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Available online 31 December 2015
 In this work, electrical capacitance tomography (ECT) and neural networks were used to automatically identify
two-phase flow patterns for refrigerant R-134a flowing in a horizontal tube. In laboratory experiments, high-
speed images were recorded for human classification of liquid–vapor flow patterns. The corresponding
permittivity data obtained from tomograms was then used to train feedforward neural networks to recognize
flow patterns. An objective was to determine which subsets of data derived from tomograms could be used as
input data by a neural network to classify nine liquid–vapor flow patterns. Another objective was to determine
which subsets of input data provide high identification success when analyzed by a neural network. Transitional
flowpatterns associatedwith common horizontal flowpatterns were considered. A unique feature of the current
work was the use of the vertical center of mass coordinate in pattern classification. The highest classification
success rates occurred using neural network input which included the probability density functions (in time)
for both spatially averaged permittivity and center of mass location in addition to the four statistical moments
(in time) for spatially averaged permittivity data. The combination of these input data resulted in an average
success rate of 98.1% for nine flow patterns. In addition, 99% of the experimental runs were either correctly
classified or misclassified by only one flow pattern.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the two-phase flow behavior of refrigerants is im-
portant for the design of advanced aircraft cooling systems. Specifically,
the classification of liquid–vapor structures into flow patterns is useful
for predicting heat transfer rates and, ultimately, system performance.
Most flow and heat transfer correlations require a priori knowledge of
the two-phase flow pattern and are based on steady-state conditions
[1,2]. Although flow pattern identification can be performed using
high-speed imaging, this method generally relies on the visual interpre-
tation of liquid–vapor patterns. Unfortunately, visual interpretation can
be highly subjective [2]. As a consequence, numerous flow pattern
classifications have been defined in the past [3–7]. In contrast to visual
observation, which is often impractical, non-visual sensor signals can
be analyzed to provide more objective classifications. Moreover, sensor
signals are desired as inputs to real-time modeling and control.

Capacitance techniques are non-invasive and rely on differences in
electrical permittivity to distinguish between liquid and vapor phases
[2,8–9]. Capacitance measurements acquired simultaneously with
3
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high-speed videos of air-water flows have been used to identify two-
phase flow patterns [2]. In addition, encouraging results involving the
identification of two-phase flow patterns of refrigerants have been
obtained using a capacitance probe that produced void fraction signals
[10]. However, a single capacitance probe (as in [2,10]) may not fully
characterize the liquid–vapor spatial distributionwithin a flow passage.
This could lead to incorrect assumptions about the actual flowbehavior.
In contrast, electrical capacitance tomography (ECT) can provide a
nearly instantaneous view of the liquid–vapor distribution within the
system without optical access. Tomography may be used to derive the
permittivity distribution from capacitance data [8,9]. The permittivity
distribution, in turn, can provide the spatial distribution of the liquid
and vapor phases. Many past research efforts involving ECT have
focused on industrial applications where qualitative results were
sufficient [8]. The use of ECT in detailed studies of liquid and vapor in
horizontal flow has been limited, much less with the use of dielectric
refrigerants which are of interest here [8,10,11].

Artificial neural networks are used for pattern recognition and trend
prediction involving complex processes. In an artificial neural network,
the neurons (often called nodes) receive input signals, and each node
calculates an individual output using a weighted sum and nonlinear
activation function. Learning is achieved by the adjustment of these
weights [12]. Past studies suggest that there is potential for using a
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Nomenclature

Ai Individual pixel area [m2]
AT Sum of all pixel areas [m2]
D Tube diameter [m]
Db Bubble diameter [m]
ECT Electrical capacitance tomography
L Length [m]
PDF Probability density function
t Time [s]
yc(t) Center of mass vertical coordinate normalized by the

tube diameter
yc(t)PDF Probability density function for center of mass (normal-

ized) vertical coordinate
yi Vertical coordinate normalized by the tube diameter for

the ith pixel
εð~x; tÞ Permittivity determined by tomography [F/m]
εf Liquid permittivity [F/m]
εg Vapor permittivity [F/m]
ε�ð~x; tÞ Normalized permittivity
ε�ðtÞ Spatial average of normalized permittivity
ε�ðtÞPDF Probability density function of ε�ðtÞ
ε�i ð~x; tÞ Normalized permittivity for an individual pixel
hε�ðtÞi Time averaged ε�ðtÞ
hε�ðtÞiKURT Kurtosis of time averaged ε�ðtÞ
hε�ðtÞiSKEW Skewness of time averaged ε�ðtÞ
ε�ðtÞVAR Variance of time averaged ε�ðtÞ
~x Spatial locations, x and y [m]
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neural network to objectively classify liquid–vapor distribution data
[13–15]. These studies have used measured or simulated impedance
(conductance) signals rather than input from ECT [13–16]. In addition,
nearly all previous flow identification studies that have used neural
networks were performed for vertical flows.

In this paper, the use of ECT together with neural networks to
identify liquid–vapor flow patterns is explored. For this purpose, exper-
iments involving the horizontal flow of refrigerant R-134a through a
tube of small diameter (7 mm) were conducted. A horizontal-two
phase flow can be categorized into one of several flow patterns which
may include bubbly, plug, slug, stratified-wavy, and annular flows
[17]. Here, previous work is extended by including additional transi-
tional flow patterns corresponding to four of the above flow patterns
P
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Fig. 1. Schematic of two phase flow system. Red represen
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for horizontal flow. The names of the transitional flow patterns are
derived from these four flow patterns and are given here as the
bubbly-transitional, plug-transitional, slug-transitional, and stratified-
wavy-transitional patterns. In the current work, high-speed images of
theflowpatternswere recorded for purposes of initial human classifica-
tion and final training verification. Processed permittivity data obtained
from two-dimensional tomogramswas used to train neural networks. A
goal was to classify nine horizontal two-phase flow patterns with
reasonable speed using neural networks as a predictive tool. Input
information for the neural networks included the spatially averaged
permittivity, center of mass location, and their probability density
functions (in time). It also included four statistical moments (in time)
for spatially averaged permittivity data. Another objective was to deter-
minewhich subsets of input data provide high identification success for
the flow patterns when analyzed by a neural network.

2. Experimental setup

To explore the use of ECT in the identification of two-phase flowpat-
terns, laboratory experiments were performed in which liquid–vapor
flow patterns were generated for flow in a horizontal tube. Fig. 1
shows a schematic of the experimental arrangement in which liquid
R-134a was pumped through a heater to produce two-phase flow. To
obtain different liquid–vapor flow patterns, the volumetric flow rates
were adjusted in the range 0.1 to 0.5 L/min, while varying the heater
power between 0 and 500 W. Downstream from the heated section,
the two-phase flow entered a fused quartz observation section (tube
with 7 mm ID). The observation section permitted imaging using a
high speed video camera (Phantom V4.2) and had thermocouples and
pressure transducers located at 1.2 m increments along its length. The
high speed camera was used to compare actual images of liquid–vapor
flow with ECT characterization. R-134a passed through the cylindrical
ECT sensor (ITS, 0690). Fig. 1 shows one flow path for R-134a and
another for cooling water which was used to condense R-134a vapor
in the condenser (Lytron, LL510G02). The water was cooled by a chiller
(PolyScience, 4260 T).

Table 1 lists the measurement uncertainties associated with the
thermocouples, pressure transducers (Omega PX-409), and flow
meter (McMillan) shown in Fig. 1. Experiments were performed with
the refrigerant saturation conditions at the ambient temperature of
20 °C. Relatively small temperature differences (~1 °C) between the
ambient and refrigerant in the observation section of tubing provided
reasonable grounds to neglect the heat transfer between them.

The ECT system consists of a multi-electrode sensor, electronics for
capacitance determination, and data acquisition components [18]. The
P P

TT
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Back pressure valve

P

T
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P
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ts the refrigerant, and blue represents chilled water.
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Table 1
Measurement uncertainties.

Instrument Type Calibration range Uncertainty

Thermocouple Type T 5–100 °C ±0.1 °C
Pressure transducer Gauge 0–1034 kPa ±0.3 kPa
Flow meter Turbine 0.10–1.00 L/min ±0.005 L/min
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sensor fits around a section of the flow passage and measures changes
in capacitance values between electrode pairs. Fig. 2a shows the config-
uration for eight electrodes (51 mm length), insulation, grounded
screen, andmeasurement volume. Startingwith electrode one, a voltage
signal was applied to it. The capacitance was then measured from the
remaining electrodes, two through eight. Next, electrode two became
electrified, and electrodes three through eight were used to measure
the capacitance. This process was repeated around the sensor until all
(28) pairs of measurements were completed. A single tomogram was
generated from these 28 capacitance measurements. In addition, a
sensing unit conditioned the sensor signals and transmitted them to a
data acquisition system. Details of the hardware and experimental
procedures are available elsewhere [19].

Each tomogram provided a two-dimensional representation of the
permittivity obtained from capacitance values at each sample time.
Since the internal sensor volume encompassed a portion (51 mm) of
the flow path, the two-dimensional permittivity values were calculated
from a three-dimensional measurement volume and averaged in time.
Thus, the sensor length along the flow path as well as the sampling
rate were practical limits for the sensor resolution. At the sampling
rate of ~48 Hz, 20 ms was necessary to acquire the data necessary for
one two-dimensional tomogram with a delay of 1 ms between data
sets. In this period, a two-phase feature with a speed of ~1 m/s would
be detected by the sensor two times before leaving the sensing area.
In the present experiments, the greatest velocity of a vapor feature
was ~0.85 m/s. Thus, the sampling rate was reasonable.

Eq. (1) belowwas used to normalize the permittivity,εð~x; tÞ, that was
determined by tomographic reconstruction. Here, ~x represents the spa-
tial variables, x and y, and t is time. This normalization assigns ε�ð~x; tÞ to
be zero for only vapor (εg) and one for liquid (εf) alone. Since non-linear
electric field responses may generate values outside the normalized
Electrode

Insulation
Measurement 

Volume

1

2 3

8

7 6

5

4

Grounded 
Screen

a) b)

c)

(Xc, Yc)

y
c
(t)

Vapor

Liquid

Fig. 2.Drawings of the a) cross-sectional view of the sensorwith eight electrodes, b) tomograph
coordinate (yc(t)) corresponding to the refrigerant center of mass. The normalized coordinates
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range, a baseline reference value (εf or εg) was recorded while the
sensor contained only liquid (εf) or only vapor (εg). A tomogram may
have regions that are assigned values of ε�ð~x; tÞ between zero and one
since a given pixel may represent a liquid–vapor mixture.

ε� ~x; tð Þ ¼ ε ~x; tð Þ−εg
� �

= ε f−εg
� � ð1Þ

In this work, the linear back projection algorithm was used in the
software provided by the instrumentmanufacturer for the tomographic
reconstruction. This two-dimensional (cross-sectional) representation
is proportional to ε�ð~x; tÞ within the sensor volume [18]. There are 812
pixelswhich comprise the computational domain for the reconstruction
process (Fig. 2b). Since the cross-sectional area is circular, some ele-
ments were outside the circular boundary and not used. In addition,
sensitivity maps generated by the manufacturer were used to linearize
the measured capacitance values which were ultimately used in the re-
construction algorithm [18]. Subsequent processing of the tomograms
was performed and is described in the next section of this paper.

Table 2 lists the flow patterns, heating rates, volumetric flow rates
(at the pump outlet), pressure range, tube diameter, and time duration
for each recorded flow pattern case. The experiments were conducted
by holding the volumetric flow rate constant and incrementally increas-
ing the heater power (Fig. 3). The heater power was held at a given
value until the liquid–vapor behavior was steady or steady-periodic.
Visual observations of the liquid–vapor behavior were made while
recording ECT data. A total of 546 heater power and volumetric flow
rate combinations were examined.

3. Data processing and analysis

Tomography was used to obtain ε�ð~x; tÞ from the capacitance mea-
surements which, in turn, provided the two-dimensional distribution
of the liquid and vapor phaseswithin the section of tubing encompassed
by the sensor. One issue concerning the tomographic data was to deter-
mine an acceptable number of input data to train the neural network in
a reasonable time period (less than 10 min on a Dell Precision T7500
workstation, 64 bit dual processor). The required computational time
was prohibitively large for directly using all 812 pixel values from
each tomogram (500 tomograms were recorded for each run) for each
y computational domain consisting of 812 pixels, and c) instantaneous normalized vertical
(Xc, Yc) designate the origin.
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Table 2
Summary of two-phase flow experiments.

Common flow patterns Bubble, plug, slug, strategy wavy, annular
Transitional flow patterns Bubbly transitional, plug transitional, slug transitional,

stratified wavy transitional
Heater power (W) 10–300
Heat flux, q″ (W/cm2) 0.40–12
Volumetric flow rate (L/min) 0.10–0.50
Pressure (kPa) 500–800
Tube diameter (mm) 7
Duration of each observed
flow pattern case (s)

30
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of the 546 experimental runs as input data (812 × 500 × 546 ~ 2.2 x 108

data points) to train a neural network. It was proposed that a combina-
tion of spatial- and time- averaging together with other quantities
might allow for rapid training of accurate neural networks. Here, we
explore the use of the following as input data for neural network
flow pattern identification: the spatial average of ε�ð~x; tÞ (represented
by ε�ðtÞ), the probability density function of ε�ðtÞ, the refrigerant local
center of mass (i.e., the vertical coordinate normalized by the tube
diameter and denoted by yc(t)), and the probability density function
of yc(t). In addition, the time average of ε�ðtÞ and the associated
variance, kurtosis, and skewness values are considered.

ε�ðtÞ is given by Eq. (2), where Ai is the individual pixel area (Fig. 2b),
ε�i ð~x; tÞ is the normalized permittivity for an individual pixel, AT is the
sum of all (812) pixel areas, and t is time.

ε� tð Þ ¼ 1
AT

X812
i¼1

ε�i ~x; tð ÞAi ð2Þ

Ai in Eq. (2) is identical for all pixels and, thus, ε�ðtÞwas obtained by
taking the arithmetic mean of the ε�i ð~x; tÞ values for each tomogram at a
particular time, t. Since ε�ð~x; tÞ is unity for the presence of liquid alone
and zero for vapor alone, ε�ðtÞ represents the time-varying liquid
fraction in the sensor volume. Consequently, 1− ε�ðtÞ represents the
time-varying void fraction.

For each flow pattern test point (i.e., each heater power and
volumetric flow rate combination), 500 tomograms were generated
over a sampling period of 30 s. The probability density function (PDF)
provided a way to observe the range of ε�ðtÞ occurring with time for a
Fig. 3. Visually observed flow patterns as a f
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given case. Here, the PDF of ε�ðtÞ is denoted by ε�ðtÞPDF . To estimate ε�

ðtÞPDF , MATLAB was used to first produce a histogram by separating
the 500 values of ε�ðtÞ (obtained from the 500 tomograms) into bins
[20]. Preliminary work showed that calculated histograms were sensi-
tive to bin sizes below 25 but were insensitive to those in the range
25–100. Thus, 50 bins were used for determining all histograms. The
estimate ofε�ðtÞPDF was then generated by a smooth fit to the histogram.
In addition,MATLABwas used to estimate the time average, hε�ðtÞi, var-
iance, hε�ðtÞiVAR, skewness, hε�ðtÞiSKEW , and kurtosis, hε�ðtÞiKURT of ε�ðtÞ
using values from the 500 tomograms. hε�ðtÞi provides a representative
value for the time-varying void fraction,hε�ðtÞiVARprovides an indication
of the fluctuation amplitude of hε�ðtÞi, and hε�ðtÞiSKEW provides a mea-
sure of the asymmetry of the probability density function. In terms of
a physical interpretation, a time series that has numerous intermittent
extreme events would have a relatively high hε�ðtÞiKURT . Thus, a high
kurtosis would, for example, be associated with the rapidly alternating
occurrence of large vapor bubbles and liquid.

A running averagewas used to estimate the number of data samples
required to obtain a stable time average [21]. The running average of
ε�ðtÞ was used to determine an acceptable number of data points to
estimate hε�ðtÞi. When the fluctuations in the running average were
within a+5%bandof the stable average, the time averagewas assumed
to be stable and the number of data points sufficient.

Since the vertical distribution of the liquid and vapor phases in a hor-
izontal flow can be influenced by gravity, it may be advantageous to use
the vertical coordinate of the center of mass,yc(t), of the tomogram
(Fig. 2b) as a neural network input. Since the origin of the coordinate
system is at the center of the tube, yc(t)is zero for a single phase flow
within the tube. Because the positive direction for the y axis is up with
respect to the gravity vector, a two-phase flow pattern will result in
negative yc(t) values due to gravity drawing liquid to the bottom of
the tube. ε�i ð~x; tÞ and the densities of the saturated vapor (ρg) and liquid
(ρf) were used to estimate the fluid mass associated with a given pixel
for the center of mass calculation as given by Eq. (3). In Eq. (3), yi repre-
sents a vertical pixel coordinate that is normalized by the tube diameter.

yc tð Þ ¼
X812
i¼1

ρg þ ε�i ~x; tð Þ ρ f−ρg

� �� �
yi

h i,X812
i¼1

ρg þ ε�i ~x; tð Þ ρ f−ρg

� �h i
ð3Þ
unction of flow rate and heater power.
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Following the calculation procedure with ε�ðtÞ, PDFs for yc(t) were
generated and are referred to as yc(t)PDF.

In this work, the MATLAB Neural Network package was used as the
computational tool for identifying flow patterns. A feedforward neural
networkwas selected for use due to its simplicity and ability to general-
ize to new situations [20]. This particular feedforward neural network
had a hidden layer with nodes that used a sigmoid transfer function
[20]. Training of a neural network was performed to identify the con-
stants that comprise theweights andbiases of each neuron. The number
of hidden nodes was varied with different training sessions to deter-
mine an optimum number which would permit rapid calculations
while avoiding overfitting. In this work, 50 was the maximum number
of hidden nodes used. A single output layer was generated as a floating
point number and rounded to the nearest integer value, corresponding
to a flow pattern prediction.

The feedforward network together with the Levenberg-Marquardt
training algorithm provide rapid calculation speed and are known for
successful pattern identification [20]. Training was terminated when
the generalization no longer improved which was indicated by an in-
crease in the mean square error. The neural network was retrained by
supplying it with additional randomized subsets of the original input
and target data. This was repeated until the neural network predicted
the observed flow patterns with an acceptable level of success, defined
here to be the correct identification of flowpatterns in at least 90% of the
testing data. In the present work, the neural network was retrained up
to twenty-five times to reach an acceptable level of success. The data
used for testingwere not part of the network training and, thus, provid-
ed an independent indication of neural network performance. That is,
how well the network generalized beyond the supplied data [20]. Data
from 546 experiments was randomly selected such that 30% were
used for the validation and testing of a neural network, and 70% were
used for training.

The neural network input included combinations of ε�ðtÞ, ε�ðtÞPDF ,
hε�ðtÞi; hε�ðtÞiVAR; hε�ðtÞiSKEW ; hε�ðtÞiKURT ; yc(t), and yc(t)PDF derived
from the tomograms. Thenumber of values used for eachneural network
input depended on the type of data itself. The number of values used for
ε�ðtÞ, ε�ðtÞPDF , yc(t), and yc(t)PDF are described in the next section. The
quantities hε�ðtÞi; hε�ðtÞiVAR; hε�ðtÞiSKEW ; and hε�ðtÞiKURT were each a
single value; they introduced four values for network training for each
data set.

4. Results and discussion

In this section, theflowpatterns arefirst characterized by high speed
imaging. This is followed by a characterization of flow patterns by ε�ðtÞ,
ε�ðtÞPDF , yc(t), and yc(t)PDF. The performance of the neural network
inputs in classifying two-phase flow patterns is then described.

4.1. High speed imaging

High speed imaging was used for the initial human classification of
the flow patterns. Table 3 shows representative images (view perpen-
dicular to the tube axis) and cross-sectional drawings (view along the
tube axis) for each flow pattern. It is useful to examine the images of
Table 3 together with the plot in Fig. 3, which shows the dependence
of the flow pattern on both the input heater power and volumetric
flow rate. Generally, there were clear visual demarcations among the
flow patterns. However, overlapping liquid–vapor behavior existed
due to the stochastic nature of the transition patterns. Care was taken
to label the transitions correctly, or, in the case of great uncertainty,
eliminate them altogether. Lastly, Table 3 lists the time-averaged void
fraction range for each flow pattern. As described earlier, the void
fraction estimate is given by 1−hε�ðtÞi.

Table 3 shows a representative image of bubbly flow. Bubbly flow
was the first flow pattern encountered after single-phase liquid flow
5
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as the heater power was increased from zero with the volumetric flow
rate at the highest setting (Table 2, 0.5 L/min). As illustrated in Table 3
(drawing of view along tube axis), discrete bubbles with diameters
(Db) smaller than the tube radius (D/2) moved along the upper tube
surface [17]. As the heater power was further increased at a constant
flow rate (Fig. 3), bubbly flow evolved into what is termed bubbly tran-
sitional flow. The image of bubbly transitional flow in Table 3 is similar
to that of bubbly flow but elongated bubblesmove along the upper tube
surface. The drawing along the tube axis indicates that Db in the bubbly-
transitional pattern were smaller than D/2, but the bubble length
(L) could approach 2D.

Plug flow occurredwhen small adjacent bubbles coalesced into larg-
er bubbles separated by liquid regions [17]. In addition, Db continued to
be smaller than D, but L was several D, and the bubble frequency
increased significantly. Bubbles in plug-transitional flow (Table 3)
have L and Db similar to those in plug flow. However, plug-transitional
bubbles have an elongated front section followed by a tail of smaller
diameter. Slug flow evolved from plug transitional flow where L
approached 80D. The bubbles had a consistent bullet shape with a
rounded nose and tail. Also, Db began to approach D. Liquid regions sep-
arated the vapor bubbles and often entrained small dispersed bubbles
[17]. Slug-transitional flow is similar to slug flow in that the bubbles
have a bullet shape with a short tail (not in image). However, L was
greater than that for slug flow with smaller liquid regions.

Stratified wavy flow occurred at high heater powers (Fig. 3). The
image of stratified wavy flow shows that liquid slugs no longer
occurred, and a vapor layer existed along the upper portion of the
tube. Kelvin–Helmholtz instabilities are responsible for waves which
propagated along the tube length, often contacting the upper tube
surface [17,22]. As in stratified wavy flow, interfacial waves were also
present in stratified wavy transitional flow. The waves were more fre-
quent but their crests did not contact the upper tube surface. However,
they rose up on the tube wall wetting the lateral surface [17,22]. Table 3
shows an example of annularflow consisting of liquidflow enveloping a
flowing vapor core with small waves along the liquid–vapor interface.
Annular flow is believed to occur when the vapor velocity increases
beyond that in stratified wavy transitional flow [17,22]. The liquid
layer is thicker at the bottom due to gravity and did not always extend
all the way to the top.

4.2. ε�ðtÞ and ε�ðtÞPDF characteristics for different flow patterns

The flow patterns are now described in terms of ε�ðtÞ and ε�ðtÞPDF .
Fig. 4 shows representative plots of ε�ðtÞ with time together with
ε⁎(t)PDF for nine flow patterns in the order of increasing void fraction.
The plots correspond to the images, flow rates and heater powers of
Table 3. Bubbly flow (Fig. 4a, flow rate of 0.5 L/min) has values of ε�ðtÞ
in the range 0.95–1. ε�ðtÞPDF for bubbly flow (Fig. 4b) has a single peak
near the upper end of the permittivity range, indicating that most of
the flow is liquid. As the heater power increased at the flow rate of
0.5 L/min, bubbly transitional flow (Fig. 4c and d) resulted which had a
broader ε�ðtÞPDF with lower values of ε�ðtÞ. At a flow rate of 0.3 L/min
and heater power near 30 W (Table 3), the ε�ðtÞ associated with plug
flow (Fig. 4e) have a nearly periodic behavior with values ranging from
0.56 to 0.98. This nearly periodic behavior is confirmed by the image
in Table 3 of flowing liquid plugs that are regularly separated
by vapor. ε�ðtÞPDF for plug flow (Fig. 4f) has two distinguishable peaks
for ε�ðtÞ of 0.78 and 0.93 due to the presence of large volumes of alter-
nating liquid and vapor phases. The liquid plugs appear less periodic
in the plug transitional flow pattern (Fig. 4g), and the corresponding
ε�ðtÞPDF (Fig. 4h) is similar although broader than ε�ðtÞPDF for plug flow.
Fig. 4i shows that ε�ðtÞof the slug flow pattern has large, relatively rapid
fluctuations that are associated with the passage of long vapor bubbles
and short liquid slugs (Table 3). Fig. 4j shows that the ε�ðtÞPDF for slug
flow, has a broad range. For slug transitional flow (Fig. 4k), the heights
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Table 3
Representative flow pattern images and characteristics.

Flow 

pattern

Drawing

of cross 

section

viewed 

along 

tube 

axis

Representative image-viewed perpendicular to tube axis 

Time 

averaged 

void 

fraction 

for flow 

pattern

Flow 

rate 

(L/min)

for 

image

Heater 

power

(W)

for 

image 

Bubbly
0.01– 0.1

0.5 25

Bubbly -
transitional

0.1–0.15
0.5 75

Plug 0.15–0.25 0.3 30

Plug-
transitional

0.25–0.40 0.3 50

Slug 0.40–0.55 0.3 75

Slug -
transitional

0.55–0.60 0.3 125

Stratified 
wavy

0.60–0.65 0.3 180

Stratified 
wavy -

transitional
0.65–0.75 0.2 250

Annular 0.75–0.95 0.1 300
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of the peaks in ε�ðtÞ have generally increased and the ε�ðtÞ values in the
ε�ðtÞPDF plot range from 0.21 to 0.98 (Fig. 4l). Relative to slug flow, this
indicates sequential vapor bubbles with larger volumes that are sepa-
rated by a greater distances. The ε�ðtÞ associated with stratified wavy
flow (Fig. 4m) has large and small intermittent peaks relative to ε�ðtÞ
of the slug and slug transitional patterns. The intermittent peaks are
due to interfacial waves which propagated along the tube length
(Table 3). Relative to stratified wavy flow, Fig. 4o shows that ε�ðtÞ for
stratifiedwavy transitional flowhas significantly smaller peaks. In addi-
tion, Fig. 4p shows that ε�ðtÞPDF is entirely below 0.5 which also means
that the void fraction was always greater than 0.5. The amplitude of the
fluctuations inε�ðtÞ for annularflow is small (Fig. 4q) relative to those of
stratified wavy or stratified wavy transitional flows. This is confirmed
by the observation that interfacial waves were no longer visible
6 
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(Table 3). In addition, the plot of ε�ðtÞPDF for annular flow has a peak
with no tail which accompanies a large void fraction (Table 3). This
might be anticipated from the images of a flowing vapor core and liquid
annulus within the tube (Table 3) for these flow patterns.

4.3. yc(t) , and yc(t)PDF Characteristics for different flow patterns

For a liquid–vapor flow that is horizontal with respect to gravity,
the gas phase is near the upper surface of the flow passage with the
liquid phase below if the tube is long enough for the vapor to stratify.
Consequently, it is helpful to use the vertical coordinate of the tomo-
gram centroid location as a neural network input. Fig. 5 shows
yc(t) , and yc(t)PDF for each flow pattern. For reference, a y-coordinate
value of 0 corresponds to the center of the tube. The peaks and troughs
 distribution unlimited.
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of yc(t) in Fig. 5 generally trackwith those of ε�ðtÞ in Fig. 4 for the corre-
sponding patterns. This occurs for two reasons. The first is that the
center of mass shifts downward (upward) as the vapor fraction
increases (decreases) due to the difference in phase densities in a
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gravity field. The second reason is that ε�ðtÞ decreases with increasing
vapor volume. Figs. 4 and 5 show that ε�ðtÞPDF and yc(t)PDF both broaden
beyond a single peak and then ultimately return to a single peak from
bubbly to annular flows.
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4.4. Neural network studies

It is useful to determine which combinations of input data types
derived from ECT tomograms allow rapid, classification of two-phase
flow patterns by a feedforward neural network. The current study was
8 
Approved for public release;
carried out in two stageswith increasing complexity. In thefirst, bubbly,
plug, slug, stratified-wavy, and annular patterns were considered since
they are relatively well defined and have been treated elsewhere [17,
22]. It was proposed that combinations of input data types that resulted
in high success rates for classifying flow patterns in the first stage could
 distribution unlimited.
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then be used in the second, more challenging stage to identify nine flow
patterns.

Table 4 compares the classification success rates for eight neural
network input vectors for the five basic flow patterns used in the first
stage of this study. The first column provides the flow pattern category,
and the second lists the number of experimental runs for each flow
pattern. The third through the tenth columns provide the classification
success rates for input that was comprised of individual and combined
data types. Here, the success rate is defined as the percentage of flow
patterns predicted correctly. Based on past work involving vertical
flows and other instrumentation, there was reason to believe that the
use of neural network input values derived from time averaging or
probability density functions have potential for reasonable success
rates [13,14]. Thus, the seventh column lists the success rates for flow
pattern identification that used hε�ðtÞi; hε�ðtÞiVAR; hε�ðtÞiSKEW ; and
hε�ðtÞiKURT , together as input for each experiment. Similarly, columns
8 through 10 list the success rates for input comprised of hε�ðtÞi;
hε�ðtÞiVAR; h ε�ðtÞiSKEW ; and hε�ðtÞiKURT with ε�ðtÞPDF and=or ycðtÞPDF for
each experimental run. The second row in Table 4 provides the number
of input data points for each data type. The bottom row lists the average
success rate of the neural network resulting from the use of different
input data types.

Table 4 shows that using eitherε�ðtÞor yc(t) alone as an input result-
ed in the lowest overall success rates with the least success in defining
slug flow. The use of other input types provided success rates greater
than 90% for all flow patterns. Since a success rate of 90% or greater
is a goal, Table 4 shows that it is acceptable to use any listed input
other than ε�ðtÞ or yc(t) to identify the basic flow patterns. The average
classification success rate over all patterns for columns 5 and 7 shows
that the first four statistical (time) moments involving ε�ðtÞ provide
information that is only slightly better than that ofε�ðtÞPDF. This supports
the conclusion of Rosa et al. [13] that the first four statistical (time)
moments involving ε�ðtÞ provide information essentially equivalent to
that of ε�ðtÞPDF.

The bubbly, plug, slug, and stratified-wavy flow patterns were then
subdivided into categories which included transition patterns. In these
transition regions the flowmay oscillate between the adjacent patterns
making classification difficult. Consequently, Table 5 shows neural net-
work classification results for nine flow patterns. The number of runs
(second column) listed under the original and transition flow patterns
in Table 5 sum to the original number of runs for the basic flow pattern
in Table 4 (i.e., the transitional flowpatterns in Table 5 are subsets of the
basic flow patterns in Table 4). Lastly, the neural network input types of
Table 5 are the same as those in Table 4 (i.e., columns 3–10).
Table 4
Comparison of Classification Success Rates Using Eight Neural Network Input Vectors for Five B

Flow Pattern Number of
Runs

__ε⁎(t) yc(t)

Number of Data in Input Vector for Each Run 250 250

Bubbly 102 100 100
Plug 98 94.9 96.9
Slug 129 86.1 86.1
St. Wavy 129 94.6 89.1
Annular 88 88.6 95.5
Average Classification Success Rate over All Patterns 92.8% 93.5%

9
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Table 5 shows that the lowest success rates occurred using either
ε�ðtÞ or yc(t) alone as was shown in Table 4. In fact, the success rate
using either as a network input was zero for bubbly and bubbly tran-
sitional flows. Zero success rates for ε�ðtÞ and yc(t) are believed to be
due to the challenge of differentiating among the strong similarities
between bubbly and bubbly transitional patterns (Figs. 4a, c, 5a, and
c). Table 5 shows that the use of ε�ðtÞPDF, yc(t)PDF, or the group hε�ðtÞi;
hε�ðtÞiVAR; hε�ðtÞiSKEW ; and hε�ðtÞiKURT , as input had similar average
overall classification success rates (last row) and offered significant im-
provement in classification success over that of ε�ðtÞ or yc(t) for individ-
ual flow patterns. This can be attributed to more distinct differences
among the PDFs and time averaged statistics for different patterns
(PDFs in Figs. 4 and 5 and, for example, the time averaged statistics as
represented by the void fraction in Tables 3, 1- ε�ðtÞ. The bottom row
of Table 5 shows that the average classification success rate over all
flow patterns increases when the time averaged statistics input, hε�ðtÞi;
hε�ðtÞiVAR; hε�ðtÞiSKEW ; and hε�ðtÞiKURT , is combined with either of the
input values, ε�ðtÞPDF or yc(t)PDF. Further, when ε�ðtÞPDF and yc(t)PDF are
combined with time average statistics into a single input (column 10),
classification success rates greater than 90% were obtained for all
patterns. In addition, the average classification success rate over all
flow patterns was 98.1%.

The classification success rates for the above nine flow patterns
obtained using the combination of time averaged statistics, ε�ðtÞPDF , and
yc(t)PDF (i.e., column 10) compare well, if not better, than those of past
studies involving electrical capacitance measurements (ECT sensors)
and horizontal flows. For example, Jeanmeure et al. [23] used an identifi-
cation tree to classify horizontal flows but only used three patterns. Later,
Yan et al. [24] used parameters obtained from steady, two-dimensional
numerical simulations of nine flow patterns to train a back-propagation
neural network. Their numerical simulationswere correlatedwith exper-
iments involving tomography but did not include the inherent unsteady
nature of an actual two-phase flow. In addition, two of their patterns, a
tube filled with liquid or empty, were relatively simplistic.

Table 5 lists the classification success rates for the flow patterns
but does not specifically characterize the classification errors for the
combined input hε�ðtÞi; hε�ðtÞiVAR; hε�ðtÞiSKEW ; hε�ðtÞiKURT , ε�ðtÞPDF ,
and yc(t)PDF. An error value within ±0.5 of zero represents correct
identification, otherwise a value outside these bounds is considered to
be incorrect. For a total of 546 experiments, a small number (14) were
incorrectly classified by one flow pattern and a much smaller number
(1) were incorrectly classified by two patterns. More specifically, 99%
of the experimental runswere either correctly classified ormisclassified
by nomore than oneflowpattern. Tables 4 and 5 together show that the
asic Flow Patterns.

__ε⁎(t)PDF yc(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__ε⁎(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

yc(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__ε⁎(t) PDF

yc(t) PDF

50 50 4 54 54 104

100 100 100 100 100 100
100 100 100 100 100 100
98.4 99.2 100 99 100 100
100 100 99.2 100 100 100
97.7 100 98.9 100 100 100
99.2% 99.8% 99.6% 99.8% 100% 100%
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Table 5
Comparison of Classification Success Rates Using Eight Neural Network Input Vectors for Nine Flow Patterns.

Flow Pattern Number of
Runs

__ε⁎(t) yc(t)
__ε⁎(t)PDF yc(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__ε⁎(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

yc(t) PDF

__
〈ε⁎(t)〉
__
〈ε⁎(t)〉 VAR

__
〈ε⁎(t)〉 SKEW

__
〈ε⁎(t)〉 KURT

__ε⁎(t) PDF

yc(t) PDF

Number of Data in Input Vector for Each Run 250 250 50 50 4 54 54 104

Bubbly 52 0 0 94.2 94 94.3 100 98.1 100
Bubbly - T 50 0 0 88 96 76.1 98 96.0 94.0
Plug 58 32.8 31.1 100 97 100 100 98.3 100
Plug - T 40 20.0 22.5 95 98 90.1 100 100 100
Slug 89 29.2 41.6 80 79 94.4 93.3 92.3 96.6
Slug - T 40 17.5 35 65 63 57.5 85 92.5 100
St. Wavy 69 30.4 24.6 52.2 71 81.2 84.1 89.4 97.0
St. Wavy- T 60 13.3 5 67 63 81.7 91.7 90.0 95.0
Annular 88 39.8 28.4 95.5 86 98.9 97.7 98.9 100
Average Classification Success Rate over All Patterns 20.3% 20.9% 81.9% 82.9% 86.0% 94.4% 95.1% 98.1%

In this table, T in the pattern name represents the word “transitional.”
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input combination of time averaged statistics, ε�ðtÞPDF , and yc(t)PDF can
be used to reasonably classifyflowpatterns observed in horizontal flow.
5. Conclusions

This work investigated the use of ECT and neural networks to
identify two-phase flow patterns for refrigerant R-134a flowing in a
horizontal tube. Laboratory experiments were performed to generate
different liquid–vapor flow patterns. High-speed images were recorded
for human classification of the flow patterns. The corresponding permit-
tivity data obtained from tomograms was used to train feedforward
neural networks to recognize flow patterns. A goal was to classify nine
horizontal two-phaseflowpatterns using neural networks as a predictive
tool. Another was to determine which subsets of input data provide high
identification success for the flow patterns when analyzed by a neural
network. Previous work involving horizontal flows was extended by
considering transitional flow patterns associated with four common
flowpatterns (within a small-diameter tube). A unique feature of the cur-
rent work is the use of the vertical center of mass coordinate in pattern
classification for horizontal flow.

The highest classification success rate occurred with the use of neu-
ral network input consisting of ε�ðtÞPDF , yc(t)PDF, hε�ðtÞi; hε�ðtÞiVAR;
hε�ðtÞiSKEW ; and ε�ðtÞKURT . The combination of these data resulted in a
100% success rate for the basic five flowpatterns and a high average suc-
cess rate of 98.1% for nine flow patterns, which include the transitional
patterns. In addition, 99% of the experimental runswere either correctly
classified ormisclassified by only one flowpattern. Based on the success
rate of flowpattern identificationwith relatively small network training
and run times, there is potential for the use of ECT combinedwith neural
network analysis to automatically identify two-phase patterns for
horizontal flow in thermal process control applications.
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