
Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

1

June 2015

DSE-R-1501

Illuminating Tradespace Decisions Using Efficient
Experimental Space-Filling Designs for the
Engineered Resilient System Architecture

OPERATIONS RESEARCH CENTER

United States Military Academy

West Point, New York 10996

Prepared For

US Army Engineered Research Development Center
Vicksburg, Mississippi

Prepared By

LTC Alex MacCalman, PhD

2LT Hyangshim Kwak
Ms. Mary McDonald

Mr. Steve Upton
CDT Coleman Grider

CDT Robert Hill
CDT Hunter Wood

LTC Paul Evangelista, PhD

Approved for public release; distribution is unlimited.

2

Contents
Executive Summary ... 5

1. Introduction 8

2. Technical Report Organization .. 9

3. Background 10

3.1. Process versus Data Driven Approach ... 10

3.2. Engineered Resilient System Architecture ... 12

4. Research Contributions ... 14

5. Representative Use Case Description .. 15

5.1. Agent-Based Model Overview .. 15

5.2. Simulation Scenarios ... 18

5.3. Model Inputs ... 19

5.4. Model Outputs .. 21

6. Model Based System Engineering Approach ... 22

6.1. System Modeling Language (SysML) .. 23

6.2. External Model Integration .. 31

7. Building Statistical Metamodels using Simulation Experimental Designs ... 34

7.1. Statistical Design of Experiments Introduction .. 35

7.2. Understanding Complex Behavior ... 36

7.2.1. Design Drivers ... 38

7.2.2. Synergies/Interactions .. 39

7.2.3. Diminishing or Increasing Rates of Change ... 40

7.2.4. Identifying Thresholds with Partition Trees .. 41

7.3. Predicting Simulation Model Outputs ... 42

7.3.1. Stepwise Regression ... 42

7.3.2. Neural Nets ... 43

7.3.3. Boosted Trees ... 44

7.3.4. Bootstrap Forest ... 44

7.3.5. Model Comparison .. 45

7.4. Experimental Design Types .. 48

7.5. Correlation and space-filling design characteristics .. 49

7.6. Traditional and Space-Filling Designs ... 51

3

7.7. State-of-the-art space-filling designs ... 53

7.8. Use Case Experimental Design ... 54

8. Technical Requirements for High Performance Computing Clustering ... 54

8.1. Select System Model Element Design Variables .. 55

8.2. Select Analytical Models, Develop Baseline Scenarios, and Map Design Variables to Model Inputs

 .. 56

8.3. Create Experimental Design ... 57

8.4. Generate a Study File that Specifies which Model Input Parameters to Change 58

8.5. Generate Excursion Files for Each Experiment (row in the design matrix). 58

8.6. Execute HPC Simulation Runs .. 59

8.7. Post-Process Output Files .. 59

8.8. Perform Statistical Metamodeling ... 60

8.9. ERS Tradespace Visualization ... 60

9. Simulation Analysis and Tradespace Visualization .. 61

9.1. Exploratory Analysis ... 61

9.2. Dashboard Tradespace Visualization ... 70

9.2.1. Prediction Profiler Dashboard Component .. 71

9.2.2. Contour Profiler Dashboard Component .. 74

9.2.3. Monte Carlo Filtering Component .. 75

9.2.4. Viable Variant Exploration .. 76

10. Multiple Objective Decision Analysis ... 84

10.1. Qualitative Functional Objective Value Hierarchy .. 85

10.2. Quantitative Functional Objective Value Model .. 87

10.2.1. Natural Single-Dimensional Value Functions... 88

10.2.2. Constructed Single Dimensional Value Function ... 89

10.2.3. Swing Weights for Value Measure Tradeoffs .. 91

10.2.4. Multi-Objective Value Function ... 93

10.3. Value and Cost Tradeoff Analysis ... 94

11. Conclusions and Future Work ... 102

11.1. MBSE Methodology Review .. 102

11.2. Technical Gap Bridges ... 104

11.3. Concluding Remarks ... 106

4

11.4. Future Research .. 106

References ………..108

Appendix A: Data Farming Instrictional Manual ... 111

Appendix B: Design Creator Front-End User Manual ... 167

Appendix C: JMP Dashboard Building Instructions ……………………………………………………………………………174

5

Executive Summary
This technical report proposes an experimental design Model-Based System Engineering

methodology that illuminates system design trade decisions in order to clearly identify key tradable

variables and narrow the selection of viable system variants.

In today’s complex environment, the DoD needs systems that are resilient to change and are

effective across a wide variety of uncertain futures. The current Department of Defense (DoD)

Acquisition lifecycle is a process driven approach that impedes the ability to rapidly develop resilient

systems. The work-force is stove-piped, the data used to inform design decisions are lost in the process,

and there is a lack of flexibility to adapt to changing requirements and mission contexts. Requirements

are generally frozen early in the process making the difficult to change that result in inefficient use of

time, resources and money. To address the resiliency challenge, the US Army Engineer Development

Center (ERDC) is developing an Engineered Resilient System (ERS) Architecture that will leverage

information technology to inform better manufacturing options during all stages of the lifecycle. The

intent is to develop an open architecture that connects existing tools, information, and data in a

common framework that is non-proprietary, platform agnostics, compatible with legacy systems, and

can be shared among a wide variety of users. The ERS architecture provides the means to incorporate

previous design successes, integrate models, generate the data needed to visualize the tradespace, and

create a shared digital thread of design decisions accessible to a community of users throughout the

system lifecycle.

A system design involves hundreds of tradable variables that must be balanced in order to develop a

viable system solution that meets the demands of the stakeholders and performs effectively.

Understanding the key tradable variables that have the most influence on a system design problem is

critical during the conceptual design of a system. A tradeoff is a compromise between objectives such

that improving one requires that we degrade another. Tradeoff decisions are based on data,

information, and knowledge acquired from simulation model outputs, developmental and operational

testing, subject matter expertise, and legacy system architectures. Therefore, in order to effectively

make quality decisions while minimizing the impact of requirement changes, DoD needs a data driven

rather than a process driven approach to design new systems. The end result will be better informed

decisions, faster engineering, less rework, and allow for a wider range of alternative solutions to

progress through the phases without freezing the requirements too early.

An effective way to manage the design of a system is to use the Model-Based System Engineering

(MBSE) approach. MBSE is a new paradigm that supports the specification, analysis, design, and

verification of a complex system while using an integrated system model with a dedicated tool. MBSE is

gaining popularity and is expected to become a common state of practice in the near future. The

integrated system model effectively manages auditable records of a system design by defining a system

element once to be used throughout the model. As a result, once a change is made to an element in the

integrated system model, the dedicated tool will instantly identify how the change will impact the

system. The MBSE approach uses a system modeling language (SysML) to express the structural and

behavior elements of a system. A system’s structure is defined as a set of structural blocks with value

properties that define the system’s configurations. The settings of the collection of value properties

characterize each system alternative. A limitation of SysML is that they only provide static diagrams. In

6

order to conduct sophisticated engineering analysis, we must incorporate external models and

simulations.

During the system lifecycle we use a variety a models and simulations that represent different

domains; these domains include operational effectiveness, physical feasibility, life-cycle costing,

manufacturability, reliability and many more. The inputs to these models and simulations represent the

system value properties that define the alternative configurations. The value properties that have the

highest impact on the model output performance are the system design drivers we are most interested

in. Currently, there is a technical gap with regard to our ability to untangle the system design drivers

when there is a high volume of multi-dimensional data. The general state-of-practice is to perform

brute force simulation runs on a small set of baseline and excursions that do not effectively explore the

system alternative design space. There is a lot of time, money, and resources devoted to building

complicated simulation models and we do not use them to the maximum extent possible if we only

compare a few excursions from the baseline. The most effective way to determine the system design

drivers is to leverage the method of statistical experimental design. The field of design of experiments

(DOE) allows the analyst to identify which model inputs effects the outputs of interest. DOE provides a

number of benefits that can assist in the design of a system. We can clearly identify the model inputs

that affect the output responses, identify interactions that may exist between model inputs, uncover

detailed insight into the model’s behavior, examine the modeling assumption implications, frame the

questions when we do not know what to ask, challenge or confirm our expectation of directional model

input effects and their relative importance, and uncover problems with simulation program logic.

In order to untangle the system design drivers across several different domain models, our

methodology uses statistical metamodeling to approximate the simulations’ behavior. A statistical

metamodel is an empirical model developed from either observational or experimental design data that

relates a set of inputs to an output. We build metamodels using a number of statistical methods that

include stepwise regression, boosted trees, neural nets, and bootstrap forest. Generally, regression

metamodels are excellent at describing individual model input impacts on model outputs while the

other metamodeling methods are better able to predict effectiveness by interpolating in-between

simulated points. Ultimately, the analyst must understand which methods to apply for either

understanding or predicting model behavior.

To generate the data needed to fit a metamodel, we advocate using a new class of space-filling

experimental designs known as the Nearly Orthogonal Latin hypercube and nearly balanced design.

These designs are efficient, minimize the correlations between columns, can handle continuous,

discrete, and categorical data, and effectively explore the interior of the experimental design region.

These new designs allow us to determine the driving factors, detect interactions between input

variables, identify points of diminishing or increasing rates of return, and find thresholds or change

points in localized areas. These insights can be incorporated within the system integrated model as

derived requirements or rationale for design decisions.

We create a dynamic dashboard using the collection of metamodels to help visualize multi-

dimensional model output landscape using horizontal and vertical cross sections. These cross sections

allow us to clearly identify the tradable variables and find viable system variants that met the desired

capabilities across multiple viewpoints and are physically feasible. We can easily visualize the model

output landscape with a surface plot when there are only three dimensions. Because there are often

7

several more dimensions in a systems design problem we developed a dashboard that visualizes

horizontal and vertical cross sections of the multi-dimensional model output landscape. We use a

contour profiler which is a two dimensional projection that shows a horizontal cross section of a model

output landscape within the experimental design region. Visualizing the selected projections allows the

user to interactively explore how multiple model outputs depend on two selected model inputs. The

contour profiler allows us to set limits on the model outputs to help define infeasible and feasible

regions; the shape of these shaded regions is dependent on the functional form of the multi-

dimensional metamodel. We can also visualize the model output landscape using prediction profilers

that show vertical cross sections. These vertical projections show each model input’s impact of the

model output.

The dashboard colors each vertical cross section such that green indicates a positive impact to the

model output, red indicates a negative impact, white indicates a model output with a target value, and

black indicates no impact. Additionally, there is a color gradient applied so the cells with a higher impact

are darker and the cells with a lower impact are lighter. These colors allow us to clearly identify the key

tradable variables; when there is a color contrast between green and red within a model input’s vertical

cross section, we must make a trade by accepting an improvement in one model output while accepting

a degradation in another. Because the model input vertical cross sections are sorted from left to right

based on their overall impact across all model outputs, we can clearly identify which model inputs have

the highest impact on the design problem.

In addition to identifying the key tradable variables, our dashboard provides an optimization

algorithm to find a solution that balances the established model output limits with a weighted

desirability function; the desirability function normalizes the model output scale When our solution

does not meet one or more of the model output limits, we then can look to the vertical projections to

identify the model inputs that have the highest impact on the unfeasible model outputs; changing these

model inputs may result in a feasible solution. If we cannot change a model input to find a feasible

solution we then must trade off infeasible model outputs limits in order to arrive at a viable system

variant. We can arrive at a variety of viable system variants by setting different model output limits and

weights to each of them.

Once we identify a reduced set of viable system variants, we then use multi-objective decision

analysis (MODA) to help inform the design decision. We use an additive value model that incorporates a

composite perspective of multiple stakeholders and competing objectives. We use the philosophy of

value-focused thinking and the mathematics of MODA to arrive at a final design decision.

Currently, there is a technical gap with regard to our ability to untangle the system design drivers

when there is a high volume of multi-dimensional data. This technical report outlines the procedural

workflow of our proposed MBSE methodology. We address the technical gap by leveraging the methods

of experimental design in order to clearly identify tradable variables and narrow the search for viable

system variants.

8

1. Introduction
Our future operational environment will require the Department of Defense to acquire Engineered

Resilient Systems (ERS) that will adapt to continuously changing demands. To address this challenge, the

Engineer Research Development Center (ERDC) is developing an ERS Architecture that will construct and

maintain a data thread of architectural decisions that will break the barriers between the operators,

engineers, logisticians, acquisition experts and others allowing multiple communities of interest to

collaborate during a system’s lifecycle. Narrowing in on the key system drivers and critical trade decisions

during Pre-Milestone A is a daunting task given the high number of design variables, system complexity,

and uncertain future. First-order engineering models provide engineers insight into design feasibility but

without analyzing system concepts within a mission context we have no way of understanding the

effectiveness of a system design variant. In order to understand a system’s operational effectiveness

during the conceptual design phase we must rely on combat models and simulations; depending on the

model fidelity, these simulations can take days or weeks to run. During a simulation study, the general

state of practice is to do brute force simulation runs by leveraging High Performance Computer Clusters

(HPC) to generate data for tradespace exploration. Despite recent breakthroughs in computation

capabilities, a petaflop computer cannot effectively explore a high-dimensional tradespace study (Sanchez

et al. 2009). For example, if we wanted to explore 100 factors at a high and low setting, assuming that a

simulation runs as fast as a single operation, it would take 40 million years to complete one replication of

the experiment. To overcome these challenges, we must leverage the statistical methods of experimental

design.

The field of Design of Experiments (DOE) allows us to efficiently explore a high-dimensional

tradespace problem in a feasible amount of time. Recent developments in DOE allow analysts to

efficiently explore a large number of input factors; for example, we are now able to study 100 continuous

factors with only 101 experiments (MacCalman 2013). After performing an efficient experiment, we can

develop statistical metamodels, or mathematical equations that approximate the input output behavior

of a simulation model; the metamodel then becomes a surrogate of the simulation. These surrogate

metamodels allow the analyst to explore a wide range of input factors in order to identify the ones that

drive system behavior and reveal the critical tradespace decisions. In addition, the metamodels provide

the analyst a means to display a dynamic visualization dashboard that can illuminate the key trade

decisions. Tradespace dashboards facilitate operational commanders and domain specific engineers to

collectively make trade decisions by revealing the impact of system design configurations on multiple

measures of effectiveness across different scenarios.

Recently, a new approach called Model-Based Systems Engineering (MBSE) is gaining popularity and

is expected to become a common state of practice in the near future (Friedenthal et al. 2011). According

to the International Council of Systems Engineering (INCOSE), MBSE is a methodology characterized by a

collection of processes, methods, and tools used to support systems engineering design in a “model-

based” context (INCOSE 2015). The System Modeling Language (SysML) is a visual language with a

common semantic and notation standard that facilitates MBSE to support specification, analysis, design,

and verification of a complex system. The practice of MBSE is emerging in different domains and uses.

One of these areas examines the linkages of the SysML diagrams to external models. Because our primary

interest is to leverage operational simulations that analyze system configurations in different mission

9

contexts, we need to explore the linkages between system elements within the SysML diagrams and the

simulation model input parameters. By mapping SysML system component configurations to model input

parameters, we can perform DOE to explore a high-dimensional problem to identify which input

parameters affect the simulation output measures. Additionally, metamodeling dynamic dashboard

exploration can influence design decisions and reveal where they satisfy the system engineering

requirements.

ERDC has a number of technical thrust areas that support the development of the ERS Architecture;

one of them is the tradespace analytics thrust area that seeks to increase the effective coverage of trade

considerations within the ERS Architecture. The objective of our research is to derive an MBSE

methodology that leverages DOE in order to illuminate the tradeoffs for a complicated system design

problem. To demonstrate the methodology, we will use a notional representative use case involving new

technologies that will enhance the Infantry Squad to overmatch current and future adversaries. The squad

enhancement technology system provides us with a complex high-dimensional system design problem

involving sensors, weapons, radios, body armor, exoskeletons, unmanned aerial vehicles, and robots that

must operate in a variety of environments with several feasibility and life-cycle considerations that conflict

with each other.

Our procedural demonstration starts with a defined system design problem that has an MBSE

integrated model expressed in the SysML language. Simulations from various domains are selected to

measure effectiveness and performance related to different aspects of the problem. An experimental

design is performed for each model using a High Performance Computing Cluster (HPC). Once the output

data is post-processed, the analyst performs exploratory analysis and fits surrogate metamodels that

approximate the simulation model’s behavior. These metamodels are then used to create a dynamic

dashboard that allows the user to explore a high-dimensional complex problem to illuminate key tradable

variables and identify a narrow set of viable system alternatives. The set of alternatives are then analyzed

using multi-objective decision analysis (MODA) models to help inform design decisions when there are

multiple stakeholders and competing objectives. Figure 1.1 is a visual depiction overview of the

procedural workflow that each section in the technical report will expand on.

Figure 1.1 Procedural workflow of the proposed MBSE methodology.

2. Technical Report Organization
This technical report is organized into eleven sections with three appendices that outline the details

of our proposed methodology. Section 3 provides a background of the Engineered Resilient System

Architecture and describes the differences between a process-driven approach versus a data-driven

approach. Section 4 discusses the major research contributions our methodology provides to fill the

technical gaps identified by ERDC. In order to demonstrate our methodology, we introduce in Section 5

Future ERS
Techs

SysML Simulations HPC
Explore
Analyze

Fit
Metamodels

Visualize
Tradespace MODADOE

10

our representative use case and the operational simulation models we use to explore the mission

context space. Section 6 discusses the benefits and limitations of the Model-Based Systems Engineering

Approach and includes a discussion of the need to integrate external models. Section 7 describes how

we can approximate simulation model behavior with statistical metamodels and use them to gain

insights that can inform system design decisions; additionally, it provides an overview of the field of

design of experiments and the types of designs used for experimental studies. Section 8 provides a

functional flow description of the technical requirements necessary to facilitate our methodology.

Section 9 discusses the types of analysis and insights we can gain from the experimental design study as

well as introduce a visual dashboard that can identify the key tradable variables and narrow down the

search for viable system variants. Once we arrive at our narrow set of viable variants, we then discuss

multiple-objective decision analysis methods that assist stakeholders with alternative decisions using a

functional objective value hierarchy model. Section 11 concludes the technical report and discusses

future research endeavors. Appendix A provides a detailed step-by-step manual that describes how to

perform data farming of the MANA simulation models on a cluster of computers. Appendix B is a user

manual on how to use a custom experimental design creator that is especially suited for system design

studies. Finally, Appendix C provides a user manual that contains the instructions needed to build our

dashboard described in Section 9 in JMPTM 12.

3. Background
 “A resilient system is trusted and effective out of the box in a wide range of contexts, easily adapted

to others through reconfiguration or replacement, with graceful and detectable degradation of

function” (Neches 2011). The need to engineer resilient systems is becoming more prevalent in today’s

operational environment. The Department of Defense (DoD) will continue to rely on material solutions

to address critical capabilities in response to our Nation’s threats, especially in an environment where

our potential adversaries have global availability of rapidly developed technology. Engineering resilient

system solutions that have a broad capability to perform in a wide variety of mission contexts against

several potential enemies and uncertain futures is essential to protecting our Nation. In the FY13-17

Program Objective Memorandum, the Secretary of Defense designated Engineered Resilient Systems

(ERS) as a Science and Technology (S&T) priority and tasked the Assistant Secretary of Defense for

Research and Engineering to oversee the development and implementation of the ERS roadmap.

3.1. Process versus Data Driven Approach
Currently the acquisition community uses a process driven approach to develop capability

requirements and mature technological solutions through multiple phases. Within the DoD community,

the capabilities process is known as the Joint Capabilities Integration Development System (JCIDS).

Figure 3.1 shows the interactions between the JCIDS process and the acquisition process phases.

11

Figure 3.1. Interaction between the DoD JCIDS and Acquisition process (retrieved from

http://acqnotes.com/acqnote/acquisitions/jcids-overview).

The current process driven approach impedes DoD’s ability to rapidly develop systems that are

resilient to uncertain futures. The work-force is stove-piped, the data used to inform design decisions

are lost in the process, and there is a lack of flexibility to adapt to changing requirements and mission

contexts. Requirements are generally frozen early in the process making them difficult to change

resulting in inefficient use of time, resources and money. Figure 3.2 shows in red the implications of a

requirements change downstream of the process and the need for the types of data to redesign and

rework the system.

Figure 3.2. Illustration of the redesign and rework resulting in a requirements change downstream of the process.

Ensuring that systems are resilient to changing environments poses significant challenges to the

Acquisition community. These challenges involve multiple competing objectives involving several

different domains. The types of domains include operational effectiveness, physical feasibility, life-cycle

costing, manufacturability, reliability and many more. During the design of a system there are several

key stakeholders involved with design decisions that all have different perspectives across each domain.

Some of the stakeholders include program managers, operational users, modelers, system certifiers,

testers, concept design engineers, detailed design domain engineers, and cost estimators to name a

http://acqnotes.com/acqnote/acquisitions/jcids-overview

12

few. All of these multiple competing objectives and stakeholder needs require tradeoffs that balance a

wide range of different domain considerations when designing a system.

A tradeoff is a compromise between objectives such that improving one requires that we degrade

another. A classic example is the tradeoff between force protection and maneuverability. Increasing the

force protection of a vehicle may require additional armor that weighs down the platform making it less

maneuverable. In order to increase force protection we must tradeoff our ability to move fast over

various terrains due to the increased load required. A system design involves hundreds of tradable

variables that must be balanced in order to develop a viable system solution that meets the demands of

the stakeholders and performs effectively. Understanding the key tradable variables that have the most

influence on a system design problem is critical during the conceptual design of a system. Tradeoff

decisions are based on data, information, and knowledge. Therefore, in order to effectively make quality

decisions while minimizing the impact of requirement changes, DoD needs a data driven rather than a

process driven approach to design new systems. The end result will be better informed decisions, faster

engineering, less rework, and allow for a wider range of alternative solutions to progress through the

phases without freezing the requirements too early. Figure 3.3 shows a data driven approach that

begins with millions of possible designs and leverages conceptual modeling to configure systems before

analyzing alternatives. This approach allows the designers to easily redesign and rework alternatives

with the conceptual model, data, information, and knowledge that is available.

Figure 3.3. Data driven approach.

3.2. Engineered Resilient System Architecture
With today’s increased computational power and availability we are now able to explore data and

collaborate effectively across several different domains with multiple stakeholders. In response to the

Assistant Secretary of Defense for Research and Engineering priority to engineer resilient systems, the

13

US Army Engineer Research and Development Center (ERDC) is developing an Architecture that

leverages information technology to help Acquisition teams make better informed design decisions

throughout the system lifecycle. The intent is to develop an open architecture that connects existing

tools, information, and data in a common framework that is non-proprietary, platform agnostics,

compatible with legacy systems, and can be shared among a wide variety of users. Figure 3.4 is an

Operational View -1 Diagram that depicts the ERS architecture as a computational cloud that integrates

multiple domain models, simulations, and data to develop a digital thread accessible to several

communities of interest for collaboration during the system design.

Figure 3.4. ERS Architecture Operational View – 1 Diagram.

Inputs to the ERS Architecture are common core platform information from previously designed

successful systems. These inputs constitute the data, information, and knowledge that contain the

functional, logical, and physical architectural concepts from several different domains. These domains

include physics-based high and low fidelity codes, life-cycle costs, mission contexts, and all the life-cycle

consideration needs (-ilities). Models and simulations are used to explore several system designs with

respect to each of the domains the models represent. The ERS Architecture uses High Performance

Computing Resources to run simulation experiments to generate the data needed to create a

tradespace environment that highlights the key tradable variables within a design decision. The data

and tradeoff environment is available through a portal for the wider community to collaborate on design

decisions throughout the system lifecycle.

Understanding the linkages between the conceptual architectural information, the simulations that

model different domains, and the data that is generated to create the tradeoff environment is an

ongoing research effort. In order to enable these linkages ERDC has organized the ERS Architecture

development into the following five technical thrust areas:

14

1. System representation and conceptual modeling. The development of the functional, logical,

and physical architectures that model the system’s element structure, behavior, relations

between elements and their interoperability. The approach that enables this trust area is the

Model Based System Engineering (MBSE) approach which is the subject of Section 6 of this

report. The MBSE approach reduces the impact of requirement changes and allows for

alternatives to be kept longer and explored deeper.

2. Characterizing changing operational contexts. Constructing, verifying, and validating simulation

model scenarios that represent a wide range of mission contexts. Provides a deeper

understanding of the warfighter needs and allows designers to refine the operational context of

changing mission requirements.

3. Cross-Domain coupling. The coupling between the simulation models that will enable designers

to better understand the linkages between the domains each model represents. Model

designers must understand the model interchange requirements and the impact of fidelity

differences between models.

4. Data driven tradespace exploration and analysis. The generation of the tradespace

environment that allows for the exploration of a multi-dimensional design problem that

illuminates the key tradable variables and helps narrow down the viable system variants.

5. Collaborative design and decision support. Enables well-informed, low-overhead discussion,

analysis, and assessment among engineers and decision makers. Provides collaborative analysis

of engineering issues and impacts.

ERDC has established the following envisioned end state over the next few years:

 Improved engineering and design capabilities: more environmental and mission context, more

alternatives developed, evaluated and maintained, better trades: managing interactions,

choices, and consequences.

 Improved systems: highly effective: better performance, greater mission effectiveness, easier to

adapt reconfigure or replace, confidence in graceful degradation of function.

 Improved engineering process: fewer rework cycles, faster cycle completion, better managed

requirements shifts.

4. Research Contributions
Brute force simulation experiments that focus on a limited set of system alternatives do not allow

Systems Engineers to effectively explore a wide variety of design alternatives early in the conceptual

design. Incorporating DOE methods within a MBSE design methodology allows for the exploration of a

wider range of alternatives. In addition, surrogate metamodels that approximate a simulation’s behavior

provide valuable insights into the design problem by identifying the most critical drivers for key measures

and form the basis to build a dynamic dashboard that can explore a high-dimensional design problem.

Our proposed MBSE methodology addresses several technical tradespace analytic gaps identified by

ERDC. Table 4.1 summarizes the technical gaps and the research contributions that address each of these

gaps. In Section 11, we conclude with a more detailed explanation of how we address these technical gaps

by proposing our MBSE methodology.

15

Table 4.1. Research contributions to tradespace gap mitigations.

5. Representative Use Case Description
To demonstrate our MBSE methodology we chose a representative use case that involves an

opportunity to invest in new technologies that will increase the capabilities of the Infantry Squad. The

system is the collection of integrated technologies that enhance the squad’s effectiveness (sensors,

weapons, exoskeletons, radios, UAVs, robots, body armor). This use case provides a lot of opportunities

to highlight tradeoffs across multiple types of costs, performance, schedule, and risk considerations. It

also allows for a wide variety of solutions/alternatives that are comprised of different combinations of

the seven system components. In order to illustrate our methodology clearly, we use two versions of

our squad enhancement use case. We refer to the first one as the large squad problem that includes 38

model inputs and over 40 outputs. Our second version is referred as the small squad problem that only

includes 4 inputs and 6 outputs. During our technical report, we interchange between these use cases

while demonstrating our methodology.

5.1. Agent-Based Model Overview
In order to evaluate the system in an operational context, we use an agent-based simulation called

Map Aware Nonuniform Automata (MANA). MANA is a stochastic, agent-based, time-stepped

16

simulation modeling environment, developed by the New Zealand Defense Technology Agency

(McIntosh et al. 2007). MANA is a low-resolution simulation of combat, intended to “capture only

enough physics as is necessary.” For example, range-probability pairs are used to capture sensor,

weapon and communication device effectiveness, vice attempting to explicitly simulate the physics

involved. MANA has been used for numerous studies, including many Masters theses, at the Naval

Postgraduate School, see https://harvest.nps.edu/. Additionally, we are aware of its use in studies at

the RAND Corporation, Office of Naval Research, Marine Corps Operations Analysis Division, Marine

Corps Warfighting Lab, and Army G-8.

The basic entity in MANA is an agent, which can be made to represent a soldier, group of

soldiers, or major combat platform or vehicle, as desired. Agents can see, shoot, move, communicate

according to the properties given to them. These entities (agents) interact with each other, as well as

the environment in which they operate, and make decisions based on their movement goals and their

situational awareness. A “squad” is the MANA term for a group of agents who share the same physical

and behavioral properties. The squad can have any number of member agents, so depending upon how

the user has set it up, it may translate directly to an entire Infantry Squad, or to homogeneous members

of an Infantry Squad, e.g. Grenadiers.

Agents attempt to see other agents on the battlefield with their organic sensors. If an agent is

able to classify another agent with one or more of its sensors then it knows whether the sensed agent is

a Friend, Neutral, or Enemy. Depending on the properties of its sensors, it’s possible that that an agent

could detect another agent but not classify it, in which case the detected agent is treated as an

“unknown.” An agent must be classified as enemy in order to be targeted with a weapon. Agents

within the same squad post their contacts to a Squad Situational Awareness (SA) Map. Additionally,

agents can pass contact information to other agent squads, using user-defined communication links,

which can have properties such as reliability, capacity, latency, etc. Contacts that are passed to a squad

over a communication link are posted to the Squad Inorganic Situational Awareness Map. Agents can be

made to act upon contact information, for a user-specified period of time, from their Squad SA Map,

their Inorganic SA Map, or both. Figure 5.1 contains a screen shot of the Graphical User Interface (GUI)

for the Defense scenario.

https://harvest.nps.edu/

17

Figure 5.1: Screen Shot of the Defense Scenario

In MANA, the user has the option to create a terrain map, where each pixel color determines

which type of terrain it represents. Each type of terrain is given properties of Going, Cover, and

Concealment which defines how trafficable the terrain is, how much protection it provides, and how

much concealment from view it provides, respectively. MANA comes with a few default terrain types

(such as road, dense brush, hill, etc.) but the user can also define their own. Figure 5.2 contains a screen

shot of the Scenario Map Editor, displaying the Terrain Map.

18

Figure 5.2: Screen Shot of the Scenario Map Editor, Displaying the Terrain Map

Although MANA is a very low resolution model, it has the capability of developing very interactive

scenarios that reveal interesting emergent behavior. Agents are assigned weapon, sensor, and

protection capabilities along with simple behavior propensities the agents execute based on what is in

their situational awareness maps. When multiple agents have simple behaviors that interact with other

agents, often times there are interesting results that emerge from these interactions. For our squad

enhancement use case we developed four scenarios and focused primarily on the squad’s capabilities

without exploring behavior propensities. Our intent was to evaluate technologies without changing the

squad behavior propensities so that they do not confound our analysis.

5.2. Simulation Scenarios
In every system design situation we are faced with multiple operational environments that the

system is expected to achieve effects in. For our squad enhancement use case, we develop four

scenarios to model the wide variety of mission contexts the squad is expected to operate in. The four

scenarios are the attack, cordon and search, movement to contact, and defense missions; a description

of each scenario follows:

Attack: Squad conducts an attack to seize terrain and destroy the enemy. Blue Force is equipped with

only organic Squad technologies and communicates with their company HQ element to call for indirect

fire. Squad moves towards the objective with their robot in front and UAV flying overhead. Blue Force

calls indirect fire on the objective as they approach. Red Force is positioned on high ground with IEDs

around the perimeter. Blue Force establishes a support by fire position with the SAW and Grenadiers

while the rifleman assault the objective. Red Force calls for another enemy element to reinforce their

19

position. Blue Force calls indirect fire on the reinforcements once they identify their location. Scenario

ends when all Blue or Red Forces are killed.

Cordon and Search: Squad patrols a village populated with several civilians. The cordon and search

scenario will last for 72 hours. Blue Force is equipped with only organic Squad technologies and

communicates with their company HQ element to call for indirect fire. Enemy insurgents initiate direct

fire within the village and retreat within the civilian population. Initial, the Blue Force cannot distinguish

between the civilians and the enemy insurgents. Snipers from a long distance outside the village fire on

the Blue Force. Civilians flee out of the village in all directions. Enemy opens fire with a crew served

weapon from a long distance and approaches the village from multiple directions to close with and

destroy the Blue Force. Blue force positions robot in a position outside the village perimeter to provide

security and will return to the Blue Force position for power recharging and return to the COP to refuel

when necessary. UAV loiters about the village. Scenario ends when all Blue or Red Forces are killed.

Movement to Contact: Squad moves along a road with their robot in front and UAV in the air as they

approach an enemy ambush position. Blue Force is equipped with only organic Squad technologies and

communicates with their company HQ element to call for indirect fire. Enemy has multiple IEDs

emplaced to initiate a complex L-shaped ambush. After the enemy initiates the ambush, another enemy

element approaches from a distance to reinforce. Blue force reacts to the ambush, calls for indirect fire

after identifying enemy reinforcements, and continues to close with and destroy the enemy. Scenario

ends when all Blue or Red Forces are killed.

Defense: Squad is in a defensive position with a combat outpost with 10 foot walls, two gate entry

points and fighting positions around their perimeter. The defensive scenario will last for 72 hours. Blue

Force is equipped with only organic Squad technologies and communicates with their company HQ

element to call for indirect fire; robots are positioned outside the perimeter to act as forward sensors

and will return to the Combat Outpost (COP) for power recharging. Six enemy insurgents approach the

COP wearing suicide vests and attempt to detonate at the gate to breach into the COP, make entry, and

detonate additional suicide vest within the perimeter. The enemy then calls for indirect fire from a

mortar position that is beyond line of friendly sight. Enemy crew served weapons open fire on the COP

from a long range distance while the enemy approaches COP from three different directions. Blue force

calls for indirect fire once they identify enemy force locations beyond line of sight. A UAV will loiter over

the area of operations and return to the COP to refuel when necessary. Scenario ends when all Blue or

Red Forces are killed.

5.3. Model Inputs
Table 5.1 shows the decision space for the squad enhancement system. To the left are the system

and sub-system components that each has a number of local properties. For each local property, there is

a stakeholder need that defines the property’s desired improvement. These local properties are the

decision variables that define the system characteristics of an alternative. We mapped each of the local

20

properties in Table 5.1 to a MANA model input and established their low and high settings that define

the experimental region.

Table 5.1. System value property mapping to stakeholder needs and MANA inputs.

In some cases, the model input was implemented as a multiplier on the current capability of the

squad. For example, the Grenadier’s Weapon Range factor varying between 1 and 2 meant that the

Grenadier’s Weapon Range was (at the low end) as it was defined in the scenario base case, and (at the

high end) increased up to twice its current capability. Figure 5.3 contains a screen shot of the properties

of the Grenadier’s weapon. For example, if the Grenadier Weapon Range input is 1.5 for a system

alternative then each of the 7 ranges listed in the range table is multiplied by 1.5 and therefore,

represents a 50 percent increase in capability.

Decision Factors Stakeholder Needs (Local Properties) Simulation Input Model Description (MANA) Low High

SDR Detection Range Increase the soldier's detection range. Distance a solider can detect a target. 1.5 2.5

SDR AVG Time Between Det Reduce the time needed for the soldier to detect a target. For a discrete set of distances, the time it takes for the soldier to detect a target. 2 2

SDR Classification Range Increase the range that a soldier can classify a target as a threat, friendly, or neutral Distance a soldier can classify something as a threat, friendly, or neutral. 1 2

SDR Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral. The probability a soldier can classify a target correctly. 1 2

SDR FOV Increase the soldier's field of view. The soldier field of view. 50 180

SDR Speed Increase the soldier's mobility with an increased load carrying capacity. Soldier speed. 3 7

SDR No. Hits to Kill Increase the body armor protection of the soldier. The number of hits to kill a soldier agent. 3 5

SDR M4 Range Increase the range of the soldier's Rifle Range of the soldier's Rifle 1 2

SDR M4 Rate of fire Increase the rate of fire of the soldier's Rifle The soldier's Rifle shots per second 1 3

SDR M4 Hit rate Increase the soldier's Rifle accuracy. For a discrete set of distances, the probability of hitting a target. 1 2

SDR M249 Range Increase the range of the soldier's Automatic Weapon Range of the soldier's Automatic Weapon 1 2

SDR M249 Rate of fire Increase the rate of fire of the soldier's Automatic Weapon The soldier's Automatic Weapon shots per second 3 8

SDR M249 Hit rate Increase the soldier's Automatic Weapon accuracy. For a discrete set of distances, the probability of hitting a target. 1 2

SDR 40mm Range Increase the range of the Grenadier Weapons' range Grenadier Weapon's range. 1 2

SDR 40mm Hit Rate Increase the Grenadier Weapon accuracy. The Grenadier Weapon's accuracy. 1 2

SDR 40mm shot radius Increase the shot radius of the Grenadier Weapon round. The Grenadier Weapon's shot radius on impact. 5 20

Comms Delay Decrease the time it takes for a solider to interpret incoming information from squad members. The number of seconds between internal squad radio transmissions. 0 15

Inorganic SA - Latency Decrease the time it takes to call for indirect fire and interpret information from UAV and Robots. The number of seconds between external radio transmissions. 0 15

Inorganic SA - Reliability Improve the soldier's ability to send, receive, and interpret information to external assets. The probability of the sending and receiving an external radio transmission. 0.7 1

No. UAVs Provide an organic UAV to the squad. Number of squad organic UAVs 0 2

UAV Speed Ensure the UAV has enough speed to maintain flight stability. The speed of the UAV. 50 100

UAV Detection Range Increase the detection range of the UAV. Distance the UAV can detect a target. 1.5 2.5

UAV AVG Time Between Det Reduce the time needed for the UAV to detect a target. For a discrete set of distances, the time it takes for the UAV to detect a target. 1 2

UAV Classification Range Increase the range that a soldier can classify a target as a threat, friendly, or neutral with a UAV. Distance the UAV can classify something as a threat, friendly, or neutral. 1 2

UAV Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral with a UAV. The probability the UAV can classify a target correctly. 1 2

No. UAV Missiles Provide a kinetic munitions to destroy threats. Number of missiles on one UAV. 0 2

UAV Missile Shot Radius Increase the shot radius of the UAV munitions without increasing collateral damage. The UAV missile shot radius on impact. 10 50

UAV Missile Hit rate (Prob of Hit) Increase the accuracy of the UAV munitions. The probability of the UAV missile hitting a target. 0.3 1

No. Robots Provide an organic Robot to the squad. Number of squad organic Robots. 0 2

Robot Speed Ensure Robot can traverse in a variety of terrain types. The speed of the Robot. 3 10

Robot Detection Range Increase the detection range of the Robot. Distance the Robot can detect a target. 1.5 2.5

Robot Classification Range Reduce the time needed for the Robot to detect a target. Distance the Robot can classify something as a threat, friendly, or neutral. 1 2

Robot AVG Time Between Det Increase the range that a soldier can classify a target as a threat, friendly, or neutral with a Robot. For a discrete set of distances, the time it takes for the Robot to detect a target. 1 2

Robot Classification Prob Improve on the soldier's ability to classify a target as a threat, friendly, or neutral with a Robot. The probability the Robot can classify a target correctly. 1 2

Robot IED Sensor Class Prob Increase the ability for a robot to detect and classify an IED. The probability a Robot can detect and IED. 1 2

Robot No. Hits to Kill Increase the Robot protection from kinetic fire. The number of hits to kill a Robot agent. 4 6

Robot FOV Increase the Robots field of view. The Robot's field of view. 50 180

Robot Stealth Reduce the size of the Robot in order to decrease the ability to detect the Robot. The enemy's probability of detecting the Robot. 0.3 1

21

Figure 5.3: Screen Shot of the Weapons Properties of the Grenadier

The collection of MANA model inputs allows us to define a wide range of system alternatives that

constitute the experimental region. In Section 7, we will discuss how we use an experimental design to

explore the experimental region defined by the low and high settings sown in Table 5.1.

5.4. Model Outputs
The MANA simulation provides a wide range of output measures that allow us to evaluate system

alternatives. These model outputs represent the measures we use to evaluate the operational domain

within different mission contexts. Our squad enhancement use case uses the following model outputs

for each scenario:

Protect: calculated as the total number of hits taken by Blue forces during the simulation run.

Aware: a metric that represents the time-weighted average of the number of Red classifications made by

Blue forces during the simulation run. As the simulation progresses, the total number of enemy that the

Blue force is aware of can be viewed as a state trajectory. Over time, the state trajectory increases or

decreases based on the total number of Red Forces that the Blue Force is aware of. The Aware measure

is calculated by finding the area under the state trajectory and dividing it by the total time of the

simulation run. The measure represents the proportion of time the squad was aware of the enemy; the

higher the proportion the more situationally aware the squad was during the simulation run.

22

Lethal: a measure that represents the time-weighted average of the number of enemy agent entities killed

in action (RedKIA) during the run. It is calculated as the area under the state trajectory curve of RedKIA

versus time. A high score (area under the curve) could be achieved by killing all Reds early in the

simulation run. A lower score could be the result of killing a few Reds early, or by killing more Reds but

much later in the run. The lowest score would be achieved by killing very few reds, late in the simulation.

After dividing the total area under the RedKIA-versus-time curve by the total simulation time multiplied

by the number of Red entities, we will get a metric that ranges between 0 and 1.

IEDProtect: a Binary measure of whether the squad avoided all Improvised Explosive Devises (IEDs), 1

means yes, 0 means no.

BlueKIA: Total number of squad members killed during the simulation run.

BLOS: Proportion of detections discovered beyond line of sight (from UAVs and robots) compared with

those detect by line of sight.

LOS: Average Classification Distance of the soldier agents that evaluates the line of sight capability.

Sustain: Total number of rounds fired by the squad during the simulation.

In addition to the MANA model outputs that represent the operational domain, we incorporated other

notional model outputs for other domains. These outputs include a manufacturability readiness level

(levels 1-9, where higher levels indicate higher levels of manufacturability maturity), weight, cost, and

time schedules that represent the maximum time along the system alternative’s critical path.

6. Model Based System Engineering Approach
MBSE is a new paradigm that supports the specification, analysis, design, and verification of a

complex system using an integrated system model with a dedicated tool. According to the International

Council of Systems Engineering (INCOSE), MBSE is a methodology characterized by a collection of

processes, methods, and tools used to support systems engineering design in a “model-based” context

(NDIA 2011). The MBSE approach is gaining popularity and is expected to become a common state of

practice in the near future (NDIA 2011). Some of the key benefits to the MBSE approach include

investigating requirement compliance to system elements within the architecture, change impact

assessments on requirement changes, and conducting trade space analysis for alternative architectural

configurations during the conceptual design phase (Kim et al. 2013). The integrated system model

effectively manages auditable records of a system design by defining a system element once to be used

throughout the model. As a result, once a change is made to an element in the integrated system

model, the dedicated tool will instantly identify how the change will impact the system. Applying the

MBSE approach within the ERS Architecture is an important aspect for the systems representation and

modeling technical thrust area. Some might say that the ERS Architecture is a means to apply the MBSE

approach for systems design.

23

The three pillars of MBSE involve a modeling language, a methodology, and modeling tool (Delligatti

2013). A common language used by system engineers is the System Modeling Language (SysML); SysML

is a visual language with a common semantic and notation standard that facilitates MBSE (Friedenthal et

al. 2011). An MBSE methodology is a road map of design tasks that is applied to a specific domain or

organization. A modeling tool is a software application that conforms to one or more modeling language

and integrates all modeling artifacts into a cohesive system reference model. Our research proposes a

MBSE methodology that incorporates design of experiments as a means to capture insights into a

complex system design problem.

6.1. System Modeling Language (SysML)
The MBSE approach utilizes an integrated system model that contains a set of elements and

relationships between them. The SysML language, defines several types of elements that represent

different aspects of the system. The most commonly used structural and behavior elements are blocks

that define elements of structure, activities that express a sequence of behavioral actions, interactions

between elements, state machines that classify a block’s state behavior and the event occurrences that

trigger transitions to other states, requirements, use cases that define a system’s context boundary and

constraint blocks that bind value properties to mathematical expressions. SysML uses nine diagram

types to depict different views of the system model. The following provides a brief description and

examples from the large and small squad enhancement use case (defined in Section 5) for each diagram

type:

Block Definition Diagrams (bdd): Bdds are diagrams that show blocks that have structural and

behavioral features. A block is a type of structure that may exist within a system. The types of structural

features include properties that represent parts, references to other external elements, values that

represent instances of quantities, or textual descriptions, ports that represent the interaction points at

the boundary of the block, and constraints that can be either mathematical expression that binds the

value properties or external simulation models that define behavior. Bdds show the arrangement of

blocks that represent elements of definition; these elements are the types of structural blocks that could

exist within the system. Bdds are used often during several system engineering activities including

stakeholder needs analysis, requirements definition, architectural design, tradeoff analysis, test and

evaluation, and system integration. Figure 6.1 shows and example of a bdd from the large squad

enhancement use case; the figure shows the part and value properties within each block.

24

Figure 6.1. Block definition diagram from the large squad enhancement use case.

Internal Block Diagrams (ibd): Ibds display the internal structure of a block or group of blocks.

Specifically, they show the type of connections between part and reference properties, the type of

matter, energy, or data that flow across connections and the services that are provided and required

across the connections. Because the large and small squad enhancement use cases are an example

within the conceptual stage, we do not have internal block diagrams for them.

Use Case Diagrams (uc). The purpose of the use case diagram is to show the externally visible

services that a system performs or provides. They are used to show a system boundary context

diagram that reveals the external actors or elements that interface with the system. Figure 6.2

shows the uc diagram that shows the attack, cordon and search, movement to contact, and defense

uses cases. The four use cases represent the services the system performs. The lines in the diagram

indicate which external actors interact with the squad enhancement system during each use case.

Figure 6.2. Use case diagram.

25

Activity Diagram (act). Activity diagrams express the dynamic behavior by showing the sequence of

actions that flow in a specified order over a period of time. The diagrams are equivalent to the

functional flow block diagrams system engineers use to express functional architectures. The

diagrams consist of a series of actions, object nodes, and control nodes connected by edges that

represent object and control flows. The purpose of the activity diagram is to convey the system’s

complex behavioral narratives for stakeholders to agree on; typically, they are nested under a Use

Case model element. Figure 6.3 shows four Activity diagrams for each of the use cases shown in

Figure 6.2. The diagram includes the actions that will provide the opportunities for all the squad

enhancement system components to perform their functions. Not only do they allow stakeholders

to agree on the system’s intended behavior, they also provide valuable input to the simulation

model builder by providing the sequence of behaviors needed to build the scenario. Additionally,

the activity diagram in Figure 6.2 shows the actions that are allocated to block elements. These

allocations are what constitute the functional allocation of the behavior elements to the system

structure elements.

26

Figure 6.3. Activity diagrams for the attack, defense, movement to contact, and cordon and search use cases.

Sequence Diagrams (sd). Sequence diagrams reveal how part properties of a block or the blocks

themselves interact with one another with operational calls and signals to produce emergent

behavior. Unlike activity diagrams, the sequence diagrams indicate which blocks are invoking

behavior by the types of messages they exchange. Lifelines are used to convey a participant in the

interaction that corresponds to a part property or block. Each sequence diagram represents a type

of interaction consisting of a collection of event occurrences that either send or receive messages or

27

start and terminate behavior. Figure 6.4 shows a Sequence diagram from the squad enhancement

system example. Specifically, it shows the agent block elements of the agent-based simulation as

lifelines at the top and the messages that are sent and received horizontally across lifelines; the

arrows represent these messages. The event occurrences are labeled above each message arrow.

The sequence of event occurrences executes from top to bottom; the vertical dotted lines represent

the lifetime of the part or block during the interaction. Two types of combined fragments are shown

within the diagram, par and loop. The par fragment is a subset of interactions separated by the

dotted line that occur in parallel while the loop fragment occurs iteratively during a single execution

of the interaction.

Figure 6.4. Sequence diagram showing the interactions between agents within the simulation model.

28

State Machine Diagrams (sm). The state machine diagram is a third type of behavioral diagram that

displays how an instance of a block transitions between states in response to event occurrences.

Systems and sub-components often have a defined set of states that it can exist in during the system

operation. State machines diagrams allow modelers to express how event occurrences trigger a

system to change from one state to another; only one state can be active at any one time. These

diagrams are especially useful during the construction of an agent-based simulation model. Figure

6.5 shows a State Machine diagram for the blue infantry agents that represents the squad in the

agent-based simulation model. The diagram classifies the behavior of the blue infantry agent within

the simulation. The ovals represent states and the arrows represent the transitions with triggers

that instantiate the state change. The large rectangle labeled “Combat States” represents a

composite State Machine. When the composite state is active, then exactly one of its internal states

is active; when the composite state is inactive, all of the internal states are inactive.

Figure 6.5 State machine diagram that classifies the behavior of an agent within the simulation model.

Parametric Diagrams (par). Modelers use parametric diagrams to express information about the

system’s constraints. We can define constraint blocks to represent model equations and inequities

that constrain or bind value properties of the structural system. Binding value properties allows

systems engineers to impose fixed mathematical relationships on value properties that constrain the

feasible system configuration. These constraints allow modelers to perform trade studies by

comparing alternatives and identifying when system configurations become infeasible by violating

the binding constraints. Constraints can also represent external models. Instead of a mathematical

expression, the external model calculates the output results as another type of value property.

Figure 6.6 shows a parametric diagram from the small squad enhancement system example. The

diagram at the bottom left is a bdd that defines the constraint block for the weight and cost

constraints. Each constraint has parameters that are binned to value properties in the parametric

29

diagram shown in the upper right of Figure 6.6; the dashed boxes represent blocks containing value

properties binded by the constraint parameters.

Figure 6.6. Parametric and block definition diagram of constraints.

Package Diagram (pkg). Packages are used to organize the integrated system model into different

namespaces that nest different structural blocks and behavioral elements within a hierarchy of

packages. Package diagrams convey the organizational structure of the integrated system model.

Figure 6.7 shows an example of a Package diagram from the squad enhancement system example.

30

Figure 6.7. Package diagram for the squad enhancement system example.

Requirements Diagram (req). Requirements diagrams allow modelers to show text based

requirements and the relationships between them and the system elements. The types of

relationships include containment, trace, derived requirement, satisfy, and verify. The requirement

diagrams allow modelers to show the requirements traceability to the system elements that depend

on them. Figure 6.8 shows a requirements diagram for the emergent properties that our external

simulation models evaluate.

31

Figure 6.8. Requirements diagram for the squad enhancement emergent properties.

MBSE provides the way to perform conceptual modeling and allows system engineers to develop a

wide variety of alternatives. The MBSE integrated system model is the conceptual model referred to in

the data-driven approach illustrated in Figure 3.3. By expressing the conceptual model using the nine

SysML diagrams, system engineers can configure systems before analyzing alternatives allowing them to

easily redesign and rework new alternatives before they are frozen during the system lifecycle. The ERS

architecture is a means for a community of users to perform conceptual modeling using the MBSE

approach in order to engineer resilient systems that are flexible to change.

6.2. External Model Integration
A key limitation of SysML is that it is only descriptive in nature and cannot produce analytical results

to inform system effectiveness. The parametric diagrams allow the modeler to incorporate

mathematical equations that a tool can solve as a system of equations but they are limited to simple

expressions. In order to achieve the full benefit of the MBSE approach the systems engineering

community must also rely on external models that capture more sophisticated analysis across a wide

variety of domains.

The types of domain models range from simple analytical equations and spreadsheet models to

simulation models that capture the dynamic complexities of a system over time. Each model is an

abstraction of reality that represents a unique viewpoint of the system within a domain of interest.

Examples of these model domains include simulations that measure operational effectiveness, life cycle

costing models, physics-based computational simulations, manufacturing models, and many more.

Generally, the common state-of-practice is to analyze these models separately to gain insight into the

domains or viewpoints they represent. In order to effectively analyze the trade-offs between these

32

various domains, we must integrate the models so that we understand the interrelations between the

domains. Every model has unique inputs and outputs. In order to discuss how to integrate models, we

must first understand how these inputs and outputs relate to a system design problem.

Model inputs can be categorized into two types. The first type represents the design parameters of

the system; if the system is a vehicle, examples may include the fuel capacity, number of wheels, or

weight. The Physical Architecture Design section of the Guide to the Systems Engineering Body of

knowledge (SEBoK) defines these design parameters as local properties that are located in a single

system element (BKCASE Editorial Board, 2015). The settings of the local properties define the system

alternative configuration and are typically under the control of the systems engineer. The second type of

model input is known as noise variables that represent threat or environmental uncertainties and are

not under the control of the systems engineer; examples may include enemy force size and type,

weather, terrain, or road conditions. The design parameters and noise variables are defined as value

properties of a block element within the SysML integrated system model.

 Systems engineers use model outputs to measure a system's performance, effectiveness, feasibility

or any other life cycle consideration that pertains to the model's domain. Model outputs are generally

used to understand what the SEBoK defines as properties which are meaningful only when attributed to

the whole, not to its parts, otherwise known as emergent properties (BKCASE Editorial Board 2015).

Properties that emerge from the arrangement and interactions of system elements can only

be truly assessed during operational testing. During the early stages of design, system engineers rely

heavily on simulation models when operational testing is not feasible because the system does not

exist. An example of an emergent property for a cargo transport vehicle may be the time it takes to

arrive at a destination in different terrain and weather environments. The time it takes a vehicle to

reach a destination cannot simply be analyzed with a local property such as the vehicle speed. We must

evaluate the vehicle configuration with all its local properties specified in order to evaluate its

effectiveness in an environmental setting. Identifying the vehicle that has the shortest time of arrival will

generally never be the desired alternative due to the multiple competing objectives involved with its

design. Systems engineers must also consider the physical feasibility constraints, costs, human factors,

manufacturability, and development schedules, just to name a few. Integrating model inputs and

outputs that capture each of these previously mentioned considerations or domains will allow system

engineers to effectively explore tradeoffs among the multiple objectives. For example, an operational

simulation can inform designers of the system alternative effectiveness within a particular scenario

context while a physics-based computational model can inform the alternative configuration

performance or feasibility.

 In order to evaluate a system alternative across multiple model domains, the system engineer must

link the local properties of the system elements to the collection of model inputs for each domain

model. The mapping of these system local properties to model inputs is often not direct. For example,

an operational simulation may have an input parameter that represents the speed of a vehicle while

a physics-based computational model may have inputs that represent the number and type of

engines. In order to effectively integrate these models, we must understand how the number and type

of engines affect speed. To establish these relationships we can collect data, develop look up tables,

build other models, or make assumptions based on subject matter expertise. Translating system

local/value properties to model inputs allows the systems engineer to evaluate alternatives across

33

multiple domains. Once the system local/value properties are mapped to model inputs properly, we can

then explore ways at understanding their effects on model outputs.

The concept of a translator is shown in Figure 6.9. To the left of the diagram, value properties within

the blocks (shown as dotted boxes) that have a direct mapping to a simulation model input have a

binding connector that is directly linked to the external model constraint block. The value properties

that are not directly mapped have a translator constraint block. The translator constraint block

transforms value properties into the model input value that will represent the system configuration

setting during the agent-based simulation model run. The right of the diagram shows a value model

constraint block with binding connectors that link external models outputs to the inputs of the value

model. See Section 10 for a discussion of the value model development and use.

Figure 6.9. Parametric diagram of the agent-based simulation model and the translators.

 The most effective way to determine the relationships between the local properties (model

inputs) and emergent properties (model outputs) is to leverage the method of statistical experimental

design. The field of design of experiments allows the analyst to identify which experimental factors or

local properties effects an output of interest that represents an emergent property. Incorporating DOE

methods within a MBSE design methodology allows for the exploration of a wider range of alternatives.

As systems become more complex, incorporating DOE methods within the MBSE approach is a natural

merger that can reveal key insights during the design of a system. Figure 6.10 shows an illustration of

our MBSE methodology. In the center is the MBSE integrated system model. Each corner represents the

DOE analysis for different domains; system element value properties are mapped to experimental

design factors, experiments are performed on high performance computing clusters, an analysis is

conducted to capture insights that are fed back into the integrated system model.

34

Figure 6.10. Experimental design insights that refine the integrated MBSE system model.

The insights we developed from DOE are primarily a result of fitting statistical metamodels that

approximate the external models’ behavior by acting as a surrogate to these models. Our next section

discusses the concept of a metamodel and how we develop and use them to gain insights.

7. Building Statistical Metamodels using Simulation Experimental

Designs
A statistical metamodel is an empirical model developed from either observational or experimental

design data that relates a set of inputs to an output. (Grayson and Gardner 2015; Hastie et al. 2009).

The model has the following general form:

𝑌 = 𝑓(𝑋) + 𝐸, (1)

where Y is the outcome of the simulation model output, otherwise known as the response, X are the

inputs, f(X) describes the predictable or explainable variation of Y, and E describes the non-predictable

or non-explainable variation of Y, otherwise known as the residual error. There are a wide variety of

methods that fit metamodels that generally are suited for one of two purposes (Grayson and Gardner,

2015; Hastie et al. 2009; Kuhn and Johnson, 2013.) The first purpose is to understand the behavior of a

process, system, or model by interpreting the effects of the inputs on the outputs (responses). In this

case, we place a higher emphasis on estimating the parameters of the metamodel and its functional

form. The second purpose is to predict the outcome (response) of a process, system, or model by using

the metamodel as a function. In this case, we focus more on how the metamodel predicts and are less

concerned about the form of the model. Finding the true model that fully characterizes a process,

system, or model can be very difficult if not impossible. By building simpler models we can describe the

35

process, system, or model with functional forms that are useful for understanding or predicting

behavior.

Fitting metamodels using observational data imposes problems that degrade the ability to fit a

useful model; these problems include correlations in the input data, missing data, and not having

enough data. The most preferred way to fit a metamodel is to use an experimental design that specifies

the inputs and eliminates these problems. (Kleijnen, 2015; Kleijnen et al. 2005) In this section, we

introduce the methods of design of experiments (DOE) with an emphasis on simulation experiments and

discuss the types of metamodel methods used to understand and predict behavior. Our goal is to

highlight the power of DOE and describe how it fits into our MBSE methodology.

7.1. Statistical Design of Experiments Introduction

A common state-of-practice when performing tradeoff analysis is to start with a baseline system

alternative of a system configuration. Two typical methods for experimentation are to vary one factor at

a time or to develop excursions from the baseline to see what happens. Varying one factor at a time

does not allow us to identify system interactions or synergies. In the context of simulation experiments,

an interaction is when a model input’s impact on the output depends on the setting or value of another

model input; this definition is different from the interactions associated with the system element

interfaces. A positive interaction implies that model inputs complement each other and a negative

interaction implies that model inputs substitute each other. Most complicated systems contain multiple

synergies and understanding model input interaction translates into where these interactions may exist

between the system elements. Examining excursions from the baseline usually means that the model

inputs may be varied simultaneously; this may result in confounding effects, thus making it impossible to

identify which model input caused the observed impact on the model output. To address these

concerns, analysts use the methods of experimental design to untangle the effects of model inputs by

eliminating the confounding between them and allow the opportunity to identify influential interactions

(Sanchez and Wan 2009)

The statistical concepts of experimental design date back to the 1920s within the agricultural

domain (Fisher, 1925) and since then have had applications in all areas of science. Analysts use DOE to

help understand how the world works and have applied DOE principles primarily on physical

experiments. As computers progressively became more powerful and accessible, experimental designs

for computer simulations have become an active research area (Kleijnen 2015). A common goal when

performing DOE is to identify a short list of influential experimental factors from a long list of many. In

the context of system engineering and SysML, these experimental factors are considered value

properties that are mapped to simulation model input parameters. In the previous section, we defined

these model inputs as either design parameters or noise variables. Identifying which model inputs are

the key design drivers and understanding how they affect the measures of effectiveness allow the

systems engineer to make better design decisions. When there is a clear linkage between the model

input parameters and the value properties in the MBSE integrated system model, we can gain insights

into how each of the structural blocks of the system affects the performance of the emergent

properties.

36

Performing a simulation DOE involves selecting an experimental design, running computational

experiments, and fitting a statistical metamodel that approximates the behavior of the model. The

experimental design, otherwise known as the design matrix, is the complete specification of the model

input settings over a set of model runs; the columns in the matrix represent each model input and the

rows are the settings for each experiment. At a minimum, the number of experiments must be greater

than the number of design parameters. Additional experiments provide more data within the design

space and capture more system configurations. (Kleijnen 2015)

After performing the experiments and assembling the output data, the engineer has a wide variety

of metamodeling methods to choose from. The most common metamodeling method used to quantify

the relationships between the model inputs and outputs is to fit a parametric polynomial function using

statistical regression (Barton 1998). Other methods include neural networks, non-linear regression,

Gaussian processing, sequential bifurcation, partition trees, boosted trees, bootstrap forests, and many

more. (Grayson and Gardner 2015; Hastie et al. 2009; Kuhn and Johnson 2013) Generally, polynomial

regression metamodels are excellent at describing individual model input impacts on model outputs

while the other metamodeling methods mentioned earlier are better able to predict effectiveness by

interpolating in-between simulated points. Ultimately, the analyst must understand which methods to

apply for either understanding or predicting model behavior.

Developing a basic understanding spans across two extremes; on the one end, we want to gain

insight into the mechanisms of a vague, ill-defined, or not-well-understood problem with limited, real-

world data. On the other end, we want to perform detailed analysis on a verified and validated

simulation model. No matter where we are in between these two extremes, there are a number of

benefits of performing DOE that can help us understand a simulation model. These benefits include

uncovering detailed insight into the model’s behavior, allowing us to examine the modeling

assumption implications, helping us frame the questions when we do not know what to ask,

challenging or confirming expectation of directional model input effects and their relative

importance, and uncovering problems of program logic. It is important to note that a model input’s

importance depends on the context of the simulation experiment; a model input may be influential in

one mission context, but not in another. Our next section will focus on how we can gain insights into

understanding the behavior of simulations using the polynomial regression metamodel and partition

tree methods.

7.2. Understanding Complex Behavior
 In order to reveal the benefits of using regression, we must first define the functional form of the

polynomial regression metamodel. According to (Myers and Montgomery 2009), the second order

polynomial model is the most common metamodel used to model real-world problems and has the

following form:

𝑦 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 + ∑ 𝛽𝑗𝑗𝑋𝑗

2𝑘
𝑗=1 + ∑ ∑ 𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑘
𝑗>𝑖

𝑘−1
𝑖=1 + 𝜀, (2)

where 𝛽0 is the intercept term representing the mean of the data; 𝛽𝑗 is the coefficient of the 𝑋𝑗 term

and represents a model input’s rate of change or effect on the model outputs 𝑦 when all other model

inputs are held constant; 𝑋𝑗
2 is the quadratic term for the jth model input, 𝛽𝑗𝑗 is the quadratic term’s

37

coefficient; 𝑋𝑖𝑋𝑗 is the two-way interaction between the ith and jth model input, and 𝛽𝑖𝑗 is the coefficient

of 𝑋𝑖𝑋𝑗. The error term 𝜀 represents other sources of variation not accounted for by the model inputs.

 The polynomial regression model provides readily interpretable parameter 𝛽 coefficients that

provide key insights into the model’s behavior. The magnitude and sign of 𝛽𝑗 ,𝛽𝑖𝑗, and 𝛽𝑗𝑗, express the

nature of the model input’s effect on the model outputs. The functional form of the metamodel is

known as the response surface that we can visualize in two or three dimensions. For higher dimensions,

we must view cross-sections of two model input parameters at a time of the response surface. In order

to fit a second order polynomial metamodel, we must expand the design matrix into what is known as

the regression matrix that includes columns representing the quadratic and two-way interaction effects.

Figure 7.1 a design matrix expansion into a regression matrix.

Figure 7.1. Design and second order regression matrix with three model input design columns.

The expanded regression matrix allows us to fit a second order polynomial metamodel using the method

of least squares (Montgomery 2012). Figure 7.2 shows an illustration of how we can learn about the real

world by performing simulation experimental designs and fitting polynomial metamodels that represent

the response surface landscape.

38

Figure 7.2. Metamodel development from a simulation experimental design.

Each of the linear, non-linear quadratic, and interaction effects have a unique interpretation that

translates into insights the systems engineer can use to understand what influences a design decision.

7.2.1. Design Drivers
Understanding which 𝑋𝑗 model inputs have an effect on the 𝑦 model outputs provides key

insights into which design parameters or noise variables drive the system’s performance. We can

identify these insights by examining the linear effects that estimate the slope or range of change on the

𝑦 when we increase 𝑋𝑗 . If the coefficient 𝛽𝑗 ≠ 0 then the jth model input has an effect on the model

output. These insights translate to the most important design parameters or noise variables that affect

the emergent behavior. In a high-dimensional design problem, identifying the design parameters that

are insignificant, where 𝛽𝑗 = 0, is as important as finding the ones that are. These design drivers are

responsible for determining the effectiveness of the system and should be carefully assessed during the

design decisions. As we increase the level of the model input, a positive coefficient sign means that the

model output will increase while a negative sign means that the model output will decrease. Figure 7.3

illustrates a positive linear effect.

39

Figure 7.3. Positive linear effect.

7.2.2. Synergies/Interactions
Identifying where there are interactions between system elements is an important endeavor

while designing a system. These interactions are difficult if not impossible to find unless the system is

evaluated in a mission context. Haphazardly selecting system alternatives or varying one model input at

a time to evaluate performance provides the system engineer no way at clearly identifying where the

interactions exist. Experimental design provides the means to identify interactions by specifying the

model input settings for each experiment in order to clearly interpret each coefficient in the polynomial

metamodel. The interaction term coefficient, 𝛽𝑖𝑗 , reveals a model input effect’s dependence on the

setting or level of another model input; a positive 𝛽𝑖𝑗 sign indicates that the two model inputs

complement each other, while a negative 𝛽𝑖𝑗 sign indicates that they reverse each other. For example,

the presence of a sensor and weapon type in a defense system may together result in vastly different

effectiveness than the presence of each of them separately. Figure 7.4 shows the effect of an interaction

term on the model output.

40

Figure 7.4. Interaction effect where X1 and X2 negatively reinforce each other.

7.2.3. Diminishing or Increasing Rates of Change
The 𝛽𝑗𝑗 coefficient describes a nonlinear trend that indicates a model input’s diminishing or

increasing rate of change on the model output. For example, as we increase a continuous model input

we may identify a “knee in the curve” that indicates a point of diminishing returns with respect to a

model output. These insights can save significant resources when we find model input settings where

the return on the model output levels off. The effect on the model output is a result of the combination

of the linear effect 𝛽𝑗 and the quadratic effect 𝛽𝑗𝑗 . Figure 7.5 illustrates the quadratic effect and shows

the four combinations of quadratic effect types that result from the coefficient signs.

41

Figure 7.5. (a) Quadratic effect that reveals a “knee in the curve.” (b) Four types of quadratic effects defined by the

combination of linear and quadratic effect coefficient signs.

7.2.4. Identifying Thresholds with Partition Trees
A significant limitation of the polynomial metamodel is that it can only approximate a smooth,

nonlinear form and cannot identify a discontinuous step function that may exist within the response

surface landscape. A step function or threshold is an area where the model output performance is

vastly different from another area. Identifying the presence of a step function can lead to important

insights when analyzing a system. For example, during the test and evaluation of the maximum

allowable weight of a cargo parachute, the rate of decent may increase linearly or nonlinearly as the

weight increases, up until a weight threshold. Once we exceed this threshold, the parachute will collapse

and increase, or step up, the rate of decent by a significant amount. Identifying the weight threshold for

a cargo parachute is, therefore, critical for those involved with its use.

 Effective statistical methods that can identify thresholds are classification and regression trees,

otherwise known as partition trees. A partition tree finds the optimal split in a data set where the

distance between the two group means is the greatest (Loh 2011). Each split occurs at a model input

setting that separates the model output data into two groups, one below and one above the split. The

split occurs where the mean difference between the two groups is maximized. As a result, we can

identify a model input threshold that has the highest impact on the model output. These splits can be

interpreted as the minimum or maximum design parameter thresholds that achieve a desired level of

effectiveness. Figure 7.6 shows a partition split of a notional response surface with an indicator function

that steps up the response when x is greater than 0.5.

42

Figure 7.6. Partition tree split of a response surface with a step function where the model output performance is vastly

different from another area.

7.3. Predicting Simulation Model Outputs
There are a number of methods that can fit predictive models where our primary focus is to

accurately predict the outcome of a response given a set of inputs. Predictive models are more of a

“black box” rather than a model with easily interpretable model parameters like the linear regression

metamodel described in the previous section. In this section we focus on four methods, Stepwise

Regression, Neural Nets, Boosted Trees, and Bootstrap Forest. We refer to (Grayson and Gardner 2015)

for details on how these methods were implemented with the JMP© statistical software

(www.jmp.com).

7.3.1. Stepwise Regression
Stepwise regression is way to find reasonably good linear regression models without having to

examine all possible metamodels for a given set of inputs. Equation 2 from Section 7.2 shows the

functional form of the second order polynomial metamodel. Because of the two-way interaction terms,

the number of total terms increases exponentially as the number of inputs increases. As a result, fitting

all possible combinations of models from an experiment with a large number of input columns becomes

infeasible. Two types of stepwise regression methods are the forward and backward selection methods.

The forward stepwise regression method starts out with a base model with only the intercept and adds

the term not already included that explains the most variation. The algorithm continues to add terms

until it reaches a stopping criterion. We use the cross validation criterion that compares the R2 from the

training set with the validation set. When the R2 difference between the training set and the validation

set begins to increase, the stepwise regression algorithm stops adding terms (see Section 7.3.5 for the

definition of R2). The backward stepwise regression algorithm works the same way as the forward

http://www.jmp.com/

43

selection except that it starts with the full model and subtracts the terms that explain the least amount

of variation.

7.3.2. Neural Nets
Neural networks are flexible non-linear models used for predicting complicated response behavior.

The neural network is constructed using a series of hidden layers that have transfer functions as nodes.

Figure 7.7 shows a diagram of two inputs, two hidden layers each with three nodes, and one output.

Figure 7.7. Neural net with two hidden layers.

Neural nets take a linear combination of the inputs into a single node to transform them to a value in

accordance with a function (hyperbolic tangent functions, linear function, or Gaussian function). From

the second hidden node layer shown in Figure 7.7 we get new values and take linear combinations of

them into the first hidden node layer. The last step is to make a prediction by taking a final linear

combination from the first hidden node layer. Each line segment and node in Figure 7.7 represents a

different parameter in the model that results in a highly complicated non-linear equation developed

using numerical optimization algorithms. Before running the Neural Net algorithm, the user must decide

the number of nodes, layers, and transformation function types; the more nodes and layers there are,

44

the more time intensive and complicated the model becomes. Neural nets can be viewed as a weighted

sum of nonlinear functions represented by the nodes in Figure 7.7. We can model a wide variety of

relationships with complicated response surfaces; however, these models are very prone to over-fitting

the data.

7.3.3. Boosted Trees
Boosted Trees is another predictive metamodeling method that uses a weighted combination of

partition tree layers. These layers are models of nested if statements that split the data into branches in

the same way as the partition tree method described in Section 7.2.4; each branch slit occurs where the

average response between branches is maximized. The first layer builds a small simple partition tree

model from the data that explains as much variation as possible. The next layer uses the residuals from

the first layer as the data to fit a second simple partition tree model; the residuals are the error

difference between the data and the simple partition tree model predictions. The algorithm continues

to fit simple partition models on the residuals from the previous layer for a specified number of

iterations. The final model becomes a weighted sum of the individual models. Figure 7.8 is an illustration

of 50 layer iterations, the final layer being the weighted accumulation of all model layers.

Figure 7.8. Boosted tree layers.

7.3.4. Bootstrap Forest
The Bootstrap Forest method is similar to the Boosted Trees method in that it uses multiple

partition trees to develop a predictive metamodel. For each tree, the Bootstrap Forest method takes a

random sample of the inputs and builds a partition tree from this subset. The algorithm continues to

build partition trees by resampling from the inputs for a specified number of iterations. The final model

becomes the average of all the models. The benefits of the Bootstrap Forest method is that it allows the

dominant input variables to be excluded from some of the partition tree iterations. In this way, all input

45

variables have a chance for selection. Figure 7.9 illustrates the Bootstrap Forest method of the average

of 100 sampled partition trees.

Figure 7.9. Bootstrap Forest method.

7.3.5. Model Comparison
A key concern when fitting predictive models is over-fitting the metamodel to the data. A metamodel

may predict very well with the data used to fit the model but when we use other data to predict an

outcome, the metamodel performs poorly. An effective way to test the accuracy of a metamodel is to

hold data from the model building process and validate and test the metamodel with the other subset of

data; this is known as the cross validation method. The data is partitioned into three sets, a training,

validation, and test set. The training set fits the predictive metamodel. The validation set is used to

select the size and complexity of the metamodel. The test set is used to evaluate how well the

metamodel predicts data not used to fit or select the metamodel; this allows us to assess how well the

metamodel will perform with a new set of input data.

It is important to fit a variety of metamodeling methods in order to find the best performing predictive

metamodel. We applied the four methods descried in the previous sections for each of our responses in

the squad enhancement use case. We used two metrics to compare the metamodels in order to select

the best performing model. The Root mean squared error (RMSE) and the R2 metrics. To obtain the

RMSE, we take the average of all the squared differences between the data and the predicted outcome.

These squared differences are also known as the sum of the squared residuals. We then take the square

root in order to get the average error in the metamodel. We derived R2 using the following formula:

𝑅2 = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
 (3)

where SEE is the sum of the squares of the residuals and TSS is the total sum of the squared differences

between the data and the mean. R2 is a number between 0 and 1, 1 means that the metamodel predicts

the data perfectly and 0 means that the metamodel is no better than the mean of the response. We can

interpret the R2 metric as the percent of the data variation that is explained by the metamodel.

46

Generally, the R2 metric is primarily used for linear regression models but in practice show similar results

as the RMSE. Figure 7.10 shows the cross validation of the actual data versus the stepwise regression

prediction plots for the ATK_Aware response.

Figure 7.10. Cross validation comparison of the ATK_Aware stepwise regression training, validation, and test data sets.

Table 7.1 shows the RMSE results for all metamodeling methods we used to find the best predicting

metamodel that pertain to the Attack scenario. The lowest RMSE determines the best performing

metamodel. The Neural(1,1,1) is a Neural Net with one layer of three nodes, with a hyperbolic tangent,

linear, and Gaussian function. The Neural(3,3,3) is a Neural Net with two layers of nine nodes with three

hyperbolic tangent, three linear, and three Gaussian functions. For the ATK_Aware response, there is a

tie between the Stepwise regression and Neural(3,3,3) RMSEs. We selected the stepwise regression

metamodel because it is less complicated than the Neural Net metamodel. The R2 metric shows the

same results as the RMSE.

47

Table 7.1. The Root Means Squared Error (RMSE) comparison for the five predictive metamodels. Best performing RMSE are

highlighted in bold.

Response
Boosted Tree

RMSE

Bootstrap

Forest RMSE

Fit Least

Squares RMSE

Neural(1,1,1)

RMSE

Neural(3,3,3)

RMSE

ATK_LOS 20.1201 106.7295 23.2483 28.1781 25.8704

ATK_BLOS 0.0862 0.1878 0.0984 0.1756 0.1705

ATK_Survive 1.406 1.8606 1.4118 1.8377 1.8329

ATK_Protect 6.8189 8.4911 6.4104 8.8473 8.4804

ATK_Sustain 251.8785 285.4452 311.3128 263.8386 270.5063

ATK_Lethal 0.0437 0.0633 0.0471 0.0515 0.0473

ATK_Aware 0.013 0.0246 0.0122 0.0113 0.0112

To illustrate the forms of the metamodeling methods described above, Figure 7.11 shows each

metamodel type for the Awareness response from the small squad enhancement use case. The stepwise

regression metamodel shows a smooth polynomial function without any quadratic terms. We can clearly

identify the highest impact model input as the SensorClassifyRNG due to the magnitude of the slope.

The Boosted Tree and Bootstrap Forest methods show a jagged form that result from the nested if

statements. The Neural Nets have a highly complicated non-linear form that can fit through the data

very effectively. The Boosted Tree metamodel has the lowest RMSE and is therefore the best performing

predictive metamodel.

48

Figure 7.11. Vertical cross sections of the Stepwise Regression, Boosted Tree, Booststrap Forest, and Neural Net metamodels

and their Root Means Square Error (RMSE) values.

Comparing the metamodels in Figure 7.11 allows us to understand each method’s individual benefits.

The Stepwise Regression metamodel provides coefficients we can interpret to include two-way

interactions, when they are present, to help our understanding of the model’s behavior. The Boosted

Trees, Booststrap Forest, and Neural Nets are better suited for predicting as we can see by their forms

shown in Figure 7.11. Now that we have an understanding of the metamodeling concept, we now will

discuss the types of experimental designs available to perform simulation experiments.

7.4. Experimental Design Types
There are many types of experimental designs used for different purposes. The type of design

used depends on a number of different considerations; some of these include: the number of potential

model inputs, the number of experiments in the design matrix, the types of metamodels that will be

fit, and the assumptions about the form of response surface; for example, if we experiment using only

the low and high setting of the model inputs we have no idea what happens in-between and therefore

must assume that there are no existing non-linear quadratic effects. The number of factors and the

response surface complexity assumptions may be the two most important considerations. If we have a

small number of potential model inputs and we can assume that there are no higher-order terms (i.e.

the response surface is linear), then we can use full-factorial, two-level designs to identify which of

the potential factors are important. The number of design points needed to perform a full-factorial

design increase exponentially as the number of potential factors increase; therefore, we may need to

use other types of designs that require fewer design points. (Sanchez 2015; Sanchez et al. 2014;

Sanchez and Wan 2012)

DOE is particularly useful in simulation studies because of the large number of potential factors, the

complex response surfaces that are involved, and the user can control the experiments without the

need to block confounding effects typically required during physical experiments. Some of the

differences between physical and simulation experiments are listed in Table 7.2.

Table7.2 . Differences between physical and simulation experiments.

Characteristic Physical Simulation

Number of factors Few Many

Number of levels Few Many

Number of responses Single Multiple

Error variance Homogeneous Heterogeneous

Presence of interactions Negligible or limited Important and complex

Error structure Independent, identically distributed Normal Complex structure

Response surface form Linear Nonlinear

Because of the complicated nature of simulations, there are a number of newly created

experimental designs that allow for the analysis of these types of problems. Before we discuss the types

of experimental designs within the field of DOE, we first will explain two key design characteristics that

are relevant to analyzing simulations—correlation and space-filling characteristics.

49

7.5. Correlation and space-filling design characteristics
Least squares estimation is the most common method used to estimate the β coefficients. The

precision of these estimates depends upon the correlations among columns of the regression matrix. In

order to ensure that model input effects are not confounded with other effects, the design should

minimize the correlations among the columns within the regression matrix. If a model input correlates

well with a model output but has a high correlation with another model input, then we cannot tell for

certain which model input contributes to the observed change in the model output variable. To

demonstrate the impact of correlation of the coefficient estimates, Figure 7.12 illustrates a design with

two columns and its correlation matrix that includes the expanded quadratic and two-way interaction

term. The figure shows a notional “true model” of the response surface landscape in the upper right

that in reality we never know with complete certainty. Because there are correlations between the

higher order effects (quadratics and two-way interactions) the coefficient estimates of the model terms

are significantly different than the true coefficients for the majority of the polynomial models fitted (as

noted in the red color).

Figure 7.12. Impact of high correlations on the metamodel estimates. Within the fitted model matrix, red indicates a

deviation from the true model coefficient, green indicates an accurate estimate.

In the example shown in Figure 7.12, a design that has no correlation among the columns will result in

coefficient estimates that equal the true model coefficients. In a high dimensional simulation

experiment, the number of polynomial terms will be significantly high. Therefore, in order to guarantee

that our coefficient estimates are not confounded we desire to utilize experimental designs that

minimize correlations among the columns in the regression matrix.

Correlation also impacts the length of the confidence interval around 𝛽𝑗 , making it harder to

50

identify the true impact of a model input on the model output. Figure 7.13 demonstrates how

correlation inflates the variance of the estimates by varying the angle between two vectors, X1 and X2,

from 1 to 90 degrees (a correlation of 0 is analogous to two vectors that are orthogonal, with 90 degrees

between them). Each of the vectors has a unit length of 1 and is anchored at the origin. Assuming that

the variance of the response (𝜎2) is constant, the variance of the estimates can be determined

analytically (Montgomery 2012). We created the graph in Figure X by rotating X1 from 1 to 90 degrees

and evaluating var(β). We can see from Figure 7.13 that when the angle between two vectors is less

than 50 degrees, the variance of the estimates is inflated significantly.

Figure 7.13. Impact on the coefficient estimate variance as the angle between vectors increases. The variance is inflated

as the angle between vectors approaches zero. A 90 degree angle between vectors is analogous to 0 correlation.

 Space-filling is another design characteristic that is important during simulation experiment studies.

The amount of coverage in between the low and high settings across all model input dimensions is what

defines a design’s space-filling characteristic. Figure 7.14 shows a comparison between a traditional

design that only experiments at the low, middle, and high setting and a space-filling design that covers

the entire design space. Both designs have zero correlation between model term coefficients but the

traditional designs do not explore the interior of the design region as well as the space-filling design.

51

Figure 7.14. Two-dimensional projections of a traditional and space-filling designs, overlaid onto a contour plot of a true

response surface with threshold.

7.6. Traditional and Space-Filling Designs
There are a number of traditional experimental designs that experimenters use for physical

experiments. Two-level full-factorials designs are used when there are a reasonable amount of design

columns and we can assume that there are no interesting behavior that occurs in-between the low and

high setting of the design region. The number of experiments needed to perform a full-factorial design is

2k where k is he number of experimental factors. To alleviate the burden of the high number of

experiments, we can use fractional factorial designs but as a result, we cannot understand fully the

impact of all the two-way interactions that may exist. When we need to understand how something

behaves in the interior of the design region we can use Central Composite Designs (CCD) that

supplement fractional factorial experiments with additional “star” points and a center point. The

number of CCD experiments grows by a factor of 2k+2k+k and very quickly becomes inefficient.

Computer-generated optimal designs are often used when traditional designs are not

applicable. For example, when there is an irregular experimental region that has factor constraints,

qualitative factors, and/or if we want to fit a nonstandard model that excludes a subset of quadratics or

interactions (Myers et al. 2009). Two of the most common types of optimal designs are the D-Optimal

that minimizes the determinant of the covariance matrix and the I-Optimal design that minimizes the

average prediction variance; both for a pre-specified metamodel (usually a main effects model, with

constant variance).

Space-filling designs are better suited for identifying unknown response surfaces, where

multiple complex forms and thresholds are possible (Myers et al. 2009). The most common type of

space-filling designs is the Random Latin hypercube (RLH). Figure 7.15 defines the RLH where n is the

52

number of experiments or design points, k is the number of experimental factors and f(x) is the

response.

Figure 7.15. Definition of the Random Latin Hypercube.

As indicated by Figure 7.15, a significant limitation with the RLH is that they generally do not

minimize the correlations between the columns in the regression matrix and as a result, the coefficient

estimates of the polynomial metamodel are confounded. (Hernandez et al. 2012) addressed the RLH

correlation problem by constructing a nearly-orthogonal Latin hypercube (NOLH) with a mixed integer

program optimization algorithm were the maximum absolute pairwise correlation between columns is

less the 0.05.

Simulation experiments often have a mix of model input types. Continuous model inputs range

between a low and a high setting, while discrete and categorical model inputs have a predetermined

number of levels. The discrete levels have a numeric meaning, while each categorical level represents

qualitative categories. LH designs are useful for the exploration of continuous factors because they

provide insight throughout the experimental region but by themselves cannot effectively handle

discrete or categorical experimental factors, because of the increase to the correlations due to rounding

Experimenters use orthogonal arrays when exploring discrete and categorical factors. (Rao 1945)

introduced orthogonal arrays in order to ensure that qualitative factors are not confounded with each

other. A significant limitation of orthogonal arrays is that the number of experiments needed for a

moderate number of experimental factors is too large. For example, an orthogonal, full-factorial design,

with 10 discrete factors, each with 10 levels, requires 10 billion experiments, making them extremely

inefficient. To address the inefficiencies of orthogonal arrays, (Vieira, Jr. et al. 2011) developed known as

Nearly Orthogonal/Balanced (NO/B) designs in order to explore all types of factors simultaneously

53

(continuous, discrete, and categorical) in a reasonable amount of experiments. For an in-depth

review of the different types of experimental designs used for simulation studies, see (Kleijnen 2005).

7.7. State-of-the-art space-filling designs
In order to understand the complex nature of a system design problem, we must be able to

detect the system drivers and understand how they impact the system effectiveness. Computer

simulations and DOE enable us to model a system by simultaneously exploring numerous model inputs

that may affect the complex nature of multiple simulation model outputs. When these model inputs are

mapped to system design parameters and noise variables we can identify the ones responsible for

determining the effectiveness of the system. These experiments are critical in the early phases of the

system design process, when there is little information and no existing system. Simulation model

outputs often have complicated, high-order, response surfaces that may include thresholds or step

functions in different regions of the experimental space. The simulation analyst needs experimental

designs that can best capture the significant system drivers, thresholds, synergies/interactions, and the

model input’s diminishing or increasing rates of return with respect to multiple model outputs.

A new class of space-filling designs, known as the 2nd Order NOLH and NO/B designs developed using

a genetic algorithm combines the benefits of near orthogonality (minimal correlations), the space-filling

characteristic, and the ability to experiment with continuous, discrete, and categorical experimental

factors simultaneously (MacCalman 2013). Figure 7.16 illustrates how these new state-of-the-art designs

contribute to the body of knowledge of the space-filling and second order design domains.

Figure 7.16. Space-filling and second-order design domain convergence; see (MacCalman 2013) for the embedded citations.

54

(MacCalman 2013) developed a freely available custom design generator to construct 2nd Order NOLH

and NO/B designs for simulation studies that can be downloaded at

http://harvest.nps.edu/software.html; Appendix B contains the custom design creator user manual.

7.8. Use Case Experimental Design
To perform the experiment, we utilized three custom built space-filling designs with 38 columns that

represent each of the MANA model inputs. The design used for the training set had 300 rows, while the

design used for the validation and test sets had 100 rows; each row represented the model input settings

for one simulation experiment. Because the MANA simulation is stochastic, we performed 100

replications for each simulation experiment, for a total of 50,000 runs. After performing the experiments

on a high performance computing cluster and post-processing the output data, the design matrix and

model output columns were imported into a statistical package to fit our surrogate metamodels.

8. Technical Requirements for High Performance Computing Clustering
In order to outline the technical requirements necessary to perform simulation experimental designs,

we developed an IDEF0 functional diagram that highlights the nine major activities with each of their input

and output requirements. An IDEF0 diagram shows a box for each activity with arrows representing the

inputs (left arrow), outputs (right arrow), mechanisms (bottom arrow) that perform the activity, and the

controls (top arrow) that set the conditions, such as guidelines, procedures, or standards. Figure 8.1 shows

the major activities starting with identifying the tradable/decision variables from our SysML diagrams and

ending with the simulation output data and statistical metamodels that are imported into the ERS

tradespace visualization environment.

http://harvest.nps.edu/software.html

55

Figure 8.1. IDEF0 Functional Diagram outlining the activities and input/output requirements necessary to perform a

simulation experimental design study.

The next subsections describe in more detail each of the nine activities depicted in Figure 8.1.

8.1. Select System Model Element Design Variables
A principle artifact of the MBSE paradigm is the “System or Reference Model” that represents the

system of interest, implemented using an MBSE Tool. This model captures all design specifications

throughout the system lifecycle and uses a language to express different views of the system. We assume

that the Conceptual Model within the ERS Architecture will be what MBSE practitioners refer to as the

“System Model,” that uses the nine diagram types of the System Modeling Language (SysML). Our first

activity involves selecting the design variables from the conceptual model and defining the experimental

design region we intend to explore with our external models. The inputs to this activity are the value

properties from the structural block diagrams of the integrated system model. The controls that govern

the activity are the SysML syntax and semantics, the research questions, and the problem domain. The

3.0

Create

Experimental

Design

4.0

Generate Study

File that Specifies

which Model Input

Parameters to

Change

5.0

Generate

Excursion Files

for Each

Experiment (row

in design matrix) 6.0

Execute HPC

Simulation Runs

7.0

Post-process

Output Files to

Extract MOEs

8.0

Perform Statistical

Metamodeling

9.0

ERS Tradespace

Visualization

B
as

eC
as

e

S
im

ul
at

io
n

S
ce

na
rio

Custom Design

Creator or

Statistical Packages

E
xp

er
im

en
ta

l

D
es

ig
n

M
at

rix

Software Mechanism with a

Graphical Front-End to Map

Model Input Parameter

Settings to Columns in

Design Matrix

S
im

ul
at

io
n

O
ut

pu
t F

ile
s

Statistical Software Package

D
at

a
File

 w
ith

 M
O
E
s

C
on

ca
te

na
te

d
to

D
es

ig
n

M
at

rix

E
xc

ur
si
on

S
ce

na
rio

 F
ile

s

Cluster Run

Software

Post-processing

Script

DOE Principles

S
ur

ro
ga

te

M
et

am
od

el
s

ERS

Architecture

S
pe

ci
fic

at
io
n

S
tu

dy
 F

ile

HPC

Supercomputers

Statistical

Principles

1.0

Select System

Model Element

Design Variables

SYSML Syntax

and Semantics

Problem

Domain

S
Y
S
M

L

D
ia
gr

am
s

Research

Questions

N
um

be
r o

f

E
xp

er
im

en
ts
 a

nd

R
ep

lic
at

io
ns

ERS Conceptual

Model Builder

S
tru

ct
ur

al
 a

nd

B
eh

av
io
ra

l

Tra
da

bl
e/

 D
es

ig
n

V
ar

ia
bl
es

Model Input

Format

Software that Replaces

Baseline Values with

New Values

M
O
E
s

2.0

Select Models,

Develop Basecase

Scenarios, Map

Design Variables to

Model Inputs
M

od
el
 In

pu
t

P
ar

am
et

er
s

Operational

Simulations, First Order

Engineer Models, -ility

Models

E
xp

er
im

en
ta

l

D
es

ig
n

M
at

rix

B
as

eC
as

e

S
im

ul
at

io
n

S
ce

na
rio

Model Output Format

S
im

ul
at

io
n

O
ut

pu
t F

ile
s

E
xp

er
im

en
ta

l

D
es

ig
n

M
at

rix

56

mechanism to perform this activity is the MBSE modeling tool and the outputs are the value properties

representing the tradable variables to explore in the experimental design study.

Select Design Variables: Once the Conceptual Model is built in ERS, the analyst may want to analyze the

performance/effectiveness of the system and identify the most important design variables, otherwise

known as tradable variables. These variables can be structural and behavioral system model elements

defined in the conceptual model and viewed in different SysML diagrams. Structural elements are

viewed using the Block Definition and Internal Block Diagrams while the behavioral elements are viewed

using the Use Case, Activity, Sequence, and State Transition Diagrams.

Define Design Region: Each variable should be classified as either a continuous, discrete, or categorical

type. The analyst must define the experimental design region by selecting the low and high settings for

the continuous variables, the number of levels for the discrete variables, and the number of categories

for the categorical variables.

8.2. Select Analytical Models, Develop Baseline Scenarios, and Map Design

Variables to Model Inputs
The inputs to this activity are the tradable variables that will be investigated during the experimental

design study. The controls that govern the model selection are the problem domain and the research

problem. The mechanisms that perform this activity are the models and simulations that will be used in

the study. The outputs of the activity are the model inputs and the baseline simulation scenario. In order

to effectively perform a simulation experimental design, all models must have the ability to modify their

input parameters programmatically and execute an instance via a command-line without a Graphical

User Interface (GUI) or human in the loop.

Select Analytical Models: We assume that the analyst wants to analyze the system using

different external operational simulation models and first-order engineering models. Each

model examines a different aspect of the system and has their own unique set of input

parameters and output measures. Generally, the operational simulations inform the system

effectiveness within different mission contexts while the first-order engineering models define

feasible system configurations.

Construct Baseline Scenario Models: For each model selected, the analytical team must

construct operational mission context scenarios that are verified and validated for each aspect

of the problem the model represents. These scenarios may be reused from previous studies but

generally, the models will require some redesign to meet the needs of the intended research

questions. These models will have baseline input parameter settings that will eventually get

modified during the high performance computer cluster runs.

Map Design Variables to Model Input Parameters: After selecting the external models that will

inform the system’s effectiveness and feasibility, the analyst must map design variables derived

57

from the Conceptual Model (elements from the SysML Diagrams) to the model input

parameters; each model will have their own set of elements that map to their own set of inputs.

8.3. Create Experimental Design
The inputs to this activity are the model inputs that will represent each of the factors in the

experimental design and the number of simulation replication runs. The mechanisms to create an

experimental design are a statistical software package or a custom design builder. The controls are the

DOE principles and the output is the experimental design matrix that will be used to perform the

experiments.

Select Experimental Design Type: After mapping the design variables to model input

parameters, the analyst must now select the type of experimental design. This decision is based

on the model run time, the available computational resources, the number and type of design

variables (continuous, discrete, or categorical), and the desired complexity to capture in the

analysis. For example, a screening design can analyze over 100 model inputs but not clearly

capture the higher order complicated behavior in the form of synergies between variables or

non-linearities. After identifying the most important system elements that drive the output

behavior, we can then perform subsequent experiments on a reduced set of variables to further

identify complicated behavior. The field of DOE has several types of experimental designs to

choose from, each with their own set of properties and purposes. Space-filling designs are

particularly useful for simulation studies where the analyst can expect to find interesting

behavior anywhere within the experimental design region. In addition, designs that allow for a

mix of continuous, discrete, and categorical factors are important for system simulation studies

due to the large number and type of design variables.

Determine the Number of Experiments: An experiment is referred to as a design point within

the DOE literature. At a minimum, the number of design points must at least be greater than the

number of design variables. Additional design points provide more data within the design region

and capture more system configurations. Performing brute force simulation runs on all possible

configurations of a high dimensional system problem quickly becomes infeasible due to the run

time requirements of a simulation model. A key benefit in doing DOE is to leverage efficient

experimental designs that sample at the right system configuration settings within the design

region in order to get as much information as possible from your experiments.

Generate Experimental Designs Using a Statistical Package or Custom Design Builder: Once the

analyst selects the type of design with the required number and type of variables, design points

(experiments), and defines the design region, he/she must now either generate a custom design

or select an existing cataloged design from the literature. The analyst can generate the design

either with a custom design builder or an external statistical package. The end result is a matrix

with columns that represent design variables, and rows that are the input parameter

specifications for each model experiment. We should expect that there be a unique

58

experimental design for each external model with unique input parameters and output

measures.

8.4. Generate a Study File that Specifies which Model Input Parameters to

Change
The controls that govern this activity are the simulation model input formats. In order to perform a

simulation experimental design study, we need a mechanism for changing the base case scenario input

parameters to the settings specified in the design matrix. The two inputs to this activity are (1) a base

case simulation scenario typically created using a GUI that forms the basis for modification by the

experimental design matrix and (2) an experimental design, which are a set of model input parameters

and the values for each experiment. The mechanism is software that finds, selects, and modifies the

model input parameters of the base case scenario to create a set of excursions, one for each experiment

or row in the design matrix. The mechanism used to set the values depends on the model input format.

Input formats for simulation models can range from one or more plain-text files, such as CSV

(comma separated values) files, to structured text files, like XML, YAML, or JSON, to entries in a database

table, or combinations thereof. Each of these formats present different challenges in the task of

modifying model input (NATO Science and Technology Organization 2014). The format must have a

structured way of defining data and at the same time provide meta-information describing the

semantics of the contained data. The XML structure allows for the navigation through the input file

programmatically to identify various sections of the inputs easily, e.g., with the help of XPath (Bray et al.

2008). This is greatly advantageous over plain text files, as parsing XML is also, due to the organized

structure of such a file, a fairly standard task which does not need to be implemented by hand from the

ground up. The software mechanism that will perform this activity should have a graphical user interface

that allows the user to map model input parameters to the experimental design columns and save these

mappings into a specification study file. The output of this activity is a specification study file that

specifies which model input parameters to change.

8.5. Generate Excursion Files for Each Experiment (row in the design

matrix).
 Once we generate the specification study file, we now need a means to create individual excursion

files with the new model input parameters set to the values specified in the design matrix. For each

experiment or design point in the design matrix, there should be one excursion file. The mechanism that

performs this activity is a software solution that accepts the design matrix and specification study file as

an input and produces the set of excursions needed to perform the simulation experiments. If we are

using stochastic simulations, we must perform replications of each excursion in order to analyze the

output measures.

59

8.6. Execute HPC Simulation Runs
 To execute the simulation excursion runs on an HPC we need a job queuing mechanism that enforces

a scheduling policy and priority scheme while monitoring the computer resources that will complete the

jobs. A job is one or more runs of the simulation model excursion. The mechanism is a software

management system that interfaces with the HPC and excursion files and distributes jobs across

available computer resources while managing the transfer of files. The software we used for this

research was HTCondor (see https://research.cs.wisc.edu/htcondor/). Once an excursion run is

complete, the simulation output files are stored in a specified location.

8.7. Post-Process Output Files
 There are three necessary requirements to post-process output for operational simulation data that

involve extracting, aggregating, and appending data to the experimental design. The controls that

govern this activity are the model output data log formats. Figure 8.2 shows visually each of these sub-

activities.

Extract Data: A post-processing script is necessary to extract the desired measure from one or

more data log files. Typically operational simulation model outputs are saved as data logs of

events that occurred during the run of the scenario. These files may contain 1000s of records

for target acquisitions, state variables changes, or event occurrences. Although there may be

common output measures used often for a wide variety of studies, there will always be unique

measures that require a script to extract from the data log. For example, one output measure

for an operational simulation may be the number of civilians killed by indirect fire and is

something that the model does not provide directly to the user. The output data log may record

data fields that include the entity status at different time steps. A post-processing script must

iterate through the data log to tally the number of civilians that were killed during the model

run.

Aggregate Data: The second post-processing requirement is to aggregate the individual output

data log files into one file. Generally, simulations save data as individual output files for each

experiment and each replication.

Append Data to Experimental Design: The final step is to append the output measure data to

the experimental design. The final artifact should be a matrix with each experimental design

column and output measure columns appended to the right. The matrix should have each

experiment or row repeated for each replication.

https://research.cs.wisc.edu/htcondor/

60

Figure 8.2. Post-Processing Activities. The figure visually shows each of the activities necessary to produce the final data file

that is passed to the subsequent activities.

The output of this activity is an experimental design matrix with the model outputs appended to the

right of the design.

8.8. Perform Statistical Metamodeling
Once we produce the data file with the model outputs or MOEs appended to the design matrix, we

can then perform the statistical analysis that was described in the previous chapter. The controls that

govern this activity are the statistical principles and metamodeling methods. The mechanisms that

perform this activity are the statistical packages available to fit metamodels; examples include R, SPSS,

Minitab, Stata, JMP, MATLAB, Microsoft Excel, and several others. The outputs to this activity are the

collection of surrogate metamodels for each of the model outputs that will be analyzed in the

tradespace study.

8.9. ERS Tradespace Visualization
Our next chapter will describe in detail how we perform this activity by analyzing and visualizing trade

decisions. The mechanism to perform this activity is an ERS visualization dashboard that can illuminate

trade decisions. The purpose of this chapter is to reveal the requirements needed to develop the

metamodel approximations that are used to help illuminate the trade decisions. The functional form of

the metamodels provide a way to explore changes in multiple design variables to help narrow in on

State Info

DP 1, Rep 1

State Info

DP 1, Rep n

State Info

DP 2, Rep 1

State Info

DP 2, Rep n

State Info

State Info

MoE

MoE

MoE

MoE

MoE

MoE

MoE

DP n, Rep 1

DP n, Rep n

MoE1 MoE2 … MoEnDesign Matrix

…
…

EXTRACT

Extract state information from data
logs into desired MoEs. Output file
data logs generally have multiple

rows of state changes.

AGGREGATE

Aggregate the extracted MoEs from
each excursion and replication.

APPEND

Append the MoEs
to the Design Matrix
as your final output

Legend:
-DP (Design Point): an excursion; a
row in the design matrix
-Rep: a replication of an excursion
-MoE: Measure of Effectiveness

…
…

…

DP 1, Rep 1

DP 1, Rep n

DP 2, Rep 1

DP 2, Rep n

DP n, Rep 1

DP n, Rep n

61

interesting system configurations with respect to multiple output measures; exploring the functional form

of the metamodels helps illuminate the viable system variants. Our purposed methodology is tool agnostic

but in order to demonstrate it we must select the tools for each activities listed in Figure 8.1. Table 8.1

shows the tools we intend to use for each of the nine activities. The hyperlinks in the table provide

additional information for each of the tools listed.

Table 8.1. Software tools used for each functional activity.

Functional Activity Tool Link

1.0 Select System Model Element Design Variables MagicDraw SysML Plugin

2.0 Select Analytical Models, Develop Baseline

Scenarios, and Map Design Variables to Model

Inputs

Map Aware Non-uniform Automata Simulation

3.0 Create Experimental Design Custom Space-Filling Design Creator

4.0 Generate a study file that specifies which

model input parameters to change

XStudy Data Farming Tool

5.0 Generate excursion files for each experiment

(row in the design matrix).

OldMcData Data Farming Tool

6.0 Execute HPC Simulation Runs HTCondor

7.0 Post-process Output Files Post-Processing Script written in R

8.0 Perform Statistical Metamodeling JMP

9.0 ERS Tradespace Visualization JMP

9. Simulation Analysis and Tradespace Visualization
Despite our efficient selection of experimental design variable setting there is still a high volume of

multi-dimensional data that requires sophisticated analytical techniques to gain insights. Some of these

techniques include descriptive statistics, visualizing distributions to understand the spread of the output

measures and identify outliers, visualizing scatter and contour plots to understand the output measure

landscape, and many more. To demonstrate how we can apply these statistical techniques we will use a

small use case example that explores a soldier enhancement system that includes a radio, sensor and a

rifle. Our demonstration will include the following three measures of effectiveness (MOEs): ATK_Aware,

ATK_Lethal, and ATK_Protect; see Section 5.4 for the description of these MOE responses. We will first

discuss the exploratory analysis techniques and then describe the dashboard used to identify key tradable

variables and viable system variants. In this section, we refer to the term model input as a factor and to a

model output as a response.

9.1. Exploratory Analysis
Before fitting meta-models, we begin by examining the distributions of our three MOEs of interest

and the pairwise correlations between them. Figure 9.1 contains the set of histograms and statistical

summaries of the MOEs, produced with the JMP© statistical software (www.jmp.com). The data set upon

which these are based represents the mean of each of the 500 design points, hence N=500 for each of

http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html
http://harvest.nps.edu/scythe/Issue1/IDFW13-Scythe-Mana.pdf
http://harvest.nps.edu/software.html
http://harvest.nps.edu/software.html
http://harvest.nps.edu/software.html
http://research.cs.wisc.edu/htcondor/
http://cran.r-project.org/doc/contrib/Lemon-kickstart/kr_scrpt.html
http://www.jmp.com/software/jmp/
http://www.jmp.com/software/jmp/
http://www.jmp.com/

62

these. From these histograms, we note a couple of things: (1) there is reasonable variation across the

design point, meaning that at least one factor had a significant impact on each MOE, and (2) some MOEs

are closer to being normally distributed than others. For example, ATK_Lethal appears bi-modal, a fact

we’ll seek to explain with the metamodeling approaches.

Figure 9.1: Histograms and Summary Statistics for the 3 MOEs

Figure 9.2 contains the set of scatterplots and pairwise correlations for our MOEs. ATK_Aware and

ATK_Lethal have a moderate positive correlation (approximately .37), which makes sense, since one

would expect that an increase in awareness of Red would lead to an increase in being able to kill more

Red, earlier. ATK_Aware and ATK_Protect have a moderate negative correlation (approximately -.35),

which also makes sense, in that an increase of awareness of Red should lead to an improved ability for

Blue to protect itself, thus leading to a lower total number of hits taken. The strongest correlation,

between ATK_Lethal and ATK_Protect (approximately -.83), confirms intuition that killing more red,

earlier, leads to a dramatic decrease in the total number of Blue hits taken by Red. The fact that the two

‘moderate’ correlations are not stronger simply means that there is more to the story, which we seek to

uncover with the metamodels. Another insight we can gain from examining correlations is whether or not

MOEs “trade off” with each other, or, whether we can simultaneously improve all MOEs together. The

latter is the case for these 3 MOEs, they do not trade off with each other.

63

Figure 9.2: Scatterplots and Correlations

ATK_Aware Metamodels: Figure 9.3a depicts the sorted parameter estimates for the ATK_Aware

regression model (with R2 of .92). This particular model contains only main effects, no interaction or

quadratic effects. Included in the list of most significant main effects are the design parameters for

number of UAV (NoUAV), soldier classification range (SDRClassRng), number of robots (NoRobots), and

internal communication delay between squad members (InCommDelay). An effective way to show how

each design parameter impacts an MOE is with a prediction profiler, shown in Figure 9.3b. A prediction

profiler displays the partial derivatives for each design parameter in a metamodel. These profilers show

how changes in each design parameter or design driver impact the MOE, while the other design

parameters are held constant. From both a. and b. we can see that InCommDelay has a negative effect

on overall awareness, while the other three design parameters have a positive effect. Figure 9.3c contains

a partition tree with splits in the experimental data that show thresholds for the 3 of the 4 design

parameters that appeared in the regression model.

64

Figure 9.3: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Partition Tree.

A summary of the insights captured from the polynomial metamodel coefficients are summarized in

Table 9.1. These insights are based on the assumptions behind the agent-based simulation model, the

scenario, and the established ranges of the design parameters. We must remember that when a design

parameter is insignificant according to the metamodel it does not mean it is not important within a

different scenario or outside these established ranges. All models are abstractions of reality and must be

verified and validated. Like the simulations themselves, the metamodels are also models that must be

validated in order to provide valuable insights that help understand a complex system design problem.

65

Table 9.1. DOE insights from the ATK_Aware MOE from the attack scenario.
Type of

Insight
Design Parameter

Coefficient

Sign
Description

Design

Drivers

NoUAV Positive
Increasing the number of UAVs improves awareness.

SDRClassRNG Positive
Increasing the soldier classification range improves awareness.

NoRobots Positive
Increasing the number of robots improves awareness.

 InCommDelay Negative
Increasing the delay between internal squad communications degrades

awareness.

Synergies /

Interactions
N/A N/A

Diminishing

rate of change
N/A N/A

Thresholds

NoUAV N/A
Solider system shall incorporate at least one Unmanned Aerial System.

SDRClassRNG N/A
Solider classification range multiplier shall be at least 1.5.

NoRobots N/A
Solider system shall incorporate at least one Robot.

ATK_Lethal Metamodels: Figure 9.4a depicts the sorted parameter estimates for the ATK_Lethal

regression model (with R2 of .88). This model contains main effects, one interaction effect, and one

quadratic effect. Included in the list of most significant main effects are the design parameters for soldier

M4 weapon range (M4RNG), soldier classification range (SDRClassRng), number of UAV (NoUAV), and

soldier detection range (SDRDetRNG). Figure 9.4b contains the prediction profiler, indicating that M4RNG

has the strongest impact on this MOE. Figure 9.4c is an interaction matrix where each plot shows the

synergies between two design parameters, one in a row and the other in a column. The design parameters

in the columns show its effect on the MOE when the design parameter in the row is set at the low and

high levels. The line segments represent the low and high settings of the row design parameter; when

the slopes of these lines are different, this means that the effect of the column design parameter depends

on the setting of the row design parameter (23). Figure 4d contains the partition tree, with R2 of .83.

66

Figure 9.4: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Interaction Profiler. (d) Partition Tree.

A summary of the insights captured from the polynomial metamodel coefficients are summarized in Table

x. As before, these insights are based on the assumptions behind the agent-based simulation model, the

scenario, and the established ranges of the design parameters.

Table 9.2. DOE insights from the ATK_Lethal MOE, using the attack scenario.

Type of

Insight
Design Parameter

Coefficient

Sign
Description

Design

Drivers

M4RNG Positive
Increasing the soldier’s M4 weapons range improves lethality.

SDRClassRng Positive
Increasing the soldier’s classification range improves lethality.

SDRDetRng Positive
Increasing the soldier’s detection range improves lethality.

 NoUAV Positive Increasing the number of UASs improves lethality.

Synergies /

Interactions
SDRClassRng / M4Rng Negative

The soldier’s classification range interacts with his M4 weapon range. Increasing

the M4 weapon range has more of an impact when the classification range is low.

(This is a mild to moderate interaction effect.)

Diminishing

rate of change
SDRClassRng Negative

Analysis indicates that there is a point of diminishing returns beyond a class

range multiplier of 1.5.

Thresholds

M4RNG N/A
Soldier M4Rng multiplier shall be at least 1.4.

SDRClassRng N/A
Solider classification range multiplier shall be at least 1.06.

SDRDetRng N/A
Solider detection range multiplier shall be at least 2.

 NoUAV N/A
Solider system shall incorporate at least one Unmanned Aerial System.

67

ATK_Protect Metamodels: Figure 9.5a depicts the sorted parameter estimates for the ATK_Protect

regression model (with R2 of .92). This model contains main effects, interaction effects, and one quadratic

effect. Included in the list of most significant main effects are the design parameters for soldier M4

weapon range (M4RNG), soldier classification range (SDRClassRng), soldier detection range (SDRDetRNG),

internal squad communications delay (InCommDelay), and soldier field of view (SDRFOV). Figure 9.5b

contains the prediction profiler and Figure 9.5c is the interaction matrix. A strong interaction between

SDRClassRng and InCommDelay indicates that increasing InCommDelay over these ranges has no effect

when classification range is high, but does significantly increase the number of blue hits taken when

classification is low. This indicates that increased classification range can mitigate the negative effect of

increased internal squad communications delay. Figure 9.5d contains the partition tree, with R2 of .68.

Figure 9.4: (a) Sorted Parameter Estimates. (b) Prediction Profiler. (c) Interaction Profiler. (d) Partition Tree.

A summary of the insights captured from the polynomial metamodel coefficients are summarized in Table

9.3. As before, these insights are based on the assumptions behind the agent-based simulation model,

the scenario, and the established ranges of the design parameters.

68

Table 9.3. DOE insights from the ATK_Protect MOE, using the attack scenario.

Type of

Insight
Design Parameter

Coefficient

Sign
Description

Design

Drivers

M4RNG Negative

Increasing the soldier’s M4 weapons range improves the ability of the squad to

protect itself.

SDRClassRng Negative

Increasing the soldier’s classification range improves the ability of the squad to

protect itself.

SDRDetRng Negative
Increasing the soldier’s detection range improves the ability of the squad to

protect itself.

 InCommDelay Positive
Increasing the delay between internal squad communications degrades the ability

of the squad to protect itself.

 SDRFOV Negative
Increasing the soldier’s field of view improves the ability of the squad to protect

itself.

Synergies /

Interactions

SDRClassRng /

InCommDelay
Negative

The soldier’s classification range interacts with the squad’s delay in internal

communications. Increasing InCommDelay has no effect when classification

range is high, but does significantly increase the number of blue hits taken when

classification is low.

Diminishing

rate of change
SDRClassRng Negative

Analysis indicates that there is a point of diminishing returns beyond a class

range multiplier of 1.5.

Thresholds

SDRClassRng N/A
Solider classification range multiplier shall be at least 1.3.

M4RNG N/A
Solider M4 weapon range multiplier shall be at least 1.2.

 SDRFOV N/A
Solider field of view shall be at least 70 degrees.

 InCommDelay N/A Internal squad communications delay shall be less than 6 seconds.

After acquiring the insights derived from our DOE analysis we can now capture them within our MBSE

system integrated model. Figure 9.6 shows a number of SysML relationship elements that convey the

insights captured. The figure shows two requirement containment structures for the emergent and local

properties. Analyzing simulation model output results are one way a systems engineer can validate a

system requirement. The system drivers identified above can reveal which value properties or structural

blocks satisfy the requirements classified as emergent properties. Figure 9.6 shows these satisfy

relationships between value properties and emergent property requirements. The threshold and

interaction insights derived new requirements that provide more specific requirement statements. Below

the emergent properties in Figure 9.6 are derived requirement relationships for the local properties of

the system. Additionally, the rationale comments highlight the interactions that exist between these local

property requirements.

69

Figure 9.6. DOE insights captured within the MBSE system integrated model.

70

9.2. Dashboard Tradespace Visualization
We can easily visualize the response surface landscape with a surface plot when there are only three

dimensions. Because there are often several more dimensions in a systems design problem we must

visualize cross sections of the response surface with respect to only two model inputs at a time. A

contour profiler is a two dimensional projection that is a horizontal cross section of a response surface

within the experimental design region. We define this region when we scale and translate the design

matrix to the desired high and low settings for each model input prior to performing the simulation

experiments. Visualizing the selected projections allows the user to interactively explore how multiple

responses depend on two selected model inputs. The contour profiler allows us to set limits on the

responses to help define infeasible and feasible regions in the response surface; the shape of these

shaded regions is dependent on the functional form of the multi-dimensional metamodel. For analytical

and technical details on the profilers used in this section, see (SAS Institute 2015).

Figure 9.7 illustrates how a contour profiler is a horizontal cross section of a notional response

surface. The crosshairs within the contour profilers indicate the model input settings depicted along

each axis. If the user changes the setting of a model input other than the ones shown in each axes, the

shape of current projection will change; this is because the change reflects a movement to a different

area of the response surface. The differences in Figure 9.7a and 9.7b are a result of changing the model

input not shown in the contour profiler. We also note that the response surface with respect to X1 and

X2 is much different than X1 and X3.

Figure 9.7. Contour profilers showing horizontal cross sections of the response surface.

71

The red arrows in Figure 9.7a that point from the contour profilers to the surface plots show that the

contour line is where the horizontal grid plane intersects the response surface while the shaded region

indicates everything underneath the horizontal grid plane.

In addition to the contour profilers that show horizontal cross sections we can also visualize the

response surface landscape using prediction profilers that show vertical cross sections. Figure 9.8 shows

the vertical cross section for the same notional response surface from Figure 9.7 for each of the model

inputs, X1, X2, and X3. The prediction profilers allow us to understand which model inputs are most

significant and how they affect the responses.

Figure 9.8. Prediction profilers showing vertical cross-sections of the response surface.

Each graph within the prediction profiler shows how changing the model input from the low to high

setting affects the response on the y-axis when all other model inputs are held constant. The shapes of

these effects are a function of the metamodel fit using linear regression.

We created a dashboard that incorporates the horizontal and vertical cross-section profilers for

multiple responses in order to accomplish two objectives. First, we want to easily identify where the

tradeable variables are and second, we need an efficient way to identify a reduced set of viable system

variants that will span the solution space. The dashboard consists of three components, the contour

profiler, prediction profiler and the Monte Carlo filtering components. Our next sections will describe

each of these components and how they are used to identify tradable variables and viable system

variants.

9.2.1. Prediction Profiler Dashboard Component
The predication profiler component shows a matrix where each column represents a model input

and each row a model output (response). Each cell in the matrix shows the vertical cross section of the

72

row’s response. The horizontal cross sections reveal the impact of the model input on each of the

responses. There are two key features that the Prediction profiler provides; first, it identifies tradable

variables with the color profiler algorithm and second, it optimizes solutions to find model input settings

that perform well across multiple responses. We will now describe each of these features in more detail.

Color Profiler Algorithm. The matrix cells in the Prediction profiler are colored such that green indicates

a positive impact to the response, red indicates a negative impact, white indicates a response with a

target value, and black indicates no impact. Additionally, there is a color gradient applied so the cells

with a higher impact are darker and the cells with a lower impact are lighter. The algorithm colors these

gradients based on the magnitude of the response change between the low and high settings of the

model input. The dashboard allows the user to specify whether we want to maximize, minimize, or

achieve a specified target of the response. The coloring algorithm uses these specifications to color the

cells appropriately. Figure 9.9 shows a screenshot of the prediction profiler dashboard component.

Figure 9.9. Prediction profiler dashboard component showing vertical cross sections.

73

Within each column in the matrix, the responses that have opposite green and red colors show where

the key tradable variables are with respect to each model input. For example, in Figure 9.9, the column

that represents RifleRNG (a model input representing the range of the rifle) has a red cell for Rifle

Weight and green cells for the Casualties and Lethality responses. We can interpret these cells to mean

that as we increase the rifle range, we improve our ability to reduce casualties and provide lethal fire

but we degrade our goal of reducing the rifle weight. Increasing the rifle range has a positive impact on

our operational measures (Casualties and Lethality) but has a negative impact on a physical

consideration (weight). Therefore, we must tradeoff weight to achieve a higher operational

effectiveness. The model input columns are ordered such that the ones that have the highest impact

across all responses are ordered from left to right. In this way, we can easily identify the highest

impacting model inputs across all responses.

Multiple Response Optimization. The prediction profiler component has an optimization feature that

allows the user to specify a weighted desirability function for each response and find a balanced

solution. The desirability function translates the response scale to a value between 0 and 1; 0 indicates

the least desirable value and 1 indicates the most desirable value. The user specifies a response goal to

maximize, minimize, or achieve a specified target value for each response. Figure 9.10 shows the three

types of desirability functions that translate response values along the vertical axis to desirability values

along the horizontal axis.

Figure 9.10. Desirability function types. Red line indicates the response outcome for the current model input settings.

The purpose of desirability transformation is to allow the user to specify the returns to scale along

the range of response outcomes and to establish a common scale across all responses. The common

scale allows us to aggregate all responses using a weighted total desirability function. The total

desirability function is based on the average of the natural logs of the desirabilities, otherwise known as

the geometric mean, and has the following form:

74

𝐷∗ =
1

𝑘
[𝑤1𝑙𝑛(𝑑1) + 𝑤2𝑙𝑛(𝑑2) + ⋯ + 𝑤𝑘𝑙𝑛(𝑑𝑘)], (4)

where k is the number of responses, dk is the desirability function for response k, wk is the importance

weight for response k, and D* is the optimal total desirability. Equation 4 is the objective function for

the optimization algorithm that finds desirable solutions across multiple responses.

9.2.2. Contour Profiler Dashboard Component
The contour profiler dashboard component shows a collection of contour profilers categorized

within different domains. Each contour profiler has one or more responses that pertain to each domain

category. The profilers show a two-dimensional projection of the response. The two dimensions are

displayed along the vertical and horizontal axis and represent two model inputs. The cross hair inside

the profiler indicates the settings for each of the model inputs. A slider bar above each contour profiler

allows the user to set low and high limits on the response. These limits represent desired effectiveness

and constraints that shade the profilers to indicate infeasible areas of the design space. If the cross hairs

fall within a response’s shaded region, then the current model input settings will not satisfy the desired

effectiveness or constraint for that response. Figure 9.11 shows a screenshot of the contour profiler

dashboard component. Also shown in Figure 9.11 is a floating control panel that allows the user to set

the two model inputs that are shown in each of the contour profilers. By selecting different model

inputs, we can see different parts of the multi-dimensional response surfaces.

75

Figure 9.11. Contour profiler dashboard component.

9.2.3. Monte Carlo Filtering Component
The purpose of the Monte Carlo Filtering component is to find a collection of feasible alternatives

that satisfy all response limits specified in the contour profiler component. A powerful benefit of the

response metamodels is that they act as surrogates to the simulation. Rather than having to run a

lengthy simulation to obtain the results of a new system configuration, we can leverage the metamodels

to obtain a result in a matter of seconds instead of hours, days or weeks. These approximations can save

a tremendous amount of time, especially for a system design problem with several complex models with

lengthy run times. The Monte Carlo Filtering dashboard component allows the user to generate

thousands of system design configurations using a Monte Carlo simulation. Each simulation run creates

a unique system design alternative by drawing a uniform random variate between the low and high

settings of each model input. Within the Prediction profiler dashboard component, the user enters the

number of simulations and presses the “Simulate” button. A scatter plot matrix appears with a floating

response data filter. Each dot in the scatter plot matrix represents a single system alternative. The user

can apply the data filters to the responses in order to eliminate alternatives (dots) from the scatter plot.

In addition, the user can import and export the response limits set in the contour profiler. After

exporting the response limits from the contour profiler to the scatter plot, the alternatives that remain

76

become the feasible set that resides within the white region of the contour profilers. The more Monte

Carlo simulations the user specifies, the more solutions there will be within the white region. The end

result is a reduced set of viable system variants that satisfy all desired effectiveness constraints. Figure

9.12 shows a screen shot of the Monte Carlo Filtering component along with the prediction profiler and

floating panels.

Figure 9.12. Monte Carlo Filtering Component.

9.2.4. Viable Variant Exploration
We will now walk through the steps to find viable system variants that meet our desired

effectiveness and are feasible.

Step 1: Set constraints and minimum acceptable response levels. Initially, our contour profilers have no

limits set. When using the dashboard to find viable variants, we first set the constraints of the responses

that we cannot violate and the minimum acceptable response settings for our desired effectiveness. We

then return to the Prediction profiler component and press the “Set Desirability Functions” button. This

button changes the shape of the desirability function so that we only obtain value within the limits that

were set in the Contour profiler component. For example, in Figure 9.11, the high limit for the Casualties

response in the contour profiler is set to 2. In Figure 9.13, the high setting for the Casualties desirability

function in the Prediction profiler is also set to 2. Redefining the desirability functions to match the

limits set in the Contour profiler allows us to optimize the weighted desirability function to achieve a

solution as close to the limits as possible.

77

Figure 9.13. Prediction profiler optimization algorithm.

Step 2: Set response importance weights and run the optimization algorithm. To the left of the

Prediction profiler component in Figure 9.13, there is an area to specify the importance weights for each

response. A system design problem has several stakeholder views and scenarios that prioritize the

responses differently. The dashboard allows the user to explore system design solutions with different

response prioritization schemes to account for different stakeholder views and scenarios. To run the

optimization algorithm, the user clicks the red triangle at the top next to the Prediction Profiler title and

selects “Maximize Desirability.” After the optimization algorithm completes, the dashboard displays the

model input settings of the solution.

Step 3: Explore changes to model input settings to find feasible solutions. Because the contour

profilers are linked to the prediction profilers, we can examine the contour profilers to identify where

the optimized solution does not meet the desired effectiveness or feasibility constraints; this occurs

where the contour profiler crosshairs are in a shaded region. Figure 9.14 shows the contour profiler

dashboard component with the optimized solution from Figure 9.13. The cross hairs are positioned over

78

two shaded regions indicating that the solution does not satisfy the Radio Weight and Sensor Weight

responses.

Figure 9.14. Contour profiler dashboard component showing an infeasible solution.

The prediction profiler identifies the model inputs that have the highest impact on the responses;

therefore, we can use it to decide which model input to change. Model inputs represent value

properties of a system block. As a result, we must consider the practical design implications of changing

the value properties that coincide with a model input change. We may find that the highest impacting

model input represents a value property that is too costly or infeasible to change.

The Prediction profiler in Figure 9.13 indicates that RadioDelay is the model input that has the

highest impact on Radio Weight. The floating window shown in Figure 9.14 allows us to change the two-

dimensions shown in the contour profilers. Changing the vertical axis to RadioDelay and moving the

slider bar in the floating window allows us to find a feasible solution that meets the Radio Weight limit.

Figure 9.15 shows the contour profiler after changing the RadioDelay.

79

Figure 9.15. Contour profiler dashboard component after manipulating the Radiodelay.

The Prediction Profiler indicates that the SensorDetectRNG model input has the highest impact on

Sensor Weight followed by SensorClassifyRNG. The contour profiler for the Weight domain indicates that

increasing the SensorDetectRNG has no impact on the Sensor Weight. Changing the SenosrClssifyRNG to

1.7 satisfies the Sensor Weight limit. Figure 9.16 shows these model input changes in the Contour

Profiler dashboard component.

80

Figure 9.16. Contour profiler dashboard component after manipulating the SensorClassifyRNG.

Step 4: Tradeoff infeasible response limits. When no viable variant solution is found by changing model

inputs, decide which shaded region response must be traded off to achieve a feasible solution where all

contour profiler cross hairs are in the white region. Figure 9.16 shows a feasible solution and therefore

we do not need to tradeoff responses. The end result is a white region within each contour profiler

domain that represents a set of viable system variants that satisfy all desired effectiveness and

constraints.

Step 5: Generate viable variant solution candidates using the Monte Carlo Filtering. In order to acquire

the set of viable variants within the white region of the contour profilers we use the Monte Carlo

Filtering component. Figure 9.17 shows two scatter plots, the one at the left shows the alternatives

generated by the Monte Carlo simulations and the one to the right has the contour profiler response

limits exported to the data filter.

81

Figure 9.17. Monte Carlo Filtering component with response limit filters applied.

Out of the 5,000 simulations shown in Figure 9.17, 4 alternatives remain when the filters are

applied. When we ran 100,000 simulations with the same response limits, 69 alternatives remained

after applying the filters. The filtered set of alternative solutions provides the user a reduced set of

viable system variants that satisfy the specified desired effectiveness and constraints of the responses.

In order to narrow down the reduced set of solutions further, we can select the most affordable

solution, the solution with the least amount of variation, or the original optimized solution that was

modified to satisfy the response limits.

After completing the above five steps, the dashboard user found a solution based on the response

limits and importance weights that were set in Step 1 and 2. In order to acquire additional viable

variants, repeat steps 1-5 with a different set of response limits and importance weights from different

stakeholder view perspectives and scenarios.

Figure 9.18 shows a screenshot of the Prediction Profiler dashboard component for the large squad

enhancement use case. The Figure shows 38 model inputs and 43 responses. Because the model inputs

are ordered from left to right based on their collective impact of all the responses, we can easily identify

the ones that have the highest impact on the system design. The example shown in Figure 9.18 indicates

that the rifle range of the soldier’s weapon (M4RNG), the number of UAVs (NOUAV), and the senor

classification distance (SDRClassRNG) have the highest impact across all responses.

82

Figure 9.18. Prediction profiler dashboard component for the large squad enhancement uses case.

Identifying the model inputs that have the highest impact across several model domains provides

important insights to the system stakeholders. Because model inputs are mapped to value properties,

identifying the high impact model inputs help focus our system decisions on the most critical value

properties.

The contour profiler dashboard component shown in Figure 9.19 allows decision makers to

understand where a system alternative satisfies desired capabilities and constraints on a larger scale.

Organizing each response within domains allows users to better understand where they need to make

tradeoffs across domains. In addition, the contour profilers show where the system has room to improve

the responses; when the cross hair does not reside along a shaded region’s edge, there is an opportunity

to improve a response.

83

Figure 9.19. Contour profiler dashboard component for the large squad enhancement use case.

 Figure 9.20 shows a screenshot of the Monte Carlo filtering dashboard component. The scatter plot

matrix is capable of displaying a large number of responses with data filters that narrow in on viable sets

of system variants.

84

Figure 9.20. Monte Carlo filtering dashboard component for the large squad enhancement use case.

10. Multiple Objective Decision Analysis
In this section, we discuss the importance of evaluating the set of viable variants when there are

multiple competing objectives and several different stakeholders. For the squad enhancement use case,

we assume that there are seven viable variants found by the dashboard described in the previous

section. Depending on where our system is in the lifecycle and who the key stakeholders are, the

measures of effectiveness that will evaluate our viable variants will typically not solely rely on simulation

model outputs. Our methodology advocates the use of multi-objective decision analysis (MODA) to

evaluate each variant; we will refer to these viable variants as alternatives. Specifically, we use the

mathematics of MODA and the philosophy of Value Focused Thinking (VFT) (Keeney 1992). The seven

alternatives for our use case are shown in Table 10.1. The system features are the value properties for

each of the blocks that are labeled as subsystems.

85

Table 10.1 Notional Viable Variant Alternatives.

An important assumption we note is that our value model is developed prior to selecting our

alternatives using the dashboard so that we do not bias the value model’s development.

Too often when we are faced with a decision problem, we first develop a list of alternatives and limit

ourselves to this set of choices; Keeney defines this as alternative focused thinking. Using alternative

focused thinking causes us not to think about what we truly value. As a result, we may miss alternatives

or we may not discover new decision opportunities that result in a better outcome. VFT emphasizes

value development. Rather than focus on alternatives, VFT focuses on structuring the decision problem

as a well-defined objective hierarchy that represents what is most important to decision makers. This

objective hierarchy is known as the fundamental objective hierarchy, and is the foundation upon which

all decisions are based; it is the most essential part of VFT because without a well-defined fundamental

objective hierarchy, the results are meaningless (Keeney 1992).

10.1. Qualitative Functional Objective Value Hierarchy
For a systems design problem we use a modified form of the hierarchy known as the functional

objective value hierarchy (Parnell et al. 2011). The functional objective value hierarchy has three

86

elements: the functions the system will perform, the fundamental objectives that define what the

system tries to achieve, and the value measures that quantifies each objective. Keeney defines a

fundamental objective as an objective that expresses what the decision maker values and qualitatively

states what is important. We start with an over-arching fundamental objective and then decompose the

objective into the functions and sub-functions that will accomplish the system purpose. We then

decompose the functions into objectives that define value until we find a value measure that informs

the decision maker how well an alternative achieves the associated objective. The value measure is the

criteria used to measure the degree to which an objective is achieved. There is one or more value

measure associated with each lowest-level objective. Therefore, the set of value measures comprise the

evaluation criterion that measures how we value an alternative.

VFT makes a clear distinction between a fundamental and a means objective. Means objectives

explain how we accomplish something essential to the problem. It is important that we emphasize the

difference between these two types of objectives to fully understand what the fundamental objectives

should be and how we determine them. To test whether an objective is a fundamental or a means

objective we must ask the question “why is this important?’ If the answer is because it helps us

accomplish something fundamental to the problem then it is a means objective. If the answer is

because it is one of the essential reasons why we care about this decision, then it is a fundamental

objective. Identifying means objectives can help determine fundamental objectives because if the

means objective helps accomplish something essential, this “something” could be a potential

fundamental objective.

A well-defined functional objective value hierarchy has desirable properties that ensure our value

measures can measure how we value alternatives. According to Kirkwood, these desirable properties

are completeness, non-redundancy, independence, operability, and minimal size (Kirkwood 1997). This

section discusses these properties and indicates the consequences of their violations. It is important to

note that if we use fundamental objectives to structure our hierarchies then there is less chance that we

violate any of the desired properties.

1. Completeness: In order for a functional objective value hierarchy to be complete, all the

functions and objectives must exhaustively characterize every aspect of the higher-level

function/objective. If we miss identifying a critical characteristic then we do not account for an

important aspect of the problem; this leads to faulty results.

2. Non-redundancy: A non-redundant value model avoids double counting an alternative’s value.

Double counting can occur when redundant functions/objectives or value measures exist. For

example, if we include a value measure that is not a critical characteristic of an objective, then

we have a redundant value measure that may over-emphasize an alternative. A non-redundant

functional objective value hierarchy ensures that there are no unnecessary functions/objectives

or value measures that may cause an alternative to be scored higher than intended.

3. Independence: An alternative’s achievement level obtained by one value measure must be

independent from all the other value measure achievement levels. Specifically, if an

alternative’s value score achieved by one value measure depends on the achievement level of

87

another value measure, then there is a violation of the independence property. Typically when

we encounter a problem with independence, we have a means objective in our hierarchy or we

have interactions between value measures. To fix this we must redefine the objective as a

fundamental objective, or use a multi-dimensional value measure (Ewing et al. 2006).

4. Operability: An operable objective has the ability to obtain the data needed to assess an

alternative’s value. There may be a clear, well defined value measure that measures the

achievement level of an objective but if the data are not available, we cannot use this value

measure in the model.

5. Minimal Size: There is a balance between a high-resolution model with a large set of objectives

and value measures and a low resolution, more compact model that only includes the most

essential functions/objectives needed to evaluate an alternative. A smaller model can be

communicated more easily to senior level decision makers and it is easier to obtain the

necessary data to evaluate the alternatives (Kirkwood 1997). The decision regarding how far we

should decompose the hierarchy depends on the availability of operable data that can inform

the decision. The more we expand the size of the hierarchy, the more detailed the analysis

becomes. A larger detailed model can provide meaningful insight but only if these details are

available. The hierarchy must stop at the point where there are data available. Typically, a

detailed hierarchy includes natural data value measures that have a measurable scale in terms

of a quantitative number. When a natural value measure is not available, we use constructed

value measures that aggregate categorical information to represent a qualitative measure.

The functional objective value model we used to assess our viable variant alternatives is shown in

Figure 10.1. The model has functions, objectives, and value measures that capture every important

aspect of the squad enhancement design problem.

Figure 10.1. Functional Objective Value Hierarchy for the squad enhancement technology use case.

10.2. Quantitative Functional Objective Value Model
Once our functional objective value hierarchy is complete, we then develop our quantitative model

by selecting the value measure types, developing value functions, and assigning swing weights to each

measure. For each value measure we must transform the measurable scale into a value score. The

88

measurable scale is the value measure’s quantitative unit of measure (miles per hour or probability of

detection, for example). The value score is a number between 0 and 10 (which we choose arbitrarily)

that represents the attribute’s achievement of its associated objective (10 being the best and 0 being

the worst). The single-dimensional value function transforms a value measure’s scale into a value score.

Because there are tradeoffs amongst the value measures, we must weigh their importance against each

other. We use swing weights to assess these tradeoffs. Once we formulate both the single-dimensional

value functions and assess the value measure tradeoffs, we utilize a multi-objective value function to

determine the overall value of an alternative. The multi-objective value function outputs a total value

that is a weighted sum of the value scores determined by each single-dimensional value function and

swing weights. The total value indicates how much value each alternative attains with respect to the

functional objective value hierarchy.

There are two types of value measures, natural and constructed. A natural value measure uses a

number that has a common interpretation. A constructed value measure is a description of distinct

impact levels that directly indicate the degree to which the associated objective is achieved. Each

impact level has a unique category that an alternative can be classified. The development of both value

measure types requires military judgments that convey what is important to the decision makers. One

is not necessarily better (or worse) than the other. In practice, there are more constructed value

measures in a well-defined functional value hierarchy then there are natural value measures.

Inexperienced modelers typically place too many natural value measures that are ineffective at clearly

measuring the impact level of on objective in the model. Our next two sections describe in more detail

the construction of the natural and constructed value functions.

10.2.1. Natural Single-Dimensional Value Functions
Earlier we defined a value measure as the criteria used to measure an impact level. We use the

term impact level to mean the degree to which an objective is achieved. Each attribute has a preferred

direction of improvement; this usually means “more is better” or “less is better” (Kirkwood 1997). We

associate the impact level with a measurable scale that represents the range of numerical values a value

measure can assume from its worst to best impact levels. The numerical values typically have different

units and ranges within the measurable scale. To ensure that we can compare these value measures

relative to each other, we transform the different measurable scales into a common unit of measure

called the value scale. The value scale range from 0 to 10, which we choose arbitrarily; we could have

just as easily used value scales ranging from 0 to 1 or 0 to 100. The value scale of 0 and 10 represent the

worst and best impact levels, respectively. We then examine how the impact level varies between its

worst and best levels. Figure 10.2 shows a number of different types of value function shapes that

define the returns to scale (RTS) in a number of different ways.

89

Figure 10.2 Value function curves that define the returns to scale (RTS).

The shape of the value function is often dictated by the requirements defined by the systems engineer

as either a desired capability or a constraint. The constraints are what set the minimal acceptable level

or walk away point while the desired capabilities help determine the threshold and objective value

levels. The threshold level is the point along the value measure scale that we at least want to achieve

but will accept a lower level when making trade-off decisions. The objective level is the point where we

would hope to realistically achieve.

10.2.2. Constructed Single Dimensional Value Function
This section explains how to formulate and assess a constructed single-dimensional value function.

Unlike natural value measure, constructed value measures do not have numbers with a common

interpretation. Because there are no numbers that define the measurable scale, we develop categories

to construct this scale. Each category has a narrative description of the impact level which indicates the

achievement of an objective. These categories should contain all that we value with respect to the

associated value measure and they should range between the worst and best cases.

Unlike the natural value measure, where we may have sets of ranges within a measurable scale with

different value increments, constructed value measures have value increments between categories. To

find the value increment between each category, we list them from worst to best. We assess the

1.0

0.0
xi

0 xi
*

vi(xi)

1.0

0.0
xi

* xi
0

vi(xi)

1.0

0.0
xi

0 xi
*

vi(xi)

1.0

0.0
xi

* xi
0

vi(xi)

1.0

0.0
xi

0 xi
*

vi(xi)

1.0

0.0
xi

* xi
0

vi(xi)

1.0

0.0
xi

0 xi
*

vi(xi)

1.0

0.0
xi

* xi
0

vi(xi)

Linear Returns

to Scale (RTS)

Decreasing RTS
(concave)

Increasing RTS
(convex)

S-curve

90

constructed value function by finding the smallest value increment between any two neighboring

categories. For example, in Table 10.2, categories 1 and 2 are neighbors, as are categories 2 and 3. We

assign the smallest value increment to 1 and use this as a unit of measure to assess how much more we

value any other two neighboring categories.

Table 10.2. Value increments and value scores for categories.

Category

Number

Category

Description

Value

Increment

Value

Score

1 Category 1 0

 1

2 Category 2 3.33

 2

3 Category 3 10.00

Among all neighboring categories in Table 10.2, the smallest value increment is between Category 1 and

Category 2. The value increment between Category 2 and Category 3 is two times more valuable than

the smallest value increment. The value scores are a function of the established value increments.

To demonstrate how to calculate the value scores as a function of the value increments, we add the

products of each value increment and a variable v, set the expression equal to 10 and solve for v (v +2v =

10). We use the value of v to calculate the value score for each category. The term Score(Categoryn)

represents the value score for category n where n ranges from 1 to the total number of categories.

Score(Category1), the worst case category, always equals 0. The remaining attribute values are the

cumulative sum product of the value increment between a category’s preceding neighbor and the

current category, and v. Equations 5 through 7 shows the value score calculations for the example in

Table 10.2.

Score(Category1)= 0.00 (5)

Score(Categorty2) = Score(Categoriy1) + v = 0.00 + 3.33 = 3.33 (6)

Score(Category3) = Score(Category2) + 2v = 3.33 + 3(3.33) = 10.00 (7)

While developing the categories for each of the constructed value measures we ensure that each

alternative can only be classified into one of the existing categories. If we use ambiguous definitions

then the value model may return inconsistent results because different people may categorize an

alternative differently. Clear category definitions ensure reproducible results because they eliminate

ambiguity. The two possible pitfalls that arise from ambiguous definitions are the following:

1. An alternative receives no value towards an objective because the constructed value measure’s

categories are not an exhaustive representation of all significant impacts.

2. The constructed value measure categories are not mutually exclusive. Therefore, an alternative

may fit into more than one category.

91

For the squad enhancement use case we developed 13 value measures with a mix of natural and

constructed value functions. Table 10.3 lists each of the value measures and their types.

Table 10.3. Value measures for the squad enhancement problem.

Function Objective Value Measure Type

Minimal

Acceptable

Value

Ideal

Value

Maintain situational

awareness

Increase beyond line of

sight awareness

Beyond LOS (%

detected)
Natural 0 1

Increase line of sight

range

Detection Distance

(meters)
Natural 300 1500

Maintain networked

communications

Maximize range

Communication

Range in Various

Terrain

Constructed 1 5

Maximize bandwidth Bandwidth (mbps) Natural 3 15

Provide secured

connectivity
Secured Connectivity Constructed 1 8

Maneuver the

Squad
Increase soldier mobility Weighted Mobility

Multi-Dimensional

Constructed
1 8

Protect the Squad

Protect against kinetic

threats
Kinetic Protection Constructed 1 9

Protect against chemical,

biological, radiological,

nuclear threats

Chemical Biological

Protection
Constructed 1 9

Nuclear Radiological

Protection
Constructed 1 7

Achieve mission

effects

Maximize kinetic effects
Lethality (% enemy

killed)
Natural 0 1

Minimize lateral damage Lethal Mitigation Constructed 1 5

Sustain the Squad

Maximize power

efficiency
Power (kw/h) Natural 300 100

Minimize logistical

footprint

Logistical Impact

(rounds fired)
Natural 6000 1000

10.2.3. Swing Weights for Value Measure Tradeoffs
Because we have multiple and competing objectives, each assessed by one or more value measures,

we must determine the tradeoffs between these value measures. We do this by assigning global

weights to each value measure so that we can utilize the multi-objective value function. There are

several weight-assessment approaches available to determine the tradeoffs between value measures.

We use an approach called the Swing Weight Matrix (Parnell, Bresnick, Tani, & Johnson, 2013).

We assign weights to each value measure by using swing weights. A swing weight assesses a value

measure based on how important it is to swing from the measure’s worst impact level to its best impact

level along the measurable scale (Clemens 2001). Our selection has nothing to do with the magnitude of

the scales; we base our choice on a subjective determination that considers swinging from the worst to

the best impact levels. The swing weight we assign is based on where it is placed inside the swing weight

matrix. The columns in the matrix allow us to define categories of subjective importance that express

the impact on the overall fundamental objective. The rows of the matrix classify the value measure’s

impact on capability and are based on the range of the value measure scale (large, medium, or small

92

capability gap between the walkaway and the ideal levels). For the squad enhancement use case, the

subjective importance depends on whether the value measure assesses an objective that is mission

critical, enables, or enhances the system’s capabilities. Typically, we prioritize value measures differently

depending on the scenario the system is used in. For example, we would prioritize value measures that

assess mobility and lethality more for an attack scenario than we would for a defense scenario. Tables

10.4 and 10.5 show the swing weight matrices for the squad enhancement attack and defense scenarios

where the columns categorize the importance while the rows bin the impact on the capability increase

based on the value measure’s range from the minimum acceptable level and the ideal level.

Table 10.4. Swing weight matrix for the attack scenario.

 Mission Critical Enables Capability Enhances Capability

Capability

Impact

Matrix

Weight

Swing

Weight

Matrix

Weight

Swing

Weight

Matrix

Weight

Swing

Weight

Significant

Impact

Lethality 100 0.14
Weighted

Mobility
70 0.10 Power 20 0.03

Lethal

Mitigation
90 0.13

Logistical

Impact
20 0.03

Beyond LOS 90 0.13

Kinetic

Protection
70 0.10

Medium

Impact

 Bandwidth 50 0.07

Chemical

Bio

Protection

15 0.02

Secured

Connectivity
65 0.09

Communication

Range
60 0.09

Detection

Distance
50 0.06

Minimal

Impact

Nuclear

Radio

Protection

5 0.01

93

Table 10.5. Swing weight matrix for the defense scenario.

 Mission Critical Enables Capability Enhances Capability

Capability

Impact

Matrix

Weight

Swing

Weight

Matric

Weight

Swing

Weight

Matrix

Weight

Swing

Weight

Significant

Impact

Kinetic

Protection
100 0.15 Beyond LOS 70 0.11 Lethality 30 0.05

Lethal

Mitigation
90 0.14 Lethality Power 20 0.03

Detection

Distance
90 0.14

Weighted

Mobility
20 0.03

Logistical

Impact
20 .03

Medium

Impact

Chemical Bio

Protection
65 0.10

Secured

Connectivity
50 0.08

Communication

Range
10 0.02

 Bandwidth 40 0.06

Minimal

Impact

Nuclear

Radio

Protection

60 .09

To obtain the value matrix swing weights, we first use matrix weights that are placed in each cell of

the swing weight matrix. To ensure there is a proper range of weights between the highest and lowest

value measure, we use matrix weights that range from 5 to 100. The lowest weight is placed in the

lower right cell and the highest weight is placed in the upper left cell. The value measures that are

placed in a cell get assigned the matrix weight in that cell. We use these matrix weights to calculate a

value measure’s global weight. Global weights represent the importance of a value measure relative to

the others and are values between 0 and 1; the sum of all the global weights is 1. After placing the value

measures inside the matrix, we now can calculate the global weights by dividing a value measure’s

matrix weight by the sum of all the value measures’ matrix weights.

10.2.4. Multi-Objective Value Function
To obtain the total value score of an alternative, we use the additive value model (Equations 8 and

9). Each single dimensional value function can be normalized and then weighted by each swing weight

contribution, wi. The total value is the weighted sum of the single dimensional value. The swing

weights sum to 1.

94

𝑣(𝒙𝑗) = ∑ 𝑤𝑖
𝑛
𝑖=1 𝑣𝑖(𝑥𝑖𝑗) (8)

∑ 𝑤𝑖 = 1𝑛
𝑖=1 (9)

i = index on the value measures, 1…..,n

j = index on the alternatives, 1,….,m

v(xj) = the multidimensional value of value measure i

xji = alternative’s score in the ith value measure

vi(xji) = normalized single-dimensional value of the score of xji

wi = normalized swing weight of ith value measure

The multi-objective value function is an additive function because it has no multiplicative terms in

the expression. The independence property of the functional objective value hierarchy allows us to use

an additive function. There are other functional forms in decision theory that try to account for

dependence between value measures. These functions are difficult to implement and rarely used in

practice. Therefore, to ensure we have an additive model, we use functional objective values

hierarchies that we measure with independent value measures. Because of the independence property,

we can sum the weighted attribute values to find the total value of an alternative (Keeney 1992).

10.3. Value and Cost Tradeoff Analysis
Our next section discusses how to integrate the alternative total value analysis with cost analysis.

We first will describe how trade-off analysis is normally conducted deterministically and then discuss the

importance of incorporating uncertainties. Prior to our analysis, we assumed that we have already

performed additional simulation runs on the viable variant alternatives found using the dashboard in the

previous section. These additional runs allow us to confirm the results obtained from the surrogate

metamodels and provide the distribution of alternative outcomes for the value measures that use

simulation data.

One way to understand how each alternative achieves each of the objectives in the value hierarchy

is to use a value component chart. Figure 10.3 shows the value components of each alternative as a

stacked bar chart. To the right we see the Ideal alternative that represents the maximum possible value

score, derived from the swing weights for each value measure. The Hypothetical Best alternative is the

maximum value achieved for each value measure in the set of alternatives. The difference between the

Ideal and Hypothetical Best is the value gap that the set of alternatives cannot achieve with existing

technologies. Depending on its size, we may want to consider including other new alternatives that close

the gap. In addition, we may have an opportunity to combine components from the existing alternatives

to create new alternative. When we reconfigure system components to create new alternatives we must

consider the system integration challenges that may result.

95

Figure 10.3. Value component chart.

Because lifecycle cost is such an important aspect of any systems decision, we often exclude cost as a

value measure and treat it as an independent variable. An effective way to understand the trade-offs

between value and cost is to use a Pareto chart. The Pareto chart is a scatter plot with cost on the

horizontal axis and value on the vertical axis; each dot represents an alternative’s total lifecycle cost and

total value score. Figure 10.4 shows a deterministic cost versus value Pareto chart using the average

costs and value scores. We can see that the Sustainable and Survivable alternatives are deterministically

dominated by all the others. It makes no sense to select a dominated alternative when we can select

non-dominated alternative with a higher value for less cost.

96

Figure 10.4. Value component charts for the attack and defense scenarios.

However, Figure 10.4 does not consider the uncertainty associated with each alternative’s value and

cost and does show the risk, the probability of a lower value. The majority of value trade-off studies in

the literature are deterministic. Eliminating deterministically dominated alternatives without

considering risk may lead to the wrong decision. Cost estimation techniques already incorporate

uncertainties using Monte Carlo simulations and other methods. A major contribution of our approach

is that we simultaneously integrate value trade-off uncertainties and cost uncertainties in order to

facilitate better value and risk identification. If we do not consider how much variation there is in the

consequences of our decision, we may end up making the wrong decision.

When faced with an uncertain system decision, we can leverage three types of analytical charts that

help the systems engineer understand the risk associated with a decision and identify what drives the

uncertainties in each alternative. First, stochastic Pareto charts identify non-stochastically dominated

alternatives with respect to value and cost; second, cumulative distribution function charts (S-curves)

compares the alternative risk profiles; and third, tornado charts identify the value measures and cost

components that have the highest impact on the alternative uncertainties. We will now describe each of

these charts separately and use the squad enhancement problem to provide examples of the insights we

can obtain from them with respect to value and cost.

Stochastic Pareto Chart. In order to address the limitations of the deterministic Pareto chart, we create

a stochatic Pareto chart, shown in Figure 10.5, by displaying a two dimensioinal box plot for each

alternative’s cost and value. The boxes along each axis represents the 2nd and 3rd quartiles while the

97

lines represent the 1st and 4th quartiles of the vector output data from the value and cost models. We

can create these box plots in Microsoft Excel using a scatter plot with a combination of four data series

for each alternative, two for the cost axis and two for the value axis. The lines, otherwise known as

whiskers, are created from the vector data using the maximum and minimum data points. The boxes are

created using the 3rd quartile, mean, and 1st quartile; to create the box, increase the line style width of

the data series. The box plots allow us to understand the uncertainty associated with each alternaitve’s

cost and value simultaneously.

Figure 10.5. Stochastic Pareto Chart

The stochastic Pareto chart allows us to consider value, risk, and dominance simultaneously. In addition,

it provides important information for affordability analyses. We can see in Figure 10.5 that Sustainable is

stochastically dominated by all other alternatives and can be eliminated from consideration. If

Performance or Defendable are affordable we then focus on understanding what drives their

uncertainty to mitigate risk. If Defendable is not affordable, we then consider either LongRange or

Survivable. If we used the deterministic Pareto chart from Figure 10.4 to eliminate the Survivable

alternative as a dominated solution, we would have missed an important trade-off consideration. We

98

can see in Figure 10.5 that LongRange has a higher risk in value (probability of lower value) compared to

Survivable. We may want to accept a higher cost by choosing Survivable to mitigate the risk associated

with LongRange. Of course, an alternative is to choose LongRange to reduce the risk. In order to better

understand the risk implications, we can use cumulative distribution function charts to compare

alternative risk profiles.

Cumulative Distribution Function (S-Curve) Charts. The cumulative distribution function (cdf) chart

displays an alternative’s potential outcomes by accumulating the area under the outcome’s probability

mass functions for discrete data and the probability density functions for continuous data. Typically, the

shape of the line in the chart is an S-curve that depicts the probability that the outcome will be at or

below a given value. The horizontal axis has the outcome scale, either value or cost, while the vertical

axis has the probability. Figure 10.6 shows a cdf chart with six S-curves that represents the uncertain

alternative value outcomes, otherwise known as the risk profiles. Sustainable is deterministically

dominated by the other five alternatives. Attack is deterministically dominated by LongRange,

Defendable, and Performance. Survivable is deterministically dominated by Defendable and

Performance. The Performance and Defendable alternatives stochastically dominate all others because

their S-curves are positioned completely to the right of all others. The risk profiles of Survivable and

LongRange value cross indicating that there is no clear winner between the two; we may want to accept

a higher cost by choosing Survivable to mitigate the risk associated with LongRange. The cdf chart tells

us that there is a 43 percent chance Survivable will outperform LongRange and that Survivable has less

risk due to its steeper risk profile. In general, when the risk profiles of alternatives cross we then

consider risk preference (risk averse, neutral, or risk taking) during our system decision. A risk adverse

decision would spend more for Survivable to guarantee a higher value while a risk taking decision would

select LongRange to save money with the risk of achieving less value.

99

Figure 10.6. Value cumulative distribution chart.

When we want to understand how to best mitigate an alternative’s risk, we can use tornado diagrams to

identify the value measures and cost components that have the highest impact on value and cost

respectively.

Tornado Diagrams. An effective way to identify the impact of uncertainty is to perform sensitivity

analysis using tornado diagrams. Tornado diagrams allow us to compare the relative importance of each

uncertain input variable with horizontal bars; the longer the bar the higher the impact on the output

variable’s variation. The bars are sorted so that the longest bars are at the top; sorting the bars in this

way makes the diagram look like a tornado. The length of the bars depends on the type of tornado

diagram. Deterministic tornado diagrams vary each input variable using low, base, and high settings

while all other input variables are held constant. A stochastic tornado diagram uses the vectors of input

and output variable trials from a Monte Carlo simulation (Parnell, Bresnick, Tani, & Johnson, 2013). The

low end of the bar is the average output variable from the subset of trials where the input is less than a

specified lower percentile. Similarly, the high end of the bar is the average output variable from the

subset of trials where the input is greater than a specified higher percentile. For the squad enhancement

problem, we use stochastic tornado diagrams with a low percentile of 0.3 and a high percentile of 0.7.

Figure 10.7 shows the value and cost tornado diagrams for the Performance alternative. The input

100

variables for value are the value measures and the input variables for cost are the cost components. The

horizontal axis shows each input variable’s impact on the total variation for the value and cost. We can

see in Figure 10.7 that the LethalMitigation value measure has the highest impact on the value’s

variation while the Lenses cost component has the highest impact on the cost’s variation.

Figure 10.7 Tornado diagrams.

Prior to performing the integrated trade-off analysis, we allocated functions and cost components to

subsystems. Our value hierarchy contains objectives that assess the performance of functions and value

measures that define how well an alternative achieves the objectives. As a result, the value measures

are indirectly allocated to system features through the objectives and functions. Cost components are

generally allocated directly to subsystems. Because of these indirect and direct allocations, we can use

tornado diagrams to identify the system features that have the highest impact on the system decision.

Figure 10.8 illustrates how we use tornado diagrams to trace high impact value measures and cost

components to system features.

101

Figure 10.8 Value measure and cost component linkage to system features.

As we learned from our stochastic Pareto chart and cdf charts, we do not have a clear winner

between the Survivable and LongRange alternatives. To help understand how these alternative

uncertainties impact the system decision, we can use tornado diagrams to identify the system features

that are driving risk. Figure 10.9 shows the value measures and cost components’ indirect and direct

allocations to the subsystems and their system features.

102

Figure 10.9. Example of value measure and cost component linkages to system features.

We can see from the top bar of the tornado diagrams in Figure 10.9 that the radio drives the

majority of the risk for the LongRange value while soldier sensor drives the majority of its cost. The

protective suit drives the majority of the risk for the Survivable value while the soldier sensor drives the

majority of its cost. These subsystems and the system features that characterize them have the highest

impact on the system decision. These insights provide a clearer understanding of what drives the

alternatives’ risk and how to prioritize system feature refinements. For example, the systems engineer

can reduce the risk of the LongRange alternative by investing more resources into improving the radio’s

range, security, and bandwidth features.

11. Conclusions and Future Work
Our final section reviews the steps in our proposed MBSE methodology and how it fills the ERDC

tradespace technical gaps. We conclude with some closing remarks and propose future research that

will further advance how we can illuminate trade decisions within the ERS Architecture.

11.1. MBSE Methodology Review
The pre-existing models needed prior to starting the procedural workflow of the methodology is an

MBSE integrated system model, a collection of external models and simulations that the systems

engineers will use to analyze a system across multiple domain, and a value model that will evaluate the

system’s effectiveness. The following outlines the procedural steps of our proposed MBSE methodology

and the sections within the technical report that describes their details:

103

1. Select system model element design variables (Sections 5 and 6). Based on the problem

domain and research questions, select the structural elements and design variables from the

MBSE integrated model and define the experimental design region that will be explored with

the external models.

2. Select models, develop basecase scenarios, map design variables to model inputs (Section 6s

and 8). Select the collection of external models that evaluate systems within the variety of

domains that are relevant to the stakeholders. For each external model, develop a baseline

scenario with the desired model input settings that represent the system baseline. Map the

value properties from structural blocks of the system model to the simulation model inputs that

directly represent them. When necessary, use translators that link value properties to a model

input when there is not a direct mapping. These linkages are established with either lookup

tables, analytical equations, or other models.

3. Create the experimental design (Sections 7 and 8). Select the experimental design type that will

explore each model and decide the appropriate amount of experimental runs needed to

perform the analysis. Create three experimental designs with a mix of continuous, discrete, and

categorical columns that will represent each of the simulation model inputs using the custom

design builder. The data from the first design will be the training set that fits the surrogate

metamodels. The second will be the validation set used to select the metamodel complexity and

size. The third design will test the predictive performance of the metamodel with a new set of

data not used during the training and validation.

4. Generate the study file that specifies which model input parameters to change (Section 8). Use

a software mechanism to find, select, and modify the model input parameters of the basecase

scenario to create a set of excursions, one for each experiment or row in the design matrix.

5. Generate excursion files for each experiment (row) in the design matrix (Section 8). Use a

software mechanism that generates the excursion files for each experimental run (row in the

design matrix). For stochastic simulations, ensure that an adequate number of replications are

performed.

6. Execute HPC simulation runs (Section 8). Perform a design of experiment on each of the

external simulation models using High Performance Computing Clusters. Use a software

simulation run queuing mechanism that enforces a scheduling policy and priority scheme while

monitoring the computer resources that will complete the simulation runs.

7. Post-process output files to extract MOEs (Section 8). Post-process the output data in order to

acquire the desired output measure responses needed to gain insights and populate the value

model. These responses are also known as measures of effectiveness. Extract, aggregate and

append the responses to the experimental design.

8. Perform statistical metamodeling (Sections 7 and 9). Use a statistical software package and the

experimental design with response model output columns appended, to perform the following

tasks:

a. Fit polynomial regression models to identify the model inputs that are the system

drivers, where synergies/interactions exist, and where there are points of diminishing or

increasing rates of return. Populate the MBSE system model with derived requirements

developed from these experimental design insights.

104

b. Fit a variety of surrogate metamodels of different types using the cross validation

technique. Compare metamodel fits and select the highest performing model for each

simulation output.

9. ERS tradespace visualization (Sections 9 and 10). Use a Prediction Profiler dashboard

component to identify the key tradeable variables that have the highest impact on the system

design decisions. To identify and analyze a set of viable system variants, perform the following

steps:

a. Set the minimum desired effectiveness and feasibility constraints to the contour

profilers as low and high limits as needed.

b. Set the importance weights for each simulation model output and run the optimization

algorithm to find a system alternative.

c. Explore changes to model input settings to find feasible solutions. Examine the contour

profilers to identify where the alternative does not meet the desired effectiveness or

feasibility constraints; this occurs where the contour profiler crosshair is in a shaded

region. Examine the prediction profilers to find the model inputs that have the highest

impact on the shaded regions that represent the model output limits. Explore changes

to these model inputs to find a viable alternative. When appropriate, increase the

desired effectiveness for all responses so that the shaded region is positioned at the

edge of the cross hair.

d. Tradeoff infeasible response limits. If no viable alternative is found, decide which

shaded region model output must be traded off to achieve a feasible solution where all

contour profiler cross hairs are in the white region. Name the alternative.

e. Generate viable variant solution candidates using the Monte Carlo Filtering. To acquire a

reduced collection of viable system variants that satisfy the desired effectiveness and

constraints set in the contour profilers, use the Monte Carlo Filtering component to fill

the contour profiler white region with feasible solutions. In order to narrow down the

reduced set of solutions further, we can select the most affordable solution, the solution

with the least amount of variation, or the original optimized solution that was modified

to satisfy the response limits.

f. Change the importance weights of the model outputs to represent different stakeholder

views and repeat the previous steps until there are enough viable system variants.

g. Rerun the simulation models for each of the selected viable variants to confirm the

surrogate metamodel results and generate the data needed to populate the measures

in the value model.

h. Utilize the value model to evaluate the alternatives.

11.2. Technical Gap Bridges
Section 4 outlines the technical gaps within the ERS tradespace areas. This section reviews these

gaps and discusses how our methodology addresses them.

105

Tradespace analytics. Current computational tools limit the exploration to only a few variables and

produce static visualization diagrams. Our methodology leverages experimental space-filling designs

suited for complex simulation models that allow the analyst to explore a high-dimensional problem.

Traditional designs used for physical experiments were limited to only a few variables at a time. The new

state-of-the-art nearly-orthogonal Latin hypercubes combined with nearly balanced designs allow

system engineers to explore the interior of the experimental region while minimizing correlations

between columns; in the past, experimenters had to choose a design that had only one of these

properties. In addition, we can construct custom made space-filling designs for a very large dimension

problem that have all experimental factor types (continuous, discrete, and categorical). These designs

allow us to create surrogate metamodels that approximate the input/output behavior of the simulation

models. We can use these metamodels to illuminate the key tradable variables with a dynamic

dashboard created in JMP that combines statistical analytic artifacts with visualization features.

Decompose tradespace. The set of design driving variables is often unknown when designing a system.

Additionally, current methods for conceptualizing design alternatives overlook or prematurely eliminate

feasible designs. To address these technical gaps, we demonstrated an MBSE methodology that maps

SysML elements to experimental design factors and incorporated the DOE analytical insights as derived

requirements within our MBSE integrated system model. SysML allows us to express the conceptual

model of a design with a wide variety of value properties that define the structural system

characteristics. We can explore a several design alternatives by establishing an experimental region

defined by the low and high setting of the value properties that define the system alternative. In order

to identify the most significant design drivers we can use the polynomial linear regression metamodel

with easily interpretable model coefficients that express the nature of the model input’s impact on the

response and the synergies that exist between them.

Tradespace search. Methods of searching the tradespace are slow due to the increase in system

complexity, the growth of the number of potential tradable variables, and the need for high fidelity

models for more accurate results. We can address these challenges by leveraging state-of-the-art space-

filling experimental designs that efficiently span the entire design space region for a large number of

variables. Because we can effectively explore the interior of the design space, we can analyze highly

complicated response surface landscapes. In order to identify a narrow set of viable system alternatives

we can use the collection of metamodels that we fit after executing the experiments to create a

dynamic dashboard. The dashboard visualizes the multi-dimensional response surface using horizontal

and vertical cross sections. We use the JMPTM 12 optimization heuristic to find solutions that balance

multiple competing output responses and refine them when they are not feasible.

Evaluating tradespace results. Every system design problem has multiple stakeholders with different

perspectives. In addition, attribute weighing schemes are often subjective making it difficult to build

consensus. We address these gaps by integrating the philosophy of value focused thinking and the

mathematics of multi-objective decision analysis to incorporate multiple stakeholder viewpoints. We

create a functional objective value model that represents the composite perspective of multiple

106

stakeholders. We use the swing weight matrix to simultaneously incorporate subjective importance and

objective levels of capability impacts.

11.3. Concluding Remarks
In today’s complex environment, the DoD needs systems that are resilient to change and are

effective across a wide variety of uncertain futures. The ERS architecture provides the means to apply a

data driven approach using MBSE, incorporate previous design successes, integrate models, generate

the data needed to visualize the tradespace, and create a shared digital thread of design decisions

accessible to a community of users throughout the system lifecycle. Currently, there is a technical gap

with regard to our ability to untangle the system design drivers when there is a high volume of multi-

dimensional data. We propose an MBSE methodology that addresses this gap by leveraging the methods

of experimental design in order to clearly identify tradable variables and narrow the search for viable

system variants.

The general state-of-practice is to perform brute force simulation runs on a small set of baseline and

excursions that do not effectively explore the system alternative design space. There is a lot of time,

money, and resources devoted to building complicated simulation models and we do not use them to

the maximum extent possible if we only compare a few excursions from the baseline. DOE provides a

number of benefits that can assist in the design of a system. We can clearly identify the model inputs

that affect the output responses, identify interactions that may exist between model inputs, uncover

detailed insight into the model’s behavior, examine the modeling assumption implications, frame the

questions when we do not know what to ask, challenge or confirm expectation of directional model

input effects and their relative importance, and uncover problems with simulation program logic.

In order to untangle the system design drivers across several different domain models, our

methodology uses statistical metamodeling to approximate the simulations’ behavior. We use these

metamodels to capture insights as derived requirements that further refine a local property

requirement and as satisfy relationships that identify value properties and structural blocks that satisfy

emergent property requirements. In addition, we create a dynamic dashboard using the collection of

metamodels to help visualize multi-dimensional response surfaces using horizontal and vertical cross

sections. These cross sections allow us to clearly identify the tradable variables and find viable system

variants that met the desired capabilities across multiple viewpoints and are physically feasible.

11.4. Future Research
The model integration challenge is a significant limitation that needs further research in order to

effectively execute our proposed MBSE methodology. Translating system element value properties to

simulation model inputs is a research area that is very specific to each domain and the types of models

we use. The MBSE paradigm provides a means of managing the model integration requirements. Model

fidelity differences create an even more challenging problem when we want to integrate a collection of

models that represent one system design alternative. Addressing the model integration challenge will

require additional modeling and practical application of system modeling efforts that are cross-coupled

across different domains.

107

The statistical metamodels we created were fit using the mean of the response data. Therefore, the

functional form of the metamodel only approximated the mean performance. The dashboard steps we

proposed in Section 9 that identify viable variants are completing based on mean performance without

regard to the alternative variability. We address this limitation by rerunning the selected viable system

variant alternatives and using the vector of outcomes within our multiple-objective decision analysis

model. Further research is necessary to apply our proposed methodology on the variance of the

response data. Additionally, we can apply the methods of robust design in order to incorporate both the

mean and variance using a loss function. Analyzing these loss functions allows us to directly incorporate

noise variables along with our decision variables in order to find robust solutions that perform well

across an uncertain environment. Finding robust solutions aligns very well with the ERS effort to identify

resilient systems that are effective in a wide variety of uncertain environments. Rather than optimizing

on the mean decision space, we can find robust solutions that provide a new class of viable system

variants.

A final area of research is to create the physical architecture within the MBSE integrated model of

the viable system variants identified using our dashboard. This task involves translating the model input

settings of the identified solution back into the value properties of the system elements.

108

References

Barton R. (1998). Simulation metamodels (D.J. Medeiros, E.F. Watson, J.S. Carson, and M.S. Manivannan,
Eds.). Proc 1998 Winter Simul Conf Piscataway NJ IEEE. 1:167–74.

BKCASE Editorial Board. (2015). The Guide to the Systems Engineering Body of Knowledge (SEBoK), v.

1.3.2 R.D.Adcock (EIC). Hoboken, NJ: The Trustees of the Stevens Institute of Technology. Accessed May

15, 2015. www.sebokwiki.org.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. and Yergeau, F. (2008), Extensible Markup

Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008.

Clemen, R. T., & Reilly, T. (2001). Making hard decision with decision tools. South-Western Cengage

Learning, Mason, Ohio.

Delligatti L. (2013) SysML Distilled: A Brief Guide to the Systems Modeling Language. 1st edition. Upper
Saddle River, NJ: Addison-Wesley Professional.

Ewing Jr, P. L., Tarantino, W., & Parnell, G. S. (2006). Use of decision analysis in the army base
realignment and closure (BRAC) 2005 military value analysis. Decision Analysis, 3(1), 33-49.

Fisher RA. (1925) Statistical Methods for Research Workers. Biol Monogr Man Ser Edinb Scotl Oliver
Boyd.

Friedenthal S, Moore A, Steiner R. (2011) A Practical Guide to SysML, Second Edition: The Systems
Modeling Language. 2nd ed. Morgan Kaufmann.

Grayson, J., and S. Gardner. (2015). Building Better Models with JMP Pro. Cary, North Carolina: SAS
Institute Inc.

Hastie, T., R. Tibshirani, and J. Friedman. (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. 2nd ed. New York: Springer-Verlag.

INCOSE. (2015). Systems Engineering Handbook, A Guide for System Life Cycle Processes and Activities.
4th edition. San Diego, CA: Wiley.

Keeney, R. L. (1992). Value-Focused Thinking: A Path to Creative Decision Making. Cambridge, MA:

Harvard University Press.

Kim H, Fried D, Menegay P, Soremekun G, Oster C. (2013) Application of Integrated Modeling and
Analysis to Development of Complex Systems. Conf Syst Eng Res. 2013;16(0):98–107.

Kirkwood, C. W. (1996). Strategic decision making. Wadsworth Publ. Co.

Kleijnen JP., Sanchez SM, Lucas TW, Cioppa TM. (2005) A user’s guide to the brave new world of
designing simulation experiments. Inf J Comput;17(3):263–89.

http://www.sebokwiki.org/

109

Kleijnen, J. P. C. (2015). Design and Analysis of Simulation Experiments. 2nd ed. New York: Springer-
Verlag.

Kuhn, M., and K. Johnson. (2013). Applied Predictive Modeling. New York: Springer-Verlag.

Hernandez, A. S., T. W. LUCAS, AND M. CARLYLE. (2012). Constructing nearly orthogonal Latin hypercubes
for any nonsaturated run-variable combination. ACM Transactions on Modeling and Computer
Simulation, 22, 4, No. 20.

Loh W-Y. (2011) Classification and regression trees. Wiley Interdiscip Rev Data Min Knowl Discov. Jan;
1(1):14–23.

MacCalman, A. D. (2013). Flexible space-filling designs for complex system simulations. Doctoral
dissertation. Naval Postgraduate School, Monterey, CA. DTIC Document; 2013. Available from:

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA585718

McIntosh, G.C., Galligan, D.P., Anderson, M.A., & Lauren, M.K. (2007). MANA (Map Aware Non-
Uniform Automata) Version 4 User’s Manual, Defense Technology Agency, New Zealand.

Montgomery DC. (2012). Design and Analysis of Experiments. 7th ed. Wiley.

Myers, R. H., D. C. Montgomery, and C. M. Anderson-Cook. (2009). Response surface methodology:
Process and product optimization using designed experiments. 3rd ed. Wiley, January 14.

NATO Science and Technology Organization. (2014). Data Farming in Support of NATO. STO Technical
Report TR-MSG-088.

NDIA Systems Engineering Division. (2011) Final Report of the Model Based Engineering (MBE)
Subcommittee. Arlington, VA: NDIA.

Neches, R. (2011) Engineered Resilient Systems (ERS), S&T Priority Description and Roadmap.

Rao, C. R. (1945). Finite geometries and certain derived results in number theory. Proceedings of the
National Institute of Sciences of India, 11, 136–149.

Sanchez, S.M. and H. Wan. (2009). Better than a petaflop: The power of efficient experimental
design. Proceedings of the 2009 Winter Simulation Conference, 60–74.

Sanchez, S. M. (2015). “Simulation experiments: Better Data, Not Just Big Data.” In Proceedings of the
2015 Winter Simulation Conference, edited by L. Yilmaz, W. K V. Chan, I. Moon, T. M. K. Roeder, C. Macal,
and M. D. Rossetti. Piscataway, New Jersey: Institute of Electrical and Electronic Engineers, Inc.,

Sanchez, S. M., P. J. Sanchez, and H. Wan. (2014). “Simulation Experiments: Better Insights by Design.” In
Proceedings of the 2014 Summer Simulation Conference. San Diego, California: The Society for Modeling
& Simulation International.

Sanchez, S. M., and H. Wan. (2012). “Work Smarter, Not Harder: A Tutorial on Designing and Conducting
Simulation Experiments.” In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque,
J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Urmacher, 1929–1943. Piscataway, New Jersey: Institute
of Electrical and Electronic Engineers, Inc

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA585718
https://harvest.nps.edu/papers/SanchezWan2009WSC.pdf
https://harvest.nps.edu/papers/SanchezWan2009WSC.pdf

110

SAS Institute. 2015. JMP 12 Profilers. Cary, North Carolina: SAS Institute Inc.

Vieira, Jr., H., Sanchez, S., Kienitz, K. H., & Belderrain, M. C. N. (2011). Generating and improving
orthogonal designs by using mixed integer programming. European Journal of Operational Research,
215(3), 629–638.

Appendix A: MANA Data Farming Manual

UNITED STATES MILITARY ACADEMY

ORCEN, Department of Systems Engineering

MANA Data
Farming Manual

O P E R A T I O N S R E S E A R C H C E N T E R , D S E

MANA Data Farming Manual

2LT Hyangshim Kwak
LTC Alexander MacCalman

February 2015

Table of Contents

Introduction .. 112

1.1 Required Programs ... 112

1.2 HPC Labs in the DSE .. 113

1.3 Overview ... 113

Design of Experiments .. 4

2.1 Scenario File ... 5

2.2 Analysis File .. 6

2.3 Translation File.. 10

2.4 Executable File ... 11

Generate Study File .. 123

3.1 Map Parameters.. 123

3.2 Navigating the Structured Tree ... 126

3.3 Designate the XPath ... 128

Execute Cluster Runs .. 23

4.1 Folder Hierarchy Orientation ... 23

4.2 Cluster Running Prerequisities .. 33

4.3 Launch OldMcData ... 36
4.4 Monitor Progress using Condor .. 37

Post-Process Output .. 38

5.1 Create Summary File .. 38

5.2 Post-Processing Setup .. 39

5.3 Concurrent Processing of Design Points 47

5.4 Sequential Processing of Design Points 48

5.5 Contents of Output Folder ... 49

Appendices ... 50
Appendix A: References ... 50

Appendix B: Glossary.. 51

Appendix C: OldMcData Folder Organization Layout 52

Appendix D: Installing XStudy ... 53

Appendix E: Downloading Condor .. 53

Appendix F: OldMcData Troubleshooting Options 54

Appendix G: Modifying the “condor_config” file 56

Appendix H: Points of Contact for Additional Help 57

114

Introduction

his manual provides instruction on how to setup, start, and manage data
farming runs on the West Point server. It outlines the steps for creating a
design of experiment, running simulations on a local distributed computer
cluster, and post-processing data. The process was first used in a Tradespace

Exploration project headed by LTC Alexander MacCalman at the Operations Research
Center within the Department of Systems Engineering.

1.1 Required Programs

The following instructions document the data
farming procedures as was carried out in the
Tradespace Exploration project. In this case, the

analysts used the Map Aware Non-Uniform Automata as the simulation program and
the “Design Creator” tool for the Design of Experiments portion; however, all
programs can be substituted with other software that is better suited for the project at
hand as long as it fulfills the required functionalities. The list below is a set of programs
that have been implemented in the Tradespace Exploration project for data farming
purposes. The ensuing instructions will be geared towards the following programs:

 Map Aware Non-Uniform Automata (MANA): Operational simulation

 “Design Creator” tool: Custom design creator or statistical package

 Microsoft Office Excel

 XStudy: A software mechanism with a graphical front-end to map model input
parameter settings to columns in a design matrix

 Microsoft Visual Studio: an XML reading program

 OldMcData: A software that accepts the design matrix and specification study
file as an input and produces the set of excursions needed to perform the
simulation experiments

Chapter

1

T

I C O N K E Y

 [[key]]: Button on the keyboard

Command invoked in Command Prompt

 113

 Condor: A software management system that interfaces with the HPC and
excursion files and distributes jobs across available computer resources while
managing the transfer of files

 RStudio: A statistical software

1.2 HPC Labs in the DSE

Data cluster runs are implemented using High Performance Computer (HPC)
cluster systems, which is a series of mapped computers that communicate with one
another. Usually, HPCs are organized so that one master computer communicates
with other remote machines. There are two labs in the Department of Systems
Engineering that have HPC cluster capabilities. The table below lists the location
of the labs and the associated master computer of the cluster.

Table 1. HPC Labs in USMA, DSE

Chapters 2 and 3 can be completed with any logon credentials in your personal
computer. However, you will need to log in to the master computer of a lab as a
student in order to use the data farming and post-processing capabilities of
Condor. When executing chapters 4 and 5, make sure you work in the lab.

To login to the master computer, enter the following credentials:

ID: cadet1se

Password: G0Systems123456

1.3 Overview

The Data Farming methodology can be broken down into the six steps listed below.

Step 1. Create a Scenario file (.xml) on MANA

Step 2. Create the analysis matrix using the “Design Creator” tool. Then,
create the Analysis (.csv, Translation (.csv) and Executable (.csv) files on

Microsoft Excel that designate the design variables and their values for the design of
experiment (DOE).

Step 3. Use XStudy to map the design variables of the Executable file (.csv) and the elements of a
MANA Scenario file. The output is an Experiment Study file (.xml).

Lab Name Location Computer ID

The Cave Room 406a 08

Information Visualization (IV) Lab Room 408 001

D A T A

F A R M I N G

M E T H O D O L -

O G Y

 114

Step 4. Launch OldMcData to create individual scenario excursion files (.xml) for each design point.
OldMcData also submits the runs to Condor, which distributes the simulation over a local
distributed computer cluster.

Step 5. Monitor the progress of the runs using Condor commands.

Step 6. Post-process the output. Either invoke the standard MANA post-processor to create a
Summary file (manaPP.bat) that concatenates all the MANA outputs, or invoke the manaminer
post-processor that allows for personalized outputs.

Ensure that ALL file names (scenario,
excursion, image, etc. files) do not contain
spaces or special characters

 115

Design of Experiments

Creating Analysis, Translation, and Executable files.

his section provides instruction on the Design of Experiments (DOE) portion of the project. The field of
DOE allows us to efficiently explore a high-dimensional tradespace problem at the right system
configuration settings within the design region in a feasible amount of time.

When using MANA models, there is a need to create three matrices, as manifested in the Analysis, Translation,
and Executable files. Matrices are formed so that columns represent design variables and rows represent the input
parameter specifications for each model experiment. Often times, MANA input parameters have multiple entries
(see Figure 8). Therefore, lone design variables are not directly importable as MANA input parameters. Instead,
the entries of the input parameter must be scaled by a single factor, which necessitates the creation of multiple
files.

To create the executable matrix, there must be an intermediary file, known as the Translation file, to translate the
analysis matrix into an execution matrix. The translation matrix scales all of the elements according to the desired
amount based on the experimental design.

An overview of the four types of files is as follows:

 Scenario File (.xml): A MANA file that contains the baseline parameters for all variables that will be
manipulated in the design of experiments. It contains all the details for the scenario.

 Analysis File (.csv): The experimental design the analysts will use to perform linear regression after
appending the output data to it.

 Translation File (.csv): An intermediary file that translates the Analysis file into the Executable file.

 Executable File (.csv): A Microsoft Excel file where each column is a variable in the design of
experiment and each row is a design point. The file is uploaded on XStudy to map the variables in the
design and the elements of a MANA Scenario file.

2.1 Scenario File

Construct the baseline scenario model on MANA, which is the file that contains the baseline parameter settings
for all the design variables that will get modified during the HPC cluster runs.

Chapter

2

T

 116

Step 1. Open MANA
a. See “MANA (Map Aware Non-Uniform Automata) Version 4 User Manual” (May 2007) by

McIntosh, Calligan, Anderson, and Lauren and “MANA-V (Map Aware Non-Uniform

Automata- Vector) Supplementary Manual” (September 2009) by McIntosh for guidance on

how to navigate and create a Scenario file (.xml).

Step 2. Establish baseline values for all parameters in the “Edit Squad” window, as shown in Figure 1. These
values will later be manipulated in the Executable file (.csv).

FIGURE 1. “Edit Squad Properties” window in MANA

Step 3. Check the desired output options in the “Data Outputs” tab. If you will be using the unique post-
processor as instructed in Chapter 5, ensure that the following options are checked (see Figure 2):

 Record Casualty Location Data

 Record Agent State Data

 Record Multi-Contact Detections

 117

FIGURE 2. “Data Outputs” tab in MANA

Step 4. Save the file. Do not include spaces in the file name. In the manual, this MANA file will be referred
to as the Scenario file (.xml).

2.2 Analysis File

The Analysis file (.csv) is the initial compilation of input parameters that lays out the individual MANA runs,
otherwise referred to as design points, for the DOE. The Translation file (.csv) is derived from the Analysis file
(.csv).

The “Design Creator” VBA file uses an algorithm that creates the experimental design. This manual will provide
step by step instructions for creating an Analysis file through a use case. For more specific directions, reference
the “Design Creator User Manual.”

Step 1. Open the “Design Creator” on Microsoft Excel and enable Macros.
Step 2. In the “Front End” tab, enter the number of factors and other required information in the blue cells.

In the example scenario, there are five continuous factors. The number of levels is set to “39” in
order to match the “Number of Design Points” parameter in the green-colored entry area:

 118

FIGURE 3. “Front End” tab of the “Design Creator” tool

Step 3. After entering all of the factors, select the “Run Algorithm” button. A
command window will open that shows the running processes. Once the
algorithm is complete, an output design will be generated in Microsoft Excel.
The total number of columns pertains to the total number of factors. Excluding
the first four rows of headers, there should also be 39 rows of design points (see
Figure 4).

Step 4. Next, copy the entire content of the output design in Microsoft Excel.

Step 5. Toggle back to the “Design Creator” and select the “Start Design” tab.
If there is another design already inputted, select the “Clear Design Area”
button to delete the previous work.

Step 6. Paste the contents of the design output in cell B1. (See Figure 3 for a
screenshot of the “Start Design” tab). Ensure that the content is aligned with its
respective label in column A.

Step 7. Press the “Create Translation Worksheet” button (see Figure 5). The
“Design Creator” will then open the “Translated Design” tab, as shown in
Figure 6.

FIGURE 4. Output Design generated in Microsoft Excel

 119

FIGURE 5. Press the “Create Translation Worksheet” button

Step 8. Update the “factor name” in row 7.

Step 9. Enter the low and high levels for each
individual design variable in rows 4 and 5.

Step 10. Specify the desired number of digits in
which to round the values in row 6. The
“Design Creator” will automatically adjust the
values accordingly. The image in Figure 7
shows the updated “Translated Design.”

 120

Step 11. Copy the “factor names” and design points (from cell B7
onwards).

Step 12. Open a new Microsoft Excel file and select cell A1.

Step 13. Press [[Alt]], [[Ctrl]], and [[v]]
simultaneously to special paste the design

points.

Step 14. Label the tab as “Analysis.” This is
your Analysis file. Continue reading below for
further orientation on the Analysis file and
formatting suggestions. See Figure 9 for an
example of a formatted Analysis file.

FIGURE 8. “Sensor” tab in the “Edit Squad

Properties” window on MANA

 The first row lists each design variable
that will be altered in the DOE.
o Each design variable pertains to a

setting on the MANA input
parameters that will be manipulated
in the DOE

o Ensure that variable headings do not
contain spaces

o Choose headings that are easily
recognizable and unique to the
setting

 Formatting:
o Suggested background color: yellow
o Bold the variables that require

exactly one input.

FIGURE 6. “Translated Design” tab within the Design Creator

Input 2

Corresponds to the
multi-input variable
“SDRDetRange”

Input 1

Input 4

Input 3

Input 5

 121

 For example, bold all the variables in the use case except for “SDRDetRange”

2.3 Translation File

Create a Translation file.

As seen in Figure 6, an input parameter may need a scaling factor to apply to multiple inputs. The Translation
file (.csv) is an expanded version of the Analysis file that lays out each component that will be manipulated in the
DOE. As such, the Translation file is necessary to create the Executable file (.csv).

Step 1. Copy and paste the variable headings and values in the second row of the newly created “Translation”
tab.

Step 2. For the headings that are not bolded, note the number of inputs for the corresponding parameter in
MANA and create additional headings as necessary.

 Bold the newly created headings and color the corresponding columns gray.

 Do not reformat the unbolted variable headings.
* Note: The bolded variable headings contain the values that will be directly inputted into MANA when running each simulation.

Step 3. Fill in the values for the unbolted variable headings. Unlike the values for the bolded variable
headings, the values for the unbolded headings are NOT the figures that will be inputted into
MANA. Instead, they are the numbers that will be multiplied with the baseline value already
determined in the scenario file (.xml)
a. In row 1, write the baseline values as designated in the Scenario file (.xml) above each

corresponding variable heading.
b. Multiply the baseline values with the design points for each respective row to obtain the number

which will be inputted.

FIGURE 9. Final “Analysis File” on Microsoft Excel

Baseline values of the
“Soldier Detection Range”
parameter. Correspond to
values in Fig. 8

 Multiply the baseline value
(cell F1) with the scalable
factor (cell E3)

 122

2.4 Executable File

The Executable file (.csv) is derived from the Translation file (.csv) and will be uploaded in XStudy.

Step 1. Open the Translation file (.csv)

Step 2. Copy the bolded variable headings and the corresponding values. These are the design points that will
be manipulated within MANA. These are the bolded variable headings in the Translation file. In
other words, omit the columns that pertain to the scaling factors.

Step 3. Press [[Alt]], [[Ctrl]], and [[v]] simultaneously to special paste the values in a new sheet.

Step 4. Save the file as your Executable file (.csv) in csv format (see Figure 11).

FIGURE 11. “Executable File” in Microsoft Excel

 123

Generate Study File

Use XStudy to generate an Experiment Study file that specifies the model input parameters
within MANA to change

3.1 Map Parameters

XStudy is a mechanism that finds, selects, and modifies the model input parameters of the base case scenario to
create a set of excursions, one for each experiment or row in the design matrix. We will use the software to map
the input parameters of a MANA Scenario file to the columns in the Executable file.

Ensure that the xstudy.bat file is saved in your C drive.
Step 1. Navigate to the C directory and locate the XStudy folder:

Chapter

3

FIGURE 12. “XStudy” folder

 124

Step 2. Open the XStudy folder (Path: C drive → “XStudy” folder) and locate the xstudy.bat file (see
Figure 13).

FIGURE 13. “xstudy.bat” file within the “XStudy” folder

Step 3. Double click the xstudy.bat file then load the MANA Scenario file (.xml) by navigating to its file
location.

Step 4. In
the “Load Scenario
File” tab, select
“Next” as depicted
in Figure 14.

Step 5. In
the “Load DOE
File” tab, load the
Executable file (.csv)
by clicking on
“browse” then
navigating to its file
location. Check to
see that the proper
file name has
appeared as the
“DOE File Name.”
Then select “Load
DOE”:

FIGURE 14. “Load Scenario File” tab in XStudy

 125

FIGURE 15. “Load DOE File” tab in XStudy

Step 6. After loading the Executable file (.csv), confirm the correct number of lines to skip. Then check to
ensure the column headings are properly identified by using the drop-down arrow:

Step 7. Select “Next.” You will be taken to the “Map
Parameters” tab as shown below. The structured tree on the left corresponds to the MANA Scenario
file (.xml) input parameters. The items under “Parameter Groups” are the column headings of the
Executable file (.csv).

FIGURE 16. Checking the Headings in the “Load DOE File” tab

1

2

1

2

 126

FIGURE 17. “Map Parameters” tab in XStudy

In this tab of XStudy, you will need to link all the column headings of the executable file (.csv) to its respective
input parameter in the MANA scenario file (.xml). Before we describe the details on mapping the two items, we
will learn how to locate the input parameters within the structured tree in the next section, entitled “Navigating
the Structured Tree.”

3.2 Navigating the Structured Tree

 It may be difficult to identify the input parameter that you need to
reference in the “Map Parameters” tab of XStudy, especially if you have an
extensive and complex Scenario file (.xml). In this section, we will
demonstrate two methods on how to locate the specific parameter more
effectively through an example use case.

Use case: We want to locate the “Stealth” MANA parameter that

pertains to the heading “SDR Stealth” for a friendly Bradley Infantry

squad.

Method 1: Browse the XML text file of the Scenario file.

Step 1. Open up the MANA Scenario file (.xml) on any XML
viewer.

Step 2. Locate the input parameter in the file using the search function by
pressing [[Control]] + [[F]]. The key aspect to keep in mind is if whether

Column
Headings Input

Parameters

 127

the input parameter is a state-dependent or state-invariant parameter. If the
property is the former, make sure to look for it in the appropriate <state> section.
Some key elements to record are the squad number and state name which contain
the parameter. It may be easier to print out a hard copy or screen capture selected
parts of the scenario file (.xml) to manually number the ranges, which XStudy
does not label.

 By viewing the XML script of the Scenario file (.xml), we can see that the
“Stealth” MANA parameter lies within the “Default” state with a value of 95 (see
Figure 18).

Step 3. Navigate back to the XStudy GUI. Count the number of squads to find the
desired squad name. Then locate the state name. Finally, find the desired input
parameter within the structured tree.

Step 4. Check to make sure the value of the input parameter is consistent with what is
inputted on MANA to ensure that you have selected the correct one.

Method 2: Locate the input parameter in the MANA dashboard.

Another method of narrowing the location of the input parameter of interest is to look within your MANA
dashboard.

Step 1. Open the MANA dashboard

Step 2. Toggle to the location of the input parameter in MANA and notes the states to which the parameter
is applied. For example, the “Stealth” parameter, designated as “Personal Concealment per Detection
Event” in MANA is located in the “Tangibles” tab and applies to the “Default,” “Taken Shot,” and
“Shot At” states. It also is consistent with a value of 95 (see Figure 19)

Step 3. Navigate back to the XStudy GUI and find the corresponding location of the MANA input
parameter by choosing the appropriate squad number and state.

 128

Step 4. Check to make sure the value of the input parameter is consistent with what is inputted on MANA to
ensure that you have selected the correct one. In this case, “Stealth” was given a value of 95 in
MANA. The selected input parameter entitled “Stealth” in XStudy has the same value. This is one
more check to ensure correct mapping.

3.3

Designate

the XPath

Now that we are
familiar with how to
navigate the
structured tree in
XStudy, we will
proceed with
instructions on how
to map the MANA
input parameters with

the column headings of the
Executable file (.csv).

Step 1. Select a column heading in the “Parameter Groups” section:

FIGURE 19. “Tangibles” tab in “Edit Squad Properties” Window of MANA (Method 2)

 129

FIGURE 20. “Map Parameters” tab in XStudy

Step 2. Navigate to and select the corresponding MANA input parameter in the structured tree. (Refer to the
previous section for guidance on how to navigate the structured tree) Once selected, the path to the
input parameter will appear as the “XPath,” as shown below:

FIGURE 21. Selecting the XPath

 130

Step 3. Click on “Add Current Selection” and check that the XPath has appeared in the “Items in Selected
Group” block and the appropriate input parameter is highlighted. Populate the XPath(s) for all the input
parameters:

Step 4. For the column headings that have multiple inputs, map each individual input. Once all the input
parameters are mapped, select “Next” to proceed to the “Study Info” tab. See the following screenshot
depicting the XStudy GUI:

FIGURE 22. Populating XPaths

FIGURE 23. Mapping an Parameter with Multiple Inputs

1

3
4
5

2

1

 131

Step 5. In the “Study Info” tab, enter the “user” and “study” information. In addition, edit the model
information so that it matches your version of MANA. Finally, select “Next” to proceed to the
“Summary” tab. See the snapshot of the XStudy GUI below:

Step 6. In the “Summary”

tab, look over the
XPaths to ensure proper mapping. The visual below shows one XPath per input parameter but there
can be multiple XPaths. Finally, click “Make Study .xml File” to generate the Experiment Study file
(.xml)”:

*Note: There can be multiple linkages for each
heading. I.e. The heading “SDRStealth” can

pertain to the “Stealth” parameter for multiple squads and will therefore be linked with multiple paths.

FIGURE 24. “Study Info” tab in XStudy

FIGURE 25. “Summary” tab in XStudy

Edit the model information so that it
matches your version of MANA. It can
also be changed in an XML viewer (see
???)

 132

Step 7. Finally, exit XStudy by selecting “Exit,” as shown in the image below:

FIGURE 26. Exiting out of XStudy

 133

Execute HPC Simulation Runs

Launch OldMcData to create individual scenario excursion files (.xml) for each
design point. OldMcData also submits the runs to Condor, which distributes the tasks
amongst the computers in the cluster.

OldMcData is a mechanism that accepts the Executable file and Experiment Study file as an input and produces
the set of excursions needed to perform the simulation experiments. It creates individual excursion files with the
new model input parameters set to the values specified in the design matrix. For each experiment or design point
in the design matrix, there should be one excursion file.

Condor is a job queuing mechanism that enforces a scheduling policy and priority scheme while monitoring the
computer resources that will complete the jobs. A job is one or more runs of the simulation model excursion.
Condor interfaces with the HPC and excursion files and distributes jobs across available computer resources while
managing the transfer of files.

OldMcData and Condor in conjunction allow for the HPC cluster runs of a simulation.

4.1 Folder Hierarchy Orientation

For the data farming procedure to properly execute, certain files must be saved in specific folders within the
C drive, otherwise known as the C directory. As such, it is crucial to gain a firm understanding of the folder
hierarchy for navigational and organizational purposes. In the following steps, we will orient ourselves to
the layout of the omd1.1 folder within the C directory and create obsolete folders.

First, log in to the master computer of a lab.

Step 1. For West Point analysts, log in to the master computer of a lab with the following credentials:

ID: cadet1se
Password: G0Systems123456

We must use the student ID to bypass the Condor
credentials constraint. Condor requires new users to
store their credentials in the system for security
purposes; however, the procedure necessitates
administrative privileges. Unlike individual accounts, the

Chapter

4

West Point analysts must log in using the
Student ID in the computer labs.

 134

student ID account is already recognized by Condor.

Become familiar with the folder hierarchy.

Step 2. Open up “My Computer” and locate the C directory, as shown in the image below:

FIGURE 27. Locate the C Directory in “My Computer”

Step 3. Open up the C directory and locate the “omd1.1” folder, as shown in Figure 28.

 135

FIGURE 28. Locate the “omd1.1” folder in the C drive

The “omd1.1” folder pertains to the OldMcData program and is the central folder that contains all the folders of
interest. An overview of the folder layout is shown below:

Chart 1. “omd1.1” folder in Folder Hierarchy

Step 4. Open the “omd1.1” folder and locate the “models” folder as seen in the image below:

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

 136

FIGURE 29. Locate the “models” folder in the “omd1.1” folder

Step 5. Create a new “MANA” folder within the “models” folder. Each simulation program requires a
unique folder.

FIGURE 30. Locate the “MANA” folder in the “models” folder

Chart 2 highlights the newly created “MANA” folder in the folder hierarchy.

 137

Chart 2. “MANA” folder in Folder Hierarchy

Create a new bat. file and save it to the “MANA” folder.

Step 6. Open up Notepad. Type in:

MANAC.exe –f%1 –n%2 –m%3 –e%4 (See Figure 31)

FIGURE 31. “condoromana.bat” file in Notepad

Step 7. Save the file as “condormana.bat” in the newly created “MANA”
folder.

Copy two files into the “MANA” folder: “mana.reg” and “MANAC.exe”

Step 8. Right click on the “MANA.exe” shortcut on your desktop and select
“Open file location” as seen in Figure 32.

Step 9. Copy and paste the “mana.reg” and “MANAC.exe” files

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

FIGURE 32. Open MANA file location

 138

from their original location into the “MANA” folder (Path: C drive → “omd1.1” folder →
“models” folder → “MANA” folder). The “MANA” folder should now contain three files, as
shown in Figure 33.

FIGURE 33. Contents of “MANA” folder.

 Create a folder that contains the files necessary to post-processes the output.

First, check to see if the manaminer folder already exists in the C drive. The path to
the folder is: C drive → “omd1.1” folder → “tools” folder → “mana” folder →
“manaminer” folder. If the “manaminer” folder is absent, follow the directions in this
section. Otherwise, skip to “Create the ‘Study Name’ Folder” section.

Step 1. Navigate back to the “omd1.1” folder. Create a new “tools” folder, as shown below:

FIGURE 34. Locate “tools” folder within “omd1.1” folder

Step 2. Open the “tools” folder and create a “mana” folder within it (see Figure 35).

S E T T I N G U P

T H E

M A N A M I N E R

P O S T -

P R O C E S S O R

 139

FIGURE 35. Create a “mana” folder within the “tools” folder

The chart below highlights the newly created “mana” folder in the folder hierarchy:

Chart 3. “mana” folder in Folder Hierarchy

We will now copy the ManaMiner post-processing folder into the newly created “mana” folder.

Step 3. Locate the “manaminer” folder. You may have to attach the files from another computer to
transfer the files.

Step 4. Copy the “manaminer” folder and all of its contents into the “mana” folder, as shown
below:

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

 140

FIGURE 36. Paste the “manaminer” folder into the “mana” folder

The chart below highlights the newly created “mana” folder in the folder hierarchy:

Chart 4. “manaminer” folder in Folder Hierarchy

Create the “Study Name” folder that contains the files specific to your project.

Step 1. Toggle back to the “omd1.1” folder and locate the “studies” folder:

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

C R E A T E T H E

“ S T U D Y

N A M E ”

F O L D E R

 141

FIGURE 37. Locate the “studies” folder in the “omd1.1” folder

The chart below points out the location “studies” folder in the folder hierarchy:

Chart 5. “studies” folder in Folder Hierarchy

Step 2. Open the “studies” folder and create a new folder. This is the “Study Name” folder. Label it as
your project name. Ensure the label does not have spaces. In the example below, the Study
Name is “Test10DEC.”

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

 142

FIGURE 38. Create the “Study Name” folder

Step 3. Navigate to the following files and copy them into your newly created “Study Name” folder:

a. MANA Scenario file (.xml)
b. MANA terrain and/or elevation maps (if being used) (.bmp).

*Note: it is not necessary to transfer the background map.
c. Executable file (.csv)
d. Analysis file (.csv)
e. Experiment Study file (.xml)
f. moes.dat file

i. Path: C drive → “omd1.1” folder → “tools” folder → “mana” folder → “manaminer”
folder

The completed “Study Name” folder should resemble the figure below:

FIGURE 39. Contents of the “Study Name” folder

 143

4.2 Cluster Running Prerequisites

The following is a checklist that should be completed before initiating cluster runs on Condor:

 Ensure the “MANA” folder (Path to “models” folder: C drive → “omd1.1” → “models” → “MANA”) has
the following files:

o mana.reg
o MANAC.exe
o condormana.bat

 Configure the oldmcdata.config.xml file in Microsoft Visual Studio or another XML viewer
Step 1. Navigate to the “omd1.1” folder (Path: C drive → “omd1.1”) and locate the “oldmcdata.config.xml”

file as shown below:

FIGURE 40. Locate the “oldmcdata.config.xml” file within the “omd1.1” folder

Step 2. Open the “oldmcdata.config.xml” file in Microsoft Visual Studio or any XML viewer. Change the

“oldmcdata.config.xml” file in the areas depicted in Figure 41. The file is case sensitive so be sure to
check the information is replicated exactly Ensure the major and minor model versions correspond to
the versions specified in the Experiment Study file.. Additionally, the slashes in the path location must
be forward facing.

The slashes in the path location must be
forward slashes.

 144

FIGURE 41. “oldmcdata.config.xml” file on Microsoft Visual Studio

 Configure the Experiment Study file (.xml) to ensure mapping, references, and verbiage mirrors the
“oldmcdata.config.xml” file

Step 1. Navigate to the “Study Name” folder (Path: C drive → “omd1.1” → “studies” → “Study Name”)
and locate the Experiment Study file (.xml). See the figure below:

FIGURE 42. Locate the “Experiment Study file” within the “Study Name” folder

Corresponds to MANA version 5.01.05

Path to “condormana.bat” file

4 arguments required

Path to MANAC.exe file

(see “Setup” of Step 3)

Path to mana.reg file (should be in same

location as MANAC.exe file)

 145

Step 2. Open the Experiment Study file (.xml) in an XML viewer. Within your XStudy file, ensure it is linked
to the correct version of MANA. The Experiment Study file (.xml) is case sensitive. See the example
executable to the right for MANA version 5.01.05. The “Major” pertains to the first portion of the
version number. The “Minor” pertains to the last two portions of the version number.

 Check the connectivity of the remote computers to the
master computers.

Step 1. Open Command Prompt in the master computer from the “omd1.1” folder (see Section 4.2 for
further instruction)

Step 2. Issue the following command: condor_status (see Figure 43).

FIGURE 43. Invoking “condor_status” in Command Prompt

The “central host machine” is the master computer. The “client machines” corresponds to the remote
computers. In Figure 43, we have 16 remote machines connected to the master computer. They are
currently in an “idle” state.

- If an error message appears, turn to Appendix F

FIGURE 43. “Experiment Study file” XML Script

 146

4.3 Launch OldMcData

Step 1. Open the OldMcData Command Prompt. Use one of the 2 methods listed below:
a) Method 1:

1. Locate the “omd1.1” folder within the C drive.
2. Press the [[Shift]] key while simultaneously right clicking the “omd1.1” folder.
3. Left click on “Open Command Prompt from Here” (see Figure 44)

FIGURE 44. Opening Command Prompt from the “omd1.1” folder

b) Method 2:
1. Click on the Start menu and type in “Command Prompt in the search bar
2. Open Command Prompt
3. Issue the following command: cd \om* (see Figure 45)

FIGURE 45. Command Prompt

Step 2. Initiate OldMcData
o Issue the following command into the Command Prompt:

oldmcdata.start.bat [full path to “Study Name” folder] [name of Experiment Study file]

 The path to the “Study Name” folder should resemble: C:\omd1.1\studdies\StudyName

 Ex. oldmcdata.start.bat C:\omd1.1\studdies\Test10DEC StudyFile.xml
o For troubleshooting options, see Appendix C

 147

Step 3. OldMcData Outputs are saved in the “Study Name” folder (Path: C drive → “omd1.1” folder →
“studies” folder → “Study Name” folder). The four folders that are created after executing the cluster
run are listed below:

o “Excursions” folder

 Contains the MANA .xml files for each individual design point of the experiment.
o “Output” folder

 .err and .log files are from Condor

 .out file records the scripts from Command Prompt

 Caslocs .csv files: contain the casualty location results. It lists the coordinates of the victims at
the time of the incident, squad information, the weapon used, shooter information, and more.

 Agentstate data: contains casualty results, the number of hits each agent took, and the number
of rounds that left each weapon used.

 Multicontactdetection data: Contains data on which agents killed which agents at what time and
with which weapon.

4.4 Monitor Progress using Condor

Enter the following commands in the command prompt to regulate the runs:

Command Function

condor_status Shows how many processors are ‘up’ and available

condor_q Checks how many jobs are still running

condor_rm –all Kills all jobs running

condor_rm -<IDnumber> IDnumber is the job ID number you want to kill

condor_submit submit-X.dat Submits a particular excursion, where X is the excursion number

condor_restart – all

condor_master

Restarts Condor. Issue these two commands if none of the jobs are

running.

condor_store_cred Stores a password that is necessary for accessing Condor

Table 2. Condor Commands

 148

Post-Process Output

Invoke the MANA post-processor, manaMiner, to extract and concatenate output data.

5.1 Create Summary File

The Summary file is an aggregation of the MANA output files. It is limited by MANA functionalities in that it
only captures the items that are checked in the “Data Output” drop down menu (see Figure 2) when initially
creating the Scenario file (.xml). This step is optional and should only be used when post-processing is not needed.

Step 1. Open Command Prompt from “omd1.1” folder

Step 2. Issue the following command:

manaPP.bat [full path to “Study Name” folder] [name of Experiment Study file] [Summary File Name].csv 5

 The path of the “Study Name” folder is: C drive → “omd1.1” folder → “studies” folder → “Study
Name” folder)

 Summary File Name: For the third input of the command, create a title that the Summary file will be
called.

 Ex. manaPP.bat C:\omd1.1\studies\Test10DEC StudyFile.xml TestOutput.csv 5

FIGURE 46. Summary File Script on Command Prompt

Step 3. Check the “Study Name” folder to see if
the Summary file has been generated. The screenshot
below is an example of a Summary file:

Chapter

5

All slashes in Command Prompt must be
backwards facing

 149

FIGURE 47. Summary File on Microsoft Excel

5.2 Post-Processing Setup

The following is a checklist that should be completed before post-processing output:

 Ensure the “Output” folder (Path: C drive → “omd1.1” folder → “studies”
folder → “Study Name” folder → “Output” folder) includes agtendstates, caslocs, and mdet csv files.
(See Figure 48) These three files pertain to the options checked under the “Data Output” tab: “Record
casualty location data,” “Record agent state data,” and “Record multi-contact detection.”

FIGURE 48. Output Folder in the omd1.1 folder

P R E -

C O N D I T I O N S

Agtendstates files

Mdet files

Caslocs files

 150

 Check to ensure your “Study Name” folder (Path: C drive → “omd1.1” folder → “studies” folder →
“Study Name” folder) has the following files:

- MANA Scenario file [.xml]

- Experiment Study file [.xml]

- Analysis file [.csv]: This is the original DOE matrix created before the Translation and Execution
files.

- moes.dat file: copy and paste from the “manaminer” folder (Path: C drive → “omd1.1” folder →
“tools” folder → “mana” folder → “manaminer” folder) to the “Study Name” folder.

FIGURE 49. Check contents of the “Study Name” folder

 Personalize the moes.dat file (Path: C drive → “omd1.1” folder → “studies” folder → “Study Name”
folder). The moes.dat file contains all the measures of effectiveness that are of interest. The following is a
list of MOEs available:

MOE Description

TWA_SA Time weighted average of the Blue forces’ situational
awareness

TWA_REDKIA Time weighted average of the Red forces killed

ClassDist

RedKIA Tracks the number of Red forces killed.

BlueKIA Tracks the number of Blue forces killed.

CivKIA Tracks the number of civilians killed.

IED_Det Tracks the number of IEDs detonated

ATK_Complete

 151

RedKillTime,0.5

NoHits Tracks the number of hits taken by the Blue force

IDFCivKill

NoRounds Tracks the number of rounds expelled

BLOSDet Tracks the number of beyond line of sight detection for
the Blue forces

BlueForceFratricide Tracks fratricide incidents amongst the Blue forces

AllMultiRunMOEs

Table 3. Measures of Effectiveness

 Open the run.manaminer.bat file in the “manaminer” folder (Path: C drive → “omd1.1” folder →
“tools” folder → “mana” folder → “manaminer” folder) to ensure it is mapped to the
manaminer.singleDR.R file path, which is also located in the “manaminer” folder. In the example below,
the path to the manaminer.singleDR.R file is underlined.

FIGURE 50. “run.manaminer.bat” file opened in Notepad

For the customized ManaMiner post-processing script to work, the following
requirements must be met:

1. R packages must be installed in the R system library.
2. ManaMiner and R environment variables must be created.

Find the path to the R System Library

Step 1. Open “RStudio”

Step 2. Input the following command in the R console: .libPaths(), as shown in Figure 51.

M A N A M I N E R

R E Q U I R E -

M E N T S

I N S T A L L “ R ”

P A C K A G E S

 152

FIGURE 51. R Studio Console

Step 3. Two paths will appear (see Figure 52). The first path is usually the personal library. The second path is
usually the system library path.

 153

FIGURE 52. Example output script from invoking the “.libPaths()” command in R

Install R Packages into the R System Library

*Note: West Point users require administrative privileges to install packages.

The following R packages must be installed in the R system library:

 dplyr

 reshape2

 plyr

 stringr

 XML

Step 1. Input the following command in the R console:

install.packages(c(list of packages),lib=“<path to R system library>”)

 For the “list of packages” segment of the command, place quotation marks around the package names
and separate them by a comma.

 154

 The “path to R system library” segment should resemble: C:/Program Files/R/R-3.1.1/library

ex. install.packages(c(“dplyr”,“reshape2”,“plyr”,“stringr”,“XML”),lib=“C:/Program Files/R/R-3.1.1/library”)

Create manaminer and R environment variables

*Note: West Point users require administrative privileges to create
environment variables.

Step 1. Right click on the Computer icon on your Desktop and click on “Properties.”
Step 2. In the “Properties” window select the “Advanced System Settings” button on the left column.

FIGURE 53. “Properties” window

Step 3. In the “System Properties” window select “Advanced” tab and click
on “Environment Variables…” button given at the bottom of the
window

E N V I R O N M E N T

V A R I A B L E S

 155

Step 4. Add a new variable by clicking on “New…” button. In the
New User Variable dialog box type in the following Variable
names and Variable values and click “OK”

a. MANAminer Environment Variable (Figure 56)

i. Variable name: MANAMINER_HOME
ii. Variable value: <path to manaminer folder>

FIGURE 54. “System Properties” window

FIGURE 55. “Environment Variables” window

FIGURE 56. “New System Variable” Window with ManaMiner variable

 156

b. R Environment Variable (Figure 57)

i. Variable name: R_HOME
ii. Variable value: <path to location of where R is stored>

Step 5. Edit Path Environment Variable: Locate the Path variable and type in %R_HOME%\bin after

the existing string. Separate the inputted string from the previous with a “;” (See Figure 58).

Step 6. Check the “shim-ppsubmit-template.dat” file (Path: C drive → “omd1.1” folder → “tools” folder →
“mana” folder → “manaminer” folder) to ensure that the “MANAMINER_HOME” environment
variable is mapped to the correct path and the “executable” line is mapped to the location of the
“run.manaminer.bat” file (Path: C drive → “omd1.1” folder → “tools” folder → “mana” folder →
“manaminer” folder).

FIGURE 59. “shim-ppsubmit-template.dat” file on Microsoft Visual Studio

FIGURE 57. “New System Variable” Window with R Environment variable

FIGURE 58. “Edit System Variable” window

 157

5.3 Concurrent Processing of Design Points

Concurrent Processing relies on two tasks, each run sequentially. The first task, or script (run.manaminer.jobs.R),
takes the following inputs: Scenario file (.xml), the Analysis file, the “moes.dat” file, and the “shim-ppsubmit-

template.dat” file. The second task or script
(concat.manaminer.jobs.R), is run after you have completed the first
task and each post-processing job is complete.

Step 1. Open the MANAminer directory in Command Window
(Figure 60)

Step 2. Invoke the following command (see Figure 61):

Rscript run.manaminer.jobs.R <full path to “Study Name” folder> <name of your Scenario file> <name
of your moes.dat file> <name of your Analysis file> shim-ppsubmit-template.dat

 The path to the “Study Name” folder should resemble: C:/omd1.1/studies/StudyName

 The “moes.dat” file is located in your “Study Name” folder

 Ex. Rscript run.manaminer.jobs.R C:\omd1.1\studies\Test10DEC Attack.xml moes.dat
Analysis.csv shim-ppsubmit-template.dat

FIGURE 61. Example invocation of run.manaminer.jobs.R script

After that set of post-processing jobs is complete, you will need to run the second script that concatenates all the
data and merges the DOE with that output. It writes the completed output to a file called "<your "Study Name"
folder>-allOutput.csv", where it takes the name of your study folder.

Step 3. Invoke the following command in the MANAminer directory:

Rscript concat.manaminer.jobs.R <full path to “Study Name” folder> <name of Executable file>

 Ex. Rscript concat.manaminer.jobs.R C:\omd1.1\studies\Test10DEC Execution.csv

FIGURE 62. Example invocation of “concat.manaminer.jobs.R” script

FIGURE 60. Manaminer command prompt window

 158

5.4 Sequential Processing of Design Points

This is a backup method should the concurrent processing of design points (section 5.3) fail. This script post-
processes each design point in order, and hence, can be really slow for lots of output. It calls the
manaminer.singleDP.R script for each design point, concatenates the results when complete, and puts the
concatenated output in your “Study Name” folder, with a file name called "allDP.output.csv".

Within the manaminer command prompt window, invoke the following command:

Rscript manaminer.allDP.R <full path to “Study Name” folder> <name of your Scenario file> <name of your
Executable file> moes.dat

FIGURE 63. Example invocation of “manaminer.allDP.R” script

5.5 Contents of Output Folder

The “Output” folder is located within the “Study Name” folder. The path is as follows: C drive → “omd1.1”
folder → “studies” folder → “Study Name” folder → “Output” folder

Within the “Output” folder are several types of files:

ManaPP-#.out file shows the MOEs and the directory of the output files.

 159

FIGURE 36. Example ManaPP-#.out file

ManaPP-#.err file shows any errors or warnings that were encountered

 160

Appendix A: References

Upton, Stephen. “OldMcData- The Data Farmer User’s Manual” Version 1.1. June 18, 2010.

MacCalman, Alexander D., and Hyangshim Kwak. “Engineering Resilient System Architectural Considerations to
Incorporate Experimental Design Methods.” United States Military Academy, Department of Systems
Engineering. September, 2014. Print.

 161

Appendix B: Glossary

 Analysis File (.csv): The experimental design the analysts will use to perform linear regression after
appending the output data to it.

 Design of Experiment (DOE): The field of DOE allows us to efficiently explore a high-dimensional
tradespace problem in a feasible amount of time.

 Design Point (DP): An individual row on the executable file (.csv). Each row represents a different set of
settings to run. We sometimes refer to a DP as an excursion.

 Excursion: See “Design Point”

 Executable File (.csv): A Microsoft Excel file where each column is a variable in the design of
experiment and each row is a design point. The file is uploaded on XStudy to map the variables in the
design and the elements of a MANA scenario file.

 Experiment Study File (.xml): This file is created using the XStudy program. It creates the mapping
between the variables in the design and the elements of a MANA scenario file. It also specifies version of
MANA that is being used and the number of random replications to run for each design point.

 Scenario File (.xml): A MANA file that contains the baseline parameters for all variables that will be
manipulated in the DOE. It contains all the details for the scenario.

 Summary File (manaPP.bat): A summary file is created after all simulations in the DOE have been run.
The file is a compilation of the outputs from every simulation. It concatenates the casualty data, number
of steps run, and whether or not Blue/Red/Neutral reached their final goal.

 Translation File (.csv): An intermediary file created in Microsoft Excel that translates the analysis file
into the executable file.

 162

Appendix C: OldMcData Folder Organization Layout

OldMcData automatically creates folders. Knowing the location and contents of each folder is critical for
successful cluster runs and efficient data abstraction.

Folder Name Description and Contents

Excursions Contains the MANA .xml files for each individual design point of the
experiment.

MANA Contains “condormana.bat” file

models Contains individual folders of each program that Condor and
OldMcData will run simulations on

omd1.1 Contains all folders required and data processed through OldMcData

Output Contains .err and .log files from Condor, .out files from Command
Prompt, and output data from MANA.

playback Did not use folder

Post processor Did not use folder

studies Contains individual folders for each study

Study name Contains the MANA Scenario (.xml) and Executable (.csv) files.

submit Did not use folder

tools Contains post processing folder

mana Contains “manaminer” folder

manaminer Contains files required for post-processing

XStudy Contains “xstudy.bat” file

C Drive

omd1.1

models

MANA

Other possible
programs

Post processor

studies Study Name

Excursions

Output

playback

submit

tools mana manaminer

XStudy

 163

Appendix D: Installing XStudy

 Requires JAVA versions greater than 6.0

 Installer places a xstudy.bat file into the directory

 Install XStudy into the C drive

 Double-clicking the xstudy.bat file should start the XStudy application

Appendix E: Downloading Condor

Download Condor only if completely necessary. The procedure for downloading Condor is complicated because
Condor requires supplemental programs. If possible, opt to use a master computer that already has Condor
installed.

If you do download Condor, ensure you download Cygwin and GoPearl as well. Although you install Condor,
you will not be able to farm any simulations out to remote computers because they do not recognize your
computer.

Appendix F: OldMcData Troubleshooting Options

If you are unable to farm out to other client machines

Step 1. Open Command Prompt on the master computer from the “omd1.1” folder

Step 2. Issue condor_restart -all

Step 3. In the remote computers, issue the following command: condor_master

Step 4. In the master computer, press [[control]], [[alt]], and [[delete]] simultaneously.

Step 5. Select “Start Task Manager”

Step 6. Click on the “Services” tab and select the “Services” button.

The following requires administrative
privileges

 164

Step 7. The “Services” window will appear, as shown below:

Step 8. Locate “condor” under the “Name” column and select “Restart.”

 165

Step 9. Navigate back to the “Windows Task Manager.”

Step 10. Check task manager to ensure Condor demons are running in “All Users” folder

Step 11. Look up start and master log on remote machines

Appendix G: Modifying the “condor_config” file

The “condor_config” path location is: C drive → “condor” folder

 The following steps must be taken every time you modify the condor_config file:

o Open up the “Computer Management” window

 [[Start menu]] → Right Click on “Computer” → Left Click on “Manage”

o Stop Condor

 Double click on “Services and Applications” → “Services” → “Condor” → “Stop”

o Check to see if Condor is alive by inputting condor_status in Command Prompt.

 166

Appendix H: Points of Contact for Additional Help

Mary McDonald: MANA expert

Research Associate at SEED (Simulation Experiments & Efficient Designs) Center for Data Farming
Operations Research Department Naval Postgraduate School

Email: mlmcdona@nps.edu

Stephen Upton: Data Farming Expert

Research Associate at SEED (Simulation Experiments & Efficient Designs) Center for Data Farming
Operations Research Department Naval Postgraduate School

Email: scupton@nps.edu

John Melendez: SE Department Technical Expert (for USMA DSE only)

Simulation Warfighter Manager at the Department of Systems Engineering at West Point

Email: john.melendez@usma.edu

Business Phone: 845)938-5872

 167

Appendix B: Design Creator Front-End User Manual

Note: This user manual is a modified excerpt from the appendix in MacCalman (2013) and refers to

chapters in this dissertation:

MacCalman, A. D. 2013. Flexible Space-Filling Designs for Complex System Simulations. Doctoral

dissertation. Monterey, CA, Naval Postgraduate School. This dissertation can be found at:

http://calhoun.nps.edu/bitstream/handle/10945/34701/13Jun_MacCalman_Alexander.pdf?sequence=1.

Any references to Chapters refer to the dissertation.

This appendix is a user manual of the Front-End Tool in the DesignCreator_32bit_Version.xlsm

and the DesignCreator_64bit_Version.xlsm files used to run a genetic algorithm that creates a design.

The purpose of the tool is to allow the user to create a custom design, with a specified number of design

points and number of factors, by type, number of levels with the desired balance, and the model terms

included in the regression matrix. In addition, the user can start the algorithm with an existing design

and add columns to it; this allows us to leverage the cataloged 2nd Order NOLH designs that are

included in the workbook by adding columns to them. Once the algorithm creates the design, there are

some utilities available that will create a spreadsheet to translate a design, create higher-order terms,

calculate the maximum absolute pairwise correlation, and create dummy variables for categorical

factors.

 The algorithm was written in JavaTM 2 and requires the user to ensure that the Java Platform

(JDK) is downloaded on their computer; visit the Oracle website at

http://www.oracle.com/technetwork/java/javase/downloads/index.html to download. You can download

the tool from the SEED Center website at http://harvest.nps.edu/software.html. Once downloaded, there

will be two files: DesignCreator.xlsm (containing the Front-End Tool with utilities) and DOE.jar (the

executable .jar file written in Java). Ensure that these files are saved to the same folder. If you are on a

shared network computer we do not recommend that you save the files to the desktop. When opening

the DesignCreator.xlsm file, the user must enable the macros in order to utilize the buttons throughout

the workbook. The Front-End Tool will create an input.csv file and a runit.bat file (for Windows

computers) or runit.txt file (for Macintosh computers) and save them to the same folder; these are the

files the DOE.jar file needs to execute the algorithm from the Windows computer Command line or the

Macintosh computer Terminal window.

 Once the algorithm is complete, the output design will be saved as a .csv file in the same folder

the DOE.jar file is in. The output file title name will have the number of rows, columns, the 𝜌𝑚𝑎𝑝, 𝑀𝐿2,

and the initial seed used for the random number generator (see Chapter II for the definition of 𝜌𝑚𝑎𝑝 and

𝑀𝐿2). In the .csv file, the first four rows will contain the following, respectively: the factor type, the

number of levels, the model terms included in the regression matrix, and the factor name, xi, where i is

the column number. If there are discrete or categorical factors in the design, the last row, separated by

the word “balance,” will have the factor’s balance metric indicating the spread of the levels across the

design points; see Chapter VI for the definition of balance. As a general rule, the user should never

delete or change any of the worksheet names in the DesignCreator.xlsm file. Each section in this

appendix describes the worksheets in the DesignCreator.xlsm file and provides instructions where

appropriate.

http://calhoun.nps.edu/bitstream/handle/10945/34701/13Jun_MacCalman_Alexander.pdf?sequence=1

 168

readme
The readme worksheet provides the purpose of the tool, explains how to create designs and use

the utilities. In addition, it references literature that pertains to the designs created by the genetic

algorithm.

glpl
The worksheet describes the terms of the GNU Lesser General Public License as published by

the Free Software Foundation, either version 2.1 of the License or (at your option) any later version.

This license ensures that the algorithm is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY, without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Front End

Input Parameter Settings

The Front End worksheet allows the user to enter the genetic algorithm input parameters. The

blue-colored cells are the factor entry area used to specify the number of factors, by type, number of

levels, and the model terms included in the regression matrix for the 𝜌𝑚𝑎𝑝 calculation. The four types of

factors are: continuous, discrete, categorical, and binary. For continuous factors, the number of levels

must be equal to whatever is set as the “Number of Design Points” parameter in the green-colored entry

area. For categorical and binary factors, only the main (linear) terms can be added to the regression

matrix (model terms must be set to “M.”) Binary factors can only have the number of levels set to 2.

Generally, the user should set the highest-order model terms in the first set of rows. The model term

designations are the following: M for main effects; MQ for main and quadratic effects; MI for main and

two-way interactions; and MQI for main, quadratics, and two-way interactions. The model terms order,

from highest to lowest, are MQI, MI, MQ, and M. The model term designations significantly impact the

algorithm run time. The Column labeled “Minimum Feasible Imbalance” shows the minimum

analytically achievable imbalance for all discrete and categorical factors. To see these imbalance values,

press the “Calculate Balance Feasibility” button. See the Balance Check worksheet for guidance on the

number of design points needed to achieve a desired imbalance amount for a given number of levels.

Figure B1 shows a snapshot of the factor entry area in the Front End worksheet.

 169

Figure B1. Factor entry area in the Front End worksheet.

The red-colored cells are the algorithm’s internal input parameters that will not be of interest to

the general user of the design creator. Chapter IV discusses the experimental designs we performed to

determine the appropriate input parameter settings for design searches. The user can change these input

settings, if desired (see Chapter III for the algorithm steps and definitions of input parameters), and can

restore the default settings by pressing the macro button underneath the red-colored cell area. Changing

these internal input parameter settings will impact the algorithm’s performance and run-time length; see

Chapter IV for guidance on the performance and run-time length for different number of design points

and columns with the default internal parameter settings. For designs that are not difficult to minimize

the 𝜌𝑚𝑎𝑝, we recommend setting the number of trials (numTrials) equal to 1 in order to speed up the

algorithm’s run time.

 The green-colored cells are the input parameters the general users will need to set each time they

run the algorithm. Because the algorithm is run as a batch file from the Command or Terminal window,

the user may decide to increase the number of algorithm instantiations that will be executed. Setting the

“Number of Batch Replications” parameter to greater than 1 will allow the user to send a batch file to a

computer cluster to perform multiple replications of the algorithm. Because of the stochastic nature of

the algorithm, we recommend performing multiple replications when searching for efficient designs and

then selecting the design with the smallest 𝜌𝑚𝑎𝑝. If the user does not intend to send a batch file to a

computer cluster, he/she can run the algorithm multiple times in separate Command/Terminal windows.

The “Number of Design Points” parameter is the number of experiments or rows in the desired output

design matrix. The “Start With Design” boolean parameter lets the algorithm know whether to add the

desired factors entered in the blue-colored cell area to an existing design located in the Start Design

worksheet. When the “Start With Design” parameter is set to TRUE, ensure that the “Number of Design

Points” parameter is set to the same number of rows in the design that is pasted into the Start Design

worksheet. The “Jiggle Operations” boolean parameter lets the algorithm know whether to perform the

jiggle operations on the continuous factors (see Chapter III for a description of the jiggle operations). If

the algorithm starts with an existing design, the jiggle operation will only be performed on the newly

added continuous columns. The “Show Comments” boolean parameter lets the algorithm know whether

 170

to show the comments in the Command/Terminal window during the algorithm’s execution. When

sending a batch file to a computer cluster, the “Show Comments” parameter should be set to FALSE.

Figure B2 shows a snapshot of the input parameter entry area in the Front End worksheet.

Figure B2. Input parameter entry area in the Front End worksheet.

Algorithm Execution

Once the input parameters are set, the steps to execute the algorithm will depend on the type of

operating system on your computer (Windows or Macintosh). For Windows computers, simply press the

“Run Algorithm” macro button; each time you press this button, a new Command line window will

open and run a different instantiation of the algorithm. Macintosh computers must run the algorithm

from the Terminal window, with the current directory set to the file location where the

DesignCreator.xlsm and DOE.jar files are saved. The first step is to press the “Create Flat Files” macros

button. Then, open the Terminal window and change the directory to where the algorithm is saved. At

the Terminal Command prompt, type the following:

. ./runit.txt

To run additional algorithm instantiations simultaneously, open a new Terminal window and repeat the

above steps. To open the Terminal window from the Finder, the user can go to System Preferences and

click on “Keyboard,” select the “Keyboard Shortcuts” tab and click “Services” from the left menu;

scroll down on the right and check the box next to “New Terminal at Folder.” Setting this preference

will allow the user to right click on a folder in the Finder and click “New Terminal at Folder” to open

the Terminal at the desired folder. This preference setting will save the user from having to change the

directory manually to where the algorithm is located each time you open the Terminal window.

 When the “Show Comments” parameter is set to TRUE, the comments shown in the Command

or Terminal window reveal the progress of the algorithm. Figure A3 shows a Command line window

that searched for a three continuous factor 2nd order design with 20 design points. The algorithm

performed three exploration trials (numExploreGen = 3) and three jiggle generation passes (jigglePasses

= 3). The final time shown at the bottom of Figure B3 is in hours.

Input Parameter Setting Description

Number of Batch Replications 1 The number of command line batch replications written to the batch file.

Number of Design Points 20 The number of rows in the design matrix. Each row designates the factor settings for each experiment.

Start With Design FALSE
TRUE means that the algorithm will add columns to the design that is pasted into the Start Design

worksheet. FALSE means that the algorithm will create a new design.

Perform Jiggle Operations TRUE
TRUE means that the algorithm will perform the jiggle operation, FALSE means that it will not. The

jiggle operation will not be performed on columns in the Start Design worksheet.

Show Comments TRUE
TRUE means that the algorithm comments will be displayed in the command/termainal window. Set to

FALSE when sending batch files to a high performance computer cluster.

numExploreGen 100 Number of exploration generations.

numExploitGen 200 Number of exploitation generations.

popSize 100 Size of the population of candidate columns.

copyPortion 0.1 Portion of candidate columns copy into the next generation.

halfWidth 0.5 The bounded distance that prevents the jiggle operator for perturbing outside a range.

numJigGen 100 Number of jiggle generations.

numTrials 3
Number of exploration trials each consisting of a set of exploration generations with its own initial

population of candidate columns.

swapPortion 0.2 Portion of design points swapped during a swap operation.

poolSize 100 Size of the pool that contains a set of candidate columns.

genExitCriteria 20 Number of generations performed without improvement of the fitness function.

jigglePortion 0.2 Portion of design point jiggled during a jiggle operation.

colAttempts 3
Number of attempts to find a column with a new initial population of solutions if an attempt did not

meet the maximum correlation threshold.

jigglePasses 3 Number of times the jiggle operator is performed on the columns.

corrThreshold 0.05
The maximum correlation a column threshold must be before added to the design. The algorithm will

continue to find a column to add to the design for a set number of attempts (colAttempts).

 171

Figure B3. Command line window during the algorithm execution.

Balance Check
 This worksheet calculates the minimum analytically achievable imbalance for a given number of

discrete or categorical factor levels. Use this worksheet to help decide how many design points you

need to ensure the design's imbalance is minimized. The algorithms will attempt to find discrete or

categorical factors with an imbalance < 0.1. After 50 attempts, if the algorithm did not find a column,

then it will return the column with the lowest imbalance. There are some design point and level

combinations that cannot achieve a 0.1 balance. This worksheet will help guide which design points are

feasible for a given number of factor levels.

Cataloged Designs
This worksheet has hyperlinks that will navigate the user to other worksheets that contain the

cataloged 2nd Order NOLH design. Once there, the user can press the macro button to automatically

copy the design into the Start Design worksheet. We recommend using these cataloged designs for up to

12 continuous factors when you can afford to perform the number of experiments needed for each

design. When the user desires to add discrete factors to a set of continuous factors (up to 12), with the

model terms set to “MQI” (for a full second-order model), we recommend copying a cataloged design to

the Start Design worksheet and then deleting two continuous columns for every one discrete factor (this

is only a rule of thumb). Adding additional columns (of any type) to the cataloged designs, with the

model terms set to “M” or “MQ” do not require that you delete continuous columns.

 172

Start Design
If the user desires to add additional columns to an existing design, paste the design into this

worksheet and set the “Start Design” parameter to TRUE in the Front End worksheet. The first row

designates the factor type. Ensure one of the following text entries is in each column in the first row:

continuous, discrete, binary, or categorical. Specify the number of levels for the factor in the second

row. For continuous factors, the algorithm does not care what is entered because the number of levels

for a continuous factor is always the number of design points. The third row contains the model terms

(M, MI, MQ, and MQI). These entries have no impact to the algorithm. The fourth row is reserved for

the factor name. Ensure that the design (with the first four rows) is pasted into cell B1.

Coded Design
Paste a design with the first four row entries as indicated in the Start Design worksheet

instructions into cell B1. If there are discrete or categorical factors in the original .csv output file, be

sure not to paste the word “balance” and the balance metric into this worksheet. Also, avoid pasting

empty cells that may get highlighted after selecting the current region in the .csv output file. Press the

“Create Translation Worksheet” macro button to create a formula worksheet that will allow the user to

translate the coded design point levels to the factors range desired for the experiments. To calculate the

𝑀𝐿2 and 𝜌𝑚𝑎𝑝 metrics, press the “Insert Design into Design Tools Worksheet” macro button. If the

design has categorical factors and the user wants to examine the first-order correlations of the design

with the categorical dummy variables, press the “Insert Design into Categorical Design Worksheet.”

Translated Design
After pressing the “Create Translation Design” macro button in the Coded Design worksheet, the

macro will insert the formulas into the cells that will allow the user to translate the design to the desire

factor ranges. The blue-colored cells are copies of the first three rows from the Coded Design worksheet

(factor type, number of levels, and model terms). For continuous factors, enter the low and high setting

for each factor. Users have the option to round the continuous factor to a discrete factor; however, we do

not recommend doing this. Rounding a continuous factor is an old technique to create discrete factors

but can severely impact the 𝜌𝑚𝑎𝑝 of the original design (especially the 2nd Order 𝜌𝑚𝑎𝑝). We should not

have to round a continuous factor anymore because our algorithm is capable of creating designs with

discrete factors for a specified number of levels. If the factor column is discrete, the sixth row allows the

user to scale the column instead of rounding. Scaling a discrete factor to a number greater than 1 will

spread the discrete levels over a wider range of values. If the factor type is either discrete or categorical,

the high level will be protected and will add the number of levels to the

low-level setting. The yellow-colored cells are protected to ensure the user does not change the

translation formulas. After establishing the low and high levels and naming the factors, the user can

copy and paste special values the translated design into another spreadsheet for their experiment.

Design Tools
After pressing the “Insert Design into Design Tools Worksheet” macro button in the Coded

Design worksheet, the design will appear (with the factor names only in the first row) in cell B1. The

available macro buttons allow the user to calculate the 𝑀𝐿2 space-filling metric; center the design by

subtracting the mean; create the quadratic terms; the second-, third-, and fourth-order terms; calculate

the 𝜌𝑚𝑎𝑝, and calculate the distribution of all absolute pairwise correlations. Before you create the

higher-order terms, you must ensure that you center the design first; otherwise, the main factors will be

highly correlated with its own quadratic. Be sure to only press the higher-order macros button once;

otherwise, the macro will expand out the terms with whatever is currently in the worksheet. Delete the

 173

high-order terms in the worksheet if you desire to recreate a different set of higher-order terms. When

the user presses the “Collect and Sort Abs Corr Distribution” macro button, the distribution of all

absolute pairwise correlations of whatever design is currently in the worksheet will get pasted and

sorted into the Abs Corr Distro worksheet.

Abs Corr Distro
After pressing the “Collect and Sort Abs Corr Distribution” macro button, the absolute pairwise

correlation distribution will get pasted and sorted into this worksheet.

Categorical Design
After pressing the “Insert Design into Categorical Design Worksheet” macro button in the

Coded Design worksheet, the design will appear in cell B1. From here, the user can designate the

dummy variable convention before creating the dummy variables (see Chapter VI for a description of

the different dummy variable conventions). After pressing the “Create Dummies” macro button, a new

design will get pasted into the Dummy Variables worksheet with all the categorical factors converted

into the set of dummy variables determined by the number of levels.

Dummy Variables
This worksheet will contain the design with dummy variables after pressing the “Create

Dummies” macro button in the Categorical Design worksheet. Pressing the “Find First-Order

Correlation Distro with Dummy Variables” macro button will paste and sort the absolute pairwise

correlation distribution into the Abs Dummy Corr Distro worksheet.

 174

Appendix C: JMP Dashboard Building Instructions

The appendix outlines the details on how to use and build the dashboard in JMP. The first section provides a
brief introduction to the dashboard and how it is used. The second section walks through each step needed to
build the dashboard. There are two videos that accompany these instructions split into two parts. Below are the
links to each part; if prompted for a password, use “dashboard.”
Part 1
http://adsurgo.adobeconnect.com/p5a1vt8zd7f/
Part 2
http://adsurgo.adobeconnect.com/p857bf84cxe/

Dashboard Introduction
1. Run the application (use the correct data table with the added columns). This example uses the file

MeanATK_Samplev4_expanded_formulas.jmp

2. The dashboard appears in three windows: factor settings, contour dashboard, and prediction profiler

dashboard.

Expand the column formulas to depend on all of the inputs

1. Open the source JMP data table. In this example, we use MeanATK_Sample4.jmp.

2. Right click on a new column header (at the far-right side of the data table) and click New Column.

3. Enter “zero.coef” for the name and click OK.

4. Right click on column header “zero. coef” and click on Formula to open the formula editor for column

zero.coef.

5. Click the “no formula” box and type 0*sum().

6. Press Enter

http://adsurgo.adobeconnect.com/p5a1vt8zd7f/
http://adsurgo.adobeconnect.com/p857bf84cxe/

 175

7. Click on the box inside the parenthesis in order to enter arguments to Sum.

8. Select all of the table columns that are used as predictors. In the “Table Columns” pane, click and

release SensorDetectRNG. Scroll down, hold Shift and click RadioDelay. This will also include all of the

columns that lie in-between.

9. Click OK.

10. Open and run “add zero coef.jsl”. This script will add the newly created formula to the formulas of the

continuous columns. This will allow the contour profilers to display correctly, since the contour profiler

axes can only use factors upon which at least one of the responses depends. Note: Make sure that

MeanATK_Samplev4 is the current data table before running this script (it will be as long as it is the only

table open, or if it the last table you were working with).

 176

11. You can verify that the script worked by looking at one of the formulas of the response columns. For

example, click the sign next to Awareness in the Columns pane on the left side of the data table

window to view the formula.

We can see that the 0*Sum() value was indeed added to this formula.

12. Close the open formula editor from the previous step.

13. Save the JMP file as “MeanATK_SampleV4_expanded_formulas.jmp”.

 177

Build the Contour Profiler Dashboard

1. Create a Contour profiler using any one of the responses that will be used for its factor setting sliders.

Here, we will use the Awareness column. Select Graph > Contour Profiler (from the top JMP menu bar).

2. Select Awareness.

3. Click Y, Prediction Formula.

4. Click OK.

 178

5. Double click the “Contour Profiler” option box title and change the name to “Factor Settings.”

6. Click the red triangle that appears next to Factor Settings in order to select the following options. Leave

the other options in the Factor Settings menu as they are if they are not mentioned here.

a. Select Factor Settings > Link Profilers

 179

b. De-select Surface Plot.

c. De-select Arrange X-controls left (may already be de-selected).

d. Select Hide Y Controls

The contour plot (the graph at the bottom of the window) is removed with a line of code inserted at a later step. Only the factor setting sliders from
this particular window are needed.

In order to see which area in the display contains the unnecessary graph, right-click the grey triangle

next to Factor Settings and select Edit > Show Tree Structure.

 180

Hovering the mouse over ListBox(4) reveals that this is the name of the graph that needs to be deleted

(leaving only the factor settings that appear above the graph). This is already hard-coded below, and

nothing needs to be done here. The purpose of this step is to explain why ListBox(4) appears in the code

below.

7. Close the “Show Tree Structure” window, but leave the contour profiler window open. The contour

profiler must remain open in order to add it to the application builder later.

Next, create Contour Profiles for each of the groups of responses (survivability, lethality, casualties, and weight). The groups that the manual uses for the
MeanATK data set are defined in the next step. Three of these groups consist of a single response, while three responses are grouped in the Weight group.
When developing a dashboard for your own application, you may place the responses into as many or as few groups as you think makes sense. At one
extreme, you could produce a contour profiler for each response, making each response its own group. At the other extreme, you could place all of the
responses into a single contour profiler. However, placing all of the responses in a single profiler will make it more difficult to see how changes in the factor
settings impact the responses. Going forward, the manual will make use of the four groups defined in the next step: if you change the number of groups,
there are a few places in the JSL code embedded later in the manual where you will need to change the upper index of a “for-loop” from 4 to the number of
contour profilers you have chosen: these instances are highlighted.

8. In this data table, there are 4 different groups we will use. Note that 3 of these groups contain only a

single response. Also note that the different Cost columns and the Desirability column are not currently

used anywhere in this manual.

a. Awareness

i. Awareness.

b. Lethality

i. Lethality

c. Casualties

i. Casualties

d. Weight

i. Sensory Weight

ii. Rifle Weight

iii. Radio Weight

9. Click Graph > Contour Profiler.

10. Select Awareness for Y, Prediction Formula. We already used Awareness for the previous contour

profiler we built: that was in order to harvest the factor settings sliders. We will leave that existing

 181

profiler open, and will format this new one in a different way. From the new window we create here, we

will be using the contour plot in the dashboard. See the next two screenshots.

Figure 1 Screenshot from final dashboard. These factor settings were produced from the first Awareness Contour Profiler.

Figure 2 Screenshot from final dashboard. This plot was produced from the second Awareness Contour Profiler.

11. Click OK.

12. Click the red triangle next to Contour Profiler and

a. Select Hide X Controls

b. De-select Surface Plot

 182

13. Double click the Contour Profiler option box title, and rename it to the group name, “Awareness”.

14. Leave this contour profiler open in the background.

15. Click Graph > Contour Profiler.

16. Select Lethality for Y, Prediction Formula.

17. Click OK.

18. Click the red triangle next to Contour Profiler and

c. Select Hide X Controls

d. De-select Surface Plot

19. Double click the Contour Profiler option box title, and rename it to the group name, “Lethality”.

 183

20. Leave this contour profiler open in the background.

21. Click Graph > Contour Profiler.

22. Select Casualties for Y, Prediction Formula.

23. Click OK.

24. Click the red triangle next to Contour Profiler and

e. Select Hide X Controls

f. De-select Surface Plot

25. Double click the Contour Profiler option box title, and rename it to the group name, “Casualties”.

26. Leave this contour profiler open in the background.

27. Click Graph > Contour Profiler.

28. Select Sensory Weight, Rifle Weight, and Radio Weight for Y, Prediction Formula.

 184

29. Click OK.

30. Click the red triangle next to Contour Profiler and

g. Select Hide X Controls

h. De-select Surface Plot

31. Double click the Contour Profiler option box title, and rename it to the group name, “Weight”.

32. Leave this contour profiler open in the background.

We will now begin to create the dashboard (in JMP, called and Application) and pull all of these contour profilers into the dashboard.

33. Select File > New > Application (from the top JMP menu bar, which may be hidden until the mouse

scrolls over it) to open the application builder.

 185

34. Click the “Add Module” tab (the icon next to “Module 1” in the top-middle of the screen) twice to

create Module2 and Module3.

35. Select Module1 from the Objects pane (which is located at the top right of the Application Builder

window, see the screenshots below.) and change its Title to Factor Settings (in the properties pane on

the bottom right of the Application Builder window, see the following screenshots). Note: the Objects

Pane shows a hierarchical tree of all of the objects included in the Application Builder (dashboard). You

can click on the objects here to select them or right-click on them to modify them (adding parent

container objects, etc). In a couple cases later in this manual, it is easier to select some of the objects of

interest in the Objects pane rather than in the center pane of the Application Builder (under the Module

 186

tabs) due to a GUI (graphical user interface) limitation of JMP in the center pane. These later cases

include explicit instructions to use the Objects pane.

 187

36. Likewise, select Module2 from the Objects pane and change its Title to Contour Dashboard in the

Properties Pane.

37. Likewise, select Module3 from the Objects pane and change its Title to Profiler Dashboard in the

Properties Pane.

38. Select the Factor Settings tab (which is still titled Module1. Note that throughout the instructions, these

tabs are still labeled Module1, Module2, and Model3. These values are set in the Properties pane after

selecting one of the Module tabs. Step 35 of this section changes the Titles of the modules, not the

Variable Names. The titles are what appear in the window title bar at the top of the screen when the

module opens, and the variable name is the keyword the JSL code uses to reference the module. While

it makes sense in future applications to assign the modules more specific names, the manual keeps their

default variable names throughout, so it's important to keep them as they are).

39. Drag a V list Box to the top left corner of Module1 (the Factor Settings module). (Just place it in Module

1, right-click and select Move to Corner).

 188

40. Drag the profiler with the factor settings into the V List Box. This will be the bottom Contour Profiler

listed in the Reports pane of the Application Builder (see the screenshot below). The Contour Profilers

are shown from newest created to oldest created.

 189

 190

41. You may then close the original Contour Profiler window containing the factor settings. Doing so will

remove it from the Reports Pane in the Application Builder as well (but it will leave the copy that you

dragged into Module 1 there), meaning you can just work your way up from the bottom of the Reports

pane in the following steps. Be careful to close the correct window.

42. Click and drag a “Button Box” (from the left side of the Application Builder) to the top side of the V List

Box containing created earlier. You will see a blue line when dragging the Button Box to show where it

will be placed.

 191

43. Click the Button1 box and change its Title in the Properties Pane to “Update Factors.”

44. Select the Scripts tab (next to the Module1 tab, which contains the factor settings).

 192

45. Below the existing code in this area, enter the code. When copying code from this manual to JMP, be

careful to check if the code block continues onto the next page. The highlighted code blocks are

pieces of code that need to be changed if you build the dashboard using a different data table. If re-

building the dashboard for the MeanATKSamplev4 data set, nothing needs to be changed.

Report1[ListBox(4)]<<delete;

factor.settings.profiler<<Link Profilers(1);

factor.group.label={"Sensory","",”Weapon”,”Como”};

Report1[string col box(1)]<<sib prepend(string col

box("Group",factor.group.label),horizontal);

mat.min=[];

mat.max=[];

factor.names=Report1[string col box(2)]<<get;

for (i=1,i<=n items (factor.names),i++,

 Eval(eval expr(mat.min=v concat(mat.min,round(col

min(column(Expr(factor.names[i]))),3))));

 Eval(eval expr(mat.max=v concat(mat.max,round(col

max(column(Expr(factor.names[i]))),3))));

);

Report1[number col edit box(1)]<<sib prepend(Number Col Box(

"Min",mat.min),horizontal);

Report1[number col edit box(1)]<<sib append(Number Col Box(

"Max",mat.max),horizontal);

The first line deletes the graph whenever the script runs. The second line ensures that all of the profilers
are linked. In the next step, we will manually assign references to the profilers (such as
factor.settings.profiler, used above).Note how the factor.group.label list is manually constructed by first
examining the factor list in the contour dashboard. This could be automated somewhat by extracting

 193

the group name for each factor; however, this manual method allows us to only indicate the first
column in each group, making the table a bit less cluttered.

46. Save your current progress. Recommendation: as you build the dashboard, save a new file each time. In

case you make a mistake in a later step that you cannot retrace, you will not lose all of your work.

47. Select DataTable1 from the objects pane. In the Properties pane, change the selection for Location from

Current Data Table to Prompt.

 194

48. Drag a Lineup Box into Module 2. . Right-click the new lineup box and select Move

to Corner.

49. Drag the rest of the open contour profilers from the Reports Pane into the lineup box. Put them in a

single row across the screen. We will change the underlying code to make them appear in a 2x2 grid.

(You can also create a 2x2 grid of contour profilers by clicking and dragging a report to the bottom side

of the lineup box. However, the sequence we follow makes things more manageable when building

larger dashboards).

 195

50. Close all of the open Contour Profiler windows (you can either close them one at a time after adding
them to the Application Builder, or all at once afterward).

51. Click the red triangle next to Application Builder, hover over “Script”, and select Save Script to Script
Window. (Make sure you don’t already have an open Script Window first). This script contains the
commands to open an Application Builder with the reports and settings we have added. The following
steps insert references to the contour profilers.

 196

In order to make the code more readable, right click in the Script Window and select Reformat Script.

 197

52. Scroll through the code of the Module1 area

The report of the factor settings profiler is named Report1 since it was the first (and only) report added
to Module1. WARNING: each module will have its own Report1, Report2, etc. Make sure you are in the
correct module.

53. Next to the first instance of “Contour Profiler” under Report1 (in Module1), type
“factor.settings.profiler=”.

 198

Make sure that you have applied the factor.settings.profiler name to the first instance of “Contour

Profiler(“, not the second instance that appears two lines later.

In the Module2 area of the script tab, reports 1 through 4 contain the contour profilers that are visible
in the Lineup Box. The following steps add a reference to these contour profilers so that we can extract
the factor selections from the profiler in Report1 (in Module1) and then send them to the other
profilers.

54. Each of the profilers in Module 2 need to be named “::profiler#”, with # replaced by the corresponding
report number. For example, scroll to the next report in the code (in this case, Report4) and name the
Contour Profiler “::profiler4”. The “::” indicates that the variable should be scoped globally, making it
available to other modules.

 199

55. Scroll through the code until you find

56. The Lineup1 << N Col(4) commands control the number of columns in the lineup boxes. To make the

Contour Plots appear in two columns, change the 4 to a 2.

57. After naming each of the profilers and updating the width of the Lineup Box, click the Run Script button
to bring up a new application builder. It will look the same as before, but now contains the references
that we just built in.

 200

58. After clicking run and opening a new Application Builder, close the Script Window without saving.
59. Save the new application builder as a new file (e.g. Dashboard_pt2).
60. Close the original Application Builder window (not the new one that you just opened).
61. Navigate to the Scripts tab of the Application Builder for Module 2 and paste the following code to the

bottom of the script. The highlighted value of 4 would need to be changed when building the dashboard

for different data sets.

 201

 202

//loop over the contour profilers 1 to 4

//set the hi and lo limits to the response column max/min

For(j = 1, j <= 4, j++,

 Eval(Eval Expr(report.names = Expr(Parse("Report" || Char(j)))[String

Col Box(1)] << get));

 Eval(Eval Expr(r2.ncb.lower = Expr(Parse("Report" || Char(j)))[Number

Col Edit Box(2)] << get as matrix));

 Eval(Eval Expr(r2.ncb.upper = Expr(Parse("Report" || Char(j)))[Number

Col Edit Box(3)] << get as matrix));

 For(i = 1, i <= N Items(report.names), i++,

 r2.ncb.lower[i] = Eval(eval expr(round(col

min(column(Expr(report.names[i]))),3)));

 r2.ncb.upper[i] = Eval(eval expr(round(col

max(column(Expr(report.names[i]))),3)));

);

 //update the hi and low limits in the contour profilers

 //make sure to use "set values" and not "set"

 Eval(Eval Expr(Expr(Parse("Report" || Char(j)))[Number Col Edit Box(

2)] << set values(r2.ncb.lower)));

 Eval(Eval Expr(Expr(Parse("Report" || Char(j)))[Number Col Edit Box(

3)] << set values(r2.ncb.upper)));

);

//delete contours

mat=[.];

for(j=2,j<=1000,j++,

 mat=v concat(mat,[.]);

);

//clear the contours from the profilers

//and delete the top "Profiler" (grey) outline boxes

for(i=1,i<=4,i++,

Eval(Eval Expr(Expr(Parse("Report" || Char(i)))[Number Col Edit Box(1)] <<

set values(mat))));

62. Click the Module 1 tab. (The application cannot be launched from the Scripts tab).

63. Run the script to verify that the modules open correctly and that there have been no errors to this

point.

64. After clicking Run Script, a prompt will appear asking which data table to use. Select

MeanATK_SampleV4_expanded_formuas, click the button labeled

MeanATK_SampleV4_expanded_formuas, and click OK.

 203

The following 3 windows should open.

 204

65. Close the 3 new windows that appeared, and return to the Application Builder.
66. Return to Module 1.
67. Click on the Update Factors button to select it.

68. Click the Press edit area (for the Update Factors button) to enter a script that will be run when the

button is pressed. Note: click the grey button to paste in the script. If you paste it into the white
text box next to that button, it will only save the last line of the script.

 205

69. Enter the following script

horiz=Report1[RadioBox(1)]<<get ;

vert=Report1[RadioBox(2)]<<get ;

var.list=Report1[StringColBox(2)]<<get ;

print(var.list[horiz]);

print(var.list[vert]);

for(i=1, i<=4,i++,

Eval(Eval Expr(Expr(parse("profiler"||char(i)))<<Horizontal Factor(

Expr(var.list[horiz]))));

Eval(Eval Expr(Expr(parse("profiler"||char(i)))<<Vertical Factor(

Expr(var.list[vert]))));

);

The upper value of the loop (i<=4) should be set to the number of reports in the Contour Profiler.
RadioBox(1) contains the selection for the horizontal factor in Report1 (this can be found using the tree
structure as shown above).

70. Click OK.
71. Click the Run Script button to run the dashboard again. The Update Factors button should now

broadcast the factor selections to all of the profilers.

 206

a. For example, select RifleRNG for Horiz in the Factor settings window.

b. Click the Update Factors button.

c. Notice how the x-axis in the Contour Profilers in the Contour Dashboard window has been

changed to RifleRNG

72. Save the application (preferably as a new file). Saving with a .jmpappsource extension will save the

Application Builder in its current state, allowing it to be edited later. Saving with a .jmpapp extension
will create a file that brings up the dashboard immediately when run.

Profiler Dashboard

1. Navigate to Module3 in the Application Builder.

 207

2. From the JMP menu, select Graph > Profiler.

3. Select all of the responses (columns Awareness through Radio Weight) for Y, Prediction Formula.

4. Click OK.

 208

5. Click the red triangle next to Prediction Profiler and ensure that Desirability Functions is selected.

6. Click the red triangle next to Prediction Profiler and select Assess Variable Importance > Independent

Uniform Inputs. Click “Accept Current Indices” when the button appears (do not need to let it run to

completion).

7.

 209

8. Click the red triangle next to Variable Importance: Independent Uniform Inputs and select Reorder

factors by total importance.

9. Click the red triangle next to Prediction Profiler and de-select Assess Variable Importance >

Independent Uniform Inputs. This will keep new factor ordering without requiring the simulation to be

run each time the dashboard is run.

 210

10. Click the red triangle next to Profiler and select Custom Profiler.

11. Right-click they grey triangle next to Custom Profiler and select Edit > Show Tree Structure.

 211

12. The Custom Profiler display area is named “Custom Profiler”. We will use this later on to extract this

part of the dashboard display.

13. By hovering the mouse over parts of the tree structure, we can highlight corresponding display boxes in

the Profiler to see that the column of response names resides in StringColBox(2). We will later use the

fact that this is the second StringColBox in the Custom Profiler display box to extract the response

column names.

14. Click the red triangle next to Profiler and de-select Custom Profiler.

 212

15. Return to the application builder and drag the newly created profiler into Module 3.

16. Right-click the profiler and select Move to Corner.

17. Close the open Profiler window after importing it into the Application Window. Also close the Display

Tree window that was created.

Next, the Application Builder source code is modified to insert references to the profiler we added. (We cannot simply reference, .e.g, Report1, since this object
refers to the display window that contains the profiler).

18. If you still have a JMP scripting file named Script Window open, close it.

19. Click the red triangle next to Application Builder and select Script > Save Script to Script Window.

 213

20. Right-click in the Script Window and select Reformat Script.

21. Scroll down to the definition of Report1 in Module3 (Warning: Make sure you don’t modify Report1 of

Module1 or Module2).

22. Add “pred.prof1=” to name the profiler object in Report1 as shown below.

 214

Make sure that this name applies to the first instance of “Profiler(“, and not the one that appears two lines below it.

23. Click the Run button to reopen the application builder with the new references built in. You may close

the previous instance of the application builder, and save the new Application Builder (as a new file, to

be safe).

24. Close the “Script Window”.

25. Close the old Application Builder window (not the one that was just created).

26. In Module3 (the prediction profiler), right-click on Report1 in the objects pane and select Add Container

> H List Box.

27. Drag a V List Box (from the left panel of the Application Builder window) into the new H List Box to the

left of the profiler

 215

28. Drag three Text Boxes (from the left panel of the Application Builder window) into the new V List Box

and fill them out as shown after setting both Width and Wrap to 200 for each of the boxes in the

Properties Pane (on the bottom right of the Application Builder window).

 216

Enter the following text in the Text area of the properties pane. Selecting the Bullet box in the Properties pane creates a bullet.

 217

29. Drag a Table Box into the V List Box under the Text Boxes.

30. Insert a String Col Box, a Number Col Edit Box, a Number Col Box, and a String Col Edit Box into Table1

(the newly created Table Box).

 218

31. Click on the StringCol1 box.

32. In the Properties pane for StringCol1, change the Title to Response and remove the items a and b from

the list by selecting them and clicking the minus button.

33. Click the NumberEditCol1 box.

 219

34. In the Properties pane for NumberEditCol1, change the Title to Weight and remove the items 1 and 2

from the list.

35. Click on the NumberCol1 box.

36. In the Properties pane for NumberCol1, change the Title to Proportion and remove the items 1 and 2

from the list.

37. Set Variable Name to weight.prop.

38. Click on the StringEditCol1 box.

39. In the Properties Pane for StringEditCol1, change the Title to Goal and remove the items a and b from

the list.

40. Click on the Scripts tab and select Module3 to add code that will be run when the dashboard is first

opened.

 220

41. Enter the following code below the existing code and comments. This is the point at which we use the

fact that the response names are contained in String Col Box (2) of the custom profiler (found in an

earlier step).

 221

//Link the factor settings across profilers

pred.prof1 << Link Profilers(1);

//extract the response names from the Custom Profiler

pred.prof1<< custom profiler(1);

domain1.resp = Report(pred.prof1)["Custom Profiler"][String Col Box(2)] << get;

pred.prof1<< custom profiler(0);

//Grab the list of response names from the custom profiler

domain1.num = N Items(domain1.resp);

//Initially give equal weight to each response

//And set the default goal to max

For(i = 1, i <= domain1.num, i++,

 NumberEditCol1 << add element(1);

 weight.prop<<add element(1/domain1.num);

if(contains(char(Column(domain1.resp[i])<<get property("Response

Limits")),"Minimize")==0,

 StringEditCol1 << add element("max"),

 StringEditCol1 << add element("min");

);

);

//record the current weights

NEC1.current = NumberEditCol1 << get;

//pouplate the response names

StringCol1 << set(domain1.resp);

//records whether the Simulate button has been pressed

sim.indicator=0;

//resize the prediction profiler graphs and
//set the response labels to horizontal
pred.prof1<<Dispatch({"Prediction Profiler"}, "Profiler", FrameBox(1), {Frame Size(35,
24)});
for(i=1, i<=domain1.num, i++,
 Eval(Eval Expr(pred.prof1<<Dispatch({"Prediction
Profiler"},Expr(domain1.resp[i]),TextEditBox,{Rotate Text("Horizontal"), Set Wrap(130
)})));
);
Function({this, which},

 changed.value = StringEditCol1 << Get(which);

 window = Expr(

 New Window("Error",

 <<Modal,

 Text Box("Goal should be one of {max, min, middle}"),

 Button Box("OK")

)

);

 If(

 changed.value != "max" & changed.value != "min" & changed.value

 != "middle",

 Eval(window);

 Stop();

);

 //update the desirability functions

 //set.des1 is a button that will be created

 set.des1 << click();

);

 222

42. Return to the Module3 tab.

43. Select the StringEditCol box titled Goal. For some reason, this is difficult to do. You may need to just

select StringEditCol1from the Objects pane on the top right of the Application Builder window.

 223

44. Add a Button Box below the Text Boxes in Module 3. This button will contain the code for maximizing

the desirability function.

45. In the properties pane, set the Variable Name of the box to set.des1

46. Set the title to Set Desirability Functions.

 224

47. Enter the following in the Press area of the Properties pane for the set.des1 button. Note: click the grey

button to paste in the script. If you paste it into the white text box next to that button, it will only

save the last line of the script.

names = StringCol1 << get;

upper.lim = {};

lower.lim = {};

For(i = 1, i <= N Items(names), i++,

 lower.lim = Insert(lower.lim, 0);

 upper.lim = Insert(upper.lim, 0);

);

//loop over the contour profilers 1 through 4

//get the hi and lo limits and the corresponding response names from each Report

For(j = 1, j <= 4, j++,

 Eval(Eval Expr(report.names = Expr(Parse("report(profiler" || Char(j)

|| ")"))[String Col Box(1)] << get));

 Eval(

 Eval Expr(

 r2.ncb.lower = Expr(Parse("report(profiler" || Char(j) || ")"

))[Number Col Edit Box(2)] << get as matrix

)

);

 Eval(

 Eval Expr(

 r2.ncb.upper = Expr(Parse("report(profiler" || Char(j) || ")"

))[Number Col Edit Box(3)] << get as matrix

)

);

 For(i = 1, i <= N Items(names), i++,

 Eval(Eval Expr(loc = Contains(report.names, Expr(names[i]))));

 //when a match is found, the data filter is updated

 //the appropriate command for the data filter depends on whether there

are missing values

 //for the Hi or Lo Limits in the contour profiler.

 //Note: due to lack of readability of if-then statements in JMP, the

three conditions are

 //listed separately in three if-statements

 225

 If(loc > 0,

 lower.lim[i] = r2.ncb.lower[loc];

 upper.lim[i] = r2.ncb.upper[loc];

);

);

);

For(i = 1, i <= N Items(StringCol1 << get), i++,

 var.name = StringCol1 << get(i);

 max = upper.lim[i];

 min = lower.lim[i];

 delta = 1e-6;

 goal = StringEditCol1 << get(i);

 If(goal == "max",

 Eval(

 Eval Expr(

 pred.prof1 << (Expr(var.name) << Response Limits(

 {Lower(min, 0.1), Middle(max, 1), Upper(max +

delta, 0.1)}

))

)

)

);

 If(goal == "min",

 Eval(

 Eval Expr(

 pred.prof1 << (Expr(var.name) << Response Limits(

 {Lower(min - delta, 0.1), Middle(min, 1), Upper(

max, 0.1)}

))

)

)

);

 If(goal == "middle",

 Eval(

 Eval Expr(

 pred.prof1 << (Expr(var.name) << Response Limits(

 {Lower(min, 0.1), Middle((min + max) / 2, 1),

Upper(max, 0.1)}

))

)

)

);

);

Report1[PictureBox(1)]<<reshow;

48. Insert a Text Box below the Set Desirability Functions button.

 226

49. Set the width and wrap of the new Text Box to 150 in the Properties pane, and set the text to “Goal may

be set to one of {min, max, middle}”

50. Select the Weight column. Again, this may be easier to do by selecting NumberEditCol1 from the Objects

pane at the top right of the Application Builder.

 227

51. In the Script area (in the properties pane for Weight), click the grey button to enter the following code

that will automatically run whenever the weights are changed.

 Print(input.values = NumberEditCol1 << Get());

 Print("Old Values");

 Print(old.values = NEC1.current);

 window = Expr(

 New Window("Error",

 <<Modal,

 Text Box("Weights should be >0"),

 Button Box("OK")

)

);

 neg.ind=0;

 For(i = 1, i <= N Items(input.values), i++,

 if(input.values[i]<0,neg.ind=1);

);

 If(neg.ind==1,

 Eval(window);

 NumberEditCol1 << Set(old.values);

 Stop();

);

 NEC1.current = input.values;

 For(i = 1, i <= N Items(input.values), i++,

 var.name = StringCol1 << get(i);

 var.value = input.values[i];

 Eval(

 Eval Expr(

 pred.prof1 << (Expr(var.name) <<

 Response Limits({Importance(Expr(var.value))}))

)

);

);

 weight.matrix=NumberEditCol1 << Get as matrix;

 weight.sum = sum(weight.matrix);

 weight.scale=weight.matrix/weight.sum;

 weight.prop<<set values(weight.scale);

52. Save the dashboard. Run it to make sure that there are no errors.

 228

Monte Carlo

1. Add a Button Box to Module3 just above the Response column.

2. In the Properties pane for this button, change the title to “Simulate”

3. In the Properties pane of the Simulate Button Box, select the grey button next to the Press option to

enter the following script. Note that some of the referenced variables (e.g. ::importlimitsbutton1) are

created in later steps.

 229

//Enable the buttons in the Contour Profiler Dashboard

::importlimitsbutton1 << enable(1);

::exportlimitsbutton1 << enable(1);

//record that the button has been pressed

sim.indicator=1;

//Turn on the custom profiler

pred.prof1 << custom profiler(1);

//Extract the factor names from the custom profiler display tree

domain1.factors = Report(pred.prof1)["Custom Profiler"][String Col Box(1)] << get;

//save the responses (as a global variable, as indicated by ::)

::domain1.resp = Report(pred.prof1)["Custom Profiler"][String Col Box(2)] << get;

//turn off the custom profiler

pred.prof1 << custom profiler(0);

//enable the Profiler Simulator

pred.prof1 << Simulator;

//Select a uniform distribution for each factor

For(i = 1, i <= N Items(domain1.factors), i++,

 Eval(Eval Expr((pred.prof1 << Simulator(Factors(Expr(domain1.factors[i])

 << Random(Uniform()))))))

);

n.runs=number.of.runs<<get;

//Click the simulate Button

pred.prof1 << Simulator(Automatic Histogram Update(1), N Runs(n.runs), Simulate);

/* Click the Make Table button */ Report1["Simulate to Table"][Button Box(1)] << Click(1

);

/* Assign a handle and a (global) name to the resulting table */

::dt.sim1 = Data Table(1);

//select all of the response columns

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(Eval Expr(Column(::dt.sim1, Expr(::domain1.resp[i])) << Set Selected(1))

)

);

dt.sim.selected1 = ::dt.sim1 << get selected columns;

::dt.sim1 << Set Name("Simulated Table");

//create the scatterplot matrix

Eval(Eval Expr(::spm1 = ::dt.sim1 << Scatterplot Matrix(Y(Expr(dt.sim.selected1)),

Nonpar Density(1))));

//create a data filter for the simulated table

::dt.sim.filter1 = ::dt.sim1 << data filter;

::dt.sim.filter1 << set Show(1);

//reference the report (display tree) of the data filter

::dt.sim.filter.report1 = ::dt.sim.filter1 << report;

//no JSL analog to the Add button, so just click it virtually

::dt.sim.filter.report1[Button Box(4)] << Click(1);

//update the new data filter with the current contour plot limits

::exportlimitsbutton1 << click(1);

//wait for the previous commands to finish

wait(0);

//hide the simulated data table

::dt.sim1<<show window(0);

//disable the Profiler Simulator

pred.prof1 << Simulator(0);

//record that the button has been turned off

sim.indicator=0;

4. Right-click the Simulate button and select Add Container > H List Box.

 230

5. Drag a Text Box into the H List Box to the right of the Simulate button.

6. Change the Text entry of the Text Box in the Properties pane to “Number of runs:”.

7. Drag a Number Edit Box into the H List Box to the right of the text box.

8. In the Properties pane of the Number Edit Box, set Variable Name to number.of.runs, Number to 5000,

set Minimum to 100, and select Integer Only.

 231

9. Click the Module2 tab.

10. Under the Update Factors button, drag two new Button Boxes into the Lineup Box above the contour

profilers.

11. Set the title of the top box to “Import Contour Limits from Data Filter” in the Properties pane.

12. Set the title of the bottom box to “Export Contour Limits to Data Filter” in the Properties pane.

 232

13. Select the Import Contour Limits from Data Filter Button Box.

14. In the Properties pane for the Import Contour Limits from Data Filter Button Box, select the grey button

in the Press area and enter the following script.

 233

//Extract the upper limits from the data filter

upper.lim = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(Eval Expr(upper.lim = Insert(upper.lim,

::dt.sim.filter.report1[Number Edit Box(Expr(2 * i))] << get)))

);

//Extract the lower limits from the data filter

lower.lim = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(Eval Expr(lower.lim = Insert(lower.lim,

::dt.sim.filter.report1[Number Edit Box(Expr(2 * i - 1))] << get)))

);

//Extract the response names from the data filter

names = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(Eval Expr(names = Insert(names, ::dt.sim.filter.report1[Text Box(

Expr(3 * i))] << get text)))

);

//loop over the contour profilers 1 through 4 (profiler1 simply contains the factor

settings)

//get the hi and lo limits and the corresponding response names from each Report

For(j = 1, j <= 4, j++,

 Eval(Eval Expr(report.names = Expr(Parse("report(profiler" || Char(j

)||")"))[String Col Box(1)] << get));

 Eval(Eval Expr(r2.ncb.lower = Expr(Parse("report(profiler" || Char(j

)||")"))[Number Col Edit Box(2)] << get as matrix));

 Eval(Eval Expr(r2.ncb.upper = Expr(Parse("report(profiler" || Char(j

)||")"))[Number Col Edit Box(3)] << get as matrix));

 For(i = 1, i <= N Items(names), i++,

 Eval(Eval Expr(loc = Contains(report.names, Expr(names[i]))));

 //update the corresponding values in lower.lim and upper.lim

 If(loc > 0,

 r2.ncb.lower[loc] = lower.lim[i];

 r2.ncb.upper[loc] = upper.lim[i];

);

);

 //update the hi and low limits in the contour profilers

 //make sure to use "set values" and not "set"

 Eval(Eval Expr(Expr(Parse("report(profiler" || Char(j)||")"))[Number

Col Edit Box(2)] << set values(r2.ncb.lower)));

 Eval(Eval Expr(Expr(Parse("report(profiler" || Char(j)||")"))[Number

Col Edit Box(3)] << set values(r2.ncb.upper)));

);

15. Click OK.

16. In the Properties pane for the Export Contour Limits to Data Filter Button Box, select the Press area and

enter the following script.

//Extract the current upper limits from the data filter

upper.lim = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(

 Eval Expr(

 234

 upper.lim = Insert(

 upper.lim,

 ::dt.sim.filter.report1[

 Number Edit Box(Expr(2 * i))] << get

)

)

)

);

//Extract the current lower limits from the data filter

lower.lim = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(

 Eval Expr(

 lower.lim = Insert(

 lower.lim,

 ::dt.sim.filter.report1[

 Number Edit Box(Expr(2 * i - 1))] << get

)

)

)

);

//extract the response names from the data filter

names = {};

For(i = 1, i <= N Items(::domain1.resp), i++,

 Eval(

 Eval Expr(

 names = Insert(

 names,

 ::dt.sim.filter.report1[Text Box(Expr(3 * i))] <<

 get text

)

)

)

);

//loop over the contour profilers 2 through 5 (profiler1 simply contains the

//factor settings)

//get the hi and lo limits and the corresponding response names from each

//Report

For(j = 1, j <= 4, j++,

 Eval(

 Eval Expr(

 report.names = Expr(Parse("report(profiler" || Char(j)||")")

)[

 String Col Box(1)] << get

)

);

 Eval(

 Eval Expr(

 r2.ncb.lower = Expr(Parse("report(profiler" || Char(j)||")")

)[

 Number Col Edit Box(2)] << get as matrix

)

);

 Eval(

 Eval Expr(

 235

 r2.ncb.upper = Expr(Parse("report(profiler" || Char(j)||")")

)[

 Number Col Edit Box(3)] << get as matrix

)

);

 For(i = 1, i <= N Items(names), i++,

 Eval(

 Eval Expr(

 loc = Contains(

 report.names,

 Expr(names[i])

)

)

);

 //when a match is found, the data filter is updated

 //the appropriate command for the data filter depends on whether

 //there are missing values

 //for the Hi or Lo Limits in the contour profiler.

 //Note: due to lack of readability of if-then statements in JMP,

 //the three conditions are

 //listed separately in three if-statements

 If(

 loc > 0 & !(Is Missing(r2.ncb.lower[loc])) &

 Is Missing(r2.ncb.upper[loc]),

 lower.lim[i] = r2.ncb.lower[loc];

 Eval(

 Eval Expr(

 ::dt.sim.filter1 << (

 Filter Column(

 Column(::dt.sim1, Expr(names[i]))

) << Where(

 Column(::dt.sim1, Expr(names[i])) >=

 lower.lim[i]

))

)

);

);

 If(

 loc > 0 & !(Is Missing(r2.ncb.upper[loc])) &

 Is Missing(r2.ncb.lower[loc]),

 upper.lim[i] = r2.ncb.upper[loc];

 Eval(

 Eval Expr(

 ::dt.sim.filter1 << (

 Filter Column(

 Column(::dt.sim1, Expr(names[i]))

) << Where(

 Column(::dt.sim1, Expr(names[i])) <=

 upper.lim[i]

))

)

);

);

 236

 If(

 loc > 0 & !(Is Missing(r2.ncb.upper[loc])) & !(

 Is Missing(r2.ncb.lower[loc])),

 lower.lim[i] = r2.ncb.lower[loc];

 upper.lim[i] = r2.ncb.upper[loc];

 Eval(

 Eval Expr(

 ::dt.sim.filter1 << (

 Filter Column(

 Column(::dt.sim1, Expr(names[i]))

) << Where(

 Column(::dt.sim1, Expr(names[i])) <=

 upper.lim[i] &

 Column(::dt.sim1, Expr(names[i])) >=

 lower.lim[i]

))

)

);

);

);

);

17. Click on the Scripts tab.

18. Select Module1 from the namespace dropdown.

19. Paste the following code at the bottom of the script.

::importlimitsbutton1=Button2;

::importlimitsbutton1<<enable(0);

::exportlimitsbutton1=Button3;

::exportlimitsbutton1<<enable(0);

Color Profilers

1. Return to the Module 3 tab.

2. In Module 3, drag a new Button Box below the Simulate button.

 237

3. Rename the Button Box “Color Profiler” in the Properties pane.

4. The next steps involving the Script Window are optional if the dashboard is being re-built for the

MeanATKSamplev4 data set. They show how the code should be changed if building the dashboard for a

new data set. Make sure that the Script Window is not currently open. Click the red triangle next to

Application Builder and select Script > Save Script to Script Window. Unlike in previous steps where we

referenced the script source of the application, we will not be clicking the run button this time to open a

new Application Builder environment: we simply need to extract some of the code from the dashboard

source.

5. Search for the string “pred.prof1 =” (without quotes, note the space before the equal sign).

 238

6. The list of columns in the Y() section will be pasted into the resp.list variable in the code block below

(step 12).

7. The list of columns in the Reorder X Variables() section will be pasted into the factor.list variable below.

8. Close the Script Window without saving. Nothing was modified.

9. Return to Module 3.

10. Select the Color Profiler button.

11. Click the grey button next to Press in the Properties pane (for the Color Profiler button).

12. Enter the following script. When building the dashboard for a different dataset, the highlighted code

defining res.list and factor.list needs to be changed. These values can be found in the source of the

Application Builder file (described in the previous steps).

 239

//need to manually copy these column names from the pred.prof1 profiler in the

//application builder script

resp.list = { :Awareness,
 :Lethality,
 :Casualties,
 :Sensory Weight,
 :Rifle Weight,
 :Radio Weight};
//convert the column references to string column names

resp.name.list = {};

For(i = 1, i <= N Items(resp.list), i++,

 resp.name.list = Insert(resp.name.list, resp.list[i] << get name)

);

//need to manually copy these column names from the pred.prof1 profiler in the

//application builder script

factor.list = { :SensorClassifyRNG,
 :RifleRNG,
 :RadioDelay,
 :SensorDetectRNG};
//convert the column references to string column names

factor.name.list = {};

For(i = 1, i <= N Items(factor.list), i++,

 factor.name.list = Insert(factor.name.list, factor.list[i] << get name)

);

wait.window = New Window("Running", Text Box("Running. Please wait.
This window will close automatically when the coloring is complete.
Expected wait is "||char(ceiling(N Items(factor.name.list)*0.25+3))||" seconds."));
//create a temporary, invisible table that will be used to hold the modified factor

//settings. The forumlas in the response columns are used to calculate the slope of

the

//line connecting the endpoints in each frame box.

dt2 = DataTable1 << Subset(invisible, Suppress formula evaluation(0), Selected

Rows(0), Rows([1]), Selected columns only(0));

wait(.1);

//add rows. There are two rows for each factor

dt2 << add rows(2 * N Items(factor.list) - 1);

//wait(0) tells JMP to wait until the previous operation has completed before

moving on

Wait(.1);

//extract the current factor settings from the profiler

factor.settings = {};

For(i = 1, i <= N Items(factor.list), i++,

 factor.settings = Insert(factor.settings, Report1[Number Edit Box(i)] <<

get);

 wait(0);

);

//print the current factor settings to the log file

Print("factor settings");

Print(factor.settings);

//make sure the factor columns are unlocked, and set all of the rows

//in the temporary data table to the current factor settings

For(i = 1, i <= N Items(factor.list) * 2, i++,

 For(j = 1, j <= N Items(factor.name.list), j++,

 Column(dt2, factor.name.list[j]) << lock(0);

 240

 Column(dt2, factor.name.list[j])[i] = factor.settings[j];

 wait(0);

)

);

factor.min = [];

factor.max = [];

//slope.matrix will hold the slopes of the lines connecting the endpoints

//of response profiles in the matrix of graphs displayed by the profiler

slope.matrix = J(N Items(resp.list), N Items(factor.list), 0);

wait(0);

//extract the minimum/maxium factor values

For(i = 1, i <= N Items(factor.name.list), i++,

 factor.min = V Concat(factor.min, Round(Col Min(Column(DataTable1,

factor.name.list[i])), 3));

 factor.max = V Concat(factor.max, Round(Col Max(Column(DataTable1,

factor.name.list[i])), 3));

 wait(0);

);

Print("factor min");

Print(factor.min);

Print("factor max");

Print(factor.max);

//each subsequent pair of rows in the temporary table is set to the

//current factor levels, with one of the factors set at its minimum/maximum

//values

For(j = 1, j <= N Items(factor.name.list), j++,

 Column(dt2, factor.name.list[j])[2 * j - 1] = factor.min[j];

 Column(dt2, factor.name.list[j])[2 * j] = factor.max[j];

 wait(0.25);

);

//the wait function is necessary to make sure that the data table has time to

update the

//formulas for the response columns

Wait(3);

//calculate the slopes of the lines in each frame box, and save to the

corresponding

//location in slope.matrix

For(i = 1, i <= N Items(factor.name.list), i++,

 For(j = 1, j <= N Items(resp.name.list), j++,

 slope.matrix[j, i] = Column(dt2, resp.name.list[j])[2 * i] - Column(

dt2, resp.name.list[j])[2 * i - 1];

 wait(0);

)

);

Print("slope.matrix");

Print(slope.matrix);

//nr and nc are the number of rows and columns in the matrix of graphs in the

profiler

//(the +1 corresponds to the desirability function graphs)

nr = N Items(resp.list) + 1;

nc = N Items(factor.list) + 1;

//the frameboxes are numbered down the columns in the profiler

//this matrix key tells us which frame box correponds to which

//component of the slope matrix

 241

if(sim.indicator==0,framebox.key = Transpose(Shape(1 :: (nr * nc), nc, nr)

);wait(0));

if(sim.indicator==1,framebox.key = Transpose(Shape(1 :: ((nr+1) * nc), nc, nr+1)

));

//shading.mat will be a scaled version of slope.matrix

//shading values of .99 produce a color that is light/transparent, while

//shading values around .45 are dark/opaque

shading.mat = J(nr - 1, nc - 1, 0);

wait(0);

//within each row (within each response), the factors with the biggest slopes

//are shaded darker, while those with smaller slopes are lighter

For(i = 1, i <= (nr - 1), i++,

 max.in.row = Max(Abs(slope.matrix[i, 0]));

 Eval(Eval Expr(shading.mat[i, 0] = Expr(0.99 - (Abs(slope.matrix[i, 0])

/ max.in.row) * .55)));

 wait(0);

);

Print(shading.mat);

//the next loop colors the frameboxes

//the "goal" variable checks whether the goal is to maximize/minimize

//each response. Factors with positive (negative) slopes that are being maximized

(minimized)

//are colored green. Factors with negative (positive) slopes that are

//being maximized (minimized) are colored red. Zero slopes are colored black.

//If "goal" is set to "middle", the frame boxes for that response are white

For(i = 1, i <= (nr - 1), i++,

 For(j = 1, j <= (nc - 1), j++,

 goal = StringEditCol1 << get(i);

 wait(0);

 If(slope.matrix[i, j] < 0 & goal == "max" | slope.matrix[i, j] > 0 &

goal == "min",

 Eval(

 Eval Expr(Report1[framebox(Expr(framebox.key[i, j]))]

<< set background color(HLS Color(0, Expr(shading.mat[i, j]), 1)))

)

);

 If(slope.matrix[i, j] > 0 & goal == "max" | slope.matrix[i, j] < 0 &

goal == "min",

 Eval(

 Eval Expr(

 Report1[framebox(Expr(framebox.key[i, j]))] <<

set background color(HLS Color(.346, Expr(shading.mat[i, j]), 1))

)

)

);

 If(slope.matrix[i, j] == 0,

 Eval(Eval Expr(Report1[framebox(Expr(framebox.key[i, j]))]

<< set background color(HLS Color(0, 0))))

);

 If(goal == "middle"&slope.matrix[i, j] != 0,

 Eval(Eval Expr(Report1[framebox(Expr(framebox.key[i, j]))]

<< set background color("white")))

);

)

);

 242

close(dt2,nosave);

wait.window << closewindow;

13. Save the Application Builder environment with a .jmpappsource extension to preserve the Application

Builder environment, or with a .jmpapp extension for distribution.

	Cover Page
	Executive Summary
	1. Introduction
	2. Technical Report Organization
	3. Background
	3.1. Process versus Data Driven Approach
	3.2. Engineered Resilient System Architecture

	4. Research Contributions
	5. Representative Use Case Description
	5.1. Agent-Based Model Overview
	5.2. Simulation Scenarios
	5.3. Model Inputs
	5.4. Model Outputs

	6. Model Based System Engineering Approach
	6.1. System Modeling Language (SysML)
	6.2. External Model Integration

	7. Building Statistical Metamodels using Simulation Experimental Designs
	7.1. Statistical Design of Experiments Introduction
	7.2. Understanding Complex Behavior
	7.2.1. Design Drivers
	7.2.2. Synergies/Interactions
	7.2.3. Diminishing or Increasing Rates of Change
	7.2.4. Identifying Thresholds with Partition Trees
	7.3. Predicting Simulation Model Outputs
	7.3.1. Stepwise Regression
	7.3.2. Neural Nets
	7.3.3. Boosted Trees
	7.3.4. Bootstrap Forest
	7.3.5. Model Comparison
	7.4. Experimental Design Types
	7.5. Correlation and space-filling design characteristics
	7.6. Traditional and Space-Filling Designs
	7.7. State-of-the-art space-filling designs
	7.8. Use Case Experimental Design

	8. Technical Requirements for High Performance Computing Clustering
	8.1. Select System Model Element Design Variables
	8.2. Select Analytical Models, Develop Baseline Scenarios, and Map Design Variables to Model Inputs
	8.3. Create Experimental Design
	8.4. Generate a Study File that Specifies which Model Input Parameters to Change
	8.5. Generate Excursion Files for Each Experiment (row in the design matrix).
	8.6. Execute HPC Simulation Runs
	8.7. Post-Process Output Files
	8.8. Perform Statistical Metamodeling
	8.9. ERS Tradespace Visualization

	9. Simulation Analysis and Tradespace Visualization
	9.1. Exploratory Analysis
	9.2. Dashboard Tradespace Visualization
	9.2.1. Prediction Profiler Dashboard Component
	9.2.2. Contour Profiler Dashboard Component
	9.2.3. Monte Carlo Filtering Component
	9.2.4. Viable Variant Exploration

	10. Multiple Objective Decision Analysis
	10.1. Qualitative Functional Objective Value Hierarchy
	10.2. Quantitative Functional Objective Value Model
	10.2.1. Natural Single-Dimensional Value Functions
	10.2.2. Constructed Single Dimensional Value Function
	10.2.3. Swing Weights for Value Measure Tradeoffs
	10.2.4. Multi-Objective Value Function

	10.3. Value and Cost Tradeoff Analysis

	11. Conclusions and Future Work
	11.1. MBSE Methodology Review
	11.2. Technical Gap Bridges
	11.3. Concluding Remarks
	11.4. Future Research

	References
	Appendix A: MANA Data Farming Manual
	Appendix B: Design Creator Front-End User Manual
	Appendix C: JMP Dashboard Building Instructions

	1_REPORT_DATE_DDMMYYYY: 31062015
	2_REPORT_TYPE: Final
	3_DATES_COVERED_From__To: 01062014-31062015
	4_TITLE_AND_SUBTITLE: Illuminating Tradespace Decisions Using Efficient Experimental Space-Filling Designs for the Engineered Resilient System Architecture
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: LTC Alex MacCalman, PhD2LT Hyangshim KwakMs. Mary McDonaldMr. Steve UptonCDT Coleman GriderCDT Robert HillCDT Hunter WoodLTC Paul Evangelista, PhD
	7_PERFORMING_ORGANIZATION: USMA Operations Research Center (ORCEN), West Point, NY US Army Engineer Development Center (ERDC), Vicksburg, MS
	8_PERFORMING_ORGANIZATION: DSE-R-1501
	9_SPONSORINGMONITORING_AG: US Army Engineer Development Center (ERDC), Vicksburg, MS
	10_SPONSORMONITORS_ACRONY: ERDC
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: A- Approved for Public Release; Distribution Unlimited
	13_SUPPLEMENTARY_NOTES:
	14ABSTRACT: System Engineers rely on a variety of models to help understand different viewpoints in several domains throughout a system's life-cycle. These domain models include operational simulations, life-cycle cost models, physics-based computational models, and many more. Currently, there is a technical gap with regard to our ability to untangle the system design drivers within these system life-cycle domains. This technical report proposes a procedural workflow that addresses the technical gap by leveraging the methods of experimental design in order to clearly identify tradable variables and narrow the search for viable system variants. Domain models have their unique set of inputs and outputs. Model inputs represent value properties that define a system alternative configuration or environmental conditions that represent uncertain factors within the system boundary. Model outputs represent measures of performance or effectiveness that allow us to assess alternatives and understand the tradeoffs among several objectives. In order to illuminate the tradeoffs that exist in a complex system design problem we propose an approach that approximates model input and output behavior using the functional form of statistical metamodels. After performing an experimental design we can fit a metamodel that has a functional form known as a response surface. We utilize contour profilers that show horizontal cross sections of multiple response surfaces to visualize where key trade decisions exist. Our purpose is to illuminate trade decisions across several different viewpoints by integrating metamodels that approximate the behavior of multiple domain models. Our research supports the tradespace analytics pillar for the development of the Engineered Resilient System (ERS) Architecture. ERS is a Department of Defense initiative developed by the US Army Engineered Research Development Center. The purpose of ERS is to leverage information technology to create a digital thread of architectural decisions accessible to multiple communities of interest to inform better manufacturing options during a system’s life-cycle. The report contains instructions on how to perform the simulation experiments needed to construct a dynamic dashboard that illuminates system tradeoffs.
	15_SUBJECT_TERMS: Engineered Resilient Systems, Design of Experiments, Systems Engineering, Modeling and Simulation, Trade-space Analysis, Decision Analysis
	a_REPORT: Unclassified
	bABSTRACT: Unclassified
	c_THIS_PAGE: Unclassified
	17_limitation_of_abstract: UU
	number_of_pages: 244
	19a_NAME_OF_RESPONSIBLE_P: LTC Alex MacCalman
	19b_TELEPHONE_NUMBER_Incl: 845-938-5539
	Reset:

