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LONG-TERM GOALS   
 
Our long-term scientific goals are to understand the dynamics and identify mechanisms of small-scale 
processes––i.e., internal tides, inertial waves, nonlinear internal waves (NLIWs), and turbulence 
mixing––in the ocean and thereby help develop improved parameterizations of mixing for ocean 
models.  Mixing within the stratified ocean is a particular focus as the complex interplay of internal 
waves from a variety of sources and turbulence makes this a current locus of uncertainty.  For this 
study, our focus is on the generation, propagation, evolution, and dissipation of small-scale internal 
waves and internal tides as the Kuroshio and barotropic tides interact with the two prominent 
submarine ridges in Luzon Strait.   
 
OBJECTIVES     
 
The primary objectives of this observational program are to quantify 1) the generation of NLIWs and 
internal tides in the vicinity of Luzon Strait, 2) the energy flux of NLIWs and internal tides into the 
Pacific Ocean and South China Sea (SCS), 3) the effects of the Kuroshio on the generation and 
propagation of NLIWs and internal tides, 4) the seasonal variation of NLIWs and internal tides, and 5) 
to study other small-scale processes, e.g., hydraulics and instabilities along internal tidal beams and at 
the Kuroshio front.  
 
APPROACH  
 
Near-field 
 
In the Luzon Strait (Fig. 1), observations were taken using the combined 600-m-long towed CTD chain 
(TOWCTD) equipped with 40 CTD sensors and the Doppler sonar on the R/V Revelle. These 
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instruments took high-frequency, Δt <1 min, and high vertical resolution, Δz = 5−20 m, measurements 
of temperature, salinity, and density, and oceanic velocity from near the surface to ~600-m depth.  
  
Far-field 
 
Full water column velocity and temperature observations were taken using one subsurface mooring 
with a near-bottom upward-looking 75-kHz ADCP and one surface mooring with three ADCPs, 
temperature loggers, and a series of CTD sensors at a sampling rate of Δt = 1 min, capable of 
measuring internal tides and NLIWs on the continental slope east of Dongsha Island, ~200 n mi west 
of Luzon Strait (Fig. 1).  
 
WORK COMPLETED     
 
Near-field Experiment 
 
From 25 July through 4 August 2011, we conducted an intensive survey in the Luzon Strait using a 
600-m-long towed system (TOWCTD) equipped with 20–40 CTD sensors. The TOWCTD was 
developed specifically for this experiment. It provides CTD observations via inductive modem 
allowing us to identify the energetic small-scale processes in real time. All CTD sensors sample 
temperature, salinity, and pressure at a 10-s interval. The primary scientific objectives of this cruise 
were 1) to measure nonlinear internal waves in Babuyan channel, 2) to measure lee waves behind the 
sill west of Babuyan channel, 3) to quantify internal tide generation in southern Luzon Strait, and 4) to 
measure internal tide evolution in southern Luzon Strait.  
 
Far-field Experiment 
 
One surface buoy mooring (TC1), one subsurface mooring (TC2), and two bottom pressure moorings 
(TC1-BPR and TC2-BPR) were deployed on the Dongsha slope from the Taiwanese R/V Ocean 
Researcher 1 on 27–31 May 2011. The surface and subsurface moorings were placed 6 km apart on the 
slope. Three ADCPs, fourteen CTD sensors, and three temperature loggers were equipped on the 
surface mooring (TC1). The subsurface mooring (TC2) was equipped with one 75-kHz ADCP, ten 
temperature sensors, and three CTD sensors. On 1–6 June 2011 the surface and subsurface moorings 
were recovered by the Taiwanese R/V Ocean Researcher 2. The subsurface mooring was redeployed 
with an upward-looking 75-kHz ADCP, without temperature or CTD sensors. It was recovered in 
August 2011 by the R/V Ocean Researcher 3. 
 
Analysis 
 
We analyzed measurements taken by the TOWCTD and moorings during the 2011 intensive survey, as 
well as the earlier mooring measurements taken in the far field.  
 
RESULTS 
 
Properties and Energetics of Internal Solitary Waves 
 
Five large-amplitude internal solitary waves (ISWs) propagating westward on the upper continental 
slope in the northern South China Sea were observed by moored and shipboard instruments in 



 3 

May−June 2011 with nearly full-depth measurements of velocity, temperature, salinity, and density 
(Fig. 2). As they shoaled at least three waves reached the convective breaking limit: along-wave 
current velocity exceeded the wave propagation speed C (Fig. 3). Vertical overturns of ~100 m were 
observed within the wave cores; estimated turbulent kinetic energy was up to 1.5 x 10–4 W kg–1. In the 
cores and at the pycnocline, the gradient Richardson number was mostly < 0.25. The maximum ISW 
vertical displacement was 173 m, 38% of the water depth. Observed ISWs had greater available 
potential energy (APE) than kinetic energy (KE).   The energy flux nearly equaled the CE, where C is 
the wave propagation speed and E the wave total energy. The Dubriel–Jacotin–Long model with and 
without a background shear predicts neither the observed APE > KE nor the subsurface maximum of 
the along-wave velocity for shoaling ISWs, but does simulate the total energy and the wave shape. 
Including the background shear in the model leads to the formation of a surface trapped core. 
 
Convective Instability of ISWs 
 
To further explore the interannual variability of ISWs in the region, we analyzed three sets of mooring 
measurements taken over nearly one year in 2006–2007 at the upper flank of the continental slope east 
of Dongsha plateau. The convective instability condition of ISWs at two mooring sites (LR1 in water 
depth 600 m and LR2 in water depth 430 m) was examined (Fig. 4). LR2 was located near the 2011 
far-field experiment surface mooring site. Over the observation period (June 2006 – May 2007) 25% of 
ISWs at LR2 encountered convective instability, and the occurrence had a fortnightly cycle. At LR1 
only 6% of ISWs encountered convective instability. During fall and spring, the convective instability 
was observed less often.  
 
Watermass Anomaly Spectra 
 
Previous studies found that salinity anomaly gradient spectra along isopycnals are approximately flat 
over the horizontal wavelengths from 30 m to 10 km (Kunze et al. 2015). Observations taken from the 
towed CTD chain in Luzon Strait provide high vertical resolution of salinity anomalies at horizontal 
scales between 10 m and 10 km. In contrast to previous studies, salinity anomaly gradient spectra in 
Luzon Strait often showed an increase (blue spectral shape) around 1 cpkm and become flat at higher 
horizontal wavenumbers (Fig. 5). Processes responsible for the salinity anomaly gradient increase 
above 1 cpkm are to be determined.   
 
IMPACT/APPLICATION  
 
Numerical models suggest strong internal tides are generated as barotropic tides interact with two 
prominent submarine ridges in the Luzon Strait.  These internal tides are believed to be the sources of 
nonlinear internal waves often observed in the South China Sea. The strength of internal tides is 
modulated by the barotropic tidal forcing, the strength of the Kuroshio current, the background 
stratification, and the strength of the Kuroshio front.  It is important to quantify the barotropic to 
baroclinic tidal energy conversion, dissipation within the Luzon Strait, the energy fluxes toward the 
South China Sea and Pacific Ocean, and the ultimate fate of the internal tidal energy. 
 
RELATED PROJECTS 
 
Studying the Origin of the Kuroshio with an Array of ADCP-CTD Moorings (N00014-10-1-0397) as a 
part of the OKMC DRI:  The primary objectives of this observational program are to quantify the 
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origin of the Kuroshio, to quantify its properties at the origin and as it evolves downstream, and to 
study the effects of mesoscale eddies on Kuroshio transport. Kuroshio transport off Luzon is computed 
using direct velocity measurements from a moored array. The annual mean transport is 15 Sv. Large 
variations of >10 Sv within 10s of days are caused by westward propagating eddies interacting with the 
Kuroshio. 
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Figure 1. MODIS image taken in 2007 and the general area of near-field and far-field experiments. 
The near-field was performed using a towed CTD chain (TOWCTD) during 25 July – 4 August 2011 in 
the southern Luzon Strait (the two yellow boxes). The far-field was performed using a surface mooring 

and a subsurface mooring (yellow dot).  
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Figure 2. Contour plots of temperature (a−e), along-wave velocity (f−i), and vertical velocity (j−m) of 
five ISWs observed 31 May–4 June 2011. Thick black curves represent the isopycnal of the maximum 
vertical displacement. The magenta curves in panels (h) and (i) are contours of the wave propagation 

velocity. Within the magenta contours, the current velocity is greater than the wave propagation 
velocity, indicating convective instability. The brown dots in panels (d) and (e) represent near bottom 

gravitational instability events behind the waves.  
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Figure 3. Echo sounder measurements of an ISW taken on 3 June 2011 as the R/V Ocean Researcher 3 

tracked the wave. Panel (a) shows the ship track as a function of time and longitude. The red dots 
indicate the time and longitude of the center of the wave. The black curve and black squares in panel 
(b) show the wave propagation speed computed from the positions and times of the wave center, and 
the brown curve with the red dots represents the maximum along-wave velocity. The black dot shows 

the estimate of wave propagation speed computed using the difference of arrival time on the 
subsurface and surface moorings. Two brown squares show the wave propagation speed computed 

using the shipboard radar. The blue curve shows the propagation speed of a similar wave observed at 
the same location in 2005 (Lien et al., J. Phys. Oceanogr., 42, 511-525, 2012). Panel (c) shows the 

echo sounder images during eight encounters with the wave. Panel (d) shows the echo sounder during 
the 5th encounter when the ship was maintained on station about 4 km north of the surface mooring. 
The two vertical lines on panels (a) and (b) mark the positions of the surface mooring (TC1) and the 

subsurface mooring (TC2). 
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Figure 4. Scatter plots between maximum current velocity, Umax, and propagation speed C of ISWs 
observed at two mooring sites, (a) LR1 and (b) LR2. Widx is the vertical speed averaged during the 

wave period. Panel (c) shows the temporal variation of the convective instability condition at LR1 and 
LR2. The dashed lines indicate Umax/C = 1. 

 

 
Figure 5. Watermass anomaly gradient spectra computed from measurements taken by towed CTD 

chain in Babuyan Channel. (a) Salinity contour, (b) salinity anomaly on isopycnal surfaces, (c) salinity 
spectra on isopycnals, and (d) salinity gradient spectra on isopycnals. Black curves in panels (a) and 

(b) represent isopycnals.  
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