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1.0 SUMMARY 
At the Defense Advanced Research Projects Agency (DARPA) Clean-slate design of Resilient, 
Adaptive Secure Hosts (CRASH) program kick-off meeting the program manager, Howie 
Shrobe, explained to the performers: 

 The threat of malicious cyber activity was increasing and government officials have 
publically asserted that we would lose a cyberwar (in no small part due to our advanced 
dependence on computer technology). 

 The work effort advantage in attack is currently strongly in favor of the attacker (the 
defense must defend all attack points, the offense needs to only be successful at a single 
point). 

 Our current security strategy (in 2010 and still in 2015) of “perimeter protection, patch, 
and pray” is not aligned with the threat. Programmers will not bail us out of this 
situation (by writing defect free code). 

 Software is a part of many cyber-physical systems, e.g., automobiles, weapons systems, 
and medical devices. 

 We were entering an age where physical/kinetic war might be waged or supported via 
cyber-attacks (e.g., Stuxnet and the 2008 Georgian cyber campaign). 

The summary of these observations was that: “the US has adopted a strategy of layering defenses 
on top of a uniform and vulnerable architecture. This has been necessary to buy tactical 
breathing space, but it is not convergent with the evolving threat.” 

The program was charged with “making the attackers push the rock” (shifting the workload 
against the attacker and in favor of the defense) and with developing technologies that could 
ultimately protect our country. 

As a result of our Semantically Aware Foundation Environment (SAFE) effort under the 
CRASH program, we now understand how to develop inherently secure computing technologies. 
These technologies use computational mechanisms to remove whole categories of vulnerabilities 
– thus freeing us from the paradigm where each bug could reveal anew some vulnerability. For 
example, the SAFE processor is immune from buffer overflow vulnerabilities and code injection 
vulnerabilities. We also designed hardware support for the required technical mechanisms which 
grounds the SAFE platform in a trusted hardware base (based on the program premise that, 
unlike the 1970’s, hardware is now inexpensive and some transistors can be employed solely to 
improve security). It has been observed that software only security solutions present two flaws: a 
potential increase of the attack surface and possible subversion by attacks at a lower layer in the 
software stack. Finally, we have verified the designs of certain crucial components of the SAFE 
solution, i.e., the memory safety and compartmentalization of the additional hardware 
mechanisms (e.g., the tag management unit and the atomic group unit) and the non-interference 
property of a subset of the application programming language. 

Much work remains to be done and these areas will be discussed in the conclusions. While there 
is not an inherently secure processor available “off-the-shelf” today, the SAFE project and the 
CRASH program as a whole have demonstrated that inherently secure processing is feasible. As 
these technologies develop, we must avoid the following pitfalls: there is no wholly technical 
solution to cyber-security (as the computational technology improves attackers will, e.g.,  ramp 
up their social engineering and phishing attacks – all useful technology is capable of being 
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misused to execute inappropriate behavior); security will not come at zero cost and we must not 
inflict the cost expectations of mundane computing entertainment platforms (where even 10% 
overheads may not be acceptable) onto mission critical compute platforms (where an overhead of 
50% might even be acceptable if it achieves secure processing); consumers will have an 
insatiable appetite for performance but in mission critical computation we must be willing to 
devote some hardware – that might otherwise be exploited for performance – to secure 
operations. 

A new generation of inherently secure processor architectures is feasible today. 
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2.0 INTRODUCTION 
Current computer host systems (hardware, operating system, and applications) have proven 
highly vulnerable to cyber-attacks ranging from buffer overflows, to return-oriented 
programming, to numerical overflows and thousands of other attack vectors 
(http://cwe.mitre.org/index.html). Our overall computer security posture is based on a series of 
“patch and pray” activities where vulnerabilities are patched as soon as feasible only to yield to 
new attacks in a never ending cycle. 

How did our computing infrastructure end up in this posture? The Department of Defense (DOD) 
“Strategy for Operating in Cyberspace” (July 2011) gives a nice concise explanation: 

“The Internet was designed to be collaborative, rapidly expandable, and easily adaptable 
to technological innovation. Information flow took precedence over content integrity; 
identity authentication was less important than connectivity.” 

Our current host computers and operating systems are of pre-Internet design and have evolved to 
facilitate information processing and sharing. Current technology has been designed for speed 
and functionality rather than security.  The hardware itself treats both code and data as “raw 
seething bits” with no distinction between data and instruction nor any notion of provenance nor 
built-in access control. 

Current computer security is unintentionally premised on zero defect operating system (and 
application) implementations. In many contemporary machine architectures any breech of 
intended operation is sufficient to compromise arbitrary components of the system (due to 
unitary privilege implementations). 

Reversing this situation requires a clean-slate revisit of current computer hardware and OS 
architectures.  Security protections must be provided that are robust against individual design 
faults (using defense-in-depth and least privilege design mechanisms). Designs must protect 
against entire classes of software weaknesses. Finally, perimeter protection mechanisms 
(supported by pervasive information-flow control) need to be provided that can operate correctly 
independent of the overall size and complexity of the code inside the perimeter. 

The goal of the SAFE (Semantically Aware Foundation Environment) project, which is part of 
the larger DARPA CRASH (Clean-slate design of Resilient, Adaptive Secure Hosts) program, is 
to create a secure, robust computing environment. As part of CRASH, SAFE takes a clean slate 
approach, starting with secure hardware, and then layering on formally verified software 
components. A key cross-cutting design goal of the SAFE computational stack is to make safety 
the default consideration, and to make this default (safety) easy to program. 

A simplified model of the concreteware (low level system software) has been verified correct 
with respect to security properties such as memory safety and compartmentalization and the 
design has been targeted to provide non-interference (though language constructs have been 
added that permit necessary audited/intended violation of non-interference). The SAFE project 
provides a highly reliable, secure operating environment that substantially advances the state of 
the art with respect to fielding secure software systems in a hostile environment. 

The delivered SAFE system consists of a high fidelity hardware simulation hosted on a Field 
Programmable Gate Array (FPGA), with a set of runtime services (concreteware) running on the 
hardware. Secure applications can be prototyped in the Breeze high level programming 
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language; lower level services are written in the Tempest systems programming language.  SAFE 
provides a substrate upon which to build resilient applications and higher level secure languages. 

There are many existing proposed security solutions currently being deployed such as anti-virus 
and intrusions detection systems, address space layout randomizers, and software diversification 
engines. Ultimately most (if not all) of these solutions are simply exercises in making penetration 
harder (but not impossible) to achieve -- as any software-based solution ultimately builds on 
other layers of unprotected software.  To avoid security solutions that simply amount to building 
on a “house-of-cards” there must be a base of trust which, in the case of SAFE, is the hardware 
implementation using a security tag management unit (TMU).  Evidence of the futility of many 
of these clever “house-of-cards” software solutions comes in the form of the “Blind, Return, 
Oriented, Programming (BROP)” work out of Stanford University 
(http://www.scs.stanford.edu/brop/). While this work does not discredit all security solutions it 
does illustrate how little information is required to compromise a system (in this case they 
compromise a closed-binary and source code component needing only the ability to overflow the 
stack and a process to respawn the component after it crashed).  

Using the SAFE host computer, the programmer is building upon hardware that directly enforces 
security guarantees with respect to information flow, typed values, and buffer bounds checks. 
The operating system (OS) of the SAFE system is thus provably secure against whole classes of 
attacks (e.g., buffer overflows and code injections). 

Applications can be designed to be secure using the same mechanisms, but even if they do not 
use these mechanisms then successful attacks are only possible on a per application basis instead 
of against the common operating system.  In this way, the workload is shifted away from 
favoring the attacker and back to favoring defenders of the system (by eliminating high value 
attacks against the common OS). 

Any useful program is going to need to do some dangerous things, e.g., exfiltrate sensitive data. 
In SAFE all security policies are enforced by default. There are explicit operators that can 
perform dangerous activities such as declassifying data to lower secrecy levels or even to public 
accessibility. Thus exceptions to policies are localized and can be reviewed and audited. 
Importantly, the cost of such reviews does NOT increase proportionally with code size. Instead 
reviews require inspection only of the explicitly coded exceptions. The review allows 
determining exactly those conditions under which it is appropriate for a secure application to 
perform risky operations. 

For the reader: This report provides guidance to the issues faced in the design of our clean-slate 
secure host computing solution and a summary of the results. Detailed programming guidance is 
provided in technical reports associated with the project. This report should prove useful to 
anyone contemplating an effort to create a secure system level platform particularly in terms of 
scoping the effort and appreciating the issues that will be faced in designing a comprehensive 
secure solution. Section 3.0 focuses on the overall scope and assumptions behind the SAFE 
effort. Section 4.0 provides a subsection-by-subsection description of the primary results of the 
project. Section 5.0 frames conclusions in terms of lessons learned and unresolved issues. 
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
The SAFE processor was developed using agile software and hardware development methods 
(though the hardware was designed using a software modeling language called BlueSpec so that 
the main hardware specific methodology involved reducing the design to an FPGA 
implementation). The primary aspect of the development method that was exceptional in the 
SAFE project was our emphasis on co-design. Whereas some project efforts might coordinate 
efforts via early development of  application programming interfaces (APIs) and subsequent 
configuration control, co-design involved extensive communication and feedback between 
component development teams and the willingness to modify designs on a semi-continual basis 
to satisfy newly emerging requirements. Co-design avoids early commitment to design decisions 
(made without full understanding of the context in which these decisions will operate) at the cost 
of significant communication overhead and multiple co-dependent development iterations. 

The assumptions that provide the basis for understanding the results of the project effort revolve 
around the overall high-level architecture and design principles that were established. This 
section reviews those decisions and the individual components and tools of the SAFE project are 
described in more detail in the results section. An important tenet of the project was that secure 
operation of the SAFE machine, which is provided by a few fundamental protection 
mechanisms, is grounded in hardware support. 

The fundamental SAFE protection mechanisms are: 

 Memory safety supported in the hardware by unforgeable “fat” opaque pointers. This 
protection eliminates buffer overflow vulnerabilities and related memory attacks. 

 Hardware enforced data types supported by an atomic group mechanism. This supports 
distinguishing between: data, pointers, and instructions. Among other vulnerabilities this 
protects against code injection.  

 Least privilege enforcement supported by an authority creation and passing mechanism. 
This supports organization of the OS and applications into least privilege containers 
eliminating root escalation vulnerabilities. 

 Perimeter data protection (information flow control and label models) supported by the 
rules in the Tag Management Unit (TMU) and carefully design system Input/Output (I/O) 
channels. This provides data access control that can eliminate data exfiltration 
vulnerabilities. 

SAFE memory is organized as a memory space of atoms. A SAFE memory atom is an 
indivisible unit of storage that contains: a payload (the traditional data stored in memory) and a 
tag (meta-data about the payload). The tag consists of an atomic group (a hardware understood 
type for the data) and a tag pointer (to metadata which itself is stored as atoms in memory). 
Every payload item is tagged with a full pointer, unlike many previous architectures that assign 
only a small number of fixed bits. SAFE supports arbitrary metadata. In general the ALU 
processes the payload and the TMU processes the tag.  There is very limited and privileged 
crossover of data. For example, the TMU miss handler does have to transfer tag data into 
payload so that it can compute the result of the tag computation. Setting the resulting tag is an 
operation privileged exclusively to the TMU. User applications cannot directly set tag data. 

These mechanisms are provided by an architecture that consists of: 
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 SAFE processor (simulator and FPGA) 

The SAFE processor consists of a number of architectural additions (listed and described below) 
to a standard processor architecture. An important security design goal of the overall SAFE 
machine is that there is no shared memory between processing threads. This provides for 
memory protection between threads.  Thread-to-thread communication is supported by copying 
data over channels without sharing addresses.  

The SAFE runtime is fully distributed. Each user thread operates in its own address space (which 
unlike traditional systems is protected at the hardware and software level as an effectively 
disjoint memory space due to allocation as a bounded memory frame and the memory protection 
afforded by opaque, “fat” pointers). The principals, authorities and tags (PAT) server provides a 
separate address space for principles, authorities and tags (which must be shared across threads).  
Operating system services run locally (per thread) and are accessed through a secure gate 
invocation mechanism.  Global services (e.g., PAT server or memory manager) run in threads 
that are accessed via streams/channels. 

 Tag Management Unit (TMU) and TMU Cache and  Atomic Group Unit (AGU)  

The TMU operates on every instruction cycle and checks to see if the proposed operations obey 
the set of security rules installed in the TMU. The input to the TMU is an “M vector” consisting 
of 9 fields that describe the tags on the inputs to the operation. The output of the TMU is an “R 
vector” consisting of 8 fields that update the tags on the data being operated and a Boolean field 
declaring if the operation should be allowed. 

The TMU operates using parallel hardware paths to the normal arithmetic logic unit data paths. 
Separation of the data paths provides for secure operations but nevertheless the two must run in 
synchronization.  To address efficiency issues of the TMU processing, a TMU cache is 
introduced to provide efficient lookup of already computed <M,R> vector TMU computations. 
Performance data for this mechanism is described in (Dhawan, 2014) 

The TMU implements a number of different security oriented policies. These include: 
information-flow control based on label models, data signing and sealing, low-level type safety 
(enforced by the atomic group unit), memory safety (via fat pointers), and linearity. 

Policies are implemented as a set of symbolic rules referred to as label models. The SAFE 
system combines multiple defined label models into an overall product label model. Specific 
label models often focus on a subset of instructions that are governed by that label model. 

 Fat Pointer Unit 

Fat pointers are used to encode the base and bounds of all pointers. This allows the hardware to 
avoid out-of-bounds memory reads and write. The mechanism is implemented in an efficient 
“low-fat” algorithm which optimizes encoding to reduce overhead (documented in (Kwon, 
Dhawan, Smith, & Knight, Jr., 2013)) 

Pointers to memory frames are provided as opaque data structures. Arbitrary pointers cannot be 
created from, e.g., integers and are only created anew by a privileged memory allocation 
authority. 

 Garbage Collector (GC) 
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Memory management in SAFE is supported by a contemporary garbage collection scheme. 
While portions of the underlying SAFE OS will use explicit memory management, overall 
applications are secured by relying on a correct (and verifiable) garbage collection 
implementation. 

The SAFE Garbage Collector uses a thread concurrent copying approach.  In a concurrent 
approach, garbage collection takes place on a per thread basis, rather than a system stop-the-
world collection in which all useful work stops while garbage collection takes place (though each 
thread uses a stop-the-thread GC scheme).  Copying means that rather than try to leave data in 
place, and put new data where the dead data used to be in small chunks, we copy the “live” data 
out of one space and into another, and then re-use the entire space.   

There are three regions of memory:  old-space, copy-space, and new-space.  Allocation is done 
from new-space, while any live frames from old-space are copied to copy-space.  The GC 
maintains the invariant that nothing in new-space points into old-space by copying anything from 
old space when it is written.   When all the live frames from old-space have been transferred to 
copy-space, old-space can be re-used.  The GC only copies complete frames. 

 Scheduler 

The scheduler currently implemented in SAFE is a pre-emptive round robin scheduler. This 
means that each thread is allowed to run for a maximum set length of time, after which it is 
interrupted and the next thread is allowed to run.  Threads are run one by one, always in the same 
order. After all threads have been run, the first thread is run again. 

 PAT Server 

The PAT server provides a shared space of principals, authorities, and tags to support secure 
shared TMU computations across threads. The PAT server supports the definition of label 
models and rules and uses these to compute TMU miss computations in a server that can be off-
boarded to a separate component in the distributed SAFE operating system. 

The SAFE machine makes use of three programming languages: an assembly/ISA machine level 
programming language, a system level programming language (C-like) called Tempest, and a 
prototype functional application language called Breeze. 

 Instruction Set Architecture (ISA) 

The SAFE machine language was designed concurrently with the Breeze application language. It 
offers hardware support for many of the complex parts of the high level language. Thus, along 
with many of the typical assembly instructions such as ADD and YIELD, there are others such 
as ARETAG and BCALL to support data tagging and secure invocation. As more was learned 
about the label models, instructions were updated to take into account any vulnerabilities 
discovered. Thus the SAFE ISA is not simply a typical control and arithmetic instruction set as it 
includes categories of operation for: authority management, TMU management, tag 
management, and secure stream management. 

 Tempest  

Tempest is a system level programming language with lower-level features than Breeze.  
Tempest is a typed language that supports system-level explicit memory management, explicit 
calling conventions, inline assembly insertion, and linear (non-copyable and thus non-shared) 
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pointers.  Nevertheless most Tempest applications are garbage collected. Explicit memory 
management is performed by OS services supporting the memory manager and the stream 
manager (which must allocate from global memory to support inter-thread communication). 

Tempest’s support for linear pointers includes language features for easing the use of the pointers 
where copying would occur in traditional compilers (e.g., explicit register spilling support, as 
well as features for non-destructively “focusing” on components of data structures that involve 
linearity). 

 Breeze 

Breeze is a typed (mostly functional) language that supports contracts on procedures. It provides 
explicit syntax and libraries for programming with user-defined label models to support fine 
grained (instruction-level) information-flow control. It also provides a “bracketing” construct 
which is used to secure information flow from conditional computations.  Breeze supports a non-
interference model of programming whereby “sensitive” (classified or high labeled) data cannot 
create observable differences in public (not sensitive or low) outputs. 

One of the innovations in Breeze is to avoid the use of exceptions (which are a control flow 
mechanism difficult to secure with IFC) and to replace them with a specific exception value, 
called NaV (Not a Value).  This allows for a straight-forward way to express erroneous behavior 
without introducing potential information flow channels that come with alternative control flow 
mechanisms, such as exceptions. Included in the erroneous behaviors are computations that 
would leak information past a secrecy boundary, either directly in a value or indirectly via 
control flow manipulation.  Attempting to do so will only yield a NaV; no secret information will 
be exposed. Many of the subtle cases of these attacks are described in: (Hriţcu, Greenberg, Karel, 
Pierce, & Morrisett, 2013) 

Breeze supports least privilege program design via creation of unforgeable principals and 
authorities. Using these, the developer can create as many compartments as appropriate for a 
component or subsystem.  The authority mechanism can be used to implement secure 
programming patters such as “propose and verify.” 

Separation of privilege via authority creation is supported by: authority carrying invocation gates 
acting as capabilities and separation of authorities between processes with constrained 
communication over channels that have IFC policy protections enforced by the underlying 
system. 

3.1 Information Flow Control and Label Models 

A central technique guiding the overall SAFE design is the use of information flow control 
processing. Information Flow Control support is at the heart of the SAFE processor design and is 
one of the features that distinguishes the SAFE machine from standard computer architectures. 
Support for information flow control pervades the design of SAFE from hardware up to 
application design. 

Information Flow Control (IFC) is a method for tracking how data explicitly and implicitly 
influences the results of computation. In dynamic IFC, this is done at runtime by attaching 
metadata called labels to data and propagating those labels alongside the data during 
computation. Data explicitly influences results when it is directly combined with other data. For 
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example, appending a paragraph marked “secret” to a document would cause the augmented 
document to be marked “secret” as well. Data indirectly influences results when it causes a 
change in control flow that then produces some result. When IFC is used for enforcing secrecy, 
tracking indirect influence is necessary to prevent the control flow of a program from being used 
as a means of declassification. For example, branching on whether a secret string contains a 
particular word and then returning “true” or “false” would cause those return values to also be 
labeled as secret. If the results were not labeled secret, information about the contents of the 
string would be revealed. 

Fine-grained IFC involves applying this method at the level of the individual operations on data. 
On the SAFE system, this means applying various label models to each instruction as it executes. 
The hardware and an OS component collaborate to enforce these label models on every other 
part of the system, including other OS components.  

On the SAFE system, the secrecy label model is responsible for ensuring that secret data does 
not undergo exfiltration. The secrecy label model and its dual the integrity label model are 
described in (Montagu, Pierce, & Pollack, 2013). The particular incarnation of the secrecy label 
model that is used on SAFE is the one described in “Disjunction Category Labels” (Stefan, 
Russo, Mazières, & Mitchell, 2012). Instead of a full integrity label model a la Disjunction 
Category (DC) integrity, SAFE makes use of a signature label model, the use of which 
resembles the use of cryptographic signatures. The signature label model is the integrity portion 
of the sealing label model that appears in “Micro-Policies: Formally-Verified, Tag-Based 
Security Monitors” (Azevedo de Amorim, et al., 2015). “Micro-Policies” also describes several 
other label models, such as memory safety and atomic groups (i.e. hardware types), that could be 
implemented in the SAFE system if there was not built-in hardware support for enforcing the 
properties that the label models are intended to enforce. For an in-depth discussion of those 
policies as label models and the verification efforts overall, see Section 4.6. 

DC secrecy and DC integrity are both non-interference label models. The non-interference 
property is that high inputs (secret or low-integrity data) cannot influence low outputs (public or 
high-integrity data). Because the SAFE system supports explicit declassification operations and 
communication between concurrently running processes, true non-interference is impossible. 
However, the label models are implemented in such a way as to provide non-interference within 
a single process in the absence of declassification operations. 

There are several other implementations of IFC through the use of label models. Jif (Java 
information flow) is a system for utilizing IFC on the Java Virtual Machine (Myers & Liskov, 
2000). Jif also adds support for groups by allowing principals to act on behalf of each other. 
Asbestos and HiStar are alternative label models that apply labels more coarsely than SAFE 
using a mapping of principals (as ownership) to security "levels” (Efstathopoulos, Krohn, 
VanDeBogart, Frey, et. al. 2005; Zeldovich, Boyd-Wickizer, Kohler, & Mazieres, 2006). 
Labeled IO (LIO) offers an implementation embedded in the Haskell programming language 
(Stefan, Russo, Mitchell, & Mazieres, 2011). Hails builds on LIO and DC labels to provide an 
embedded haskell framework for developing secure web applications (Griffin, Levy, Stefan, 
Terei, et. al. 2012). SAFE, however, is the only system to offer fine-grained IFC with hardware 
support. 
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As described in “A Theory of Information-Flow Labels” (Montagu, Pierce, & Pollack, 2013), the 
labels used in SAFE form a lattice-based algebra. DC secrecy has the public label (anyone can 
read) at the bottom of the lattice and completely private (no one can read) at the top. Our 
signature label model has the label indicating a value has not been signed at the bottom, and a 
label indicating that it has been signed by every principle at the top. SAFE combines these two 
lattices into a product label model, with the resulting lattice as the product of the two lattices. 
Operations cause labels in different components to propagate differently, according to each label 
model’s policy implementation. In particular, while secrecy labels flow to all data that was 
influenced by the secret, signature labels (unlike DC integrity labels) only flow when data is 
exactly copied or is moved. For more information on the implementation of label models in the 
SAFE system, see Section 4.3 on the SAFE OS’s label model enforcement mechanism. 

Label models in SAFE are augmented by a clearance mechanism that provides something akin to 
access control. This clearance mechanism sets an upper bound on the label of the data that can 
influence control flow in a process, providing a way to mitigate the ability for malicious 
programs to use communication between concurrent processes to reveal secret data. 

3.2 SAFE Platform Attack Model 

We assume a correctly implemented instruction set architecture and supporting hardware. We 
further assume physical security, the absence of hardware-layer tampering or supply-chain 
attacks.  However, we do assume an attacker can obtain privileges on the machine comparable to 
any user. While we provide compiled languages we do not assume the attackers must use the 
compiler. Our model assumes the attacker can author assembly code as a direct proxy for ISA 
machine code. The fundamental security question is then whether the attacker is fully-isolated on 
the machine unable to read or write protected data of other users and unable to inject 
computations into another user’s thread space. 
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4.0 RESULTS AND DISCUSSION 
Instantiation of the SAFE architecture resulted in advances in each of the high-level architectural 
features discussed in the previous section. This section discusses in more depth the results in the 
areas of: 

 The overall tagged hardware machine and supporting ISA (which was ultimately reduced 
to an FPGA-based reference and demonstration machine). 

 Two high-level programming languages: Breeze used to develop applications and 
Tempest used to develop the machine operating system. We also discuss the supporting 
tool environment. 

 The SAFE operating system referred to as Concreteware. 
 Two high level demonstrations: a database information protection demonstration called 

SAFE Knowledge Online (SKO), and a control-system integrity demonstration (rocket 
controller); and one low-level information-flow control demonstration (sum server). 

 The SAFE development tooling environment (SAFE Tools) supporting both execution 
simulation and FPGA-based execution. 

 An annotated bibliography of the detailed published results in the verification of SAFE 
computational models. 

 An annotated bibliography of the detailed hardware design mechanisms and 
efficiency/costs of the SAFE tagged memory processor.  

4.1 Tagged Hardware Machine 

The fundamental compute “word” in the SAFE architecture is the atom (see Figure 1). An atom 
is an indivisible quantity that consists of three parts: an atomic group (AG), a tag and a payload. 
The atomic group describes the general type of the data - an Instruction Pointer, an Integer, an 
Instruction, etc. The tag field holds a pointer to the metadata for this atom. The payload is the 
actual data. In our implementation, the atom is 128 bit wide, with the payload, tag, and AG being 
64, 59, and 5 bits respectively. All the memory and the architectural state are represented in 
terms of atoms. The payload part of the atom is the actual data from a traditional architecture. 
The SAFE machine supports the same type of instructions traditionally found in any RISC 
architecture – arithmetic, logic, control, load/store, etc. Those instructions work on the payload 
part of the atom in the same way as expected; however, in parallel with the operations on the 
payload, the SAFE machine also works on the metadata part of the atom (tag and AG). It is only 
the hardware that splits the atom into its constituent parts and performs the computations on the 
tag and payload in parallel. Once the computation is completed, the hardware assembles the AG, 
tag and the payload back into an atom and writes back the results to its destination as an atom. 
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Figure 1:  Atom Encoding 

 

The ISA also contains tagged architecture-specific instructions that work on tag management 
(i.e. retag, aretag), TMU management (i.e tmul, tmurc, etc), authority management (i.e. inp, ina, 
etc.), atomic group management (i.e. ingrp, regrp), and secure invocation of operations (i.e. 
bcall, acall, gacall, etc.). These “non-traditional” instructions have varying levels of restrictions 
(i.e. can be executed only in some special privileged mode – that is, the instruction itself must be 
tagged with a special tag.). 

Another set of instructions that work a bit different than the “traditional” RISC instructions are 
the memory-related instructions; they are different in the sense that they operate on “fat pointers” 
– which encode both the base and bounds (Kwon, Dhawan, Smith, & Knight, Jr., 2013); as with 
all the tagged architecture instructions, the tag portion of the atom is also set on the destination of 
operations such as memory read/write/copy/mv. Arithmetic operations on fat pointers are strictly 
forbidden. There are however a set of operations (e.g., pointer offset operations) that work 
directly on pointers but these operations are privileged (e.g., only the GC is allowed to use them) 
and enforce memory frame safety.  

A good description of the implementation of the SAFE architecture can be found in (Chiricescu, 
et al., 2013); the following are some of the most “non-conventional” hardware blocks that were 
present in the implementation and which are shown pictorially in Figure 2 
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Figure 2:  The micro-architecture of the SAFE processor 

 
 Atomic Group Unit (AGU) - responsible for checking that the atomic groups of the 

current instruction operands match those required (e.g. an arithmetic operation requires 
that both operands are of type Integer);There are 19 atomic groups defined in the SAFE 
architecture. 

 Tag Management Unit (TMU) – responsible for checking (for every instruction) that the 
metadata for each atom involved (program counter (PC), instruction, and each operand) is 
evaluated against an installed ruleset and either an access violation is flagged or the 
metadata for the result is returned. To ensure no pipeline stalls, this check must happen in 
parallel with the rest of the machine execution and should take no more than 1 cycle; 
thus, a fast near-associative hash cache is being used (Dhawan & DeHon, 2013); 

 Fat Pointer Unit – this unit manages the “low-fat pointers” (Kwon, Dhawan, Smith, & 
Knight, Jr., 2013) which encode the base and bounds of a pointer. To avoid performance 
degradation due to complex decoding, the decoding has been split up into two “stages”; 

 Gates – hardware support for fine grain domain crossing (e.g. switching from user mode 
to kernel mode); a gate is similar to closure (in functional programming) as a pointer to 
the gates local storage is maintained. The current authority (e.g. 1st class mechanisms for 
isolating privileges) and local storage pointer are pushed onto a gate stack when a gate 
call is being made; the authority register is populated with the target gate’s authority, and 
the target gate’s local storage pointer is installed. The gate stack is not accessible to any 
other gate call or return instructions; 
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4.1.1 SAFE ISA 

To a certain extent, the SAFE ISA was influenced by the development of Breeze. It was intended 
to offer hardware support for many of the complex parts of the Breeze high level language. Thus, 
along with many of the typical ISA instructions such as ADD and YIELD, there are others such 
as ARETAG and BCALL – which have direct correspondence in the Breeze language. As more 
was learned about the label models, instructions were updated to take into account any 
vulnerabilities discovered. In general, instructions that were no longer needed were only 
removed if they created a security hole. Thus some instructions remain that are no longer 
particularly useful operations  

As mentioned before, the AG specifies the type of data that is stored in the payload – an Integer, 
an Instruction, a Pointer. On every instruction, the machine checks to ensure that only the correct 
type of data is allowed. For example, the different types of pointers are considered completely 
different atomic groups. While a ThreadPointer and a FramePointer may both point to something 
that looks like a thread frame, only the ThreadPointer can be used to run that thread. Similarly, 
an Integer that has the same payload as that ThreadPointer cannot be used to run the thread. 
SAFE also prevents arithmetic operations on pointers. While it is possible to convert a pointer to 
an integer value and then modify it, it is not possible to go from an integer value to a pointer. 
This makes forging pointers impossible. SAFE also has a less common type of pointer, called a 
LinearPointer.  LinearPointers cannot be copied, though they can otherwise be used like other 
pointers. The various atomic groups are enumerated and described in (DeHon, Dhawan, & 
Strnad, 2014). 

Besides the “typical” RISC instructions, the SAFE machine contains a number of instructions 
that have been implemented to provide security. These instructions can be grouped into:  

1. Authority management – instructions that deal with manipulations of first class 
authorities and principals; some of these instructions are privileged. 

2. Tag management – these instructions are used for the creation and manipulation of tags. 
They are used by user code to access first-class tags for the purpose of checking their 
algebraic properties (such as asking the PAT server whether one tag is more secret than 
another) and by the TMU miss handler, which converts tags to and from pointers to the 
tag metadata on which the PAT server operates.  

3. TMU management – these instructions are privileged and used only by the TMU handler 
to update the TMU or gate call caches or to read performance counters. 

4. Group management. – these instructions are used to inspect the atomic group (e.g. 
convert it into an integer), or to change the AG of an existing atom (restricted to certain 
parts of the OS). 

Another interesting set of instructions are related to the inter-frame control flow – particularly 
the gate calls and bracket calls. A gate call is essentially the equivalent of a closure that can be 
executed with different authorities (e.g. implicit, specified explicitly by the caller, augmented, 
cacheable). Gate call creation and return from gate calls round up the gate-related inter-frame 
control flow instructions. A bracket is another inter-frame control flow mechanism influenced by 
Breeze, and it is being used as a replacement for automatic PC tag lowering and as a mechanism 
for avoiding poison pill attacks (Hriţcu, Greenberg, Karel, Pierce, & Morrisett, 2013). As with 
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the gate calls, there are a few “flavors” of bracket calls available: with implicit authority, with 
authority change/augmentation, etc. 

4.2 Programming Languages 

The overarching design goals of the languages for the SAFE system were 

1. to be useful for exploring the impact of label models on secure OS and application 
development, 

2. to allow exploration of the impact of the other safety mechanisms (linear values, gates, 
bracket calls) of the SAFE system on secure OS and application development, and 

3. to construct a working, secure, minimal operating system, according to the principle of 
least privilege. 

4.2.1 Breeze 

Breeze is a high-level, dynamically typed, mostly functional language with support for 
concurrency, channel-based communication, and fine-grained information flow control policies 
(i.e. label models). The purpose of Breeze was to be able to explore the impact of the 
enforcement of the secrecy and integrity label models on applications early in the program. The 
current implementation of Breeze is as an interpreted language running on traditional systems. 
There is a partial implementation of a Breeze-to-SAFE compiler, which was intended to allow 
our prototype Breeze applications to run on the SAFE hardware. 

Breeze’s IFC implementation uses secrecy and integrity non-interference label models in the 
style of DC labels. The runtime IFC implementation is mostly standard: primitive operations on 
data cause labels to flow to results, and control flow operations on data cause the label on the 
data to flow to an ambient “PC” (program counter) label. The PC label is then used to restrict 
whether channel communication may occur. Additionally, processes execute under a clearance, 
which is a label that acts as an upper bound on the PC label. This mechanism allows for some 
protection against covert channels. 

In order to enable the limited exfiltration of secret data, Breeze programs also have a notion of 
authority, with which a program can lower the label on a value—either reducing its level of 
secrecy or endorsing it to increase its integrity. Authorities in Breeze are first-class values that 
can be used to implement capabilities by capturing them in closures that perform specific actions 
when applied. Authorities can also be registered as ambient, allowing called code to act with a 
given authority, but not allowing it to hand that authority to another process via a channel. 

A poison pill attack is when a malicious agent provides a process with some value that it cannot 
use (e.g. due to the clearance of the process). In order to avoid such attacks, Breeze provides a 
mechanism to acquire and inspect the labels on values, and requires that labels acquired in this 
way are public information to all code. This design decision created a need for a mechanism to 
apply labels to values that would not leak information about the data via the labels. The novel 
mechanism that Breeze uses for this purpose is called a bracket. 

Brackets serve two purposes: to apply labels to values and to restore the PC label. The key 
property of using brackets is that the resulting label upon exiting the bracket must be chosen 
before entering the bracket (and thus no information can be leaked from the bracketed 
computation which has not even been executed yet). 
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The label that may be applied by a bracket is bounded below by the PC. Since there is no way to 
lower the PC label without authority other than brackets, the label to be applied to a value must 
be chosen before any processing of secret data occurs. In the following example, the PC label 
starts at a low secrecy label L, enters a bracket where it inspects a value with a high secrecy label 
H, and then returns a value that is labeled with the pre-chosen label from the bracket and has the 
PC restored to L. 

{ if secretValue@H then 1@L else 0@L }@H 
 

Brackets allow a user to choose when to move the protection on a value between the PC label 
and the label on the value itself. In the above example, before exiting the bracket, the label on the 
resulting 1 or 0 is still low. The choice of value is protected by the PC. A programmer could 
choose to do more operations with the high PC label protecting the values in scope before finally 
choosing to move the label from the PC to the value that will be used by the rest of the program.  

To avoid the complexities that would be caused by the extra control flow possibilities, Breeze 
does not have exceptions. Instead, errors in Breeze—including those caused by label model 
violations—are reified into first-class entities called NaVs (Not-a-Values). NaVs can be passed 
to and returned from functions and stored in data structures. For an in-depth discussion of NaVs, 
see “All your IFCException are belong to us” (Hriţcu, Greenberg, Karel, Pierce, & Morrisett, 
2013). 

4.2.1.1 Architecture of Applications in Breeze 

In order to design a secure program in Breeze, a developer must first consider the labeling on 
sensitive information the application handles, such as passwords, financial data, or classified 
information.  Unlike traditional software development using imperative programming languages, 
information flow control is the primary concern during the designing process for an application.  
Through this process, a developer needs to identify what the sensitive information is, what 
privileges are needed to operate on the data, and lastly where the privileges are needed in the 
application.  In Breeze, authorities and their associated principals are used to label and operate 
on sensitive information. 

Like most modern programming languages and frameworks, Breeze application development 
typically emphasizes the concept of modularity.  Modularity is important because a major goal of 
secure applications in Breeze is to allow mutually distrustful components to interact with each 
other and exchange sensitive information.  In addition, components need to independently 
manage privileges.   

When designing an application or component in Breeze, a developer strives to identify an 
appropriate separation of privileges and tasking.  By strategically dividing a component into 
subcomponents, a subset of the privileges may be distributed amongst them.  Through this 
approach, each subcomponent may be run with fewer privileges to increase 
compartmentalization and modularity across the system. 

Each compartmentalized component in a Breeze application is responsible for a small number of 
privileged operations and its own principal(s).  A developer ensures that the authorities 
associated with the component’s principal(s) are locally bound so that each component has the 
ability to control access and declassification to its own private data without worrying about other 
components’ behavior. 
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A common example to explore the separation of privileges and labeling in IFC is a tax preparer 
application.  Client ‘Bob’ would like to have his taxes prepared by the ‘TaxPreparer’ application.  
In this example, Bob’s financial data is sensitive information that he would not like leaked for 
the world to see and does not want to simply ‘trust’ the application with his data.  In addition, the 
tax preparer does not want to share the proprietary source code of its application with Bob to 
gain his trust.  From an IFC standpoint, Bob has privilege ‘B’, and the tax preparer has privilege 
‘T’.  While both B and T’s privileges to declassify are kept separate from one another, Bob can 
label his financial data such that the tax preparer may only access (read) and make computations 
on his data.  Through IFC, the resulting tax information will also only be declassified with the 
use of Bob’s personal, private privilege.  In Breeze, this may simply look like: 
 

taxData = { 
  raiseClrBy Bclr B; 
  raisePcBy B; 
  TaxPreparer.prepare( bobsFinances @ B ); 
} @ B; 

 
In this example code, only Bob’s read privilege is needed from Bob for the tax preparer to do its 
job.  Because a bracket surrounds the function call, all products of the computations will also be 
private to Bob.  The TaxPreparer application could not send any of Bob’s information into the 
public because such a flow of information would require Bob’s declassification privilege, which 
it does not have direct access to.  Designing a secure application in Breeze first requires a 
developer to identify an appropriate separation of privileges and logic into mutually distrustful 
components. 
 
Modularity in Breeze application design is also commonly supported through the use of threads 
and channels.  While invoking functions, such as in the example above, is an easy way for 
components to interact, greater compartmentalization can be achieved by providing each 
component its own thread and requiring communication to occur over channels.  Channels in 
Breeze use a label to manage the flow of information across them and can be an extremely useful 
mechanism for designing the way components interact in a secure application.  In the tax 
preparer example, both Bob and the TaxPreparer application could operate in separate threads 
with a single channel labeled ‘B’ connecting the two.  By using this approach, a developer can 
avoid accidental mislabeling on brackets or function calls and still be confident that it will not 
leak.  Because channels automatically label the data on it with the label of the channel, even the 
financial data itself could be mislabeled and the channel will still protect against information 
leakage.  Overall, use of separate component threads and communication over channels provides 
greater resilience to programming errors and is easier to audit.  Further discussion of applications 
implementing channels for communication is available in the following section. 
 
Designing and applying security policies becomes easier when an application’s architecture 
adheres to a component per thread strategy.  It becomes easier to reason about the way 
information flows between mutually distrustful components when channels are the primary 
medium for communication.  A security policy can be more easily applied to an application by 
distributing privileges to threads and labeling the communication channels accordingly.  Such an 
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approach also helps to give others a convenient overview of an applications components and 
information flow from an auditing standpoint as well. 

4.2.1.2 Implementing Applications in Breeze 

A number of helpful Breeze programming idioms and practices have been identified over the 
course of this program to better support writing secure applications. The following is a list of the 
more notable practices used in Breeze application development. 

Writing Clean Code: 

After reading through the Breeze manual, it is easy to see that application code can quickly 
become dominated by handling IFC functionality, brackets, and other commands specific to 
Breeze labels or IFC. In an attempt to help keep code readable and maintainable, it is important 
to look for ways in which IFC related code can be abstracted away from the application logic. 

A good way to scaffold an IFC application is to begin by laying out the functionality of each 
application component without considering IFC. Once the general architecture is laid out, the 
necessary IFC functionality can be integrated through the proper abstractions. The multi-
threaded sum server tutorial in the Breeze manual tackles this scaffolding process. In addition, 
maintaining useful abstractions for IFC operations can greatly increase the ability of a developer 
to debug an application. 

One useful way to abstract IFC operations in a component is to create a helper function 
responsible for executing a generalized function, or thunk, with the component’s authority. 
Consider component ‘A’ needing to execute a thunk with its own sensitive data: 

let {| prin = A; clrAuth = AClr; |} = newPrin "ComponentA";  
ALabel = secrecyLabel [[A]]; 
fun doForA thunk = { 

raiseClrBy AClr ALabel; 
raisePcBy ALabel; 
thunk(); 

} @ ALabel; 
 

While this is a relatively simple abstraction (and may not appear to be all that necessary), when 
using more complex IFC functionality, such as with groups, these abstractions become much 
more useful for the programmer.  Another helpful abstraction may involve invoking a thunk with 
a lower PC similar to the example above. When employing these functions in component logic, 
the code becomes much easier to read and also helps avoid simple programming errors that can 
be made by the developer. 

Thinking Relatively: 

Successful IFC abstractions will rarely hard-code the use of a public label. While public is the 
current default PC label in an executing Breeze program, it is not necessarily the PC label 
present when a function or component is invoked. Depending on the context, a function should 
treat its ambient PC classification level parametrically. When writing IFC code, a developer 
should try to think relatively about the context in which code will be run. The clearance and PC 
can be determined easily using the commands: 

getClr (); 
getPc (); 
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In addition, the function labelOf() can help determine the label of data, such as function 
arguments.  Using these commands is a good way to ensure that IFC code is robust to varying 
conditions when invoked. Brackets are useful for automatically restoring clearance and pc upon 
leaving the bracket.  Breeze provides a number of IFC helper functions using the above 
commands to assist developers to build robust code.  

Sending Data Between Mutually Distrustful Components: 

As mentioned in the previous section, 4.2.1.1, a necessary facet of least privilege design is the 
ability to send secrets between mutually distrustful components. A component may not 
necessarily be malicious (such as a virus), to warrant mutual distrust – in fact, honest 
programming errors are a far more common reason for taking this standpoint.  

Commonly, a component will want to send a secret with the assurance that the secret cannot be 
declassified and exported; a concept approaching the idea of read-only access. A distrustful 
application should be allowed access to read and use a component’s secret data without being 
able to declassify it or any working products. This can be achieved in Breeze through the use of 
careful labeling and/or bracketing. 

Suppose two mutually distrustful components exist, A and B, each possessing the principals aP 
and bP respectively. Component A maintains a secret integer (43) it wishes to share with 
component B to carry out a computation. Labeling the secret integer public would be a poor 
idea because it wouldn’t be secret. Labeling the secret with label bLab would also be a poor idea 
because it would easily allow B to declassify the secret. Labeling the secret with aLab, however, 
is a much safer alternative. Component A can confidently invoke Component B’s function 
computeSum through the following steps: 

aLab = secrecyLabel [[aP]]; 
bLab = secrecyLabel [[bP]]; 
 
secretNum = 43 @ aLab; 
 
raiseClrBy aClr aLab; 
result = ComponentB.computeSum secretNum; 

 
In this example, A is providing B with the ambient use of A’s clearance (aClr) to grant access to 
its private data. So long as A keeps its declassification authority locally bounded, it has the 
assurance that B cannot declassify or export secretNum or any computations involving the 
secret. Through the use of this labeling and invocation with raised clearance, A is allowing B to 
read and use A’s secret data without declassification privileges. 

Now consider the altered example below involving a bracket. 

result = { 
raiseClrBy aClr aLab; 
raisePcBy aLab; 
ComponentB.computeSum secretNum; 

} @ aLab; 
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This example follows the same behavior as the previous one, with the added constraint that B 
will be enforced to operate under a minimum pc label at aLab. By bracketing the computation, A 
is allowing B to read and use A’s secret data with the confidence that all working products 
developed by B will be at a minimum label of aLab. The bracketed computation taints the entire 
computation by the label on the pc, which can sometimes make reasoning about computational 
flow much easier. 

A restriction imposed by using a bracket in this case is the fact that B is limited to the use of ref 
cells and channels with a minimum label of aLab. In the previous example, this is not true. While 
this is a greater restriction on the functionality available to B, it can be seen either as a benefit or 
a hindrance in application design. In cases where A is certain that communication over these 
mediums is not necessary, a bracket may be useful as an added measure for reasoning about the 
flow of its secrets. In other instances where B may require use of channels or ref cells, such as in 
multi-threaded application design, this behavior may be crippling. It is important, however, to 
understand the impact of using a bracket in communication between mutually distrustful 
applications and decide when each should be used in Breeze application development. 

Consider an update to the code above where secretNum is relabeled to possess the label aLab 
‘join‘ bLab: 

result = { 
raiseClrBy aClr aLab; 
raisePcBy aLab; 
sharedSecret = secretNum @ (aLab `join` bLab); 
ComponentB.computeSum sharedSecret; 

} @ aLab; 
 

By using this label in the above bracket, access to secretNum is further limited to only 
components possessing the clearance authority associated with bP. Using this design, if a 
malicious program somehow substituted itself for component B, it would not be able to access 
secretNum (assuming it did not somehow gain access to B’s clearance authority as well). As an 
example, if component B represented a specific DLL and captured B’s authorities, a DLL 
injection attack might be prevented. A is essentially limiting the use of secretNum to a 
component with access to B’s authorities. 

Sending Data on Channels Conveniently: 

Data received from channels in Breeze are always tainted by the channel’s label. Regardless of 
its initial label, data successfully sent on a channel will always be tainted by the channel’s label 
on receive in order to avoid leaking information. If the label is too high for the data to be sent, a 
NaV will be thrown instead. 

Sometimes, it may be desirable to retain the data’s original label and avoid this taint. An easy 
solution to this is to put the data in a “box” before sending it over the channel. This way, the box 
gets tainted by the channel’s label but protects the data’s original label on the inside. It is 
important to note that this does not violate any IFC policies and is simply a convenient technique 
used in Breeze application development. An example of a boxed channel is shown below: 

datatype BoxType = 
 | Box (Any) 
; 
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fun unbox {box : BoxTypeC} : Any = 

case box of { 
 | Box contents => contents 
}; 
 

fun sendBoxed {c : Chan} x = 
 send c (Box x); 
 
fun recvBoxed {c : Chan} = 
 unbox (recv c); 
 
chan = channel public; 
sendBoxed chan 37@top; 
test (recvBoxed chan) ==> 37@top; 

 

A full implementation of the BoxingChan module is available in the release examples directory, 
and uses sealing to mimic the Box behavior. Another way to achieve this behavior is to use 
“messages”, as done in the multi-threaded sum server tutorial to implement requests. The sum 
server acts on a SumMessage, which has the form: 

datatype SumMessage = 
| SumRequest Int Int (Int ?=> Unit) 
| QuitRequest 

; 
 

In this case, a SumRequest message sent to the sum server protects the labels on the two integer 
arguments and the response channel. 

How and When to Declassify Data: 

When declassification is necessary (such as outputting a web page on a web server), it is 
typically a better practice to wait as long as possible before declassifying. As a simple example 
of a function that requires a declassified return value, instead of declassifying all the arguments 
to a computation before execution, it would be beneficial to execute the computation with a 
raised pc before finally declassifying the result and returning the value. This ensures all functions 
called are done so with least privilege and mutual suspicion.  In the following example, a 
Boolean success will be sent over a public channel to the user to notify whether a login was 
successful. The example demonstrates a poor use of IFC for protecting sensitive information (in 
this case, the user’s password). 

// example of a poor placement for declassification 
inputPass = “password123” @ serverLab; 
inputPassPub = lowerLabelTo serverPc inputPass public; 
inputPassHash = PHP.hash `SHA1 passPub; 
success = (inputPassHash == dbPassHash); 
sendToBrowser success; 

 
In the event that the computation being called is malicious, having declassified the arguments 
prior to the execution would allow the malicious code to export secret data.  In the above 
example, a malicious PHP library could export the user’s password, which is given to the library 
declassified.  The following example uses a more appropriate use of declassification to avoid this 
potential risk. 
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// example of a good placement for declassification 
inputPass = “password123” @ serverLab; 
successSecret = { 
 raiseClrBy serverClr serverLab; 
 raisePcBy serverLab; 
 inputPassHash = PHP.hash `SHA1 inputPass; 
 (inputPassHash == dbPassHash); 
} @ serverLab; 
success = lowerLabelTo serverPc successSecret public; 
sendToBrowser success; 
 

By determining the success Boolean within a bracket, IFC restricts the PHP library from 
exporting the user’s password. In general, declassification should be done sparingly and as late 
as possible to minimize the surface area of a potential threat. 

4.2.1.3 Lessons Learned 

Developing secure applications in Breeze provided a great deal of insight into where threats may 
occur and how to handle them.  While it certainly increased the difficulty in developing useful 
applications, we discovered a number of new mechanisms and patterns to assist secure 
application development, e.g., brackets, NaVs, and the propose-and-verify pattern.  

(For detailed information on the use of the Breeze language, see the Breeze Manual attached to 
BAE TR-2803 v4.0.) 

While explorations of Breeze as an application development language yielded a number of 
insights on information flow programming techniques, we did not find Breeze to be an effective 
system-level language. This is partly due to the fact that there were features of Breeze and its 
runtime that would have posed implementation challenges if written directly in SAFE assembly 
language (e.g., bi-directional channels, support for programmable top, bottom, and default label 
values in custom – non-secrecy – label models,). For example, the immutability of values in 
Breeze does not easily translate to the kinds of operations that are natural in hardware, where 
generally everything must be mutable. The inability to rely on the immutability of values had a 
particular impact on the differences between the stream models offered on Breeze and on the 
hardware. In order to support a Breeze-style stream model on the hardware, we would need to 
have deep-copy support in the hardware, which would have been difficult to implement and an 
unusual inclusion in the hardware. 

In spite of the co-design efforts to make the hardware support the desired  application language 
as much as possible, some features are best built on top of other layers of abstraction (in this case 
Tempest). 

The more fundamental reason why Breeze did not become a systems language for SAFE was 
that the SAFE machine was generalized beyond the label models that Breeze supported. The 
SAFE machine had features for general label models, via its tagging mechanism including some 
models that were rooted neither in IFC nor in non-interference, such as our signature label 
model, which omitted several label flow paths. 

The Breeze semantics also failed to reflect some the linearity properties of values in the SAFE 
hardware. This in combination with the other mismatches between Breeze and the SAFE 
hardware led us to develop a lower-level language called Tempest for systems implementation 
instead. Once the lower-level language was implemented, we found that it was usable enough for 
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implementing the demonstration applications that we needed, and so work on Tempest 
superseded the implementation of the Breeze-to-SAFE compiler. 

4.2.2 Tempest 

Tempest is a low-level language with record types, structural subtyping, kind-constrained 
polymorphism, and support for SAFE features such as linear values, brackets, gate construction, 
tagged static data, and explicit calling conventions. Tempest was inspired by Cyclone (Jim, 
Morrisett, Grossman, Hicks, Cheney, & Wang, 2002) and Rust (https://www.rust-lang.org/), but 
takes advantage of the fact that it runs on the SAFE platform with its dynamic checks, allowing 
for the expression of possibly unsafe operations that are checked for safety by the hardware at 
runtime. For an introduction to Tempest, details on programming in Tempest, and examples of 
Tempest programs, see the Tempest Tutorial document attached to the SAFE Computer 
Programming Manual (TR- 2803). 

There are many features of the SAFE system that were exposed to Tempest programs as libraries 
that were implemented using embedded assembly language blocks. These features are discussed 
in Section 4.1.1 on the SAFE ISA, but have no special language support from Tempest because 
we found that they were adequately usable via functions provided by the standard library. Since 
there is no special language support for these features, they are not discussed below. 

Due to the rapidly evolution of Tempest, there is not a full account of the static semantics of the 
language. We provide here an overview of the novel parts of the static semantics here, including 
calling conventions and the can-call relation, the kinding discipline, and the focusing for non-
destructive use of linear pointers. The other parts of the static semantics are essentially standard, 
though their precise specification and implementation is complicated by the need to support the 
novel features mentioned. Tempest also includes features developed in Breeze that are part of the 
underlying SAFE system, such as brackets and the ability to manipulate tags. These features are 
also discussed below. 

Explicit calling conventions. Tempest requires users to explicitly define a register-based calling 
convention as part of the type of each function. The calling convention determines 

 in which registers a function expects its arguments, 
 which registers are available for reading or writing during execution, 
 in which registers a function will place its results, and 
 which allocators (register-spilling or heap) are available during execution. 

For example, the calling convention 

type UserWareCC () = cconv { 1 2 3 4 5 6 7 8 9 10 -> 1 2 3 4 5 6 7 8 9 10; 
         0 .. 30 : AVAIL 
         31 : ALLOC }; 

is the standard convention to use for application code that does not require the additional 
efficiency that can be gained by avoiding allocation of space to spill registers. The calling 
convention UserWareCC specifies that registers 1 through 10 are to be used for both input and 
output, that registers 0 through 30 are available both for reading and for writing, and that register 
31 contains the OS services frame, which must at least contain services for register-spilling and 
heap allocation. 
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One function may call another whenever the registers of the calling function are at least as 
available as the registers of the called function. In addition, the called function must require a 
subset of the OS services that are available to the calling function. Register 0 is exempted from 
the availability requirements because of its special treatment by the SAFE hardware. Since 
register 0 is always saved and restored by the hardware on a call and return, it is treated as if it is 
always available to the called function, even if the calling function’s calling convention specifies 
otherwise. 

An alternative to a calling convention is to specify that a function is to always be inlined. This 
avoids call instructions and stack manipulation at the cost of increased code size, the inability to 
define the functions recursively, and the inability to use those inlined-only functions as 
arguments to higher-order functions. 

The inclusion of explicit calling conventions arose from the lack of an efficient call stack in the 
Tempest runtime. In order to fully leverage the pointer bound checks that were supplied by the 
underlying system, a new stack frame had to be allocated on each call. Explicit calling 
conventions allowed users to structure their programs to avoid this cost by structuring the code 
so that spilling was unnecessary and checking this by declaring that functions did not include a 
service for the allocation of register spill space. 

Near the end of the project, we were converging on more uniform calling conventions for 
Tempest. In particular, restrictions on the ISA imposed by the need to separate the result tag 
from the available registers during a bracket call may have forced the Tempest compiler to treat 
some registers as always available for both reading and writing, because of the lack of room in a 
single instruction to specify otherwise. 

Along with this change, we intended to force all calling conventions to use register 31 as the 
register holding OS services. This change would simplify the compiler and generated code 
without impacting the efficiency of Tempest programs (which all either require an OS services 
frame or do not require that many registers). The change also would make it possible to include a 
greater variety of services in the calling convention declaration without making the specifications 
unreadable. The ability to specify different services in the calling convention would allow 
additional OS service dependencies to be statically checked. 

We also discovered that users do not like having to specify calling conventions or worry about 
register usage while writing application code. In particular, standard library code and 
applications using the standard libraries would have been much easier to design if Tempest had a 
single stack-based calling convention, with some effort put into designing a more efficient stack 
allocation strategy that could still leverage the pointer bounds protections offered by the 
underlying SAFE system. 

Kinding. The Tempest type system is designed to reflect the hardware types provided by the 
underlying SAFE system. In particular, Tempest has a kinding discipline that distinguishes 
between the linear and unrestricted parts of variables and expressions. In the following example, 
values of the MyPair type will occupy two registers at runtime. The left component of the type 
will only be manipulated using instructions from the SAFE ISA that can operate on linear values, 
even though unrestricted values can be stored in the left side of the pair. 

newtype MyPair@[s : L, t : U] : L*U = { left : s; right : t } 
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This example also demonstrates the limitations on parameterized types in Tempest. Because 
values vary in width and kind, types can only be parameterized up to a particular kind. With this 
in mind, most of the Tempest containers libraries make the assumption that a user will allocate 
memory for values and only store pointers to the values in the library. This limitation allows us 
to generate a single instance of the code for each function. The assumption about user behavior 
allows us to provide general purpose libraries with no more overhead than is incurred in 
languages that automatically place all values on the heap. Additionally, whenever the type of the 
values to be stored in a container has kind U, the values can be stored “unboxed” without any 
additional work from the user. 

Unlike many systems with linear types, one part of a type being linear does not force the whole 
type to be treated as linear. This design decision is useful when writing low-level code, but can 
cause problems in higher-level code, where code that appears to inspect part of a structure can be 
destructive to that part of the structure, leaving the whole value in an inconsistent state. To 
mitigate this problem, Tempest includes a rudimentary extension to its use-before-definition 
checker, so that some uses of destroyed values can be detected. The extension works by marking 
a variable as uninitialized whenever it is destroyed, so that the usual use-before-definition check 
can detect problems. This creates some overhead when a conditional that is split into two parts 
destroys a linear value in only one branch. To avoid the spurious error, the use-before-definition 
checker requires that a NaV (written Error in Tempest) is explicitly assigned to the destroyed 
value, as in the following: 

if (b) { 
 destructiveOperation(v); 
 v := Error; 
} else { } 
doSomething(); 
if (!b) { destructiveOperation(v); } 
else {} 
 

Focusing. Tempest includes a form called focusing to make it easier to deal with complex linear 
data structures. Focusing allows a linear pointer to be offset for the duration of a block and then 
automatically restored at the conclusion of the block. That is, a pointer x : LFP(Int[10]) could 
be focused in the expression 

focus p = x.(2) in { … } 

so that within the block x would not be in scope and p would be in scope with type LFP(Int). 

Within the block the ability to use the focused pointer is limited: it cannot be moved to other 
variables, explicitly stored to memory, passed to functions, or returned from the block. The 
focused pointer can be read from and written to (i.e. memory may be accessed through the 
pointer). These limitations ensure that the compiler can safely restore the pointer at the end of the 
block. Expressing the limitations in the typing judgments for Tempest required the introduction 
of a second environment for tracking variable scoping. 

We suspect that some of the limitations on the use of focused pointers could have been removed 
by the addition of either kinds that disallowed destructive operations or by introducing 
“restoring” arguments to functions that would disallow destructive operations. However, the 
original implementation of Tempest impaired the ability to change the compiler to support those 
new features. 
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Brackets. Tempest’s brackets are derived from Breeze, but tailored for the limitations of a 
hardware implementation of a bracket call. In order to support non-interference enforcement by 
label models, the SAFE ISA breturn instruction clears all registers not marked as read-only or 
dedicated as the return register, tags the return register with the pre-selected tag, and restores the 
PC tag. The registers to be cleared, the return register, the current PC tag, and the tag for the 
result of the call must all be selected at the time of the bracket call. 

In Tempest the registers to be cleared are those marked as writable in the calling convention. The 
return register and the fact that a function is to be used via a bracket call are also marked in the 
calling convention. This information must be part of the function to be called because bracket 
calls utilize a different return instruction from normal or gate calls, and so the special return 
instruction must be generated independently of the calling code. A discussion of the ISA design 
decisions on this topic can be found in Section 4.1.1. 

Tag (label) manipulation. Tempest’s features for tag manipulation are mostly provided by 
standard libraries that are implemented via embedded assembly. The exceptions to this are the 
tagging of data returned from bracket calls, as discussed above, and the ability to tag static data 
appearing by the use of an atomtag expression, which causes all following literals in the same or 
nested blocks to be tagged with the given tag literal. 

It is worth reiterating that in Tempest tags are attached to values, not variables. This is because 
there is no static label model enforcement in Tempest. Therefore, in an expression like 

var x = {atomtag Private; 42} 

the tag Private is attached to the value 42 and follows it as the value is passed to functions, stored 
in memory, or sent to other processes via streams. 

Difficulties in Tempest. The presence of linear values limited the kinds of optimizations that 
could be done by Tempest. In a language with linear types running on a traditional system, copy 
propagation can be used without violating properties guaranteed by the language because the 
underlying system does not enforce the linearity of values. Because on the SAFE system values 
are linear, and must be moved instead of copied, this optimization strategy does not work.  

Similar problems were presented by the bounds checking during pointer manipulation when 
trying to do standard optimizations. Typically any code that offsets a pointer and immediately 
restores it by offsetting the same amount in the other direction would be eliminated. However, on 
SAFE it is not guaranteed that value would remain a pointer after being offset, because offsetting 
a linear pointer beyond its bounds results in a NaV, with no ability to recover the original 
pointer. In this case we were able to perform some optimizations by only eliminating code with 
this behavior that was generated by the Tempest compiler itself (i.e. not code that was included 
in an embedded assembly block) and by asserting that there was no guarantee of behavior if a 
user cast a variable so that the compiler generated assembly would have failed. For example, the 
following generated code, which offsets a linear pointer by 5 and then offsets the resulting 
pointer by 5 in the other direction, should be eliminated: 

offlp t 5 
offlp t -5 

However, without our additional assumptions we would not be able to safely do so. 
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More insidious than either of these difficulties is the inability to give an operational semantics to 
Tempest without imposing constraints on the label models that may be present on the system. 
Some label models are violated by basic book-keeping operations done by a Tempest program. 
For example, we had to use a signature label model instead of a non-interference integrity label 
model because of the interactions between that label model and the need to spill registers in 
Tempest programs. 

One way to address the problem would have been to place constraints on what kinds of label 
models were allowed to be used on the SAFE system for Tempest programs to work correctly. 
However, the rapid evolution of both the requirements for and the implementation of Tempest 
and the label models that were in use prevented us from identifying the required properties of an 
acceptable label model during the project. 

4.3 SAFE Operating System (OS) – Concreteware  

The operating system of the SAFE machine consists of a number of components that operate 
with individual authorities to provide a least privilege implementation of the system software. 
These components are described below: 

PAT Server  

The PAT server performs all principal, authority, and tag related operations. It is the only part of 
the system that can operate on the internals of the tag or authority representation. Currently, 
principals are represented as atomic tags. 

If a thread takes a TMU miss, the PAT Server determines the correct result by examining the M 
vector. The PAT server works with a product label model—a label model made up of more than 
one label model. In order to execute an instruction, all label models must allow it. The resulting 
tags from each label model are then combined into the final Tags that are returned. 

The PAT server can also create a new tag and authority upon request and return them to the 
calling thread. 

Because the PAT works with multiple label models, it also provides an API for threads to request 
a tag that only contains a particular label model. This is important for other operations. 

The PAT server also exposes an API to allow threads to request the result of a meet or join 
operation, as well as whether or not one tag can flow to another, or if they are equal. 

Lastly, the PAT server exposes an API to allow threads to retrieve the Default tag and the 
Bottom tag. The default and bottom tags are not necessarily identical, though they are in the 
secrecy label model. The default tag is made up of what all label models consider their default 
value. If a tag doesn't include any information specific to a label model, it is considered to be the 
label model's default value. The Bottom tag is the tag comprised of the tags representing the 
bottom of each label model's lattice. 

Many label models were written, but not all are in use. Currently implemented and in use are a 
secrecy label model and a signature label model. The secrecy label model prevents secret data 
from being leaked, while the signature label model is used to ensure data is not tampered with. 
All label models must be representable as a lattice, but otherwise there are few limitations on the 
label models that can be implemented. Label models are described in general in Section 3.1. 
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Instructions for adding new label models to the PAT server can be found in appendix C of the 
Computer Programming Manual (TR-2803). 

Label models installed for use can be changed at compile time, but not at runtime. Once the 
system is running with a set of label models, they remain active. 

Scheduler  

The scheduler currently implemented in SAFE is a pre-emptive round robin scheduler. This 
means that each thread is allowed to run for a maximum set length of time, after which it is 
interrupted and the next thread is allowed to run.  Threads are run one by one, always in the same 
order. After all threads have been run, the first thread is run again. 

When running a thread, the scheduler first checks if the thread is in a runnable state. If so, the 
thread is run as normal. If not, the scheduler checks the thread state to determine the cause of the 
error. It then runs the appropriate fault handler. Once the fault handler has finished, it switches 
back to the main thread, which continues running as if the error had never occurred. 

Threads are, of course, allowed to yield their remaining time if they cannot make further 
progress. Some stream instructions will yield if they cannot currently complete. This yielded 
time is lost – the next thread to run does not benefit from extra run time. 

Stream manager 

Because SAFE is designed to avoid using shared memory, threads can only communicate with 
each other via streams. Streams are one way communication. One thread can write to the stream 
while another thread can only read from the stream. User threads can only communicate with the 
concreteware (CW) or other threads via streams, though in the case of CW, the stream calls are 
concealed within accessor functions. 

Memory manager 

SAFE has both global and per-thread allocators. The global allocator is implemented as a 
combination of a buddy allocator and a static allocator. The buddy allocator divides up the large 
chunk of memory it manages into smaller and smaller chunks until it reaches the minimum size 
that will hold the requested memory. The static allocator has many frames of sizes up to 64 
atoms pre-allocated at compile time. It then can simply hand out one of the pre-allocated frames. 
The buddy allocator is faster for large allocations, so the two allocators are combined to improve 
performance. 

The global allocator is important for spawning a new thread or allocating new tags and 
authorities. Due to the overhead in calls to the global allocator, multiple requests can be sent at 
once. 

There are two thread-local allocators: a heap allocator and a stack allocator. The heap allocator is 
used for normal allocations, while the stack allocator is used for register spilling. 

The local heap allocator is implemented as a bump allocator. Unlike the global allocator, which 
operates on a large amount of memory that can be used by any thread, the local allocator 
allocates from a thread-specific region of memory that other threads do not have any access to. 
In our design, pointers to global memory can be sent across streams to other threads (e.g., 
pointers to streams), while pointers to thread-local memory cannot. Instead the system should 
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make a deep copy of the pointer in the receiving thread’s memory and sends the copy. Due to the 
difficulty of the interaction between the secrecy label model and the procedure for creating a 
deep copy, this functionality was not completed. See the section on garbage collection for details 
about these difficulties. 

Threads can make use of the global allocator only via communication to a Concreteware service 
such as the stream manager, which requires global allocation so that threads can communicate 
via the shared memory. 

The allocator for register spilling is a simple stack allocator. The Tempest compiler calls the 
stack allocator (if necessary) at the start of each function call and explicitly frees the memory at 
the end of each function call, or before a tail call. 

Thread manager 

Each thread in the SAFE system is made up of numerous hardware threads: the main thread and 
all of its fault handlers. Each thread also starts with pointers to the services (e.g., allocator, PAT 
server) it has available.   

To spawn a thread, the creating thread calls the thread manager. The thread manager allocates 
the memory for the thread and all of its fault handlers. The thread manager also sets the services 
register and provides two streams for the parent and child thread to communicate and a third 
stream for the parent thread to receive a notification if child thread crashes. 

Once the thread has been created, the thread manager adds the new thread to the scheduler. 

Tempest standard libraries  

Most “primitive” operations in Tempest, such as arithmetic and Boolean operators, are provided 
by standard libraries that wrap inline assembly code with functions. There are libraries written in 
Tempest for various standard data structures, such as linked lists, array lists, stacks, tuples, and 
strings. There are also libraries for printing and logging, which allow for strings to be written to 
streams that are redirected to standard-output on the host machine for the safe-sim and SAFE 
FPGA implementations. 

The generation of values for string literals in Tempest makes assumptions about the concrete 
representation of strings in the string library, tightly coupling the standard string library and the 
Tempest compiler implementation. The same is true for the library implementation of the gates 
that are used to access OS services. 

Device Drivers 

Currently the SAFE machine has no device drivers to handle a mouse or keyboard, however this 
does not prevent interactive programs from being run. All interactivity in programs is handled 
through streams that read and write information to and from outside of the SAFE machine. This 
information required to be tagged Public to prevent leaking information. 

The system also has a Tempest library that allows communication through the UART on the 
FPGA. The UART is accessed using memory mapped I/O. 
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4.4 Demonstrations 

During the course of the SAFE project we deployed 3 progressively more sophisticated 
demonstrations: “sum server”, SAFE Knowledge Online (SKO), and the Rocket Controller.  

The sum server demo is a command line demonstration of the overall SAFE architecture in the 
context of a simple information flow control example. “Sum” refers to the use of a simple 
arithmetic example to add data with different labels. Multiple computations are performed in the 
demonstration. The result of the first is a TMU cache miss since the label combination presented 
has not been seen before. For example adding 1@{SS,A,B} + 2@{SS,A} yields 3@{SS,A}  (the 
symbols in the {} are data labels). The second computation uses a set of labels that has already 
been seen and results in a TMU cache hit. The final example uses data that cannot be read by the 
executing program and results in an access error violation and a NaV value. The purpose of this 
demonstration was simply to confirm operation of the basic machine mechanisms. 

The other two demonstrations are described in the following sections. 

4.4.1 SAFE Knowledge Online (SKO) 

The SAFE Knowledge Online (SKO) demo is an information flow control demo that shows 
privacy protection of data similar to that found in Army Knowledge Online (AKO). Member 
data includes: username, name, phone, email, rank, organization, account type, year joined, years 
of service and affinity group. Fields in the database were labeled as either public (e.g., name), 
private to the user (e.g., phone and email) or private to the affinity group (e.g., rank and year 
joined).  

The demonstration shows results of database queries for different kinds of users.  If you are not 
logged in then any data more secret than public is redacted (blocked from being returned by the 
SAFE machine). If you are logged in as a particular user then you can see your own phone and 
email (but no one else’s) and you can see the username, rank, and year joined for other members 
of the same affinity group. 

The components of the demonstration include a SAFE machine running the garbage collector, 
the PAT server, scheduler, and TMU handler. An application thread runs on the machine that 
serves up a web-based demonstration by: parsing http requests, authenticating the user, adding 
authority to the computation, handling the request, declassifying data to be displayed, and 
constructing an http response. Networking for the demonstration is handled by a front-end 
Linux-proxy box which runs the TCP/IP network stack and handles the conversion of data from 
SAFE atoms to (untagged) byte streams. 

The database application is written in Tempest. Data is explicitly tagged in the database 
application using built-in language labeling features and an application defined secrecy label 
model formed from individual and conjoined principal read authorities. 

The value proposition of this demo is to show that independent of the complexity of the 
application, SAFE can provide an information-flow security perimeter to prevent exfiltration of 
sensitive data.  After this demonstration, the Home Depot and Target penetrations occurred. 
Credit card data labeled as secret would not be able to escape from a SAFE-based machine. 
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4.4.2 Rocket Controller 

The SAFE Rocket Controller application demonstrated how the protection mechanisms of SAFE 
prevent various classes of attacks even in the face of poorly or maliciously written application 
code. The demonstration includes protections against: 

 code injection via buffer overflow, 
 control flow hijacking via jumping according to user input, 
 SQL injection to create false data, and 
 password leaking via unauthorized access to an administrative database user interface. 

The Rocket Controller application was designed to allow all of the attacks to be attempted, so 
that the SAFE protection mechanisms would have to come into play. 

The normal use case for the application is: 

1. A targeter proposes a target, authenticating to the system with a username and password. 
2. A commander approves a target, authenticating to the system with a different username 

and password. 
3. The targeter selects an approved target and fires the rocket, again authenticating to the 

system. 

In addition to this, there is an “administrator” interface that allows for the querying of arbitrary 
database tables, including the password table. The Rocket Controller backend ran as an HTTP 
server on the SAFE system. The user interface was provided by a web page hosted on the host 
machine. Access to the SAFE system was done via AJAX requests from the web page that were 
redirected from the local webserver to the SAFE system. 

There are three places in the system where we ensured a correct, non-malicious implementation: 
the passwords in the table were tagged secret, so that they were only available to the password 
manager, the signatures of the targeter and commander were only given upon correct successful 
authentication, and the firing operation checked for the signature of the commander before 
actually firing the rocket. These are exactly the operations that we would expect to be subject to 
audit in a SAFE system. With these three operations protected, the failure of the rest of the 
system can be successfully protected by the SAFE protection mechanisms. 
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See Figure 3 for a depiction of how requests to the Rocket Controller were handled.

 
Figure 3:  Rocket Controller Control Flow 

Code injection. For the code injection attack, we intentionally omitted a bounds check on user 
input and instead naïvely copied the username for authenticating to the Rocket Controller 
application. By making the user input longer than the buffer available to hold the name, the user 
was able to attempt to overwrite data or code in the system. However, the bounded pointers on 
the SAFE system protected against this attack, and instead the thread that was copying the data 
crashed, resulting in an error for the user. 

Control flow hijacking. For the control flow hijacking attack, we stored a gate pointer for 
processing data in the same frame as the data to be processed. This allowed the attacker to 
actually make use of the buffer overflow to overwrite the pointer that would then be called. 
However, since the atomic group of the data written over the gate pointer was an integer, the 
attempt to jump to the pointer failed with an atomic group error, resulting in an error for the user. 

SQL injection. For the SQL injection attack we used naïve string concatenation to produce the 
SQL-like string that was interpreted on the SAFE system to do database access. This allowed a 
malicious targeter to inject extra SQL code to set the target approval field for an unapproved 
target. However, since the signature of the commander was unavailable to the targeter, the check 
for the signature of the commander when the rocket was fired failed. 

Unauthorized database access. The administrative database access allowed for arbitrary queries 
of the data. However, all data leaving the SAFE system that was not tagged as public was 
replaced with a default error string. Even though a malicious targeter was able to query the 
password database using the interface, since there is no way of logging in as the password 
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manager, there is no way for the passwords themselves to leave the system. Thus, the query 
resulted in a useless response for the attacker. 

In contemporary attacks like Stuxnet there are cascading series of failures which ultimately allow 
the attacks to succeed. With the Rocket Controller demonstration, we demonstrate SAFE 
providing a cascading series of successful protection. 

4.5 SAFE Tools 

SAFE project development efforts spanned a significant set of interrelated tasks. The SAFE 
platform was designed and built as a clean-slate effort, applications and demonstrations were 
built to illustrate the capabilities of the platform, and, as described in this section, a significant 
number of tools were built to support the development and debugging of the SAFE platform and 
applications.  In the conclusion of this report we describe lessons learned in juggling the 
development of these three complementary capability branches. 

4.5.1 SAFE Machine Simulator:  safe-sim 

The SAFE software simulator, or safe-sim, is a simulator that can run programs written in the 
SAFE assembly language. It is written in Haskell. While slower than the FPGA implementation 
of SAFE, safe-sim provides additional debugging capabilities, and allows for developing 
programs even without immediate access to the FPGA implementation. The software simulator 
attempts to be as faithful to the hardware implementation as possible, with one notable 
exception. 

The TMU cache is implemented differently in safe-sim than in the actual hardware 
implementation. The hardware has a limited cache space, while safe-sim is free to keep as many 
rules cached as memory allows. Therefore, safe-sim does not make use of the same hash 
functions that the FPGA simulator uses to keep track of tag rules. This is visible on occasion 
when the hardware takes a TMU miss on a rule that it has previously resolved, but that has been 
forced out of the cache. safe-sim will not take a TMU miss on the same instruction, as it still has 
the rule cached.  

The simulator can be run in two modes: interactive and non-interactive. In non-interactive mode, 
the simulator loads the program into memory and immediately begins execution. When the 
program has halted, the simulator exits. It reports the final PC and the number of instructions 
run. If the machine did not halt normally, the simulator will print an error message. In interactive 
mode, the simulator loads the program into memory, and then prompts the user for input. The 
user can chose to set breakpoints or watchpoints, modify memory, change the amount of 
information the simulator prints as it runs, or run the program, either indefinitely or for a 
specified number of instructions. 

Watchpoints are a debugging feature added to safe-sim. A watchpoint can be set to trigger on the 
read and/or write of a memory address. If the watchpoint is triggered, the simulator will stop 
running, print a message, and ask the user for input again. In the case of a watchpoint on memory 
write, the simulator will print both the original value of memory and what it was changed to. 

Another debugging feature adding to safe-sim was the ability to save a machine state in order to 
resume from it at a later point. This allowed the person debugging a program to mark when the 
program was in a known good state while they attempted to locate where it went wrong. This 
helped reduce the time wasted if the user finds when they reach where they think the error will 
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occur only to find that something already looks wrong. At that point, they could restore to the 
earlier state and set a more informed breakpoint. 

There are some error conditions where the hardware cannot continue, but due to limitations also 
cannot report details about the error. The safe-sim simulator attempts to address many of these 
conditions by printing error messages in the case of un-recoverable errors. For example, if the 
initial boot thread is corrupted, the hardware cannot output an error message. The software 
simulator can print the error before exiting. 

The simulator's usage is documented in the safe-sim User's Guide, which is an appendix to the 
Computer Operating Manual (BAE TR-2748). 

4.5.2 SAFE Assembler 

The SAFE assembler, or safe-asm, is an assembler for the SAFE assembly language. It is written 
in Haskell.  From an assembly file, safe-asm can produce a binary image file for use with the 
FPGA or bsim (the Bluespec simulator of the hardware implementation). Rather than output a 
format for safe-sim to read, safe-sim calls the assembler as a library. This gives safe-sim more 
information to assist the user in debugging. When assembling an image, the assembler can also 
produce a “map” file that shows the final memory addresses and some information about their 
source. 

The assembler can also output a configuration file for the FPGA implementation, as well as 
many other things that may help someone writing pure assembly code. This configuration file 
contains constants such as the memory size that must be consistent in all simulators. This allows 
for some variables to be changed without needing to modify the Bluespec code defining the 
hardware implementation, though the Bluespec code will still need to be recompiled.  

While most of the configuration information the assembler uses is specified in the ISA 
specification, some details are defined only by the config file itself. This includes the encoding 
of the atomic groups and the hash functions used in the Bluespec code for the TMU hashes. 

The assembler also contains a disassembler that can convert the binary atoms back to their 
internal representation. This is used as a library in safe-debugger and safe-sim. 

4.5.3 SAFE Linker:  safe-meld 

The design of safe-meld is based on “Units: Cool Modules for HOT Languages” (Flatt & 
Felleisen, 1998). A meld linking specification file is an abstract specification of the linking 
result and a declarative specification of a hierarchical (nested) collection of units that consist of 
a collection of SAFE assembly files with specified imported and exported names. Available 
linking results were object files, whole-system images, and loader-formatted images. 

Constraints around data loading due to the need for loader privileged retagging of instruction 
description data as code lead to the use of whole-image linking. Linking specification files with 
generative behavior for individual components meant code sharing was optional, which was 
important for certain libraries that utilized some amount of “global” mutable state. 

The linker itself consisted of three parts: meld-core, which creates linking plan (consisting of 
renaming and hiding), safe-meld-lib, which provides a compilation unit representation and the 
parser for the specification language, and safe-meld which manages the linking process. The 
concrete compilation unit representation as produced by the Tempest compiler did not include 
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meta-data to support linking (as most object files do in other languages), which slowed down 
linking but made it easy to avoid bugs. The slowdown was only a problem near the end of the 
project, because of the need to link the whole OS for each program. 

The safe-meld component also had some built-in compilation units to make it possible to specify 
streams, data frames and hardware thread frames statically in linking specification files. This 
feature was especially useful when declaring whole-system images, since it allowed for the 
concise declaration of large data blocks that were used by the SAFE OS services. 

Usage instructions for the safe-meld tool are provided as part of the Tempest Tutorial document 
attached to the SAFE Computer Programming Manual (TR- 2803). 

4.5.4 SAFE Debugger: safe-debugger 

The SAFE debugger is a Haskell program to assist in running and debugging programs on the 
FPGA or in bsim. When running non-interactively, the SAFE debugger will time out after a 
period of time even if the machine does not halt. Since the FPGA executes programs quickly, 
this allows the SAFE debugger to avoid waiting for a program that has entered an infinite loop 
to finish. The time out is adjustable for longer running programs. 

It provides an interactive interface, allowing for the user to set breakpoints and single step, as 
well as to examine and modify memory. safe-debugger provides much of the same functionality 
as safe-sim. 

4.6 Verification Efforts 

The design of the SAFE processor was influenced by verification considerations and efforts to 
verify critical aspects of the design.  A lot of effort was spent on designing languages that 
provided a non-interference property. The verification effort was orthogonal to the primary 
platform design effort in the sense that verification was performed on models of the components 
as opposed to the actual component implementations. The verification efforts are well 
documented in the published literature: 

B. Montagu, B. C. Pierce, and R.  Pollack, “A  theory  of  information-flow labels,” in 26th 
IEEE Computer Security Foundations Symposium (CSF). IEEE, 2013, pp. 3–17. Available: 
http://www.crash-safe.org/node/25 
 

Summary: SAFE’s tags are intended to support a wide range of dynamic 
analyses, including both information-flow policies and others such as memory-
safety and control-flow-integrity policies. This paper focuses on the first, offering 
the first generic characterization of information flow in the setting of a simple 
functional programming language. A number of existing information-flow policies 
are shown to fit within this framework. 

 
C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All your IFCException 
are belong to us,” in 34th IEEE Symposium on Security and Privacy.  IEEE Computer Society 
Press, May 2013, pp. 3–17. Available:  http://www.crash-safe.org/node/23 
 

Summary: Dealing correctly with exception handling in the context of 
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information-flow tracking turned out to be one of the most challenging issues in 
designing a high-level programming language to run on the SAFE processor. 
This paper examines the topic in detail, proposes a specific mechanism, and 
proves it correct. 

 
C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis, A. Azevedo de 
Amorim, and L. Lampropoulos, “Testing noninterference, quickly,” in 18th ACM SIGPLAN 
International Conference on Functional Programming (ICFP), Sep. 2013. Available: 
http://www.crash-safe.org/node/24 
 

Summary: This paper attacked the issue of how to design and debug an information-
flow policy for the SAFE machine. Such policies are quite tricky to get right, 
and tend to be subject to quite subtle security bugs. This paper investigated the 
extent to which property-based random testing techniques could be used to speed 
the design process by identifying many bugs early in the process. 

 
A. Azevedo de Amorim, N. Collins, A. DeHon, D. Demange, C. Hriţcu, D. Pichardie, B. C. 
Pierce, R. Pollack, and A. Tolmach, “A verified information-flow architecture,” in Proceedings 
of the 41st Symposium on Principles of Programming Languages, ser. POPL. ACM, Jan. 2014, 
pp. 165–178. Available:  http://www.crash-safe.org/node/29 
 

Summary: This paper brings together many of the earlier results from the theory 
and verification side of the SAFE project, showing how to specify and formally 
verify an information-flow policy implemented by tag-propagation rules on an 
idealized microprocessor enhanced with a simple version of SAFE’s rule cache 
and tag propagation mechanisms. 

 
A. Azevedo de Amorim, M. Dénès, N. Giannarakis, C. Hriţcu, B. C. Pierce, A. Spector-Zabusky, 
and A. Tolmach, “Micro- policies: Formally verified, tag-based security monitors,” in 36th  IEEE 
Symposium  on  Security  and  Privacy (Oakland   S&P). IEEE Computer  Society,  May  2015, 
pp.  813–830. Available: http://prosecco.gforge.inria.fr/personal/hritcu/publications/micro-
policies.pdf 
 

Summary: This follow-up to the 2013 POPL paper showed how to generalize 
the specification and verification framework presented there to a wide range of 
micro-policies including dynamic sealing, memory safety, control-flow integrity, 
and software compartmentalization. 

4.7 Hardware Design and Optimization 

The design of the SAFE hardware is well-documented in the published literature. While efficient 
hardware design is crucial to the overall viability of the SAFE secure processor, the hardware 
provides a well-defined interface to support the operating system, tools, and application 
software. The following papers provide detailed information about the hardware design. 

[DD13] Udit Dhawan and André DeHon. Area-efficient near-associative memories on FPGAs. 
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In Inter- national Symposium on Field-Programmable Gate Arrays, (FPGA2013), February 2013. 
 

Summary: Describes the efficient hardware structure for performing wide 
(nearly) associative matches that makes the TMU (Tag Management Unit) or 
PUMP (Programmable Unit for Metadata Processing) possible. It is described 
here in generic terms to avoid needing to setup the whole background of the 
SAFE project and since the unit has broad utility beyond TMU/PUMP use. 

 
[DD15] Udit Dhawan and André DeHon. Area-efficient near-associative memories on FPGAs. 
Transactions on Reconfigurable Technology and Systems, 7(4):3:1–3:22, January 2015. 
 

Summary: Describes the efficient hardware structure for performing wide 
(nearly) associative matches that makes the TMU (Tag Management Unit) or 
PUMP (Programmable Unit for Metadata Processing) possible. It is described here 
in generic terms to avoid needing to setup the whole background of the SAFE 
project and since the unit has broad utility beyond TMU/PUMP use. This 
includes appendices with probabilistic analysis of the behavior of the structure and 
algorithms. 

 
[Dha13] Udit Dhawan. Dynamic multi-hash cache architecture bluespec source distribution. 
http://ic. ese.upenn.edu/distributions/dmhc_fpga2013/, February 2013. 
 

Summary: Bluespec System Verilog source code for the dMHC. This provides 
the full code associated with the FPGA2013 (and TRETS2015) dMHC articles. 
The code is highly parameterized so that it can be easily adapted to various uses. 

 

[DHR+15] Udit Dhawan, Cătălin Hriţcu, Rafi Rubin, Nikos Vasilakis, Silviu Chiricescu, Jonathan 
M. Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and André DeHon. Architectural 
support for software-defined metadata processing. In International Conference on Architectural 
Support for Programming Languages and Operating Systems, pages 487–502, 2015. 
 

Summary: The architecture where we extract the TMU (Tag Management Unit) 
developed for SAFE and integrate it into a conventional processor and show that 
it can be used to support safety and security policies on unmodified C-code. This 
includes quantification of area, energy, and delay costs as well as microarchitectural 
implementation techniques beyond the base TMU to reduce these costs. 

 
[DK12] Udit Dhawan and Albert Kwon. SAFE processor source distribution. 
http://ic.ese.upenn. edu/distributions/safe_processor/, October 2012. 
 

Summary: Bluespec System Verilog source code for the snapshot of the SAFE 
Processor associated with the AHNS 2012 Interlocks paper. This is the full 
processor core at that point. This version was not fully pipelined, but operated in 
phases. This release is only the processor Bluespec, so lacks the rich set of tools 
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for generating code that works with the processor. 
 

[DKK+11] André DeHon, Ben Karel, Thomas F. Knight, Jr., Gregory Malecha, Benôıt 
Montagu, Robin Morisset, Greg Morrisett, Benjamin C. Pierce, Randy Pollack, Sumit Ray, 
Olin Shivers, Jonathan M. Smith, and Gregory Sullivan. Preliminary design of the SAFE 
platform. In 6th Workshop on Programming Languages and Operating Systems, PLOS, October 
2011. 
 

Summary: Describes entire stack including hardware, software, and 
programming language. 

 

[DKK+12] Udit Dhawan, Albert Kwon, Edin Kadric, Cătălin Hriţcu, Benjamin C. Pierce, 
Jonathan M. Smith, André DeHon, Gregory Malecha, Greg Morrisett, Thomas F. Knight, Jr., 
Andrew Sutherland, Tom Hawkins, Amanda Zyxnfryx, David Wittenberg, Sumit Ray, and Greg 
Sullivan. Hardware support for safety interlocks and introspection. In SASO Workshop on Adaptive 
Host and Network Security, September 2012. 
 

Summary: Describes the SAFE processor. This focused on the key hardware 
protection mechanisms and included highlights of the FPGA implementation, 
including the area and timing for the design. 

 

[DVR+14] U d i t  Dhawan, Nikos Vasilakis, Raphael Rubin, Silviu Chiricescu, Jonathan M. 
Smith, Thomas F. Knight, Benjamin C. Pierce, and André DeHon. PUMP – A Programmable 
Unit for Metadata Processing. In Proceedings of the 3rd International Workshop on Hardware 
and Architectural Support for Security and Privacy, HASP ’14, pages 8:1–8:8, New York, NY, 
USA, June 2014. ACM. 
 

Summary: Preliminary description of the architecture where we extract the 
TMU (Tag Management Unit) developed for SAFE and integrate it into a 
conventional processor and show that it can be used to support safety and security 
policies on unmodified C-code. This workshop paper is largely superceded by the 
subsequent ASPLOS 2015 paper on the PUMP. The ASPLOS paper was tight for 
space, so some descriptions are less terse in this paper. 

 

[HDV+14] Cătălin Hriţcu, Udit Dhawan, Nikos Vasilakis, Silviu Chiricescu, Jonathan M. 
Smith, Benjamin C. Pierce, and André DeHon. Programming the PUMP: Hardware-assisted 
micro-policies for security. Unpublished, May 2014. 
 

Summary: This is a good companion to the ASPLOS 2015 paper, describing 
what the policies are, how they are written, and capturing key characteristics of 
the policies. The CCS reviewers in 2014 really wanted to see the 
microarchitectural and optimized implementation details that were in the 
ASPLOS paper before considering this paper for publication. Nonetheless, we 
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recommend this material be read along with the ASPLOS 2015 paper to get the 
complete story 

 
[KD13] Albert Kwon and Udit Dhawan. Low-fat pointers bluespec source distribution. 
http://ic.ese. upenn.edu/distributions/fatptr_ccs2013/, May 2013. 
 

Summary: Bluespec System Verilog source code for the Low-Fat Pointer base-
and-bounds units. This provides the full code associated with the CCS 2013 
article. The distribution includes both the optimized BIMA scheme and the 
original ARIES scheme and is parameterized on field lengths. 

 

[KDS+13] Albert Kwon, Udit Dhawan, Jonathan M. Smith, Thomas F. Knight, Jr., and André 
DeHon. Low-fat pointers: compact encoding and efficient gate-level implementation of fat 
pointers for spatial safety and capability-based security. In ACM SIGSAC Conference on 
Computer and Communications Security (CCS), pages 721–732. ACM, 2013. 
 

Summary: Describes the hardware scheme for base-and-bounds that provides 
memory safety in the SAFE processor. This includes an analysis of the area and 
timing of the base and bounds checks, supporting the particular encoding scheme 
we chose and quantifying its advantage compared to the initial encoding from 
Aries. This also shows how to integrate the unit into a pipelined processor and 
avoid stalls. 

 

[SCD+13] Gregory T. Sullivan, Silviu Chiricescu, André DeHon, Delphine Demange, Suraj 
Iyer, Aleksey Kliger, Greg Morrisett, Benjamin C. Pierce, Howard Reubenstein, Jonathan M. 
Smith, Arun Thomas, Jesse Tov, Christopher M. White, and David Wittenberg. SAFE: A 
clean-slate architecture for secure systems. In Proceedings of the IEEE International Conference on 
Technologies for Homeland Security, pages 570–576, November 2013. 
 

Summary: A short highlight of the entire hardware/software stack for SAFE 
including verification. This captures a more mature snapshot of the stack than the 
PLOS 2011 paper, but is necessarily less detailed than the dedicated papers on 
each of the components. While short, this is the only public publication that 
describes the operating system design for SAFE 
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5.0 CONCLUSIONS  
Inherently secure processing models are within technological reach today, however, they are not 
easily compatible with today’s existing (legacy) codebases. Based on our experience with a 4 
year co-design of the SAFE secure processor we offer these conclusions and lessons learned 
(summarized in the following list and elaborated in more detail in the remainder of the section): 

 Building an entire hardware/software stack in parallel is a Gordian knot which requires 
clever bootstrapping techniques to resolve. 

 Programmability of secure applications is challenging and needs to be an equal partner 
with secure architecture and language design. 

 Providing mechanisms to implement security policies is different than good methods for 
stating security policies. 

 Non-interference is too strict a model to govern useful applications, research is needed in 
more permissive models. 

 Bounded memory frames provide memory safety and support a secure 
compartmentalized programming model. 

 Verifying design models is not the same as verifying implementations. 
 Debugging features can leave a big security hole. 
 SAFE addressed single host secure processing issues. Many interesting problems remain 

to support networked, multi-machine secure processing. 

Difficulties in building a complete hardware/software stack: For co-design and co-
implementation between language and hardware to be successful, the staff working on the 
hardware need to understand the goals of the staff working on the language and the staff working 
on the language need to understand the limitations of implementing things in hardware. 
Otherwise, one of the sub-teams will fix on a design or implementation too soon and lose the 
ability to respond to the needs of the other. On the other hand, if flexibility is retained too long 
then the programming language group will be waiting for hardware to firm up and the hardware 
group will wait for the programming language group requirements. We went through versions of 
both of these pathologies. 

An effective solution is to make use of easily changed simulations to keep the hardware fluid as 
the programming languages evolves. Unfortunately, the hardware team is not fully-utilized under 
this model – needing to support the simulation but unable to productively develop and optimize 
the hardware. Note, that the same issue exists between the programming languages efforts and 
the operating system and applications efforts. In this case, a co-design approach between 
applications and the underlying machine effort would be effective with the applications 
(developed using new secure programming techniques) being used to define platform 
requirements. However, this approach would have easily extended the project beyond its 4 year 
boundary. 

Secure applications programming challenge: As a project taking a clean-slate approach to the 
overall program it was unlikely that we could achieve a complete end-to-end lifecycle, 
application-to-hardware solution. Other projects in the CRASH program built on existing 
technology and thus were not subject to the Gordian knot discussed above. The focus of SAFE 
was to explore mechanisms that could provide inherently safe computing and in this goal we 
were successful. We developed some principles of secure programming but did not deliver a 
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complete programming methodology for secure systems development on top of this new (and 
evolving platform). The definition of secure is also something that was explored under the SAFE 
project and we set a very high bar for security (see non-interference discussed below) and did not 
distinguish between theoretical security vulnerabilities and readily exploitable security 
vulnerabilities. This was something of an opportunity missed since we did develop a solution 
that provided security against whole classes of vulnerabilities, buffer overflow and code injection 
in particular, and deploying a platform secured against just these exploits would be a valuable 
contribution in itself (and one that we are working on under a continuing internal effort). 
However, for such a platform to be a viable solution (or transitionable technology) it needs to be 
accompanied by a complete software lifecycle methodology defining how to compile, link, 
deploy, execute, and test the applications (something which the non-clean-slate solutions could 
obtain from their underling legacy platform). 

Stating security policies versus implementing security policies: Current day instruction sets 
and compilers provide solutions to implementing a variety of computational models. However, 
instruction set support is not enough. For example, programmers call methods and subroutines 
without much thought to the underlying complexity of those mechanisms. Use of such features 
would not be practical if programmers had to explicitly write the code to implement calling and 
return conventions and stack management. 

On the SAFE machine we were able to provide low-level support for security policies 
implemented as label models (e.g., secrecy/confidentiality enforcement). However, developing 
code using a low-level non-interference policy is tedious and difficult. More work is required on 
how to bridge the gap between the application level specification of desired confidentiality 
properties and the level of enforcement of those properties in the SAFE system. This points again 
to the need to develop and mature the application level programming paradigm before 
solidifying the lower-level support capabilities. Whole program security policies involving 
individually identified principals, symbolic groups of principals, and application roles is an area 
that requires additional research. 

Strict non-interference: A machine is non-interfering if given any sequence of low inputs (the 
machine has a set of inputs where some are “low” security and other are “high” security), the 
output of the machine for that particular sequence is the same regardless of what the high inputs 
are. This means the machine does not leak any secured (high) information. Strict non-
interference is a very high bar. For example, imagine a machine that processes both low records 
and high records and maintains separation of that processing. If that machine happens to count 
the number of low records and the number of high records as it reads them (the context in which 
the counting is done is crucial) and keeps a count of the number of high records and outputs that 
number, e.g., “processed 100 records, 42 high” then that machine has leaked high information 
and is not non-interfering. While leaking the number of high records could be of concern in some 
situations, it is a very low-bandwidth leak and does not identify or leak any of the constituent 
high data. 

Any machine that works with high data (non-public data of any sort) is highly likely to need to 
divulge some data tainted by high data. In the SAFE machine we provided a declassification 
mechanism as a way to escape strict non-interference. 
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Granularity of non-interference also matters. Enforcing label models at the level of individual 
instructions is difficult because the properties we care about are expressed globally. Non-
interference properties, for example, are properties of the inputs and outputs of an entire 
program. The translation of these global properties to instruction-level properties is not 
straightforward. In the SAFE system, we took the approach of enforcing non-interference for the 
inputs and outputs of each instruction. This decision meant that there are globally non-interfering 
programs that cannot be run on the SAFE system because they incur local violations of non-
interference. For example, we believe it is impossible to implement a garbage collector in such a 
system without giving the garbage collector special authority to violate the label model. 

More research needs to be done to develop information leak properties that are less Boolean in 
nature and reflect both the quanta of leakage and the bandwidth of any leakage. In the SAFE 
machine we had to develop programming models that maintained non-interference on an 
instruction-by-instruction basis which made programming quite difficult. 

Bounded memory frames: It is now feasible, as demonstrated in the SAFE platform, with 
current hardware technology to implement self-identifying bounded memory regions, i.e., 
memory words that encode the base and bounds of the frame in which they are contained. This 
single feature provides the basis for memory safety and implementation of a secure 
compartmentalized programming model. Providing this feature creates a machine that is half-
way freed from the current “raw seething bits” design of most contemporary processors (the 
other half is provided by hardware level data typing that allows, e.g., distinguishing data from 
instructions from pointers). Given bounded memory, there are many design patterns to be 
explored that make effective use of the capability (which can be thought of as “coloring” the 
memory and enforcing policies that maintain the integrity of the colors being accessed). The 
programming model using bounded memory regions requires additional exploration as much 
contemporary buffer processing code ignores defined regions to enable more efficient data 
exchange. Additionally, new patterns need to be developed as the segmentation provided by 
different memory patterns provides significantly different security protection (e.g., an array of 3 
items versus 3 separated independent variables). 

Verifying designs: Claims of secure processing ultimately require formal verification. In the 
literature of published secure mechanisms, there are too many corner cases and examples that 
have been found with holes. The current state of formal verification provides for verification of 
models, i.e., designs of computational mechanisms and algorithms (e.g., using the Coq theorem 
prover). Models, however, are not implemented code and there are few examples of verification 
technology that can even compile models into executable code and in the case of SAFE, no 
technology (not surprisingly) to compile models into our unique programming languages and 
ISA. Attempts at formal verification are nevertheless instructive particularly as verification 
properties are formulated and weakened or strengthened depending on progress of the 
verification efforts. This exercise points to issues that must be addressed during the design phase 
of the secure algorithms. 

Securely Debugging: The nature of debugging software is fundamentally one of revealing data. 
We added certain unsafe features to our SAFE development platform with the knowledge these 
could not be included in the deployed platform. The current SAFE platform does not provide a 
debugging solution for the deployed platform. One intermediate solution is to encrypt all 
debugging output, thus shifting the issue to a key management problem in order to access the 
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debugging data. Addressing this issue is part of the overall effort that would be required to 
address the full software creation, deployment, execution, and maintenance lifecycle on a secure 
host solution. 

Networked Secure Processing: While SAFE addresses many secure host processing issues, it 
was out of scope for both the project and the program to address secure computing across 
networked hosts. Two primary issues are involved with multi-host processing: persistent data 
and network data transmission. Data persistence of labeled data requires storage of data using 
encryption since viewing of the payload data separate from its tag would reveal the data no 
matter how it was labeled. This results in a key management problem as to how multiple hosts 
can share the same key(s) for persisted data. Networked data transmission is a similar problem as 
the data is being serialized over the network (instead of into a file system). Secure 
communications between hosts can be based on existing secure communications protocols, but 
they need another level of authentication (or encryption) to allow hosts to prove they are part of a 
trusted multi-host secure community. In addition to encryption keys, this community must share 
user-ids (principals) and authorities so that data access restrictions created on one machine can 
be enforced (with the same semantics as defined on the originating machine(s)) on a partner 
network machine. Existing secure communications protocols may be adapted to handle this 
problem, but will also provide a single point of failure should a machine be able to obtain 
improper access to the secure network. 

  



44 

Approved for public release; distribution is unlimited. 
 

6.0 BIBLIOGRAPHY 
Azevedo de Amorim, A., Dénès, M., Giannarakis, N., Hriţcu, C., Pierce, B. C., Spector-Zabusky, 

A., et al. (2015). Micro-Policies: Formally Verified, Tag-Based Security Monitors. IEEE 
Symposium on Security and Privacy. Oakland, CA: IEEE. 

Chiricescu, S., DeHon, A., Demange, D., Iyer, S., Kliger, A., Morrisett, G., et al. (2013). SAFE: 
A Clean-Slate Architecture for Secure Systems. IEEE International Conference on 
Technologies for Homeland Security (HST). IEEE. 

DeHon, A., Dhawan, U., & Strnad, A. (2014). SAFE Instruction Set Architecture.  

Dhawan. (2014). PUMP: A Programmable Unit for Metadata Processing. 

Dhawan, U., & DeHon, A. (2013). Area-Efficient Near-Associative Memories on FPGAs. 
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM. 

Flatt, M., & Felleisen, M. (1998). Units: Cool Modules for HOT Languages. Proceedings of the 
ACM SIGPLAN 1998 Conference on Programming Language Design and 
Implementation (pp. 236-248). Montreal, Quebec, Canada: ACM. 

Hriţcu, C., Greenberg, M., Karel, B., Pierce, B. C., & Morrisett, G. (2013). All your 
IFCException are belong to us. IEEE Symposium on Security and Privacy (SP) (pp. 3-
17). San Fransisco, CA: IEEE. 

Jim, T., Morrisett, J. G., Grossman, D., Hicks, M. W., Cheney, J., & Wang, Y. (2002). Cyclone: 
A Safe Dialect of C. USENIX Annual Technical Conference, General Track (pp. 275-
288). USENIX Association. 

Kwon, A., Dhawan, U., Smith, J. M., & Knight, Jr., T. F. (2013). Low-fat pointers: compact 
encoding and efficient gate-level implementation of fat pointers for. ACM SIGSAC 
Conference on Computer and Communications Security (CCS) (pp. 721-732). ACM. 

Montagu, B., Pierce, B. C., & Pollack, R. (2013). A theory of information-flow labels. IEEE 
Computer Security Foundations Symposium (pp. 3-17). New Orleans, LA: IEEE. 

Stefan, D., Russo, A., Mazières, D., & Mitchell, J. C. (2012). Disjunction Category Labels. 
Proceedings of the 16th Nordic Conference on Information Security Technology for 
Applications (pp. 223-239). Tallinn, Estonia: Springer-Verlag. 

 

  



45 

Approved for public release; distribution is unlimited. 
 

LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 
AG Atomic Group 
AGU Atomic Group Unit 
AKO Army Knowledge Online 
API Application Program Interface 
BROP Blind Return-Oriented Programming 
BSV Bluespec System Verilog 
CPM Computer Programming Manual 
CRASH Clean-slate design of Resilient, Adaptive, Secure Hosts  
CW ConcreteWare 
DARPA Defense Advanced Research Projects Agency 
DC Disjunction Category 
FPGA Field Programmable Gate Array 
GC Garbage Collection 
IFC Information Flow Control 
I/O Input/Output 
ISA Instruction Set Architecture 
NaV Not-a-Value 
OS Operating System 
PAT Principals Authorities and Tags 
PC Program Counter 
PUMP Programmable Unit for Metadata Processing 
SAFE Semantically Aware Foundation Environment 
SKO Safe Knowledge Online 
TMU Tag Management Unit 
UART Universal Asynchronous Receiver/Transmitter 
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