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Final report for “Scalable Quantum Networks for Distributed Computing and Sensing” 
 
Project 12-2076; Sept 2012 through Aug 2015 
 
 
In devising this project, we identified two major barriers to the implementation of large-scale 
photonic quantum networks for applications in computing and sensing.  First, technical scalability 
requires creation of reliable and efficient network components that can be operated in large 
numbers. To this end, we developed novel chip-integrated photon sources and photonic circuits that 
achieve low-loss transmission in a small footprint. Second, fundamental scalability requires a 
method to synchronize protocols based on quantum measurements, which are inherently 
probabilistic. To meet this challenge, we developed a broadband quantum memory in an integrated 
package that enables repeat-until-success protocols. Detailed project outcomes are summarized 
below. 
 
Work Package 1: Integrated structures and architectures for photonic quantum networks 
 
Milestone 1.1: Guided-wave photon pair source using the 3rd-order response of silica in novel 
femtosecond-laser written waveguides. 
 
We developed the first on-chip silica photon pair source in birefringent fs-laser written waveguides 
[1]. Construction of a matched array of waveguides was not achieved, due to limited control of the 
fs-laser writing process. Instead, we used UV-written silica-on-silicon guides fabricated through 
partnership with the group of Prof. Peter Smith at the University of Southampton. With this 
approach, we have demonstrated an array of over 20 identical heralded photon sources [2]. 
 
Milestone 1.2: Waveguide circuits that enable complex conditional preparation of entangled and 
discordant states. 
 
Through our partnership with the University of Southampton, we also developed chip-integrated 
programmable multiport interferometers. We use thermo-optic controllers to adjust on-chip optical 
path lengths within fractions of an wavelength. These devices were used to generate three- and 
four-photon entangled states for computation and sensing [3-5]. We have further developed strain-
optic control for silica photonic chips, which offers higher control bandwidths and compatibility with 
cryogenic operation [6]. 
 
Milestone 1.3: Develop theoretical tools that provide objective certificates of quantum 
enhancements. 
 
We have developed and applied theoretical tests for non-classicality for on-chip multiphoton 
interference [3, 4] and quantum teleportation [5]. We have developed new theoretical approaches 
to characterising the quantum response of photon counting detectors [7] and tests of quantum 
correlations that combine photon counting detectors with a classical local phase reference [8]. We 
have developed approaches and criteria for quantum enhancement in multiparameter optical 
sensing, including the joint estimation of phase and phase diffusion [9] and the simultaneous 
estimation of multiple phases [10]. 
 
Work Package 2: Integrated quantum memories 
 
Milestone 2.1: Optimize memory performance for quantum networks 
 



The performance of an ensemble Raman memory in warm Cs vapour was characterised and 
optimised [11]. Through this work we have identified readout noise as the key obstacle to practical 
applications. To meet this challenge, we have developed a cavity-based approach which supresses 
this readout noise [12]. 
 
Milestone 2.2: Guided-wave implementation of the memory 
 
We constructed an ensemble quantum memory using Cs vapour confined within a hollow-core 
photonic crystal fibre, in collaboration with Prof. Russell at the Max Planck Institute for the Science 
of Light. This work included demonstrating methods to load vapour and initialise the memory [13], 
to store and retrieve optical signals [14], and to enhance memory efficiency and operating time [15]. 
 
Milestone 2.3: Synchronization of probabilistic heralded single photon sources 
 
We studied theoretically how the performance of a synchronized photon source depends on the 
performance of a broadband quantum memory [16]. We have demonstrated actively controlled 
delay of a heralded single photon, the essential element of a synchronized source [11]. A practical 
synchronized source, however, was not achieved due to the new readout noise discussed above in 
2.1. Rather than proceed with synchronization, which would have produced synchronized signals 
that do not maintain the quantum character of single photons, we focused on design of the new 
noise-supressed memory discussed in 2.1 [12]. 
 
 
Publications 
 
[1] 10.1364/OE.21.013522 
[2] 10.1364/QIM.2014.QW1B.6 
[3] 10.1038/ncomms2349 
[4] 10.1126/science.1231692 
[5] 10.1038/nphoton.2014.217 
[6] 10.1364/OE.22.021719 
[7] 10.1088/1367-2630/17/10/103044 
[8] 10.1038/ncomms6584 
[9] 10.1038/ncomms4532 
[10] 10.1103/PhysRevLett.111.070403 
[11] 10.1088/1367-2630/17/4/043006 
[12] arXiv:1510.04625 
[13] 10.1088/1367-2630/15/5/055013 
[14] 10.1038/nphoton.2014.45 
[15] arXiv:1509.04972 
[16] 10.1103/PhysRevLett.110.133601 
 
 


	DTIC_Title_Page_-
	sf298
	FinalReport_AFOSR_12-2076

