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We present first ever observation of dark solitons on the water surface. It takes the form of
an amplitude drop of the carrier wave which does not change shape in propagation. The shape
and width of the soliton depend on the water depth, carrier frequency and the amplitude of the
background wave. The experimental data taken in a water tank show an excellent agreement with
the theory. These results may improve our understanding of the nonlinear dynamics of water waves
in finite depth.

There is a deep analogy between waves in optics and
on the surface of water. Developing this analogy allows
us to conduct research in one area and expand the ideas
to another one. Such expansion has been particularly
fruitful in the studies of rogue waves which first appeared
from the seafarers gossips before finding solid grounds as
objects of research in oceanography [1], later in optics [2]
and now the new concept is widely used in many other
fields of physics [3]. Unifying ideas [3] help to establish
common grounds in this exciting area of research.

There is one particular type of nonlinear waves previ-
ously studied in optics and plasma physics which until
now has not been observed in the case of water waves.
As a result, we cannot estimate the importance of these
waves in natural phenomena although they can surely be
present among the variety of ocean waves destructively
acting along the shores: tsunamis, seiches, bores, tidal
waves etc. This special wave is commonly known as dark
soliton. In optics, this wave can be described as a hole
on a continuous wave background or on a constant am-
plitude plane wave. In case of water waves, the physics is
similar but its observation requires special arrangements.
Dark soliton can be classified as one of the fundamental
waves in nonlinear dynamics in the sense that arbitrary
wave configuration can be seen as nonlinear superposi-
tion of fundamental modes [4–7]. Clearly, studies in this
area of research are important and must be started.

Generally speaking, dark solitons are localised reduc-
tions of the amplitude of the envelope field in nonlinear
dispersive media [8]. There are a number of equations
that admit dark soliton solution provided the dispersion
and nonlinearity are related in specific way. In partic-
ular, the governing equation describing the dynamics of
weakly nonlinear and quasi-monochromatic waves prop-
agating on the surface of water with arbitrary depth is
the nonlinear Schrödinger equation (NLS). Depending on
the relative depth h of the water with respect to the
wavenumber of the carrier wave k, the water waves can be
described by the NLS either of focussing or defocussing

type. In deep-water and more precisely for kh > 1.363,
the waves are governed by the NLS of focussing type
which admits a family of stationary bright soliton solu-
tion and breathers. These waves have been investigated
experimentally in [9, 10] and more recently, in [11]. For
kh < 1.363, the sign of dispersion changes and wave prop-
agation is described by the NLS of defocussing type which
admits dark soliton solutions; they appear as envelope
holes [12]. Here, we have to mention that dark solitons
may also appear on waters of infinite depth, where the
envelope is propagating in two spatial directions [13, 14].
Up to date, dark solitons have been observed only in fi-
bre optics [15–17], in plasma [18, 19], in waveguide arrays
[20] and Bose-Einstein condensates [21]. In the present
work we report first observation of dark solitons gener-
ated in a water wave tank. We also discuss the shape and
width of these localized structures which depend on the
steepness parameter of the background, its frequency as
well as on the relative water depth.

The NLS describes the space-time evolution of weakly
nonlinear wave processes in various dispersive media [22–
24]. In the case of water waves, it can be derived by
applying the method of multiple scales expansion [25, 26].
For arbitrary depth, the equation can be written in the
form:
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is the nonlinear coefficient expressed in terms of the depth
h, frequency ω and wavenumber k of the carrier wave and

the group velocity cg =
∂ω

∂k
. Independent variables x

and t are the space and time coordinates. The dispersion
relation of the wave trains on the water surface with finite
depth h is

ω =
√
gk tanh (kh),

where g denotes the gravitational acceleration.

The water surface elevation η(x, t) is related to the
amplitude A(x, t) in the first order in steepness according
to:

η(x, t) = Re (A (x, t) exp [i (kx− ωt)]) . (2)

In the limit of infinite water depth, that is for the lim-
iting case kh → ∞, the expressions for α and β can be
simplified [24]:

α =
ω

8k2
, β =

ωk2

2
.

For the arbitrary depth case, if kh > 1.363, then αβ > 0.
In this case the plane wave solution may be unstable
to long wave perturbations [27, 28]. This instability
is usually referred to as the Benjamin-Feir-instability
[24, 29, 30]. Exact breathing solutions describing this in-
stability have been recently experimentally investigated
in [11, 31, 32]. Such solutions may also appear natu-
rally from random phase initial conditions provided that
the wave spectrum is sufficiently energetic and narrow-
banded [33, 34]. However, for kh < 1.363, the nonlinear
coefficient β becomes negative and the finite amplitude
wave trains in this case are stable. In this work, we con-
ducted experiments to deal with this case.

FIG. 1. (Color online) Dark soliton solution showing the car-
rier wave amplitude drop to zero at X = 0.

A scaled form of the NLS in finite depth for kh < 1.363
is the well-known defocusing NLS:

iqT + qXX − 2 |q|2 q = 0, (3)

which is obtained from (1) by introducing the scaled vari-
ables [1]:

X = x− cgt, T = αt, q =

√
−β
2α

A. (4)

Here, X is the co-ordinate in a frame moving with the
group velocity and T is the scaled time. For a given
carrier amplitude a, the defocusing NLS admits a one-
parameter-family of localised soliton solutions, generally
known as grey solitons [12, 35]. They are described by:

qG = a
exp (im) + exp (2aX sinm)

1 + exp (2aX sinm)
exp(−2ia2T ). (5)

where m is the parameter of the family that controls
the minimal amplitude at the centre of the soliton. For

m =
π

2
, this minimal wave amplitude drops to zero. This

limiting case is given by the simpler expression

qD = a tanh (aX) exp
(
−2ia2T

)
. (6)

It is called black soliton and it is illustrated in Fig. 1
with the value of a = 1.

FIG. 2. (Color online) Wave channel used in the experiments.

The experiments have been conducted in the wave
tank of the Ecole Centrale Marseille/IRPHE. The tank
is shown in Fig. 2. It is 17 m long and 0.65 m wide. A
single flap-type wavemaker is installed at the far end of
the tank. An efficient absorbing beach, made with sub-
merged porous plate is installed at the other end. It is
clearly visible at the right-hand side of Fig. 2 inside the
water with fluorescent dye. The beginning of the beach is
located at the distance of 13 m from the wavemaker. The
vertical walls are made of transparent sections of glass
supported by the metal frame. The water level of the
free surface is measured with seven resistive wave gauges



3

with a sampling frequency of 200 Hz. The location of the
gauges is given in the table I.

In order to generate dark solitons, we have to control
the flap displacement through the computerised equip-
ment and create initial conditions in dimensional units.
This means that Eqs.(6) and (2) have to be dimension-
alized with the use of inverted relations (4). Our ex-
periments have been conducted for two different water
depth values, h = 0.40 m and h = 0.25 m. In each case,
the condition of applicability of the defocussing NLS, i.e.
kh < 1.363, has been satisfied.

The gauge number 1 2 3 4 5 6 7

Its position along

the tank (m) 1.06 4.33 5.41 7.00 8.86 9.76 12.80

TABLE I. Wave gauge positions

Fig. 3 shows the evolution of a black soliton for the
carrier amplitude a = 0.04 m and the wavenumber k = 3
m−1 while the water depth is of h = 0.40 m. Each time-
series has been shifted in time to position the zero of
the wave at the same location. As a result, all dia-
grams are aligned in time for convenience of compari-
son of their profiles. Moreover, all diagrams are aligned
in time by the theoretical value of the group velocity,
which is cg = 1.18 m · s−1. Clearly, we observe that
the soliton does not change shape and propagates with
the corresponding group velocity in accordance with the-
ory since the stationary localizations are almost perfectly
aligned in all stages of propagation. In each panel, the
experimental curve is supplemented with the envelope
calculated using the first-order Fourier analysis. The en-
velopes are consisent with the theoretical shape of the
dark soliton shown in Fig.1. Another interesting feature
of our data is that the difference between the group ve-
locity and the phase velocity leads to a continuous shift
of the dark soliton relative to the wave pattern of the car-
rier. Thus, the phase of the carrier in each of the seven
panels is also shifted relative to the previous one.

These data prove that we indeed observed dark soli-
tons. Fig. 4 shows similar set of experimental data for
the water depth h = 0.25 m. Here, the amplitude of
the carrier is a = 0.02 m while the wavenumber k = 4
m−1, thus, the group velocity is cg = 1.06 m · s−1. The
alignment of the bump, which is located at zero ampli-
tude level in both experiments, show that the theoretical
value of the group velocity is again in accordance with
the theoretical value and this is another proof that we
are dealing with the dark soliton although with the pa-
rameters of the experiment different from the previous
case.

A video showing the dynamics of surface elevation in
the flume can be found in the supplemental material. The
video demonstrates clearly the decrease of the amplitude
near zero point of the dark soliton profile.
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FIG. 3. (Color online) Evolution of the dark soliton along the
tank with the water depth h = 0.4 m. The carrier-amplitude
is a = 0.04 m, while kh = 1.2. Seven panels from top to
bottom correspond to experimental records of seven gauges
from 1 to 7 respectively shifted in time to keep zero amplitude
at the same position. The envelope over the experimental
curves computed using the first-order Fourier analysis is in
good agreement with theoretical dark soliton shape.
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FIG. 4. (Color online) Evolution of the dark soliton along the
tank with the water depth h = 0.25 m. The carrier amplitude
is a = 0.02 m, while kh = 1.0. Seven panels from top to
bottom correspond to experimental records of seven gauges
from 1 to 7 respectively shifted in time to keep zero amplitude
at the same position. The envelope over the experimental
curves computed using the first-order Fourier analysis is in
good agreement with theoretical dark soliton shape.

Further verification that it is the dark soliton excited
on the surface of water can be obtained from confirm-
ing its effective width. In order to do that we calculated
the number of carrier waves within the soliton i.e. the
number of waves with modulated amplitude versus the
steepness of the background wave. We estimated this
dependance from our experimental data by defining the
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FIG. 5. (Color online) The number of modulated waves within
the dark soltion versus steepness ak. The former is defined
with the threshold amplitude of 0.9a for the corresponding
depth. The triangles correspond the values obtained from
the first gauge. The stars correspond the values obtained
from the last gauge. Solid lines are obtained from theoretical
calculations.

modulated waves as those whose amplitude is less than
0.9 of the carrier amplitude. Then, we calculated the
number of modulated waves defined this way within the
soliton. Fractional values can be obtained if we best fit
the envelope through the wave maxima. Fig. 5 shows
these data for the first and the last gauges for the two
h-values as a function of the steepness ak. The data
for all other gauges are very similar to these. Theoreti-
cal curves shown by the solid lines demonstrate that the
number of modulated waves is inversely proportional to
the steepness of the background. Comparison of experi-
mental data with the theoretical curves proves once again
that we do observe dark solitons.

The number of modulated waves within the dark soli-
ton depends also on the wavenumber k for fixed h. We
calculated the number of modulated waves the same way
as described above for several values of k. Fig. 6 shows
these data for the two values of the depth h along with
the theoretical curves. The plot shows that our obser-
vations fit well the theoretical relationship between the
number of modulated waves and the combined parameter
kh.

To conclude, our experimental study proves the exis-
tence of dark solitons in water waves. Our observations of
these localized structures are in agreement with the the-
oretical prediction: the solitons preserve fixed shape dur-
ing their evolution in the tank. Furthermore, the solitons
propagate exactly with the group velocity for the corre-
sponding wavenumber, wave frequency and water depth
calculated theoretically. Generally, these results confirm
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FIG. 6. (Color online) The number of modulated waves within
the soliton versus kh. The former is defined for the threshold
amplitude 0.9a for the corresponding depth. The triangles
correspond the values obtained from the first gauge. The stars
correspond the values obtained from the last gauge. Solid
lines are obtained from theoretical calculations.

that the NLS equation provides a good description of
surface gravity waves even in the defocusing case. Thus,
water waves have to be described in the frame of nonlin-
ear dynamics rather than just a linear superposition of
modes.
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