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1. Statement of the Problem Studied 

 

 Accurate prediction of environmental conditions for army operations requires understanding, 

Monitoring and modeling complex systems associated with hydro-meteorological, 

geomorphological and ecological processes over a wide range of space and time scales. 

Variabilities in these processes are often characterized by certain invariant properties across a 

broad range of closely coupled scales referred to as scaling (or multi-scaling) behavior. Such 

scaling behavior is expected to have important influence on the output of hydrological systems 

such as runoff, surface heat and water fluxes, and biomass productivity among others. For 

example, circulation in the atmosphere is known to result from the interaction of energy 

expressed at multiple scales; soil moisture depends on precipitation, topography, soils and 

vegetation that themselves show richness and variability at scales that span many orders of 

magnitude; the organization of landscapes and the drainage networks again is the result of 

complex interactions at multiple scales and in fact exhibit organizational patterns with no 

dominant scales. Understanding the multi-scaling properties of the above examples is necessarily 

a first step in monitoring and modeling these processes. There are many ad hoc empirically and 

physically based theories and models to describe the multi-scaling behavior. Yet a universal 

principle for analyzing the multi-scaling processes is still elusive. The project is an attempt to 

explore the feasibility of such a unified framework for characterizing multi-scaling behavior and 

use the results in the effective design of hydrologic data collection networks. 

 One promising theory for a general and simple organizing principle is Maximum Entropy 

(MaxEnt). The objective of this proposal is to explore the MaxEnt and its derivative the 

Maximum Entropy Production (MEP) principle as unifying principles to characterize multi-

scaling hydro-meteorological processes such as rainfall, soil moisture, and water /heat fluxes and 

to develop MaxEnt-based design of data collection networks for the sampling of multi-scaling 

processes and MEP-based model of surface fluxes. The MaxEnt, as an inference algorithm as 

well as a physical principle, is able to assign probability distributions to the microscopic states of 

a system based on its known macroscopic properties, and retrieve useful information from 

incomplete noisy data using entropy as a consistent quantitative measure of information.  

 The project has two main objectives: (1) to explore the Maximum Entropy (MaxEnt) as a 

unifying principle in characterizing multi-scaling hydro-meteorological parameters including 

rainfall, soil moisture and surface water and energy fluxes for designing data collection network 

of multi-scaling processes; and (2) to develop Maximum Entropy Production (MEP)-based 

models of surface heat and water fluxes using remote sensing only input.  

 

2. Summary of the Most Important Results 

 

MaxEnt Characterization of Multi-scaling Processes MaxEnt probability distributions of self-

similar processes characterized by power-law distribution (e.g. drainage area of river network) 

and homogeneous/non-homogenous multi-scaling processes characterized by (multi-scaling) 

moments of the incremental processes (e.g. surface soil moisture and topography over some 

regions) have been derived and validated using field and remote sensing observations.  

 We have demonstrated that the MaxEnt theory allows the statistical behavior of the scale-

invariant self-similar processes such as drainage area of river network (DARN), surface soil 

moisture (SSM), and digital elevation map (DEM) to be characterized by a small number of 

macroscopically observable quantities. Such scale-invariant behavior resulting from self-
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organization emerges as the most probable and macroscopically reproducible state. It turns out 

that the geometric mean provides essential information for shaping river networks. The 

geometric mean is identified as an important parameter, in addition to the moments, in 

characterizing multi-scaling incremental processes of soil moisture and topography. More 

importantly, our analysis indicates that the ME theory is a universal and unified framework to 

characterize those processes governed by scale-invariant laws.  The cases studies are 

demonstrate in Figures 1 and 2 below  

 

 
 

 

Figure 1. From top to bottom. 

Left panels: L2B AMSR-E soil 

moisture map for October 18, 

2009 and region R1SSM, 

associated empirical (Pe) and 

the MaxEnt distributions for 

M=1,2  2,1,  and (  MtMt PP  

according to Eq. (12) of 

(Nieves et al., 2010). Right 

panels: same for region 

R2SSM. Maps are represented 

in longitude _ and latitude _ 

degrees. All probabilities are 

plotted versus the absolute 

value of the increments 

)()( 21 xzxzz


  for 

different separation distances 

21 xxr


 . 

(Nieves et al., 2010) 
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 We further show that the MaxEnt principle offers a unifying and general framework for 

inferring statistics of multifractal processes at different scales when combined with the wavelet 

representation of the cascade model. Three quantities, namely the multifractal condition, the 

multi-scaling moments, and the geometric means, are most important in characterizing the 

multifractal processes. The MaxEnt formalism leads to the probability distribution of the multi-

scaling parameter of a multifractal process and those of the increments of topography at different 

scales, preserving the cascade properties without computing histograms. More importantly, the 

MaxEnt theory opens new possibilities of gathering information of multifractal processes beyond 

the scales of observation. Our findings might be of interest to those who deal with the 

complexity and limitations of observational data and helpful to improve the understanding of 

broad geophysical processes governed by scaling laws. Figure 3 illustrates a case study. 

 

Figure 2. Same as in 

Figure 1 for regions 

R1DEM and R2DEM 

corresponding to the 1 arc 

second USGS National 

Elevation Dataset (NED). 

(Nieves et al., 2010) 
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MaxEnt-Based Hydrologic Observation Network Design A design of MaxEnt-based 

observation network has been formulated and tested. A key and innovative component of the 

design is the concept of “information gain”, defined as the difference between the information 

entropy of the posterior and prior distributions, expressed in terms of information entropy of the 

processes to be sampled. The design criterion is to optimize the information gain under the 

physical and financial constraints such as topography, existing network infrastructure, budget 

among others. Based on the statistical distributions of the variables to be samples, the MaxEnt 

network design specifies the new sampling locations by maximizing the information gain. A 

major advantage of the MaxEnt network design is that the resulting optimal network is 

independent of to-be-sampled variables. Mutual information of the variables sampled from all 

stations is automatically taken into account through the probability distributions of the variables, 

e.g. the MaxEnt distributions of the multi-scaling processes characterized by macroscopic 

parameters. The MaxEnt-based design method avoids the arbitrariness of cost functions in other 

optimization methods. The effectiveness of the MaxEnt method has been evaluated by 

comparing the information gain of another entropy-based design method called “net information 

transfer" (NIT). A case study is illustrated in Figure 4. 

 

 

 

 

Figure 3. Empirical (Pe) and 

predicted MaxEnt distributions for 

N = 2 (Pt or equation (3) in the 

wavelet domain as in [Nieves et al, 

2011]) of the random variable 
klj


,,
  

(i.e., '/ rr
A ) which characterizes the 

scaling properties of a multi-fractal 

process. According to the wavelet 

decomposition, l = (a) 1, (b) 2 and 

(c) 3, respectively, from the scale of 

observation j = 1 to the j = 2 one 

(downscale cascade). Results 

correspond to order 3 Battle‐ 
Lemarié basis. Correlation 

coefficients are of around 0.99. 

(Nieves et al., 2011) 
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Maximum Entropy Production (MEP) Model of Surface Heat Fluxes An innovative model 

of surface heat fluxes has been formulated tested by applying the maximum entropy production 

principle to non-equilibrium thermodynamic land-ocean-atmosphere systems. The MEP 

formalism leads to analytical expressions of evapotranspiration (latent heat), sensible and land-

ocean-snow surface heat fluxes as functions of surface radiation fluxes, temperature, and/or 

surface humidity. Compared to the existing models, the MEP Model has major advantages 

including automatically balancing the surface energy budgets by partitioning the radiation energy 

input, not using near-surface temperature and humidity gradients, wind speed and roughness data, 

covering the entire range of soil wetness from dryness to saturation among others. The MEP 

model has been validated using field observations over all types of land covers (bare soil, canopy, 

water, snow, and ice).  The MEP model offers a potential solution to the problem of ‘‘no single 

(existing) land surface model is capable of capturing all features of the surface energy balance 

under all conditions’’. Its application to remote sensing of global surface energy budgets yields 

promising results. Some test results are illustrated in the figures below. 

 

Figure 4. Information amount defined as the 

information entropy based on “global net 

information gain” (GNIG) and net 

information transformation (NIT) indexes at 

the gaging stations within a watershed in 

southern Illinois (Markus et al., 2003). 

GNIG values are rescaled by a factor of 100 

for the purpose of illustration.  

Markus, M., H. V. Knapp, and G. D. Tasker, 

Entropy and generalized least square 

methods in assessment of the regional value 

of streamgages, J. Hydrol., 283, 2003. 

Figure 5 The MEP model 

predicted evaporation E, 

sensible heat flux H, and 

ground heat flux G (broken 

red) vs. the observed fluxes 

(solid blue) from SGP97 

experiment at the site of 

CF01ARM during 31 May– 

30 June 1997 for the case 

of bare soil. 

(Wang and Bras, 2011) 
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Figure 6 The MEP model 

predicted transpiration Ev and 

sensible heat flux H (broken red) 

vs. the observed fluxes (solid blue) 

from the Harvard Forest 

experiment during 19 August – 8 

September 1994 for the case of 

canopy. 

(Wang and Bras, 2011) 

Figure 7 MEP model 

predicted latent heat flux E 

(top panel), sensible heat flux 

H (middle panel), and ice 

surface heat flux Q (bottom 

panel) vs. observed eddy 

covariance fluxes from the 

SHEBA experiment over the 

Arctic Ocean during 10 April 

to 30 May 1998 for the case 

of ice surface. 

(Wang et al., 2014) 
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Figure 8 MEP model 

predicted (broken red) (a) 

latent heat flux E and (b) 

sensible heat flux H, water 

surface heat flux QOC 

computed from the energy 

balance equation 

HERQ L

nOC  where E, 

H, and net long-wave 

radiation L

nR are the measured 

fluxes from the CALNEX 

cruise during 14 May to 7 

June 2010. 

(Wang et al., 2014) 

Figure 9 Application of the 

MEP model to remote 

sensing of global surface 

energy budget. (top panel): 

MEP modeled annual mean  

evapotranspiration (ET) E 

(2001-2010) using NASA 

CERES surface radiation 

and temperature data 

supplemented by the NASA 

MERRA reanalysis surface 

humidity data. (bottom 

panel): annual mean 𝐸T 

(1982–2008) based on 

FLUXNET, satellite remote 

sensing and surface 

meteorological data (Jung 

et. al., 2010). 1000 mm yr
-1

 

is equivalent to ~ 80 W m
-2

. 

(Huang et al., 2015) 
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Ocean Freshwater Flux-Sea Surface Salinity Model The project provided an opportunity of 

pursuing several innovative ideas that has led to the development of new methods for monitoring 

and modeling water-energy-carbon cycles of the Earth system. A new conceptual model has been 

developed to express freshwater flux (evaporation minus precipitation) as a function of sea 

surface salinity (SSS) (and vice versa). The model is formulated using an idealized one-

dimensional diffusion equation for the ocean surface layer. The surface freshwater flux is 

expressed in terms of time-history of the sea surface salinity. This is the first physically-based 

freshwater flux model independent of SSS gradient. The surface freshwater flux estimated using 

the new model is in good agreement with existing estimates of freshwater fluxes. This model has 

the potential to enhance our capability of monitoring and modeling global freshwater fluxes and 

salinity as a data retrieval algorithm for remote sensing. The model may improve physical 

parameterization in coupled ocean-atmosphere models to study the global water cycle. A case 

study of the model is shown below in Figure 10. 

 

 
 

 

Figure 10 The new model predicted global 

daily net freshwater flux Fw (cm yr−
1
) using 

various sea surface salinity (SSS) data 

product compared with the “direct” 

estimate according to the water balance 

equation. (a) water balance based estimate 

of Fw using evaporation E data from 

OAFlux product, precipitation P data from 

GPCP product, and ECCO2 global runoff R 

data ; (b) modeled Fw using SMOS SSS 

product, (c) modeled Fw using Aquarius 

SSS product, and (d) modeled Fw using 

ECCO2 SSS product. 

(Nieves et al., 2014) 
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Surface Carbon Flux-Carbon Dioxide Concentration Model An innovative model of carbon 

fluxes has been formulated to relate surface CO2 flux to the surface CO2 concentration time-

series. This is the first physically-based model of carbon flux independent of vertical gradient of 

CO2 concentration. The model is built on the relationship between CO2 flux and the time history 

of surface CO2 concentration, known as half-order derivative, when the transport of CO2 in the 

atmospheric boundary layer is described by a diffusion equation. The eddy-diffusivity is 

parameterized using the MEP model of surface heat fluxes. Test of the new model using in-situ 

data of CO2 concentration and fluxes at several locations with diverse vegetation cover, 

geographic and climatic conditions confirms its usefulness and potential for monitoring and 

modeling greenhouse gases. The MEP-based parameterization of eddy-diffusivity allows the 

retrieval of global surface CO2 fluxes using remote sensing observations. A case study is shown 

in Figure 11 below. 

 

 
 

 
 

Figure 11: (a) Surface CO2 concentration time-series measured at Santarem-Km67-Primary 

Forest, Brazil; (b) new model predicted CO2 flux vs. observed CO2 flux at Santarem-Km67-

Primary Forest, Brazil 2003. Negative flux indicates day-time photosynthesis process. (Shahnaz 

et al., 2015) 
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