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1. Introduction 

Rapid and robust scene understanding is a critically important goal for the 
development of Army autonomous intelligent systems.1 For outdoor natural scenes, 
it will be important for autonomous intelligent systems to be able to quickly discern 
the depth of view, navigability, exposure or concealment (as it relates to object 
searching), and transience, that is, the rate at which elements of the scene or its 
environment are changing in space and time.2,3 In this regard, saliency estimation 
has been helpful to computationally identify elements in a scene that immediately 
capture the visual attention of an observer.4,5 Several recent papers have discussed 
concepts associated with visual saliency to enhance automated navigation and 
scene exploration.6–8 Note, however, that the most active or salient object(s) in a 
scene may not represent the most important or meaningful feature(s) of the scene.9 
For example, an automated vision system may readily detect changes in the ground 
surface as a new or different object in the field of view; however, recognizing the 
physical characteristics of the new surface10,11 (e.g., shallow or deep water, thick or 
thin ice, snow, mud, quicksand, etc.) and observing any changes in the 
environmental context of the image12–14 may be critically important. Characterizing 
interactions between objects and the environment also can contribute to physical 
scene understanding.15,16 In the example above, if a scene depicts vehicles or 
personnel activity in a changing complex environment, then robust scene 
understanding could provide key border and accessibility information for 
navigation and trafficability. 

Nevertheless, many current methods for scene understanding, like those that 
generate image descriptions via automated semantic labeling17 or visual scene 
classification,18 do not address image information (and image context) affected by 
changing environmental conditions. Yet, the interpretation of changing 
environmental conditions can pose serious challenges for computer vision 
processes, such as those associated with place recognition, navigation, road/terrain 
detection, and scene exploration.19–24 This is because rain, snow, and fog weather 
events, smoke, haze, or other changes in lighting and visibility can significantly 
obscure features, degrade object recognition, and modify the saliency and image 
context of an outdoor scene.25–32 Naturally, scene-depicted environmental 
conditions can vary with time of day, season, and location.33 

Similar challenges can also extend to interpreting space- and time-changing scenes 
due to visual motion of objects within the field of view.34–36 In this case, changing 
environmental conditions such as illumination, precipitation, and vegetation can 
make feature recognition of moving objects unclear, so that identifying moving 
objects in outdoor environments becomes more difficult for vision-based intelligent 
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systems.35,36 As an example, poor contrast in images can be brought about by low 
visibility due to environmental effects or weak illumination, such as during dawn, 
dusk, or night.34 Visually degraded or blurred images can be brought about by rapid 
movements of the camera and/or objects in the field of view, especially in the low-
light case, which necessitate longer camera exposure times.21,34,37 In addition, space 
and time variations in scene illumination can affect the optical flow field in images 
and movies.38 Note that there have been many optical flow approaches used to 
detect the motion of objects in a scene, which have been helpful in a variety of 
applications.39–41 Nevertheless, camera motion may introduce some unmanageable 
artifacts with some of these gradient-based optical flow approaches if they are not 
augmented by more sophisticated spatiotemporal analyses.42–44 

In this report, we propose that it is important to incorporate space- and time-varying 
environmental image information from the very beginning of the data collection 
process so that the recorded images can be more effectively indexed and retrieved 
for operational use and analysis. This top-down approach not only provides a 
systematic characterization of the measured data for better scene description, but 
can help the end user (Soldier) develop improved course of action strategies based 
on scene understanding (algorithms and analysis) incorporating battlefield 
environments changing in space and time. Incorporating space- and time-varying 
environmental image information for better scene understanding can be vital to 
support numerous Army missions,45–49 such as those related to weather elements on 
the battlefield that can alter terrain features and trafficability; low visibility that can 
impede reconnaissance and target acquisition or alternately conceal friendly forces 
maneuvers and activities; and wind speed and direction that can favor upwind 
forces in nuclear, biological, and chemical (NBC) attacks or decrease the 
effectiveness of downwind forces due blowing dust, smoke, sand, rain, or snow. In 
addition, reporting wind speed and direction information at the time images are 
being recorded can significantly influence the success of aviation-related missions, 
like those associated with unmanned aerial vehicle take off, landing, and in-flight 
control.50 

2. Space and Time Scales 

Based on an analysis by Meyers,12 this section provides a framework to help 
categorize the spatial and temporal properties of recorded image data. Relevant 
time scales include, but are not limited to, the shutter exposure time, time interval 
between frames, time over which images are captured in a sequence, and time over 
which there is visual motion of objects inside the field of view. Space scales 
include, but are not limited to, the field of view, depth of view, image resolution, 
pixel size, pixel separation, scene color or shading variations as a function of spatial 
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location, spatial smearing of moving elements in the field of view, spatial smearing 
due to optical turbulence and environmental/weather effects, and smearing of 
textures in the field of view. Naturally, the smearing of elements in the field of view 
can also be related to the temporal resolution of the image data. Figure 1 illustrates 
the primary space and time scales that can be used to describe the various spatial 
and temporal resolutions of objects and/or activities in a recorded image scene, to 
include images recorded in varying environmental conditions. Here, ∆s and ∆t 
represent changes in position and time, respectively. 

 

Fig. 1 Primary space (s) and time (t) scales 

3. Image Resolution, Image Context, and Identifying Objects 

To start, let us explore the impact of varying image resolution and image context 
on the analysis of an outdoor scene. Try to identify the 3 dome shapes in Fig. 2. 
Without some additional information related to the object size, texture, or shape or 
knowledge of how the image context may change in an expanded field of view, it 
is difficult to correctly identify and label these familiar images. Furthermore, 
distinguishing various image details, even in ideal conditions with regard to lighting 
and visibility, can depend on the image contrast and resolution, where image 
resolution here refers to the number of pixels that compose the image data input. 
Interestingly, Torralba51 reported that for human vision the brain can comprehend 
the gist of an image scene remarkably quickly, regardless of whether low- or high-
resolution images are used. He concluded that images at the resolution of 32 x 32 
color pixels can provide an observer enough information to correctly identify the 
semantic category and general layout of an indoor/outdoor scene. For example, in 
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Fig. 2 the main “dome” category for these low-resolution images is identifiable. 
However, if we consider Fig. 3, which contains expanded fields of view and higher 
resolution images from which the elements in Fig. 2 were taken, then the building 
domes and many additional image details can be identified over a much wider range 
of spatial scales. 

 

Fig. 2 Can you correctly identify these images? Image resolution: a) 30 x 20 pixels,  
b) 30 x 14 pixels, and c) 30 x 16 pixels. 

 

Fig. 3 Higher-resolution image scenes corresponding to the 3 shapes shown in Fig. 2.  
a) Taj Mahal (photo courtesy of desktopdress.com), b) US Capitol Dome (photo courtesy of 
Library of Congress), and c) nuclear power plant, Bushehr, Iran (photo courtesy of Behrouz 
Mehri/AFP/Getty Images). 

To demonstrate this point further, Can you identify the 2 similarly shaped objects 
shown in Fig. 4 without some additional context? What if we look at the complete 
image (Fig. 5) from which the objects were taken? In this case, at low resolution, it 
is quite difficult to discern any individual elements in the field of view. Of course, 
the degree of image resolution needed for a particular task depends on the analysis 
or computer vision problem of interest.5,8,17,18,21,52–55 Yet, with regard to scene 
understanding and semantic labeling, the slightly higher resolution images shown 
in Fig. 6 clearly provide more usable information. In other words, when the image 
resolution is increased to 64 x 40 pixels and greater, one can more easily identify 
the layout and main elements of the image scene, such as the reactor dome and hard 
hat shown above. However, if still higher resolution images of this reactor site are 
considered (Fig. 7), then additional details and information may be gained, for 
example, intelligence relating to its operational status. By analyzing the extracted 
and labeled objects shown in Fig. 7, one might ask if the reactor site is still under 
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construction or near completion as evidenced by the engineers wearing hard hats, 
the surveyor, the hoist, and the electrical hazard sign. Note here that the hoist, 
surveyor, and engineers wearing hard hats in the far-field of the imaged scene all 
required increased resolution (i.e., ≥ 32 x 32 pixels) to be clearly identified (visually 
compare right vs. left in Fig. 7). Table 1 provides the various image resolution 
details (in numbers of pixels) for the labeled objects in this outdoor scene. 

 

Fig. 4 Can you correctly identify these objects? 

 

Fig. 5 Low-resolution images of the scene from which the objects in Fig. 4 were taken, 
where neither large nor small objects are discernible (left: 16 x 10 image pixels, right: 32 x 20 
image pixels) 

 

 
 

Fig. 6 Same images as shown in Fig. 5 but with a slightly higher resolution (left: 64 x 40 
image pixels, right: 128 x 80 image pixels) 
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Fig. 7 Same images as shown in Figs. 5 and 6 but with an even higher resolution (left: 525 
x 336 image pixel, right: 3888 x 2492 image pixels). Note that the hoist, surveyor, and engineers 
wearing hard hats in the far-field of the imaged scene all required increased image resolution 
to be clearly identified. 

Table 1 Image resolution information (in numbers of pixels) 

Object Fig. 7 (left) Fig. 7 (right) 
Main image 525 x 336 3888 x 2492 
Reactor dome 191 x 51 1028 x 256 
Hard hat 82 x 45 405 x 225 
Danger sign 32 x 36 64 x 69 
Hoist 5 x 24 39 x 175 
Surveyor 5 x 11 34 x 74 
Engineers 5 x 5 32 x 41 

 
Thus, we have visually demonstrated that image resolution and image context play 
an important role in being able to clearly recognize and identify individual objects 
for scene understanding. Here, object recognition may be achieved through 
applications associated with deep learning neural networks.56–58 Also, it is 
important to note that image context information can include elements related to 
time, geographical location, and environmental conditions,12–14 which can help to 
provide a more detailed description of recorded scenes for indexing and future 
retrieval, as is discussed next. 

4. Time- and Space-Varying Elements of Scene Understanding 

While image resolution is a key element for identifying objects and quickly 
discerning the gist and general layout of a recorded scene, there are many other 
time- and space-varying elements that are equally important for scene 
understanding that should be addressed from the very beginning of the data 
collection process. 
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4.1 Environmental Image Information 

There are many key pieces of information that can be identified as new image data 
are being recorded that are important and accessible, but are usually overlooked or 
left undocumented. For example, one can readily identify a timestamp (relative to 
the sun’s angle or relative to a world clock), the global positioning system (GPS) 
position, the prevailing environmental and weather conditions, and the field of 
view, depth of view, and image resolution (Table 2). The first group, shown in 
Table 2, focuses on environmental information, such as the GPS position and 
altitude above ground level (AGL), prevailing weather, cloud cover, ground and 
road conditions, and visibility (e.g., fog, smoke, haze, obscurants, or optical 
turbulence).  

Identifying the key environmental and terrain conditions can provide location and 
geographical context information to help categorize image scenes recorded in 
diverse regions (e.g., coastal, mountain-valley, desert, forest, urban, rural, ocean, 
and arctic). Detailed terrain characteristics (e.g., muddy, sandy, gravelly, wet, dry, 
or icy) and reports of the most current weather conditions available (e.g., rain, 
snow, fog, or haze) can be retrieved and annotated to help describe images that may 
be used to support the planning and/or execution of military operations, as 
mentioned above. Typically, changing weather conditions, cloud cover, and 
visibility will bring about changes in the illumination of a scene, which can affect 
image contrast and resolution.25,30,31 Time of day and sun angle information also 
can be retrieved, which can be useful to indicate when glare, shadows, or silhouettes 
may cause difficulties for computer vision processes.52,59,60 Also, taking note of 
optical turbulence conditions is important because these effects can significantly 
degrade and blur image quality due to spatial smearing.61  

The second group in Table 2 lists elements related to the camera specifications and 
the image data measurements themselves (e.g., the spatial and temporal image 
resolutions, field of view, depth of view, and scene color or shading variations). 
Together with the environmental information, these elements can be used as a basic 
building block for detailed scene description and image indexing. 

  



 

Approved for public release; distribution unlimited. 
8  

Table 2 Time- and space-varying elements of scene understanding 

Environmental information 
GPS position and altitude AGL 
Location: geographical context 
Timestamp 
Weather conditions, sky and cloud cover 
Sun/moon angle 
Ground/road conditions 
Visibility 
Vegetation 
Buildings, parking lots, people, or crowds 
Image/camera information 
Image resolution 
Pixel size and pixel separation 
Scene color or shading variations 
Field of view and depth of view 
Shutter exposure time 
Time interval between image frames 
Time over which images are captured in a sequence 

4.2 Scene Description Indexing 

Based on the time- and space-varying elements for scene understanding described 
above, Table 3 provides a top-level view for scene description indexing (i.e., these 
are the questions that one should endeavor to address as image data are being 
recorded so that the data can be best indexed and retrieved for later use). In most 
cases, the image information (right column) can be annotated based on the camera 
type, lensing, pixel array, and timing specifications. Also, for example, co-located 
range finder instrumentation could provide effective depth and field of view 
measurements for this purpose. Additionally, when communications are available, 
the most current environmental information available (left column) can be extracted 
from several accessible resources, such as those shown in Table 4. Obtaining the 
most current data available is advantageous since environmental conditions (e.g., 
weather and terrain) can change over very short temporal and spatial intervals. For 
example, access to data from the Department of Defense (DOD) GPS62 can provide 
latitude and longitude or Universal Transverse Mercator (UTM) location and 
timestamp information, commonly reported as Greenwich Mean Time (GMT) or 
Coordinated Universal Time (UTC). Also, data from the US Naval Observatory 
(USNO)63 can provide precise timing information as well as solar and lunar 
elevation/azimuth angles. Similarly, terrain and geographical location and context 
information can be provided by satellite and aerial imagery from the US Army 
Corps of Engineers, Army Geospatial Center (USACE AGC)64 for military 
operations or from public Internet resources such as Google,65 MapQuest,66 Bing,67 
and Yahoo Maps.68 
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Table 3 Scene description indexing (top-level view) 

 Environmental information Image/camera information 
1 What is the GPS position of the depicted scene? What is the camera field of view? 
2 What is the altitude (AGL) of the depicted scene? What is the scene depth of view? 
3 What is the timestamp of the recorded image? What is the image spatial resolution (in pixels)? 
4 What are the current weather conditions? What is the camera pixel size? 
5 What is the percent sky/cloud cover? What is the scene color (R, B, G or grayscale)? 
6 What is the sun elevation/azimuth angle? What are the spatial shading variations of the scene? 
7 What is the visibility? What is the camera integration time? 
8 What are the current ground/road conditions? What is the camera shutter exposure time? 
9 What vegetation is in the field of view? What is the time interval between frames? 
10 What buildings, parking lots, people or crowds    

are in the field of view? 
What is the starting, ending and total time for the recorded 
image sequence? 

Table 4 Available/accessible environmental image information 

1 DOD GPS: Latitude/longitude or UTM, altitude (AGL), GMT, or UTC 
2 USNO: Precise time, sun/moon elevation/azimuth angle 
3 Terrain and location: USACE AGC — Satellite/aerial imagery and terrain analysis 
4 Terrain and location: Google, MapQuest, Bing, Yahoo Maps 
5 Weather: USAF 557th Weather Wing 
6 Weather: National Weather Service (NWS) and National Centers for Environmental 

Information (NCEI) 
7 Weather: Intellicast, AccuWeather, Weather Underground 

 

Weather conditions and related oceanic, atmospheric, and geophysical data are also 
available for the military through the US Air Force 557th Weather Wing69 (i.e., 
formerly the US Air Force Weather Agency) and for the civilian community 
through the NWS70 and NCEI.71 Daily NWS weather reports can be found online 
containing hourly records citing the date, time, wind speed (miles per hour), 
visibility (miles), weather (i.e., rain, snow, fog, haze, etc.), sky/cloud condition 
(reported as overcast [OVC], broken [BRK], scattered [SCT], or clear [CLR] along 
with the cloud ceiling height in hundreds of feet AGL), air temperature, dew point 
temperature, relative humidity (%), pressure, and precipitation (in inches). 
Naturally, current weather and weather forecast information are readily found on 
Internet web sites, such as Intellicast,72 AccuWeather,73 and Weather 
Underground.74 Note however, that in areas where communications are either 
restricted or unavailable, the information needed to describe the scene, i.e., as 
outlined in Table 3, should instead be gleaned from the recorded images when they 
are retrieved for analysis. 

Thus, we have shown that abundant time- and space-varying environmental image 
information can be accessed and annotated to augment image data as they are being 
recorded for a better organized, top-down approach to scene description, indexing 
and image retrieval. 
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5. Summary and Conclusions 

In this report, we proposed that it is important to incorporate space- and time-
varying environmental image information at the start of the data collection process 
in order to provide the end user (Soldier) with a better organized, top-down 
approach to index and retrieve image data for operational use and analysis. We 
provided several examples to show that space- and time-varying elements of 
environmental image information (and changes in image context) can be used as a 
basic building block for detailed scene description, and as such, could be used to 
support Army mission planning and execution. In conclusion, we anticipate that 
incorporating space- and time-varying environmental image information in the data 
measurement process will lead to 1) improved autonomous intelligent systems 
supporting Army missions in complex and changing environments and 2) improved 
course of action strategies based on scene understanding (algorithms and analysis) 
incorporating battlefield environments changing in space and time. 
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USACE US Army Corps of Engineers 
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