot was placed into the Polaris Ranger by the field team prior to starting a run.  After 
driving and exiting the vehicle, the robot opened and passed through a non-spring-loaded push 
door.  The robot then closed a valve by turning it at least one full revolution counterclockwise. 
Next, the robot picked up a cutting tool from a shelf and used it to cut out a black circle on a 
piece of drywall.  The possible surprise tasks consisted of opening a small door and pushing a 
button, pulling an electric shutoff lever, or moving a power plug between sockets. The rubble 
task presented the option of passing through a debris field or walking over uneven cinderblocks.  
Lastly, the robot had to climb a series of stairs to reach a metal platform. 
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Figure 48. The DRC Course Layout 

Practicality dictated solutions that were tailored to each task and worked around the 
limitations of the Atlas platform.  For instance, our approach to driving and egress took into 
consideration the difficulty of getting Atlas to fit inside the vehicle.  The approach for turning the 
valve used a radially symmetric end effector to allow wrist rotation.  Actuating the drill was done 
using insets on the gripping hand, because positioning inaccuracy in the arms made pushing the 
button with a separate stick hand difficult. 
 

3.3.1 Driving. The approach of team TROOPER for the driving tasks was partly shaped by 
the egress mechanism and partly by the overall size of the Atlas robot. After several tests, it was 
determined that the robot would have difficulty egressing the Polaris vehicle when sitting so that 
the Atlas was facing forward. Sitting the robot sideways in the vehicle would allow for less 
development time to be spent on the egress task as well as a higher success rate. The position of 
the robot for a sideways egress then directed the way in which the team pursued the driving task. 

At the beginning of the run, the robot was positioned in a way such that it could 
manipulate its throttle and steering mechanism, described further in the following section. For 
the operator, an overhead map of the scene is presented. This map shows both the detected 
obstacles and the projected path of the vehicle given its current steering angle. Using the WASD 
commands shown in Figure 49, the operator is able to accelerate and steer the vehicle. 

A 

B C 
D 

E F G 

H 
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Figure 49. WASD Driving Commands 

This configuration allows a comfortable interface that is common to many driving-based 
computer games. The general strategy for driving was slowly moving down the course. As the 
vehicle passed each obstacle, the operator would stop the vehicle, turn in the desired direction, 
and throttle up again. Throughout the task, the operator would view the overhead map in order to 
choose the steering direction.  The process was then iterated on each turn until crossing the finish 
line. 

3.3.1.1 Driving Mechanism. As described by DARPA competition rules, teams were 
allowed to use passive devices to aid in the driving of the Polaris Ranger. The stipulation was 
that this device must be installed within a five minute time window and must be installed without 
the use of tools. With these regulations in mind, the team developed a mechanism for driving the 
vehicle that independently operated the steering of the vehicle and the throttle. The left arm 
equipped with the Robotiq hand controlled the throttle while the right hand with the POKEY 
stick controlled the steering. First, the throttle mechanism (shown for the hand in Figure 50 and 
at the gas pedal in Figure 51) will be covered. 
 

 
Figure 50. Throttle Control in Hand 

Throttle Up 

Turn Right 

Stop 

Turn Left 
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After the robot was positioned to drive, a rubber compliant object was placed in the Robotiq 
hand and the hand was closed. Attached to the rubber object with a Bowden cable is a device to 
press the accelerator pedal in the Polaris. When the wrist turns, the Bowden cable is tensioned, 
which engages the pedal mechanism. The lever arm of the mechanism is positioned and shaped 
in such a way that twisting the wrist a small amount will result in the Polaris accelerating to a 
slow, desirable speed. Upon resetting the wrist, the spring on the pedal mechanism would restore 
the device to the disengaged position so that the vehicle would no longer move forward.  
 

 
Figure 51. Pedal Mechanism 

The steering of the Polaris is controlled using the right arm with the attached POKEY stick. The 
steering mechanism is made up of a chain and sprocket system, pictured in Figure 52. One side 
of the device is directly connected to the steering wheel and the other is connected to a device 
that fits around the end of the POKEY stick. The end of the POKEY stick is machined in a 
hexagonal shape that is complemented by the hexagonal hole in the steering mechanism. This 
works to keep the end effector snugly in position and move the connected steering wheel with 
little slip. When positioning the robot for driving, the wrist is put at its zero position and inserted 
into the steering hole. Using only the last joint on the wrist to control the steering has proven to 
give the range of motion necessary to complete the driving task.  
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Figure 52. Steering Mechanism 

3.3.1.2 Stereo Obstacle Detection and Mapping Due to the ATLAS' sidesaddle seated 
position within the vehicle, we were unable to use the MultiSense SL for obstacle detection 
while driving. Instead, we mounted a VI-Sensor, a stereo camera system with an onboard IMU, 
to the ATLAS as our main sensing unit while driving. By computing stereo disparities, we were 
able to obtain accurate depth information which allowed us to generate an overhead map of 
upcoming obstacles for the operator. 

From the disparity image, computed using the ROS stereo image processing node, we 
performed ground plane detection with a modified RANSAC procedure. Between each frame, 
we maintained a global estimate of the ground plane by rotating our prior estimate according to 
the angular velocity measurements from the IMU. This estimate was then used during the 
random sampling stage by computing the angle between the normal of each triplet of points and 
the estimated normal and rejecting samples with angle greater than a fixed value. This procedure 
improved our inlier percentage significantly, reducing the number of RANSAC iterations needed 
and providing robustness against other, potentially larger, planes in the scene. 

After we removed the ground plane, we filtered out noise by enforcing minimum blob 
sizes and temporal consistency for obstacles. We then converted the disparity map into a point 
cloud and used the RANSAC estimated ground normal to synthesize an image taken above the 
scene along the normal. On this image, we also plotted the instantaneous projected path of the 
vehicle given the current steering angle (read from the robot's wrist joint), using a simple bicycle 
model. The result can be seen in Figure 53 (right). In addition, we returned to the operator the 
left camera image with each non-zero disparity point colored by the type of point it represents, as 
shown in Figure 53 (left). The image shows a replica of the barriers used in the DRC, green 
points are ground, blue points are obstacles within the displayed range, and red points are 
obstacles above the displayed range. 
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Figure 53. Stereo Obstacle Detection and Vehicle Model  

 
Finally, we fused subsequent overhead maps together by tracking the vehicle's position using 
stereo visual odometry from the libviso2 package (Geiger, Ziegler, & Stiller, 2011). This fused 
map provided the operator information about obstacles all around the vehicle, rather than simply 
within the sensor's field of view. Unfortunately, we were unable to tune this method in time for 
the competition, but a sample fused map from a later sequence is shown in Figure 54. The left 
shows a color-highlighted image from a driving sequence on the highway; the center the 
corresponding overhead map; and the right a fused overhead map using libviso2. 

 

     
Figure 54. Highway Stereo Example 

3.3.2 Vehicle Egress. For egress from the Polaris vehicle, a solution was conceived to rely 
heavily on a mechanical appliqué without much need for intricate software development and 
testing. By placing the robot into a series of tested and known poses, the robot sat up out of its 
driving position and began sliding out of the egress mechanism (as explained later). As the robot 
began sliding out, it assumed a stand-prep pose and gently touched the ground. The robot then 
raised its pelvis height to unlatch itself from the mechanism and took several steps away from the 
vehicle. 
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3.3.2.1 Egress Mechanism The mechanism for egress was focused around the robot having 
to move as little as possible in order to leave the vehicle. This inspired a design that allows for 
the robot to have one key frame for driving, then transition to a stand prep pose that would 
engage a linear slide to lower the robot to the ground.  The mechanism is shown in Figure 55. 
 

 
Figure 55. Driving Mechanism 

During loading a series of quick releases are put into place, which lock both the slide and the 
robot into place. These remain secure throughout the driving event; upon completion of driving, 
the robot transitions into the stand prep key frame. At this point, the quick releases engage and 
the robot begins to slide down the mechanism. The slide mechanism was tested and iterated to 
ensure the device has the proper amount of throw to slowly and safely lower the robot to the 
ground. The slide itself has two degrees of freedom – one to slide out of the vehicle and one to 
lower the robot until its feet touched the ground. This setup allowed for a more compact and 
robust design than if just one degree of freedom was used. Each degree of freedom had its 
motion impeded by a hydraulic piston with a unidirectional flow restriction valve, allowing for a 
smooth motion to set the approximately 400 lb. robot down to a stable position on the ground. 

3.3.2.2 Whole Body Egress Exit. The stages of vehicle egress are shown in Figure 56. In the 
left-most image, the robot begins the procedure by assuming a statically stable (stand-prep) pose. 
As the robot completes the motion the robot pulls the pin on the quick-release shackles that held 
the pelvis and seat anchored to the base. This is similar to disengaging a seatbelt. The robot’s 
weight begins to slide the robot forward. The slides are attached to hydraulic resistance to control 
the rate and prevent the robot from being thrust forward. 

In the central image of Figure 56, the robot passes the pivot point and the slides begin to 
rotate. The rotation is slightly eccentric to allow the slides to clear the edge of the vehicle. 
Rotation uses hydraulic resistance to control the rate and prevent the robot from being rolled 
from the vehicle. Forks protruding from the seat to the robot waist also keep the robot aligned to 
the slide. Around 30 degrees the forks naturally disengage for upward and forward motion. 
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The slide and rotation are designed to allow for different vehicle angles including 
deflection of the vehicles off-road suspension system. In the right image, as the vehicle sheds the 
weight of the robot, its roll is absorbed by the slide which is now pitched 35 degrees upward. 
When the robot’s feet are squarely on the ground, the egress slide either naturally loses contact 
with the robot or can be nudged out of the way with some squats. 
 

 
Figure 56. Atlas Vehicle Egress Progression 
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3.3.3 Door. The door task is the first task in which the principles of human-guided 
autonomy were applied to allow the operator and the robot to collaboratively complete a high-
level goal.  This task was initiated by the human specifying only that the robot should walk 
through a door and that it should use its left hand to open the door.  The robot then provided the 
operator with a proposed task chain, such as the one pictured in Figure 57 below, which could 
accomplish this goal.  Goals are shown in blue and tasks are shown in red.  A sub-goal that is not 
colored indicates that it is a duplicate of a goal that appears elsewhere in the chain and it is 
expected that it will already be achieved by the time execution reaches that point in the chain. 
The numbers indicate the order of execution of the tasks.  An explanation of each of these steps 
is given in Table 5. The door task chain includes 9 distinct tasks that make use of 5 different 
types of behaviors. 

 
Figure 57. A Task Chain to Detect and Walk through a Door 
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Table 5. The Door Task Chain 

Task Behavior Description 
Detect Door Detect Object Find a door and add a corresponding door 

frame to the shared world model (detailed 
description provided in following section) 

Close Hand Control Hand Close the left hand to prevent damage to 
the fingers when pushing on door handle 

Keyframe – Walk to Door Keyframe Execute a pre-recorded set of joint 
positions to lift the arms above the robot’s 
waist 

Walk to Door Walk To Plan and execute a series of footsteps 
from robot’s current location to just 
outside the door 

Move Hand Over Door 
Handle 

Task Space Move 
Hand 

Plan and execute a collision free motion to 
move left hand from its current pose to 
just above the door handle  

Unlatch Door Task Space Move 
Hand 

Plan and execute a motion to move left 
hand from its current pose to just below 
and beyond the door handle 

Crack Door Open Task Space Move 
Hand 

Plan and execute a motion to move the 
left hand from its current pose to further 
inside of the door frame 

Keyframe – Walk Thru 
Door 

Keyframe Execute a pre-recorded set of joint 
positions to hold the door open with the 
right hand and retract the left hand 

Walk Thru Door Walk To Plan and execute a series of footsteps 
from the robot’s current location to just 
inside of the door 

 

3.3.3.1 Door Detection. We initially employed SAC plane model segmentation for the door 
detection task. The DRC door task was sufficiently constrained such that three discrete planar 
surfaces; a plain wall, the door itself, and surrounding frame, could be teased apart provided the 
segmentation distance function was parameterized to sufficiently discriminate between the 
depths of the surfaces (while not over-discriminating for finely-textured features on the surface 
of the door or wall themselves). The door itself is shown in Figure 58. As an initial step, a 
generalized perception module for plane detection was run so as to subtract the ground plane and  
remove extraneous features on the ground plane or above the course (similar to the preprocessing 
step taken in the case of cinder block field characterization).  
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Figure 58. Charleston, SC Mockup of Door Task 

While generally good at localizing the door plane, early experiments showed that despite 
the geometric regularity of the surfaces involved and the overall lack of clutter, SAC 
segmentation could not be guaranteed to provide the 2cm accuracy necessary for planning the 
unlatching movements of the arm and allowing the wide ATLAS platform to traverse the 
threshold. The principal reason for this has to do with the nature of the RANSAC algorithm.  It is 
possible for RANSAC to converge on a plane model which is rotated slightly about the Z axis, 
resulting in a detection which is sufficiently imprecise to impede correct localization of the 
unlatching mechanism with odometry. 

The solution to this problem was to eschew SAC segmentation in favor of exploiting the 
simple structure of the door frame and the reliable depth offsets. We developed a door detection 
perception module that uses LIDAR to find a consistent set of points set back from the rest of a 
wall surface. The module applies the following algorithm to detect the door. 

1. Crop LIDAR point cloud at waistline 
2. View frustum culling at 60 degrees 
3. Project into XY-plane 
4. Principle component analysis (PCA) to transform into Eigen-basis 
5. Create threshold based on mid-point in minor dimension 
6. Reorder points along major dimension 
7. Increment through points, look for at least 1m of continuous points above the threshold 
8. Use upper/lower bound transition points to determine the door position and yaw 

The results from this door detection are shown in Figure 59 below. 
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Figure 59. Atlas Autonomously Detects the Door Pose Using LIDAR Sensing 
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3.3.4 Valve. This task was initiated by the human specifying only that the robot should use 
its right hand to turn a valve.  The robot then provided the operator with a proposed task chain, 
such as the one pictured below in Figure 60, which could accomplish this goal. Goals are shown 
in blue and tasks are shown in red.  A sub-goal that is not colored indicates that it is a duplicate 
of a goal that appears elsewhere in the chain and it is expected that it will already be achieved by 
the time execution reaches that point in the chain. The numbers indicate the order of execution of 
the tasks. The steps in this chain are described in Table 6; the chain includes 9 distinct tasks that 
use 4 different types of behaviors. 
 

 
Figure 60. A Task Chain to Detect and Turn a Valve 
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Table 6. The Valve Task Chain 

 Task Behavior Description 
Keyframe – Detect Valve Keyframe Execute a pre-recorded set of joint 

positions to move the arms out of the 
robot’s field of view 

Detect Valve Detect Object Find a valve and add a corresponding 
object to the shared world model (detailed 
description provided in following section) 

Keyframe – Approach 
Valve 

Keyframe Execute a pre-recorded set of joint 
positions to move the arms into a stable 
pose for walking 

Walk to Valve Walk To Plan and execute a series of footsteps 
from robot’s current location to just in 
front of the valve 

Move Hand To Valve Pre-
Grasp 

Task Space Move 
Hand 

Plan and execute a collision free motion to 
move the POKEY stick from its current 
pose to the valve  

Move Hand To Valve 
Grasp 

Task Space Move 
Hand 

Plan and execute a collision free motion to 
move the POKEY stick from its current 
pose to a small stand-off distance from the 
valve 

Move Hand To Edge of 
Valve 

Task Space Move 
Hand 

Plan and execute a motion to move the 
POKEY stick from its current pose to the 
outer edge of the valve 

Turn Valve Task Space Move 
Hand 

Plan and execute a circular trajectory for 
the POKEY stick (detailed description 
provided in later section) 

Retract Hand From Valve Task Space Move 
Hand 

Plan and execute a motion to retract the 
POKEY stick from the valve 

3.3.4.1 Valve Detection. Valve detection presented a difficult problem with existing 
infrastructure. Within our group, some had called it impossible. One major difficulty is that the 
major recognizable volume of a valve is either a flat ring or a torus. These volumes are concave 
and, worse, occupy a low percentage of the volume of their convex hull. The sample consensus 
answer to this situation is to also select based on the normal difference of each point from the 
model. Unfortunately, our vision pipeline sits upon compiled LIDAR scans—which did not 
produce especially accurate or useful normals. 

Thus, we pursued a modified tactic. We created a PCL sample consensus model for tori 
that would actively detect the wheel of the valve as usual for a point-based sample consensus. 
This model detects as model coefficients: the radius to the middle of the wheel rim, radius from 
that middle to the edge of the rim, and the position and orientation in three dimensional space. 
To combat the false positives, we removed all anticipatable shapes that would produce false 
positives on the convex hulls of our target volume. In addition to removing all walls and the floor 
from the working cloud, we removed all vertical cylinders over a certain radius to exclude the 
pipe from the working cloud 
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Since a torus is symmetric around an axis, we also needed some determiner for the angle 
at which the valve was initially detected. The angle was intended to be used for avoiding the 
spokes of the valve, so we used PCL cylinder detection at a small max radius. The angle between 
the rejection of the cylinder axis from the torus axis and the rejection of the Z-axis from the torus 
axis is the angle for our valve about its axis. 

3.3.4.2 Circular Trajectory for Turning Valve. In the case of turning a valve, we used the 
Drake IK with gaze constraints to constrain the stick to remain perpendicular to the valve face 
while allowing rotation about the stick axis.  We used a circular series of poses and solved both 
on the UI and robot side of the communications divide so we didn’t need to send the plan over a 
narrow communications channel. 

3.3.5 Wall. This task was initiated by the human specifying only that the robot should use 
its left hand to pick up a cutting tool off of a particular shelf and use it to cut a particular pattern 
in a specified wall.  The robot then provided the operator with a proposed task chain, such as the 
one pictured below in Figure 61, which could accomplish this goal. Goals are shown in blue and 
tasks are shown in red.  A sub-goal that is not colored indicates that it is a duplicate of a goal that 
appears elsewhere in the chain and it is expected that it will already be achieved by the time 
execution reaches that point in the chain. The numbers indicate the order of execution of the 
tasks. The steps in this chain are described in Table 7, including 13 distinct tasks that make use 
of 6 different types of behaviors. 
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Figure 61. A Task Chain to Cut a Hole in a Wall 
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Table 7. The Wall Task Chain 

Task Behavior Description 
Keyframe – Detect Drill Keyframe Execute a pre-recorded set of joint 

positions to move the arms out of the 
robot’s field of view 

Detect Drill Detect Object Find a cutting tool on the specified shelf 
and add a corresponding object to the 
shared world model (detailed description 
provided below) 

Keyframe – Approach 
Shelf 

Keyframe Execute a pre-recorded set of joint 
positions to move the arms into a stable 
pose for walking 

Walk to Shelf Walk To Plan and execute a series of footsteps 
from robot’s current location to just in 
front of the shelf 

Move Hand To Drill Pre-
Grasp 

Task Space Move 
Hand 

Plan and execute a collision free motion to 
move the left hand from its current pose to 
a small stand-off distance from the cutting 
tool 

Move Hand To Drill Grasp Task Space Move 
Hand 

Plan and execute a motion to move the 
left hand from its current pose to the 
cutting tool 

Grasp Drill Grasp Drill Close hand around cutting tool, lift the 
tool, and continue to cinch the tool until 
the tool is powered on (detailed 
description provided below) 

Keyframe – Cut Hole Keyframe Execute a pre-recorded set of joint 
positions to move the left hand to a 
cutting pose 

Walk To Wall Walk To Plan and execute a series of footsteps 
from robot’s current location to just in 
front of the wall 

Cut Wall Task Space Move 
Hand 

Plan and execute a circular trajectory for 
the left hand (detailed description 
provided below) 

Walk Away from Wall Walk To Plan and execute a series of footsteps to 
walk backwards from the robot’s current 
location 

Bend Over Task Space Move 
Hand 

Plan and execute a motion to squat down 
and place the left hand near the ground 

Drop Drill Control Hand Open the hand to allow the cutting tool to 
drop to the ground 
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3.3.5.1 Cutting Tool Detection. Our cutting tool detection module uses a colored stereo 
point cloud. We preprocess the point cloud to focus it on the height suitable for manipulation, 
roughly from the robot’s pelvis to its head. Region growing segmentation with color separates 
the point cloud into chunks that are clustered spatially and have similar color features. We first 
down-sample the points using a voxel grid filter at 0.5 cm resolution to speed up the 
segmentation process.  Figure 62 shows the drill detection in action. The left image shows the 
raw colored stereo cloud with a coordinate frame representing the detected tip frame of the 
cutting tool; the right image shows the voxelized cloud, colored by segment. 
 

 
Figure 62. Cutting Tool Detection 

Our detection process loops through the point cloud segments to find a strong match for a cutting 
tool. We require that the principal dimension of the cluster be roughly 28 cm, and the minimum 
dimension roughly 9 cm. We also require that the tool be standing vertically, so its angle must 
match the gravity vector with a small tolerance. This will not work if the tool falls flat on the 
table, in which case the segmentation algorithm would struggle to cluster the tool separately 
from the shelf. We would be forced to rely upon operator-driven drill detection in this scenario. 

Both of the DRC cutting tools were primarily yellow, so our detector also prefers to 
select clusters that are primarily made up of yellow points. We represent the color yellow in 
YCrCb color space so that we are robust to illumination variation. 

This module adds a cutting tool object to the world model to notify the rest of the system 
(along with the operator) of the position of the tool. The origin of the tool is at its tip. Small 
position errors, along with error in orientation about the principal axis, can easily be corrected by 
the operator in the 3D interactive scene. Errors in roll and pitch result in substantial operator 
burden. 
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3.3.5.2 Cutting Tool Grasp. We ended up encoding a small set of valid grasp configurations 
for the drill as a Task Space Region centered behind the drill handle.  The most crucial part was 
to get the height just right such that the 3D printed pieces attached to the fingers would activate 
the drill. 

3.3.5.3 Tool Activation. Our primary method for activating the cutting tool is to grip it in 
such a way that a 3D printed attachment is able to press the trigger. The Robotiq hand is opened 
and wrapped around the back of the cutting tool. Upon closing the hand, the 3D printed 
attachment makes contact with and depresses the button. At this point, the cinching behavior 
begins by opening the hand slightly and moving the hand up slightly.  From here, the hand will 
open and close several times until the cutting tool is activated. This method has proven to be 
fairly robust in turning on the drill.  The hand with attachment is visible in Figure 63. 
 

 
Figure 63. Drill Activation Tool 

 Our fallback method for activating the drill is to press the button by visual servoing in 
with the POKEY stick, described below. 

3.3.5.4 Button Tracking and Stick Press. The task of visual identification and tracking of 
the drill button for manipulation and actuation is a well-constrained problem even under the 
varying lighting conditions at the Finals venue. It is well-suited to the popular mean-shift 
tracking algorithm. Mean-shift is an appearance-based tracking algorithm which uses histograms 
of pixel values, as in Figure 64, associated with a particular feature to track that feature across 
multiple frames. Histograms may make use of color features or more complex features such as 
line orientations and gradients. The algorithm functions as a non-parametric density estimator 
which generalizes to the problem of finding modes in a set of data samples.  
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Figure 64. Color Histograms for Mean-Shift Tracking 

The power tool used in the DRC drill task has a conspicuous circular black button 
surrounded by the yellow chassis of the tool; this color combination is unique in the scene and 
the circular contours present a robustly trackable feature. Provided lighting variations do not 
exceed the dynamic range capability of the sensor mounted on the robot’s hand, these features 
are also generally invariant to rotation. We use a variant of mean-shift, continuously-adaptive 
mean-shift (or CAMshift), which uses continuously adaptive probability distributions computed 
for each individual frame. This makes the algorithm more robust, but requires the use of spatial 
moments to climb the gradient rather than target and candidate distributions as in the 
conventional implementation. 

3.3.5.5 Cutting Tool Activation Detection. Our robot and operator needed a method to 
determine whether the cutting tool was successfully activated before proceeding to cut the wall. 
We found that addition of a microphone to the POKEY-stick allowed the robot to monitor local 
sound intensity and detect a volume increase that corresponds with tool activation. In our testing, 
we found that providing the intensity data to the operator would enable them to recognize 
activation, even in the proximity of the active Atlas robot hydraulic pump. 

3.3.5.6 Circular Trajectory for Cutting. The goal of the wall cutting task was to make a 
series of cuts such that the piece of drywall containing a black circle could be removed from the 
rest of the wall.  Different teams made different shapes, though most could be categorized as 
either a large circle or square.  We chose to go the circle route, and thus required something that 
could trace a large circle with the tip of the cutting tool.  We used the Drake IK for this task.  
First, we created a circle to be traced in the hand frame and used the gaze constraints to constrain 
the cutting tool to remain perpendicular to wall while allowing rotation about the tool axis.  Each 
successive IK pose to solve was seeded using the solution for the previous waypoint in the 
trajectory.  Because a large number of waypoints were used, this planner ran on both the UI side 
and the robot side of the communications barrier; that way the trajectories were generated on 
both sides and did not have to be piped over a narrow communications channel. 

3.3.6 Terrain. The terrain task was initiated by the human specifying only that the robot 
should walk to the other side of a cinder block field.  The robot then provided the operator with a 
proposed task chain, such as the one pictured in Figure 65 below, which could accomplish this 
goal. Goals are shown in blue and tasks are shown in red.  A sub-goal that is not colored 
indicates that it is a duplicate of a goal that appears elsewhere in the chain and it is expected that 
it will already be achieved by the time execution reaches that point in the chain. The numbers 
indicate the order of execution of the tasks. The steps in this chain are described in Table 8, 
including 13 distinct tasks that make use of 6 different types of behaviors. 
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Figure 65. A Task Chain to Walk over Cinder Blocks 

Table 8. The Terrain Task Chain 

Task Behavior Description 
Detect Cinder Blocks Detect Object Find a cinder block field and add a 

corresponding object to the shared world 
model (detailed description provided 
below) 

Generate Cinder Blocks 
Path 

Walk To (planning 
only) 

Use the description of the cinder block 
field to generate a footstep plan (detailed 
description provided below) 

Walk to Cinder Blocks 
Start 

Walk To Plan and execute a series of footsteps 
from robot’s current location to the 
location of the first two footsteps in the 
previously generated footstep plan 

Walk Over Cinder Blocks Teleop Walk Execute the previously generated footstep 
plan to traverse the cinder blocks field 

 

3.3.6.1 Terrain Field Detection. We represent the DRC terrain field as a rectangular grid of 
cinder block cells, as is fitting given that it appears in Figure 66. To find the terrain field, we use 
Euclidean distance clustering of a LIDAR point cloud focused at foot to knee height of the robot. 
We project each of the clusters into the X-Y plane and compute the convex hull of the points. 
We then iterate around the convex hull, searching for two long continuous edges separated by 
180 degrees in orientation. We use these edges as the orientation of the field and compute the 
centroid of the cluster for its 2D position within the plane. 
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Figure 66. DRC Cinder Block Field as Recreated in Pennsauken Lab 

 

3.3.6.2 Field Characterization. The geometric regularity of the DRC cinder block field 
traversal task admits some highly tailored ad hoc techniques for segmentation and 
characterization. Characterization for the purposes of path planning involves determining the 
height, incline, and extent of each discrete surface comprising the field in order to assist the robot 
with footstep placement. 

The approach to characterization was predicated on DARPA’s design for the field; a 
regular grid of cells, each consisting of the same surface area with a constant incline of 13º in 
one of four directions and at one of four discrete heights. In general, segmentation of planar 
surfaces at close range is easier with stereo disparity point cloud data. Experiments performed 
during the Charleston test event suggested that the dynamic range of the MultiSense SL head 
would prove problematic in the event of severe shadows as anticipated around midday in 
Pomona.  The effects are shown in Figure 67, where half the field is not visible due to being in 
shadow. 
 

 
Figure 67. Effects of Dynamic Range Occlusion due to Midday Shadows 
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Segmentation of the cinder block field would then be performed primarily using LIDAR data 
which is more robust (albeit not entirely immune) to variations in outdoor lighting conditions.  A 
Gazebo simulation LIDAR scan of the cinderblock field is shown in Figure 68. 
 

    
Figure 68. Simulated LIDAR Data from Cinder Block Field 

Sampling and Consensus (SAC) model planar segmentation developed for the purposes of wall 
and ground plane subtraction is generally the preferred segmentation method; as implemented in 
the Point Cloud Library (PCL), it provides an automatic means to obtain the plane equation for 
each segmented surface and thus to determine the orientation of each discrete grid cell.  SAC 
segmentation works by selecting an initial sample set of points, computing a model (planar 
model in this case), computing and counting inliers, and iterating until a specified maximum 
number of iterations or confidence threshold is achieved. An important point here is that the 
initial selection of sample points is random; thus, it is equally likely that SAC segmentation will 
result in a model being fitted to an area covering multiple planar surfaces at different orientations 
as to what the user identifies as a discrete planar object. 

Early experiments with this segmentation showed that basic plane model segmentation 
with SAC as applied to the entire cinder block field would prove inappropriate for the particular 
task. While the cinder block field appears to us to be a highly regular sequence of highly discrete 
cells, SAC segmentation of the entire field is prone to try to fit surfaces to the entire field, a high-
frequency jagged surface. In most cases, basic SAC plane model segmentation found 
characterized discrete surfaces only for the most elevated flat grid cells (on average, 2 or 3 per 
6x7 grid), as visible in Figure 69. 
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Figure 69. SAC Segmentation Results on Individual Cinderblocks (Simulated) 

The solution to this problem was to apply a two-step segmentation process. Region growing 
segmentation is not subject to the same tendencies towards overfitting large planar surfaces to 
high frequency components, and was successfully used to segment individual grid cells. The 
algorithm then iterates over the segments found via region-growing and applies a SAC plane 
model fitting to each segment, yielding the geometry of the individual grid cells. Orientation is 
computed as the arctangent of the Z component of the surface normal, with the point cloud 
already transformed into the proper coordinate space.  Figure 70 shows the output of this two-
step process, the left being the results of region growing segmentation and the right the 
subsequent SAC plane fitting. 

 
Figure 70. Cinderblock Field Detection 
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3.3.6.3 Footstep Planning. We solved the problem of planning footsteps over cinderblock 
terrain using an A* search with a set of allowed transitions informed by experimentation and 
advice from IHMC.  The 4D state space consisted of the location of the left and right foot (left 
foot XY, right foot XY).  The cinderblock field itself was discretized by each half (split left/right) 
stack of cinderblocks, so a 6x6 field of cinderblocks would be represented by 6x12 possible 
locations for either foot.  Each transition consisted of a stance foot (the foot remaining 
stationary) and a swing foot moving to a new location.  The cost assigned to each transition 
encoded the difference in height between the stance foot and the final step location. 

We used the following transition rules found through experimentation and advice from 
IHMC to generate the underlying graph: 

• Allowed table of transitions include stepping forward one cinderblock and stepping one 
half cinderblock to the side. 

• Disallowed transitions that left stance foot on downslope when stepping down 
cinderblocks 

• Disallowed any changes in step height of over a one cinder block height 
• Disallowed leaving a stance foot on an upslope because we would hit the ankle torque 

limits 
A sample path found by the planner is shown in Figure 71. 

 

 
Figure 71. A Simulated Path over the Field 

In practice, we also attempt to follow the seam between cinderblock columns as that was 
more stable than staying completely on one column.  Straddling the seam allowed for more 
separation between feet as opposed to squeezing both feet onto one block.   Figure 72 highlights 
the importance of not leaving a stance foot on an upslope when stepping down.  Atlas is hitting a 
joint limit on his left foot, which causes him to slide on the blocks and could have easily resulted 
in a fall. 
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Figure 72. Atlas at a Joint Limit when Descending Cinderblocks 

3.3.7 Stairs. Atlas faced a couple of issues when walking up the stairs.  The stairs 
themselves were very close to the physical limits of what Atlas could traverse, specifically:  

• Stair depth comparable to the foot length 
• Stairs overhang catches toe when raising foot 
• Shins collide with the next step when transitioning weight 
The solution was alternating between half and full steps to surmount the stairs, all the while 

keeping the pelvis height at the maximum possible value.  Only placing the front half of the foot 
on one stair allows enough room such that the shin does not collide with the beginning of the 
next stair when transferring the weight to the other foot.  This said, only using half the foot 
required changes to IHMC's balancing algorithms; they exposed a method to allow specifying 
contact points that cover a limited subset of the foot.  Figure 73 shows Atlas at the stairs.  The 
left image shows a narrow stance with the pelvis raised, and the right image shows Atlas placing 
half its right foot on the first step.  The right shin touches the next step, but is still within 
recoverable limits. 
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Figure 73. Atlas at the Stairs 

We noticed other teams had different approaches; i.e., we saw that the Worcester Polytechnic 
Institute (WPI) team walked bowlegged, placing one foot at an outward yaw of approximately 45 
degrees.  This allowed them to place the whole foot on the step while still not hitting the shin. 

4 RESULTS AND DISCUSSION 

4.1 Approach to the Competition 

As the competition approached, we knew we were one of the smaller teams competing. We 
debated internally as to which events we should focus on, possibly to the exclusion of others.  
We considered skipping driving, egress, and the wall task.  In the end, we determined to drive 
and egress, but only attempt the wall task if we had extra time. 

In this section, we detail the differences between the approaches written in previous 
sections and the approaches we decided to use in the competition. 

4.1.1 Driving. Driving was carried out as described in Section 3.3.1. Much of the difficulty 
of the task was in properly installing Atlas inside the Polaris.  The gas pedal had to be properly 
calibrated such that the vehicle RPM were in a certain range when the throttle mechanism was at 
maximum tension.  The steering had to be properly centered as well.  The operator steered using 
imagery from the stereo camera and a top-down view showing the anticipated vehicle curve 
given the steering angle and obstacles found using the stereo disparities.  The camera gave a 
narrow view of the vehicle, making it difficult to judge the vehicle extents; more practice would 
have helped to alleviate this. 

4.1.2 Egress. We carried out egress using the mechanism described in Section 3.3.2.  We 
had planned to trigger the release mechanism for the slide using a solenoid attached to the pelvis, 
but testing showed that friction often caused this to fail.  Instead, we used a series of quick 
releases that would trigger when the robot shifted its configuration inside the vehicle.  Most 
initial tests ended in failure, with the robot falling sideways off the slide or getting caught on the 
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slide when trying to walk away.  It was only on the last day before the competition that we found 
a reliable, repeatable setup. 

4.1.3 Door. We planned to use the task chain as described in the Section 3.3.3. In practice, 
we switched to teleoperation to open the door handle.  We were able to unlatch the door with the 
operator in-the-loop.  The locations for where to stand to unlatch and to move through the door 
proved very useful.  We were able to walk forward through the door as long as the operator 
remembered to narrow the footstep width parameter in the user interface. 

4.1.4 Valve. We planned to use a truncated version on the task chain described in Section 
3.3.4 for the valve.  The truncated chain would have included detecting the valve, deciding 
where to stand, entering an appropriate keyframe, and walking to the valve.  The rotation of the 
valve would have been entered manually by the user as a circular end effector trajectory.  In 
practice, we did not use the valve detection and instead relied upon teleoperation for the entire 
valve task. 

4.1.5 Wall.  We decided to skip this task in the competition.  We had practiced picking up 
the drill and turning it on, but had not successfully cut the hole out of the drywall.   With our 
limited manpower and time, we were unable to devote the necessary resources to this task. 

4.1.6 Mystery Task. We did not practice the mystery tasks and resolved to teleoperate 
them in the competition. 

4.1.7 Terrain. We decided to use teleoperation and manual footstep placement to cross the 
cinderblock terrain.  We tested using the results of the A* terrain footstep planner described in 
Section 3.3.6 and found that the foot placements were slightly too far apart and that localization 
drift prevented the robot from traversing the entire field at once.  Moreover, we learned simple 
heuristics from IHMC regarding foot placement, but decided the time it would take to translate 
them into a working planner was better spent on other critical issues.  Additionally, in practice, 
we often encountered situations requiring intervention, such as needing to approach the edge of a 
cinderblock first before stepping down. 
4.1.8 Stairs. We decided to use teleoperation and manual footstep placement to climb the 
stairs.  We had debated about using the cinderblock planner to generate a trajectory for the stairs, 
but ultimately decided against it.  We could have used a hard-coded footstep trajectory since the 
stair measurements were known, but our practice runs showed that it was easier and more 
reliable for the operator to place the steps.  We used the strategy of alternating half steps and full 
steps to avoid hitting the robot’s shins on the next step. 
 

4.2 Competition Results 

Our final results proved disappointing. Technical difficulties, hardware failures, and a lack of 
practice with our own system prevented us from progressing far into the interior course in either 
of our two runs. In the end, we completed the driving, egress, and door tasks and attempted the 
valve. Both of our runs resulted in 2 points being scored before we ran out of time. 

4.2.1 Driving.  On our first run, throttle was not properly calibrated, so when the robot 
attempted fully open the throttle it was not sufficient to move the vehicle.  This led to our first 
reset.  During the reset, the wireless network then went down course-wide and we lost our 
connection to the onboard computers.  Afterward, we managed to successfully reach the goal 
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area. Our stereo object detection and mapping proved poorly tuned for the environment and we 
found that our view through the VI sensor was not sufficient to gain an accurate idea of how 
much clearance was available for the Polaris. Consequently, we drove along the left edge of the 
track until the friction stalled the Ranger. Once the Ranger stalled, our issue became apparent 
and we were able to drive it away from the edge and complete the course. 
 On our second run, our now-functional stereo object detection and mapping allowed us to 
handily drive the course. However, halfway through the course, our driving mechanism detached 
from the Ranger unexpectedly forcing a reset. The detachment was not apparent from the 
operator interface, causing lost time.  Once reset at the starting line, we attempted to drive 
forward, pulling increasingly harder on the throttle, while the vehicle remained stationary.  The 
vehicle was not properly in gear; once the officials put it in gear we drove the course 
successfully, but it is likely this event caused one of the joints in our left wrist to become 
inoperable.  Despite the broken left wrist, we reached the driving goal, shown in Figure 74.  
 

 
Figure 74. Atlas Reaches Driving Goal (Run 2) 

 

4.2.2 Egress.  On our first run, we initiated egress without issue. However, our field team 
noted that our Atlas was in an unsafe situation once the initial stage linear guide had extended. It 
is suspected that our Atlas was incorrectly seated on its mount initially and fell backwards off of 
the mount when the mechanism actuated. A reset was called, denying us of the task point. On the 
second run, egress worked flawlessly. As pictured in Figure 75, the slide lowered Atlas smoothly 
onto its feet. As our most operator-intensive task, our many hours of practice obviously showed 
their reward. 
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Figure 75. Atlas Egresses (Run 2) 

4.2.3 Door.  On both runs, we were able to place and walk to our door using the automated 
detection and walk to behaviors. On our first run, we found that the door handle for the course 
was difficult to turn (as had been noted by our walkthrough team). It took several attempts 
teleoperating the left hand against the handle to open the door. We walked through without issue 
and scored the task point. This successful opening and passing through the door is shown in 
Figure 76. 

On the second run, we found that the left wrist was inoperable post vehicle egress. 
Because our operator had some practice opening the door with right hand POKEY stick, we were 
able to open the door through a combination of arm teleoperation and squatting commands. We 
had not recently practiced rising from the resulting extremely low squat height and our Atlas 
robot fell as we attempted to do so. 

     
Figure 76. Atlas Opens and Clears Door (Run 1) 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
87 

4.2.4 Valve.  We only made it to the valve task on the first run. We placed our POKEY 
stick between the spokes of the valve. However, we found that we were unable to successfully 
send our valve-turning trajectory command over our communication link successfully.  We had 
gotten the communications working only the night before and had not been able to practice with 
the competition communications restrictions at this point. As we were attempting to send the 
command, the trial came to an end, denying us the point.  Figure 77 shows our position at the end 
of the run. We addressed the issue that night, planning the motion trajectories on both the UI and 
robot sides of the system, so as not to have to send the trajectory over the narrow bandwidth 
channel. 
 

 
Figure 77. Atlas Ready to Turn Valve (Run 1) 

5 CONCLUSIONS 

We believe we took a different approach from most teams.  Rather than starting with a purely 
teleoperated system and automating only the simple or repetitive tasks, we envisioned a system 
that would default to automated actions and only request operator input or teleoperation when it 
determined itself to be incapable of completing an objective. Instead of asking “What is the bare 
minimum we need to automate to accomplish the tasks in the time allotted?” we asked “How can 
we make the system as autonomous as possible while still guaranteeing task completion amidst 
uncertainty?” 

To work effectively with the robotics community, we adopted the open source Robot 
Operating System (ROS). As a relatively small team, we heavily leveraged existing ROS 
components for the Virtual Robotics Challenge.  This was very important for us in order to 
deliver a working system with the time constraints imposed by the competition. As we proceeded 
on with the DRC Trials and Finals, we decreased our reliance on stock ROS components and 
wrote our own. For example, we initially used the ROS SMACH state-machine framework 
before writing our own behavior manager.  We initially used the ROS Move-It motion planning 
stack before creating our own lighter-weight version that incorporated additional features like 
Task Space Regions for grasp sampling. Additionally, we have wrapped existing ROS 
components in ways that add functionality, such as our adaptive perception manager, which 
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provides easy methods to start, stop, and chain together sequences of perception algorithms. One 
lesson we learned is that UI development is very time-intensive. We would have saved time had 
we started with the ROS rviz visualization tool and modified it, rather than writing our own UI 
from scratch. 

While we would have liked to have performed better in the DRC Finals, we have a good 
foundation for a system that utilizes the human as more of a supervisor than a teleoperator.  We 
refer to this as human-guided autonomy.  We have not yet utilized the notion of task execution 
confidence.  Instead, when pressed, we reverted to teleoperation and did not give our autonomy 
framework a chance.  This can also be attributed to lack of practice time.  We needed more time 
and practice to determine reliable parameters for the knowledge base used by the reasoner.  
There is also potential here to use demonstration learning to teach the robot new tasks. 

To be more useful, automation components such as ours need to be more generalizable.  
For a competition like the DRC Finals, it was tempting (and feasible) to over-fit the solution to 
the problem.  We were able to encode many properties of the task setup before the robot ever 
entered the field. One avenue for future research is to better gather this information from vision 
and other sensor data to create more robust low level behaviors in mobility and manipulation. 

In the competition, we ended up spending so much time on driving and egress (over half 
of our allotted time) that we were unable to test the rest of our system.  We needed to spend more 
time and effort developing the driving components. Indeed, our biggest takeaway was that we 
needed more time to practice all the tasks.  Not practicing the tasks under competition settings 
was very detrimental, as it would have given us time to address the bugs exposed. Unfortunately, 
our communications manager only became functional the day before the competition began. 

Future research needs to focus on robust perception capabilities to provide monitors that 
can close the loop on autonomous behaviors. For example, automated vision to recognize that a 
door has been opened and vibro-tactile perception to feel that a cutting tool is activated are 
critical functionalities for the robot to become more autonomous. More advanced low-level 
humanoid controls incorporating visual feedback are necessary for platforms like Atlas to 
operate at higher speeds and in dynamic environments. Dexterous manipulation with multi-
fingered grippers is required for robots to be able to perform more than a limited subset of 
manipulation tasks. Algorithms for in-hand object estimation and control incorporating tactile 
sensing are necessary, in addition to robust tactile sensors that last more than a few minutes. 
Finally, automated population of a knowledge base through observation of humans would speed 
up the process of adapting a robot to a new problem domain. 
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7 LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

Air Force Research Laboratory (AFRL) 
DARPA Robotics Challenge (DRC) 
DRC Simulator (DRCSim) 
Emergency Stop (E-Stop) 
Free Open Source Software (FOSS) 
Institute for Human & Machine Cognition (IHMC) 
Inverse Kinematics (IK) 
Iterative Closest Point (ICP) 
Kinematics and Dynamics Library’s (KDL’s) 
Observe-Orient-Decide-Act (OODA) 
Open Dynamic Engine (ODE) 
Operator Control Unit (OCU) 
Pointed Object for Kinematic Extension without Yielding (POKEY) Stick 
Point Cloud Library (PCL) 
Robot Control Unit (RCU) 
Robot Operating System (ROS) 
ROS State-Machine (ROS SMACH) 
Simulation Construction Set (SCS) 
Trusted Remote Operation of Proximate Emergency Robots (TROOPER) 
User Interface (UI) 
Virtual Robotics Challenge (VRC) 
Worcester Polytechnic Institute (WPI) 
Zero Moment Point (ZMP) 
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