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A New Computational Tool For Understanding
Light-Matter Interactions

Overview of the Project

In this project, the PI proposes to develop a new computational tool for understanding light-matter interactions in
complex systems across multiple length and time scales from quantum dynamics to continuum electrodynamics. The
new computational tool overcomes the major deficiencies in existing theoretical/computational approaches and pro-
vides unprecedented combination of accuracy and efficiency in modeling light-matter interactions. Once developed, the
new computational approach could be applied to many important scientific problems including surface enhanced Ra-
man scattering (SERS), Òborrowed SERSÓ for heterogeneous catalysis, surface-enhanced infrared absorption, surface-
enhanced fluorescence, near-field scanning optical microscopy, plasmon-exciton hybridization, plasmon-enhanced pho-
tochemistry, photo-induced electron transfer in a single-molecule-junction, and dye-sensitized photovoltaics, etc.

Project Progress

I Introduction

When light interacts with a metallic nanostructure, its conduction electrons may undergo collective oscillations
driven by the electric field of the light. Known as localized surface plasmon resonance (LSPR), the collective oscillations
can be tuned by adjusting the shape, size and surrounding medium of the nanostructure, which is at the heart of the
burgeoning field of plasmonics with potential applications ranging from photocatalysis [1, 2] to optics, chemical and
biological sensing [3], and photo-thermal therapeutics, to name but a few [4–8].
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FIG. 1. (a) and (c): The plasmon resonant energy ~ωres as a function of the nano-sphere diameter D, compared between the
theory (solid curve) and experimental data (symbols). The triangles in (a) are from the experiment[25] for Ag and the circles
and squares in (c) are from reference[30] and reference[31] for Au, respectively. (b) and (d): The contribution of ωm and |∆|
as a function of D for Ag and Au, respectively.

Although the fundamental physical theory of light-matter interaction is quantum electrodynamics (QED) [9, 10],
traditionally, QED has not been brought to bear on problems in plasmonics. The present research paradigm of
plasmonics is rooted in classical electrodynamics where the electromagnetic field of the light is treated classically. It is
generally believed that QED correction is too small to be relevant in practical plasmonic applications. The tremendous
success of the classical theory has certainly reinforced this notion. However, recently we have found that the QED
correction cannot be ignored in plasmonic resonance. In fact, for collective excitations such as LSPR, the QED
correction could result in an energy shift on the order of a few tenths of an eV, well within the range of experimental
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probes. For nanoparticles, neglecting the correction would lead to a size-dependence of resonant frequency that is
contradictory to experiments. In the past few months of the project, we have elucidated the consequence of QED
in plasmonics. By focusing on plasmonic resonance of metallic nanostructures, we have illustrated the origin of the
plasmonic energy shift and derived analytic expressions for the resonant frequency. The theory is then compared to
available experimental results on nano-spheres, nano-rods and nano-plates and shows promise as a rapid means for
screening materials and structures in plasmonic applications.

II Theoretical Model
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FIG. 2. The plasmonic resonance energy of a Au nano-rod embedded in SiO2 as a function of its diameter D and length L,
compared between the theory (surface) and experiment (dots). The polarization direction is parallel (a) and perpendicular (b)
to the nano-rod long-axis.

The present theory of plasmonic resonance rests on a classical description of the electromagnetic field, irrespective of
whether the electrons are treated quantum mechanically or not[11–13]. In QED, the electromagnetic field is quantized
and there exists a virtual fluctuating electromagnetic field in vacuum carrying zero-point energy. The fluctuating
virtual field results in a fluctuation of electronic coordinates, leading to a change in the Coulomb energy between
the electrons and the positive ions. This energy change owing to the virtual electromagnetic field is known as Lamb
shift in atomic physics, and usually extremely small [10]. In a typical plasmonic nanostructure, the wavelength of the
visible light, the beam width and the skin-depth are all greater than the size of the nanostructure [14, 15], hence all
conduction electrons in the nanostructure undergo coherent and collective oscillations. The higher energy oscillations
are longitudinal, corresponding to so-called “bulk” plasmon, while the lower energy oscillations are transverse and
correspond to the LSPR. [16] All electrons are involved in both modes of oscillations. For a nanoparticle of a radius
of 100 nm, the coherent oscillation could involve ∼ 107 conduction electrons, leading to an induced dipole moment
that is 6-7 orders of magnitude stronger than that in an atom. Since the interaction energy of the fluctuating virtual
field with the conduction electrons is proportional to the induced dipole, the energy shift can reach several tenths of
an eV, which can be measured experimentally.
Let He be the electronic Hamiltonian of the nanostructure, and {|a⟩, |b⟩, · · · } and {Ea, Eb, · · · } as the eigenstates

and eigenvalues of He, respectively. Let Hf be the Hamiltonian of the incident electromagnetic field including both
the external field and the virtual field. The eigenstates of Hf are labeled as |nk1e1 , nk2e2 · · · ⟩, where nk1e1 is the
occupation number in the photon state k1e1 (k1 is the wave-vector and e1 is the polarization vector). The total
Hamiltonian of the system is thus

H = (He +Hf ) + U, (1)

where U is the interaction between the conduction electrons and the virtual field. Since the wavelength of the field is
much larger than the size of the nanostructure, the interaction energy U can be expressed as [9, 10]

U = −
∑
j

d̂j ·E(rj), (2)

where E(rj) is the electric field at position rj of the jth electron, and d̂j is the dipole operator of the jth electron.
The extinction spectrum of the nanostructure, comprised of the absorption and scattering spectrum of the incident
photon, is the primary physical quantity that can be measured experimentally and calculated theoretically. According
to QED [9, 17], the resonant frequency ωres of the extinction spectrum consists of two contributions:

ωres = ωm +∆. (3)
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~ωm represents the excitation energy of the plasmons. Since the plasmons or the coherent oscillations are the eigen-
states of He, denoted by Ψm, ωm is the corresponding eigenfrequency. ∆ is the frequency shift resulted from the
interaction of the electrons with the virtual field.
Here we derive an analytical expression for this eigenfrequency, with the oscillations along one of the major axes

of the nanostructure. To a good approximation, nanostructures such as spheres, rods, and circular plates can be
modeled as ellipsoids with a uniform volume polarization. Suppose that a metallic ellipsoid with a dielectric function
ε1 = ε′1 + iε′′1 is embedded in a medium with a dielectric function ε2 = ε′2 + iε′′2 , and the electric field of the incident
photon, Eext

z , is along the z-axis of the ellipsoid. If the longest dimension the ellipsoid, Lmax, is much smaller than

λε
′−1/2
2 /4 ( λ is the wavelength), the beam width W of the incident light [14], and the skin-depth δ = λ(2πε

′′1/2
1 )−1,

the quasi-static approximation is valid [15]. The quasi-static approximation implies the phase change across the

nanostructure should be small, i.e., 2πLmax/(λε
′−1/2
2 ) ≪ π/2. For the violet light with λ = 4000 Å in vacuum

(ε′2 = 1), one arrives at Lmax < 100 nm. In other words, for the nanostructure below 100 nm, the phase retardation
is negligible.
Under the quasi-static approximation, the total induced dipole moment in the ellipsoid is given by [15, 16]:

P1z = αzV ϵ0E
ext
z , with αz =

ε2(ε1 − 1)

ε2 + (ε1 − ε2)n(z)
. (4)

Here V is the volume of the ellipsoid; ϵ0 is the permeability of free space and n(z) is the depolarization factor along

the z-axis. Note that eqn. (4) corresponds to (πLmaxε
′1/2
2 /λ)3 terms in the Mie theory [16]. To capture the phase

retardation effect in larger nanostructures (Lmax > 100 nm), one can include the higher terms such as (πLmaxε
′1/2
2 /λ)5

in the Mie theory, which correspond to the induced electric quadrupole and magnetic dipole of the nanostructure [15].
We now make two assumptions: (1) ε′2 is a constant, which is a reasonable assumption for commonly used media,

such as vacuum, SiO2 and polyvinyl alcohol, in plasmonic applications. (2) The dielectric functions of the nanostruc-
tures are primarily determined by the conduction electrons [18], which is also a reasonable approximation. Under
these assumptions, the dielectric functions of the nanostructure can be expressed as:

ε′1 = 1−
Sω2

p

ω2 + γ2
, ε′′1 =

Sγω2
p

ω3 + γ2ω
. (5)

Here ωp = (ne2/mϵ0)
1/2 is the plasmon frequency. n and m denote the electron number density and mass of the

electron. S(ω) represents intra-band oscillator strength of the conduction electrons. γ is the decay rate of the
quasiparticles, given by [18–21]:

γ = γ0 +AvF/Leff , (6)

where vF = ~(3π2n)1/3/m is the Fermi velocity of the metal and Leff is the effective dimension of the ellipsoid along the
polarization direction. A is a dimensionless, positive constant on the order of one. γ0 is the decay rate resulting from
electron-phonon, electron-impurity, and electron-electron interactions [18], and can be estimated by γ0 = ne2/mσ
with σ as the conductivity of the metal. The second term in eqn. (6) stems from electron scattering with the surface,
and is the only term dependent on the size of the nanostructure.
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FIG. 3. The eigenfrequency ωm as a function of L/D for a Na nano-rod in vacuum, determined from the theory (curve) and the
TD-OFDFT calculations (triangles). The polarization direction is parallel (a) and perpendicular (b) to the nano-rod long-axis.

Note that the derivation of eqn. (5) is based the free electron model where the wave-functions of the single particle
states are Bloch waves. On the other hand, if the shortest dimension of the metallic nanostructure, Lmin, is small,
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the corresponding wave-functions are best described standing waves. To ensure that the wave-vectors at the Brillouin
zone boundary have an acceptable error (< 10%), Lmin has to be greater than 2 nm. Therefore, our analytical results
are valid in the size range of 2 nm < L < 100 nm.
In the classical electromagnetism, the extinction cross-section σc

ex(ω) of the nanostructure is[15] proportional to
{[ε′2 + (ε′1 − ε′2)n

(z)]2 + [ε′′2 + (ε′′1 − ε′′2)n
(z)]2}−1. Therefore ωm is the root of the following equation [22–31]:

ε′2 + (ε′1 − ε′2)n
(z) = 0. (7)

eqn.(7) yields the expression for the eigenfrequency ωm:

ωm = ωp[
S

1 + ε′2(
1
n − 1)

− (
γ

ωp
)2]1/2. (8)

Here and later we drop the superscript z for brevity when there is no confusion.
Based on non-perturbative many-body quantum theory, the frequency shift ∆ can be determined from the Green’s

function of the Hamiltonian (1). Specifically, ~∆ =Re(R) and R is the shift-operator of the Green’s function, given
by [9]

R =
∑
ake

|⟨a;ke|U |Ψm; 0⟩|2

Em − Ea − ~ωke
+
∑
ake

∑
a′k′e′

(9)

⟨Ψm; 0|U |a;ke⟩⟨a;ke|U |a′;k′e′⟩⟨a′;k′e′|U |Ψm; 0⟩
(Em − Ea − ~ωke)(Em − Ea′ − ~ωk′e′)

+ · · · ,

where Em is the energy of the eigenstate Ψm; |Ψm; 0⟩ represents the many-body state at which the incident photon is
absorbed and the plasmon is excited. |a;ke⟩ denotes direct-product state of a many-electron state |a⟩ and a virtual
photon state with a wave-vector k and a polarization vector e. Finally, we arrive at

∆ = −ωm

4

βz

1 + βz
, (10)

with

βz =
V

λ3
m

ε′22
[n(z)]2

{1 + (
ε′1 − 1

ε′′1
)2}. (11)

Here λm = 2πc/ωm. In eqn. (11), ε′1 and ε′′1 are evaluated at ω = ωm. As βz ≥ 0, the frequency shift ∆ is less than
1/4 of ωm. The central aim of this work is to demonstrate that the interaction of the induced dipole and the vacuum
fluctuation of the electromagnetic field causes a red shift ∆ of the resonance frequency with increasing the volume of
a nanostructure.
According to eqns.(8, 10), there are three contributions to ωres. Among them, the dominant one is the first term

in eqn. (8) since γ
ωp

<< 1; the second term in eqn. (8) is the smallest among them. The dominant term depends

only on the shape of the nanostructure through the depolarization factor, n(z). Hence the resonant frequency ωres

of the nanostructure is determined primarily by its shape as opposed to its size. This fact has been well established
and exploited in plasmonics [22, 23]. More importantly, γ in eqn.(8) is a monotonically decreasing function of Leff

as indicated in eqn.(6), hence ωm is a weakly increasing function of the particle size. If there were no correction
term ∆, the resonant frequency ωres (=ωm) would have been a monotonically increasing function of the particle size,
which is opposite to the experimental observations [21, 24, 25, 30]. The QED correction term, ∆, as a decreasing
function of the particle size, reverses the incorrect size-dependence of the classical electromagnetic theory and renders
ωres consistent with the experiments. The failure of the classical theory has also been discussed by Scholl et al.
[25] who attributed the opposite size-dependence to the inappropriate use of macroscopic dielectric functions in the
nanoparticles. The macroscopic dielectric functions failed to capture the effects of discrete energy levels and the fact
that only certain electronic or plasmonic transitions are allowed in the nanoparticles. To remedy the classical theory,
Scholl et al. proposed a phenomenological model based on discrete energy levels. Although the model yielded an
improved agreement to the experimental data, it did not consider the quantum effect of the electromagnetic field. As
a result, the model cannot guarantee the monotonically decreasing size-dependence of ωres, as revealed in experiments
and the present theory. Nonetheless, Scholl’s model is valuable contribution and could be combined with the present
theory to form a more comprehensive microscopic picture of plasmonic resonance.
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If the electric field of the incident light is perpendicular to the z-axis, the depolarization factor in the normal
direction has to be worked out. We have derived the corresponding equations. Moreover, if the electric field of the
incident light is along an arbitrary direction, the total induced dipole is a vector sum of the components in each major
axis [15, 16]. Finally, for a spheroid with its rotational axis along z, the depolarization factors n(x), n(y), n(z) and the

resonant frequency ω
∥
res (Eext ∥z) and ω⊥

res (Eext ⊥z) can be calculated analytically as well. For a general ellipsoid,
the corresponding quantities have to be evaluated numerically.
The size dependence of plasmonic resonance frequency in metallic nanostructures has been studied extensively and

several physical origins have been proposed, including size-dependent dielectric functions [25, 32, 33], phase retardation
[34, 35], and nonlocal response of current to the electromagnetic field [36–43], etc. However, in all previous works,
the electromagnetic field was treated classically.

III Results and Discussion

To validate the proposed theory, we apply it to various metallic nanostructures including nano-spheres, nano-rods,
and nano-plates. First, we examine the size-dependence of ωres in nano-spheres. Since all spheres have the same
shape or the depolarization factors [15] (n = 1/3), the nano-spheres of the same metal would yield the same ωm

for a given surrounding medium. According to eqns.(10, 11), ∆ depends only on the volume of a sphere, thus
ωres is a monotonically decreasing function of the sphere diameter D. When comparing to experimental results for
nanoparticles, one should be cautious. This is because in most experiments where plasmon resonance of nanoparticles
is measured, the nanoparticles are often covered by ligands. Since the ligands tend to attract electrons from the
nanoparticles, the measured resonant energies may deviate considerably from their intrinsic values, for which the
theoretical model is developed. More importantly, nanoparticles with different sizes are affected differently by the
ligands (the smaller the particle, the greater the effect), thus yielding different size-dependence of the resonance energy.
To avoid this problem, we choose to focus on experiments where the nanoparticles are ligand-free. One such experiment
which has attracted a lot attention is the work of Scholl et al. [25] who have measured the plasmon resonance of
individual ligand-free Ag nanoparticles using aberration-corrected transmission electron microscope (TEM) and mono-
chromated scanning TEM electron energy-loss spectroscopy. In Fig. 1(a), we compare the theoretical prediction to
the experimental data taken from Fig. 3(b) of Scholl’s paper [25]. The dielectric constant of the surrounding medium
ε′2 is 1.69 as measured in the experiment. We find that the theoretical prediction agrees very well to the experimental
data as long as the two fitting parameters A and S are chosen reasonably, in this case A = 0.03, S = 1. It is important
to point out that the present theory predicts the correct experimental trend - a monotonic redshift as D increases,
regardless the choice of A and S. As displayed in Fig. 1(b), the size dependence of ωres is entirely contained in ∆
while ωm is essentially flat. Thus the size-dependence of the nano-spheres originates exclusively from the quantum
nature of the electromagnetic field. To the best of our knowledge, the present theory is the only one that yields the
correct experimental trend for ligand-free nanoparticles in the range between 2 nm and 20 nm. For example, quantum
mechanical calculations based on self-consistent hydrodynamic model predicted a redshift first then a blueshift as
the particle diameter increases [44]. The quantum mechanical time-dependent orbital-free density functional theory
(TD-OFDFT) calculations reported a redshift first, then a blueshift and then a redshift again as the particle diameter
varies from 1 nm to 12 nm [45]. The time-dependent DFT calculations reported a blueshift for small particles less than
2 nm [46]. It is important to point out, however, that the electric quadrupole, magnetic dipole and phase retardation
can also lead to the redshift, but for much larger particles (> 100 nm). [16] Similar comparison is made for gold
nano-spheres embedded in water whose dielectric constant ε′2 = 1.78. As shown in Fig. 1(c) and 1(d), the fitting
parameters are A = 0.01, S = 0.54.
Second, we compare the theoretical prediction to the experimental results for Au nano-rods embedded in silica [23]

(ε′2 = 2.15). In Fig. 2 (a), the experimental resonance frequency ω
∥
res as function of the length L and diameter D

of the nano-rods is shown in circles, while the theoretical prediction is on the surface. In this case, the two fitting
parameters are A = 0.6, S = 1.4. Because L is ∼ 32-70 nm [23], larger than the size of the nano-spheres, the electron
scattering at the surface becomes more important, thus A is larger. For the similar reason, the oscillator strength S
is also larger than the nano-spheres. There is an overall good agreement between the theory and experiment, down
to the size of 8.5 nm [23]. The theoretical prediction for the polarization direction perpendicular to the nano-rod axis
is displayed in Fig. 2 (b).
We next demonstrate the validity of ωm, which cannot be measured directly by experiments. Hence, we compare

the theoretical prediction of ωm to a set of computational results obtained from TD-OFDFT simulations [45, 47] for
a Na nano-rod embedded in vacuum (ε′2=1). A number of (L,D) combinations including (5.79,0.86), (5.79,1.41),
(5.79,1.93), (5.79,2.23), (5.79,3.54), (5.79,4.76), and (5.79,5.46), in the unit of nm, are considered. The two fitting
parameters are A = 0.6, S = 0.8 for E ∥ axis and A = 0.6, S = 0.92 for E ⊥ axis. There is an excellent agreement
between the theoretical predictions and the TD-OFDFT results for both polarization directions as shown in Fig. 3,
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which validates the derivation of ωm. In Fig. 2 and 3, one may notice that ~ω∥
res(L,D) has an opposite size-dependence

as ~ω⊥
res(L,D), owing to the opposite (L,D) dependence of n(z) and n(x).
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FIG. 4. The plasmonic resonance energy as a function of diameter D for a circular gold nano-plate with a fixed height L =
20 nm. The results from theory are shown in solid curves while the experimental data is shown as triangles; The polarization
direction is parallel (a) and perpendicular (b) to the long-axis of the plate.

Third, we switch to a Au nano-plate whose rotational symmetric axis is along z. The theoretical predictions for
ω⊥
res(D) are compared to the experimental results [22]. The circular nano-plate has a height L = 20nm embedded

in a medium with a refractive index of 1.26. The fitting parameters A = 0.6, S = 0.86 yield an excellent agreement
between the theoretical predictions and the experimental data as shown in Fig. 4. Similar agreement between
the theory and experiments is also observed for Al and Pt nano-plates which is presented in the Supplementary

Information. The opposite D-dependence between ω
∥
res(D) and ω⊥

res(D) is due to the opposite D-dependence of their
respective depolarization factors.
Although size-dependent dielectric functions could be invoked to explain the size-dependence of ωres, such explana-

tion is restricted to small nanoparticles. One can estimate the maximum radius R of the nanoparticles above which
the size-dependent dielectric functions become indistinguishable from the bulk dielectric functions. It is known that
the presence of discrete energy levels is the origin of the size-dependent dielectric functions [25]. Hence if the level
spacing becomes comparable or smaller than ~γ0 (γ0 = vF /l where l is the mean free path of bulk material), the
dielectric functions are no longer size-dependent. This condition leads to R ∼ π(~l/8mvF )

1/2. Taking l ∼ 103 Å,
vF ∼ 3 × 106 m/s, we have R ∼ 2.2 nm. Clearly, for the size range 2 < Lmax < 100 nm discussed in this work, the
size-dependence of ωres cannot be described by the size-dependent dielectric functions. The QED formalism provides
a plausible framework whose predictions agree well with the experimental observations.
QED could have more profound implications in plasmonics than what is presented in this report. For example, it

is known that when a nano-antenna is placed next to a metallic nanostructure, there is an interaction between the
nano-antenna (an emitter) and the virtual field. The interaction could change the directional radiation pattern of the
antenna [48], analogous to cavity QED [49]. The present work, on the other hand, focuses on the interaction between
an absorber (the plasmonic nanostructure) and the virtual field. Such interaction could also change the induced
magnetic moment of the metallic nanostructure, as well as the polarization of the incident light.

IV Summary

To summarize, we propose that QED is important to understand the plasmonic resonance in metallic nanostruc-
tures, specially nanoparticles. The coherent motion of the conduction electrons in the nanostructure could lead to a
large induced dipole moment, which interacts with the virtual field and results in a significant shift in the resonant
frequency. The frequency shift is the key to reconciling the theoretical predictions and experimental observations on
size-dependent plasmonic resonance. Based on QED, we have derived analytic expressions for the plasmonic resonant
frequency, which depends on three easily accessible material parameters - the dielectric constant ε′2 of the surrounding
medium, the number density n of electrons and the conductivity σ of the metal. The analytic expression are shown
to reproduce very well the experimental data for nano-spheres, nano-rods and nano-plates, and can be used readily
for estimating the resonant frequency of plasmonic nanostructures as a function of their geometry, composition and
surrounding medium.
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