
ABSTRACT

Title of thesis: FEEDBACK CONTROL OF A HOVERCRAFT
OVER A WIRELESS LINK

Zachary Kulis, Master of Science, 2006

Dissertation directed by: Professor P.S. Krishnaprasad
Department of Electrical and Computer Engineering
Dr. Eric W. Justh
Institute for Systems Research

Nonlinear underactuated systems (i.e. systems with fewer control inputs than

configuration variables) present significant challenges for automatic control. This

thesis explores feedback control of an underactuated hovercraft over a wireless com-

munication channel using techniques from nonlinear control theory. A family of

control laws stabilizing the hovercraft reduced dynamics–including zero velocity,

constant forward/reverse velocity, and constant angular velocity stabilization–are

derived. Lyapunov arguments are used to prove convergence of the reduced dy-

namics under the control laws. It is shown that heading cannot be stabilized by a

continuously differentiable state feedback law. In response, two hybrid control algo-

rithms for heading stabilization are proposed. The control laws are demonstrated

on a real R/C hovercraft using a distributed autopilot and a Bluetooth network.

A two-dimensional aided INS is developed using a MEMs IMU and the “Cricket”

RF/ultrasonic ranging system. Experimental and simulated results from a high-

fidelity model are shown to agree nicely.

FEEDBACK CONTROL OF A HOVERCRAFT
OVER A WIRELESS LINK

by

Zachary Kulis

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:
Professor P.S. Krishnaprasad, Chair/Advisor
Dr. Eric Justh, Co-Advisor
Professor Steven Marcus

c© Copyright by
Zachary Kulis

2006

DEDICATION

Dedicated to Kirsten –

my partner in life’s wonderful adventure.

ii

ACKNOWLEDGMENTS

This thesis marks a major milestone in my study of control theory at the Uni-

versity of Maryland. Over the past three years, I was privileged to receive the

bulk of my graduate education in control theory, including nonlinear, stochas-

tic, optimal, and adaptive control, from a great teacher and master of the disci-

pline, Dr. P. S. Krishnaprasad. It never ceases to amaze me that the most seem-

ingly abstract mathematical theorems and results, when explained properly and

carefully, can be readily understood and applied to solve real control problems.

Dr. Krishnaprasad is a truly gifted ambassador of mathematics and a tireless cham-

pion of science.

I am equally grateful to Dr. Eric Justh, who spent many hours with me

studying the nonlinear hovercraft dynamics and discussing possible strategies for

control. Dr. Justh was also instrumental in providing me with valuable experimental

insights, especially with regard to the INS. My research certainly would have suffered

without his careful guidance and advice.

Thanks also to Dr. Steven Marcus who taught my first graduate course in

control theory and could not have presented the comprehensive subject of linear

control theory any more clearly.

iii

I would also like to thank Sandy Klemm for many thoughtful discussions re-

garding nonlinear control of the hovercraft as well as his assistance in modifying the

Cricket code for better positioning performance.

Any experimental undertaking is accompanied by its share of technical perils

and practical challenges. I am especially grateful for all the assistance I received in

taming these beasts, and would like to express my gratitude to Jay Renner, Shyam

Mehrotra, and Jay in the machine shop who worked miracles fitting a miniature

optical encoder to a Speed 400 motor shaft. I would like to thank Kevin Jackson at

hovercraftmodels.com, who provided me with a fully assembled HoverDemon and

answered all of my questions about potential design modifications to increase thrust

production and steerability. In addition, I wish to express many thanks to Pamela

White in the ISR, who was able to match my furious demand for hovercraft parts

with an equally rapid placement of purchase orders.

Finally, I am especially grateful for my wonderful family, whose unwavering

support is a beacon of light throughout each journey I undertake. This particular

journey was made even more special by the love and support of my wonderful fiancée,

Kirsten. I am extremely thankful for her patience, sacrifice, and encouragement,

especially during the times when I thought that I would never finish! And of course,

a big thank you goes out to Dr. Yoda, the best hovercraft pilot in the world!

This research was supported in part by the Naval Research Laboratory under

Grant No. N00173-04-1G014, and by the Army Research Office under ODDR&E

MURI01 Program Grant No. DAAD19-01-1-0465 to the Center for Communicating

Networked Control Systems (through Boston University).

iv

TABLE OF CONTENTS

List of Tables viii

List of Figures ix

1 Introduction 1

Part I Theoretical Framework 9

2 Hovercraft Control Laws 10
2.1 Derivation of the Hovercraft Model 10
2.2 Control Laws to Stabilize the Reduced Dynamics 14

2.2.1 Zero Velocity Stabilization . 15
2.2.2 Constant PX Stabilization . 17
2.2.3 Alternate Derivation of a Control Law Stabilizing PX > 0 . . 19
2.2.4 PX < 0 Stabilization . 21
2.2.5 Constant Π Stabilization . 23
2.2.6 Resolution of the Limit Point Ambiguity when Stabilizing Π . 26

2.3 Control Laws to Stabilize the Full Dynamics 29
2.3.1 Stabilization of the Origin . 29
2.3.2 Heading Stabilization Difficulties 33
2.3.3 A Hybrid Approach to Heading Stabilization 36

3 Inertial Navigation Systems 42
3.1 Introduction . 42

3.1.1 Reference Frames . 44
3.1.2 Reference Frame Rotations . 45
3.1.3 Rotation Matrix Dynamics . 46
3.1.4 Sensors and Technology . 47

3.1.4.1 Accelerometers . 47
3.1.4.2 Gyroscopes . 49

3.1.5 Shortcomings of Inertial Navigation Systems 50
3.1.6 Aided Inertial Navigation Systems 52

3.2 Problem Statement . 52
3.2.1 The Need for an INS . 52
3.2.2 Design Assumptions . 53
3.2.3 Performance Goals . 57

3.3 Kalman Filtering . 58
3.3.1 Kalman Filtering Theory . 58
3.3.2 Kalman Filtering Applied to Inertial Navigation Systems . . . 62

3.3.2.1 Direct Implementation 62
3.3.2.2 Indirect Implementation 63

3.3.3 INS Kalman Filter Design . 65

v

3.3.3.1 Error Dynamics Model 66
3.3.3.2 Sensor Error Model 69
3.3.3.3 Complete State Space Error Model 70
3.3.3.4 INS Equations . 74
3.3.3.5 Magnetometer Heading Determination 75
3.3.3.6 Feedforward Kalman Filter Implementation 76

Part II Physical Implementation 79

4 The R/C Model Hovercraft 80
4.1 Design and Construction . 80
4.2 Actuation . 84

4.2.1 Thruster and Lift Fan . 85
4.2.2 Rudder Servo . 87

4.3 Calibration . 87
4.3.1 Rudder Calibration . 88
4.3.2 Thrust Calibration . 89

4.3.2.1 Forward Thrust Calibration 89
4.3.2.2 Reverse Thrust Calibration 92

4.3.3 Moment of Inertia Determination 95

5 The Autopilot 98
5.1 dSPACE . 98

5.1.1 Autopilot Implementation on dSPACE 99
5.1.2 S-Functions . 100

5.2 Microcontrollers . 102
5.3 Bluetooth . 104

5.3.1 Introduction . 104
5.3.2 The Bluetooth Stack . 106
5.3.3 Bluetooth in Control Systems 109
5.3.4 Autopilot Delays . 112
5.3.5 Autopilot Bluetooth Devices 113
5.3.6 Experimental Performance . 114

5.4 Inertial Navigation System (INS) . 117
5.4.1 Inertial Measurement Unit (IMU) 118
5.4.2 Aiding Sensors . 119
5.4.3 Real-Time Processor . 119
5.4.4 Software . 120
5.4.5 Discrete Error Model . 120

5.5 Cricket Positioning System . 124
5.5.1 Cricket Entities and System Architecture 125
5.5.2 Time Synchronization . 127
5.5.3 Position Determination . 127
5.5.4 Cone Angle Errors . 129

vi

5.5.5 Performance . 132
5.5.6 MIT System Differences . 133

6 Results 136
6.1 Simulated Results . 136

6.1.1 Autopilot Simulink Model . 136
6.1.2 Zero Velocity Stabilization . 142
6.1.3 Forward Velocity Stabilization 143
6.1.4 Reverse Velocity Stabilization 148
6.1.5 Constant Angular Velocity Stabilization 151
6.1.6 Heading Stabilization Comparison 152

6.2 Experimental Results . 158
6.2.1 Aided INS Performance . 158

6.2.1.1 Test Configuration 158
6.2.1.2 Heading Filter Performance 159
6.2.1.3 Gyro Frequency Response and Compensation 164
6.2.1.4 Velocity/Position Filter Performance 170
6.2.1.5 Summary . 176

6.2.2 Hovercraft Autopilot Performance 178
6.2.2.1 Zero Velocity Stabilization 178
6.2.2.2 Forward Velocity Stabilization 181
6.2.2.3 Reverse Velocity Stabilization 181
6.2.2.4 Constant Angular Velocity Stabilization 181
6.2.2.5 Heading Stabilization 186

7 Conclusions and Future Research 193

A Microcontroller Schematics 198

B Pilot Console 200

Bibliography 202

vii

LIST OF TABLES

4.1 R/C hovercraft physical parameters 84

4.2 Data collected to determine the moment of inertia 96

5.1 Bluetooth network latency data. (All times are in ms.) 117

5.2 Range data for various cone angles and a ceiling height of 270.48 cm . 131

6.1 Zero velocity stabilization parameters 143

6.2 Forward velocity stabilization parameters 146

6.3 Negative velocity stabilization parameters 151

6.4 Angular velocity stabilization parameters 151

6.5 Gyro performance with and without frequency compensation 168

6.6 Heading filter rms error comparison 170

6.7 Summary of INS errors (rms) . 178

viii

LIST OF FIGURES

2.1 Hovercraft model used to derive the vehicle dynamics. 13

3.1 Direct Kalman Filter implementation. Thick arrows denote high data
rate paths. 63

3.2 Indirect feedforward Kalman Filter implementation. Thick arrows
denote high data rate paths. 65

3.3 Indirect feedback Kalman Filter implementation. Thick arrows de-
note high data rate paths. 66

4.1 Comparison of the stock HoverDemon with the modified vehicle . . . 82

4.2 Rudder calibration data . 88

4.3 Rudder angle vs hovercraft (force vector) angle 92

4.4 Reverse thrust calibration data . 93

4.5 Reverse lookup table (RLUT) mesh plot. Force increases quadrati-
cally with motor RPM and decreases with rudder angle for a given
RPM . 94

4.6 Experimental angular velocity data used to determine the moment of
inertia. A force of 1.0 N was applied at a -30◦ rudder angle. 97

5.1 Block diagram of the autopilot top-level system architecture 99

5.2 Simulink implementation of the hovercraft autopilot 101

5.3 The Bluetooth protocol stack . 106

5.4 Bluetooth round trip delay vs downlink (hovercraft to controller) data
rate . 116

5.5 Cricket mote (Photo courtesy of MIT CSAIL) 124

5.6 Illustration of the Cricket ultrasonic cone. Figure is not to scale. . . . 130

5.7 Ratio of true range to measured range as a function of cone angle . . 131

5.8 Static performance of the Cricket positioning system. The circle rep-
resents a CEP of .52 cm . 134

ix

6.1 Simulink model of the hovercraft autopilot for simulation 138

6.2 INS error model . 139

6.3 Hovercraft-to-controller (downlink) Bluetooth link delay 140

6.4 Controller-to-hovercraft (uplink) Bluetooth link delay 140

6.5 Actuator commands lookup table (LUT) 141

6.6 Electronic Speed Controller (ESC) model 142

6.7 Simulated results for zero velocity stabilization 144

6.8 Simulated results for constant forward velocity stabilization (V X =
1.1 m/s) . 147

6.9 Simulated results for constant reverse velocity stabilization 149

6.10 Simulated results for constant angular velocity stabilization 153

6.11 Simulated results for heading stabilization comparison with nonzero
initial conditions . 155

6.12 Simulated results for heading stabilization comparison with initial
conditions equal to zero . 157

6.13 Magnetometer-aided INS heading filter performance 161

6.14 Cricket-aided INS heading filter performance. (rms values given for
a platform angular velocity of -115 ◦/s.) 163

6.15 Gyro dynamic response . 165

6.16 Experimental gyro frequency response (blue) and gyro model fre-
quency response (red) . 167

6.17 Comparison of INS angular velocity estimate with and without gyro
frequency compensation . 169

6.18 Magnetometer and optical encoder-aided INS velocity/position filter
performance . 172

6.19 Cricket-aided INS velocity/position filter performance. (rms values
given for a platform angular velocity of -115 ◦/s.) 174

x

6.20 True heading reference compared with Cricket heading measurements
at a platform angular velocity of -115 ◦/s. The INS-assisted Cricket
heading measurements are approximately 15◦ more accurate. 177

6.21 Experimental vs simulated results for zero velocity stabilization . . . 179

6.22 Experimental vs simulated results for constant forward velocity sta-
bilization (V X = 1.1 m/s) . 182

6.23 Experimental vs simulated results for constant reverse velocity stabi-
lization . 184

6.24 Experimental vs simulated results for constant angular velocity sta-
bilization . 187

6.25 Experimental vs simulated results for heading stabilization (bang-
bang algorithm) . 190

6.26 Experimental vs simulated results for heading stabilization (propor-
tional algorithm) . 191

6.27 Experimental heading stabilization performance 192

A.1 Master microcontroller schematic . 198

A.2 Slave microcontroller schematic . 199

B.1 Hovercraft pilot console . 201

xi

Chapter 1

Introduction

The hovercraft is a fascinating ground vehicle that possesses the unique ability

to float above land or water. Riding on a cushion of air endows the hovercraft with

many interesting and useful properties. Unlike wheeled robots which feature con-

strained kinematics, the hovercraft can move freely in any direction. For example,

although the lateral direction of travel is not usually actuated, the hovercraft is com-

pletely free to move sideways. In addition, the frictional damping force acting on a

hovercraft is minimal. For autonomous hovercraft applications, the lack of friction

places an additional burden on the controller, as all velocity damping forces must

be created by the actuators. The combination of the rich hovercraft dynamics and

minimal frictional damping make the automatic control of a hovercraft a complex

and interesting problem.

The concept of an air cushion vehicle was originally proposed in 1716 by

Swedish designer, Emanuel Swedenborg. It was not until 1956, however, that the

modern hovercraft was invented by British inventor Christopher Cockerell. In fact,

it was Cockerell who coined the term hovercraft to describe his invention. The

first practical hovercraft was the SR-N1, developed by Saunders Roe, a British

aircraft manufacturer. Two years later, in 1961, the Vickers VA-3 became the first

1

commercially operated hovercraft and carried passengers regularly along the North

Wales Coast.

The hovercraft achieves lift by creating a volume of high pressure air under-

neath the vehicle. A skirt made from flexible material encircles the underbody of the

vehicle and prevents the high pressure air from rapidly escaping the plenum when

the hovercraft lifts above the ground. A properly designed skirt is crucial to vehicle

stability and ride comfort. The skirt must be flexible so that it conforms to uneven

terrain, durable enough to prevent abrasion and tearing, and lightweight. For these

reasons, the skirt is the most critical aspect of the entire hovercraft design [1].

A hovercraft achieves lift and propulsion by one or more high-power fans.

Steering and vehicle control may be achieved in various ways. On some hovercraft,

the fans may be swiveled a full 360◦ to produce thrust in any direction. Using two

fans inline with the vehicle center of mass allows a hovercraft to turn in place simply

by running the fans in opposite directions. An alternative actuation approach is to

use a fixed fan and a rudder to steer. The thrust fan is usually shrouded by a duct

for greater thrust efficiency, and the rudder is located in the high velocity air stream.

A rudder steering mechanism adds considerable complexity to the vehicle con-

trol. First, the fan must produce sufficient air speed for the rudder to be effective

as a control surface. Thus, any turning maneuver is always accompanied by a for-

ward (or reverse) thrust component. As a result, a hovercraft with a rudder cannot

generate a pure torque and is thus unable to turn in place. Second, the rudder is

mechanically limited and cannot produce force directed along the hovercraft’s lat-

2

eral direction. For these reasons, a hovercraft with a rudder is an underactuated

system and an interesting problem for automatic control.

Other examples of underactuated systems include robot manipulators, space-

craft, aircraft, missiles, and underwater vehicles. Despite increased control difficulty,

underactuated systems can provide a substantial savings in actuator cost, size, and

weight, and may be the only viable option for many applications. The control and

stabilization of underactuated vehicles, however, can be quite challenging. Difficul-

ties arise because classical nonlinear control techniques, such as feedback lineariza-

tion, are not always applicable for underactuated systems [2]. Other traditional

methods such as linearization and gain scheduling are popular due to their sim-

plicity, but guarantee stability for only a local neighborhood of the operating point.

Moreover, a linear controller will often perform poorly whenever the nonlinear modes

of the system are exercised.

The challenges related to stabilizing an underactuated hovercraft have been

partially addressed in the literature. Pettersen and Egeland [3] extended the re-

sults of Byrnes and Isidori [4] and showed that underactuated vehicles failing to

satisfy a more general gravitational/bouyant field requirement cannot be stabilized

by either continuous or discontinuous state feedback. In addition, the authors gave

controllability results for an underactuated surface vessel (with dynamics similar to

a hovercraft) and proposed a time-varying control law to stabilize the equilibrium

at the origin for the dynamics.

Fantoni, Lozano, Mazenc, and Pettersen [2] addressed the problem of stabiliz-

ing the velocity and position of a disc-shaped hovercraft. The particular hovercraft

3

model analyzed featured dual fans offset from the center of mass. A velocity stabi-

lization control law was shown to be globally asymptotically stable. Furthermore,

the authors proposed three control laws for position stabilization (neglecting yaw

angle) using the longitudinal and angular velocities as controls. One of the con-

trol laws was shown to be globally exponentially stable with control inputs that

converged to zero.

Trajectory tracking for underactuated vehicles is an active area of research. A

traditional approach to trajectory tracking uses the linearization of the system dy-

namics about a nominal state space trajectory. The problem is that the formulation

of feasible state space trajectories can be particularly difficult for vehicles with com-

plex dynamics. For example, we have shown that certain circular trajectories with

rigid heading constraints are not physically realizable by our hovercraft’s dynamics.

Aguiar, Cremean, and Hespanha [5] recently demonstrated an algorithm al-

lowing a general class of underactuated vehicles to track an arbitrary reference

trajectory. The algorithm is based on an iterative Lyapunov technique and yields

global convergence to an arbitrarily small neighborhood of the origin. Experimental

trajectory tracking results for a hovercraft-like1 vehicle are provided.

Seguchi and Ohtsuka [6] implemented a real-time nonlinear receding horizon

control algorithm for position tracking of a small R/C hovercraft. Experimental

and simulated results were compared for the tracking algorithm. Finally, in [7],

1The vehicle features dual thrust fans and rolls on omnidirectional ball casters. Thus, significant

friction is present in the dynamics.

4

Pettersen and Nijmeijer proposed a semi-global exponentially stable position and

heading tracking control law for a surface vessel.

In this thesis, we explore nonlinear control of a hovercraft over a Bluetooth

wireless link. Although the literature abounds with simulated results, our goal

is to provide concrete experimental verification of the nonlinear control theory on

an actual hovercraft. To make matters more challenging, we implement a real-

time distributed controller with non-negligible sensing and actuation latencies, and

show experimentally that the control system is robust to network delays. We also

develop a two-dimensional aided inertial navigation system (INS) for measuring the

hovercraft velocity and implement the system on real hardware. Unlike [5], our R/C

hovercraft lifts above the ground and experiences minimal contact friction with the

surface. In addition, it features a rudder for steering, making automatic control

efforts more challenging than for the dual-fan hovercraft.

Starting in Chapter 2, we derive the nonlinear dynamical model of the hov-

ercraft from first principles. We then show how the full dynamics model may be

reduced to three equations for preliminary control efforts. These three equations

constitute the hovercraft reduced dynamics. Following this, we derive a family of

control laws to stabilize the reduced dynamics. We start with velocity stabilization,

encountering the same result as [2], and proceed to prove convergence results for

constant forward/reverse velocity stabilization and constant angular velocity stabi-

lization. We then provide a brief discussion of the difficulties involved in stabilizing

the full dynamics (six equations), citing a result proved by Byrnes and Isidori [4]

and a necessary condition for stabilizability proved by Brockett [8]. We conclude the

5

chapter with a presentation of two hybrid control strategies for joint stabilization of

the velocity and heading.

In Chapter 3, we discuss the theory of inertial navigation and explain how ad-

ditional information from aiding sensors may be used to substantially increase the

accuracy of an INS. We highlight the difficulties inherent in a full three-dimensional

INS systems and provide a set of design assumptions for a simplified two-dimensional

system. Next, we briefly explain Kalman Filtering and show how the Kalman Filter

may be used to augment the performance of an INS when additional aiding mea-

surements (such as position or heading estimates) are available. We derive the error

dynamics model for a two-dimensional INS and present a simplified sensor error

model for the accelerometers and gyros that accounts for the primary sources of

error.

Chapter 4 marks the transition from the theoretical section of this thesis to

the applied section. We begin with a description of our R/C hovercraft and discuss

the construction and actuation. Next, we carefully describe the procedures followed

for calibrating the hovercraft actuators. To conclude the chapter, we explain how

the hovercraft moment of inertia may be determined experimentally using the INS,

and provide experimental results.

In Chapter 5, we provide a full account of the hovercraft autopilot. We begin

with a block diagram of the system architecture and proceed to discuss each of the

subsystems in detail. We describe the dSPACE real-time processing system, which

constitutes the autopilot controller, and provide a screenshot of our Simulink au-

topilot model. Next, we highlight the custom microcontroller solution developed to

6

provide low-level actuation, sensing, and communication functionality on the hover-

craft. Following that, we present an overview of Bluetooth wireless technology and

discuss the difficulties involved with using wireless communications in distributed

control systems. To quantify the performance of our Bluetooth network, we devise

an experiment to measure the uplink and downlink delay and provide experimental

results. Next, we describe the INS hardware, including the IMU and aiding sensors

(magnetometer and “Cricket” system), and provide the full discretized dynamics

model implemented in software. To conclude the chapter, we discuss in detail the

Cricket RF/ultrasonic ranging system used to aid the INS. Essentially, Cricket is an

indoor GPS-replacement technology that provides position estimates with respect

to a user-defined coordinate system. We document our significant modifications to

the original Cricket software (developed by MIT), which yielded greatly increased

positioning accuracy, and identify the remaining sources of error.

Chapter 6 provides simulated and experimental results for the hovercraft au-

topilot. We begin the chapter with a description of a high-fidelity nonlinear sim-

ulation developed in Simulink to capture the complete system dynamics as accu-

rately as possible. We present simulated results for the “ideal” and “real” autopilot

systems and overlay plots for direct comparison. Next, we provide experimental

performance results for the aided INS system, obtained using an optical encoder

and rotating platform under computer control. We compare results for optical en-

coder/magnetometer aiding with result for Cricket-only aiding. Finally, we present

experimental results for each of the control laws derived in Chapter 1. We overlay

7

the experimental results with the simulated “real” autopilot plots to highlight the

effectiveness of the simulator.

Finally, Chapter 7 concludes this thesis with a summary of results and direc-

tions for future research. Our hope is that this thesis and experimental work will

provide a strong foundation for future research in nonlinear control theory applied

to hovercraft. We elucidate several of our ambitions pertaining to the realization of

a fully autonomous hovercraft in Chapter 7.

8

Part I

Theoretical Framework

9

Chapter 2

Hovercraft Control Laws

2.1 Derivation of the Hovercraft Model

Consider a right-handed inertial reference frame, U , defined by the axes (x, y, z).

Assume that the z axis points into the plane, so that positive angles are measured

clockwise about z. In the following analysis, we will constrain the hovercraft dy-

namics to the xy plane.

Let us also define a body-fixed frame, B, with axes (X, Y, Z) that is rigidly

affixed to the hovercraft body, B, at the center of mass. Assume that the X axis

points from the hovercraft’s tail to its nose and that the positive Z axis points into

the plane.

The configuration, i.e. position and orientation, of the body in the inertial

reference frame U is determined completely by a vector r and an angle θ. Let r

denote the position of the body frame with respect to the inertial frame, and let θ be

the angle between the x and X axes, measured from the inertial frame. Observe that

the configuration space is SE(2), the Special Euclidean Group of 3 × 3 matrices,

where

SE(2) ,


 B r

0 1

 ∣∣ B ∈ SO(2), r ∈ R2

 (2.1)

10

In the above definition, B is the orthonormal 2 × 2 rotation matrix given by

B(θ) =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 . (2.2)

More generally, the columns of B correspond to the body frame principal axes

resolved in inertial frame coordinates.

The rotation matrix B(θ) is used to transform vector quantities between these

two frames. For example, a vector quantity, Q, measured in the body frame is

expressed in the inertial frame as q = BQ. The orthonormal property of B permits

the resolution of inertial frame vector quantities in body frame coordinates by pre-

multiplying the vector by BT.

If we define Ω , θ̇, the angular velocity of the body frame, then it may be

shown that B(θ) satisfies

Ḃ(θ) = B(θ) Ω̂, (2.3)

where Ω̂ is the skew-symmetric matrix given by

Ω̂ =

 0 −Ω

Ω 0

 . (2.4)

Using the notation defined above, the hovercraft kinematics are given by the

following set of equations:

Ḃ(θ) = B(θ) Ω̂

ṙ = BV, (2.5)

where V denotes the hovercraft velocity vector in the body-fixed frame.

11

We will now derive the hovercraft dynamics through a simple application of

the Newton-Euler Balance Laws. In the following derivation, let P and p be the

hovercraft linear momentum in body and inertial frame coordinates respectively.

Additionally, F is the force applied by the thruster in body coordinates, d is the

vector from the hovercraft center of mass to the rudder pivot, J denotes the moment

of inertia, and m is the hovercraft mass. A graphical representation of the hovercraft

model appears in Figure 2.1.

Starting with Newton’s Second Law of Motion,

p = mṙ

P = mBTṙ

Ṗ = mḂTṙ +mBTr̈

= mΩ̂TBTṙ +mBTr̈

Ṗ = −Ω̂P + F (2.6)

Similarly, Euler’s Balance Law relates body angular momentum Π to torque

τ by Π̇ = τ . Let φ denote the rudder angle measured clockwise with respect to

the X axis. Ideally, all of the force F produced by the thrust fan is directed along

the angle φ. Applying Euler’s Balance Law yields:

Π̇ = d× F. (2.7)

Using the formula

‖Π̇‖ = ‖d‖ ‖F‖ | sin(φ)|, (2.8)

12

Figure 2.1: Hovercraft model used to derive the vehicle dynamics.

and the fact that rotation is confined to the plane, we may write

Π̇ = −‖d‖FY . (2.9)

Combining equations (2.6) and (2.9), the hovercraft dynamics are given in

component form by

ṖX = PY
Π

J
+ FX

ṖY = −PX
Π

J
+ FY

Π̇ = −dFY (2.10)

where d = ‖d‖ and Π = J Ω. In subsequent sections, we will refer to equation (2.10)

as the reduced dynamics and equations (2.5) and (2.10) together as the full dynamics

model.

13

2.2 Control Laws to Stabilize the Reduced Dynamics

As described in section 2.1, the hovercraft full dynamics model consists of the

six equations

ṖX = PY
Π

J
+ FX

ṖY = −PX
Π

J
+ FY

Π̇ = −dFY

ṙ = B(θ)
P

m

Ḃ(θ) = B(θ) Ω̂ (2.11)

If we examine these six equations carefully, we see that the first three equa-

tions are independent of the latter three. This triangularity property allows us to

analyze the first three equations separately. Recall that these equations constitute

the reduced dynamics model.

We will first consider a family of control laws to stabilize the reduced dynamics.

Later, we will consider the full dynamics model and seek control laws to drive the

six state variables to desired values.

To begin the analysis, observe that (2.10) has the following three families of

equilibria of the unforced system:

(1) (PX , PY ,Π) = (0, 0, 0)

(2) (PX , PY ,Π) = (c1, c2, 0), c1, c2 ∈ R

(3) (PX , PY ,Π) = (0, 0, c), c ∈ R

(2.12)

14

In contrast, the full dynamics (2.11) has a continuum of equilibria located at

(PX , PY ,Π, rx, ry, θ) = (0, 0, 0, c1, c2, c3), c1, c2, c3 ∈ R (2.13)

2.2.1 Zero Velocity Stabilization

Let us first suppose that our goal is to bring the hovercraft to rest, preferably

from any arbitrary initial condition. We would like to find a control law u(t), such

that limt→∞(PX , PY ,Π) = (0, 0, 0) for any (PX(0), PY (0),Π(0)). In the following

discussion, let x = (PX , PY ,Π).

Consider the Lyapunov function:

V (x) =
PX

2 + PY
2

2m
+

Π2

2J
(2.14)

This Lyapunov function represents the total energy of the system, and is the sum

of the hovercraft’s translational and rotational kinetic energy. We do not include a

potential energy term, as the hovercraft is a planar vehicle.

A Lyapunov function of the above form is closely tied to the system dynamics.

We expect that it will provide physical insight and aid in the selection of appropriate

damping controls. Differentiating V (x) with respect to t, we obtain:

V̇ (x) =
PX

m
ṖX +

PY

m
ṖY +

Π

J
Π̇

=
PX

m

(
PY

Π

J
+ FX

)
+
PY

m

(
−PX

Π

J
+ FY

)
− Π

J
(dFY)

= FX
PX

m
+ FY

(
PY

m
− d

Π

J

)
(2.15)

15

It is obvious from equation (2.15) that the proper choice of controls to make V̇ (x) ≤

0 is: 
FX = −k1

PX

m

FY = −k2

(
PY

m
− dΠ

J

)
, k1, k2 > 0

(2.16)

Substituting for (FX , FY) in equation (2.15) yields

V̇ (x) = −k1
PX

2

m2
− k2

(
PY

m
− d

Π

J

)2

≤ 0. (2.17)

The control law specified in equation (2.16) forces the first time derivative of

V (x) to be nonpositive. Through a simple application of LaSalle’s Invariance Prin-

ciple, we will show that the control law drives the state (PX , PY ,Π) asymptotically

to the origin.

Theorem 2.2.1 LaSalle’s Invariance Principle [9]

Let D be a domain of the reduced dynamics (2.10) and let Γ ⊂ D be a compact set

that is positively invariant with respect to (2.10). Let V : D → R be a continuously

differentiable function such that V̇ (x) ≤ 0 in Γ. Let E be the set of all points in

Γ where V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution

starting in Γ approaches M as t→∞.

Proposition 2.2.2 Control law (2.16) with d,m, J, k1, k2 > 0 asymptotically stabi-

lizes the origin of the hovercraft reduced dynamics. Moreover, the origin is globally

asymptotically stable.

Proof: Consider the set E ,
{
x : V̇ (x) = 0

}
. Necessarily, PX = 0 is in E. This

implies that FX = 0 in (2.16) (fact 1). Also, it is required that PY

m
− dΠ

J
= 0, which

16

implies that PY = Π
J
md is in E (fact 2). Now, from the system dynamics (2.10)

and fact 1, ṖX = Π
J
PY + FX = Π

J
PY . Since ṖX ≡ 0, Π

J
PY = 0. Thus, either PY or

Π = 0. This observation, together with fact 2, implies that PY = Π = 0. Therefore,

the origin is the only point in the set E, and consequently the only point in the set

M . Since V (x) is radially unbounded, we may chose Γ to be arbitrarily large. Thus,

control law (2.16) ensures that (PX , PY ,Π) ≡ 0 is a globally asymptotically stable

equilibrium. �

In the next sections, we will adapt Lyapunov function (2.14) and the above

analysis to stabilize an arbitrary forward or reverse momentum, PX .

2.2.2 Constant PX Stabilization

Building on our analysis in the previous section, we will now find a control

law to stabilize a constant arbitrary forward momentum, PX . Such a control law

will be useful both for pilot-in-the-loop applications, where active damping of PY

and Π is desired, and also in approximating reference trajectories with straight line

segments.

We begin the analysis by defining new hat state variables. Let

P̂X = PX − PX

P̂Y = PY

Π̂ = Π (2.18)

17

Lyapunov function (2.14) is also modified slightly and takes the following form,

with x ,
(
P̂X , P̂Y , Π̂

)
:

W (x) =
P̂ 2

X + P̂ 2
Y

2m
+
α Π̂2

2J
, α > 0 (2.19)

The need for the scalar α will soon become apparent.

Taking time derivatives of these new state variables, and letting FX = −k1
P̂X

m

and FY = −k2

(
P̂Y

m
− d Π̂

J

)
as before yields:

˙̂
PX = P̂Y

Π̂

J
− k1

P̂X

m

˙̂
PY = −

(
P̂X + PX

) Π̂

J
− k2

(
P̂Y

m
− d

Π̂

J

)
˙̂
Π = k2 d

(
P̂Y

m
− d

Π̂

J

)
(2.20)

By defining a new variable, d̂ , d− P X

k2
, and performing the necessary substi-

tutions and groupings in equation (2.20), we obtain the following dynamical equa-

tions:

˙̂
PX = P̂Y

Π̂

J
− k1

P̂X

m

˙̂
PY = −P̂X

Π̂

J
− k2

(
P̂Y

m
− d̂

Π̂

J

)
˙̂
Π = k2 d

(
P̂Y

m
− d̂

Π̂

J

)
− dPX

Π̂

J
(2.21)

We may now proceed to compute Ẇ (x) for W (x) defined in (2.19). This

yields:

Ẇ (x) = P̂X

m

(
P̂Y

Π̂
J
− k1

m
P̂X

)
+

P̂Y

m

[
−P̂X

Π̂
J
− k2

(
P̂Y

m
− d̂ Π̂

J

)]
+

α Π̂
J

[
k2 d

(
P̂Y

m
− d̂ Π̂

J

)
− dPX

Π̂
J

]
(2.22)

18

Factoring (2.22) and letting α = d̂
d

results in the following simplified equation:

Ẇ (x) = −k1
P̂ 2

X

m2
− k2

(
P̂Y

m
− d̂

Π̂

J

) (
P̂Y

m
− α d

Π̂

J

)
− α dPX

Π̂2

J2

= −k1
P̂ 2

X

m2
− k2

(
P̂Y

m
− d̂

Π̂

J

)2

− d̂ PX
Π̂2

J2
(2.23)

It is now evident from (2.23) that Ẇ (x) < 0, if PX > 0 and d̂ > 0. The second

condition will be satisfied if we choose k2 >
P X

d
. Therefore, since Ẇ (x) is negative

definite, the reduced dynamics are asymptotically driven to (PX , 0, 0) by the control

law: 
FX = −k1

PX−P X

m

FY = −k2

(
PY

m
− dΠ

J

)
, k1, PX > 0, k2 >

P X

d

(2.24)

Furthermore, the equilibrium (PX , 0, 0) is globally asymptotically stable since W (x)

is positive definite and radially unbounded. Stabilizing PX < 0 requires additional

analysis and is discussed later in section 2.2.4.

2.2.3 Alternate Derivation of a Control Law Stabilizing PX > 0

Rather than merely guessing the correct form of the control law to stabilize

positive PX as we did in section 2.2.2, let us now consider all possible linear control

laws of the form: FX

FY

 =

 a11 a12 a13

a21 a22 a23



P̂X

P̂Y

Π̂

 (2.25)

where P̂X = PX − PX , P̂Y = PY , and Π̂ = Π as before.

19

Substituting for FX and FY in the dynamics equations given by

˙̂
PX = P̂Y

Π̂

J
+ FX

˙̂
PY = −

(
P̂X + PX

) Π̂

J
+ FY

˙̂
Π = −dFY (2.26)

and computing Ẇ (x) using (2.19) with α = 1 yields:

Ẇ (x) =a11
P̂ 2

X

m
+ a22

P̂ 2
Y

m
− a23

d Π̂2

J

+P̂X P̂Y

(
a12+a21

m

)
+P̂X Π̂

(
a13

m
− a21 d

J

)
+P̂Y Π̂

(
a23

m
− a22 d

J
− P X

mJ

)
(2.27)

It is clear that we can eliminate the cross terms and make Ẇ (x) < 0 by forcing

the following conditions on the free variables:

(1) a11, a22 < 0

(2) a23 > 0

(3) a12 = −a21

(4) a13

m
= a21 d

J

(5) a23

m
− a22 d

J
= P X

mJ

We will now show that conditions (1), (2), and (5) are incompatible for PX < 0.

Solving for a22 in condition (5) gives a22 = a23 J−P X

dm
. If PX < 0 and a23 > 0 as in

condition (2), then a22 > 0. This, however, contradicts condition (1). Thus, we

must restrict PX > 0.

20

One choice of scalars that satisfies the above conditions and results in a control

law with the same form as equation (2.24) is:

a12 = a21 = a13 = 0

a11 = −k1

m

a23 = P X

2J

a22 =− P X

2dm

(2.28)

Substituting into (2.25) yields the following control law:
FX = −k1

PX−P X

m

FY = −P X

2d

(
PY

m
− d Π

J

)
, PX , k1 > 0

(2.29)

In the above equation for FY , P X

2d
plays the role of k2 in equation (2.24). Note,

however, that while k2 >
P X

d
was required in (2.24), P X

2d
< P X

d
= k2. Under control

law (2.29), the origin of dynamics (2.26) is globally asymptotically stable, since the

Lyapunov function, W (x) in equation (2.19) with α = 1, is radially unbounded.

2.2.4 PX < 0 Stabilization

In the previous section, we derived two control laws to stabilize the origin in

(P̂X , P̂Y , Π̂) space. In both derivations, we required PX > 0 to make the Lyapunov

stability arguments hold. In this section, we consider the stabilization of (PX , 0, 0)

when PX is negative. We use Lyapunov’s indirect method to show that the origin

is locally asymptotically stable.

21

Consider the following control law:
FX = −k1

m
(PX − PX)

FY = k2

(
PY

m
+ βdΠ

J

)
, k1, k2, β > 0, PX < 0

Substituting for FX and FY in the reduced dynamics (2.10) produces the following

vector field, f(x):

f(x) =


PY

Π
J
− k1

m
(PX − PX)

−PX
Π
J

+ k2

(
PY

m
+ βdΠ

J

)
−k2d

(
PY

m
+ βdΠ

J

)

 (2.30)

The Jacobian of (2.30) evaluated at (PX , 0, 0) is:

∂f

∂x

∣∣∣∣
(P X ,0,0)

=


−k1

m
0 0

0 k2
m

k2dβ−P X

J

0 −k2d
m

−k2d2β
J

 (2.31)

and the characteristic equation is:

χ(s) =

(
s+

k1

m

) [
s2 + k2

(
d2β

J
− 1

m

)
s− k2PXd

mJ

]
(2.32)

Solving the roots of the characteristic equation yields the following eigenvalues:

s1 = −k1

m

s2, s3 = − k2

2mJ

(
d2βm− J

)
±

√
k2

2(d2βm− J)2 + 4k2PXdmJ

2mJ
(2.33)

We wish to find conditions on β such that the eigenvalues have negative real

parts. First, setting d2βm− J > 0 implies that β > J
d2m

. Since 4k2PXdmJ < 0 for

PX < 0, the root term in (2.33), if real-valued, must be less than

√
k2

2(d2βm−J)2

2mJ
=

k2

2mJ
|d2βm− J |. Therefore, <{s2, s3} < 0.

22

We have shown that for β > J
d2m

, control law (2.30) with PX < 0 stabilizes

the point (PX , 0, 0) for initial conditions in a local neighborhood of the equilibrium.

Unfortunately, we have not yet been successful in finding a radially unbounded

Lyapunov function to prove global convergence using Lyapunov’s direct method.

Simulating the dynamics under the proposed control law, however, provides a strong

indication that the equilibrium has a large region of attraction and may even be

globally asymptotically stable.

2.2.5 Constant Π Stabilization

In this section, we consider turning the hovercraft in place at a constant an-

gular velocity. We will derive an asymptotically stable control law that uses only

the reduced dynamics. Note that our goal is not to turn the hovercraft about a

prescribed fixed coordinate in the inertial frame. Such a control law would involve

two additional states, RX and RY , and be more difficult to derive. In fact, we will

show later in section 2.3 that the failure of a necessary rank condition implies that

the full dynamics can not be stabilized by a continuously differentiable feedback law

using only the state variables.

The control law derived in this section asymptotically drives the linear mo-

mentum to zero, while achieving a constant arbitrary angular momentum, Π. This

control law, together with the zero velocity stabilization law, will later be used in a

pointing algorithm to maintain a desired heading.

23

Consider the reduced hovercraft dynamics, (2.10). Our goal is to stabilize

the point (0, 0,Π) for an arbitrary constant Π. To begin the analysis, define the

following hat variables:

P̂X = PX

P̂Y = PY

Π̂ = Π− Π (2.34)

Substituting into the dynamics (2.10) we get:

˙̂
PX = P̂Y

Π̂ + Π

J
+ FX

˙̂
PY = −P̂X

Π̂ + Π

J
+ FY

˙̂
Π = −dFY (2.35)

Additionally, consider the Lyapunov function candidate:

W (x) =
P̂ 2

X + P̂ 2
Y

2m
+

Π̂2

2J
(2.36)

This Lyapunov function will lead us to a control law that drives the system to

(0, 0,Π). It will also be used to prove stability of the equilibrium.

Differentiating W (x) with respect to time yields:

Ẇ (x) =
P̂X

m

[
P̂Y

(
Π̂ + Π

J

)
+ FX

]
+
P̂Y

m

[
−P̂X

(
Π̂ + Π

J

)
+ FY

]
− Π̂

J
dFY

=
P̂X

m
FX +

(
P̂Y

m
− d

Π̂

J

)
FY (2.37)

Choosing FX = −k1
P̂X

m
and FY = −k2

(
P̂Y

m
− d Π̂

J

)
, with constants k1, k2 > 0, en-

sures that Ẇ (x) ≤ 0.

24

Unfortunately, a direct application of LaSalle’s Invariance Principle can not

be used to prove stability of the equilibrium (0, 0,Π). To see why, consider the set

E ,
{
x : Ẇ (x) = 0

}
. Equation (2.37) implies that two conditions must be met for

all points x in E. They are:

(1) P̂X = 0 =⇒ FX = 0 and
˙̂
PX ≡ 0

(2) P̂Y

m
− d Π̂

J
= 0 =⇒ P̂Y = md Π̂

J

(2.38)

From the system dynamics (2.35) and condition (1),
˙̂
PX ≡ 0 =⇒ P̂Y (Π̂ + Π) = 0,

which further implies that either P̂Y = 0 or Π̂ + Π = 0. First, consider the case with

P̂Y = 0. Condition (2) implies that Π̂ = 0. Using the definition of Π̂, this is equiv-

alent to Π = Π. Thus, the point (PX , PY ,Π) = (0, 0,Π) is in the set E.

On the other hand, it may be the case that Π̂ + Π = 0. Condition (2) then

implies that P̂Y = −mdΠ
J
. Clearly, the point (PX , PY ,Π) = (0,−mdΠ

J
, 0) is also in

E.

Observe that (0, 0,Π) and (0,−mdΠ
J
, 0) are also in the set M , since both points

are equilibria of (2.35) under the control law:
FX = −k1

PX

m

FY = −k2

(
PY

m
− d Π−Π

J

)
, k1, k2 > 0

(2.39)

Invoking LaSalle’s Invariance Principle allows us to conclude that the control law

guarantees convergence to one of these two equilibria, but it is not yet clear how to

steer the system dynamics to the desired limit point.

25

2.2.6 Resolution of the Limit Point Ambiguity when Stabilizing Π

Given that control law (2.39) drives the system to either (0, 0,Π) or (0,−mdΠ
J
, 0),

one might ask if there is a set of conditions that guarantees convergence to a par-

ticular equilibrium. Specifically, we would like to derive a set of conditions that will

force the dynamics to the desired equilibrium, (0, 0,Π).

Consider Lyapunov function (2.36) with the hat variables defined as in the

previous section. Plugging in the first equilibrium makes W (x) = 0. Similarly, the

bad equilibrium yields W (x) =
(dmΠ)

2

2mJ2 + Π
2

2J
. We will denote this value as Wbad.

Thus, (0, 0,Π) is a global minimizer of W (x), while (0,−mdΠ
J
, 0) is only a local

minimizer. Since Ẇ (x) ≤ 0, any initial condition, x0, chosen such that W (x0) <

Wbad will cause the system to be driven to the correct equilibrium.

We will now illustrate the relationship between a desired Π and the initial

conditions sufficient to ensure that control law (2.39) drives the system to (0, 0,Π).

To begin, assume that control law (2.16) has been used to drive the hovercraft

sufficiently to rest. By sufficiently, we mean that the Lyapunov function

V (x) =
PX

2 + PY
2

2m
+

Π2

2J
(2.40)

26

has attained a small positive value, ε. Note that V (x) < ε implies that Π2

2J
< ε, which

further implies that |Π| <
√

2εJ . Replacing the hat variables with their definitions

in equation (2.36) gives:

W (x) =
PX

2 + PY
2

2m
+

(
Π− Π

)2
2J

= V (x)− Π Π

J
+

Π
2

2J

< ε+

∣∣∣∣Π Π

J

∣∣∣∣+ Π
2

2J
(2.41)

Now, setting W (x0) < Wbad is sufficient to ensure convergence to the proper equi-

librium. The analysis proceeds as follows:

ε+

∣∣∣∣Π Π

J

∣∣∣∣+ Π
2

2J
<

(
dmΠ

)2
2mJ2

+
Π

2

2J

ε+

∣∣∣∣Π Π

J

∣∣∣∣ <
d2m

∣∣Π∣∣2
2J2

(2.42)

Recall that |Π| <
√

2εJ and observe that the l.h.s. of equation (2.42) is bounded

above by ε+ |Π|
J
|Π|. Thus, we may proceed for the worst case by substituting the

l.h.s. with the upper bound:

ε+
|Π|
J

√
2εJ <

d2m
∣∣Π∣∣2

2J2

εJ2 + J
√

2εJ
∣∣Π∣∣− d2m

∣∣Π∣∣2
2

< 0 (2.43)

Rewriting (2.43), the resulting sufficient condition is:

d2m
∣∣Π∣∣2
2

− J
√

2εJ
∣∣Π∣∣− εJ2 > 0 (2.44)

27

We will now find conditions on
∣∣Π∣∣ and ε such that condition (2.44) is satisfied. De-

fine f(v) = d2m|v|2
2

− J
√

2εJ |v| − εJ2. Differentiating with respect to v and setting

the resulting expression equal to 0 yields:

f ′(v) = (d2m) v − J
√

2εJ, v > 0

f ′(v) = (d2m) v + J
√

2εJ, v < 0

|v| =
J
√

2εJ

d2m
(2.45)

We evaluate f(v) at either critical point and obtain:

f(v)|
v=±J

√
2εJ

d2m

=
d2m

2

(
2εJ3

d4m2

)
− J

√
2εJ

(
J
√

2εJ

d2m

)
− εJ2

=
εJ3

d2m
− 2εJ3

d2m
− εJ2

= −εJ2

(
J

d2m
+ 1

)
< 0 (2.46)

Computing f ′′(v) = d2m > 0 shows that both of these critical points are minima.

This result guarantees that a Π exists satisfying condition (2.44). To find the valid

Π values, we first need to solve f(Π) = 0. We will denote the solutions by Π+
?

and

Π−
?
, for Π > 0 and Π < 0, respectively.

Π+
?

=

√
2εJ3 +

√
2ε (J3 + d2mJ2)

d2m

Π−
?

= −

(√
2εJ3 +

√
2ε (J3 + d2mJ2)

d2m

)
(2.47)

Referring to condition (2.44), we need only to choose Π > Π+
?
> 0 or Π < Π−

?
< 0.

This is accomplished by letting
∣∣Π∣∣ =

2
√

2ε(J3+d2mJ2)

d2m
. Solving for ε, we obtain:

ε(Π) =
(d2m)

2
Π

2

8 J2 (J + d2m)
(2.48)

28

Equation (2.48) prescribes the degree to which the hovercraft should be brought

to rest before switching to the Π stabilization control law. We see from the quadratic

dependence on Π that the tolerance becomes less restrictive as the target rate of

rotation is increased. Additionally, achieving a low rate of rotation imposes a larger

burden on the controller. For small Π, we must wait longer for the tolerance, ε,

to be met before switching to the Π stabilization law. Thus, (2.48) has important

implications for practical implementations of the control law, since a lower bound

may exist on the achievable ε due to noise and other system disturbances.

2.3 Control Laws to Stabilize the Full Dynamics

So far, we have analyzed a family of control laws to stabilize the reduced

dynamics. We derived and proved convergence properties for control laws that sta-

bilize the origin in (PX , PY ,Π) space, stabilize constant PX , and stabilize constant

Π. In this section, we will investigate the problem of stabilizing the full dynamics

in (PX , PY ,Π, rx, ry, θ) six-dimensional space.

2.3.1 Stabilization of the Origin

At this point, it is not even clear whether a continuously differentiable state

feedback control law exists to stabilize the full dynamics (2.11). Should such a

law exist, we expect it will be difficult to find, given that the hovercraft is not

actuated in the lateral direction. To answer the existence question, we turn to a

29

powerful theorem of Byrnes and Isidori [4], which provides a necessary and sufficient

condition.

Theorem 2.3.1 (Byrnes and Isidori Theorem)

Consider dynamics of the form:

ẋ2 = f2(x1, x2), x2 ∈ Rn2

ẋ1 = f1(x1, x2)x1 +
m∑

i=1

biui, ui ∈ R, x1, bi ∈ Rn1 (2.49)

Assume that

f(x) =

 f1(x)x1

f2(x)

 , x =

 x1

x2

 ∈ Rn1+n2 (2.50)

is in C∞ and has an equilibrium point at 0. Also, assume that the following condi-

tions are satisfied:

H1 : f2(x) = 0 =⇒ x1 = 0

H2 : ∂f2

∂x1
(0) has rank n2

(2.51)

Let m′ = dim (span{b1, . . . , bm}). Then, there is a continuously differentiable feed-

back law, ui = Fi(x), rendering the origin locally asymptotically stable ⇐⇒ m′ = n1.

Proposition 2.3.2 [10] The full hovercraft dynamics (2.11) cannot be stabilized

by a continuously differentiable feedback control law of the form u = F (x), where

u = [FX , FY]T, F (x) = [F1(x), F2(x)]T, and x = [PX , PY ,Π, rx, ry, θ]
T.

30

Proof: The full hovercraft dynamics can be cast into the desired form by letting

x1 =


PX

PY

Π

 , x2 =


θ

RX

RY



f1(x)=


0 Π

J
0

−Π
J

0 0

0 0 0

 , f2(x)=


Π
J

PX

m

PY

m



b1(x)=


1

0

0

 , b2(x)=


0

1

−d


where n1 = n2 = 3.

We begin by checking condition H1. f2(x) = 0 implies that (Π, PX , PY) = 0,

which is equivalent to x1 = 0. Thus, condition H1 is satisfied. To check condition

H2, we first compute

∂f2

∂x1

=


0 0 1

J

1
m

0 0

0 1
m

0

 (2.52)

and then note that rank
(

∂f2

∂x1

)
= 3 = n2. Condition H2 is also satisfied. We now

compute the span of the input vector field and obtain:

m′ = dim

span




1

0

0

 ,


0

1

−d





 = 2 (2.53)

31

Hence, m′ 6= n1. Therefore, citing Theorem 2.3.1, we conclude that a continuously

differentiable stabilizing feedback law does not exist. �

While Theorem 2.3.1 precludes the existence of a certain class of feedback laws,

all is not lost. We expect that a time-varying control law of the form u = F (t, x) or

a hybrid control scheme might achieve the desired goal. A hybrid controller consists

of n distinct control laws

fi = ui(t, x), i = 1, 2, . . . , n (2.54)

and a logic function

g : (t, x, v) 7−→ fi(t, x), x ∈ Rn, v ∈ Rq (2.55)

that switches between the control laws based on the system state x and addi-

tional system status v. For example, an algorithm for stabilizing the origin in

six-dimensional space might consist of the following steps:

(1) Compute the position error vector given the current location.

(2) Turn in place to align the hovercraft with the error vector.

(3) Move forward (or backward) until a prescribed positioning tolerance is met.

The reference velocity should decrease as the hovercraft nears the target po-

sition.

(4) Switch to the zero velocity stabilization law to stop the hovercraft.

(5) Turn in place until the desired heading is attained.

32

(6) If error tolerances are not met, go back to step (1). Otherwise, switch to the

zero velocity stabilization law.

In theory, this control scheme should stabilize the origin of the full dynamics.

The algorithm is inefficient, however, in that it does not take advantage of the

absence of nonholonomic constraints that one encounters in wheeled robots. For

example, it is not necessary to point the hovercraft before moving toward the target.

A clever time-varying control law would use the kinematic freedoms to position the

hovercraft in minimal time and with minimal energy.

Unfortunately, we have not yet identified a time-varying control law to stabi-

lize the origin. In general, stabilizing the full-dynamics of underactuated vehicles

requires geometric control concepts such as controllability, accessibility, and Lie

Bracketing. In the next section, we address the nontrivial problem of pointing the

hovercraft at a particular heading. We will use a stabilizability result proved by

Brockett to illustrate the difficulty involved.

2.3.2 Heading Stabilization Difficulties

On the surface, heading stabilization might not seem difficult to achieve. After

all, we have already demonstrated the existence of a control law to stabilize an

arbitrary angular momentum (2.39). One might imagine that the addition of the

kinematic state variable θ would not complicate matters too much. On the contrary,

we will shortly argue why any attempt to find a smooth state feedback law for

heading stabilization is futile.

33

Brockett’s necessary condition for feedback stabilizability [8] provides a simple

test to determine the existence of a continuously differentiable control law of the

form u = F (x) to stabilize a system equilibrium.

Theorem 2.3.3 (Brockett’s Necessary Condition for Feedback Stabilizability) Let

ẋ = f(x, u) be given with f(x0, 0) = 0 and f(·, ·) continuously differentiable in a

neighborhood of (x0, 0). A necessary condition for the existence of a continuously

differentiable control law which makes (x0, 0) asymptotically stable is that:

(i) the linearized system should have no uncontrollable modes associated with

eigenvalues whose real part is positive.

(ii) there exists a neighborhood N of (x0, 0) such that for each ξ ∈ N there exists

a control uξ(·) defined on [0,∞) such that this control steers the solution of

ẋ = f(x, uξ) from x = ξ at t = 0 to x = x0 at t = ∞.

(iii) the mapping defined by

γ : (x, u) 7−→ f(x, u) (2.56)

should be onto an open set containing 0.

Note that while Theorem 2.3.3 provides a weaker result than the Theorem of

Byrnes and Isidori, Brockett’s Theorem does not require any additional hypotheses

(other than the necessary conditions) to be satisfied. It is easy to show using a

direct application of Brockett’s Theorem that necessary condition (iii) is violated

with the inclusion of θ in the state vector.

34

Proposition 2.3.4 Given system dynamics (2.10), together with θ̇ = Π
J
, there

is no continuously differentiable state feedback law that stabilizes the equilibrium

(PX , PY ,Π, θ) = 0.

Proof: We will consider (2.10) together with the equation θ̇ = Π
J
. These equations

are independent of the remaining two equations in the full dynamics (2.11). Let η

be the combined state and control vector given by η = [PX , PY ,Π, θ, FX , FY]T. We

need to check whether the mapping, γ : η 7−→ f(η), is onto a neighborhood of the

origin. Let α , (α1, α2, α3, α4) be an arbitrary point in a neighborhood of γ(η) = 0.

Now, using

γ(η) =



PY
Π
J

+ FX

−PX
Π
J

+ FY

−dFY

Π
J


(2.57)

and solving γ(η) = α, we immediately obtain:

Π = α4 J (2.58)

FY = −α3

d
(2.59)

−PX (α4)−
α3

d
= α2 (2.60)

PY (α4) + FX = α1 (2.61)

A problem occurs in equation (2.60) if α4 = 0. In this case, we obtain α3 = −α2 d,

which may be false depending on the arbitrarily chosen values α2 and α3. Thus,

γ(η) = α fails to be consistent for certain values of α, and we conclude that γ(η)

35

is not onto. The failure of condition (iii) in Theorem 2.3.3 implies that a C1 state

feedback law stabilizing (PX , PY ,Π, θ) = 0 does not exist. �

Since Brockett’s necessary condition is not satisfied, we should not waste our

time searching for a continuously differentiable state feedback law to stabilize an

arbitrary heading. Instead, we might consider time-varying feedback laws or a con-

trol algorithm that switches between two or more of the reduced dynamics laws

discussed previously. It turns out that we can achieve fairly good performance by

adopting a hybrid control approach and making use of control primitives to point

the hovercraft at an arbitrary heading.

2.3.3 A Hybrid Approach to Heading Stabilization

At this point, two of the reduced dynamics control laws in particular should

come to mind. Obviously, these are the zero velocity stabilization law (2.16) and the

constant Π stabilization law (2.39). The most straightforward pointing algorithm

consists of the following steps:

(1) Choose a pointing tolerance, δ > 0, and a fixed angular momentum, Π.

(2) Switch to the zero velocity stabilization law.

(3) Compute the error in alignment, θ̂ , θ − θ. If |θ̂| ≤ δ go to (2).

(4) Wait until condition (2.48) is satisfied for the preselected ±Π.

(5) Switch to the Π stabilization law.

36

(6) Recompute θ̂. If |θ̂| ≤ δ, go to (2). Otherwise, wait for the pointing tolerance

to be achieved.

Thus, the strategy is to switch between the two behaviors stop and turn in

place as needed to maintain the desired heading θ. The two parameters to be chosen

in this control scheme are δ and Π. δ determines how precise we want the pointing to

be, while Π controls the rate at which we get there. These parameters greatly affect

the overall performance of the pointing algorithm. Choosing δ too small will cause

the system to oscillate rapidly about the desired heading, wasting valuable energy.

Picking Π too large will cause the hovercraft to overshoot the desired heading and

also waste energy. Therefore, proper parameter values for a real system should be

chosen using good design common sense or the aid of a simulator.

An extension to the heading stabilization algorithm proposed above is to vary

the parameter value Π in response to the heading error. For example, define an

error signal, θ̂(t) , θ(t)− θ, representing the error in desired heading alignment. A

simple proportional feedback control law is constructed by setting Π(t) = −k θ̂(t),

where k > 0 is the gain. This control law captures the basic idea that for maximum

performance, we should turn faster as we deviate farther from the desired heading.

The angular velocity should continue to decrease as we approach the target, until

a certain heading tolerance is achieved. At that point, the controller should switch

to the zero velocity control law to stop the hovercraft and maintain the current

heading.

37

The difficulty with this control scheme stems from the fact that the Π stabi-

lization law can converge to two different limit points: (0, 0,Π) and (0,−mdΠ
J
, 0).

Since initial conditions determine the equilibrium to which the system converges,

care must be taken when varying Π. Recall from section 2.2.5 the requirement to

sufficiently damp all velocities before switching to the Π stabilization law. The

condition states that smaller Π requires greater system “stillness” before switch-

ing control laws. Following the arguments presented in section 2.2.5, an equivalent

restriction exists on the rate by which Π may be decreased.

We will now derive an inequality that relates the current Π and system veloc-

ities to a new provisioned Π
?
. This newly computed Π

?
may then be substituted

safely into the Π stabilization law. To fix ideas, let Wv(x) refer to Lyapunov func-

tion (2.36), with P̂X = PX , P̂Y = PY , and Π̂ = Π− v. Assume that we are currently

running the Π stabilization law (2.39) and WΠ(x) < ε. First, note that

WΠ(x) < ε =⇒
(
Π− Π

)2
2J

< ε

=⇒
∣∣Π− Π

∣∣ < √2εJ (2.62)

The local minimum of the Lyapunov function for a new Π
?

is obtained by evaluating

WΠ
?(x) at (0,−mdΠ

?

J
, 0). This yields:

WΠ
?
bad

=

(
mdΠ

?
)2

2mJ2
+

Π
?2

2J
(2.63)

38

We must now evaluate the Lyapunov function, WΠ
?(x), at a general point x. For

notational simplicity, we replace the hat variables with their definitions.

WΠ
?(x) =

PX
2 + PY

2

2m
+

(
Π− Π

?
)2

2J

=
PX

2 + PY
2

2m
+

(
Π− Π + Π− Π

?
)2

2J

= WΠ(x) +

(
Π− Π

) (
Π− Π

?
)

J
+

(
Π− Π

?
)2

2J

≤ WΠ(x) +

∣∣∣Π− Π
∣∣∣ ∣∣∣Π− Π

?
∣∣∣

J
+

(
Π− Π

?
)2

2J

< ε+
√

2εJ

∣∣∣Π− Π
?
∣∣∣

J
+

(
Π− Π

?
)2

2J
(2.64)

where the last step follows from equation (2.62). We are now ready to derive the

sufficient condition by setting WΠ
?(x) < WΠ

?
bad

and using inequality (2.64):

WΠ
?(x) < ε+

√
2εJ

∣∣∣Π− Π
?
∣∣∣

J
+

(
Π− Π

?
)2

2J
<

(
mdΠ

?
)2

2mJ2
+

Π
?2

2J
(2.65)

We will assume first that Π− Π
? ≥ 0 =⇒ 0 < Π

? ≤ Π. Expanding and grouping

terms in equation (2.65) yields the following inequality:

d2mΠ
?2

+ 2J
(√

2εJ + Π
)

Π
? − J

(√
2εJ + Π

)2

> 0 (2.66)

Immediately, we observe that there is a hope of satisfying inequality (2.66) since the

l.h.s. is a convex function of Π
?
. If we make (2.66) an equality, replace Π

?
with a

dummy variable v, and determine that the equation admits real roots, then we need

39

only to choose a value for Π
?

larger than the max root. Solving for the max root,

vmax, yields:

vmax =
−2J

(√
2εJ + Π

)
+

√
4J2

(√
2εJ + Π

)2

+ 4d2mJ
(√

2εJ + Π
)2

2d2m

=
−2J

(√
2εJ + Π

)
+

√
4J2

(√
2εJ + Π

)2 (
1 + d2m

J

)
2d2m

=
−J

(√
2εJ + Π

)
+ J

(√
2εJ + Π

) √
1 + d2m

J

d2m

=

J
(√

2εJ + Π
) (√

1 + d2m
J
− 1

)
d2m

=

√
J
(√

2εJ + Π
) (√

J + d2m−
√
J
)

d2m
(2.67)

By choosing 0 < vmax < Π
? ≤ Π we assure asymptotic convergence to the new an-

gular velocity, Π
?
. Conversely, if the assumption is made in (2.65) that Π− Π

? ≤ 0

=⇒ Π ≤ Π
?
< 0, then the sufficient condition amounts to Π ≤ Π

?
< vmin < 0 where

vmin is the min root given by:

vmin =

√
J
(
Π−

√
2εJ
) (√

J + d2m−
√
J
)

d2m
(2.68)

Equations (2.67) and (2.68) may be combined into

|v| =

√
J
(√

2εJ +
∣∣Π∣∣) (√J + d2m−

√
J
)

d2m
(2.69)

and the sufficient condition stated succinctly as:

0 < |v| < |Π?| ≤ |Π|. (2.70)

Using the results of the above analysis, the heading stabilization algorithm

now takes the following form:

40

(1) Choose a pointing tolerance, δ > 0, and proportional feedback gain, k > 0.

(2) Switch to the zero velocity stabilization law.

(3) Compute the error in alignment, θ̂ = θ − θ. If |θ̂| ≤ δ go to (2).

(4) Compute the desired angular momentum, Π, using the feedback control law,

Π = −k θ̂.

(5) Wait until condition (2.48) is satisfied for the selected Π.

(6) Switch to the Π stabilization law.

(7) Recompute θ̂. If |θ̂| ≤ δ go to (2).

(8) Evaluate equation (2.69) for |v|. Set Π
?

= ±max (|v|, k|θ̂|).

(9) Set Π = Π
?

and go to (6).

This algorithm adds additional complexity to the bang-bang type control

scheme originally proposed. Only simulation will allow us to conclude which hybrid

controller performs best in terms of transient response, settling time, and steady-

state error.

41

Chapter 3

Inertial Navigation Systems

3.1 Introduction

Consider a point mass moving along a one-dimensional line. Given the time

history of acceleration, the velocity may be computed by integrating the acceleration

with respect to time. Furthermore, the position of the point mass at any instant of

time is given by an additional integration. Mathematically, the kinematic equations

for the point mass are:

v(t) = v(t0) +

∫ t

t0

a(τ)dτ

x(t) = x(t0) +

∫ t

t0

v(τ)dτ (3.1)

where a is the acceleration, v is the velocity, and x is the position. The point

mass system described above is an example of a one-dimensional inertial navigation

system (INS) and requires measurements from only one accelerometer to determine

velocity and position along a line.

Let us now extend this example and allow the point mass to move freely in two

or three dimensions. The acceleration experienced by the particle has both magni-

tude and direction and must be treated as a vector. As before, perfect knowledge

42

of the acceleration vector time history allows us to compute the particle’s velocity

and position using the vector equations:

v(t) = v(t0) +

∫ t

t0

a(τ)dτ

x(t) = x(t0) +

∫ t

t0

v(τ)dτ (3.2)

Practical inertial navigation systems are comprised of two main parts: an

inertial measurement unit (IMU) and a processor to interface with the IMU and

solve the navigation equations. As its name implies, an IMU is a device consisting

of one or more inertial sensors (e.g. accelerometers, inclinometers, and gyroscopes)

that provides information about the motion of a physical body with respect to

an inertial frame. An inertial frame is a reference frame that is not rotating or

experiencing any linear acceleration. It is also a reference frame in which Newton’s

Laws may be applied without any corrective terms, such as Coriolis force.1

Accelerometers are devices that measure the total acceleration (also called spe-

cific force) experienced by a body with respect to an inertial frame. The measured

acceleration consists of two components – pure inertial acceleration and Earth’s

gravity. An accelerometer can not differentiate between these two acceleration com-

ponents.

Gyroscopes measure angular velocity about a sensitive axis with respect to

an inertial frame. Given perfect measurements, these two types of sensors provide

all the information needed to determine the velocity, position, and orientation of

1Coriolis force is an example of a fictitious force that appears in dynamical equations written

in a rotating reference frame.

43

a body in three dimensions at each point in time, assuming initial conditions are

known. To see how these sensors are used in an INS, it is essential to understand

the concept of reference frames.

3.1.1 Reference Frames

The position, velocity, and orientation of a body is meaningful only when

specified with respect to a reference frame. Generally, a set of coordinate axes called

the body frame is attached to the center of mass of a rigid body. The exact point of

attachment is not essential, although selecting the center of mass greatly simplifies

the kinematic equations. Several conventions exist for aligning the coordinate frame

with the body. We will use the convention for aircraft, in which the x axis points

in the direction of the nose, the y axis points in the direction of the right wing, and

the z axis points toward the bottom of the aircraft.

There are also several different navigation reference frames. The choice of

frame strongly depends on the specific application requirements. Some reference

frames are static while others move along the surface of the Earth. The most

common navigation reference frames include the Earth-centered Earth-fixed (ECEF)

frame, the Earth geographic frame, the Earth geocentric frame, and the local tangent

plane. The ECEF frame is unique among the reference frames in that it is an inertial

frame.

44

3.1.2 Reference Frame Rotations

A theorem due to Euler states that for two coordinate systems in R3 sharing

a common origin, there exists a unique vector in R4 that may be used to bring

the first coordinate system into coincidence with the second. The vector, called a

quaternion, prescribes the unique axis of rotation in R3 and the amount of rotation

needed. When quaternions are constrained to have unit norm, they are elements of

the generalized unit sphere in R4. Although quaternions have one more parameter

than necessary to represent orientation in three dimensions, they are completely free

from the singularities that plague other representations of attitude.

The information contained in a quaternion may also be packaged in matrix

form. For example, a Direction Cosine Matrix (DCM) is an orthonormal matrix

that belongs to SO(3), the Lie group that describes rotations in three-dimensional

space. Given two coordinate systems related by a rotation, the columns of the

DCM are the basis vectors of the first coordinate system resolved in the second

coordinate system. Thus, pre-multiplying a vector in the first coordinate system

by the DCM transforms the vector to the second coordinate system. Note that

vector transformations between reference frames always preserve the norm of the

transformed vector.

A third way to specify rotations is with three Euler angles. These angles have

special names – yaw is rotation about the z axis, pitch is rotation about the y axis,

and roll is rotation about the x axis. Though physically intuitive, Euler angles suffer

from two major problems. First, the orientation resulting from three Euler rotations

45

is dependent on the order in which the individual rotations are executed. Although

certain conventions exist (such as yaw-pitch-roll), there is always the potential for

ambiguity. More importantly, Euler angles exhibit singularities at pitch angles of

±90◦. At these singularities, the roll and yaw angles change instantaneously by

180◦.

We can now appreciate the importance of reference frames to inertial naviga-

tion systems. Measurements taken by the IMU in the body frame must be resolved

in the navigation frame prior to updating the kinematic equations (3.2). Thus, ac-

curate determination of the time-varying rotation matrix is crucial to the overall

accuracy of the complete navigation solution.

3.1.3 Rotation Matrix Dynamics

For an inertial navigation frame, the evolution of the direction cosine matrix,

B, satisfies the differential equation:

Ḃ(t) = B(t) Ω̂ (3.3)

where Ω̂ is the skew symmetric angular velocity matrix given by [ω×]. The vector,

ω, denotes the angular velocity of the body frame with respect to the navigation

frame, expressed in body frame coordinates.

A closed form solution [11] to equation (3.3) at time tk is given by:

B(tk) =

[
I +

sin (‖v‖)
‖v‖2 Γ +

1− cos (‖v‖)
‖v‖2 Γ2

]
B(tk−1) (3.4)

where Γ(tk) = [v(tk)×], vi(tk) = −
∫ tk

tk−1
ωi(τ)dτ for piecewise constant ωi(t), t ∈

[tk−1, tk], and i = 1, 2, 3. Typically, a triad of gyroscopes is used to measure the

46

angular velocities about the three body axes. Equation (3.4) is well defined as

‖v‖ → 0, but care must be taken to ensure that the rotation matrix remains or-

thonormal after each update.

The rotation matrix dynamics for a two-dimensional INS simplify greatly. For

a right-handed body frame, Ω̂ is the skew symmetric angular velocity matrix given

by:

Ω̂ =

 0 −Ω

Ω 0

 (3.5)

where Ω is the angular velocity about the body Z axis. Consequently, equation

(3.3) reduces to the dynamics of a harmonic oscillator with time-dependent natural

frequency, Ω, and solution at time tk given by:

B(tk) =

 cos(θ(tk)) − sin(θ(tk))

sin(θ(tk)) cos(θ(tk))

 (3.6)

where θ(tk) = θ(tk−1) +
∫ tk

tk−1
ωZ(τ)dτ is the computed yaw angle, obtained by inte-

grating the Z-axis angular velocity over the interval [tk−1, tk]. Thus, for a planar

INS with the body XY plane parallel to the inertial xy plane, only a single gyroscope

is needed to compute the orientation matrix.

3.1.4 Sensors and Technology

3.1.4.1 Accelerometers

Accelerometers are devices that measure the specific force vector. In principle,

an accelerometer consists of a small proof mass attached to a damped spring system.

47

When the accelerometer is subjected to linear acceleration (or Earth’s gravity) along

its sensitive axis, the mass is displaced according to Newton’s Second Law of Motion.

The position of the proof mass satisfies the following differential equation [11]:

r̈ = − k

m
r− d

m
ṙ + G(r) (3.7)

where r is the position of the proof mass, G(r) is the position-dependent gravita-

tional field vector, k is the spring constant, d is the damping coefficient, and m is

the mass. If we assume that the output of the accelerometer is given by f = − k
m
r,

then we obtain the following equation:

αḟ = −f + r̈−G(r) (3.8)

where α = d
k

is the accelerometer bandwidth. For frequencies well within the band-

width, the accelerometer output is given by:

f = r̈−G(r) (3.9)

We see that the specific force measurement is a combination of both the pure

linear acceleration experienced by a body and the local gravity vector. The grav-

ity vector must be subtracted from the specific force measurement before using

the measurement in the navigation equations. Fortunately, accurate models of the

Earth’s gravitational field exist and may be used to estimate the gravity vector at

any location near the surface of the Earth.

48

3.1.4.2 Gyroscopes

Gyroscopes are sensors that measure angular velocity about a sensitive axis.

The original single degree of freedom (SDF) mechanical gyroscope was pioneered

by C.S. Draper at the Instrumentation Laboratory at the Massachusetts Institute

of Technology. One of the first applications of the gyroscope was to stabilize Navy

antiaircraft gunsights.

The functionality of the SDF gyroscope is based on the principle of gyroscopic

precession. Gyroscopic precession occurs when a spinning wheel is acted on by

a torque orthogonal to the spin axis. This applied torque is transferred to an axis

perpendicular to the plane formed by the spin and torque axes. If the spinning wheel

is mounted to a gimbal (so that the precession axis is free to rotate), the wheel will

precess about this axis in response to an applied torque. The SDF gyroscope uses

an angular pickoff device to measure the amount of gyroscopic precession about the

output axis.

Physics dictates that an angular velocity, ωi, about the gyro input axis pro-

duces a torque along the output axis. This torque causes the output axis to rotate

at the rate ωo = H
C
ωi, where H is the gyro angular momentum and C is the gyro

viscous damping coefficient [12]. Thus, the angular position of the output axis is

directly proportional to the integral of the input angular velocity.

In effect, the angular pickoff sensor in the SDF gyroscope provides a measure-

ment of the integrated input angular velocity. The orientation of the body about

the gyroscope’s sensitive input axis may then be computed by appropriately scaling

49

the measurement. For this reason, the SDF gyroscope is referred to as an inte-

grating gyroscope. Alternatively, an electric torque generator may be connected to

the gyro output axis to oppose the precession described above. Knowledge of the

applied torque (proportional to the electric current) may then be used to compute

the angular velocity, wi.

Through the years, several new gyroscope technologies have emerged. Com-

mon gyroscope technologies include the electrostatic gyro, the ring laser gyro, and

resonator gyros. Each of these technologies takes advantage of different physical

phenomena to measure angular velocity about a sensitive axis.

3.1.5 Shortcomings of Inertial Navigation Systems

Given perfect measurements of the specific force and angular velocity vectors,

an inertial navigation system provides exact instantaneous velocity, position, and

orientation according to equations (3.2) and (3.4). Inertial sensors are physical

devices, however, and can provide measurements of only limited accuracy. While

each measuring device has its own particular sources of error, there are several

commonalities, including [13]:

• A fixed bias which may be corrected (usually by the manufacturer)

• A temperature dependent time-varying bias which may be corrected through

sensor calibration

• A random bias that is constant throughout a run, but varies from turn-on to

turn-on

50

• A time-varying in-run bias

Depending on the particular sensor, there may be additional sources of error that can

be corrected through calibration. Sources of error common to both accelerometers

and gyroscopes include:

• Scale Factor Errors – Scale factor errors are expressed as a ratio that relates

a change in the output signal to a change in the physical quantity being mea-

sured.

• Cross-Coupling Errors – These errors result from sensitivity to an axis that is

normal to the sensor axis.

• Frequency Dependent Errors – Each sensor has a finite bandwidth. Excitation

at frequencies near the frequency cutoff results in erroneous measurements

suffering from scaling errors and delay.

Each of these errors degrades the accuracy of an inertial navigation system.

In particular, an accelerometer with a static random bias produces errors that grow

linearly in the computed velocity and quadratically in position. Gyroscopes also

typically exhibit a small bias, resulting in orientation errors that grow linearly. Left

unchecked, these errors will increase without limit. One way to improve the accuracy

of inertial navigation systems is by aiding the INS with additional information.

51

3.1.6 Aided Inertial Navigation Systems

An aided inertial navigation system consists of an IMU and additional mea-

surements from a system that may be onboard or external to the INS. For example,

an INS may use an onboard Doppler radar system to estimate the instantaneous

velocity. On the other hand, the Global Positioning System (GPS) is an example of

an external aiding system.

For an aided INS to perform well, the aiding device must sufficiently aug-

ment the amount of information available. The most effective aiding sensors possess

characteristics that are complementary in nature to inertial sensors. For example,

inertial sensors provide high bandwidth measurements, but suffer from random bi-

ases. In contrast, effective aiding sensors typically provide long-term stability at the

expense of a lower update rate.

A well designed INS should combine all of the available information to form

the best estimate of the system’s orientation, velocity, and position. A Kalman

Filter is often used to combine the measurements and provide a good estimate of

the navigation state.

3.2 Problem Statement

3.2.1 The Need for an INS

The need for an accurate navigation system is motivated by the desire to

achieve high performance closed loop control of a small radio controlled hovercraft.

52

Accurate linear and angular velocity estimates are needed for feedback control of

the reduced dynamics (see section 2.2), while accurate position estimates are needed

for trajectory tracking.

Unlike wheeled robots which may use odometry to estimate velocity, heading,

and position, a hovercraft lacks any built-in system for measuring its navigation

state. Therefore, we must develop an accurate aided INS to make such control efforts

possible. The theory of inertial navigation and aided navigation systems is well

understood. We found [11–13] to be excellent resources on INS theory, technology,

and implementation issues.

3.2.2 Design Assumptions

Prior to undertaking the development of an INS, it is imperative to establish

a set of specific performance requirements as well as realistic design and operational

assumptions. If large deviations from the nominal operating conditions occur, we

should not expect the INS to provide an accurate navigation solution.

Planar Assumption

We will assume that the hovercraft body is confined to the plane and thus

normal to the gravity vector. Since the hovercraft is a planar vehicle, we will de-

vote our effort to the development of a two-dimensional aided INS. Our decision to

limit the navigation solution to the plane is strengthened by several practical and

theoretical considerations explained below.

53

First, updating the rotation matrix is much easier for the planar case. Instead

of evaluating equation (3.4) at each time step, we need only to integrate the output

from the Z gyroscope and substitute the result into equation (3.6). Observe that

(3.6) guarantees an orthonormal matrix for all time tk by construction.

Determining attitude is also more difficult in the full three-dimensional setting.

Initial attitude determination is usually accomplished by using the accelerometers

to measure pitch and roll and a magnetometer to measure yaw. The IMU must

remain stationary during the alignment process, as any uncompensated linear accel-

eration will corrupt the pitch and roll measurements. Accurate attitude measure-

ment under dynamic conditions is more complex. Traditional methods for attitude

determination include deterministic constrained least-squares using multiple vec-

tor observations and Extended Kalman Filtering. Novel approaches use advanced

techniques such as adaptive filtering combined with traditional Kalman Filtering,

Dynamic Programming, and state-matrix Kalman Filtering [14].

A deterministic approach to attitude determination stems from the work of

Wahba [15]. In 1965, Wahba addressed the following problem: given two sets of

vectors, each containing at least two elements that are nonzero and non-collinear,

find the unique rotation matrix that achieves the best least-squares alignment be-

tween the two vector sets. For example, suppose that the IMU features a 3-axis

magnetometer to measure Earth’s magnetic field resolved in the body frame. Ad-

ditionally, assume that the IMU is stationary so that the accelerometers provide a

measurement of the gravity vector in body coordinates. If the gravity and magnetic

field vectors are computed in the local navigation frame (using mathematical models

54

of Earth’s local magnetic field and gravity), then the unique direction cosine matrix

may be determined through an iterated least-squares approach.

It can be particularly challenging to determine three-dimensional attitude

while accelerating. As discussed in section 3.1.5, gyros are prone to random bias

errors. In many INS systems, the gyros are bias compensated using magnetometer

measurements and low-pass filtered accelerometer data. A constrained least-squares

approach, such as the q-method [16], is used to compute an estimate of the atti-

tude for aiding purposes. For these Attitude/Heading Reference Systems (AHRS),

it is assumed that the average linear acceleration over long time intervals is zero.

Under this assumption, low-pass filtering removes the high frequency acceleration

transients and yields an estimate of the gravity vector.

The problem is that there may be significant positively (or negatively) biased

linear acceleration during prolonged vehicle maneuvers. In these situations, the

filtered measured acceleration will not approximate the gravity vector, and the INS

may develop large attitude errors. For example, attitude errors would likely occur

while executing a prolonged turn or accelerating to speed. Although the INS would

eventually correct these errors once the pure acceleration component was removed,

convergence to the correct solution might take some time.

In recent work, researchers at Stanford University [17] demonstrated the suc-

cess of a gyro-less attitude determination system on an actual airplane using a 3-axis

magnetometer, a 3-axis accelerometer, and GPS velocity estimates. The team used

time-differenced GPS velocity measurements as an estimate of the vehicle acceler-

ation. This estimate was then subtracted from the accelerometer measurements to

55

obtain an estimate of the gravity vector in the body frame. The fusion of these

attitude estimates with angular velocity measurements from a triad of gyroscopes

would yield even better performance.

Each of the above approaches to three-dimensional attitude determination

involves considerable complexity. Determining attitude for a two-dimensional INS

is simplified greatly, as there is only one degree of rotational freedom. Thus, we

need only to integrate the output of a single gyro to estimate the heading angle.

The two-dimensional INS assumption also simplifies the measurement of the

vehicle’s linear acceleration. Assuming that the planar hypothesis is valid, the X

and Y -axis accelerometers will remain closely normal to the gravity vector and

report only pure linear acceleration. Small perturbations in pitch and roll angle will

inevitably contribute a small time-varying bias to each sensor. With proper aiding,

however, we hope to estimate and remove these small biases in real-time to achieve

an accurate navigation solution.

Inertial Reference Frame Assumption

We will use the tangent plane (North, East, Down) as the local navigation

frame. The tangent frame is obtained by attaching a plane to the surface of the

Earth at a specific point. Furthermore, we will assume that Coriolis acceleration

may be neglected. Coriolis acceleration occurs when a body has nonzero velocity

with respect to a rotating reference frame (the Earth). It is given by ωe × v, where

ωe is the Earth’s angular velocity vector and v is the body velocity with respect to

56

the Earth. Since the hovercraft is a low-velocity vehicle (as opposed to a tactical

missile), the error that results from neglecting Coriolis acceleration will be small.

3.2.3 Performance Goals

We wish to develop an aided two-dimensional INS suitable for control of a

small hovercraft. The INS will provide bias corrected estimates of the Z-axis angular

velocity and the x and y-axis linear acceleration. Additionally, the INS will provide

accurate estimates of heading, linear velocity, and position, resolved in an inertial

frame.

Aiding will be accomplished through the use of two auxiliary sensors. An

indoor positioning system called “Cricket” [18,19], similar in functionality to GPS,

will provide two-dimensional position estimates to the INS. Additionally, an onboard

magnetometer will provide estimates of the heading angle. We assume that any local

magnetic field disturbances will be minimal and not adversely affect the heading

determination. (Later, in section 5.4.2, we explain why this assumption is actually

false.)

A Kalman Filter will be used to combine the sensor information and produce

an estimate of the navigation state. In the next section, we discuss the theory

of Kalman Filtering and its application to aided inertial navigation systems. A

mathematically rigorous treatment of Kalman Filtering may be found in [20].

57

3.3 Kalman Filtering

3.3.1 Kalman Filtering Theory

The Kalman Filter is a recursive algorithm that combines multiple noisy obser-

vations to produce a minimum variance state estimate. When the system dynamics

are linear and the disturbance is white Gaussian noise, the Kalman Filter is an opti-

mal state estimator of the conditional mean, median, and mode [20]. As an optimal

estimator, the Kalman Filter minimizes the mean square error of the state estimate.

The Kalman Filter was developed in the 1960s by Rudolf Kalman. One of

the first Kalman Filtering applications was trajectory estimation for the Apollo

missions. Since then, Kalman Filtering has found extensive use in aided navigation

systems, where the fusion of multiple sensor measurements can improve navigation

accuracy substantially.

We will now provide a brief overview of Kalman Filtering theory. In the

following presentation, a sans-serif font is used to denote random variables.

Suppose we have a vector of measurements, Z(ti), such that

Z(ti) ,



z(t1)

z(t2)

...

z(ti)


(3.10)

58

is comprised of vector measurements z(tj) for j = 1, 2, . . . , i. Assume further that

the initial state vector x(t0) is a Gaussian random variable and the state dynamics

are linear and of the form:

x(ti) = Φ(ti, ti−1)x(ti−1) +B(ti−1)u(ti−1) +G(ti−1)w(ti−1) (3.11)

where x(ti) ∈ Rn, u(ti) ∈ Rm, and w(ti) ∈ Rq is a zero-mean discrete white noise

process with covariance given by:

E {w(ti)w(tj)} =


Q(ti) ti = tj

0 ti 6= tj

. (3.12)

Finally, assume that the measurement equation is of the form:

z(ti) = H(ti)x(ti) + v(ti) (3.13)

where the measurement noise, v(ti) ∈ Rr is white and Gaussian with covariance:

E {v(ti)v(tj)} =


R(ti) ti = tj

0 ti 6= tj

. (3.14)

The Kalman Filter algorithm computes x̂(ti) , E {x(ti)|Z(ti)} at each time

step without actually storing the entire measurement history vector, Z(ti). Since

it is a recursive algorithm, the Kalman Filter greatly reduces memory and process-

ing requirements and makes real-time computation of the state conditional mean

possible. The filtering algorithm is comprised of two main steps: state update and

state propagation. We will trace the algorithm from time t−i to time t+i+1, where

the minus and plus superscripts denote time instants immediately before and after

measurement incorporation respectively.

59

At time ti
−, a new measurement, z(ti) is available. The filter incorporates the

measurement and updates the state estimate according to:

K(ti) = P (t−i)HT(ti)
[
H(ti)P (t−i)HT(ti) +R(ti)

]−1
(3.15)

x̂(t+i) = x̂(t−i) +K(ti)
[
z(ti)−H(ti)x̂(t−i)

]
(3.16)

P (t+i) = P (t−i)−K(ti)H(ti)P (t−i) (3.17)

Equations (3.15) - (3.17) comprise the state update portion of the algorithm.

K(ti) is the time-varying Kalman gain matrix and the term z(ti)−H(ti)x̂(t−i) is

called the innovation. The gain matrix optimally weights the new information con-

tained in the innovations to produce a new best estimate of the state. P (ti) is a

positive definite matrix called the error covariance matrix and is defined by:

P (ti) = E
{
e(ti)e(ti)

T
}
,

e(ti) , x(ti)− x̂(ti) (3.18)

The term e(ti) represents the amount of error in the state estimate at time ti.

Thus, P (ti) is an estimate of the amount of error present in the state estimate at

each time step. Observe that the calculation of K(ti) and P (ti) does not depend on

an actual realization of the measurement process, z(ti). This property enables the

gain and error covariance matrices to be precomputed offline and stored for later

retrieval in a real-time application. Finally, the measurement covariance matrix,

R(ti), is positive semidefinite and defined according to equation (3.14).

60

After the state update portion of the Kalman Filter algorithm has completed,

the state x(ti) and error covariance matrix P (ti) are propagated to time t−i+1 accord-

ing to the system dynamics model. The propagation equations are:

x̂(t−i+1) = Φ(ti+1, ti)x̂(t+i) +B(ti)u(ti)

P (t−i+1) = Φ(ti+1, ti)P (t+i)ΦT(ti+1, ti) +G(ti)Q(ti)G
T(ti) (3.19)

where x̂(t0) and P (t0) are the initial state and error variance matrix estimates respec-

tively. Eventually, a new measurement becomes available, and the state estimate

and error covariance matrix are updated to time t+i+1 using equations (3.15) - (3.17).

The state dynamics in (3.11) are linear in the state vector, which is assumed

to be a Gaussian random variable. Furthermore, it is assumed that the input distur-

bance is white Gaussian noise. Since linear operations on Gaussian random variables

preserve the Gaussian property, the state vector remains Gaussian throughout its

evolution. In this special case, the Kalman Filter provides all the information needed

to construct the conditional probability density function, fx(ti) (x(ti)|Z(ti)).

Additionally, when the dynamics are linear and the Gaussian noise assumption

holds, the Kalman Filter produces a state estimate equivalent to E {x(ti)|Z(ti)}.

Since E {x(ti)|Z(ti)} is the optimal estimate of x(ti) given the entire measurement

history, Z(ti), the Kalman Filter is the optimal state estimator in this case. If the

Gaussian assumption does not apply, the Kalman Filter is still the best minimum

error variance linear filter [20].

61

3.3.2 Kalman Filtering Applied to Inertial Navigation Systems

Aided inertial navigation systems combine measurements from multiple sensors

to provide real-time estimates of velocity, orientation, and position. The challenge

is determining how to combine these sensor measurements optimally to produce the

best estimate of the navigation state.

We have seen that the Kalman Filter is the optimal state estimator when the

dynamics are linear and the noise is white and Gaussian. The Kalman Filter is also

an efficient recursive algorithm directly suited to real-time computation.

There are two main ways to incorporate Kalman Filtering into inertial navi-

gation systems. In the direct implementation, the Kalman Filter is connected inline

with the INS. For reasons that will soon be explained, the preferred alternative is

the indirect implementation, in which the Kalman Filter forms a parallel branch

with the INS.

3.3.2.1 Direct Implementation

The direct implementation is also called the total error space configuration. In

this configuration, the Kalman Filter uses the actual navigation variables as states

and implements a dynamical model of the INS. The inputs to the Kalman Filter

are the raw sensor measurements from the IMU and the external aiding source(s).

Figure 3.1 shows a diagram of the direct implementation. Perhaps not immediately

obvious, there are several serious drawbacks to the direct implementation.

62

Figure 3.1: Direct Kalman Filter implementation. Thick arrows denote high data

rate paths.

First, the INS dynamics model is nonlinear due to multiplication by the ori-

entation matrix, B, in the navigation equations. In order to use Kalman Filtering,

the dynamics must be linearized at each execution step. Second, the Kalman Filter

must execute at the high data rate imposed by the inertial sensors. Propagating and

updating the prediction equations at the high frequency IMU update rate requires

large processing bandwidth and places undue burden on the CPU. The situation can

be especially troublesome if the matrix to be inverted in the update step is large.

Finally, there are practical issues regarding reliability in the direct implementation.

If for some reason the Kalman Filter processor fails, the user will be unable to ac-

cess any navigation estimates. It would be preferable to provide at least degraded

navigation information while the Kalman Filter remained offline.

3.3.2.2 Indirect Implementation

A more robust and practical aided INS uses the indirect, or error state space

implementation. The indirect implementation features the Kalman Filter block

63

in parallel with the INS. Rather than unnecessarily burdening the processor, the

indirect implementation relies on the high bandwidth and short term stability of

the INS to provide estimates of velocity, orientation, and position that are accurate

over short intervals. The INS error drift rate is dependent on the quality of the

inertial sensors.

Unlike the direct implementation which uses the navigation variables as states,

the indirect Kalman Filter estimates the navigation errors. During the update step,

the filter uses a measurement of the navigation error (obtained by subtracting the

aiding measurement from the predicted value) to improve the estimate of the error

states. Navigation error models are well understood, have low frequency dynamics,

and are adequately modeled by linear systems [20]. The way in which the estimated

error states are utilized depends on whether a feedback or feedforward configuration

is used.

In the feedforward configuration (shown in Figure 3.2), there is no direct con-

nection to the INS. The error states are subtracted from the time-integrated inertial

measurements to form the corrected navigation outputs. The primary disadvantage

of the feedforward implementation is the possibility for the error states to become

large. Without any feedback, the INS integrators will continue to accumulate errors,

and the errors states will grow without bound. Since the error dynamics usually

are obtained through linearization of the system dynamics, the error states must be

kept small in order for the linear model to remain valid.

Alternatively, the error states may be fed back to the INS and used to reset the

integrators to corrected values. This feedback configuration (shown in Figure 3.3)

64

Figure 3.2: Indirect feedforward Kalman Filter implementation. Thick arrows de-

note high data rate paths.

prevents the navigation errors from growing too large, thus strengthening the validity

of the linearized error model. In fact, the feedback configuration is essential for the

Extended Kalman Filter, in which the dynamics are linearized at the navigation state

estimate. For the Extended Kalman Filter, uncompensated errors can easily lead

to filter divergence. An additional benefit provided by the feedback configuration is

the trivial propagation of several of the error states between filter updates. At time

t+i , the navigation errors have already been incorporated by the INS, resulting in a

new state vector that has many, if not all, elements equal to zero.

3.3.3 INS Kalman Filter Design

In this section we describe the design of a planar aided INS using an indi-

rect Kalman Filter implementation. First, we derive the linearized error dynamics

model. Next, we describe a generic sensor error model that accounts for the primary

sources of error. Finally, we present the complete error dynamics and measurement

65

Figure 3.3: Indirect feedback Kalman Filter implementation. Thick arrows denote

high data rate paths.

equations. The reader should refer to section 5.4.5 for information on the actual

discrete error model implemented.

3.3.3.1 Error Dynamics Model

In this section, we derive the linearized error dynamics model for a two-

dimensional INS, using an inertial navigation frame. The inertial frame is affixed

to the surface of the Earth and is defined by the local North, East, and Down axes.

We assume that the outputs provided by the navigation filter consist of the “true”

quantity added together with an error term. We will use tilde variables to denote

sensor measurements and hat variables to denote filter estimates.

Let us begin with a derivation of the heading error model. The heading error

has the form:

δθ(t) = θ̂(t)− θ(t) (3.20)

66

Differentiating both sides with respect to time yields:

δθ̇(t) =
˙̂
θ(t)− θ̇(t)

= ω̃(t)− ω(t)

= δω(t) (3.21)

Thus, the heading error dynamics are linear. We now proceed to derive the veloc-

ity and position error dynamics. The velocity in inertial coordinates satisfies the

following differential equation:

v̇(t) = B(θ(t))F(t) (3.22)

where B is the rotation matrix from body to inertial coordinates and F(t) is the

true specific force measurement. Observe that there is no need to account for grav-

itational acceleration since the gravity vector is normal to the navigation frame.

The dynamics (3.22) are nonlinear for two reasons: (1) B is a nonlinear func-

tion of the navigation state θ, and (2) B(θ) multiplies the input, F(t). Follow-

ing [21], we will linearize (3.22) in order to obtain the error dynamics model. Letting

g(θ,F) = B(θ)F, we obtain:

δv̇(t) =
∂g

∂θ
(θ,F) δθ(t) +

∂g

∂F
(θ,F) δF(t) (3.23)

Since we do not have knowledge of the true heading, θ, and specific force, F, one

alternative is to evaluate (3.23) at a precomputed nominal state trajectory. This is

the basis for the Linearized Kalman Filter. The main problem with the Linearized

Kalman Filter is that there is no guarantee that the nominal solution will match the

67

actual state trajectory. Often, better performance can be achieved by implement-

ing an Extended Kalman Filter, in which the linearized dynamics are evaluated at

the current state estimate and nominal input. Using the Extended Kalman Filter

approach yields the following velocity error dynamics:

δv̇(t) =

 − sin(θ̂) − cos(θ̂)

cos(θ̂) − sin(θ̂)

 F̃(t) δθ(t) +B(θ̂) δF(t) (3.24)

or in component form:

δv̇x = −
(
F̃X sin(θ̂) + F̃Y cos(θ̂)

)
δθ + δFX cos(θ̂)− δFY sin(θ̂)

= −f̃y δθ + δFX cos(θ̂)− δFY sin(θ̂)

δv̇y =
(
F̃X cos(θ̂)− F̃Y sin(θ̂)

)
δθ + δFX sin(θ̂) + δFY cos(θ̂)

= f̃x δθ + δFX sin(θ̂) + δFY cos(θ̂) (3.25)

where the subscripts denote x and y vector components and the time argument

has been suppressed for conciseness. Finally, the position error dynamics in inertial

coordinates is given by:

δṙ(t) = ˙̂r(t)− ṙ(t)

= v̂(t)− v(t)

= δv(t) (3.26)

68

Combining equations (3.21), (3.25), and (3.26), we obtain the complete linear

error dynamics model:

δθ̇ = δω

δv̇x = −f̃y δθ + δFX cos(θ̂)− δFY sin(θ̂)

δv̇y = f̃x δθ + δFX sin(θ̂) + δFY cos(θ̂)

δṙx = δvx

δṙy = δvy

(3.27)

3.3.3.2 Sensor Error Model

We must provide an appropriate sensor error model for the error terms δω

and δF in equations (3.21) and (3.24). Rather than pursuing an error model that

accounts for all known sources of error, including g-dependent biases, temperature

biases, anisoelastic (g2 dependent) biases, etc., we seek a simplified dynamics model

that captures only the essential behavior.

For guidance in developing an appropriate error model, we refer to section

3.1.5, which outlines the main types of errors. A fixed or repeatable bias is easily

modeled as a constant, and may even be compensated by the sensor manufacturer.

Switch-on to switch-on variations are modeled as a random constant, while in-run

variations may be modeled as Brownian motion driven by white noise of suitable

strength [11].

69

If we lump the biases together, the following error model emerges for the Z-axis

gyroscope:

δω(t) = bg(t) + wg(t)

dbg(t) = dβ(t) (3.28)

where bg(t) is the time-varying gyroscope bias modeled as a random walk, dβ(t) is

Brownian motion, and wg(t) is white Gaussian measurement noise. Similarly, the

accelerometer error model is given by:

δF(t) = ba(t) + wa(t)

dba(t) = dβ(t) (3.29)

where ba(t) is a vector of time-varying accelerometer biases modeled as a random

walk and wa(t) is a vector of white Gaussian measurement noise. These models have

proven sufficient for capturing the qualitative nature of the sensor errors.

3.3.3.3 Complete State Space Error Model

Observe that in (3.27), the heading error differential equation does not involve

the velocity or position error states. Assuming the availability of heading aiding

measurements to estimate the gyro bias, we may essentially treat heading deter-

mination and velocity/position estimation as separate problems. In this case, two

separate Kalman filters may be implemented, with the output from the heading

Kalman filter used as an input to the velocity/position filter.

70

Under the assumption that the heading estimate, θ̂(t), provided by the heading

filter closely tracks the true heading, we may approximate δθ(t) by zero in (3.24).

The velocity error dynamics then simplify to:

δv̇(t) = B(θ̂(t)) δF(t) (3.30)

where θ̂(t) is provided by the heading Kalman Filter. For ease of implementation

and additional system modularity, we will use separate Kalman Filters to implement

the aided INS.

We now provide the complete error dynamics in matrix form. Combining

equations (3.21) and (3.28), yields the following heading error model: δθ̇(t)

ḃg(t)

 =

 0 1

0 0


 δθ(t)

bg(t)

+

 1 0

0 1

w1(t) (3.31)

where w1(t) is a vector of white Gaussian noise. Combining equations (3.26), (3.29),

and (3.30), we obtain the velocity and position error model:

δẋ2 = A2(t)δx2 +G2(t)w2(t) (3.32)

71

where

δx2(t) = [δvx δvy δrx δry bax bay]
T

A2(t) =



0 0 0 0 cos(θ̂(t)) − sin(θ̂(t))

0 0 0 0 sin(θ̂(t)) cos(θ̂(t))

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



G2(t) =



cos(θ̂(t)) − sin(θ̂(t)) 0 0

sin(θ̂(t)) cos(θ̂(t)) 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


and w2(t) is a vector of white Gaussian noise.

Measurement Equations

It is assumed that the external aiding sources provide a measurement, z(t),

which consists of the true quantity corrupted by white Gaussian noise. As an ex-

ample, consider a heading measurement obtained from an onboard magnetometer.

The measurement error model is assumed to be:

zθ(t) = θ(t)− v1(t) (3.33)

72

where v1(t) is white Gaussian noise with appropriate power. If we now subtract

this heading measurement from the INS measurement, obtained by integrating the

Z-gyro, we obtain:

δzθ(t) , θ̂(t)− zθ(t)

= δθ(t) + θ(t)− (θ(t)− v1(t))

= δθ(t) + v1(t) (3.34)

The heading measurement equation takes the following form:

δzθ(t) =

[
1 0

]  δθ(t)

bg(t)

+ v1(t) (3.35)

Similarly, a position measurement obtained using GPS or an alternative positioning

system is assumed to have the following error model:

zr(t) = r(t)− v2(t) (3.36)

where v2(t) is a two-dimensional vector of white Gaussian noise. Subtracting this

position measurement from the INS position estimate, obtained by twice-integrating

the accelerometer measurements yields:

δzr(t) , r̂(t)− zr(t)

= δr(t) + r(t)− (r(t)− v2(t))

= δr(t) + v2(t) (3.37)

73

The measurement equation in terms of the velocity and position error state variables

is:

δzr(t) =

 0 0 1 0 0 0

0 0 0 1 0 0





δvx

δvy

δrx

δry

bax

bay



+ v2(t) (3.38)

Thus, the complete heading error state space model is given by equations (3.31)

and (3.35). Equations (3.32) and (3.38) give the complete velocity and position error

state space model.

3.3.3.4 INS Equations

Theoretically, the INS updates its internal navigation variables according to

the following set of equations:

θ̂(tk) = θ̂(tk−1) +

∫ tk

tk−1

ω̃(τ)dτ (3.39)

v̂(tk) = v̂(tk−1) +

∫ tk

tk−1

B(θ̂(τ))F̃(τ)dτ (3.40)

r̂(tk) = r̂(tk−1) +

∫ tk

tk−1

v̂(τ)dτ (3.41)

We are limited, however, by the fact that the IMU provides discrete measurements at

a sample rate of ∆t = tk − tk−1. Thus, equations (3.39) – (3.41) must be replaced by

74

discrete integrators for actual implementation. For better accuracy, we interpolate

the IMU measurements with line segments and compute the integrals directly:

θ̂(tk) = θ̂(tk−1) +
∆t

2
(ω̃(tk) + ω̃(tk−1))

v̂(tk) = v̂(tk−1) +
∆t

2

(
f̃(tk) + f̃(tk−1)

)
r̂(tk) = r̂(tk−1) + v̂(tk−1)∆t+

(∆t)2

6

(
f̃(tk) + 2f̃(tk−1)

)
(3.42)

where f̃(tk) = B(θ̂(tk))F̃(tk).

3.3.3.5 Magnetometer Heading Determination

A magnetometer provides measurements of the Earth’s magnetic field resolved

in body coordinates. The Earth’s magnetic field in the local tangent plane (North,

East, Down) navigation frame is well known and can be readily obtained from the

National Geophysical Data Center [22]. Knowledge of these two vectors enables

heading to be determined in the navigation frame.

To compute heading, the measured and known magnetic field vectors, B̃ and

b, are first projected onto the inertial frame. Unit vectors uB̃proj
and ubproj

are

formed, and the heading angle magnitude is computed using:

|zθ| =
∣∣∣cos−1

(〈
uB̃proj

,ubproj

〉)∣∣∣ (3.43)

with sign given by:

sgn(zθ) = sgn
{(

uB̃proj
× ubproj

)
z

}
(3.44)

where, in equation (3.44), the sign is determined by the z component of the vector

cross product.

75

3.3.3.6 Feedforward Kalman Filter Implementation

In section 3.3.3.3, we explained how the availability of heading aiding mea-

surements allowed us to decouple the heading and velocity/position error equations

in (3.27). The validity of this approach rested upon the assumption that θ̂(t) was

a good estimate of the true heading, θ(t), for all time t. Stated another way, we

assumed a certainty equivalence between θ̂(t) and θ(t).

Under this certainty equivalence hypothesis, the velocity and position error

dynamics are truly linear (the heading error dynamics are also linear), and we may

use a feedforward configuration for both Kalman Filters. If a heading aiding signal

were not available, the coupled linearized error dynamics (3.27) would need to be

implemented in a single Extended Kalman Filter using a feedback configuration.

The error state vectors, x1(t) and x2(t) at time t0 are modeled as zero-mean

Gaussian random variables:

E {xn(t0)} ≡ 0, n = 1, 2 (3.45)

and the initial error covariance matrices are given by:

P1(t0) =

 σδθ(t0) 0

0 σbg(t0)

 (3.46)

76

for the heading error estimator and

P2(t0) =



σδvx(t0) 0 0 0 0 0

0 σδvy(t0) 0 0 0 0

0 0 σδrx(t0) 0 0 0

0 0 0 σδry(t0) 0 0

0 0 0 0 σbax
(t0) 0

0 0 0 0 0 σbay
(t0)



(3.47)

for the velocity and position error estimator. Theoretically, these values correspond

to the error variances and sensor biases at time t0. For our application, the actual

values chosen are not critical for good filter performance, but should be nonzero.

The matrix Q in equation (3.12) captures the statistics of the noise processes

driving the state evolution. For the heading error equations, Q1 , E
{
w1wT

1

}
is a

2 × 2 constant diagonal matrix. The noise covariance matrix for the velocity and

position error dynamics is a 4×4 constant diagonal matrix given byQ2 , E
{
w2wT

2

}
.

Examining the sensor error models for the gyroscope (3.28) and accelerometers

(3.29), we see that each model has a white Gaussian measurement noise component.

The noise powers for these processes occupy elements (1, 1) in Q1 and (1, 1) and

(2, 2) in Q2. These values are most easily obtained by collecting sensor data over

a long period of time with the IMU stationary. The sensor noise powers are then

determined by computing the variance of the collected data.

Appropriate noise powers for the random walk processes are best obtained

through simulation. Larger noise powers cause the filter to track variations in the

sensor biases more quickly, but at the expense of increased steady-state error. Like-

77

wise, smaller noise powers sacrifice speed in bias tracking for smaller steady-state

errors. In actual INS implementations, it is best to leave these values configurable

so that the Kalman Filter can be tuned for optimal performance on-the-fly.

The measurement covariance matrices, R1 and R2, defined by equation (3.14),

quantify the measurement noise power of the aiding sensors. Nominal values can be

obtained by collecting stationary sensor data over a long period of time and com-

puting the variance. For greater flexibility, these values may be left as parameters

to be adjusted at run-time.

78

Part II

Physical Implementation

79

Chapter 4

The R/C Model Hovercraft

Our search for a suitable model hovercraft to test the control laws and INS led

us to Germantown, Maryland, where Kevin Jackson, founder of www.hovercraftmodels.com,

designs small radio-controlled hovercraft models. We purchased a fully-assembled

HoverDemon Turbo hovercraft model for $200, which is a 15:1 (3 × 2 feet) scale

model of an actual passenger-carrying hovercraft that operates in St. Petersburg,

Florida. In the following sections, we describe the mechanical design of the Hov-

erDemon Turbo hovercraft and highlight the modifications we made for increased

control authority and performance.

4.1 Design and Construction

The HoverDemon is made of a lightweight and durable corrugated plastic

material. The embedded supports give the plastic material excellent rigidity and

stiffness. A high density foam block forms the core of the vehicle and provides a

solid foundation for the various mechanical and structural assemblies. So far, the

hovercraft has survived several low-to-medium velocity collisions and has not shown

any signs of deformation or other structural damage.

80

The skirt is quite durable and made from a lightweight vinyl material. It has

endured many hours of operation and suffered only a few minor tears. We were able

to mend the skirt in-place using a small amount of rubber cement.

The main structure of the hovercraft is a flat deck made from the corrugated

plastic material. It is built on top of the foam core and supports the canopy and

thrust duct assembly. The canopy is removable and encloses a small volume of

space that is ideal for housing the batteries, radio receiver, and other supporting

electronics. The thrust duct assembly is the heaviest structure on the hovercraft.

Figures 4.1a - 4.1c depict the HoverDemon in its stock form and after signifi-

cant custom modification. Our modifications include:

• Replacement of the flimsy corrugated plastic duct with a larger and more rigid

structure made from a plastic Tupperware container.

• Repositioning the thrust fan inside the thrust duct, with a tight clearance

between the fan tips and the duct.

• Adding an additional rudder and designing a spring-loaded mechanical linkage

to move the rudders in tandem.

An investigation of hovercraft design literature [23,24] led to the modifications out-

lined above. Although each of these modifications required a great deal of time and

effort, the end result was a substantial improvement in the vehicle control author-

ity. Specifically, we achieved improved steerability and greater thrust production,

especially in reverse. Since steering in reverse is always a challenge for vehicles with

a rudder, the increase in performance was quite significant.

81

(a) Stock HoverDemon (Photo courtesy of www.hovercraftmodels.com)

(b) Modified HoverDemon

Figure 4.1: Comparison of the stock HoverDemon with the modified vehicle

82

(c) Modified HoverDemon (Thrust duct/rudder as-

sembly)

Figure 4.1: Comparison of the stock HoverDemon with the modified vehicle

83

The increased thrust is extremely useful for braking the hovercraft quickly. In

stock form, the feeble thruster was useless as a braking mechanism. In fact, full

reverse power was only able to move the hovercraft backward at very low speed.

The new design produces significant thrust at lower RPMs and is quite effective at

propelling the hovercraft both forward and in reverse.

The HoverDemon is designed to carry 2-3 pounds of payload. The weight of

the vehicle with all batteries and electronic subsystems in place is a staggering 5.7

pounds (2.6 kg)! We determined the moment of inertia1 to be 2.3 lbs ft2 (.096 kg m2)

and measured the distance from the hovercraft center of mass to the point of thrust

production to be 12.6 inches (32 cm). The model hovercraft physical parameters

are summarized below in table 4.1.

Mass (m) Lever Arm (d) Moment of Inertia (J)
lbs kg inches cm lbs ft2 kg m2

5.7 1.6 12.6 32.0 2.3 .096

Table 4.1: R/C hovercraft physical parameters

4.2 Actuation

The two types of actuation systems present on the hovercraft are high-speed

electric motors and a high-precision servo. The motors power the thrust and lift

fans while the servo positions the rudder.

1See section 4.3 on system calibration.

84

4.2.1 Thruster and Lift Fan

The thrust and lift fans are driven directly by Speed 400 brushed electric

motors. These motors are ubiquitous among R/C electric airplane hobbyists due

to their small size, light weight and large power output. The motors we used are

rated for 7.2 V and have a maximum stall torque of 12 oz-in. Nominally, they

draw between 5 and 6 amps of current, but can peak as high as 8 amps. Their

no-load speed is roughly 19,200 RPM, and we measured a max speed under load of

approximately 12,000 RPM.

The thrust fan is a 2-bladed 3×7 plastic propeller designed for electric air-

planes. This was a major upgrade from the 3.5 × 5 propeller supplied with the

hovercraft. The smaller pitch (first number) and larger diameter (second number)

allows the propeller to turn faster and produce a larger column of high velocity air.

The net result is a substantial boost in maximum thrust. The lift fan is a three-

bladed 6 inch plastic propeller. There was no need to modify the lift propeller.

An electronic speed controller (ESC) is needed to vary the speed of the electric

motors. Without the ESC, the motor is either full-on or completely off. Most speed

controllers achieve speed variation by adjusting the duty cycle of a high frequency

(>1 kHz) square wave drive signal connected to the motor. Several of the high-end

ESCs are reversible and feature an embedded microcontroller to configure the device

and provide additional functionality. For example, on some ESCs, the maximum

motor acceleration can be limited, and a programmable delay can be activated when

85

switching the motor from forward to reverse. The delay is useful for electric cars

and trucks where a sudden transition to reverse could damage the transmission.

The hovercraft features two reversible ESCs. Out of the box, the HoverDemon

includes a reversible ESC (DuraTrax 16T Mild-Modified) to control the thrust fan.

The problem with this particular ESC is that the delay from forward to reverse can

not be disabled. Since the propeller is coupled directly to the motor shaft, there is

no need to delay when switching the motor direction. Additionally, since actuator

delay decreases system stability, we desired to reduce the delay as much as possible.

The obvious solution was to replace the ESC with a different model. Much to

our dismay, we discovered that all reversing speed controllers feature a small delay to

prevent damage to connected mechanical components. We finally identified a speed

controller (Tekin Rebel 2) which claimed the ability to completely disable the reverse

delay. We purchased the unit, disabled the delay, and evaluated its performance.

Unfortunately, a small delay of about 150 ms was still present. We determined that

we could lessen the effect of the delay on the system performance by wiring the ESC

in reverse. Since the hovercraft thruster is more effective producing forward rather

than reverse thrust, switching the delay from reverse to forward helps to reduce the

thruster bias. We also connected the original DuraTrax ESC to the lift fan in order

to control the lift height.

We should note that neither of the ESCs described above uses any internal

feedback loops to maintain speed under load. Since motor speed varies with applied

voltage, the motor speed is a function of both the ESC output duty cycle and the

battery voltage. Thus, for a constant ESC command, the motor speed will gradually

86

decrease as the battery voltage sags. We address this problem later in sections 4.3.2.1

and 5.2.

4.2.2 Rudder Servo

A Futaba hobby servo controls precise positioning of the rudder. The servo is

controlled via pulse width modulation (PWM). A 50 Hz pulse with a variable pulse

width between 1 and 2 ms is applied to the control input of the servo. The servo

decodes the pulse width and moves the motor shaft to a corresponding location.

(For example, 1 ms is full counter-clockwise and 2 ms is full clockwise). As long as

the input does not change, the servo maintains the shaft in the same position via

an internal feedback loop.

The servo is connected to the rudder via a thin metal rod. A control horn on

the rudder converts the push/pull motion of the control rod into a torque. Another

set of control horns is used to couple the two rudders so that their motion is syn-

chronized. Finally, the rudders are spring loaded to prevent a singular mechanical

configuration in which the rudders become locked. The springs also help remove

mechanical hysteresis, leading to better repeatability in rudder positioning.

4.3 Calibration

A significant amount of time and effort was spent on an accurate vehicle cal-

ibration. Calibration is necessary to ensure that the forces requested by the con-

87

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-40

-30

-20

-10

0

10

20

30

40

Servo Command (ms)

R
ud

de
r

P
os

iti
on

 (
de

g)

Figure 4.2: Rudder calibration data

troller are the same as the actual forces imparted by the actuators. The goal of the

calibration was twofold:

(1) Derive a lookup table relating commanded rudder angle to servo position

(2) Quantify the relationship between propeller RPM and rudder angle to the net

force produced

4.3.1 Rudder Calibration

Deriving the rudder lookup table was the easier of the two calibration tasks.

Using a custom software GUI that we developed, we simply stepped the servo

through its entire range (in steps of 50 µs) and recorded the rudder position for

each command. A plot of rudder position vs servo command is shown in Figure

4.2. The relationship is nonlinear, and we use a simple lookup table with linear

interpolation to model the dependence.

88

4.3.2 Thrust Calibration

Determining the relationship between propeller speed, rudder angle, and re-

sultant force was not an easy task. Difficulties arose throughout the calibration,

as we lacked the proper equipment to measure the body X and Y force compo-

nents directly. Eventually, we devised a method to characterize the forward thrust

production in terms of motor RPM and rudder angle.

4.3.2.1 Forward Thrust Calibration

Our approach was to tether the hovercraft with a force gauge at the point

of force production. This configuration allowed the hovercraft to turn in place

in response to a commanded rudder angle position and enabled us to record the

resultant force directly. By measuring the resulting hovercraft angle, ψ, with respect

to a fixed reference, the force components were given by:

FX = ‖F‖ cos(ψ) (4.1)

FY = −‖F‖ sin(ψ) (4.2)

where ‖F‖ was the measured resultant force magnitude.

Obviously, test repeatability is of paramount importance since the controller

must blindly trust the calibration during autonomous operation. Our first attempt

at force calibration failed because we did not have a way to regulate the speed of

the thrust fan during the calibration procedure. As the battery voltage decreased,

so did the motor speed.

89

We realized that we needed a low-level controller onboard the hovercraft to

regulate the thrust fan angular velocity. After several hours of searching, we iden-

tified a suitable miniature incremental encoder (US Digital, model E4, 100 CPR).

Attaching the encoder disk and supporting electronics to the motor shaft proved

to be quite difficult and required some special machining to achieve the required

tolerances. We implemented a simple PI controller in firmware2 and adjusted the

gains through experimentation. Finally, we were ready to attempt calibration again.

To achieve accurate test results, we leveled a large table by placing metal shims

under the legs. We used a spring-loaded force gauge with a maximum scale of 2 N

and a resolution of 0.1 N. A straight line was marked on the table and used as a

reference to keep the hovercraft tether cable aligned during calibration. The marked

line also served as the angle reference for measuring the hovercraft’s orientation, ψ.

The test procedure consisted of the following steps:

(1) Command the rudder servo to the desired angle.

(2) Set the thrust fan to 5000 RPM (to keep the hovercraft from drifting off the

table when the lift fan is turned on).

(3) Enable the lift fan. The lift fan speed should be set just slightly under the

point where the skirt begins to flutter.

(4) Allow the hovercraft to seek its desired orientation while keeping the tether

cable aligned with the marked line reference. Apply small disturbances to the

2See section 5.2 on the microcontroller system.

90

hovercraft so that the vehicle angle does not get stuck in a local minimum

caused by friction at the tether point.

(5) Once the hovercraft has settled into its final orientation, add barriers on either

side of the hovercraft as a pen.

(6) Decrease the thrust to 3000 RPM. This RPM corresponds to the minimum

thrust that will register on the force gauge.

(7) Step up the thrust fan in increments of 1000 RPM. Record the resultant force

for each setting.

(8) Once the thrust fan reaches its maximum RPM (dependent on battery volt-

age), cut the lift fan first, and then stop the thruster.

(9) Use chalk to mark the hovercraft body angle on the table.

(10) Measure the angle ψ formed by the chalk line and the marked line reference.

Once the data was collected, we created plots of resultant force vs thrust fan

RPM for each rudder angle. As expected, the plots showed a quadratic relationship

between force and RPM. We determined a best-fit quadratic equation for each data

set and then used the models to create a large 2-D lookup table of motor RPMs.

The 2-D lookup table was essentially a 14 × 81 matrix with the rows and columns

representing equally-spaced rudder angles (5◦ increments) and force values (.025 N

increments) respectively.

91

-20 -15 -10 -5 0 5 10 15 20 25
-40

-30

-20

-10

0

10

20

30

Hovercraft Angle (degrees)

R
ud

de
r

A
ng

le
 (

de
gr

ee
s)

Figure 4.3: Rudder angle vs hovercraft (force vector) angle

We also plotted rudder angle vs hovercraft angle (shown below in Figure 4.3)

and computed the following regression line:

φ = −1.40ψ + .566◦ (4.3)

where φ is the rudder angle and ψ is the hovercraft angle in degrees. This relationship

is needed by the controller to determine rudder angle given desired force components,

FX and FY . Observe that roughly 40% more rudder angle is needed for a desired

hovercraft body angle due to aerodynamic losses in the rudder system.

4.3.2.2 Reverse Thrust Calibration

The calibration procedure described above is limited to measuring forward

thrust only. We would need a compressive force gauge in order to calibrate reverse

thrust using the same setup. Alternatively, attaching the tether cable to the nose

of the hovercraft also would not solve the problem. For nonzero rudder angles, the

torque produced would cause the hovercraft to continue turning.

92

6 7 8 9 10 11 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

RPM *1000

R
ev

er
se

 to
 F

or
w

ar
d

T
hr

us
t R

at
io

y = 0.00097 x3 -- 0.033 x2 + 0.38 x -- 1.1

Figure 4.4: Reverse thrust calibration data

Our solution was to collect reverse thrust data with the rudder at the zero

position only. We then modeled the relationship between the reverse-to-forward

thrust ratio and motor RPM for the zero rudder case. We determined the best fit

model to be a third-order polynomial shown in Figure 4.4 with equation:

y = 9.734e-4x3 − 3.277e-2x2 + 3.833e-1x− 1.099 (4.4)

where x is the motor RPM (divided by 1000) and y is the reverse-to-forward thrust

ratio. Motor RPMs for arbitrary reverse thrust values and nonzero rudder angles

were computed using the polynomial model and the previously collected forward

thrust data.

Using the derived force/RPM models, we generated the complete 14 × 161

2-D lookup table as well as a reverse force lookup table. The reverse lookup table

provides resultant force as a function of motor RPM and rudder angle. It is depicted

as a three-dimensional mesh below in Figure 4.5. Notice the quadratic dependence

of resultant force on motor RPM.

93

-10
-5

0
5

10

-30-20-1001020

-0.5

0

0.5

1

1.5

RPM *1000Rudder Angle (degrees)

F
or

ce
 (

N
)

Figure 4.5: Reverse lookup table (RLUT) mesh plot. Force increases quadratically

with motor RPM and decreases with rudder angle for a given RPM

94

4.3.3 Moment of Inertia Determination

We devised a simple method to determine the hovercraft moment of inertia

using only the autopilot system hardware. Referring to the hovercraft dynamics

(2.10), we see that the third equation relates the change in angular momentum to the

Y -component of applied force. Since angular momentum Π is equal to the product

of angular velocity Ω and the moment of inertia J , we can estimate the moment of

inertia using the INS and the thrust calibration tables derived previously.

Data was collected to determine the moment of inertia using the following

procedure:

(1) Place the hovercraft on a flat level surface.

(2) Set the rudder to an arbitrary nonzero angle using the rudder calibration table.

(3) Command a large force value (> 1 N) to overwhelm any small unmodeled

friction.

(4) Start collecting data on the dSPACE system.

(5) Hold the hovercraft in place and activate the lift fan.

(6) Release the hovercraft.

(7) Cut the lift fan after about 5 seconds.

(8) Repeat for different rudder angles and thrust values.

For each trial, the INS angular velocity was plotted against time. Initially, each

plot exhibited a linear relationship until frictional effects entered the dynamics. This

95

can be seen in Figure 4.6, which contains three trials for a rudder angle of -30◦. We

restricted the data set to the linear portion and computed the slope of the best-fit

line. The moment of inertia for the ith trial was given by:

Ĵi = −dFY

Ω̇
(4.5)

We averaged Ĵi obtained from several trials in order to form the best estimate of

the moment of inertia, Ĵ . We determined Ĵ to be .096 kg m2. Evaluating the data

collected, we observed that the best results were achieved using larger rudder angles

and forces. Data for two of the trials appears below in Table 4.2.

Rudder
Angle
(φ)

Hovercraft
Angle (ψ)

‖F‖ FY Ω̇ Ĵi

Trial 1 -20◦ 14.6◦ 1.1 -.28 .9412 .0952
Trial 2 25◦ -17.4◦ 1.05 .31 -1.026 .0967

Table 4.2: Data collected to determine the moment of inertia

96

0 5 10 15 20 25 30
-0.5

0

0.5

1

1.5

2

2.5

Time

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

Begin

End

Begin

End

Begin

End

Figure 4.6: Experimental angular velocity data used to determine the moment of

inertia. A force of 1.0 N was applied at a -30◦ rudder angle.

97

Chapter 5

The Autopilot

A block diagram of the autopilot system architecture appears in Figure 5.1. In

the following sections, we will describe the functionality provided by each subsystem

block.

5.1 dSPACE

The dSPACE system enables rapid prototyping of control systems. It consists

of a dedicated processor running a proprietary real-time operating system (RTOS)

and an interface board with extensive I/O capabilities for interacting with the phys-

ical world. Most importantly, dSPACE interfaces directly with Matlab and allows

Simulink block diagrams to be compiled and run in real-time on the system. The

main benefit to using dSPACE is that control systems may be simulated with Mat-

lab, compiled to C code, and then evaluated in real-time on physical hardware

without changing the underlying Simulink model.

dSPACE is the core processing system in the hovercraft autopilot. The system

receives raw IMU data from the hovercraft over the Bluetooth link, executes the

Kalman Filter and control law algorithms, and sends actuator commands back to

the vehicle. As an RTOS, dSPACE provides the assurance that all computations

finish within a specified amount of time and that discrete-time algorithms execute

98

Figure 5.1: Block diagram of the autopilot top-level system architecture

at fixed time steps. This is invaluable, since it eliminates potential sources of error

when debugging faulty algorithms.

The system was also used extensively to test the INS performance using a ro-

tating platform. By creating a custom rotating platform controller block in Simulink,

the computer was able to run all of the tests autonomously while collecting perfor-

mance data.

5.1.1 Autopilot Implementation on dSPACE

We used a dSPACE 1103 system featuring a 333 MHz PowerPC. The system

provides 16 multiplexed channels of 16-bit A/D, 8 channels of 16-bit D/A, 32 parallel

channels of digital I/O, a digital and analog incremental encoder interface, hardware

interrupts, a UART, a CAN bus interface, and a 20 MHz Texas Instruments DSP

slave. The PowerPC processor and the supporting I/O electronics reside on a large

99

card with an ISA bus interface. We used the only ISA-equipped computer in our lab

to host the dSPACE system. This 400 MHz PC was quite slow, but still managed

to run dSPACE without any problems.

The hovercraft autopilot was implemented in Simulink using a combination

of Matlab provided library blocks and custom S-functions (discussed in the next

section). The model was compiled to C code for execution on the dSPACE system

using the Real-Time Workshop. On dSPACE, the autopilot was executed in real-

time using a fixed execution interval of 1 ms with overrun detection enabled. The

Simulink autopilot block diagram appears below in Figure 5.2. We also created a

visual pilot console to interface with the dSPACE system and control the operation

of the autopilot. Appendix B contains a screenshot of the pilot console.

5.1.2 S-Functions

S-functions are user-defined functions that provide custom functionality within

the Matlab environment. They are often used to encapsulate complex algorithms

or leverage existing computer code in Simulink models. S-functions interface with

Matlab’s differential equation solvers and can handle continuous, discrete, and hy-

brid dynamical models. S-functions can also be compiled to object code using the

Real-Time Workshop for execution on dSPACE or an alternate real-time target.

The hovercraft autopilot relies extensively on custom S-functions to perform

the bulk of the computations. For example, there are several S-functions that man-

age communications with the hovercraft microcontrollers. These S-functions decode

100

v_
i

v_
i (

r)

m

m

f_
i

f_
i (

r)

A
bs

 A
ng

 V
el

A
bs

 V
el

P
ow

er
-O

n
T

im
e

W
rit

e
S

to
re

s

V
_b

V
_b

 (
r)

1

V
_b

V
_b

 (
r)

C
al

ib
ra

te

U
se

r
S

er
vo

 C
m

ds

C
P

U
 S

er
vo

 C
m

ds

S
er

vo
 C

m
ds

U
se

r/
C

P
U

 C
m

ds
 S

el
ec

to
r

if
{

}

C
m

d
F

or
m

at
U

se
r

S
er

vo
 C

m
ds

U
se

r
S

er
vo

 C
m

ds

T
im

e
(s

)
T

im
e

(h
h:

m
m

:s
s)

T
im

e
C

on
ve

rs
io

n

R
ol

l

P
itc

h

S
to

re
 M

is
al

ig
nm

en
t

u
T

X
 E

nb

Li
ft

M
od

e

U
se

r
C

m
d

F
or

m
a t

C
al

ib
ra

te

R
ea

d
S

to
re

s

F

T
hr

us
t

R
ud

de
r

A
ng

le

P
ol

ar
 C

oo
rd

s

pl
at

fo
rm

_m
is

al
ig

nm
en

t

P
la

tfo
rm

 M
is

al
ig

nm
en

t (
r)

A
cc

el
R

ol
l

P
itc

h

P
la

tfo
rm

 M
is

al
ig

nm
en

t

O
m

eg
a

O
m

eg
a

(r
)1

O
m

eg
a

O
m

eg
a

(r
)

M
es

sa
ge

 M
ak

er

u
T

X
 E

nb

Li
ft

M
od

e

S
er

vo
 C

m
ds

T
as

k
T

im
e

T
X

 D
at

a

N
um

 B
yt

es

S
yn

c
T

im
e

M
es

sa
ge

 M
ak

er

u1
if(

u1
 =

=
 1

)

el
se

If

fb
_t

ild
e

w
bz

_t
ild

e

H
ea

di
ng

 E
st

im
at

e

IM
U

 D
at

a
R

ea
dy

P
os

iti
on

 E
st

im
at

e

A
ng

ul
ar

 V
el

oc
it y

H
ea

di
ng

G
yr

o
B

ia
s

S
pe

ci
fic

 F
or

ce
 (

b)
S

pe
ci

fic
 F

or
ce

 (
i)

V
el

oc
ity

 (
b)

V
el

oc
ity

 (
i)

P
os

iti
on

A
cc

el
 B

ia
s

IN
S

D
at

a
P

ac
ke

ts

D
at

a
Le

ng
th

P
la

tfo
rm

 M
is

al
ig

n

M
ag

ne
tic

 F
ie

ld

A
cc

el
er

at
io

n

A
ng

ul
ar

 V
el

oc
ity

M
ag

ne
tic

 H
ea

di
ng

P
ow

er
-O

n
T

im
e

D
at

a
R

ea
dy

IM
U

 P
ar

se
r

H
ea

di
ng

H
ea

di
ng

 (
r)

de
si

re
d_

la
w

D
es

ire
d

La
w

 (
r)

em
u

S
ta

te

D
es

ire
d

La
w

La
w F

C
on

tr
ol

 L
aw

s

C
on

tr
ol

 L
aw

IM
U

 D
at

a
R

ea
dy

H
ea

di
ng

 R
ea

dy

S
pe

ci
fic

 F
or

ce

V
el

oc
ity

P
os

iti
on

 E
st

im
at

e

H
ea

di
ng

C
om

pu
te

 H
ea

di
ng

T
X

 B
yt

es

N
um

 B
yt

es

S
yn

c
T

im
e

IM
U

 D
at

a

IM
U

 D
at

a
Le

ng
th

H
ea

di
ng

 R
ea

dy

P
os

iti
on

 E
st

im
at

e

C
om

m
s

S
ub

sy
st

em

C
lo

ck

cp
u_

th
ru

st

C
P

U
 T

hr
us

t (
w

)

cp
u_

th
ru

st

C
P

U
 T

hr
us

t (
r)

el
se

 {
 }

R
ud

de
r

T
hr

us
t

C
P

U
 S

er
vo

 C
m

ds

C
P

U
 S

er
vo

 C
om

m
an

ds

cp
u_

ru
dd

er

C
P

U
 R

ud
de

r
(w

)

cp
u_

ru
dd

er

C
P

U
 R

ud
de

r
(r

)
|u

|

A
bs

F
ig

u
re

5.
2:

S
im

u
li
n
k

im
p
le

m
en

ta
ti
on

of
th

e
h
ov

er
cr

af
t

au
to

p
il
ot

101

messages from the hovercraft and prepare messages for uplink to the vehicle. Addi-

tionally, there are S-functions that implement the aided INS and parse IMU sensor

messages. Each of the S-functions is written in ANSI C for computational efficiency

and ease of integration with dSPACE.

5.2 Microcontrollers

The hovercraft features two PIC 18F8720 8-bit microcontrollers to handle

low-level interfacing with the sensors and actuators. These microcontrollers are

low-power processors running at 20 MHz with 128K of program flash memory and

3840 bytes of RAM. The 18F8720 microcontrollers provide five independent input

capture/output compare channels, two dedicated 8-bit counters, two dedicated 16-

bit counters, two hardware UARTs providing RS-232 and RS-485 functionality, a

synchronous serial port module with I2C functionality, and 16 multiplexed channels

of 10-bit A/D. In addition, high and low priority interrupts are supported.

We should note that while a full-fledged Pentium microprocessor could be

used to execute the navigation and control algorithms onboard the hovercraft, the

microcontrollers still provide valuable functionality. As lightweight systems rich in

I/O, they are ideally suited to interfacing with sensors and performing time-critical

tasks such as pulse width modulation (PWM) generation and decoding. Thus, their

presence adds modularity to the system design.

We purchased two evaluation boards (TQFP 64/80) from Microchip for $49.00

each, with the 18F8720 microcontroller provided as a surface mount component.

102

The evaluation boards greatly simplified system development by fanning out the

microcontroller pins to solderable pads and providing essential ancillary hardware

including an RS-232 transceiver, 20 MHz crystal oscillator, and voltage regulator.

The boards also provided an ICD2 port for in-circuit programming and debugging,

8 LEDs for visual feedback, and a small area for circuit prototyping.

The hovercraft microcontroller architecture uses a master-slave relationship.

The master microcontroller manages all communications with the dSPACE sys-

tem over the Bluetooth link. A small Bluetooth to RS-232 converter (provided by

Free2Move) plugs into the serial port on the microcontroller board and provides

the wireless connectivity. In addition, the master interfaces with the IMU via RS-

232, decodes safety-pilot commands output in PWM format from the radio receiver,

generates PWM control signals for the actuators, and runs the thrust fan RPM

regulator.

The slave microcontroller controls the lift fan and interfaces with the two on-

board Cricket units via RS-232. The two processors communicate with each other

over the I2C bus. The slave microcontroller is actually the I2C bus master and

controls when the master device gets to transmit. The reason is that there is a

greater flow of time-sensitive information from the slave to the master microcon-

troller. Thus, the slave unit should have the ability to access the bus whenever

it has information to transmit. The master microcontroller, on the other hand, is

allowed to transmit up to 10 bytes of data every 10 ms.

The microcontrollers communicate with each other and the dSPACE system

using messages. These messages contain minimal overhead and consist of a single-

103

byte header, message identifier, an optional message length, and the message data.

There is no restriction on message length, although smaller messages are preferred

in order to minimize Bluetooth link latency.1 Refer to Appendix A for schematic

drawings of the microcontroller system and custom supporting electronics.

5.3 Bluetooth

5.3.1 Introduction

Bluetooth is a wireless communications technology developed by Ericsson Mo-

bile Communications in 1994. Although its original purpose was for cable replace-

ment, many different types of devices now incorporate Bluetooth transceivers for

generic wireless connectivity.

Bluetooth operates in the 2.45 GHz ISM band and employs frequency hopping

for improved noise immunity. Seventy nine frequency channels, each separated by

1 MHz, are used in the hop sequence. Each frequency slot lasts for 625 µs and the

hop pattern follows a pseudorandom sequence with a period of approximately 23

hours.

One of the key features of Bluetooth is the ability for devices to form ad-hoc

networks easily on their own. Small networks called piconets are comprised of up to

seven connected devices. These piconets can join together to form larger scatternets

of interconnected devices.

1See section 5.3 for information on Bluetooth.

104

Bluetooth devices connected in a piconet form a star topology in which one

or more slaves communicate exclusively with a single master. Point to point and

point to multipoint communications are supported between master and slaves, but

direct communications between slaves are not. The master device transmits in even

numbered time slots and the slaves transmit in odd numbered slots. A slave must

be polled by the master in order to transmit in the following time slot. In this

time division duplex scheme, full duplex communications are achieved between the

master and slave devices.

Bluetooth devices may also dynamically switch roles to participate in different

piconets. For example, a master of one piconet may be a slave in another piconet.

The ability to form scatternets is important since Bluetooth devices are limited in

range. Class 2 devices support a 10 m range while Class 1 devices increase their

output power and range to about 100 m. Scatternets allow devices separated by

large distances to communicate with each another.

The Bluetooth specification was also designed with battery conservation in

mind. There are three low-power modes that provide various degrees of power

savings. These are, in order of increased power savings: sniff mode, hold mode, and

park mode. In sniff mode, the duty cycle of the receiver is reduced, while in park

mode, the device does not participate at all in the piconet. The clock continues to

run, however, so that the device remains synchronized with the master.

105

Figure 5.3: The Bluetooth protocol stack

5.3.2 The Bluetooth Stack

Bluetooth features a stack-based architecture similar to the OSI model in

which higher stack layers rely on functionality provided by the lower layers. A

diagram of the Bluetooth architecture is shown in Figure 5.3. The Physical Layer

is the lowest stack layer and provides the basic RF functionality. The physical layer

is implemented in hardware as an ASIC (Application Specific Integrated Circuit).

The next layer is the Baseband Link Controller Layer. This layer packages raw

data into one of thirteen standard Bluetooth packets, performs channel encoding and

decoding, performs CRC generation and checking, and handles the Automatic Repeat

Request (ARQ) protocol. There are different packets defined to carry voice, data,

or a combination of both. Depending on the required data rate, these packets may

occupy one, three, or five consecutive 625µs time slots. A single slot carries up to

27 bytes and 5 slots can transport 339 bytes, yielding symmetric data rates of 172.8

106

kb/s and 433.9 kb/s respectively. Asymmetric data rates can also be achieved by

using different packet types for the upstream and downstream directions. Observe

that data can be packed more efficiently into multiple time slots since the radios do

not retune their frequency synthesizers during this time.

Bluetooth provides support for optional bit error detection and correction at

the baseband layer. If enabled, the ARQ protocol ensures that all packets are

eventually received free from bit errors. When a received packet fails a CRC check,

the receiver may request a packet retransmission. Packet retransmission continues

until the packet is received correctly or a timeout occurs. Bluetooth also features

two forward error correction (FEC) schemes. In 1/3 FEC, each bit is repeated 3

times, resulting in a 2/3 decrease in available bandwidth. Alternatively, the 2/3

FEC is a (15,10) shortened Hamming code which produces one extra bit for every

two bits processed. The choice to use ARQ or FEC is dependent on the type of

data link used.

As mentioned earlier, Bluetooth supports the transmission of voice and data.

For voice data, synchronous connection-oriented (SCO) links are used with FEC

enabled and ARQ disabled. SCO channels provide the lowest possible latency since

the transmission slots and payload sizes are predefined. On the other hand, raw

data packets are transmitted using asynchronous connection-oriented (ACL) links.

There are 7 different ACL packets providing payload capacities ranging between 17

and 339 bytes with optional 2/3 FEC. All packets must contain a CRC checksum

since the ARQ protocol is required for ACL links.

107

Moving up the stack, the next layer is the Link Manager Layer. This layer im-

plements the Link Manager Protocol and handles establishing and maintaining phys-

ical connections with devices, configuring link parameters, and exchanging security-

related messages. There are special single-slot packets called protocol data units

(PDUs) for accomplishing these tasks. The HCI Firmware Layer sits on top of the

Link Manager Layer and provides a common interface to the lower layer function-

ality.

The Physical, Baseband Link Controller, Link Manager, and HCI Firmware

layers provide low-level Bluetooth functionality and collectively form the Bluetooth

controller. Typically, the Bluetooth controller is implemented in hardware, and may

even be a single integrated circuit. A Bluetooth controller is incorporated into a

host device to provide Bluetooth connectivity.

The next group of layers constitute the Bluetooth Host Protocol Stack. The

functionality specified by these layers is provided by software which may be executed

on the Bluetooth host or on a separate processor. To achieve separation between

the high level protocol processing and the low-level controller tasks, the Bluetooth

specification provides an optional Host Controller Interface (HCI) Layer. The HCI

provides a common interface to the Bluetooth controller and supports host config-

uration, link control, and baseband commands. The choice to support this layer

depends on the particular type of Bluetooth device and whether there is a need for

modularity.

The Logical Link Control and Adaptation Protocol (L2CAP) Layer is the pri-

mary buffer between high level Bluetooth-independent applications and the Blue-

108

tooth controller. The L2CAP is responsible for providing multiple logical channels,

multiplexing data from multiple services, and segmenting and reassembling data-

grams. For example, the payloads carried by TCP packets are too large to fit inside

any of the Bluetooth packets. The data must be segmented prior to transmission

and then reassembled on the receiving side. The L2CAP also negotiates quality of

service (QoS) parameters with other devices and tries to ensure that performance

expectations are met.

At this point, the Bluetooth protocol stack splits in different directions. The

Service Discovery Protocol (SDP) and RFCOMM sit on top of the L2CAP layer.

The SDP enables devices to query each other for information about supported ser-

vices. RFCOMM is a protocol that emulates serial port communications over a

Bluetooth link. The protocol provides support for up to 60 simultaneous serial port

connections. Other high-level applications may interface directly with L2CAP to

send custom-defined data to connected devices.

5.3.3 Bluetooth in Control Systems

Inexpensive wireless technology such as Bluetooth has paved the way for new

distributed control system architectures. In a distributed control system, the con-

troller is physically separated from either the sensing node, the actuation node, or

both nodes. These systems arise naturally when there is a desire to control one or

more physically separated nodes with a central controller.

109

Like any wireless communications technology, Bluetooth presents several chal-

lenges when used in distributed control systems. First, despite fast frequency hop-

ping, Bluetooth data packets can be corrupted by channel noise. Packet retransmis-

sion is viable only if the controller sample rate is slow enough. For systems with fast

dynamics, lost sensor or actuator data can cause the system to become unstable.

Second, Bluetooth data links exhibit time-varying latencies. These delays are

caused by protocol overhead, master/slave polling, and available network band-

width. They are more pronounced in ACL data links since slaves do not have

reserved transmission slots and payload sizes are dynamic. In addition, data delays

may result from inefficient data packing implementations at the higher application

layers. For example, we have observed that the RFCOMM protocol for serial port

emulation buffers several bytes of serial data before bursting it across the data link.

Packet delays in a distributed control system have a destabilizing effect on the

system dynamics. For example, it is well known that a linear system can tolerate a

maximum constant loop delay given by ∆max = φm/ωc where φm is the phase margin

at the critical frequency, ωc. It is more difficult to analyze the effect of time-varying

delays on system stability. If, for example, the delay is known to lie in the interval

[∆min,∆max], the controller can be designed to handle a representative value of the

delay, ∆. Common choices include ∆ = ∆min, ∆ = ∆max, and ∆ = ∆avg. The

problem is that the feedback controller can be stable for constant delays equal to

∆min and ∆max and fail to be stable when the delay is varying [25].

The Jitter Margin Theorem [25] gives a sufficient condition for linear system

stability when the time-varying delay lies in the interval [0, Nh] where h is the

110

sample time and N is a real number. For nonlinear system dynamics, the analysis

is significantly more complex.

For optimal control system performance, lost packets and packet delay must

be dealt with carefully. For linear systems, there are precise methods for handling

lost and delayed packets, depending on whether the data was sent from a sensor or

sent to an actuator. For a constant sensor delay that is less than one sample period,

the optimal control is given by:

u(k) = −L

 x(k)

u(k − 1)

 (5.1)

where x(k) is the state vector, u(k − 1) is the previous control, and L is a constant

feedback gain vector. For time-varying delays, there are two options. Equation (5.1)

may be used with the mean delay, but this yields suboptimal results. Alternatively,

the vector L may be replaced with a time-varying feedback gain vector, L(τ sc
k),

where τ sc
k is an estimate of the sensor-to-controller delay [25].

Packet loss due to bit errors poses additional challenges for achieving robust

system performance. As an example, consider the linear dynamics:

x(k + 1) = ax(k) + u(k) + d(k), a > 0

y(k) = x(k) (5.2)

where d(k) is a white noise disturbance process with unit variance. The optimal

control for the cost function J = E {x2} is given by:

u(k) = −ax̂ (5.3)

111

where x̂ is the best estimate of the state at time k. For a lost packet recovery

strategy in which retransmission is attempted only once, it may be shown that it is

impossible to stabilize the system if |a|q > 1, where q is the probability of receiving

a corrupted packet [25].

The techniques described above for mitigating packet delay and loss are appli-

cable to linear system dynamics only. Nonlinear plant dynamics complicate matters

substantially and require specialized analysis that depends on the type of nonlin-

earities present. In many cases, simulation is the only tool available for quantifying

the effect of packet delay and loss on system performance and stability.

5.3.4 Autopilot Delays

There are three main sources of delay present in the hovercraft autopilot.

These delays are time-varying and include the sensor-to-controller delay, τ sc, the

controller-to-actuator delay, τ ca, and an actuator delay, τa. The controller delay is

negligible and limited to a maximum of 1 ms by the dSPACE RTOS. Of course,

there is always the potential for dropped packets in the system.

Through experimentation, we have shown that the two Bluetooth delays, τ sc

and τ ca, are primarily dependent on the particular implementation of the RFCOMM

protocol in the Bluetooth stack. Recall that RFCOMM is a protocol for serial port

emulation over Bluetooth. In addition, these delays are heavily influenced by the

data rates required in the upstream and downstream directions. Data that we

collected indicates that higher data rates incur more delay.

112

The actuator delay, τa, is dependent on the arrival time of the control com-

mands with respect to the servo update time. The servos and speed controllers

update their outputs every 20 ms. Thus, τa lies in the interval [0, .020) and is

time-varying.

5.3.5 Autopilot Bluetooth Devices

We considered several options for connecting the hovercraft to a Bluetooth

network. The best option in terms of size, weight, power, and ease of use was a

Bluetooth serial port plug manufactured by Free2Move ($113). This device is a self-

contained Bluetooth host which implements the RFCOMM protocol in firmware and

provides wireless serial port cable replacement. There are no drivers to install and

the device plugs directly into a standard RS-232 serial port. The Free2Move serial

port plug is a Class 1 Bluetooth device with a range of 100 m in open air.

We purchased two of these units to provide Bluetooth connectivity on the

hovercraft and dSPACE system. A device like the Free2Move is ideally suited for

dSPACE, which does not have an open operating system on which to compile cus-

tom drivers. We also purchased a USB Bluetooth dongle manufactured by Linksys

(USBBT100) to compare performance with the Free2Move device. The Linksys

dongle is a Bluetooth controller only and requires a PC to provide the additional

functionality specified by the Bluetooth Host Protocol Stack. We used the open

source “BlueZ” Bluetooth protocol stack integrated in the Linux 2.6 kernel. BlueZ

113

is a multithreaded and stable implementation of the Bluetooth stack which achieved

qualification as a Bluetooth subsystem in April 2005.

5.3.6 Experimental Performance

We created a simple experiment to quantify the delays present in the Bluetooth

network. Specifically, we added custom software and hardware support to measure

the uplink (controller to hovercraft) and downlink (hovercraft to controller) delays

precisely. We then quantified the wireless link performance for different pairings of

devices and for various data rates.

Synchronization between the dSPACE system and the microcontroller was

achieved with a single wired connection. The dSPACE system generated a 1 kHz

timing reference and a strobe to mark the transmission of a special CLOCK TIME

message. This packet contained only the current dSPACE system time, truncated

to 4 bytes.

The strobe signal generated a microcontroller interrupt which caused a free-

running delay timer to be reset. When the CLOCK TIME message was finally

received by the microcontroller over the Bluetooth link, the timer value was read

and appended to the message. The CLOCK TIME message was then immediately

transmitted back to the dSPACE system. Using the original timer value contained

in the message and the uplink delay estimate provided by the microcontroller, the

dSPACE controller was able to compute the downlink delay.

114

We tested a variety of device pairings and data rates to determine the lowest

achievable network latencies. The best results were obtained with the hovercraft

Free2Move device configured as the Bluetooth master. A Pentium 4 laptop running

the Linux 2.6 kernel with BlueZ support was used for latency tests between the

Linksys USB Bluetooth dongle and the Free2Move device. The Linux ‘rfcomm’ util-

ity provided RFCOMM protocol support for serial port emulation over Bluetooth.

Additionally, a small application running on the laptop relayed data between the

PC and the dSPACE system over an RS-232 serial cable.

All serial devices were set to 115.2 kbps for minimal latency. The Free2Move

devices feature a software utility to configure network settings and operating pa-

rameters. We experimented with a variety of different settings and evaluated their

impact on network latency. Many of the settings had little or no effect on network

performance. We observed, however, that minimal latency was achieved by selecting

the ‘optimize for latency’ setting and disabling the ‘quality of service’ option.

The data from our network latency tests appears below in Table 5.1. Sur-

prisingly, the lowest latency was achieved for connections between the Free2Move

and Linksys devices. For uplink/downlink data rates of 2.9/22.0 kbps, the average

round trip delay was 77.54 ms. On the other hand, two paired Free2Move units also

transmitting at 2.9/22.0 kbps yielded a round trip latency of 162.98 ms, which is

twice as large! We attribute the poor performance to a suboptimal implementation

of the Bluetooth stack in the Free2Move devices. In contrast, the BlueZ stack is a

highly optimized implementation of the protocol running on a fast processor.

115

10 15 20 25 30 35 40 45
75

80

85

90

95

100

Downlink Data Rata (kbps)

D
el

ay
 (

m
s)

Figure 5.4: Bluetooth round trip delay vs downlink (hovercraft to controller) data

rate

We see from the data that the best performance was obtained for lower data

rates. The data rates required by the autopilot in the uplink and downlink directions

are highly asymmetric. A much larger downlink data rate is needed to service the

high-bandwidth traffic generated by the IMU sensor. A graph of the total round trip

delay versus downlink data rate is shown in Figure 5.4. The graph indicates that a

large reduction in latency is obtained by halving the downlink data rate from 41.0 to

22.0 kbps. Beyond this point, further decreases in the data rate yield only meager

improvements in latency. During the test, the downlink data rate was varied by

selectively discarding IMU packets. Thus, an important engineering tradeoff exists

between the effective IMU sample rate and the received data latency.

116

Mean Std Dev Min Max
Free2Move/Linksys

(2.9/41.0) kbps
Uplink 51.04 15.09 22 118

Downlink 39.02 9.23 20 74
Round trip 95.48 18.01 58 157

Free2Move/Free2Move
(2.9/41.0) kbps

Uplink 66.01 10.22 40 102
Downlink 95.36 12.02 59 141

Round trip 160.21 13.86 124 194
Free2Move/Linksys

(2.9/22.0) kbps
Uplink 40.81 10.61 22 90

Downlink 34.32 8.18 19 67
Round trip 77.54 14.44 46 110

Free2Move/Free2Move
(2.9/22.0) kbps

Uplink 62.76 11.13 40 106
Downlink 100.01 13.64 53 161

Round trip 162.98 16.58 113 208
Free2Move/Linksys

(2.9/16.2) kbps
Uplink 38.83 8.80 20 68

Downlink 32.62 8.49 14 65
Round trip 75.69 13.82 49 126

Table 5.1: Bluetooth network latency data. (All times are in ms.)

5.4 Inertial Navigation System (INS)

In this section, we describe the physical implementation of the two-dimensional

aided INS. The reader should refer to section 6.2.1 for information regarding the INS

performance and testing procedure.

117

5.4.1 Inertial Measurement Unit (IMU)

We used a Microstrain 3DM-GX1TMIMU that features three orthogonal MEMs

accelerometers, gyroscopes, and magnetometers packaged in a small (2.5 by 3.5

inch) case. The accelerometers are manufactured by Analog Devices (part number

ADXL103) and have a full-scale range of ±1.7g. The gyroscopes are also manufac-

tured by Analog Devices (part number ADXRS150) and measure angular velocities

in the range of ±300◦/s.

A microcontroller is integrated with the inertial sensors and performs physical

units scaling, axis misalignment correction, and temperature compensation. Micros-

train performs a full system calibration of each unit and stores the compensation

parameters in the microcontroller’s flash memory. In addition, the microcontroller

optionally runs a proprietary filtering algorithm called Fusion that corrects the gy-

roscope biases and outputs a gyro-stabilized 3-D orientation matrix.

The main problem with Fusion is that it performs abysmally when the IMU

is subjected to prolonged angular rotation or linear acceleration. Additionally, the

Fusion algorithm fails to cope adequately with transient angular velocities that ap-

proach the gyroscope’s limits. When either of these conditions occurs, the reported

orientation drifts wildly and is unusable. The user must then bring the IMU to

rest and manually resample the gyro biases (a process that takes several seconds)

in order to reset the filter. The shortcomings of the Fusion algorithm prompted our

development of a two-dimensional INS.

118

The basic execution interval on the IMU is a tick with a default value of 6.5536

milliseconds. The message update rate varies from 1 to 3 ticks depending on the

particular data message requested and whether filtering and gyro bias compensation

are enabled. Raw sensor measurements require the least amount of processing time

and are transmitted once per tick. Data is transmitted serially using the RS-232 or

RS-422 electrical protocol.

5.4.2 Aiding Sensors

The primary INS aiding sensor on the hovercraft is a “Cricket” positioning

device.2 The Cricket system uses a combination of ultrasound and RF to estimate

position in two dimensions with respect to a user-defined coordinate system. It is

essentially an indoor GPS replacement.

Although we originally anticipated using the magnetometer to aid the heading

filter, we encountered significant problems due to the presence of steel beams in

the floor and nearby time-varying magnetic fields produced by the electric motors.

Fortunately, we were able to use two Cricket units to provide reasonable heading

estimates.

5.4.3 Real-Time Processor

The INS processor is a 333 MHz PowerPC embedded in the dSPACE system.

dSPACE executes the INS code in parallel with the hovercraft controller using a

2See section 5.5 for a description of the Cricket system.

119

fixed time step of 1 ms. All calculations must complete within the allotted time, or

an overrun will be signalled and execution will halt.

5.4.4 Software

The INS is implemented in C code using the Matlab S-function framework.3

We used the free “meschach” [26] matrix library written in ANSI C to handle the

matrix computations inherent to Kalman Filtering. The meschach library is small,

fast, and portable since it adheres to the ANSI C standard. Portability ensures that

the library works properly on both the PC (Intel) and dSPACE (PPC) hardware

platforms.

5.4.5 Discrete Error Model

The noise covariance matrices, Qi and measurement covariance matricesRi, (i =

1, 2) were determined experimentally by collecting sensor data for one hour with the

sensor stationary. Appropriate noise powers for the random walk processes were se-

lected using simulation. Software functionality was provided to permit adjustment

of the noise parameters in real-time for INS performance tuning. The nominal co-

variance matrices used in the Kalman Filter equations are:

Q1 =

 4.9e-4 0

0 5e-4

 , R1 = [1.6e-4] (5.4)

3See section 5.1 on Simulink and dSPACE.

120

for the heading filter and

Q2 =



3.4e-2 0 0 0

0 2.7e-2 0 0

0 0 5e-4 0

0 0 0 5e-4


, R2 =

 5.6e-4 0

0 5.6e-4

 (5.5)

for the velocity and position filter.

Equations (3.31) and (3.32) were discretized using a fixed update rate of 6.5536

ms. The resulting discrete error dynamics model is given by:

δx1(tk) =

 1 ∆t

0 1

 δx1(tk−1) +

 1 0

0 1

w1(tk−1),

δx1 = [δθ bg]
T

and

δx2(tk) = Φ2(tk, tk−1)δx2(tk−1) +G2(tk−1)w2(tk−1),

δx2 = [δvx δvy δrx δry bax bay]
T

121

where

Φ2(tk, tk−1) =



1 0 0 0 c1 cos(θ̂(tk−1)) −c1 sin(θ̂(tk−1))

0 1 0 0 c1 sin(θ̂(tk−1)) c1 cos(θ̂(tk−1))

c1 0 1 0 c2 cos(θ̂(tk−1)) −c2 sin(θ̂(tk−1))

0 c1 0 1 c2 sin(θ̂(tk−1)) c2 cos(θ̂(tk−1))

0 0 0 0 1 0

0 0 0 0 0 1



G2(tk−1) =



cos(θ̂(tk−1)) − sin(θ̂(tk−1)) 0 0

sin(θ̂(tk−1)) cos(θ̂(tk−1)) 0 0

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


c1 = ∆t

c2 =
(∆t)2

2

122

and ∆t is the fixed IMU sample rate. The error state vectors, δx1 and δx2 are

initially set to 0, and the noise covariance matrices, P1 and P2, take initial values:

P1(t0) =

 1.6e-4 0

0 1



P2(t0) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 5.6e-4 0 0 0

0 0 0 5.6e-4 0 0

0 0 0 0 1 0

0 0 0 0 0 1


In order to maintain synchronization with the IMU, an ‘IMU Data Ready’

strobe tells the Kalman Filters when to propagate the error state. The synchroniza-

tion signal is necessary because the Bluetooth transmission delay is variable.

The Kalman Filters incorporate new heading and position measurements when

they become available and update the error state estimates accordingly. The outputs

of the heading filter are the bias-corrected angular velocity, the corrected heading,

and the gyro bias. Similarly, the outputs of the velocity/position Kalman Filter are

the bias-corrected specific force vector, the corrected velocity and position in inertial

coordinates, and the accelerometer biases.

123

Figure 5.5: Cricket mote (Photo courtesy of MIT CSAIL)

5.5 Cricket Positioning System

Cricket is a low-cost, scalable, and robust indoor positioning system. The

system uses a combination of ultrasound and RF to estimate position in two dimen-

sions with respect to a user-defined coordinate system. Although overall positioning

accuracy is dependent on the quality of the system calibration, accuracies on the

order of a few centimeters may be easily achieved. Cricket also provides accurate

dynamic positioning, as long as the sensor speed is well below the speed of sound

(340.29 m/s).

Cricket was originally conceived and developed by Hari Balakrishnan and Nis-

sanka Priyantha at the Massachusetts Institute of Technology [18, 19]. MIT main-

tains a relationship with Crossbow Technology to commercially produce the Cricket

system. Crossbow manufactures the Cricket boards and distributes a set of eight

sensors packaged with MIT’s Cricket firmware. The Cricket unit, shown in Figure

5.5, is a modified Mica2 mote originally developed by the University of California,

Berkeley.

124

The Cricket motes are small, low-power sensor platforms that feature an Atmel

8-bit microcontroller, an ISM-band radio transceiver manufactured by Chipcon, two

ultrasonic transducers, and serial interface circuitry. The units run the TinyOS

operating system and are programmed in NesC, a variant of ANSI C for embedded

processors.

We have completely redesigned the Cricket firmware from the ground up in

order to greatly improve positioning accuracy when the device is moving. In the

following discussion, we describe our implementation of the Cricket system at the

University of Maryland. Later, we will highlight the major differences between the

two systems.

5.5.1 Cricket Entities and System Architecture

Cricket consists of two entities: roving clients and fixed beacons. Beacons

play the role of satellites in a GPS system while clients access the system to obtain

position estimates. Unlike GPS, Cricket uses the large difference in the propagation

velocities of light and sound to compute ranges. Individual client-to-beacon ranges

are computed by differencing the arrival times of an RF pulse and a 40 kHz ultrasonic

chirp.

Multiple clients access the Cricket system using a time-division access protocol.

Each client has a reserved 100 ms time slice in which to ping the beacons with

an ultrasonic chirp and await responses. The maximum range of the transmitted

ultrasound is approximately 30 feet, corresponding to about 30 ms of flight time.

125

Beacons within range of the client measure the time of flight of the ultrasonic chirp,

determine the speed of sound using the local temperature, and compute the range

estimate. The beacons then report the range back to the requesting client.

In order to reduce system complexity and network overhead, the beacons do

not explicitly coordinate with each other when accessing the wireless channel. In-

stead, the beacons implement a carrier sense multiple access (CSMA) protocol with

random backoff in order to mitigate RF packet collisions. Each beacon wishing to

transmit range information initially delays a random number of bytes by uniformly

sampling the interval [1, 64]. When the backoff condition is satisfied, the beacon

determines whether the link is in use by polling the RSSI (Received Signal Strength

Indicator). If the link is clear, the beacon switches to transmit mode and sends the

message.

Observe that all entities in the network receive every radio transmission. En-

tities must determine if they are the intended message recipient by examining a

specific message field. After pinging the beacons, the client awaits range estimates.

If at least two ranges are received by the end of the time slice, the client can es-

timate its position in the plane.4 Note, however, that the computed position is

ambiguous. A third range measurement helps to resolve the positioning ambiguity,

and additional range measurements, if available, improve the position estimate in a

least-squares sense.

4The range message contains the ceiling height and the client knows its height above the ground.

126

5.5.2 Time Synchronization

Time synchronization is vital to the Cricket system for two reasons. First,

clients must remain synchronized with each other so that they respect the time

division multiple access protocol. Second, beacon and client timers must be syn-

chronized in order to measure the ultrasound time of flight.

Time synchronization among clients is controlled by the master client. Only

one client in the network may be designated the master. Each second, the master

device issues an RF synchronization message which causes the remaining clients to

restart their internal timers. The Cricket boards feature a highly accurate 32.768

kHz oscillator for precise timing. This is significant because it permits upgrad-

ing the microcontroller oscillator without having to modify the low-level timebase-

dependent assembly code.

An RF message is also used to synchronize the beacon and client timers when

the client issues the ultrasonic chirp. After accounting for fixed processing delay,

the clocks are synchronized to within 1 µs.

5.5.3 Position Determination

The client computes its position by solving a system of nonlinear equations. At

least two range measurements are required to estimate position in the plane. With

two measurements, position determination amounts to solving the intersection of

two circles in the plane. The problem is that the circles may intersect in two points.

127

The ambiguity may often be resolved by selecting the position solution that is closest

to the previous estimate.

Additional measurements, if available, can be used to increase the accuracy of

the estimate and eliminate the solution ambiguity. Following the GPS model, we

assume that the range equations take the following form:5

ρi =

√
(x− xi)

2 + (y − yi)
2 + h2 + b, i = 1, 2, . . . n (5.6)

where (xi, yi) denotes the location of the ith beacon, h is the fixed vertical height

between the client and the beacons, and b is an error term included to make the

system of equations consistent. In a GPS system, b is called the ‘clock bias’ and

accounts for the offset between the satellite and receiver clocks. Since the speed of

light is constant, b represents a distance error caused by the clock offset.

In the Cricket system, the meaning of b in (5.6) is slightly different. First, the

speed of sound in ambient air is not constant. Although we use a highly nonlinear

model to compute the speed of sound based on local temperature and humidity [27],

there will inevitably be small errors due to variable temperature gradients in the

propagation path. The other difference is that the clock offset in the Cricket system

is minimal since the clocks are synchronized to within 1 µs. These two observations

imply that b should be thought of as a small error term to make the system of range

equations consistent. In fact, the magnitude of b provides information about the

quality of the position estimate.

5The GPS range equations replace h with (z − zi), since altitude is variable. Thus, four range

measurements are needed to solve position in three dimensions.

128

Fortunately, there is an elegant and computationally efficient solution to the

range equations attributable to S. Bancroft [28]. Using some clever algebraic manip-

ulations, the Bancroft algorithm provides a least-squares solution to the nonlinear

equations and requires solving only a linear system and the roots of a quadratic

equation. Three range measurements are required to determine the three unknowns

in (5.6). Additional measurements are easily incorporated by the Bancroft algorithm

and used to refine the position estimate in a least-squares sense.

5.5.4 Cone Angle Errors

A non-negligible source of error in the Cricket system results from nonlineari-

ties in the ultrasonic transducers. The transducers are physical devices that convert

electrical signals to ultrasound and vice-versa. As non-ideal devices, they exhibit

energy conversion nonlinearities that are dependent on the angle of the transmitted

and received ultrasound.

Figure 5.6 shows a diagram of a Cricket unit with a cone drawn to illustrate

the spatial limitations of the transducer. We have observed that the transducer

efficiency rapidly decreases as the cone angle, θ increases. In fact, at an angle

of about 45◦, the Cricket units are completely unable to detect the transmitted

ultrasound. Depending on ceiling height, the ultrasound cone angle can severely

limit the area covered by each beacon.

While the coverage problem may be solved by increasing the number of units,

there is a more subtle issue caused by the cone angle effect. The problem is that

129

Figure 5.6: Illustration of the Cricket ultrasonic cone. Figure is not to scale.

the variability in sound energy produces errors in the range measurements that

are dependent on the cone angle. The amount of energy present in the received

ultrasound determines how long it takes the output from the envelope detector

circuit to cross a fixed threshold.

Fortunately, the range measurements may be compensated for cone angle ef-

fects in the two-dimensional setting (i.e., if the client-to-beacon height is known).

We devised an experiment to quantify the effect of cone angle on range error. A

preliminary step in the experiment was to select a ceiling-mounted beacon and use

a plumb line to project the location of the ultrasonic transducer onto the floor. We

marked the location and then measured the vertical height, h, precisely. To achieve a

130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

Cone Angle (rad)

r
/ ρ

0 6 11 17 23 29 34 40

Cone Angle (degrees)

Figure 5.7: Ratio of true range to measured range as a function of cone angle

desired cone angle, θ, the client was positioned on a circle of radius h tan(θ), centered

at the mark. The true range at a particular cone angle was given by r = h/ cos(θ).

For each cone angle, we collected 240 measurements, ρ, (corresponding to 4

minutes of data) and averaged them. We then computed the error ratio e = r/ρ for

each cone angle. The data appears below in Table 5.2 and is plotted in Figure 5.7.

In addition, we fit the data to a second-order polynomial with equation:

e(θ) = (−0.038)θ2 + (.0032)θ + 1 (5.7)

The correlation coefficient was 0.9999.

Cone Angle True Range (r) Measured Range (ρ) Ratio r/ρ
0◦ 270.48 cm 270.48 cm 1
10◦ 274.65 cm 274.83 cm 0.99935
20◦ 287.84 cm 288.83 cm 0.99657
30◦ 312.32 cm 315.07 cm 0.99127
35◦ 330.20 cm 334.25 cm 0.98788

Table 5.2: Range data for various cone angles and a ceiling height of 270.48 cm

131

Using error model (5.7), a measured range can be compensated for cone angle

errors by solving:

r(θ) = e(θ)ρ (5.8)

The problem is that we do not know the value of θ directly. However, by substituting

for r in equation (5.8), we obtain:

h

cos(θ)
= e(θ)ρ

e(θ) cos(θ)− h

ρ
= 0 (5.9)

Thus, we must solve this nonlinear equation for θ and back-substitute to compute

r(θ).

We implemented Newton’s method on the client device to solve equation (5.9)

and compensate the range measurements. For a tolerance of 1e-6, the solution

typically converges within 5 iterations. Depending on cone angle, the improvement

in range accuracy can be significant (several centimeters). The result is a lower

positioning variance since the range errors are normalized and not dependent on the

geometry of the active beacons with respect to the client.

5.5.5 Performance

Positioning accuracy depends on several factors including the quality of the

system calibration, whether the client is static or moving, whether cone angle com-

pensation is enabled, and the accuracy of the computed speed of sound. Perfor-

mance is most limited by the system calibration and how accurately the measured

beacon positions reflect the true sensor locations. Positioning accuracy of ±10 cm

132

(client speed <4 m/s) is achievable using only a plumb line and a measuring tape

to calibrate the system.

The calibration task is simplified if the Cricket network is confined to a single

room featuring a drop ceiling with fixed-size panels. These panels provide a clear

visual reference for defining a coordinate system. In future work, we would like to

implement an autonomous calibration solution using a wheeled-robot with odometry,

aided by range measurements. Such a system would provide a means for calibrating

a disjoint network spanning moderate to large distances where the use of a measuring

tape would be impractical.

Figure 5.8 depicts the static performance of the Cricket system. Data was

collected for two minutes with the client stationary. The circular region denotes the

area in which 50% of the measured ranges fall. This region represents the circular

error probability (CEP) and has a radius of .52 cm.

5.5.6 MIT System Differences

There are several notable differences between our system and the original MIT

system. The primary difference is that MIT system reverses the roles of the clients

and beacons. In the MIT system, the clients are listeners and receive ultrasonic

pings from the beacons. A beacon determines when to chirp by randomly selecting

a delay between zero and one second. The beacon delays the required amount of

time and then samples the RF channel for activity. If the beacon detects that the

133

-15.5 -15 -14.5 -14 -13.5

150.6

150.8

151

151.2

151.4

151.6

151.8

152

152.2

152.4

cm

cm

Figure 5.8: Static performance of the Cricket positioning system. The circle repre-

sents a CEP of .52 cm

channel is in use (by measuring RSSI), the beacon backs off a random amount of

time before attempting a retransmit.

There are several problems with this system. First, there is the possibility for

more than one ultrasonic chirp to be in transit at one time. Although an effort is

made to disambiguate the source of a chirp, there is still the possibility for received

ultrasound to be associated with the wrong beacon. There is also the possibility for

two chirps to interfere with each other and cause range errors.

Another major problem is that the range measurements occur at different

times. A listening unit that is moving will be unable to accurately determine its

position from the range measurements alone. Even at modest velocities of 1 m/s,

the individual range measurements might occur at listener locations that are spaced

134

0.3 m apart. The only way to achieve accurate position estimates while moving is to

supplement the range measurements with information about the listener’s motion.

Of course, this greatly increases the system complexity.

The MIT implementation of Cricket may be used to compute position esti-

mates in static and quasi-static environments. We should note that the listener

unit does not run a position determination algorithm and does not account for cone

angle errors. The unit simply outputs computed ranges that occur roughly once

per second for each beacon in range. One advantage of the MIT system is that

listener privacy is respected since no information is ever transmitted by the listener.

The system is good for coarse positioning, when the user needs only to determine

the closest beacon. For precise positioning on a moving vehicle, however, the MIT

system falls short.

135

Chapter 6

Results

6.1 Simulated Results

6.1.1 Autopilot Simulink Model

Prior to testing the hovercraft autopilot on real hardware, we developed a

high-fidelity model of the system using Simulink. We added blocks to model the

INS noise, Bluetooth network delay, ESC reverse-to-forward delay, and actuator

saturation. We also implemented the thruster and rudder calibration tables to

convert between forces and actuator commands.

We implemented the hovercraft dynamics as a continuous-time S-function. In

addition, we implemented the discrete-time hovercraft control laws as an indepen-

dent controller block using standard Simulink components. By closing the loop

around these two blocks, we created an ideal autopilot model for comparison.

The Simulink models greatly aided in debugging the controller block and de-

termining appropriate gains for the real autopilot system. Once a desired level of

simulated performance was attained, the controller block was tested on real hard-

ware. The controller block was simply copied to the dSPACE autopilot model and

compiled to C code.

136

Figure 6.1 shows the complete autopilot model used for simulation. Observe

that the real and ideal models are connected in parallel allowing a direct comparison

of performance. In the following sections, we give an overview of the functionality

provided by each of the blocks.

INS Block

The INS block is shown in Figure 6.2. The block contains two noise generators

that add random errors to the true velocity and heading variables output by the

hovercraft dynamics block. We model two sources of error in the INS block.

First, we assume that there are small time-varying errors in the INS bias esti-

mates for the accelerometers and gyro. Both bias errors are modeled as zero-mean

Gaussian random variables with variances given by 2.5 cm/s2 for the accelerometers

and 1◦/s for the gyro. The integrator computes the velocity and heading errors that

result from these bias errors.

In addition, we corrupt the gyro measurements with zero-mean white Gaussian

noise with a variance of .5◦/s. This noise represents the IMU sensor sampling noise.

Finally, the sample and hold block outputs the navigation data at the 6 ms IMU

sampling rate.

Downlink/Uplink Blocks

The downlink and uplink blocks are simple delay chains that model the mean

Bluetooth link delay determined empirically. Using the data presented in Table 5.1,

137

In
O

ut

U
pl

in
k

T
he

ta

S
er

vo
s

C
P

U
 S

er
vo

 C
m

ds

F
x

F
y

R
LU

T

P
y

P
x

F

T
hr

us
t

R
ud

de
r

A
ng

le

P
ol

ar
 C

oo
rd

s

O
m

eg
a

T
hr

us
t

R
ud

de
r

C
P

U
 S

er
vo

 C
m

ds

LU
T

T
ru

e
V

ar
s

IN
S

 V
ar

s

IN
S

F
y

F
x

In
O

ut E
S

C

ho
ve

r_
dy

na
m

ic
s_

sf
un

D
yn

am
ic

s1

ho
ve

r_
dy

na
m

ic
s_

sf
un

D
yn

am
ic

s

In
1

O
ut

1

D
ow

nl
in

k

em
u

em
u

em
u

em
u

em
u

S
ta

te

La
w F

C
on

tr
ol

 L
aw

s2

S
ta

te

La
w F

C
on

tr
ol

 L
aw

s1

F
ig

u
re

6.
1:

S
im

u
li
n
k

m
o
d
el

of
th

e
h
ov

er
cr

af
t

au
to

p
il
ot

fo
r

si
m

u
la

ti
on

138

1

INS Vars

-K-

To velocity

-K-

To momentumSample
& Hold

-K-

Noise Gain1

-K-

Noise Gain

K*u Matrix
Gain

1
s

Integrator

Gyro
Noise

Bias Error

1 s Pulse Generator

1

True Vars

Figure 6.2: INS error model

139

1

Out1
z

1

Downlink5

z

1

Downlink4

z

1

Downlink3

z

1

Downlink2

z

1

Downlink1

z

1

Downlink

1

In1

Figure 6.3: Hovercraft-to-controller (downlink) Bluetooth link delay

1

Out
z

1

Unit Delay1

z

1

Unit Delay

1

In

Figure 6.4: Controller-to-hovercraft (uplink) Bluetooth link delay

we see that a 2.9/22.0 kbps link has a mean delay of 40 ms up and 34 ms down. As

shown in Figure 6.3, we model the downlink as a chain of 6 delay elements executing

at the IMU rate of 6 ms. Similarly, Figure 6.4 depicts the uplink modeled by 2 delay

elements. These delay elements run at the servo update rate of 20 ms.

LUT/RLUT Blocks

The LUT (lookup table) and RLUT (reverse lookup table) blocks convert

forces to actuator commands and vice-versa. These blocks implement the rudder

and thrust calibration tables discussed in section 4.3. Figure 6.5 shows the inside of

the LUT block.

The LUT block works in tandem with the ‘Polar Coords’ block to output

a rudder servo command in milliseconds and a thrust command in motor RPM.

140

1

CPU Servo Cmds

Lookup (angle->ms)

Lookup ([deg,N]->rpm)

-K-

*1000

2

Rudder

1
Thrust

Figure 6.5: Actuator commands lookup table (LUT)

Actuator saturation is handled directly by the lookup tables. Commands that exceed

the predefined actuator limits are clipped to their maximum values.

The ‘Polar Coords’ block precedes the LUT block and converts the FX and FY

force components to polar coordinates. It also models a force dead-zone nonlinearity

of [−.05, .05] N in order to prevent actuator chatter and conserve battery power. The

rudder angle is then determined using equation (4.3).

The RLUT block takes a rudder servo command and a motor RPM as inputs

and determines the forces that were actually imparted by the actuators. This block

allows comparison of the realized forces with the forces requested by the controller

and aids in tuning the control law gains.

Thrust Fan ESC Block

The ESC block models the reverse-to-forward thrust fan delay described in

section 4.2.1. The block detects when the thrust fan RPM command crosses from

141

1

Out

NOT

not

In Out

Slope Capture

S

R

Q

!Q

S-R
Flip-Flop

>=

Relational
Operator

Pos Cross

OR

OR
Neg Cross

Multiport
Switch

z

1

Get RPM

1
s

xo

ESC Brake

emu

0

Constant

1

In

Figure 6.6: Electronic Speed Controller (ESC) model

negative to positive and then brakes the motor before switching directions. The

braking interval lasts for exactly 150 ms. If a negative RPM command is received

during the braking interval, the brake is reset and the fan jumps immediately to the

commanded RPM. The ESC block is shown in Figure 6.6.

6.1.2 Zero Velocity Stabilization

Figures 6.7a - 6.7c shows the simulated results for zero velocity stabilization

using the initial conditions and controller gains shown in Table 6.1.

The solid blue line represents the real autopilot and the dashed red line cor-

responds to the ideal autopilot. There are a couple of observations to make from

these plots. First and foremost, the real autopilot model brings the hovercraft to

rest! Despite all the delays and uncertainties present in the system, the controller

142

Parameter Value
VX(0) .2 m/s
VY (0) -.7 m/s
Ω(0) 6.4 rad/s
k1 1.0
k2 2.5

Table 6.1: Zero velocity stabilization parameters

effectively damps each of the velocities and requires only 5 seconds longer to stop

the hovercraft turning. Second, the initial segments of the linear velocity plots for

the real autopilot model are highly oscillatory with large overshoot compared to

the ideal model. Finally, the settling time of the real model with the given initial

conditions is roughly 10 seconds.

Considering that the real model accounts for a loop delay of nearly 80 ms,

imposes realistic constraints on the actuator limits and bandwidth, and assumes

error-prone INS outputs, the simulated performance of the real model is quite im-

pressive. In section 6.2.2 we show that the simulated performance agrees well with

the actual autopilot performance for the same initial conditions and controller gains.

6.1.3 Forward Velocity Stabilization

The next group of plots show the simulated autopilot performance for stabi-

lizing a constant forward velocity. An arbitrary velocity of 1.1 m/s was chosen and

the controller was started with the hovercraft at rest. The parameters selected for

the simulation appear in Table 6.2.

143

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time

x
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(a) Longitudinal velocity (VX)

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time

y
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(b) Lateral velocity (VY)

Figure 6.7: Simulated results for zero velocity stabilization

144

0 5 10 15
-1

0

1

2

3

4

5

6

7

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Model
Ideal Model

(c) Angular velocity (Ω)

Figure 6.7: Simulated results for zero velocity stabilization

145

Parameter Value
VX(0) 0.0 m/s
VY (0) 0.0 m/s
Ω(0) 0.0 rad/s

PX 2.8 kg m/s
k1 1.0
k2 4.0

Table 6.2: Forward velocity stabilization parameters

Figures 6.8a - 6.8c depict the relevant state variables as the controller attempts

to drive the hovercraft forward at a constant velocity of 1.1 m/s. The solid blue line

represents the real autopilot performance and the dashed red line corresponds to the

theoretical performance. It is clear from Figure 6.8a that both controllers achieve

the commanded velocity. The real autopilot model attains the reference velocity

for the first time in about 5 seconds, but the steady-state error fluctuates between

±.1 m/s. The errors are due to the INS noise and delays present in the system.

In contrast, the ideal model exhibits smooth asymptotic convergence to the desired

reference velocity.

Figures 6.8b and 6.8c depict the lateral and angular velocities respectively.

Observe that there is a marked difference between the real and theoretical autopilot

performance exhibited in these plots. Although the real autopilot achieves average

velocities of zero, the steady-state error fluctuates wildly as the controller contends

with noisy state measurements and system delay. We have verified through simula-

tion that the primary cause of these oscillations is the INS noise. Thus, the quality

of the INS outputs is a deciding factor in the overall attainable performance.

146

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

x
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(a) Longitudinal velocity (VX)

0 5 10 15
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time

y
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(b) Lateral velocity (VY)

Figure 6.8: Simulated results for constant forward velocity stabilization (V X = 1.1

m/s)

147

0 5 10 15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Model
Ideal Model

(c) Angular velocity (Ω)

Figure 6.8: Simulated results for constant forward velocity stabilization

6.1.4 Reverse Velocity Stabilization

Figures 6.9a - 6.9c show the simulated results for reverse velocity stabilization.

A reference velocity of -.76 m/s was selected and the autopilot was started with the

hovercraft nearly at rest. The parameters used in the simulation appear in Table

6.3.

The plots strongly resemble the simulated forward velocity stabilization plots

shown previously. In both cases, the lateral and angular velocities for the real system

fluctuate about zero as the controller drives the longitudinal velocity to -.76 m/s.

The controller achieves the desired reverse velocity in roughly five seconds.

148

0 5 10 15
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time

x
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(a) Longitudinal velocity (VX)

0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

y
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(b) Lateral velocity (VY)

Figure 6.9: Simulated results for constant reverse velocity stabilization

149

0 5 10 15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Model
Ideal Model

(c) Angular velocity (Ω)

Figure 6.9: Simulated results for constant reverse velocity stabilization (V X = -.76

m/s)

150

Parameter Value
VX(0) 0.0 m/s
VY (0) -0.1 m/s
Ω(0) 0.1 rad/s

PX -1.98 kg m/s
k1 1.5
k2 1.0
β 1.44

Table 6.3: Negative velocity stabilization parameters

6.1.5 Constant Angular Velocity Stabilization

The simulated results for constant angular velocity stabilization are shown

in Figures 6.10a - 6.10c. The controller was commanded to maintain an angular

velocity of 3 rad/s. The parameters used in the simulation are presented in Table

6.4.

Parameter Value
VX(0) 0.0 m/s
VY (0) -0.0 m/s
Ω(0) 0.1 rad/s

Π .2880 kg m2/s
k1 0.5
k2 3.5

Table 6.4: Angular velocity stabilization parameters

The plots show that the hovercraft must undergo some linear translation in

order to commence turning. This is expected since the hovercraft dynamics pre-

clude the production of a pure torque. Observe that the real and ideal autopilots

achieve steady state angular velocity in roughly the same amount of time. The

main difference is that while the state variables for the real autopilot oscillate about

151

the correct final values, the ideal autopilot exhibits asymptotic convergence. Thus,

Figures 6.10a and 6.10b indicate that the real hovercraft will wander slowly while

turning at the commanded velocity as a result of INS noise, delay, and other distur-

bances.

6.1.6 Heading Stabilization Comparison

We now present the simulated results for heading stabilization. We simulated

both of the hybrid heading stabilization algorithms discussed in section 2.3.3 using

two different sets of initial conditions. The results are plotted together to facilitate

comparison of the different strategies.

In the first trial, nonzero initial conditions were selected for the longitudinal,

lateral, and angular velocities. The bang-bang pointing algorithm used a fixed

angular velocity magnitude of 1.5 rad/s while the proportional law gain was set

to 1.0. These values were selected to achieve a comparable transient response.

Additionally, the desired heading, θ, was set to 5 rad and the pointing tolerance was

1◦. Figures 6.11a - 6.11d show the simulated results.

The plots indicate comparable performance for the two pointing control laws.

One noticeable difference is that the proportional law for the ideal autopilot exhibits

steady state error. The cause of this error can be understood by examining the

proportional heading stabilization algorithm.

When the hovercraft heading error satisfies the pointing tolerance, the autopi-

lot switches to the zero velocity stabilization law. Due to the asymptotic nature of

152

0 2 4 6 8 10 12 14 16 18 20 22
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time

x
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(a) Longitudinal velocity (VX)

0 2 4 6 8 10 12 14 16 18 20 22
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time

y
V

el
oc

ity
 (

m
/s

)

Real Model
Ideal Model

(b) Lateral velocity (VY)

Figure 6.10: Simulated results for constant angular velocity stabilization

153

0 2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Model
Ideal Model

(c) Angular velocity (Ω)

Figure 6.10: Simulated results for constant angular velocity stabilization (Ω = 3

rad/s)

154

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

x
V

el
oc

ity
 (

m
/s

)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

x
V

el
oc

ity
 (

m
/s

)

Time

Real Autopilot

Bang-Bang
Proportional

(a) Longitudinal velocity (VX)

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

y
V

el
oc

ity
 (

m
/s

)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

Time

y
V

el
oc

ity
 (

m
/s

)

Real Autopilot

Bang-Bang
Proportional

(b) Lateral velocity (VY)

0 5 10 15 20 25 30 35
-2

0

2

4

6

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-2

0

2

4

6

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Autopilot

Bang-Bang
Proportional

(c) Angular velocity (Ω)

0 5 10 15 20 25 30 35
0

2

4

6

8

H
ea

di
ng

 (
ra

d)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Time

H
ea

di
ng

 (
ra

d)

Real Autopilot

Bang-Bang
Proportional

(d) Heading (θ)

Figure 6.11: Simulated results for heading stabilization comparison with nonzero

initial conditions

155

the velocity damping control law, the hovercraft continues to drift slowly. The prob-

lem is that when the heading error exceeds the pointing tolerance, the autopilot can

not immediately switch back to the constant angular velocity stabilization law. The

reason is that step (5) of the proportional heading stabilization algorithm prohibits

switching control laws until condition (2.48) is satisfied. Since the desired angu-

lar momentum, Π = −k θ̂, is small, condition (2.48) prevents the controller from

switching to the Π stabilization law. Once the error signal becomes large enough,

however, the controller is provisioned to switch laws and drive the heading error

to zero. The bang-bang controller does not suffer from this problem because the

selected Π is large enough to immediately satisfy (2.48) as soon as the heading

tolerance is exceeded.

Figures 6.12a - 6.12d show the results for initial conditions equal to zero.

The desired heading was set to 1 rad. All other parameters had the same values

as in the previous simulation. Again, the plots indicate comparable performance

between the two algorithms. In addition to achieving the desired heading more

slowly, the proportional law exhibits steady state error as before. One advantage of

the proportional law is that it drives the lateral velocity closer to zero. In contrast,

the bang-bang algorithm chatters between the zero velocity and constant angular

velocity control laws when the heading approaches the pointing tolerance. This

chattering prevents VY from being driven to zero.

Based on these simulated results, it is still unclear whether to use the bang-

bang or proportional heading stabilization algorithm on the real autopilot. On one

hand, the proportional law seems to provide better stability at the expense of some

156

0 5 10 15 20 25 30 35
-0.15

-0.1

-0.05

0

0.05

x
V

el
oc

ity
 (

m
/s

)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

x
V

el
oc

ity
 (

m
/s

)

Time

Real Autopilot

Bang-Bang
Proportional

(a) Longitudinal velocity (VX)

0 5 10 15 20 25 30 35
-0.2

-0.1

0

0.1

0.2

y
V

el
oc

ity
 (

m
/s

)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time

y
V

el
oc

ity
 (

m
/s

)

Real Autopilot

Bang-Bang
Proportional

(b) Lateral velocity (VY)

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real Autopilot

Bang-Bang
Proportional

(c) Angular velocity (Ω)

0 5 10 15 20 25 30 35
0

0.5

1

1.5

H
ea

di
ng

 (
ra

d)

Ideal Autopilot

Bang-Bang
Proportional

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

Time

H
ea

di
ng

 (
ra

d)

Real Autopilot

Bang-Bang
Proportional

(d) Heading (θ)

Figure 6.12: Simulated results for heading stabilization comparison with initial con-

ditions equal to zero

157

steady state error. On the other hand, the questionable small performance benefit

of the proportional law does not seem to justify the additional complexity of the

algorithm.

6.2 Experimental Results

6.2.1 Aided INS Performance

6.2.1.1 Test Configuration

The aided INS performance was quantified using a rotating platform under

computer control. The platform was driven by a high power DC supply with remote

operation capability. Reference signals were provided by a 4096-position optical

encoder connected to the motor shaft and an analog tachometer.

Prior to testing, the tachometer was calibrated by applying a slowly increasing

ramp voltage to the motor and recording the tachometer output. The true angular

velocity was computed by differentiating the position encoder data and applying

heavy low pass filtering (4th order Bessel filter at 5 Hz). A linear regression was

performed on the collected data to provide the mathematical relationship between

the tachometer output voltage and the platform angular velocity.

The INS was tested in two separate configurations. For the first test, the

IMU was mounted inline with the motor spin axis. This configuration was used to

evaluate the heading filter performance. For the second test, the IMU was mounted

on an aluminum beam attached to the platform and offset a distance of 12 inches

158

from the spin axis. This setup allowed the IMU to sense centripetal and tangential

accelerations and was useful for quantifying the velocity/position filter performance.

Power and data lines to the IMU were routed through an 8-channel slip ring

coupled to the motor shaft. A Simulink model to control the rotating platform was

developed and executed in real-time on the dSPACE system. Data was collected by

dSPACE, plotted in real-time using the ControlDesk data visualization application,

and streamed to disk for post-processing in Matlab.

6.2.1.2 Heading Filter Performance

The heading filter was developed and tested first. To test the filter, the IMU

was mounted inline with the motor spin axis to reduce any platform wobble that

might adversely affect the results. For the first sets of tests, heading measurements

were provided by the IMU magnetometer at an update rate of 6.5536 ms. Later, we

repeated the tests using heading estimates provided by two Cricket units.

We first drove the platform at a constant angular velocity of -2.9 rad/s (-166◦/s).

Figures 6.13a and 6.13b compare the INS angular velocity and heading outputs with

the reference signals. The INS outputs are shown in dashed red and the reference

signals are in solid green. As seen in Figure 6.13a, the INS angular velocity tracks

the tachometer output well and has a lower variance. There is a slight oscillation

in both outputs which we attribute to small variations in the motor speed. The

angular velocity error plot indicates that the error magnitude is small. In fact, the

angular velocity rms error is .065 rad/s (3.7◦/s). Also, as shown in Figure 6.13b the

159

INS heading estimate agrees well with the optical encoder output. The heading rms

error is .009 rad (.5◦).

In a subsequent test, we increased the velocity of the platform and evalu-

ated the filter performance. Even as the platform angular velocity approached the

gyroscope limits of ±300◦/s, the filter performed well. In fact, when the angular

velocity was increased beyond the device limits, the filter adjusted the bias estimate

to compensate.

We repeated this constant angular velocity test using two Cricket units as

the heading aiding source. The two units were separated by 8 inches. One Cricket

device was mounted adjacent to the IMU and one was secured to an aluminum beam

connected to the motor shaft. Heading estimates were provided once per second.

We tested the INS at three different angular velocities (-57, -115, -230 ◦/s).

Figure 6.14a compares the INS angular velocity estimate with the tachometer refer-

ence. The INS output is the dashed red line and the tachometer is plotted in solid

green. It is clear that the INS tightly tracks the tachometer reference signal with

minimal error. The error variance becomes slightly larger as the platform angular

velocity is increased. For example, with the platform spinning at -115 ◦/s, the an-

gular velocity rms error is .07 rad/s (4.1◦/s). Observe that the rms error is similar

to the error obtained using the magnetometer.

Figure 6.14b shows the INS heading estimate in dashed red compared with the

optical encoder output in solid green. The discontinuities in the error plot indicate

where the Cricket heading measurements are incorporated by the filter. Observe

that the heading error increases from about 5 to 20 degrees as the platform spins

160

0 2 4 6 8 10 12
-3.4

-3.2

-3

-2.8

-2.6

-2.4

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

True
INS

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

Time

E
rr

or
 (

ra
d/

s)

(a) Angular velocity (Ω), rms error = .065 rad/s (3.7◦/s)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

Time

H
ea

di
ng

(r
ad

)

True
INS

0 2 4 6 8 10 12
0

5

10

15

E
rr

or
(d

eg
re

es
)

Time

0

0.09

0.17

0.26

E
rr

or
 (

ra
d)

(b) Heading (θ), rms error = .009 rad (.5◦)

Figure 6.13: Magnetometer-aided INS heading filter performance

161

faster. For a platform angular velocity of -115 ◦/s, the heading rms error is .17 rad

(9.8◦). The angular velocity and heading errors are largely due to Cricket latencies

as explained below.

Recall from section 5.5 that each Cricket unit is allocated a 100 ms time slice

in which to obtain range information from the network. Within the 100 ms window,

there is a small delay from when the unit pings the network to when it receives

range measurements from the beacons. There is also a small data processing and

transmission delay. As a result, the position error is dependent on the ground speed

of the unit. An additional complication arises when two Cricket units are used to

obtain heading estimates, as explained next.

When measurements from two Cricket units are available, the angle of the line

joining the two devices may be computed. If the units are aligned along the body

frame X axis, then the orientation of this line corresponds to the body heading in

the inertial frame. There are two primary sources of error when using real Cricket

devices for heading estimation. First, the position estimates are noisy. One way to

reduce the effect of sensor noise on heading error is to separate the units as much

as possible. Second, there is a fixed 100 ms delay between position estimates from

the units. If the Cricket devices are moving, then the first unit’s position estimate

will be inaccurate when the second unit computes its position 100 ms later. As a

result, the heading error becomes larger as the angular velocity increases. Later, we

will show how the INS position outputs may be used to increase the accuracy of the

heading measurements.

162

0 5 10 15 20 25 30 35 40 45
-5

-4

-3

-2

-1

0

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

True
INS

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

Time

E
rr

or
 (

ra
d/

s)

(a) Angular velocity (Ω), rms error = .07 rad/s (4.1◦/s)

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

Time

H
ea

di
ng

(r
ad

)

True
INS

0

0.09

0.17

0.26

0.35

0.44

E
rr

or
(r

ad
)

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

E
rr

or
(d

eg
re

es
)

Time

(b) Heading (θ), rms error = .17 rad (9.8◦)

Figure 6.14: Cricket-aided INS heading filter performance. (rms values given for a

platform angular velocity of -115 ◦/s.)

163

The second set of tests were designed to evaluate the heading filter under dy-

namic conditions. These tests were conducted with the magnetometer aiding source

only. We began by applying a 5 Hz sinusoidal oscillation to the platform. There

was a small phase lag in the INS angular velocity which became more pronounced

as the frequency was increased. The phase lag was accompanied by some amplitude

attenuation. At 20 Hz, the phase shift was nearly −45◦, and the amplitude was

attenuated by roughly 10% (-.92 dB). The INS heading also exhibited phase lag,

although to a lesser extent.

Accurate attitude (heading) estimates are crucial to achieving good INS per-

formance. Recall that vehicle orientation determines the rotation matrix used to

resolve body vectors in the inertial frame. For a two-dimensional INS, a small con-

stant error in heading produces an error term that grows linearly in the velocity

estimate and quadratically in the position estimate. Furthermore, accurate heading

estimates are needed in order to decouple the INS error equations in (3.27) and

use the dual Kalman Filter approach discussed in 3.3.3.3. In the next section, we

determine an appropriate dynamical model for the gyroscope with the end goal of

increasing the accuracy of the Kalman Filter heading estimate.

6.2.1.3 Gyro Frequency Response and Compensation

We determined the frequency response of the gyroscope by performing a fre-

quency sweep on the rotating platform. Sinusoids of 5, 10, 15, 20, 30, 40, and 50 Hz

were applied for 3 seconds each. We used the Matlab System Identification Tool-

164

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
-10

0

10

20

30

40

50

60

Time

Impulse Response

(a) Gyro impulse response

-50

-40

-30

-20

-10

0

10
Bode Plot

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

-540

-360

-180

0

Frequency (Hz)

P
ha

se
 (

de
g)

(b) Gyro frequency response

Figure 6.15: Gyro dynamic response

box to analyze the collected data and perform parametric model estimation. In the

analysis, the tachometer signal was treated as the input to a linear time-invariant

system, and the gyroscope data constituted the output.

The System Identification Toolbox provides several algorithms for determining

system model coefficients from empirical data. We first performed a preliminary

spectral and correlation analysis on the collected data. This analysis yielded the

frequency and impulse response estimates shown in Figures 6.15a and 6.15b below.

Observe that the gyroscope frequency response exhibits significant dynamical

effects. Furthermore, the gyro impulse response plot suggests that there are pure

sample delays present in the system.

We used the following output-error form to model the dynamics:

y(n) =
B(z)

F (z)
u(n) + e(n) (6.1)

165

where B(z) and F (z) are polynomials in z, H(z) = B(z)
F (z)

is a proper transfer function,

and e(n) is the disturbance process. The fitting algorithm selected a model with a 2

sample delay and a transfer function with three stable poles and one non-minimum

phase zero. While the model fit the experimental data well, the inverse transfer

function could not be physically realized. The inverse transfer function was non-

causal and unstable due to the sample delay and non-minimum phase zero.

Unfortunately, the System Identification Toolbox does not support a minimum

phase constraint on models. In order to obtain a stable invertible transfer function,

we first removed the pure sample delay by time-advancing the gyro data. We then

restricted the search space of the fitting algorithm. Specifically, we constrained the

model to have no delay and zeros only at the origin. The Toolbox returned the

following second-order model:

y(n) =
.3236z2

z2 − .9805z + .2898
u(n) (6.2)

Figure 6.16 compares the frequency response of the LTI model specified in

(6.2) with the gyroscope frequency response determined experimentally. Observe

that both the magnitude and phase agreement is quite good for frequencies below

20 Hz. Between 20 and 50 Hz, the model does not exhibit enough phase lag and has

too much amplitude attenuation. These errors will cause overcompensation in gain

and insufficient phase lead in the high frequency components applied to the inverse

filter.

166

-50

-40

-30

-20

-10

0

10
Bode Plot

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

-270

-180

-90

0

Frequency (Hz)

P
ha

se
 (

de
g)

Figure 6.16: Experimental gyro frequency response (blue) and gyro model frequency

response (red)

We implemented the inverse of transfer function (6.2) as a discrete block in

Simulink and collected data to compare the compensated and uncompensated per-

formance. Table 6.5 compares the results obtained by applying various sinusoidal

inputs to the platform and measuring compensated and uncompensated gyro perfor-

mance. As before, the tachometer output was taken to be the true angular velocity.

The gain and phase shift for each data set was determined experimentally by using

FFTs to compute the frequency response.

Ideally, each row in the compensated column should have unit gain and zero

phase shift. The fifth column, ∆t, indicates the reduction in time delay from apply-

ing compensation. Thus, improvement is on the order of one sample period (6.5536

ms) for frequencies up to 20 Hz.

167

Uncompensated Compensated
Freq (Hz) Gain Phase (rad) Gain Phase (rad) ∆t(ms)

5 1.05 -.65 1.03 -.38 -8.59
10 0.98 -1.05 1.06 -.51 -8.59
15 0.93 -1.95 1.20 -1.17 -8.28
20 0.90 -2.39 1.48 -1.45 -7.48
30 0.67 -3.55 1.80 -2.52 -5.46
40 0.47 -4.61 1.87 -3.70 -3.62
50 0.33 -5.29 1.74 -4.58 -2.26

Table 6.5: Gyro performance with and without frequency compensation

The price paid for smaller time delay is an amplification of the high frequency

noise components present in the sensor readings. The improved phase response,

however, outweighs the small additional noise incurred. Since the INS will ultimately

be used in an autopilot application, a reduction in phase lag will increase the closed-

loop stability.

We designed a test to evaluate the aided INS performance with and without

gyro frequency compensation. We first created a Simulink model with two instances

of the heading filter. One filter received frequency compensated gyro data and the

other was connected directly to the raw gyroscope output. Heading corrections were

provided by the magnetometer. We then conducted a worst-case test that involved

spinning the IMU at a high rate for three seconds followed by an abrupt stop. The

platform was then spun in the reverse direction for an additional three seconds.

This square wave input was applied for 25 seconds, and data was collected from

both heading filters.

Figure 6.17 shows a close-up of the angular velocity waveform produced during

the test. The true angular velocity is plotted in solid blue, the compensated angular

168

9 10 11 12 13 14 15

-6

-4

-2

0

2

4

6

Time

A
ng

ul
ar

 V
el

oc
ity

 (
ra

d/
s)

True
Compensated
Uncompensated

9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Time

E
rr

or
 (

ra
d/

s)

Compensated
Uncompensated

Figure 6.17: Comparison of INS angular velocity estimate with and without gyro

frequency compensation

velocity is shown in solid green, and the uncompensated output appears in dashed

red. The benefit of gyro frequency compensation is clearly visible from the error plot.

The uncompensated gyro lags both the tachometer and frequency-compensated gyro

waveforms during the transients. The lag appears as a spike on the error plot which

gradually decays as the platform achieves a constant angular velocity.

Finally, Table 6.6 compares the root mean square error of the compensated and

uncompensated angular velocity and heading measurements using the square wave

input. The data indicates a small reduction in both angular velocity and heading

error by using gyro frequency compensation.

169

Compensated Uncompensated
Angular Velocity 0.20 rad/s (11.5◦/s) 0.30 rad/s (17.2◦/s)
Heading 0.019 rad (1.1◦) 0.044 rad (2.5◦)

Table 6.6: Heading filter rms error comparison

6.2.1.4 Velocity/Position Filter Performance

The INS velocity and position filter performance was also evaluated using the

rotating platform. For this test, the IMU was mounted on an aluminum beam and

offset 12 inches from the motor shaft. The IMU X axis was aligned perpendicular

to the radial direction and the Y axis pointed inward along the radial direction.

This configuration allowed the IMU X and Y -axis accelerometers to measure the

tangential and centripetal accelerations respectively. As before, the test involved

spinning the platform at a constant angular velocity and comparing the true and

INS-computed quantities.

The first test used the magnetometer and optical encoder as the heading and

position aiding sources. Heading estimates were provided at the IMU sample rate

of 6.5536 ms and position updates were provided once per second. In the second

test, the INS was aided exclusively by Cricket devices. Heading was computed

using data from two Cricket units while position estimates were obtained from a

single device. The heading and position measurements were provided once per

second. Both tests used the optical encoder as the true heading and (x, y) position

reference. In addition, the tachometer was used to compute the true linear velocity

and acceleration vectors in the body frame. These vectors were then resolved in the

inertial frame using the true heading provided by the optical encoder.

170

Prior to testing, we computed a fixed offset (in optical encoder counts) to align

the magnetometer heading to the optical encoder output. Figures 6.18a - 6.18c show

the test results for the INS aided by the magnetometer and position encoder. The

true quantities are shown in green and the INS outputs are plotted in dashed red.

During the test, the platform was spun at a constant angular velocity of -166◦/s.

Figure 6.18a clearly shows the circular path traced by the IMU. Observe that

the error grows quadratically between position updates due to small errors in the

estimated accelerometer biases. When a new position update is available each sec-

ond, the error resets to zero. Figures 6.18b and 6.18c show the x components of

position and velocity in the inertial frame. The impulsive position corrections are

easily discerned from these plots. We computed the position rms error to be 3.4 cm

and the velocity vector rms error to be 7.5 cm/s.

Next, we repeated the constant angular velocity experiment using the Cricket

devices as the aiding sources. Heading and position measurements, if available, were

provided each second. Figure 6.19a depicts the IMU position in the inertial frame

for a platform angular velocity of -115 ◦/s. The black plus signs mark the Cricket

position measurements. The position rms error is 8.1 cm and the velocity vector rms

error is 16.8 cm/s. In contrast to Figure 6.18a, the position error does not reset to

zero each time a new position measurement is available. In addition, Figures 6.19b

and 6.19c show that the position and velocity errors become larger as the angular

velocity is increased. These errors result from fixed Cricket latencies, as described

in section 6.2.1.2.

171

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y
P

os
iti

on
 (

m
)

x Position (m)

True
INS

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Time

E
rr

or
 (

cm
)

Error
RMS

(a) Position (cm), rms error = 3.4 cm

0 2 4 6 8 10 12
-0.4

-0.2

0

0.2

0.4

X
 P

os
iti

on
 (

m
)

True
INS

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Time

E
rr

or
 (

cm
)

(b) x Position (m)

Figure 6.18: Magnetometer and optical encoder-aided INS velocity/position filter

performance

172

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1

x
V

el
oc

ity
 (

m
/s

)

True
INS

0 2 4 6 8 10 12
0

5

10

15

20

Time

E
rr

or
 (

cm
/s

)

(c) x Velocity (m/s)

Figure 6.18: Magnetometer and optical encoder-aided INS velocity/position filter

performance

173

-1.5 -1 -0.5 0 0.5

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

y
P

os
iti

on
 (

m
)

x Position (m)

True
INS

22 23 24 25 26 27 28 29 30
0

5

10

15

20

Time

E
rr

or
 (

cm
)

Error
RMS

(a) Position (cm), rms error = 8.1 cm

0 5 10 15 20 25 30 35 40 45
-1

-0.8

-0.6

-0.4

-0.2

0

x
P

os
iti

on
 (

m
)

True
INS

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

Time

E
rr

or
 (

cm
)

(b) x-component of position (m)

Figure 6.19: Cricket-aided INS velocity/position filter performance. (rms values

given for a platform angular velocity of -115 ◦/s.)

174

0 5 10 15 20 25 30 35 40 45
-1.5

-1

-0.5

0

0.5

1

1.5

2

x
V

el
oc

ity
 (

m
/s

)

True
INS

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

Time

E
rr

or
 (

cm
/s

)

(c) x-component of velocity (m/s)

Figure 6.19: Cricket-aided INS velocity/position filter performance. (rms values

given for a platform angular velocity of -115 ◦/s.)

175

The Cricket delays affect the heading measurements most adversely. Recall

that there is a 100 ms delay between position estimates from individual Cricket

units. When the devices are moving, the measurement from the first unit will be

inconsistent when the second unit provides its measurement. Thus, the heading

measurement error is dependent on the speed of the devices. Fortunately, the inac-

curacies due to delay can be reduced by using data from the INS. The INS outputs

may be used to estimate the first Cricket unit’s position at the instant when the

second unit provides its measurement.

Figure 6.20 illustrates the benefits of using the INS outputs to assist heading

determination. The true heading is shown in solid blue, the raw Cricket heading

is plotted in dashed red, and the INS-assisted heading is shown in dashed green.

The data was obtained for a platform angular velocity of -115 ◦/s. Observe that

the error drops from approximately 25◦ to 10◦ when the INS position estimates are

utilized.

6.2.1.5 Summary

The INS experimental results are summarized in Table 6.7. The table compares

the INS root mean square error for the different aiding sources. The data shows that

two properly calibrated Cricket units are quite effective as an aiding source.

176

22 23 24 25 26 27 28 29 30
0

1

2

3

4

5

6

7

Time

H
ea

di
ng

 (
ra

d)

True
Raw
Corrected

0

0.17

0.35

0.52

0.7

E
rr

or
(r

ad
)

22 23 24 25 26 27 28 29 30
0

10

20

30

40

E
rr

or
(d

eg
re

es
)

Time

Raw
Corrected

Figure 6.20: True heading reference compared with Cricket heading measurements

at a platform angular velocity of -115 ◦/s. The INS-assisted Cricket heading mea-

surements are approximately 15◦ more accurate.

177

Aiding Source &
Platform Velocity

Angular Velocity Heading Velocity Position

Magnetometer/
Optical Encoder
(-166 ◦/s)

3.7 ◦/s .5◦ 7.5 cm/s 3.4 cm

Cricket
(-115 ◦/s)

4.1 ◦/s 9.8◦ 16.8 cm/s 8.1 cm

Table 6.7: Summary of INS errors (rms)

6.2.2 Hovercraft Autopilot Performance

In this section, we present the results obtained by running the real autopilot

system on the actual R/C hovercraft. For comparison with the simulated results, the

initial conditions and parameters are the same. Thus, the simulated plots (shown

in dashed red) are identical to those presented in section 6.1.1. In general, the

agreement between the experimental and simulated results is quite good. Some of

the plots, however, exhibit dynamical effects not captured by our model.

6.2.2.1 Zero Velocity Stabilization

Figures 6.21a - 6.21c depict the zero velocity stabilization results. The physical

autopilot stabilizes the angular velocity faster than predicted by the simulation. This

may be due to frictional effects unmodeled in the simulator. Observe that the actual

longitudinal and lateral velocities agree nicely with the simulated results. Each of

the figures exhibits similar steady state performance between the experimental and

simulated results.

178

0 5 10 15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 5 10 15
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

Figure 6.21: Experimental vs simulated results for zero velocity stabilization

179

0 5 10 15
-1

0

1

2

3

4

5

6

7

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

Figure 6.21: Experimental vs simulated results for zero velocity stabilization

180

6.2.2.2 Forward Velocity Stabilization

Figures 6.22a - 6.22c compare the experimental and simulated results for sta-

bilizing a constant forward velocity of 1.1 m/s. The agreement between the plots is

excellent. The experimental and simulated transient responses for the longitudinal

velocity are practically identical. In addition, the steady state errors exhibit similar

variance. As predicted by the simulation, the lateral and angular velocities fluctuate

wildly about zero, but have small peak amplitudes.

6.2.2.3 Reverse Velocity Stabilization

Figures 6.23a - 6.23c show the results for reverse velocity stabilization. Un-

fortunately, the plots are not quite as impressive as those produced for the forward

velocity case. The desired longitudinal velocity was set to -.76 m/s.

Figure 6.23a indicates the presence of nontrivial steady state error in the PX

state variable. Regardless of the selected reference velocity, the real autopilot was

never able to fully eliminate the error. The source of the steady state error is not

entirely clear, but may be due to unmodeled friction or thrust calibration errors.

Note, however, that the steady state errors predicted by the simulation for the lateral

and angular velocities agree well with the experimental results.

6.2.2.4 Constant Angular Velocity Stabilization

Steady state error is also present in the experimental results obtained for

angular velocity stabilization. The results appear in Figures 6.24a - 6.24c for a

181

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 1 2 3 4 5 6 7 8 9 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

Figure 6.22: Experimental vs simulated results for constant forward velocity stabi-

lization (V X = 1.1 m/s)

182

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

Figure 6.22: Experimental vs simulated results for constant forward velocity stabi-

lization

183

0 5 10 15
-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

Figure 6.23: Experimental vs simulated results for constant reverse velocity stabi-

lization

184

0 5 10 15
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

Figure 6.23: Experimental vs simulated results for constant reverse velocity stabi-

lization (V X = -.76 m/s)

185

commanded reference angular velocity of 3 rad/s. While the simulated autopilot

achieves the desired reference angular velocity, the actual autopilot falls short by

about 40%. Figure 6.24c shows that the physical autopilot achieves and maintains

a constant angular velocity of approximately 1.75 rad. We postulate that there are

significant rotational friction effects not accounted for in our hovercraft model.

Despite the steady state error, the transient performance of the two autopilots

is similar. The actual autopilot requires about 2 seconds longer to achieve its final

angular velocity. Observe that the agreement between the simulated and experi-

mental longitudinal velocity, VX , is quite good. The experimental lateral velocity,

VY , appears to have a small negative bias, however, while the simulated velocity

does not.

6.2.2.5 Heading Stabilization

The following set of plots present the experimental results for heading sta-

bilization. For each trial, the hovercraft was initially at rest and pointing in the

direction opposite to the desired 90◦ heading.

Figures 6.25a - 6.25d depict the experimental and simulated results for the

bang-bang algorithm while Figures 6.26a - 6.26d compare the results for the pro-

portional feedback algorithm. For both algorithms, the simulated heading transient

response agrees nicely with the experimental results. The results for the remaining

velocity variables also show good agreement. Observe that the experimental lat-

186

0 2 4 6 8 10 12 14 16 18 20 22
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 2 4 6 8 10 12 14 16 18 20 22
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

Figure 6.24: Experimental vs simulated results for constant angular velocity stabi-

lization

187

0 2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

Figure 6.24: Experimental vs simulated results for constant angular velocity stabi-

lization (Ω = 3 rad/s)

188

eral velocity, VY , for the bang-bang algorithm is more noisy than predicted by the

simulator.

Finally, Figure 6.27 compares the experimental heading tracking performance

for the two algorithms. As expected, the plots do not indicate any appreciable

performance benefit from choosing one algorithm over the other.

189

0 5 10 15 20 25 30
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time

H
ea

di
ng

 (
ra

d)

Real
Simulated

(d) Heading (θ)

Figure 6.25: Experimental vs simulated results for heading stabilization (bang-bang

algorithm)

190

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time

x
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(a) Longitudinal velocity (VX)

0 5 10 15 20 25 30
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time

y
V

el
oc

ity
 (

m
/s

)

Real
Simulated

(b) Lateral velocity (VY)

0 5 10 15 20 25 30
-1.5

-1

-0.5

0

0.5

1

1.5

2

Time

A
ng

ul
ar

 V
el

oc
ity

(r
ad

/s
)

Real
Simulated

(c) Angular velocity (Ω)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time

H
ea

di
ng

 (
ra

d)

Real
Simulated

(d) Heading (θ)

Figure 6.26: Experimental vs simulated results for heading stabilization (propor-

tional algorithm)

191

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Time

H
ea

di
ng

 (
ra

d)

Bang-Bang
Proportional

Figure 6.27: Experimental heading stabilization performance

192

Chapter 7

Conclusions and Future Research

Until recently, the development of a distributed control system for a model

hovercraft would have been impractical. Necessary technologies such as inexpen-

sive MEMs inertial sensors, lightweight, low power, and robust ad-hoc networking

systems, and tools for rapid control system prototyping and evaluation were either

prohibitively expensive or simply unavailable. Fortunately, new technologies are

enabling the development of novel distributed control systems.

In this thesis, we have successfully demonstrated distributed automatic control

of a real hovercraft using tools from the theory of nonlinear control. We derived

a family of control laws for the reduced (ideal) hovercraft dynamics and experi-

mentally demonstrated their ability to stabilize the (actual) hovercraft, even in the

midst of large communication delays in the feedback loop. The control laws demon-

strated served to stabilize zero velocity, constant forward/reverse velocity, constant

angular velocity, and heading. In addition, we successfully developed and deployed

a two-dimensional aided INS for measuring the vehicle state and demonstrated the

effectiveness of the Cricket system as an indoor GPS replacement. We developed a

high-fidelity simulation of the real autopilot system and showed the close agreement

between simulated and experimental results. An invaluable tool, the simulator con-

firmed our suspicions that the limiting performance factor was navigation system

193

inaccuracy. Future control efforts will certainly address the INS and Cricket system

for increased autopilot system performance.

The development of a fully autonomous hovercraft, capable of coordinating

with other vehicles, is a natural goal. The control laws and methodologies pre-

sented in this thesis provide a solid foundation on which to augment the autopilot

capabilities and strive toward full autonomy. The experimental results truly indi-

cate the potential of the hovercraft autopilot and demonstrate the effectiveness of

distributed control for complex nonlinear underactuated systems.

As we have seen, the dynamics of the underactuated hovercraft are deceivingly

complex. In addition to the nonlinear convergence results presented here, averaging

theory and geometric control are also important tools. For example, time-varying

control laws have been developed to stabilize underactuated underwater vehicles in

the event of an actuator failure [29].

In addition, we would like to develop a control law to track an arbitrary ref-

erence trajectory. One possible solution would be to combine the functionality of

a path planner with a hybrid control strategy, making use of the control laws pre-

sented in this thesis for the reduced dynamics. An event-driven controller would be

implemented to switch between the various continuous-time control laws as needed

to minimize the tracking error. Such a control strategy could also be used to provide

pilot-in-the-loop functionality. In this mode of operation, a human pilot would func-

tion as the path planner and specify desired velocity and turn rates via a joystick

input device. Before implementing this hybrid control scheme, however, we would

still need to derive a control law (for the ideal hovercraft reduced dynamics) to steer

194

the hovercraft while moving forward or in reverse. A time-varying perturbation sig-

nal superimposed on the force outputs of the PX feedback law might provide the

desired behavior.

Another option for trajectory tracking would be to implement a full six-

dimensional control law to position the hovercraft at an arbitrary location and

heading. We realize that this full dynamics control approach would be consider-

ably more difficult than the hybrid control methodology mentioned previously.

In addition to refining the control and navigation laws, there are practical op-

portunities to improve the vehicle operation: e.g., enhancing the inertial navigation

system, augmenting the actuation, lightening the vehicle, performing the processing

onboard the vehicle, and providing additional sensing functionalities.

Regarding the INS, we have since discovered that better navigation perfor-

mance can be achieved by using the raw ranges from the Cricket devices rather

than the computed position estimates. This is significant because simulation shows

that navigation error limits the attainable controller performance. An Extended

Kalman Filter may be used to incorporate the available range estimates, as the

range equations are nonlinear functions of the state variables. Alternatively, there

has been recent success using nonlinear filtering techniques, such as particle filtering,

to achieve navigation performance superior to Extended Kalman Filtering [30].

Using raw range measurements to aid the INS offers several performance ad-

vantages over the position-aided approach. First, all available range information is

utilized. In contrast, recall that the vehicle’s position can not be determined unam-

biguously when fewer than three ranges are available. As a result, important range

195

measurements are unnecessarily discarded in the position-aided approach. Second,

there is significant time-correlation in the position errors over short intervals. This

violates the basic white Gaussian noise hypothesis of Kalman Filtering. Third, us-

ing raw range measurements from two rigidly affixed Cricket units allows the filter

to estimate heading more optimally than using raw position estimates from the

devices. Since range information will be incorporated from multiple sensors, care

must be taken to ensure proper lever arm compensation. The lever arm effect occurs

whenever body-fixed sensors are offset from the origin of the INS reference frame.

A clear explanation of the lever arm effect and its proper compensation in the INS

equations is provided in [31].

Concerning vehicle design, there are opportunities to lighten the hovercraft

and upgrade the actuation capabilities. Both of these modifications would increase

the hovercraft’s agility and lessen the burden on the controller. For example, the

vehicle weight could be reduced through mechanical optimizations and electronics

redesign. Creating a custom electronics board would save roughly one half pound

in total vehicle weight. A significant upgrade to the thruster could be realized by

using a variable-pitch propeller. These propellers spin at a constant RPM and use

a small servo and cable to vary the blade pitch, thereby modulating the produced

thrust. There are several advantages to designing a custom variable-pitch propeller

for the hovercraft. Most importantly, a variable-pitch propeller would obviate the

need for a reversing speed controller (eliminating the problematic reverse delay) and

would prolong the life of both the speed controller and motor. The improvement in

actuation bandwidth would greatly improve the autopilot transient response.

196

Finally, the local processing capabilities of the autopilot could be upgraded

to run the control laws and navigation filters onboard the vehicle. Eliminating the

network latencies in the control loop would improve the autopilot performance. In-

stead of routing sensor data and actuation commands, Bluetooth or a similar ad-hoc

networking technology would provide reduced bandwidth peer-to-peer communica-

tions for multi-vehicle coordination in swarms. The distributed control of a swarm

of autonomous hovercraft is highly ambitious, but the results presented in this thesis

and the experimental experience gained will help to enable future research efforts in

this direction.

197

Appendix A

Microcontroller Schematics

Figure A.1: Master microcontroller schematic

198

Figure A.2: Slave microcontroller schematic

199

Appendix B

Pilot Console

200

F
ig

u
re

B
.1

:
H

ov
er

cr
af

t
p
il
ot

co
n
so

le

201

BIBLIOGRAPHY

[1] Robert L. Trillo. Marine Hovercraft Technology. L. Hill, London, 1971.

[2] I. Fantoni, R. Lozano, F. Mazenc, and K. Pettersen. Stabilization of a nonlin-
ear underactuated hovercraft. International Journal of Robust and Nonlinear
Control, 10(8):645–654, 2000.

[3] K. Y. Pettersen and O. Egeland. Exponential stabilization of an underactuated
surface vessel. In Proceedings of the 35th IEEE Conference on Decision and
Control, pages 967–972, New York, 1996. IEEE.

[4] C. I. Byrnes and A. Isidori. On the attitude stabilization of rigid spacecraft.
Automatica, 27(1):87–95, 1991.

[5] António Pedro Aguiar, Lars Cremean, and João Pedro Hespanha. Position
tracking for a nonlinear underactuated hovercraft: Controller design and ex-
perimental results. In Proceedings of the 42nd IEEE Conference on Decision
and Control, pages 3858–3863, New York, 2003. IEEE.

[6] Hiroaki Seguchi and Toshiyuki Ohtsuka. Nonlinear receding horizon control of
an RC hovercraft. In Proceedings of the 2002 IEEE International Conference
on Control Applications, pages 1076–1081, New York, 2002. IEEE.

[7] K.Y. Petersen and H. Nijmeijer. Tracking control of an underactuated surface
vessel. In Proceedings of the 37th IEEE Conference on Decision and Control,
pages 4561–4566, New York, 1998. IEEE.

[8] R. W. Brockett. Asymptotic stability and feedback stabilization. In R. S.
Millman and H. J. Sussmann, editors, Differential Geometric Control Theory,
pages 181–191, Boston, 1983. Birkhäuser.

[9] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2001.

[10] Vikram Manikonda. Control and Stabilization of a Class of Nonlinear Systems
with Symmetry. PhD thesis, University of Maryland, 1998.

[11] Jay A. Farrell and Matthew Barth. The Global Positioning System & Inertial
Navigation. McGraw-Hill, 1999.

[12] Kenneth R. Britting. Inertial Navigation Systems Analysis. Wiley-Interscience,
New York, 1971.

[13] D. H. Titterton and J. L. Weston. Strapdown Inertial Navigation Technology.
IEE radar, sonar, navigation, and avionics series, 5. Peter Peregrinus Ltd., 1997.

[14] Daniel Choukroun. Novel Methods for Attitude Determination Using Vector
Observations. PhD thesis, Israel Institute of Technology, 2003.

202

[15] G. Wahba. A least squares estimate of satellite attitude. SIAM Review,
7(3):409, 1965.

[16] G. M. Lerner. Three-axis attitude determination. In J.R. Wertz, editor, Space-
craft Attitude Determination and Control, pages 420–428. D. Reidel, Dordrecht,
1978.

[17] J. D. Powell Demoz Gebre-Egziabher, Gabriel H. Elkaim and Bradford W.
Parkinson. A gyro-free quaternion-based attitude determination system suit-
able for implementation using low cost sensors. In Proceedings of the IEEE Po-
sition, Location, and Navigation Symposium, pages 185–192, New York, 2000.
IEEE.

[18] Cricket v2 user manual. http://cricket.csail.mit.edu/v2man.pdf.

[19] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The Cricket
location-support system. In Proceedings of the Sixth Annual ACM International
Conference on Mobile Computing and Networking, Boston, August 2000.

[20] Peter S. Maybeck. Stochastic Models, Estimation, and Control, volume 1. Aca-
demic Press, 1979.

[21] Wilson J. Rugh. Linear System Theory. Information and System Sciences.
Prentice-Hall, 2nd edition, 1996.

[22] http://www.ngdc.noaa.gov/seg/geomag/jsp/IGRF.jsp.

[23] J.R. Amyot, editor. Hovercraft Technology, Economics, and Applications, vol-
ume 11 of Studies in Mechanical Engineering. Elsevier, New York, 1989.

[24] Ian Cross and Coleman O’Flaherty. Introduction to Hovercraft and Hoverports.
Pitman, London, 1975.

[25] Bo Bernhardsson, Johan Eker, and Joakim Persson. Bluetooth in control.
In Handbook of Networked and Embedded Control Systems, pages 699–720.
Birkhäuser, 2005.

[26] http://www.math.uiowa.edu/∼dstewart/meschach.

[27] Owen Cramer. The variation of the specific heat ratio and the speed of sound in
air with temperature, pressure, humidity, and CO2 concentration. The Journal
of the Acoustical Society of America, 93(5):2510–2516, 1993.

[28] S. Bancroft. An algebraic solution of the GPS equations. IEEE Transactions
on Aerospace and Electronic Systems, AES-21(7):56–59, January 1985.

[29] N. E. Leonard. Averaging and motion control of systems on Lie groups. PhD
thesis, University of Maryland, 1994.

203

[30] B. Boberg and S.-L. Wirkander. Integrating GPS and INS: comparing the
Kalman estimator and particle estimator. In 7th International Conference on
Control, Automation, Robotics and Vision, pages 484–490, Boston, 2002.

[31] Jaewon Seo, Hyung Keun Lee, Jang Gyu Lee, and Chan Gook Park. Lever
arm compensation for GPS/INS/Odometer integrated system. International
Journal of Control, Automation, and Systems, 4(2):247–254, April 2006.

204

