
 
AFRL-RY-WP-TR-2016-0046 

 
 

MAINTAINING ENTERPRISE RESILIENCY VIA 
KALEIDOSCOPIC ADAPTION AND 
TRANSFORMATION OF SOFTWARE SERVICES 
(MEERKATS) 
 
Roxana Geambasu, Dimitris Mitropoulos, Simha Sethumadhavan, and Junfeng Yang 
 

Columbia University 
 
Angelos Stravrou and Dan Fleck 
George Mason University 
 
Matthew Elder and Azzedine Benameur 
Symantec 
 
 
 

APRIL 2016 
Final Report  
 

 
Approved for public release; distribution unlimited. 

 
See additional restrictions described on inside pages  

 

 
 

STINFO COPY 
 
 

AIR FORCE RESEARCH LABORATORY 
SENSORS DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH  45433-7320 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 



 
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission to 
manufacture, use, or sell any patented invention that may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public affairs 
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and 
AFRL/CA policy clarification memorandum dated 16 Jan 09.  This report is available to the general 
public, including foreign nationals. 
 
AFRL-RY-WP-TR-2016-0046 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
 
 
 
 
// Signature//            // Signature// 
 
TOD J. REINHART DAVID HAGSTROM, Chief 
Program Manager  Avionics Vulnerability Mitigation Branch 
Avionics Vulnerability Mitigation Branch  Spectrum Warfare Division 
Spectrum Warfare Division  
 
 
 
 
// Signature//      
 
NEERAJ PUJARA, Chief (Acting)  
Spectrum Warfare Division  
Sensors Directorate 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 
*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks. 



 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

April 2016 Final 30 September 2011 – 31 December 2015 
4.  TITLE AND SUBTITLE 

MAINTAINING ENTERPRISE RESILIENCY VIA KALEIDOSCOPIC 
ADAPTION AND TRANSFORMATION OF SOFTWARE SERVICES 
(MEERKATS) 

5a.  CONTRACT NUMBER 
FA8650-11-C-7190 

5b.  GRANT NUMBER  

5c.  PROGRAM ELEMENT NUMBER 
62303E 

6.  AUTHOR(S) 

Roxana Geambasu, Dimitris Mitropoulos, Simha Sethumadhavan, and Junfeng 
Yang (Columbia University) 
Angelos Stravrou and Dan Fleck (George Mason University) 
Matthew Elder and Azzedine Benameur (Symantec) 

5d.  PROJECT NUMBER 
3000 

5e.  TASK NUMBER 
YW 

5f.  WORK UNIT NUMBER 

  Y03X 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

     REPORT NUMBER 
Columbia University 
Sponsored Projects Administration 
615 West 131st Street, Rm 254, Mail Code 
New York, NY 10027 

George Mason University 
Symantec 

 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
       AGENCY ACRONYM(S) 

Air Force Research Laboratory 
Sensors Directorate 
Wright-Patterson Air Force Base, OH 45433-7320 
Air Force Materiel Command 
United States Air Force 

DARPA/I2O 
675 N Randolph Street 
Arlington, VA 22203 

AFRL/RYWA 
11.  SPONSORING/MONITORING 
       AGENCY REPORT NUMBER(S) 

AFRL-RY-WP-TR-2016-0046 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES 
The U.S. Government is joint author of the work and has the right to use, modify, reproduce, release, perform, display or 
disclose the work. This report is the result of contracted fundamental research deemed exempt from public affairs 
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy 
clarification memorandum dated 16 Jan 09. Report contains color. 

14.  ABSTRACT 
We have designed, implemented, evaluated, and in some cases deployed a set of new technologies that add continuous change, 
deception, and unpredictability to cloud environments as a way to increase their resilience to a broad spectrum of threats. Our 
work makes significant advances along five major directions: (1) continuous migration technologies that can enable for the 
first time the swift migration of cloud-resident services and data either in response to an attack or continuously so as to present 
a moving-target defense; (2) cloud information flow tracking technologies that can track cloud-resident data at larger scales 
than ever before; (3) misinformation and decoy technologies that can automatically generate deceptive information - bogus 
information that appears genuine  - so as to confuse, bait, and track attackers; (4) cloud monitoring and self-healing 
technologies that integrate information from many sensors to detect complex, multi-stage attacks; (5) stable multithreading 
technologies that reduce the security risks posed by concurrent programs by ensuring that programs take only a few pre-
checked, safe schedules during execution; and (6) hardware-enhanced execution memoization techniques that enable efficient 
execution in highly replicated environments. 

15.  SUBJECT TERMS  
cloud resilience, moving-target defense, decoy information, anomaly detection, stable  multithreading, memoization 

16.  SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT: 

SAR 

8.  NUMBER OF 
PAGES 
    60 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

         Tod Reinhart 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 
 Standard Form 298 (Rev. 8-98)         

Prescribed by ANSI Std. Z39-18 



  

Approved for public release; distribution unlimited. 

CONTENTS 

LIST OF FIGURES ii 

LIST OF TABLES ii 

1 SUMMARY 1 

2 INTRODUCTION 2 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 4 

4 RESULTS AND DISCUSSION 5 
4.1 Continuous Migration Technologies ................................................................................. 5 

4.1.1 MOTAG (a.k.a. MiSS): Migration-based Denial of Service Defense .................. 5 
4.1.2 EPC: Urgent Virtual Machine Migration ............................................................ 12 
4.1.3 CleanOS (a.k.a. Evade): Continuous Data Migration ........................................ 15 

4.2 Cloud Information Flow Tracking Technologies ............................................................ 20 
4.2.1 CloudFence: Data Flow Tracking for Clouds .................................................... 21 
4.2.2 Cloudopsy: Visualization Tool for Cloud Data Flow ......................................... 23 
4.2.3 Data Provenance with Dynamic Instrumentation ............................................... 24 

4.3 Misinformation and Decoy Technologies ....................................................................... 25 
4.3.1 DIGIT: Computational Decoys ........................................................................... 25 
4.3.2 Novo: Document and App Decoys (Commercialized) ...................................... 26 
4.3.3 SAuth: Password Decoys ................................................................................... 26 

4.4 Cloud Monitoring and Self-Healing Technologies ......................................................... 29 
4.4.1 DMCC: Distributed Monitoring and Cross Checking ........................................ 29 
4.4.2 CRP: Self-Healing Multitier Defense ................................................................. 30 
4.4.3 Virtual Application Partitioning ......................................................................... 30 

4.5 Stable Multithreading Technologies ............................................................................... 32 
4.5.1 Stable Multithreading ......................................................................................... 33 
4.5.2 Crane: Correctly Replicating Nondeterministic Executions .............................. 34 

4.6 Hardware-Enhanced Memoization Technologies ………………...……………………39 
4.6.1 Value Reuse Measurement …………………………………………………….39 
4.6.2 Compiler-Enhanced Memoization ……………………………………………..41 
4.6.3 Hardware-Enhanced Memoization ………………………………………….....42 

4.7 New Attacks .................................................................................................................... 44 
4.7.1 ARC: Protecting against HTTP Parameter Pollution Attacks ............................ 44 
4.7.2 CellFlood: A New Attack Against Tor Onion Routers ...................................... 45 

5 CONCLUSIONS 47 

6 PUBLISHED PAPERS 48 

REFERENCES     50 

LIST OF KEY ABBREVIATIONS AND ACRONYMS                                                      59 

i 



  
Approved for public release; distribution unlimited. 

LIST OF FIGURES 
 

1 Shuffling Algorithm .......................................................................................................... 8 
2 Shuffling Evaluation ........................................................................................................ 10 
3 MOTAG Prototype .......................................................................................................... 11 
4 Client Migration Time ......................................................................................................... 12 
5 QEMU-KVM Live Migration vs. Post-Copy Migration ................................................. 13 
6 EPC vs. Live Migration ................................................................................................... 15 
7 CleanOS Architecture  ................................................................................... 17 
8 CleanOS Audit Service ................................................................................................... 19 
9 Data Exposure ................................................................................................................. 19 
10 CloudFence Architecture ................................................................................................. 22 
11 Cloudopsy Screenshot ..................................................................................................... 23 
12 Synergy-Enhanced Authentication .................................................................................. 28 
13 Multithreading Alternatives ............................................................................................. 33 
14 Crane Performance .......................................................................................................... 38 

 
LIST OF TABLES 

 
1 Notations ................................................................................................................................ 9 
2 Time Bubbles in Crane .................................................................................................... 38 

ii 



 
1 

Approved for public release; distribution unlimited. 

1 SUMMARY 
 
This work investigates a new vision for increasing the resilience of computing clouds by elevating 
continuous change, evolution, and misinformation as first-rate design principles of the cloud’s 
infrastructure. The work is motivated by the fact that today’s clouds are very static, uniform, and 
predictable, allowing attackers who identify a vulnerability in one of the services or infrastructure 
components to spread their effect to other, mission-critical services. Our goal is to integrate into 
clouds a new level of unpredictability for both their services and data so as to both impede an 
adversary’s ability to achieve an initial system compromise and, if a compromise occurs, to detect, 
disrupt, and/or otherwise impede his ability to exploit this success. 

 
As a step toward this vision, we designed, implemented, evaluated, and in some cases deployed a 
broad set of new technologies that add continuous change, deception, and unpredictability to cloud 
environments. These technologies present significant advances along five major directions:         
(1) continuous migration technologies that can enable for the first time the swift migration of 
cloud-resident services and data either in response to an attack or continuously so as to present a 
moving-target defense; (2) cloud information flow tracking technologies that can track cloud- 
resident data at larger scales than ever before, enabling cloud users (e.g., service administrators)  to 
audit the flow of their information in the cloud; (3) misinformation and decoy technologies that 
can automatically generate deceptive information – bogus information that appears genuine – so as 
to confuse, bait, and track attackers; (4) cloud monitoring and self-healing technologies that can 
integrate information from many sensors spread across the cloud to detect complex, multi-stage 
attacks; (5) stable multithreading technologies that can reduce the security risks posed by 
concurrent programs by ensuring that upon every execution, a program takes one of a few pre-
checked schedules that have already been validated as safe; and (6) hardware-enhanced 
memoization technologies that enable efficient execution of highly replicated environments. 

 
We have already started a transition of some of these technologies (notably the decoy technologies) 
as part of this project. While more work remains to be done to roll out all of these technologies into a 
production cloud environment; we believe that in the future, they will become the bases for crucial 
components of future resilient clouds. 
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2 INTRODUCTION 
 
Our MEERKATS project investigates a new vision for increasing the resilience of computing clouds 
by elevating continuous change, evolution, and misinformation as first-rate design principles of the 
cloud’s infrastructure. Our work is motivated by the fact that today’s clouds are very static, uniform, 
and predictable, allowing attackers who identify a vulnerability in one of the services or 
infrastructure components to spread their effect to other mission-critical services. Our goal is to 
enable cloud systems to achieve unpredictability at multiple levels for both their services and data 
so as to both impede an adversary’s ability to achieve an initial system compromise and, if a 
compromise occurs, to detect, disrupt, and/or otherwise impede his ability to exploit this success. 

 
As a step toward this vision, we designed, implemented, evaluated, and in some cases deployed a 
broad set of new technologies that add continuous change, deception, and unpredictability to cloud 
environments. Described across more than 30 papers we published as part of MEERKATS, these 
technologies present significant advances in several major directions: 
 
1. Continuous Migration Technologies: We developed technologies that can enable the swift 

migration of cloud-resident services and data either in response to an attack or continuously so as 
to present a moving-target defense. Our research indicates that: (1) A moving target defense can 
be used to contain the effect of a distributed denial of service (DDoS) attack. (2) By designing a 
virtual machine migration mechanism specifically for the purpose of swift migration, one can 
effectively implement a continuous or highly reactionary migration scheme (something that we 
show is impossible with today’s live migration technologies). And (3), a careful design of the 
operating system running on each cloud server, which monitors all data resident on that machine 
and automatically encrypts it whenever it is not under active use, can limit the exposure of 
sensitive information by over 90% to an attack perpetrated against that machine. These findings, 
along with the systems and evaluation methodologies we used to arrive at these conclusions, are 
presented in Section 4.1. 

2. Cloud Information Flow Tracking Technologies: Being able to monitor and audit where 
information flows in a cloud is crucial to detecting information leaks and data exfiltration attacks. 
As part of MEERKATS, we developed the first comprehensive framework for tracking 
information flows in large-scale computing clouds. Our framework consists of three integrated 
components: (1) A cloud-wide information flow tracking system that provides the scale 
necessary to track the information of many users across many services and ma- chines. (2) An 
information flow visualization system that enables auditing of these flows in a user-friendly 
manner; it addresses scaling and data visualization challenges. And (3), we developed a universal 
data provenance framework that, for the first time, gathers provenance information for real-world 
applications without any code modifications. The systems we developed, as well as how we 
integrated and evaluated them, are presented in Section 4.2. 

3. Misinformation and Decoy Technologies: Adversary misinformation and deception have long 
been critical defense tools in military engagements, however today’s clouds typically lack these 
components in their defense tool chains. For this reason, when an adversary successfully breaks 
into a system and steals some data (e.g., the password database, as it often happens), all of that 
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data is compromised without any possibility of remediation. As part of MEERKATS, we 
developed a set of misinformation and decoy technologies capable of automatically generating 
deceptive information – information that appears genuine but that is entirely bogus. Our 
technologies help confuse adversaries, make them waste effort and time on filtering bogus 
information, and can even help identify attackers by providing a long-term monitoring tool for 
leaked information. A key challenge in developing misinformation technologies is to create 
bogus information that looks real upon human or machine inspection. We have developed 
realistic decoy technologies for several specific domains: (1) computational decoys, which create 
real-looking bogus cloud service requests so as to spur fake computations in a cloud; (2) 
document and application decoys, which create real-looking, bogus documents that are placed on 
a user’s machine to catch illicit accesses; and (3) password decoys, which can be added to 
password databases to address whole-database leaks. Parts of our decoy generation technology 
are being commercialized through support from DARPA by Allure, Inc. The research systems we 
developed are presented in Section 4.3. 

4. Cloud Monitoring and Self-Healing Technologies: A resilient cloud must be able to monitor 
its components to detect emerging attacks before they inflict damage and to either defeat them 
through self-healing or to direct other defensive components to increase their focus on specific, 
vulnerable components. As part of MEERKATS, we developed a set of cloud-wide monitoring, 
which allow the efficient and scalable integration of information from many sensors spread 
across the cloud to detect anomalous behavior that can indicate attacks. A key contribution is our 
development of the first detection mechanism for multi-stage attacks, which correlates attacks 
over time. This and other monitoring systems we developed are presented in Section 4.4. 

5. Stable Multithreading Technologies: A significant risk for the security of cloud systems stems 
from the pervasive deployment of multithreaded programs. These programs are notoriously 
difficult to write correctly and safely, as well as to test and debug. And unfortunately, bugs in 
multithreaded programs can lead to serious vulnerabilities such as time of check time of use 
attacks and memory corruptions, which attackers can exploit to gain unauthorized information, 
corrupt critical data structures, and execute code. Hence, a key part of our MEERKATS effort has 
been to develop new approaches for safer and more reliable multi-threaded programming. Our 
key innovation in this space is the notion of stable multithreading, which lets a program follow 
only schedules known to be safe. We have developed a number of stable multithreading systems, 
which both implement and leverage the concept, all of which are described in Section 4.5. 

6. Hardware-Enhanced Memoization Technologies: A key challenge in MEERKATS is to perform 
all of the redundant, decoy executions necessary to confuse an adversary without consuming 
huge amounts of extra resources.  We thus investigated the notion of program memoization and 
developed CHAMP, a hardware/software framework for efficient program memoization.  A key 
finding is that solely software enhancements for memoization are insufficient and that small 
hardware can provide much better performance.  Section 4.6 discusses these aspects. 

7. New Attacks: Finally, we have investigated a number of new kinds of attacks that are possible 
against critical components of today’s web services. We discuss these in Section 4.7. 

We believe that the cloud resilience technologies we have developed over the course of this program 
will be crucial components of future resilient clouds. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 
 
In the course of the MEERKATS program, we have designed, built, evaluated, and at times deployed, 
these technologies as standalone systems. This enables their testing, deployment, and 
commercialization in diverse use cases where they can be beneficial. For example, decoy 
documents and applications are valuable both in cloud environments and in mobile-user use cases; 
our commercialization effort currently focuses on the latter use case. In the future, we hope to 
additionally implement a coherent cloud architecture that combines these technologies to increase 
resiliency against a wide range of attacks. 

 
We took a systems approach to designing, prototyping, and evaluating each technology. Generally 
speaking, the technologies are designed for use in Linux (or variants of it), and are evaluated along 
multiple different dimensions, depending on the specific goal of the technology: e.g., security 
benefits, performance, scalability, availability, and usability for programmers and users. 
 
Given the diversity of the technologies we developed, there is not one single set of assumptions or 
threat model that applies to all cases. Subsequent section, which describe each technology, provide 
the necessary background into the specific problem or threat each technology addresses, what 
assumptions it makes, how it works, and how we have evaluated it. 
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4 RESULTS AND DISCUSSION 
 
4.1 Continuous Migration Technologies 

As a first critical component of a resilient cloud, we developed a series of technologies to support 
continuous and lightweight migration of both services and data. Our purpose was to enable moving-
target defenses to withstand a number of attacks, ranging from distributed denial of service (DDoS) 
to complete server compromises (e.g., rootkits or physical takeover). Along these lines, we 
developed three systems: 

1. We demonstrated the effectiveness of a moving-target defense to increase resilience in the face 
of DDoS attacks [48]. We implemented a system, called MOTAG (formerly known as MiSS), 
to implement this moving-target defense for Amazon Elastic Compute Cloud (EC2). 

2. We developed a new type of virtual machine migration, called urgent migration, which 
optimizes for swift migration of heavily loaded virtual machines (VMs) upon request [5]. The 
system behaves better than live migration in high-load situations and can be used to swiftly 
move VMs that are suspected of being under attack (e.g., DDoS) to free up the host’s resources 
of the remaining, benign VMs. 

3. We developed CleanOS (formerly known as Evade), a new operating system designed to 
continuously cleanse itself of sensitive data [88]. CleanOS tracks the use of this data and 
whenever the data is not under active use, it is encrypted with a key that is escrowed on a 
trusted, resilient key service. That service audits all accesses to the keys. CleanOS ensures that 
at any time, any machine in the cloud has the minimal amount of sensitive data exposed in it in 
anticipation of server compromise. 

 
4.1.1 MOTAG (a.k.a. MiSS): Migration-based Denial of Service Defense 

We developed a cloud-based moving target defense system to protect vital Internet services from 
distributed denial of service attacks (DDoS). This corresponds to the MiSS component of the 
MEERKATS proposal, which we have renamed MOTAG. 

 
Our moving target defense mechanism defends both authenticated services and open web services 
from Internet DDoS attacks. Our mechanism employs a group of dynamic, hidden proxies to relay 
traffic between clients and servers. By continuously replacing attacked proxies with backup proxies 
and reassigning (shuffling) the attacked clients onto new proxies, innocent clients are segregated 
from malicious insiders through a series of shuffles. To accelerate the process of insider segregation, 
we designed an efficient greedy algorithm which is proven to have near optimal performance 
empirically [48]. We built and deployed a demonstration capability on Amazon EC2 to test our 
ideas in a real cloud environment. 
 
In addition, we modeled and quantified the insider quarantine capability of the greedy algorithm to 
enable defenders to estimate the resources required to defend against DDoS attacks and meet defined 
quality of service (QoS) levels under various attack scenarios. Simulations were then performed 
which confirmed the theoretical results and showed that our mechanism is effective in mitigating the 
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effects of an insider-assisted DDoS attack. The simulations also demonstrated that the overhead 
introduced by the shuffling procedure is low. 
 
We also researched the costs versus defensive capabilities to enable the government to make 
informed decisions regarding uptime versus cost. Through our use of cloud-based services we are 
able to maintain a low cost steady-state posture when the system is not under attack, and quickly 
ramp up the number of servers to handle attack loads while isolating attackers from benign clients. 
 
Through this program we have concluded that a moving target-based approach is both feasible and 
cost-effective to mitigate DDoS attacks. The system prototype and algorithms developed can be 
used as a reference to build and test a full production capability. Our team plans to continue to work 
towards a full production capability. 

 
Problem Statement. Distributed Denial-of-Service (DDoS) attacks are a rapidly growing problem 
which poses an immense threat to the Internet. Akamai has reported a significant increase in the 
prevalence of large-scale distributed denial-of-service (DDoS) attacks in recent years [89]. In 2010, 
the largest reported bandwidth achieved by a flood-based DDoS attack reached 100 Gbps. Even as 
the bandwidth of attacks has increased, the cost of performing a DDoS attack has turned out to be 
surprisingly low. A Trend Micro white paper [69] reported that the price for a 1-week DDoS attack 
could be as low as $150 on the Russian underground market. 

 
A number of mechanisms have been proposed in the past to prevent or mitigate the impact of DDoS 
attacks. Filtering-based approaches [65, 37, 62] use ubiquitously deployed filters that block 
unwanted traffic sent to the protected nodes. Capability-based defense mechanisms [10, 97, 99, 63] 
endeavor to constrain resource usage by the senders to beneath a threshold defined by the defended 
system. Secure overlay solutions [52, 85, 8, 86, 66, 34] interpose a network of proxies that redirect 
packets between clients and the protected nodes and are designed to absorb and filter out attack 
traffic. All these mechanisms are effective to varying degrees, but these static defense mechanisms 
either rely on the global deployment of additional functionalities on Internet routers, or require 
large, robust, virtual networks designed to withstand the ever-larger attacks. Due to the large 
investment, vulnerability to sophisticated attacks such as sweeping [85] and adaptive flooding 
attacks [8], the development of a novel, effective, efficient, and low cost defense mechanism 
continues to be a high priority, but elusive goal. 
 

MOTAG Overview. In this program, we developed MOTAG, a MOving Target defense mechanism 
AGainst Internet DDoS attack. This dynamic DDoS defense mechanism implements a moving 
scheme of moving proxy nodes to protect centralized online services. In particular, MOTAG offers 
DDoS resilience for clients of security sensitive services such as military command and control, 
online banking and e-commerce. MOTAG employs a layer of secret moving proxy nodes to relay 
communications between clients and the protected application servers. 

 
The proxy nodes in MOTAG have two important characteristics. First, the proxy nodes are “secret” 
in that their IP addresses are concealed from the general public and are exclusively known only to 
legitimate clients and only after successful authentication in the authenticated version of our system. 
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In order to avoid unnecessary information leakage, each client is provided with the IP address of 
only a single proxy node at any given time. Existing proof-of-work schemes [12, 32, 93, 75] are 
employed to protect the client authentication channel when authentication is used. Second, the proxy 
nodes are “moving”. As soon as an active proxy node is attacked, it is replaced by a set of alternate 
proxy nodes instantiated at a different IP address, and the clients associated with the attacked proxy 
node are migrated to alternative proxy node(s).  We show that this migration to “secret” proxy nodes 
not only enables the MOTAG mechanism to mitigate brute-force DDoS attacks, but also provides a 
means to discover and isolate malicious insiders designed to divulge the location of the secret proxy 
nodes to external attackers. The malicious insiders are isolated via a shuffling process that reassigns 
and migrates clients through sequential sets of instantiated of proxy nodes.  We developed algorithms 
to (1) accurately estimate the number of insiders and (2) dynamically determine the client-to-proxy 
assignment that will “save” the largest number of legitimate clients after each shuffle. 
 
Unlike previously proposed DDoS defense mechanisms, MOTAG does not rely on global adoption on 
Internet routers or collaboration across different ISPs to function. Also MOTAG neither depends on 
resource-abundant overlay network to out-muscle high bandwidth attacks nor uses filters to provide 
fault tolerance. Instead, we take advantage of our proxies’ secrecy and mobility to fend off powerful 
attackers. Employing the MOTAG DDoS defense mechanism requires lower deployment costs while 
offering substantial defensive agility, resulting in effective and cost-efficient DDoS protection. 

 
Threat Model. In the Mission-oriented Resilient Cloud (MRC) program we developed moving 
target defenses for both open and general-purpose web services as well as security sensitive online 
services which require authentication. In both cases the shuffling and insider detection remain the 
same, the only difference is the initial method to allocate users to proxies. 

 
We assume the availability a cloud environment with sufficient computing power and bandwidth to 
instantiate numerous backup proxy nodes. Since only a small group of proxies are active at any 
time, a cloud environment in which customers are charged only for running instances would be 
ideal to avoid extensive operational costs. We further assume that although powerful attackers with 
a high aggregate bandwidth are capable of simultaneously overwhelming many standalone 
machines on the Internet, attackers cannot saturate the well-provisioned Internet backbone links of 
ISPs, data centers, and cloud service providers. 

We also assume that attackers, in case of uncertainty, can first perform a reconnaissance attack (e.g., 
IP and port scanning) to pinpoint targets for the subsequent flooding attack. In the authenticated 
system, with knowledge of the MOTAG mechanism, attackers could attempt to flood the 
authentication channel through which the legitimate clients are admitted. However, since it is 
significantly harder for attackers to pass strong authentication by brute force and reach the proxies 
as legitimate clients, some attackers will attempt to uncover the network locations of proxy nodes, 
and may plant ”insiders” by compromising legitimate clients or eavesdropping on legitimate 
clients’ network connections. However, the number of such insiders in a protected system is 
assumed to be limited. 

 
The Shuffling Process. To understand the defense system, first you must understand how shuffling 
is used to isolate attackers. This section presents an in-depth analysis of the development of the 
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proof-of-concept client-to-server shuffling mechanism. The goal is to separate benign clients from 
persistent bots that follow the moving replica servers to continue a DDoS attack. This is hard to 
achieve using an engineering method because such persistent bots may behave exactly like benign 
clients. With our solution, new replica servers are dynamically instantiated during a DDoS attack to 
replace the ones bombarded by bots. The shuffling operation refers to a structured method of re- 
assigning the affected clients from the attacked replicas to the new shuffling replica servers. Replica 
servers that are currently not under attack do not participate in a shuffling operation; although they 
may start to if they are bombarded later. 
 
To illustrate the idea of client-to-server shuffling, we show the steps for one round of shuffling 
through the example in Figure 1.  The initial state of the system is displayed on the left, where six 
clients {C1,C2,...,C6} are randomly assigned to two replica servers {RS 1, RS 2}. Among these 
clients, C3 and C4 are persistent bots attempting to attack the protected service. Like benign clients, 
the persistent bots have gone through the redirection steps to reach the replica servers. After 
successfully locating the service, the persistent bots instruct the naive bots to bombard both RS 1 
and RS 2. Our solution aims to mitigate such an attack by gradually segregating the persistent bots 
from the benign clients.  

 
 

Figure 1: Shuffling Algorithm 
 
For this purpose, we instantiate new replica servers {RS 3, RS 4} in the cloud to replace the attacked 
server instances. Then, we shuffle the clients’ assignments onto the new replica servers. One 
possible shuffle is to swap the assignments of C2 and C6, C3 and C5 from the previous allocation 
scheme. As is indicated by the right half of Figure 1, this client-to- server shuffling will segregate 
all persistent bots onto RS 4, leaving RS 3 out of the bots’ vision. As a result, the benign clients 
assigned to RS 3 will be separated from the bots and saved from the ongoing DDoS attack. At this 
point, RS 3 and the saved clients will stop participating in the shuffling operation. New shuffling 
replica servers can be instantiated to shuffle the clients on RS_4. 
 
To maximize the number of benign clients saved from each shuffle, the coordination server needs to 
make informed and optimal decisions based on the status quo. To that end, we developed algorithms 
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to realize fast bot/attacker segregation. The controlled and optimized shuffling process will enable 
us to mitigate a strong DDoS attack in a few rounds of shuffling. We modeled the shuffling method 
theoretically to determine the optimal shuffling algorithm. 
 
We have formalized the client-to-proxy shuffling problem as an optimization problem and have 
developed several Greedy algorithms to solve it. We refer the reader to our papers, which describe 
the full details of our algorithms [48], and to Table 1 for the notations and their meanings. 
 

Evaluation. To evaluate the optimality of the Greedy algorithm, the results of experimental 
implementations were compared with the theoretical upper bound of E(Ncu).  Since Equation (1) is a 
summation of p j · Aj for each individual shuffling proxy  j, the maximal value of (1) cannot   be 
greater than the sum of the max of each p j · Aj when relaxing Constraint (2), i.e. Max(E(Ncu)) ≤ K · 
Max(pj · Aj). Here, Max(pj · Aj) can be obtained by running subroutine MaxProxy(N, 0, N − 1, Ni). 
The comparison between the greedy algorithm and the theoretical upper bound is done via 
simulations under various configurations on MATLAB. 
 

Table 1: Notations 
 

Notation Meaning 
N number of clients (including insiders) 
Ni number of insiders 
K number of shuffling proxies 
Ncu number of innocent clients to be saved 
Nca number of innocent clients that are un- 

der attack 
Aj  number  of  clients  assign  to  the  j-th 

proxy 
p j probability that the j-th shuffling proxy 

is not under attack 
 
We experimentally evaluated the effectiveness and overhead of the MOTAG system using 
experiments with a proof-of-concept prototype. First, we assessed the performance of our algorithms 
against simulated large-scale DDoS attacks. Next, we measured the delay incurred by the client re-
assignment operations. 

Simulation-based Results: To quantitatively evaluate the efficacy of our approach, we implemented 
both the greedy shuffling algorithm and the MLE algorithm in Matlab, and ran simulated attacks 
against them. We varied the number of benign clients and persistent bots across individual simulation 
runs to study the performance of our algorithms under different conditions. We assumed both benign 
clients and persistent bots arrive in a Poisson process. On average, the arrival rate of persistent bots 
was 5000 per 3 shuffles while that of benign clients was 100 per 3 shuffles. The shuffling algorithm 
decided the total number of clients assigned to each replica server. Benign clients, together with 
persistent bots, were randomly assigned to replica servers. Replica servers with any number of 
persistent bots assigned were regarded as attacked. We experimented with different, fixed numbers of 
shuffling replica servers performing continuous shuffling operations to save affected benign clients. 
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All simulations were repeated 30 times to generate data from which a mean and 99% confidence 
interval were calculated. 
 
First, we ran simulations with 1000 shuffling replicas and varied numbers of benign clients and 
persistent bots. The results are plotted in Figure 2a. One can see that the number of shuffles 
required to save 80% and 95% of benign clients rises slowly with the increase in the populations of 
persistent bots and clients. In the worst case, a ten-fold increase in the number of persistent bots 
results in less than three-fold increase in the number of shuffles; and for a given number of 
persistent bots, a five-fold increase in the benign clients only introduces less than 70% (40) more 
shuffles to save the designated percentage of clients. 

 

 
 

Figure 2: Shuffling Evaluation. (a) Number of shuffles to save 80% and 95% of 104 and 5 × 104 

benign clients, with 1000 shuffling replica servers, and varying persistent bot numbers. (b) Number of 
shuffles to save 80% and 95% of 104, and 5 × 104 benign clients, with 105 persistent bots and varying 

shuffling replica server numbers. (c) Cumulative percentage of saved benign clients vs. number of 
shuffles, with 105 persistent bots, 104, and 5 × 104 benign clients 

 
Next, we changed the number of shuffling replicas while keeping the client population (104, 5 × 
104) and persistent bot population (105) constant. Figure 2b shows that the number of shuffles 
needed to save the same percentage of benign clients drops steadily when replica servers are added. 
 
One interesting pattern consistent across both figures is that in most cases, the number of shuffles it 
takes to save 95% of benign clients is more than 40% higher than that to save 80% of benign clients. 
To explore this pattern in greater detail, we recorded the number of benign clients saved in each 
shuffle and plotted a cumulative percentage graph in Figure 2c. The curves show that the early 
shuffles were able to separate more benign clients from bots than the latter shuffles. This effect is 
because as more benign clients were saved, persistent bots accounted for a greater percentage of the 
remaining population, making it harder to separate out the benign clients. 
 

Prototype-based Results: To study the overhead of our approach, we built a proof-of-concept 
prototype of the open internet service MOTAG as described by Figure 3. Shuffling for both open 
and authenticated clients is similar and this prototype provides insight into both approaches. We 
implemented two replica servers and a coordination server/coordinator on separate Amazon EC2 
[1] micro instances. We used 60 PlanetLab nodes as clients. Each of the replica servers runs a simple 
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web server that displays a static web page (246KB) fetched from a network mounted storage. The 
web server logic is written in Node.js. 

 
Initially, all clients are served by replica P1. When a simulated attack is triggered on P1, P1 consults 
the coordinator for next step (step 1). In general, the coordinator will make shuffling decisions 
either by running the greedy algorithm or by looking up the pre-computed client-to- server 
assignment tables generated by the dynamic programming algorithm. The decisions are sent back to 
the attacked replica to guide subsequent shuffling operations. For the purpose of overhead 
evaluation, the coordinator responded by asking P1 to redirect all clients to replica P2 (step 2).  As a 
result, P1 proactively sent redirection notifications to all clients (step 3). Upon reception, clients 
contacted and reloaded the same web page from P2  (step 4, 5, 6, 7). 

 

 
 

Figure 3: MOTAG Prototype -- C is client, P is replica server 

Unlike conventional HTTP-based communications that start with client requests, the redirection 
operation is always initiated by an attacked replica server. To send unsolicited messages to HTTP 
clients, we take advantage of the WebSocket [38] technology multiplexing HTTP(S) ports (80 and 
443). WebSocket is well-supported by all major browsers. Therefore, the adoption of our 
mechanism does not depend on extra software being installed on the client side. For this prototype, 
our server injects a snippet of JavaScript code (40 LOC) into the requested web page to establish a 
WebSocket between clients and the replica server. 
 
With this prototype system, we studied the time overhead of the redirection operations associated 
with client-to-server shuffling. This prototype ran Firefox browsers (v17.0) on up to 60 
geographically distributed PlanetLab nodes as clients, who visited the same web page (246KB) 
served by replica server P1 concurrently. The time for all clients to complete steps 1-7 (i.e. 
redirection time from P1 to P2) is shown in Figure 4. In this figure, the upper curve shows the time it 
took to successfully redirect all clients, while the lower curve reveals the average redirection time 
per client. The measurement for each data point was repeated 15 times to obtain the mean and 95% 
confidence interval. The results show that we can re-assign 60 clients in less than 5 seconds. 
Overall, the data indicates a low overhead for client re-assignment operations during shuffling, but 
we see room for additional improvement because our server program was single-threaded and not 
optimized at all. The prototype was mainly developed to show the feasibility of the approach and 
provide a lower- bound on performance. A practical DDoS defense system with more replica servers 
is not expected to slow down because all replica servers act independently and in parallel. 

C C 
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Figure 4: Client Migration Time 

 
4.1.2 EPC: Urgent Virtual Machine Migration 

Crucial to enabling a moving-target defense, such as that provided by MOTAG, is the ability to 
quickly migrate a running computation from one location to another. Live migration has been 
proposed as a way to transfer VMs efficiently and without much disruption. However an our extensive 
study of multiple live migration technologies (including QEMU-KVM, Xen, VMWare ESXi, and 
VirtualBox) indicates that known live migration mechanisms perform extremely poorly when the 
VM to be migration exhibits high load – as it might under a DDoS attack scenario. We have 
developed a new type of migration, called urgent migration, which is specifically suited for 
migration under heavy load situations, including DDoS situations [5]. Our research indicates that an 
effective solution for implementing urgent migration requires enlightenment – support built into 
guest operating systems (OSes) for migration.  On this basis, we designed a new urgent VM   
migration mechanism, called enlightened post-copy (EPC), which achieves fast migration of VMs 
under high loads while providing good performance during migration. We showed that EPC, with 
lightweight instrumentation inside guest Linux, successfully achieve urgent migration when existing 
black-box approaches fail. 
 
Problem Statement. A decade after it was first proposed in [25], migration of virtual machines 
(VMs) in execution continues to be a topic of great interest and wide adoption in enterprise server 
consolidation [3], and more recently, in public infrastructure-as-a-service clouds [13, 40]. By allowing 
a VM to transparently move to a different host when its existing environment is no longer suitable, 
VM migration has enabled a number of compelling use-cases including scheduled maintenance of 
hosts with no downtime [13], dynamic load balancing [91], oversubscription of compute and 
memory (followed by migration when resource contention occurs) to improve infrastructure 
utilization, denial of service attack mitigation and quarantining [48], and nomadic computing in 
which cloudlet computation follows mobile users as they move from one wireless access point to 
another. 

 
Much work has also been done on several variants of VM migration techniques, each with different 
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characteristics. They can be categorized into pre-copy migration, in which the VM’s state is 
transferred before its execution is transferred to the destination (including live migration [25] and 
stop-and-copy [82, 95]), and post-copy [43, 44], in which state is transferred after execution transfer 
by demand fetching from the source. 
 
However, despite all of this work, we observe that VM migration today continues to mainly be a tool 
for VMs at rest. It works best when a VM isn’t doing much work, has little mutating state, and is 
running in lightly loaded environments with ample time for migration to occur. When a more urgent 
jumping of ship is called for to handle situations such as sudden resource contention in an 
oversubscribed system or the onset of a DDoS attack, current approaches to VM migration can fail in 
spectacular ways. Consider, for example, the migration of one of two VMs running heavy 
memcached workload on a recent version of qemu-kvm (2.3.0) and contending with each other for 
resources. Figure 5 shows the performance with both pre-copy (top) and post-copy (bottom) 
migration. Pre-copy (live) fails to migrate completely by getting stuck in an infinite loop trying to 
migrate ever increasing amounts of mutated state created during previous state-transfer rounds, and 
thus penalizes the throughput of the stationary memcached VM as well. On the other hand, post- 
copy migration does evacuate the migrated VM instantly and allows the stationary memcached’s 
throughput to recover, however the migrated VM doesn’t fare so well – large amounts of demand- 
fetching from the source host cause its throughput to be very low until the end of the experiment. 

 
Figure 5: QEMU-KVM Live Migration vs. Post-Copy Migration 

 
Throughput of two contending VMs (y axis) running heavy memcached workloads over time (x axis). 
Running individually, each VM can support 120KOps/sec; when contending, throughput is 60KOp- 
s/sec. At time=120s, migration starts for one VM (black line). The grey line corresponds to the 
stationary VM. With QEMU-KVM, the VM lingers on the source host indefinitely, penalizing the 
throughput of both VMs. With post-copy migration, VM execution is transferred instantly causing 
performance to recover for the stationary VM, but not the migrated one. 

 
While it may be tempting to dismiss these issues as implementation artifacts, e.g. not terminating 
pre-copy after a finite number of rounds, we contend the problem is more fundamental. Any VM 
migration strategy is faced with a basic choice: maximize post-migration performance but 
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potentially delay VM evacuation by migrating state before-hand, or evacuate upfront and minimize 
the amount of dirty state produced during migration, but suffer post-migration performance 
degradation while state is fetched from the source. And the larger the VM’s memory size and the 
busier the VM (both trends that are likely to continue as virtualized services get larger), the worse 
the problem. Furthermore, the right choice is very scenario-specific. While the delayed evacuation 
with low performance impact of live migration may be suitable for situations such as scheduled 
maintenance, other situations such as flash crowds, oversubscription, or DDoS attack mitigation 
may demand rapid evacuation to quickly remove interference for co-located VMs even at the cost of 
lower post-migration performance for the offending VM. 
 
Urgent Migration. To address these tradeoffs, we make two concrete developments in our research. 
First, we argue that hypervisors, in addition to exporting live migration as they typically do, should 
also export urgent migration as a distinct type of migration that can be chosen by administrators for 
appropriate situations. Urgent migration emphasizes fast evacuation even if it is at the expense of 
downtime of the VM being migrated, and is semantically distinct from traditional live migration 
with its low downtime guarantees. Second, we show that the only current approach that could be 
used to implement urgent migration, post-copy, is unnecessarily limited in its performance because of 
its blackbox treatment of the migrated VM, and show how to improve its performance with a more 
greybox approach. 
 
Specifically, we ask whether the guest operating system (OS) could provide insights that provide an 
opportunity for better post-copy migration. To that end, we propose enlightened post copy (EPC), an 
urgent migration mechanism that leverages cooperation between the guest and host layers in the 
virtualization hierarchy to improve post-migration performance. In EPC, the guest OS informs the 
hypervisor of memory regions that must be transferred with high priority to sustain guest 
performance.  The hypervisor then evacuates the VM instantly just like in traditional post-copy, but 
subsequently pushes state to the migrated VM in prioritized order while concurrently serving 
demand fetches from it. We show that the priority hints can be based on information that is already 
easily available in the guest, e.g., whether a memory region is mapped, kernel allocated, kernel 
code, kernel data, user code, or page-cache. 
 
We have implemented EPC by modifying the Linux kernel to support the creation of migration hints, 
and by modifying QEMU-KVM use them during migration. Through extensive experiments on 
memory intensive benchmark workloads such as MySQL, memcached, and Cassandra, we show that 
EPC is a superior solution for urgent migration compared to post-copy as well as stop-and-copy 
migration. Based on these results, we contend that with the widespread adoption of virtualization, 
embedding of lightweight yet flexible mechanisms by guest OSes to support VM migration as a 
first class operation is a reasonable trade-off for the improved performance. We show some results 
next. More details are available in our VEE paper [5]. 
 
Evaluation. We compare application-level performance of three workloads – memcached, MySQL, 
and Cassandra – during migration with enlightened-copy and live migration. The results assume that 
migration happens over a 2.5 Gbps network. Figure 6 shows the results. The y-axis shows 
operations per second in thousands (x1000), and total duration of migration is shown as shade areas. 
The dark lines indicate the performance of the migrated VM, and gray lines are that of the con- 
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tending VM. The source of contention is user traffic handling by the source hypervisor. With live 
migration (labeled Live), migration takes a long time to finish (shaded areas are long), and at least 
in the case of memcached (leftmost graph) it never finishes during the course of the experiment. 
This results in both VMs – the migrated and co-hosted VM – running at lower throughputs for a 
very long time. If the migrated VM is indeed under DDoS pressure, then this is a bad situation to be 
in. In contrast, EPC finishes migration much faster than live migration, allowing the co-hosted VM to 
recover its throughput very quickly after the attacked VM’s migration. Memcached takes the longest 
time to recover for EPC, because the workload is particularly challenging for it: during this 
workload, almost the entire memory changes all the time, leaving little room for EPC to prioritize 
migration of memory pages. 
 

 
 
 

Figure 6: EPC vs. Live Migration. Results are shown for a 2.5 Gbps network 
 

4.1.3 CleanOS (a.k.a. Evade): Continuous Data Migration 

We developed an operating system (OS) that continuously cleanses itself of data. Today’s OSes, 
including cloud OSes but also mobile OSes like Android, are extremely dirty: data gets cached at 
multiple layers, and deallocated or deleted data doesn’t get deleted securely. All of this data is sub- 
ject to compromise should the machine be compromised. To address this problem, we developed 
CleanOS, a system that monitors the use of data and “evicts” it to a key service (completely trusted) 
whenever it is not under active use [88]. To evict data efficiently, we encrypt it with a key that is 
escrowed on the trusted key service and get rid of the key from the local machine. When the data is 
needed again, the OS requests it from the key service. The key service keeps an audit log of all 
requests and evictions. If a machine is compromised, the minimal amount of information is readily 
available and an auditor can know exactly what data was exposed by checking. 

 
Although CleanOS is relevant for both cloud and mobile environments, our prototype extends the 
Android mobile OS, hence our summary of the system’s design and motivation focuses on that 
system. We note that in the original MEERKATS proposal the component was called Evade, but we 
renamed it to CleanOS, building upon and extending the same concepts such as efficient 
cryptographic data migration and auditing. 
 

Problem Statement. Mobile devices are taking over as the primary computing platform for end 
users. Despite advantages, they are incredibly prone to theft and loss, which places all data stored 
on them in danger. Despite the threats, mobile OSes, like desktop and server OSes, let sensitive data 
accumulate uncontrollably on the device. For example, the OS accumulates significant amounts of 
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data in cleartext memory, and the file system retains deleted files by not purging their contents. 
Despite being backed by clouds, applications hoard sensitive data – such as emails, documents, and 
banking information – on the vulnerable device. Although encrypted file systems [70], encrypted 
RAM [79], and remote-wipeout systems [11, 47] help protect this data, they are imperfect stopgaps 
for OSes that were simply not designed with physical insecurity in mind. For example, a recent 
study shows that 57% of corporate users employ no locking mechanisms on their smartphones, 
rendering regular encryption useless [77]. 

 
Our threat model considers any data on a mobile device to be vulnerable to data-driven thieves. 
While many data protection systems exist – including encrypted file systems [70, 87, 35], encrypted 
RAM [79, 61, 76], and data wipeout systems [11, 47] – they are imperfect when confronted with 
negligent users or (sophisticated) physical attacks. First, users can foil any protection system by not 
locking their devices [77], assigning trivial PINs or passwords [46], or writing passwords down in 
easily retrievable locations [83]. Second, mobile devices are prone to physical attacks, which are 
notoriously difficult to protect against. For example, an attacker could use cold boot attacks [42] to 
retrieve in-RAM decryption keys or data, break the seal of tamper-resistant hardware [9, 81], or 
shield the device from the network to prevent remote wipeout [11]. Such threats are especially 
relevant for corporate, government, and military users, who interact with particularly sensitive data, 
such as trade secrets, customer data, health data, or state secrets. 
 
To maintain post-loss control over data despite such threats, CleanOS evicts data to a key service, 
which is assumed to be trusted and non-compromisable. This would require incorporation of single-
machine resilience mechanisms, such as the ones developed through the CRASH program. We 
assume that disconnection is the exception rather than the rule. In the mobile case, with pervasive 
wireless and cellular network coverage, this assumption is becoming increasingly realistic. In the 
cloud deployment case, this assumption is already true: services within a cloud are connected 
through high-speed networks. 
 

CleanOS. We developed CleanOS, a new Android-based mobile operating system designed to 
manage sensitive data rigorously and maintain a clean environment at all times in anticipation of 
device theft. The crucial insight in CleanOS is to leverage the tight integration of today’s mobile 
applications with trusted cloud-based services in order to evict sensitive in-memory and on-disk 
data to those services whenever it is not needed on the de- vice. CleanOS thus ensures that the 
minimal amount of sensitive data is exposed on the vulnerable device at any time. 

 
CleanOS extends Android in two major ways. First, it introduces sensitive data objects (SDOs), a 
new abstraction that facilitates management of sensitive data on mobile devices.  An SDO is a 
logical collection of Java objects, files, and database items that applications create and use to 
manage their sensitive data, such as emails, financial data, or documents. SDOs and their data 
“disappear” from the device unless they are frequently used by an application. For example, if an 
email app adds an email’s content to an SDO, any “trace” of that content automatically disappears 
from RAM and stable storage unless the user is actively reading that email on an unlocked screen. 
Recovering the email requires interaction with the cloud. 
Second, to evict idle SDOs, CleanOS modifies Android’s Java interpreter (Dalvik) to introduce a 
new type of Java garbage collector (GC), called an evict-idle GC (eiGC). While a traditional GC 
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deallocates only those objects guaranteed to never be used in the future (i.e., no pointers to them 
exist), eiGC eliminates objects that have not been used for a period of time even if they might be 
used again in the future (i.e., pointers to them still exist). To do so, eiGC walks through all Java 
objects in an idle SDO and encrypts their data-bearing fields, such as primitives and arrays of 
primitives, with a key that is escrowed on a trusted key service. Our modified Dalvik interpreter 
then faults when a bytecode instruction executes on an evicted object, retrieves the key from the key 
service, and decrypts the object. Thus, data eviction in CleanOS is logical; the data itself remains on 
the device in encrypted form, while the key is shipped to the key service. 
 
The major security benefit of CleanOS stems from the value-added services that the key service can 
build on top of it. For example, key service could revoke data access following a theft report, 
provide an audit log of data exposed upon theft, or monitor data access to detect anomalous uses. In a 
cloud setting, the key service could support post-attack forensics by providing a detailed history 
which specific objects were exposed on which machines at any time. 
 
 

We built CleanOS in Android using the TaintDroid taint-tracking system [36] and also implemented 
value-added services that provide post-theft data-exposure auditing. To do so, we modified several 
core components in Android and TaintDroid.   Together, our changes provide: (1) eviction of idle 
Java objects, (2) heuristics for identifying sensitive data without requiring app changes, (3) support 
for millions of taints in TaintDroid, and (4) multi-layer secure deallocation of freed data in Java, 
native, and kernel space. 
 
Idle Data Object Eviction. Figure 7 shows the CleanOS architecture, which includes three major 
components: (1) the sensitive data object (SDO) abstraction, (2) a modified, eviction-aware version 
of the Dalvik interpreter, along with an evict-idle garbage collector (eiGC), and (3) the SDO key 
escrow service. Briefly, apps create SDOs and place their sensitive Java objects in them. The 
modified Dalvik tracks their propagation across RAM with TaintDroid and monitors their 
bytecodelevel accesses. The eiGC evicts SDOs to the key service if they remain idle for a specified 
period. 

 
 

Figure 7: CleanOS Architecture 
 
An SDO is a logical collection of Java objects, such as string objects representing the emails in a 
thread or objects pertaining to a bank account in a finance app. Upon creation, SDOs are assigned 
app-wide unique IDs and encryption keys (KSDO), and are registered with the key service. 
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We implement three functions for SDOs.  First, we track objects in an SDO with a    modified 
TaintDroid system, using the ID as a taint. As objects are tainted with an SDO’s ID, they become 
part of the SDO. For example, SDO1 in Figure 7 includes three objects added to it either explicitly 
by the app or automatically by our modified Android framework. Second, we monitor accesses to 
SDOs and record their timings. Whenever an app accesses an object in an SDO (e.g., to compute on 
it, send it over the network, or display it on screen), that SDO is marked as used. Third, we evict 
SDOs when they are idle for a time period (e.g., one minute). 
 
To evict idle SDOs, the eiGC eliminates unused Java objects from RAM even if they are still 
reachable. It periodically sweeps through Java objects and evicts them if they are tainted with an 
idle SDO’s ID. In Figure 7, the active app (App 1) has one available SDO (SDO1) and one evicted 
SDO (SDO2). For example, an SDO associated with an email thread might be available while the 
user reads emails in that thread, but the password SDO might remain evicted. When the app goes 
into the background, all of its SDOs might be evicted, as shown for App 2. An SDO is evicted when 
all Java objects in it have been evicted; however, an available SDO may have both evicted and 
available Java objects. 
 
Conceptually, eviction occurs at the level of logical SDOs. In practice, however, CleanOS must 
eliminate the actual data-bearing objects from the vulnerable device.  To do so, eiGC leverages    a 
cryptography-based data migration and applies it to the memory subsystem. Specifically, eiGC 
replaces data-bearing fields in objects, such as primitives and arrays of primitives, with encrypted 
versions and then securely destroys the encryption key. To encrypt a data field F, eiGC uses a key 
KF that is uniquely generated from the SDO’s key KSDO in the key service.  We modified Dalvik to 
fault when an app attempts to access the evicted data, at which time it retrieves KSDO from the key 
service, generates KF, and decrypts the data. KSDO is then cached onto the device and securely 
removed when the SDO as a whole is again evicted. This encryption-driven data eviction is 
significantly more efficient than shipping data to/from the key service. 
 

We implemented an auditing service on CleanOS. Its goal is to provide users with audit logs of what 
was on the device at the time of theft and what has been accessed since. The auditing service 
integrates with the CleanOS service and both are hosted on App Engine. When a device registers an 
SDO or requests a decryption key, the key service logs that operation with the app name, SDO, and 
current time.  In this way, the user can learn from the audit log exactly what data was leaked. For 
instance, Figure 8 shows a sample audit log that contains entries for SDO registration and key 
fetching. Were these operations to occur after the device was stolen, the user will know that the 
email password and KeePass entry may have been leaked. 
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Figure 8: CleanOS Audit Service 
 

Evaluation. We evaluated CleanOS’s data exposure benefits and performance characteristics. Our 
goal was to show that CleanOS significantly reduces sensitive data exposure while providing 
reasonable performance even over cellular networks. We conducted all experiments on rooted 
Samsung Nexus S phones running CleanOS on Android 2.3.4 and TaintDroid 2.3. In this report, we 
focus on the data exposure evaluation. 

 
To evaluate the data exposure benefits of CleanOS, we posed three questions: How much does 
eviction limit exposure of sensitive data? How much do default SDO heuristics limit exposure? 
How effective is the auditing service? To answer these questions, we recorded a 24-hour trace of 
one of the authors’ phone running CleanOS as it was used to interact with regular apps, including 
Email, Facebook, and Mint. For Email, we experimented with both the unmodified app and our 
modified version of it, which we call CleanEmail. The Email app was configured with the author’s 
personal account, which receives about ten new mails daily, and with the default 15-minute refresh 
period. Facebook and Mint had widgets enabled, which made them continuous services. 
 
Sensitive Data Exposure Period: We measured the exposure period for three types of tainted data 
(password, content, and metadata) in the Email app. Figure 9(a) shows the fraction of time that each 
type of tainted data was exposed in RAM. Without CleanOS, the password was maintained in RAM 
all the time, and the content and metadata were exposed over 95% of the time. CleanOS reduced 
password exposure to 6.5%, which is a 93.5% reduction. For email content, the unmodified Email 
app with default SDOs reduced exposure time from 95.5% to 5.9%, and modifying the app 
 

 

Figure 9: Data Exposure 
 

to support fine-grained SDOs further reduced it to 0.3%. Similar observations held for metadata. To 
be clear, these results depend on workloads. From another, much more intensive email workload – 
that registered for many mailing lists and Twitter feeds – we obtained a result of 7.3% and 12.7% 
for content and metadata, respectively. Overall, results demonstrate a significant reduction in 
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exposure times for tainted data. Moreover, they show that our default heuristics protect sensitive data 
reasonably well. 
 

Sensitive Data Lifetime: As SDO lifetime is critical to system security, we must also examine the 
maximum period that a tainted object could be retained in RAM. Figure 9(b) shows the retention 
time for the longest-lived tainted object in three applications, where we break down email into three 
types. Without CleanOS, all observed applications retained certain tainted objects for more than 20 
hours. With CleanOS, the maximum SDO lifetime was dramatically reduced. For instance, the Email 
app kept some metadata objects for as long as 20.9 hours, which CleanOS reduced to only 6 
minutes when using 1024 buckets. For Facebook and Mint, the impact of bucketing on sensitive 
data lifetime was more limited because these apps tend to use most objects in an SDO at the same 
time. Overall, these results indicated that the mobile device was significantly cleaner with CleanOS. 
 
Audit Precision: We next evaluated the effectiveness of the auditing service we built on CleanOS 
(see Figure 8). We compared audit precision across four levels of SDO granularity in Email: (1) 
mono-SDO, where we marked data as only “sensitive” or “non-sensitive,” (2) default SDOs, where 
we used default heuristics, (3) coarse SDOs, where the application defined one content SDO and 
one metadata SDO for all emails, and (4) fine SDOs, where each email had its own content and 
metadata SDOs. We define audit precision as the average probability over time that the tainted data is 
actually exposed on the device, given that the audit log shows its SDO has not been evicted.  Figure 
9(c) shows audit precision for the Email app’s password, content, and metadata. Password auditing 
was 50.0% precise with mono-SDO but increased to 95.1% with default SDOs. The content and 
metadata, however, had poor precision (<3%) without application support: CleanOS could not 
differentiate data coming from the Internet and hence added every incoming object to the SSL SDO. 
With coarse, application-specific SDOs, audit precision for email content and metadata was 9.1% 
and 61.3%, respectively. When fine application-specific SDOs were available, audit precision 
reached 100%. Thus, our default SDOs were effective in auditing password exposure, but 
application adaptation was needed to provide precise auditing for other types of sensitive data. 
 
4.2 Cloud Information Flow Tracking Technologies 

As a key component of a resilient cloud, we have developed the first comprehensive framework for 
tracking information flows in large-scale computing clouds. This corresponds to our CIFT 
component of the MEERKATS proposal. Our framework consists of three, integrated components: 
 

1. We developed CloudFence [74], the first cloud-wide information flow tracking system; it 
provides transparent, fine-grained data tracking capabilities to both service providers, as well as 
their users. 

2. We developed Cloudopsy [100], an information flow visualization system that offers a visual 
autopsy of the exchange of user data on cloud premises. We have successfully integrated 
CloudFence and Cloudopsy. 

3. We developed data provenance framework [39] which gathers data provenance information 
for real-world applications without any code modifications. 
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4.2.1 CloudFence: Data Flow Tracking for Clouds 

Most feature-rich cloud-based services are quite complex, and are usually built by “gluing” together 
a multitude of components. Bugs and vulnerabilities in existing code, misconfigurations and 
incorrect assumptions about the interaction between different components, or even simple causes 
like the careless handling of access credentials, can lead to the accidental exposure of critical data or 
leave the system vulnerable to data theft. At the same time, cloud computing encourages rapid 
application deployment, and time-to-market pressure sometimes makes data safety a secondary 
priority. 

To reinforce the confidence of end users for the safety of their data, we have developed Cloud- 
Fence [74], a new data flow tracking framework for cloud-based applications, which lets users audit 
how their cloud-resident data flows through cloud-based services. CloudFence can be offered by 
cloud hosting providers as a service to their tenants, as well as to the users of the tenants’ services. 
Through a simple API, service providers can easily integrate data flow tracking in their services and 
mark sensitive user data that needs to be protected. End users can then monitor the propagation  of 
their data directly through the cloud hosting provider, ensure that all sensitive data is treated as 
expected, and spot any deviations. Service providers can also take advantage of data flow tracking 
for enabling an additional layer of protection against data leaks, by preventing the propagation of 
marked data beyond a set of specified network and file system locations, as well as for protecting 
their own digital assets (e.g., configuration files or back-end databases). 
 

CloudFence Architecture.  Figure 10 shows the main interactions among the different parties that 
are involved in CloudFence-enabled services. Users register with the cloud provider (1), and then 
use the services offered by various service providers using the same set of credentials (2). Sensitive 
data are tagged and tracked transparently throughout the cloud infrastructure (3). Users can audit 
their data through a web interface exposed directly by the cloud provider (4).  To facilitate the 
monitoring of user data, end users have also access to the Cloudopsy dashboard with meaningful log 
messages and a visual representation of the audit trails of their data. 
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Figure 10: CloudFence Architecture  

 
 

A major challenge in supporting data auditing for services with a very large number of users is the 
need for concurrent propagation of tagged data that carry different tags for each user. At the same 
time, data tracking must be performed at a fine-grained level to allow for precise tracking of user 
data as small as a credit card number. CloudFence introduces a novel data flow tracking framework 
based on runtime binary instrumentation that supports byte-level data tagging, and 32-bit wide tags 
per byte, enabling fine-grained data tracking for up to four billion users. Cross-application and cross-
host tag propagation is handled transparently, without requiring any modifications to application 
code. Despite the significant increase in tag space, the runtime overhead of CloudFence is 
comparable to existing byte-level data flow tracking systems that support just a single or up to eight 
tags, and an order of magnitude lower compared to systems that support arbitrarily many tags.  
 
Evaluation. We have successfully evaluated the effectiveness of CloudFence using two real-world 
applications, and two publicly disclosed data leakage vulnerabilities in those applications. Cloud- 
Fence can be easily integrated in both applications through the placement of just a few API calls, 
while it offers effective protection against a wide range of data theft threats, including SQL injection 
and arbitrary file read attacks. 
 
To assess the runtime overhead of CloudFence we compare it against Libdft [51], a data flow 
tracking framework for commodity systems, as well as the unmodified application in each case. 
Surprisingly, CloudFence not only provides extra functionality that is crucial for cloud 
environments, but at the same time it is even faster than Libdft for the cases we considered. The 
extreme case in which each add operation generates a new tag resulting in a 20X slowdown (upper 
bound). 
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4.2.2 Cloudopsy: Visualization Tool for Cloud Data Flow 

We have developed a visualization tool for information flows, which we integrated with Cloud- 
Fence. Our tool, Cloudopsy [100], is a service that provides secure and comprehensible data auditing 
capabilities to both the service providers and their clients for user data collected in the realm of these 
cloud-hosted services. Cloudopsy is particularly useful for users of cloud infrastructures who wish to 
audit how their data is being used by third-parties interacting with that data in the context of the 
same cloud infrastructure (e.g., service co-resident on Amazon AWS). Even though information 
flow auditing and enforcement techniques use similar mechanisms, we focused our efforts in 
auditing, due to the concerns that enforcement could have adverse effects like breaking parts of 
services. 

 
Cloudopsy’s mechanism is divided in three main components: a) the generation of the audit trails, 
b) the transformation of the audit logs for efficient processing, and c) the visualization of the 
resulting audit trails. Cloudopsy operates on together with our cloud-wide data tracking framework 
(see upcoming Subsection) and it enhances with the power of visualization, when presenting the final 
audit information to data owners and service providers. Notably, this novel feature of Cloudopsy 
significantly reinforces end-user awareness regarding the use and exposure of their sensitive data by 
the cloud-hosted applications. 
 
We have integrated Cloudopsy with CloudFence, thus making Cloudopsy the user interface of 
CloudFence. Figure 11 displays the movement of a single user’s “marked” sensitive data, i.e., credit 
card number and email address, as they move in time between the audit-enabled applications. 
 

 
 
 

Figure 11: Cloudosy Screenshot 
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4.2.3 Data Provenance with Dynamic Instrumentation 

Data provenance – describing how an object came to be in its present state – is an area that has 
drawn much research attention lately.   There is a number of schemes that have been proposed on 
how to apply it in practice and in widely used applications. Some representative provenance 
schemes have been proposed for databases [24], web applications [56], and notably cloud computing 
[72]. One could argue that applying data provenance at a low level, e.g. at the system call-level, 
would be sufficient. However, that is not always the case. Applying data provenance to different 
layers of the software stack can provide different levels of information. For instance, in the case of a 
web browser case, data provenance provided solely at the system-call level would be unable to 
capture and record higher-level information. This can be the URLs the browser renders, in the case 
the communication channel is over HTTPS. On the other hand, the function-call level, as provided 
by OpenSSL, has access to the encrypted data stream used by an HTTPS connection. 

Based on the example above, one could also argue that data provenance must be provided at the layer 
closest to the information we would like to capture and document. This may prove to be a very 
challenging task, especially when dealing with large and complex software applications such as web 
browsers. For example, Firefox 4 consists of more than 5M lines of code, spread in almost 40,000 
files. 
 
Data Provenance Framework. Instead of exploring how we can extend an application to provide 
data provenance, we took an alternate route: we proposed, and built, a universal data provenance 
framework using dynamic instrumentation. The main goal of our framework was to provide an easy 
way to prototype any data provenance scheme, no matter the size and complexity of the sys- tem it is 
applied on. We argue that lightening the implementation burden of such data provenance applications 
would lead research in this field forward, allowing researchers to test and evaluate their ideas more 
easily. Our framework was built on dynamic instrumentation, and especially on DTrace. Its key 
feature is that it can greatly assist the user in discovering paths in the system that interesting data pass 
through. For example, all URLs and search keywords that flow inside a browser. After the discovery 
phase, the user can dynamically instrument these points to record provenance about this transit data. 
Moreover, in cases where the source code of a system is available, our framework could be used for 
simply discovering points of interest in the system and evaluating a data provenance application. 
Then, prototyping a low-overhead source-code level implementation of the data provenance 
application at production level is trivial, as the user knows exactly which points to instrument in the 
system. 

 
We need to mention here that the choice of dynamic instrumentation for such cases seems ideal as it 
provides several advantages. First of all, it requires no changes to the source code of the system that 
data provenance capabilities are going to be added in. Second, it can be easily enabled or disabled, 
even at runtime in some cases, as we shall see later on. Finally, it removes the requirement of having 
the source code, although having it could be helpful during the discovery phase.  On the other hand, 
the main disadvantage of dynamic instrumentation is its runtime overhead. However, this is not an 
issue in our case as we perform system-call and function-level, but not instruction-level 
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instrumentation, which can be extremely expensive. 
 

Evaluation. We have demonstrated the functionality of out framework in three case studies with real 
world systems, namely: a file system, a database (SQLite), and a web browser (Safari). The last usage 
scenario, extracting provenance information from a web browser, revealed some interesting 
limitations of our framework against very large and complex systems. These limitations are mostly 
due to the restricted instrumentation actions of DTrace. Combining a more powerful tool in our 
framework, like the dynamic binary instrumentation of Pin, seems sufficient to overcome these 
limitations, but in some extra cost. Also, tools implemented on top of Pin, like CloudFence, could 
potentially add more features to our framework. 
 
4.3 Misinformation and Decoy Technologies 

Our MEERKATS resilient cloud vision included a critical component, called DIGIT, capable of 
generating, injecting, and tracking deceptive information aimed at detecting and confusing 
adversaries. As part of DIGIT, we developed and commercialized several systems: 

1. DIGIT introduces computational decoys, where realistically-looking service requests are 
automatically manufactured and introduced into the flow of a system [54]. 

2. Novo introduces document decoys, where realistically-looking documents are manufactured 
and instrumented to catch device thieves. Novo is a commercial product that is being tested at 
various companies and government agencies. 

3. SAuth introduces password decoys, where fake passwords that are indistinguishable from real 
user passwords are automatically inserted into a service’s password database in anticipation of 
whole-database password leaks [53]. 

 
 
4.3.1 DIGIT: Computational Decoys 

We have developed the concept of computational decoys, a novel approach that encompasses 
deceptive information and “throw-away” computation to impede the ability of an adversary to take 
advantage of any initial success they may have in compromising a system. The main goal of our 
approach is to introduce uncertainty as to the validity and authenticity of data captured by an 
adversary after gaining unauthorized access in one or more hosts, and in some scenarios, reveal the 
presence of the adversary. 
 

DIGIT. We have applied this approach in DIGIT [54], a deceptive information generation, injection, 
and tracking system aimed at detecting and confusing adversaries in cloud settings. The system is 
based on a large number of application replicas, some of which (the “deception set”) are provided 
with fake inputs. An adversary controlling a malicious or compromised replica will be uncertain as 
to the validity of any captured data. The whole process is orchestrated by an application level proxy 
that mixes and dispatches real and fake requests to primary and decoy application replicas, 
respectively. Primary and decoy replicas can be swapped at any time simply by changing the source 
of inputs, increasing the confusion to potential adversaries. The focus of our prototype is the 
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automated generation of HTTP message decoys. 
 

Evaluation. To evaluate our prototype we have implemented and experimented with a simple web 
service over HTTP. The service exposes a simple search engine interface that accepts keyword 
searches. By dynamically instrumenting the application server, we were able to focus on application 
behavior and capture control flow properties and execution operations. In our test scenario we 
performed various keyword lookups in the test search engine service. Measurable characteristics 
included the outcome of the query, the time to process a request, and the response size– all proper- 
ties directly affected by user input. Decoy inputs were organized into labeled groups based on the 
behavior of the instrumented server (short/long response time, fast/slow processing, valid/invalid 
response). For our evaluation we used an actual trace of user search engine queries (single word 
input) to evaluate the abstracted decoys, and monitored the behavior of the application given (a) a 
sample from the actual trace, (b) a sample from the generated decoys, and (c) a random mix of the 
two samples. An interesting observation was that fake information, when processed by an 
application, can result in dramatically different code execution paths and overall behavioral side 
effects. For instance, if an ill-formatted HTTP request is provided, the application will likely exit 
with error, revealing that the request was a fake. 
 
4.3.2 Novo: Document and App Decoys  (Commercialized) 

A variant of the DIGIT deception technology was transitioned under DARPA support to Allure 
Security Technology for incorporation in Allure’s product, Novo. Novo’s focuses on unusual user 
behavior and detection of the touching or exfiltration of strategically placed deceptive material. 
These include decoy documents and other bogus but believable media such as decoy software, 
decoy cloud services, and decoy apps in the mobile case. The DIGIT component was designed and 
prototyped to rapidly generate and place decoy materials as a cloud based security service. Novo 
incorporates this functionality in response to detected attack, whether in a cloud service, host, or 
mobile phone. The DIGIT technology incorporated in Novo can rapidly inject a decoy file system 
on a mobile phone or a laptop or desktop. The injection process includes pre-positioned cloud 
storage services such as Box and Dropbox containing highly believable decoy documents in Office 
and PDF formats. Novo is soon to be released as a GA product and is being demonstrated to various 
departments of the DoD who are interested in deploying Allure’s Novo decoy technology. 
 

4.3.3 SAuth: Password Decoys 

Password theft can cause annoyance, financial damages, and loss of privacy. Services employing 
passwords urge their users to choose complex combinations, change them frequently, and verify the 
authenticity of the site before logging in. However, even users that manage to follow all these rules 
risk having their passwords stolen. Security pitfalls in a series of popular services have resulted in 
frequent and massive password leaks. Even though services usually store a digest or hash of the 
password (excluding rare incidents), the emergence of powerful password-cracking platforms has 
enabled attackers to recover the original passwords in an efficient manner. What is more, password- 
reuse practices by the users have enabled domino-like attacks 

 
We have developed Synergetic Authentication (SAuth), an authentication mechanism based on the 
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synergy between different services that complements their individual procedures for verifying the 
identity of a given user. To successfully log into service S one is required to successfully 
authenticate both with S and a cooperating vouching service V. For example, a user logging into his 
Gmail account, after successfully submitting his password to the Gmail server, he will be required to 
also submit his Facebook password to the Facebook server.  Once Gmail receives notice   from 
Facebook that the same user has managed to authenticate successfully it will have an additional 
assurance that the user is the actual owner of those accounts. The approach is founded upon the way 
most users access the web. In particular, users remain concurrently and constantly authenticated 
with many services such as e-mail and social networks unless they explicitly log out. A service the 
user is already logged on can transparently vouch for him, e.g., through client-side cookies. In the 
above example, had the user been already logged in to Facebook, he would just be required   to 
enter his Gmail password to access his e-mails.  Facebook would use his user agent cookies   to 
transparently authenticate him and subsequently vouch for him to Gmail.  At the same time,   an 
attacker that has compromised the user’s password for  S  is unable to access that account as   he is 
lacking the password for vouching service V and thus cannot complete the authentication process. In 
other words, for an attacker to compromise one account, he must acquire multiple account 
passwords for that user located in different databases of distinct services. 
 
Problem Statement. Password-based authentication has received a lot of criticism lately with many 
large services like Google and PayPal looking for alternative means to authenticate users. Some 
alternatives that have been proposed in the past include public-key mechanisms, such as TLS client 
certificates and more. Unfortunately, none of the proposed alternatives has proven sufficiently 
enticing. Passwords have been the de facto method for authenticating users for many decades, and 
have proven to be resilient to change. 

 
Two-factor authentication [6] has probably been the most successful proposal to complement 
password-based systems by requiring that an additional password is provided,   acquired through a 
second independent channel. Unfortunately the overhead both in cost and effort to deploy and 
maintain such system has led to adoption only by high-value services such as banking sites and e-
mail providers. Moreover, it scales poorly when users are required to manage multiple secondary 
factors for distinct services. Finally, a study has shown that it can push users to weaker passwords. 
Single-sign-on services like OpenID, as well as the OAuth-based interfaces of social networking 
services, offer the alternative of maintaining a single on-line identity, protected by one, hopefully 
strong, password. Users of such services, instead of creating separate, new accounts and passwords 
with third-party services, authenticate with a trusted identity provider (e.g., Facebook), that vouches 
for them.  However, these identity providers present a single point of failure, may carry    privacy-
related risks, and can also suffer vulnerabilities themselves. A recent study attributes the limited 
adoption of such services to concerns regarding their availability and relinquishing control of the 
user base as part of outsourcing authentication. 
 
SAuth Architecture. SAuth does not suffer from any of the above problems, as it complements, 
rather than substitutes, existing authentication procedures at each site. Therefore, it does not de- 
grade the security of a service, but allows heterogeneous authentication systems to operate at each 
site, while preserving each party’s user accounting system. Finally, it encourages symmetric 
relations between services as it enables all participating sites to operate both as relying and 
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vouching parties if they wish to. In Figure 12, we provide the steps executed for Alice to 
successfully authenticate with service S in the presence of service V, which is trusted by S and has 
agreed to vouch for its own users to V. 
 

 
 

Figure 12: Synergy-Enhanced Authentication 
 

The steps are as follows. A user, with accounts in services S and V (e.g., Twitter and Google) tries to 
log in S. A standard authentication process takes place which involves the user’s password for S 
(step 1a). Subsequently service S initiates our proposed protocol which involves service V vouching 
for the user (step 1b). The user is redirected to V with which he also engages in a standard 
authentication process (step 2a) at the end of which service V generates a vouching token for the 
user to return to S (step 2b). Finally, service S allows the user to access his account if and only if the 
vouching token from V is verified (step 3a) and optionally returns a persistent authentication token 
(e.g., cookie) that will bypass this authentication process for subsequent interactions (e.g., HTTP 
requests) with S. 

 
To address the issue of password reuse, which can render vouching ineffective if a user recycles the 
same password across all vouching services, we employed decoy passwords. Each service 
automatically generates multiple decoy passwords that are similar to the one chosen by the user. 
Furthermore, for the decoys to blend in, they receive no special treatment by the service and are 
thus considered as legitimate credentials for user authentication. Note however, that the user is never 
aware of them. Enabling decoy passwords requires no changes in the database schema, can be 
implemented with wrappers to existing password management functions and introduces multiple 
password entries per user instead of a single one. An attacker cracking the passwords will be unable to 
identify the actual one and resort to on-line guessing against the vouching services. 
 

Evaluation. We have extensively evaluated the security of SAuth and compare it with the current 
practice of single-site authentication. In particular we have considered four cases: The first refers to 
the normal scenario where someone without any prior knowledge of the password attempts to log in 
to a service. The second is a special sub-case where the user of the target account is reusing his 
password in more than one services. The third and the fourth, refer to the scenario where a service 
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has been compromised and the user’s password for that service leaked. Our results indicated that our 
approach offers a significant increase in the security of all cases except for the fourth. 
4.4 Cloud Monitoring and Self-Healing Technologies 

A fourth class of critical components of a resilient class are continuous monitoring systems, which 
can detect emerging attacks before they inflict damage and either defeat them through self-healing or 
direct other defense components, such as migration or decoy systems, to start defending the system. 
In this realm, we developed several systems, which we next describe. 
 
 
4.4.1 DMCC: Distributed Monitoring and Cross Checking 

Distributed Monitoring and Cross Checking (DMCC) is a core subsystem of the MEERKATS cloud 
resilience vision. It performs distributed monitoring and cross checking to detect any attacks against 
cloud services and to trigger mitigation actions, such as data migration and decoy services. This is 
mainly accomplished through the correlation of alerts generated by anomaly detection (AD) sensors 
placed at different layers of abstractions in the system. We achieved our project goal in a few sub-
tasks. 

 
We developed three approaches to perform alerts correlation in DMCC [94, 101]. The first approach 
is called cross-site correlation, where we proposed and evaluated a distributed model aggregation 
and exchange scheme to solve dynamic path problem introduced by load balancing in the cloud 
environment. We then investigate cross-layer and cross-sensor correlations to implement defense in 
depth and breadth using multiple security controls. Cross-sensor alerts correlation aggregates alerts 
from multiple security controls deployed at the same execution layer, and cross-layer alerts 
correlation integrates alerts from sensors placed across multiple execution layers aligned with attack 
vectors. Together they also provide an effective unified defense for any attack mitigation 
mechanism and helps to reconstruct attack scenarios for forensic purposes. 

 
To facilitate system monitoring in DMCC and the integration with other MEERKATS components, 
we have designed and built a security architecture benchmark, called the Wind Tunnel system [19], 
that performs synthetic data generation and multi-layered alerts correlation. We experiment with 
nineteen security controls across three pre-defined layers - network, database and host, to 
demonstrate the capability and usability of Wind Tunnel system. In our experiments, we focus on 
server-side web applications with real-world web attacks that exhibit multistage components. We 
implement three classic correlation functions and invent three similarity based correlation functions, 
and study their performance empirically using Wind Tunnel system. We quantitatively demonstrate 
the improvement on detection performance while minimizing false positives with a systematic 
comparison of several correlation techniques. 
 

Evaluation. We built the Wind Tunnel benchmark with nineteen supported security controls across 
three execution layers with six alerts correlation methods. Researchers interested in using Wind 
Tunnel to generate data and/or evaluate web application defenses are welcome to contact us. We 
have two virtual machines with instructions to deploy Wind Tunnel as well as the source code 
available for noncommercial research purposes. 
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4.4.2 CRP: Self-Healing Multitier Defense 

To mitigate the effects of security bugs that can reduce the integrity of systems, a plethora of run- 
time protection mechanisms have been devised. Nevertheless, while protection mechanisms render 
certain types of vulnerabilities infeasible or impractical, they do not also offer high availability and 
reliability, as they frequently resort to terminating applications that behave abnormally to prevent 
attackers from performing any useful action. 

 
To increase software availability, many mechanisms that aim to recover execution when unhandled 
errors occur have been proposed. One of these mechanisms is software self-healing based on rescue 
points [84]. It operates based on the observation that applications already contain code for handling 
anticipated errors and proposes reusing this code to also handle unexpected errors. Rescue points 
(RPs) are essentially functions that contain error handling code, which can be exploited to recover 
from errors occurring within the RP, including the RP routine itself and all called routines. A 
checkpoint is taken upon entering a RP, and execution is rolled back to that checkpoint when an 
unhandled error occurs, while concurrently a valid error code is returned by the RP to the application 
(i.e., through the routine’s return value), so that it can gracefully handle the failure. 

 
Applying RP-based self-healing on self-contained functions is straightforward; however there are 
many functions that have side effects, such as transmitting data to other entities on the network. 
Applications that are part of multi-tier architectures, like client-server or three-tier architectures 
(comprised by presentation, logic, and data tiers), contain many such functions. Introducing RPs in 
such architectures can be problematic because it can result in inconsistent states between the tiers 
when a roll back occurs. 

 
We have developed cascading rescue points (CRPs) for self-healing applications in multi-tier 
architectures to address the inconsistency issues introduced by traditional RPs. In our approach, 
when an application executing within a RP communicates with an application on the next tier, we 
notify the remote peer to also perform a checkpoint, cascading, in this way, the checkpoint and RP to 
the lower tiers of the architecture. If a RP successfully completes execution or if it triggers a roll 
back due to an error occurring, a notification is also send to all the peers that were instructed to 
checkpoint, so that they also perform the appropriate action. 

 
We have implemented CRPs using the Pin [64] dynamic binary instrumentation framework for x86 
Linux, extending our previous work [78] on deploying traditional RPs using Pin. We improve the 
check pointing mechanism used by utilizing the fork system call to quickly create copy-on-write 
copies of an application’s image and use filters to mark the individual bytes modified by threads for 
efficient thread-wide check-pointing. We also intercept system calls to restore the contents of 
overwritten memory and to transparently inject information in the communication channels between 
applications of different tiers that run on top of our tool. We use the injected data to implement a 
protocol for conveying notifications between the various parties. Additionally, we utilize TCP out-of-
band data to asynchronously notify remote peers of a successful exit from a RP. 
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Evaluation. We have evaluated CRPs using popular server applications, like Apache and MySQL, 
which suffer from well-known vulnerabilities and show that our CRP protocol does not introduce 
prohibitive overheads. The performance overhead imposed by CRP varies between 4.54% and 
71.96% depending on the application. Note that CRP can be ported with moderate effort to operate 
on other platforms supported by Pin, including Windows and BSD operating systems, and the x86- 
64 architecture. 
 
4.4.3 Virtual Application Partitioning 

Software faces a multitude of threats that enable attackers to execute arbitrary code through code- 
injection and code-reuse attacks, bypass security mechanisms like user authentication, and exfiltrate 
sensitive data. Oftentimes, attacks are enabled by bad system design and configuration errors, or 
even originate from otherwise “trusted” users. A plethora of defensive mechanisms that mitigate 
such threats have been proposed in the past like memory allocators [7] and data-flow integrity [22], 
but very few of them have seen broad adoption. 

 
Two  of the largest obstacles in the adoption of these security defenses are the requirement   for 
source code by approaches that are applied at compile time and the significant performance 
overhead imposed by solutions operating solely on binaries. Techniques that are both lightweight 
and require no software recompilation have been also proposed, but they often address a narrower 
set of threats. Furthermore, many of these techniques are not orthogonal to each other and cannot be 
easily integrated. That is, even when they can be combined, their cumulative overhead becomes 
prohibitive. 

 
We have observed that software does not have uniform security requirements throughout its 
execution. In particular, different parts or components of an application are usually targeted by 
different types of attacks, or suffer dissimilar exposure to a specific threat, because of external 
events or innate properties of the software. For instance, protecting a service against sensitive data 
leaks is only relevant after first reading the data. Similarly, consider an FTP server that serves both 
authorized and public users. In the latter case, the server is intrinsically more exposed to exploits 
because more of its functionality is accessible by everyone. In both examples, execution is 
partitioned to segments with different security requirements. If we can identify these partitions, we 
can apply diverse protection mechanisms as and when needed to control their exposure to different 
types of threats, while avoiding cumulative overheads. 

 
We have proposed virtually partitioning the execution of applications, and adapting the defenses 
being deployed based on the executing partition. The benefits of using adaptive defenses are 
twofold. First, it enables us to apply multiple protection mechanisms selectively, disabling 
mechanisms that are not relevant, or of a high priority, in favor of deploying more appropriate ones. 
Second, it provides a risk management mechanism that is orthogonal to existing protection schemes. 
In essence, virtual partitioning provides a tunable knob that controls the intensity of the defenses 
being applied in exchange for more resources (e.g., CPU cycles or memory). 

 
Our work focused on automatically identifying how intrinsic properties of the software partition it to 
segments with disparate security requirements. We postulated that using events, such as reading 
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sensitive data from a database, for separating an application into different partitions is 
straightforward and can in fact be implemented by intercepting process-operating system 
interactions. We supported this claim by implementing a runtime environment that can partition 
applications based on such events, and apply information flow tracking to monitor sensitive 
information. 

 
However, our main goal was to develop a more generic and flexible framework for virtually 
partitioning applications. We also introduced a methodology for automatically determining how and 
where user authentication splits application execution to partitions with asymmetric exposure to 
attacks, by dynamically profiling binaries at runtime and without the need for source code, 
debugging symbols, or any other information about the application at hand. We have developed a 
runtime environment that uses the virtual partitions to dynamically adapt the defensive mechanisms 
applied on binaries at runtime. We reuse existing schemes, such as dynamic taint analysis and 
instruction- set randomization (ISR) [50], and apply them selectively on the pre and post-
authentication parts of the application. 

 
Evaluation. We have applied our approach on well-known server applications utilizing their built- 
in authentication mechanisms, as well as commonly used frameworks such as pluggable 
authentication modules. Our findings demonstrated that we can automatically identify their 
authentication points with accuracy. We have also evaluated our runtime to verify its ability to 
dynamically switch between different protection mechanisms, and determine the performance 
benefits that can be gained by reducing the intensity of defenses after user authentication. For this 
purpose, we utilized dynamic taint analysis and ISR on the pre and post-authentication partitions 
respectively. In addition, our results showed that we can greatly reduce the user-observable 
overhead of dynamic taint analysis by up to 5X, by replacing dynamic taint analysis with ISR after 
the user successfully authenticates. 
 

4.5 Stable Multithreading Technologies 

A fifth component of the MEERKATS cloud resilience vision deals with the significant risks posed by 
multi-threaded programs. These programs are notoriously difficult to write correctly and safely, as 
well as to test and debug. Unfortunately, bugs in multithreaded programs can lead to serious 
vulnerabilities such as time of check time of use attacks and memory corruptions, which attackers 
can exploit to gain unauthorized information, corrupt critical data structures, and execute code. 
Hence, a key part of our MEERKATS effort has been to develop new approaches for safer and more 
reliable multithreaded programming. In this realm, we made two key contributions: 
 

1. Stable Multithreading (StableMT) is a new multithreading paradigm, in which a multithreaded 
program tries to take on each execution a schedule that is known to be safe [98]. We developed 
a number of systems to implement and improve stable multithreading, including our latest 
system, Parrot [29]. 

2. Crane, a stable replication system that leverages StableMT and Parrot to enable for the first 
time the transparent replication of arbitrary non-deterministic programs [27]. 

 
Both systems have been released opensource on GitHub. 
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4.5.1 Stable Multithreading 

Multithreaded programs have become pervasive due to the accelerating computational demand and 
the rise of multi-core hardware. Unfortunately, despite much research and engineering effort, these 
programs are still notoriously difficult to get right. They are plagued with concurrency bugs, which 
can easily cause severe program behaviors such as wrong outputs, program crashes, and security 
breaches. 

 
Our research [98] reveals that a key reason of this difficulty is that multithreaded programs have too 
many possible thread interleavings, or schedules. Even given only a single input, a program may run 
into excessive schedules, depending on factors such as hardware timing and OS scheduling. 
Considering all inputs, the number of schedules is even much greater. Finding a buggy schedule in 
this huge schedule set is like finding a needle in a haystack, which aggravates understanding, 
testing, and analyzing of programs. For instance, testing is ineffective because the schedules tested 
in the lab may not be the ones run in the field. 

 
To reduce the number of schedules for all inputs, we have studied the relation between inputs and 
schedules of real-world programs, and made a surprising discovery: many programs require only a 
small set of schedules to efficiently process a wide range of inputs. Leveraging this discovery, we 
have proposed the idea of stable multithreading (StableMT) [98, 29] that reuses each schedule on a 
wide range of inputs. StableMT conceptually maps all inputs to a greatly reduced set of schedules, 
drastically shrinking the “haystack,” making the “needles” much easier to find. StableMT can 
greatly benefit understanding multithreaded programs and many reliability techniques, including 
testing, debugging, replication, and verification. For instance, testing schedules in such a much 
smaller schedule set becomes a lot more effective. 
 
StableMT is complementary to another idea called deterministic multi-threading (DMT) that 
enforces the same schedule on each input. Our research [98] has shown that although DMT is 
useful, it is not as useful as commonly perceived, because a DMT system can map slightly changed 
inputs to very different schedules, which can easily cause very different program behaviors. 
Furthermore, the number of schedules for all inputs in DMT can still be extremely large, which is 
the key problem that StableMT mitigates. 

 
Figure 13 shows different multithreading approaches in a conceptual level. Traditional 
 
 

 
(a) Traditional. (b) Deterministic. (c) Stable (deterministic).  (d)  Stable (nondeterministic) 

 

Figure 13:  Multithreading Alternatives - Red stars represent buggy schedules 
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multithreading (Figure 13a) is a conceptual many-to-many mapping between inputs and schedules. 
DMT (Figure 13b) may map each input to an arbitrary schedule, reducing programs’ robustness on 
input perturbations. StableMT (Figure 13c and Figure 13d) reduces the total set of schedules for all 
inputs (represented by the shrunk ellipses), increasing robustness and improving reliability. 
StableMT is complementary to DMT: a StableMT system can be deterministic (Figure 13c) or non- 
deterministic (Figure 13d). Notably, StableMT has attracted the research community’s interest since 
it was initially proposed by us [31], and most subsequent systems are both StableMT and DMT. 

 
To realize StableMT, we have built three systems, Tern [31], Peregrine [30], and Parrot [29], each 
addressing a distinct challenge. In particular, Parrot, our most mature StableMT system, provides an 
efficient and easy to use stable multithreading runtime and is available open source at 
github.com/columbia/parrot. Moreover, to justify the benefits of StableMT, we have applied 
StableMT to several reliability and security topics, including improving precision of static analysis 
[96], detecting security rule violations [28], and building transparent state machine replication 
service for general multithreaded programs [27]. We discuss the last topic next. 
 
4.5.2 Crane:  Correctly Replicating Nondeterministic Executions 
 
State machine replication (SMR) leverages distributed consensus protocols such as Paxos to keep 
multiple replicas of a program consistent in face of replica failures or network partitions. This fault 
tolerance is enticing on implementing a principled SMR system that replicates general programs, 
especially server programs that demand high availability. Unfortunately, SMR assumes deterministic 
execution, but most server programs are multithreaded and thus nondeterministic. Moreover, existing 
SMR systems provide narrow state machine interfaces to suit specific programs, and it can be quite 
strenuous and error-prone to orchestrate a general program into these interfaces. 
 
We have built Crane, an SMR system that transparently replicates general server programs. Crane 
achieves distributed consensus on the socket API, a common interface to almost all server 
programs. It leverages Parrot, a deterministic multithreading system we built, to make multi- 
threaded replicas deterministic. It uses a new technique we call time bubbling to efficiently tackle a 
difficult challenge of nondeterministic network input timing. Evaluation on five widely used server 
programs (e.g., APACHE, CLAMAV, and MYSQL) shows that Crane is easy to use, has moderate 
overhead, and is robust.  Crane’s source code is at github.com/columbia/crane. 

 
Problem Statement. State machine replication (SMR) models a program as a deterministic state 
machine, where the states are important program data and the transitions are deterministic 
executions of program code under input requests. SMR runs replicas of the program and invokes a 
distributed consensus protocol (typically Paxos [59, 57, 90]) to ensure the same sequence of input 
requests for replicas, as long as a quorum (typically a majority) of the replicas agrees on the input 
request sequence. Under the deterministic execution assumption, this quorum of replicas must reach 
the same exact state despite replica failures or network partitions. SMR is proven safe in theory and 
provides high availability in practice [23, 68, 21, 80, 20, 67, 49, 41]. 
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The fault-tolerant benefit of SMR makes it particularly attractive on implementing a principled 
replication system for general programs, especially server programs that require high availability. 
Unfortunately, doing so remains quite challenging; the core difficulty lies in the deterministic state 
machine abstraction required by SMR, elaborated below. 

 
First, the deterministic execution assumption breaks down in today’s server programs because they 
are almost universally multithreaded. Even on the same exact sequence of input requests, different 
executions of the same exact multithreaded program may run into different thread interleavings, or 
schedules, depending on such factors as OS scheduling and physical arrival times of requests. Thus, 
they can easily exercise different schedules and reach divergent execution states – a difficult 
problem well recognized by the community [17, 49, 45, 41]. To tackle this problem, one prior 
approach, execute-verify [49], detects divergence of execution states and retries, but it relies on 
developers to manually annotate states, a strenuous and error-prone process. 

 
Second, to leverage existing SMR systems such as ZooKeeper [4], developers often have to 
shoehorn their programs into the narrowly defined state machine interfaces provided by these SMR 
systems. Ideally, experts – those with intimate knowledge of the arcane (think how many papers [59, 
57, 90, 23, 68] are needed to explain Paxos), under-specified [68] SMR protocols and subtle failure 
scenarios in distributed systems – should build a solid SMR system, which all other developers then 
leverage. However, an SMR system often has to settle for a specific state and transitional interface 
because it cannot anticipate all possibilities in which developers structure their programs.  For 
example, Chubby [21] defines a lock server interface, and ZooKeeper a pseudo file system 
interface. Orchestrating a sever program into such a narrow interface not only requires intrusive and 
error-prone modifications to the program’s structure and code, but also disrupts the SMR system 
itself at times. For instance, developers abused Chubby for storage [21], causing the Chubby 
developers to add quota support. 
 

Crane.  We developed Correctly Replicating Nondeterministic Executions (Crane), an SMR system 
that transparently replicates server programs for high availability.  With Crane, a developer focuses 
on implementing her program’s intended functionality, not replication. When she is ready to replicate 
her program for availability, she simply runs Crane with her program on multiple replicas. Within 
each replica, Crane interposes on the socket and the thread synchronization interfaces to keep 
replicas in sync. Specifically, it considers each incoming socket call (e.g., ACCEPT() a client’s 
connection or RECV() a client’s data) an input request, and runs a Paxos consensus protocol [68] to 
ensure that a quorum of the replicas sees the same exact sequence of the incoming socket calls. 

 
To address nondeterminism, we have built three deterministic multithreading (DMT) systems [31, 30, 
29]. DMT [18, 33, 73, 15, 17, 45, 16] typically maintains a logical time that advances 
deterministically on each thread’s synchronization.  Though related, the logical time in DMT is not to 
be confused with the logical time in distributed systems [58].  By serializing thread synchronizations, 
DMT practically makes an entire multithreaded execution deterministic. The overhead of DMT is 
typically moderate because most code is not synchronization and can still run in parallel. Specifically, 
Crane leverages Parrot [29], our latest DMT system. Parrot incurs merely 12.7% overhead in average 
on a wide range of 108 popular multithreaded programs on 24-core machines. 
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A challenge in realizing SMR for multithreaded executions is that, simply combining Paxos and 
DMT is not sufficient to keep replicas in sync, because the physical time that each request arrives 
at different replicas may still be different, leading to divergence of execution states and outputs. 

 
Two prior approaches attempted to tackle this challenge.  Execute-agree-follow [41] records a 
partially ordered schedule of Pthreads synchronizations on one replica and replays it on the other 
replicas, which may incur high network bandwidth consumption and performance overhead. dOS 
[17] also leverages DMT for replication, but it determines the logical admission time for each 
request using two-phase commit. Aside from two-phase commit’s known intolerance of primary 
failures, per-request commit is also costly. 

 
One may consider solving this challenge by leveraging the underlying distributed consensus 
protocol to determine the logical admission time for each request. Specifically, when running the 
consensus protocol to decide each request’s position in the request sequence, a predicted logical 
admission time can be carried as part of the decision as well. Unfortunately, predicting a logical 
admission time for each request accurately is quite challenging because typical server programs 
have background threads which may frequently tick logical clocks. A too-small predication leads 
to replica divergence if another replica has already run past the predicted logical time. A too- large 
predication blocks the system unnecessarily because replicas cannot admit the request before 
reaching the predicted time. 

 
Our key insight is that many requests need no admission time consensus because their admission 
times are already deterministic. Hypothetically, if the requests arrive faster than they are admitted 
at each replica, each request’s admission time is fully deterministic because each replica simply 
admits requests as fast as it can. In practice, requests do not arrive this fast. However, there are still 
frequent bursts of requests that arrive together. Among replicas, as long as the first request of a 
burst is admitted at a deterministic logical time, all the other requests in the burst are admitted at 
deterministic logical times without requiring consensus. 

 
Leveraging this insight, we created a technique called time bubbling to enforce deterministic 
logical times efficiently. It ensures that the first request in a burst is admitted at each replica 
deterministically by inserting a deterministic wait after the previous burst of requests are all 
admitted. During this wait, each replica only processes already admitted requests, and does not 
admit new requests. Crane negotiates a consistent duration of the wait via the underlying 
distributed consensus protocol, and enforces this wait at each replica via DMT. These waits are 
like deterministic time bubbles between bursts of requests (hence the name of the technique), 
creating the illusion that the requests arrive faster than they are admitted. 

 
In short, by converting per-request admission time consensus to per-burst, time bubbling efficiently 
combines the input determinism of Paxos and the execution determinism of DMT. For busy servers, 
requests in bursts greatly outnumber the other requests. (We observed that 66.65% to 93.88% of 
requests are in bursts.) They rarely need to invoke time consensus, enjoying good performance. For 
idle servers, time consensus overhead does not matter much because the servers are idle anyway. 
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Evaluation. We implemented Crane by interposing on the POSIX socket and the Pthreads 
synchronization interfaces. It intercepts operations along these interfaces by hijacking dynamically 
linked library calls for transparency. It implements the Paxos protocol atop libevent [60] for 
distributed consensus, and leverages our Parrot system for deterministic multithreading. Unlike prior 
SMR systems with narrow interfaces, Crane’s checkpoint and recovery must work with general 
programs. To this end, it leverages CRIU [26] to checkpoint and restores process states and LXC [2] 
for file system states. An additional benefit of using the LXC container is that Crane isolates the 
replicated server program from the environment, avoiding nondeterministic resource contentions. 

 
We evaluated Crane on five widely used server programs, including HTTP servers APACHE and 
MONGOOSE, an anti-virus server CLAMAV, an uPnP multimedia server MEDIATOMB, and a 
database server MYSQL. Our results on popular performance benchmarks show that Crane works 
with all the servers easily (three servers require no modification, and the other two servers each 
require only two lines of Parrot hints [29] to improve performance); that Crane’s performance 
overhead is moderate (an average of 34.19% overhead at the servers’ peak performance setups on 
our 24-core machines); and that Crane is robust on replica failures. 

 
Our evaluation covered a number of questions, including: (1) Is Crane easy to use? (2) Compared to 
nondeterministic executions, does Crane consistently enforce the same sequence of network outputs 
among replicas? (3) What is Crane’s performance overhead compared to nondeterministic 
executions? (4) When the default schedules enforced by the Parrot DMT scheduler are slow, how 
much optimization can Parrot’s performance hints bring to Crane? (5) How sensitive are the two time 
bubbling parameters to Crane’s performance? (6) How fast are Crane’s checkpoint and recovery 
components on handling replica failures? For the purpose of this report, we will only discuss 
question (3); we refer the reader to our Crane paper [27] for more detailed evaluation. 

 
To understand the performance impact of Crane’s components, we divided Crane’s components into 
two major parts: the DMT part ran by Parrot; and the proxy (with Paxos) part which enforces the 
same sequence of client socket calls across replicas. Each part ran independently without the other 
part. The proxy part represents the performance overhead of invoking Paxos consensus for client 
socket calls, and the DMT part represents the Parrot DMT scheduler’s overhead. 

 
Figure 14 shows the servers’ performance running in Crane normalized by their unreplicated 
nondeterministic executions. The mean overhead of Crane for the five evaluated programs is 
34.19% due to two main reasons. First, except for MYSQL, which does fine-grained, per-table 
mutex and read-write locks frequently, the DMT schedules were efficient on the other four servers. 
The reason is that Parrot’s scheduling primitives are already highly optimized for multi-core [29]. 
The proxy-only part incurred 0.82%∼3.46% overhead, which is not surprising, because the number of 
socket calls is much smaller than the number of Pthreads synchronizations in these programs. In 
short, Crane’s performance mainly depends on the DMT schedules’ performance. 
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Figure 14: Crane Performance - Times are normalized to unreplicated, 
nondeterministic execution 

 
MEDIATOMB incurred modest speedup because its transcoder MENCODER had 

significant speedup with Parrot. We inspected MEDIATOMB’s micro performance 
counters with the Intel VTUNE [92] profiling tool. When running in Crane, 
MEDIATOMB only made 6.6K synchronization context switches, while in the Pthreads 
runtime it made 0.9M synchronization context switches. This saving caused 
MEDIATOMB running with Parrot a 12.76% speedup compared to its nondeterministic 
execution. The Parrot evaluation [29] also observed a 49% speedup on MENCODER. 

The time bubbling technique saves most of needs on invoking consensus for the 
logical times of clients’ socket operations, confirmed by the low frequency of 
inserted time bubbles in Table 2. APACHE, MEDIATOMB, and MONGOOSE uses 
APACHEBENCH as its benchmark, and each request contained a CONNECT(), SEND(), 
and CLOSE() call. CLAMAV uses its own CLAMDSCAN bench- mark, and each 
request contained 18 socket calls. MYSQL’s benchmark contained 6∼7 socket calls 

for each query. The ratio of inserted bubbles is merely 6.12%∼33.35%. MEDIATOMB 

had the highest ratio of time bubbles because it took the longest time (9,703ms) to 
process each request. 

Table 2: Time bubbles  
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4.6 Hardware-Enhanced Memoization Technologies 
 

The MEERKATS architecture relies upon high levels of replication to improve cloud resilience.  
Some of the replicas maintained in by a MEERKATS clouds are identical copies of the data (as 
maintained with Crane, see Section 4.5).  Other replicas are fake, decoy replicas of services, requests, 
and data (as created and maintained with DIGIT, Novo, and SAuth, see Section 4.3). 
A key challenge in maintaining a high degree of replication – whether real or fake – is to deal with 
significant added redundancy efficiently.  If we have to run instead of one copy of a service, five or 
ten copies of it, how can we do so efficiently? 
 
As part of the MEERKATS project we investigated using compiler and hardware optimizations to 
make it efficient to run highly redundant computations.  Specifically, we developed CHAMP, a 
hardware/software framework for complexity-effective program memoization. The tool consists of a 
compiler transformation to modify select functions to record their inputs and supply outputs 
immediately if previously observed invocation is recognized.  When past executions are invoked 
again (e.g., to create uncertainty), the system returns their results without expending the resources to 
re-compute.  Of course, it is not only possible to reuse prior executions, and our work establishes the 
conditions when reuse can happen versus not.   
 
Our main goal in CHAMP was to develop infrastructure for automatically memoizing the program 
execution. The project proceeded in two phases. The first explored value locality and reuse in 
unmodified programs. The second phase created a compiler transformation based on the 
Clang/LLVM compiler suite to automatically insert memoization instructions into unmodified 
programs. Given poor performance of a pure software approach, the prototype was extended to 
contain a supplementary instruction set to perform memoization operations efficiently. The 
transformation seeks to exploit functions whose effects on machine state can be entirely captured by 
its loads and stores. Under CHAMP, such functions are called reproducible and can be 
deterministically replayed by setting register contents and issuing memory writes. Program 
performance improves when accessing and replaying the function’s side-effects is cheaper than 
recalculating them. 

4.6.1    Value Reuse Measurement 
Before attempting to automatically memoize programs, it was necessary to determine that value 
reuse existed in programs. Without sufficient value locality, memoization would be ineffective. 
 
It is important to differentiate value reuse and value locality. Value reuse measures the recurrence of 
particular values for a function object across separate invocations of that function. A function object 
is any value obtained by the function that it does not generate itself. This means global variables, 
function arguments, and any values loaded through a pointer. It is important to note that only static 
loads are considered; each dynamic load does not create a new object to be tracked. It is helpful to 
think of how a compiler analyzes and predicts the value evolution of a loop counter; each separate 
loop execution still corresponds to the same variable, even though the value has likely changed. 
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Value reuse tracks the variance of in value of each function object. Value locality measures how 
often a value reappears across subsequent executions, analogous to temporal locality for the purposes 
of general-purpose memory caching. Value reuse, combined with the total number of distinct values 
observed, gives a rough estimate of the storage upper-bound required to store all repeated values, 
while locality provides intuition on whether or not the reuse can be effectively exploited with a real 
cache. 
 

Measurement Tool.  Two tools with similar purposes were created to measure value locality. The 
first is a Pintool to identify the function objects in the executing program and to dump a trace 
containing their values. A small transformation in LLVM was also implemented to accomplish the 
same task, in the case where the overhead of Pin is unacceptable – or to handle concurrent programs 
(the version of Pin at time of implementation had subtle deadlock bugs when used concurrently). 
Both tools produce traces in identical format.  These traces are then consumed by a tool, ‘memo-
dump’, which creates a graphical representation of the value samples, as well as a textual summary of 
their variance and other statistical properties. 
 
Measurement Results.  Several programs were executed with these tools. The resulting traces were 
analyzed by memo-dump and trends observed. The program objects generally fell into three 
categories: (1) near-random, with little or no value reuse; (2) near-constant, where the value 
remained the same over program execution or changed very rarely, immediately returning to the 
previously observed value; and (3) cycling, the object’s value followed a short cycle of two to four 
values. 
 
Apache Web Server Results: Running the Apache webserver was aimed to prove several points, 
chiefly that the tool could analyze a complex, real-world application. Input data was also supplied to 
check that value reuse varied appropriately. For example, when fetching the same static page 
repeatedly, there should be high value reuse, as the same request from the client is parsed and the 
same page delivered. Conversely, random HTML and random PNG images were created by a script 
and then fetched, resulting in a very low level of value reuse. A strong indicator of accuracy is in 
both cases, Apache’s own internal caching mechanism showed very high value reuse. 
 
SPEC CPU2006 Results: The SPEC CPU2006 integer suite was monitored with the tool and showed 
results that varied largely across benchmarks. Benchmarks showing high reuse include h264ref and 
bzip2. These both perform compression and decompression operations, which seek to take advantage 
of low-entropy, repetitive sequences in the input stream. The ‘dictionary’ style representation – 
substituting a shorter sequence for a more complicated one – gives a high level of value reuse in 
accessing and outputting these values. 
 
Other Benchmarks: Other benchmarks exhibited low reuse, such as perlbench and gcc. These 
benchmarks performed seemingly repetitive tasks of parsing, but use many global variables and other 
spaghetti code structuring. This possibly biases the results by creating separate function objects for 
what is truly one object in the source code. In any case, this would likely not be exploitable by a 
memoization scheme without very precise alias analysis to disambiguate the objects. 
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Take-Away: These tools gave strong confidence that memoization was feasible and could be made 
profitable. The next chapters describe the design and implementation of the compiler analysis and 
transformation, as well as the decision to accelerate the framework with hardware extensions. 

4.6.2 Compiler-Enhanced Memoization 
LLVM was augmented with several analysis and transformation passes which take unmodified 
LLVM intermediate representation (IR) and add the necessary instrumentation for memoization. 
Since the passes operate on IR, the compiler can instrument any programs in a language translatable 
to LLVM IR. Additionally, the instrumentation at the IR level makes no assumption about the 
architecture or execution environment, and so could be accelerated by any architecture which LLVM 
targets. 
 
Compiler Design.  The analysis pass works to split the single-entry single-exit (SESE) basic blocks 
of a function’s control flow graph into an input set and output set. The input set contains all blocks 
that perform input operations, or which flow to such blocks. The output set contains the complement 
of the input graph – any blocks whose edges cannot flow to input operations. 
 
On function entry at runtime, the input set is mapped to the output set by a memoization store, a 
simple cache for each function. If inputs were seen on a previous invocation, the outputs are applied 
directly from the memoization store and the instructions that calculate the outputs are elided.  
 
Reproducibility is determined by the properties of the function’s individual instructions. If all of a 
function’s instructions are reproducible, then the function itself is reproducible. Call instructions are 
a special case. Intuitively, their reproducibility is determined by the function they call. Thus, a 
reproducible function may only call other reproducible functions. 
 
If a function’s inputs are trivially calculated the function’s invocation may also be elided entirely by 
a calling function. More precisely, if the function is to be elided in the caller, the call instruction 
occurs after the caller’s input collection is complete and the memoization store is accessed. To be 
considered trivial, all of the caller’s input must be safe to reorder before this access. Calls to such 
functions that satisfy these conditions are elidible and the functions themselves are call-elidible. 
 
The two instruction streams which calculate the input and output sets, respectively, may not overlap 
and must be separated by the access to the memoization store. The input instruction stream will 
capture all loads and non-elidible calls in the function. The output instruction stream is simply the 
remainder of the function. Note that stores may occur in the input instruction stream, but they are not 
considered output. This is correct, as they will be performed before the access to the memoization 
store, so they do not need to be recorded. This restriction prevents the memoization of systems that 
perform user space threading (also known as green threads or fibers), as these would interleave 
access to memoization threads. This tradeoff is necessary as a mechanism to associate instructions 
with their respective caches was considered too costly. 
 
Very few functions in the average program will be reproducible according to this strict definition. 
Notably, error handling and logging will invalidate a function’s execution by writing to the terminal 
or a log file. However, errors intuitively will occur only in exceptional cases. Therefore, by 
introducing a mechanism to dynamically invalidate function executions, code coverage can be 
increased while preserving original program semantics. 
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To only invalidate control flow paths that contain invalid instructions, basic blocks are marked 
invalid if and only if they contain them. The invalidation instrumentation may not reside directly in 
the invalid blocks for efficiency reasons. For example, a loop that contains an unconditionally 
executed invalid block will have the invalidation at the loop’s entry, rather than in the loop body, to 
avoid re-execution.  When invalidation instrumentation is executed, any state being gathered for the 
execution is flushed and no modification to the memoization store is made.  When a function is 
invalidated, all functions in the call stack that are also instrumented will have their current execution 
invalidated. That is, invalidating a function execution also invalidates its callers’ executions. 
 
Evaluation.  We evaluated the compiler optimizations on all of the SPEC2006 benchmarks on real 
hardware. While we observed good potential for value reuse in several benchmarks, the overheads 
were impractically high (1.4x - ~50x) mainly due to the overhead of maintaining the memoization 
caches. Based on these results we concluded hardware support was necessary. 
 

4.6.3 Hardware-Enhanced Memoization 

To further improve performance, we designed a set of new primitive operations that can be 
implemented in hardware. 

 
Hardware Design. Memoization support is composed of several primitive operations: 

(1) Region entry and exit: hardware instructions signal when a memoized region is entered or 
exited. Entrance is signaled explicitly, while exit is implicit at either a hit in, or commit to, 
the memoization store. 

(2) Input hashing: Registers and memory locations are appended to the input set to be hashed by 
a special functional unit. 

(3) Lookup: The accumulated hash is used to index into the memoization store. The instruction 
will set a flag in a destination register indicating whether there was a hit in the memoization 
store. 

(4) Record side-effects: Adds registers or memory stores to a hardware buffer to be committed to 
the memoization store. 

(5) Commit: Associates recorded side-effects with the accumulated hash in the memoization 
store. 

(6) Apply: After a hit in the memoization store, applies the recorded side-effects to the machine 
state. 

In addition to the memoization store and the aforementioned hash unit, there are two parallel 
hardware buffers that operate as stacks.  The first buffer stores side-effects which have been recorded 
by functions, but have not yet been committed to the memoization store. Stores that occur as part of 
an output instruction stream, as well as explicitly indicated registers, will be appended here.  The 
second buffer stores control data concerning the first buffer. For each memoized function pushed 
onto the stack, a fixed size entry is created that records a byte offset into the buffer, which along with 
the top of the buffer, delimits the side-effects that belong to that function. The capacity of this control 
stack determines the maximum nesting depth for the architecture. When a new function is pushed 
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and no new entries are available, the oldest entry will be overwritten. As the depth counter saturates 
at the maximum depth, this silently discards the oldest function, but the younger functions are 
unaffected.  When the first buffer overflows, the processor will respond as if an invalid memoization 
operation has occurred. The effects of this are described in the next section. 
 
Operation. The memoization hardware contains a control register that determines whether any 
memoization regions are active (ENBL bit), whether an input or output stream is being executed 
(RW bit; cleared for read), and a saturating memoization region nesting depth counter.  When a 
memoized function is entered, a CHMPENTER instruction is executed. ENBL is set and RW is 
cleared. The depth counter is also incremented, saturating at a microarchitectural specific maximum 
depth. If the counter saturates, the “oldest” memoization frame is silently discarded. The implications 
of this will become clear when discussing the commit operation. 
 
This begins the function’s input instruction stream. Argument values contained in registers will be 
hashed with CHMPHASHREG. Loaded values are automatically hashed while the RW bit is cleared 
and ENBL is set. Since a hash operation by design cannot be rolled back, it is necessary for these 
instructions to have in-order non-speculative execution. 
 
At the end of input operations, control will flow to a CHMPLKUP operation, which looks up with 
the accumulated hash into the memoization store. This will operation will of course depend on the 
hash being computed, a potentially lengthy operation. The RW bit is set, as the input stream is 
completed. If the memoization store contains an entry matching the hash, a record to the entry is 
stored for application by a CHMPAPPLY instruction. This instruction also retrieves the return value. 
 
If there is a miss in the memoization store, control will flow to the output stream. Similarly to loads, 
stored values will automatically be recorded when the RW and ENBL bits are set. Additionally, 
registers that are used for return values can be recorded with CHMPSTREG. 
 

Finally, a CHMPCOMMIT instruction is reached immediately before function return. This commits 
all recorded data to the memoization store with the accumulated hash.  For both the CHMPAPPLY 
and CHMPCOMMIT instructions, the memoization depth counter is decremented. If the counter is 
zero, then the ENBL bit is cleared. 
 

When an invalidation instruction, CHMPINVL, is executed, the ENBL bit is cleared and the 
memoization depth is set to zero, reflecting that invalidation affects all scopes. The hardware buffer 
entries that store memoization data do not need individual valid bits since they are indexed using the 
memoization depth. Until a CHMPENTER is executed, the cleared ENBL bit forces all other 
memoization operations to be nops. When the ENBL bit is again set, the memoization depth will be 
at zero, so the buffers can be indexed normally. 
 
Preliminary Evaluation. The memoization hardware extension is implemented inside the gem5 
cycle-accurate microarchitecture simulator. The instructions were added as an extension to the x86-
64 instruction set (sometimes known as AMD64 or x64).  The LLVM x86-64 backend was modified 
to emit instruction inside the “hinting NOP” opcode space. These opcodes are reserved by Intel and 
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have been used to accommodate the cache prefetch opcodes as well as the Transactional 
Synchronization eXtensions (TSX). Older processors or models which do not support these 
extensions simply decode these instructions as NOPs. A carefully transformed program can be run on 
a processor without the memoization extensions and would retain its original semantics. 
 
Preliminary evaluation on microbenchmarks indicate that the proposed hardware optimizations can 
in fact mitigate many of the software induced performance overheads. Future evaluation will include 
full benchmarks on platforms that support fast simulation speed. 
 
 
4.7 New Attacks 

As a final class of contributions as part of the MEERKATS program, we discovered a 
set of new kinds of attacks. These attacks were not included in our initial proposal, but 
we present them as new significant findings within the scope of our initial vision. 
 
4.7.1 ARC: Protecting against HTTP Parameter Pollution Attacks 

HTTP Parameter Pollution Attacks. HTTP Parameter Pollution (HPP) is a recently discovered 
technique for exploiting web applications. HPP can be considered as an injection attack that targets 
URLs; one of the fundamental concepts of the web platform. Web browsers communicate with web 
applications through HTTP requests and responses, which reference resources using URLs. This 
communication can be polluted by injecting parameters in the HTTP stream. These injected 
parameters form URLs, which if served, instruct the application to perform actions that were originally 
not part of the application’s design. Thus, the control flow of the web application is altered 
according to an attacker’s need. 
 
To illustrate the attack in a short example, consider an e-store application taking two arguments, 
namely: a product identifier and an action, which affects the product state. A combination of a product 
identifier and the action purchase results in ordering a product. The product identifier and the action 
must be attached as parameters in a URL, which in turn is communicated to the application through 
the construction of an HTTP request. If the attacker manages to pollute the request with extra 
parameters, then the control flow of the application may change in numerous ways. The simplest 
manifestation of the vulnerability is for the attacker to inject a particular parameter multiple times. 
In case the parameter that carries out the product identifier is duplicated, then many different control 
flows can take place, depending on the parameter occurrence (first, last, or a combination of) that 
the application will give significance while the URL is parsed. 

 
About 1,499 of 5,000 highly ranked in Alexa.com web sites are considered vulnerable to HPP 
exploitation according to the methodology outlined by Balduzzi et al. [14]. 
 

The ARC Defense. We have developed Application Request Cache (ARC), a framework that can 
protect web applications from HPP exploitation. ARC does not detect HPP vulnerabilities, although it 
can record HPP exploitation attempts. It is deployed at server side and works in a transparent way. In 
essence, a web application can be protected, from HPP exploitation by simply incorporating ARC in 
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the application server. Clients need no further modifications. In contrast to PAPAS [14], which 
currently is the only available methodology for discovering HPP vulnerabilities, ARC aims at 
protecting the web application without auditing. ARC assumes that the web application is vulnerable 
and tries to protect it from being exploited. To this respect, ARC and PAPAS can be combined. The 
former as a protection layer and the latter as a periodic auditor. 

 
ARC is based on the following fundamental concept. Each web application is characterized by a set 
of URL schemas, which act as generators of the complete functional set of URLs that compose the 
application’s logic. A URL schema is extracted by a URL by masking out all variables that are 
assigned to the URL’s parameters. Each control flow is triggered by having the application serving 
a URL, which stems from a particular URL schema. ARC collects all schemas taken from benign 
requests during a training phase. At production time, for each incoming request, ARC extracts the 
URL and its schema, and searches for it in a set of already known benign schemas. In case the 
schema is not found, the request is rejected and the event is recorded. An incoming polluted URL 
will have no schema stored in ARC and thus will be rejected. This methodology cannot only prevent 
HPP, but also certain types of XSS, where JavaScript is attached to HTTP parameters. 
 

Evaluation. Our ARC prototype was developed using Google’s Go, a very efficient programming 
language for constructing system tools. In our implementation, ARC stores all cached schemas in 
carefully selected data structures, which are implemented using maps and slices, as provided by Go. 
ARC also takes advantage of the multiprocessing features of Go, goroutines and channels. In a 4-
core Linux server, ARC can process hundreds of thousands of URLs per second. A typical request 
resolution takes no more than a few microseconds. 
 
4.7.2 CellFlood: A New Attack Against Tor Onion Routers 

Context.  To date, the Tor network, one of the most widely used anonymizing systems, consists of 
more than 3000 Onion Routers that serve daily over 400000 users. Being a distributed system 
operated by volunteers, the anonymity of Tor users is vulnerable to attacks where a set of malicious 
routers, controlled by an adversary, join the network with the aim of gaining control of user circuits. 
The Tor network is specifically designed and continuously updated to address these types of threats, 
but another option available to the adversary would be that of putting a network DoS attack into 
place with the aim of making it impossible, or very hard, for users to communicate with Tor routers 
and Tor routers with each other. Such an attack could be used to either significantly degrade the 
users’ perceived quality of service, which would discourage them from using Tor, or to affect the 
topology of the Tor network in a way that favors traffic flowing through malicious routers, thus 
increasing the power of the adversary.  A network DoS would not require a deep knowledge of the 
Tor network internals and could be performed by using well known, pre-existing, off-the-shelf 
methods. Clearly, since such an attack is orthogonal to those that the Tor network was designed to 
address, we should not expect Tor to be resilient to it. 
Nevertheless, the protocols used by clients to setup circuits through the Tor network are vulnerable 
to a simple attack that would allow an adversary to achieve an effect similar to that of a network 
DoS, but with just a fraction of its bandwidth resources. 
 

CellFlood. We have designed an attack, named CellFlood, and provide an experimental evaluation 
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of it both in a controlled environment and on the real Tor network. Our results, and our estimations 
based on measurements from a real Tor router, showed that CellFlood is not only effective, but also 
cheap enough to make a feasible alternative to more sophisticated attacks to the Tor network that 
have been presented in the past. As a way to mitigate the effect of this attack, we proposed to use a 
client puzzle-based technique that would allow Tor routers under attack to keep their ability to 
provide service to honest clients. Our improved version of the protocol allows routers under attack to 
easily impose a cap on the attacking host(s), thus preserving their ability to process honest client 
requests. At the same time, our tests confirm that our protocol has a small impact on the quality of 
the service perceived by Tor users, even in extreme scenarios 
 

Evaluation. We have conducted an extensive evaluation regarding the feasibility of the attack both 
in a controlled environment as well as on the real Tor network. Our findings demonstrated that the 
attack is effective under different configuration parameters. 

 
Also, we have introduced a lightweight estimation technique for the resilience of a remote, non-
cooperative Onion Router to the attack. Our estimates showed that, to halve the processing 
capability of 62% of the most used Onion Routers of the Tor network, CellFlood would require 
between 2.6 and 9.76 Mb/s per router. 
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5 CONCLUSIONS 
 
In the course of the MEERKATS project, we have designed, implemented, evaluated, and in some 
cases deployed a set of new technologies that enable continuous change, deception, and 
unpredictability of cloud environments as a way of increasing their resiliency to a wide range of 
attacks. 
 
These technologies present significant advances along five major directions: 

1. Continuous migration technologies that can enable for the first time the swift migration of 
cloud-resident services and data either in response to an attack or continuously so as to 
present a moving-target defense; 

2. Cloud information flow tracking technologies that can track cloud-resident data at larger 
scales than ever before, enabling cloud users (e.g., service administrators) to audit the flow 
of their information in the cloud; 

3. Misinformation and decoy technologies that can automatically generate deceptive 
information – bogus information that appears genuine – so as to confuse, bait, and track 
attackers; 

4. Cloud monitoring and self-healing technologies that can integrate information from many 
sensors spread across the cloud to detect complex, multi-stage attacks; and 

5. Stable multithreading technologies that can reduce the security risks posed by concurrent 
programs by ensuring that upon every execution, a program takes one of a few pre-checked 
schedules that have already been validated as safe. 

6. Hardware-enhanced memoization technologies that can reduce the performance overheads 
of running enormous additional redundant or fake computations by enabling safe reuse of 
previously derived values. 

We have already started a transition of some of these technologies (notably the decoy technologies) 
as part of this project. While more work remains to be done to roll out all of these technologies into a 
production cloud environment; we believe that in the future, they will become the bases for crucial 
components of future resilient clouds. 
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LIST OF KEY ABBREVIATIONS AND ACRONYMS 
 
ARC                   application request cache 
AWS                  Amazon Web Services 
CIFT                  cloud information flow tracking 
CRP                   cascading rescue point 
DDoS                 distributed denial of service 
DFT                   data flow tracking 
DMCC              distributed monitoring and cross-check 
DMT                 deterministic multi-threading 
EC2                   elastic compute cloud 
EiGC                 evict-idle garbage collector 
EPC                 enhanced post copy 
GC                   garbage collector 
IFT                   information flow tracking 
MEERKATS   maintaining enterprise resiliency via kaleidoscopic adaptation and transformation 

of Software Services  
MiSS                migration of software services 
MOTAG          moving target defense mechanism against Internet DDoS attack 
MRC                mission-oriented resilient cloud 
OS                    operating system 
QoS                  quality of service 
RP                      rescue point 
SAuth                synergistic authentication 
SDO                   sensitive data object 
SMR                  state machine replication 
StableMT          stable multi-threading 
VM                   virtual machine 
VMM               virtual machine monitor 
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