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ABSTRACT

Final Report: DNA-Crosslinked micelles as programmable materials for biosensing and responsive drug delivery

Report Title

The overarching goal of this research is to develop DNA amphiphiles as stimuli-responsive materials, capable of releasing guest molecules 
in response to specific chemical or biological stimuli.

Research during the project period focused on evaluating two DNA amphiphile architectures.  Dendrimeric amphiphiles having three DNA 
strands on each monomer were explored, as the DNA strands are capable of forming noncovalent crosslinks to stabilize the micelle 
architecture.  We did observe a reduced CMC for crosslinked micelles; however, the change compared with non-crosslinked micelles was 
not as large as desired.  Thus, we shifted our research plan to focus on controlling guest release by altering the DNA:polymer ratio of our 
monomers.  This was accomplished by hybridizing or removing a complementary DNA strand on monomeric DNA amphiphiles.  We have 
shown guest diffusion is 63-fold faster when the complementary DNA strand is not attached.  We were also curious to explore the effect of 
amphiphiles on the function of nucleic acid aptamers.  We found that small-molecule-binding aptamers were able to function in the presence 
of non-ionic or anionic surfactants at concentrations above the CMC value with only a small change in binding affinity for the specified 
target molecule.
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Statement of the problem studied 
The overarching goal of this research project is to develop DNA amphiphiles as stimuli-responsive mate-
rials, capable of releasing guest molecules in response to specific chemical or biological stimuli. 
 
Summary of the most important results 
I. Synthesis and analysis of dendrimeric DNA-containing amphiphiles 
 Dendrimeric DNA amphiphiles were synthesized having three DNA strands to enable non-covalent 
crosslinking between complementary DNA 
strands on adjacent monomers (Figure 1a), and 
we hypothesized that these interactions would 
stabilize the micelles and thus lower their CMC. 
To generate the dendrimeric DNA amphiphiles, 
we utilized trebler 1 and hydrophobic tocopherol 
monomer 2 (which was chosen for its ability to 
be easily incorporated into the monomers using 
a DNA synthesizer) and synthesized the se-
quences listed in Figure 1a.  The DNA strands of 
sequences 3 and 4 are complementary to one an-
other and thus can form cross-linked micelles. 
Sequence 5 serves as a control having four mis-
matches to prevent hybridization to 3.  We ana-
lyzed the dendrimeric DNA amphiphiles both 
alone and in mixtures using dynamic light scat-
tering (DLS), and observed peaks that are sug-
gestive of micelle structures with a hydrody-
namic diameter of 20-50 nm (Figure 1b).  We 
also investigated the morphology of the 
assemblies using TEM, and observed spherical 
structures having a diameter of 20-50 nm, 
consistent with the formation of micelles (Figure 
1c).  

 To test the ability of the micelles to re-
spond to biological stimuli, we designed dendri-
meric DNA amphiphiles 6 and 7 having the 
recognition sequence for the EcoRI restriction 
enzyme and functionalized the DNA sequences 
with FAM and Cy3 fluorophores, as these form 
an efficient FRET pair (Figure 2a).  If the FAM- 
and Cy3-functionalized monomers form a mixed 
micelle, the ratio of fluorescence emission at 
520/565 nm will decrease due to energy transfer 
from FAM to Cy3.  However, if the DNA is 
cleaved by the EcoRI restriction endonuclease, 
the cleaved strands are too short to hybridize, 

 

Figure 1. (a) Dendrimeric DNA amphiphiles were 
synthesized using trebler and tocopherol modifiers. 
(b) Amphiphilic DNA monomers form assemblies 
with hydrodynamic diameter of 20-50 nm both 
alone (red and black lines) and in mixtures of com-
plementary sequences (blue line). Dendrimeric 
DNA having no tocopherol shows no assembly 
(green line). (c) TEM images of 3:4 micelles. 



and thus the FAM and Cy3 diffuse away from 
one another, causing an increase in the 520/565 
nm emission ratio (Figure 2b).  The data in Fig-
ure 4c show the 520/565 nm emission ratio as a 
function of time for matched micelles (6 + 7), 
mismatched micelles (6 + 8), and control DNA 
(9 + 10) having the same sequence as the 
matched micelles, but unable to assemble into 
micelles.  Each solution was reacted with EcoRI 
at 37 oC and monitored at 10 min intervals using 
a fluorescence plate reader.   As anticipated, the 
matched micelles and control DNA both show a 
time-dependent increase in 520/565 nm emission 
ratio, presumably from enzymatic cleavage of 
the double-stranded DNA, whereas the mis-
matched micelles do not show a significant 
change.  These data further established the for-
mation of DNA-cross-linked micelles from hy-
bridization of the matched monomers, and 
demonstrated the ability of restriction endonu-
cleases to cleave DNA in the context of these 
cross-linked micelles.  

 In parallel with the studies described 
above, we sought to characterize the CMC val-
ues of the dendrimeric DNA amphiphiles.  This 
proved to be a challenging task, as we attempted 
CMC measurements using DLS, tensiometry, 
Nile red, and FRET, but found that these meth-
ods did not offer sufficient sensitivity for meas-
urement of the low CMC values of our micelles. 
However monitoring pyrene emission1 did provide reproducible CMC values. We found that the CMC 
values for matched 3:4 micelles and mismatched 3:5 micelles were 470 and 590 nM, respectively. Simi-
larly, an analogue of the 6:7 micelles having the truncated sequence resulting from digestion with EcoRI 
had an increased CMC value of 630 nM.  While the un-cross-linked or nuclease digested micelles did have 
higher CMC values than the cross-linked micelles, the magnitude of this change was not as large as ex-
pected.  However, we also investigated the rate of guest exchange between the micelles, and found that 
even without cross-links, hydrophobic guest molecules showed very slow diffusion in and out of the mi-
celles.  This is quite different from standard surfactants such as CTAB and Tween80, which show very 
rapid diffusion and guest exchange.2 
 
II. Controlling guest exchange by modulating DNA:polymer ratio 

From this observation, we built a new hypothesis that the slow guest diffusion observed for our 
DNA amphiphiles results from the significant energy barrier of hydrophobic dyes crossing the DNA corona, 

Figure 2. (a) Dendrimeric DNA sequences having 
the EcoRI cleavage site. (b) Matched monomers as-
semble to form micelles, resulting in FRET signal.  
FRET signal is lost upon EcoRI cleavage. (c) Data 
for EcoRI cleavage of matched micelles (blue), mis-
matched micelles (red), and control DNA (green). 



which has a high local ionic 
strength. According to this hypoth-
esis, we should be able to control 
guest diffusion rate, and possibly 
CMC, by modulating the 
DNA:polymer ratio.  Specifically, 
we envisioned that this could be 
accomplished in a stimuli-respon-
sive manner by hybridizing a com-
plementary DNA strand to mono-
meric DNA amphiphiles (Figure 
3a).  We chose to move from den-
drimeric to monomeric DNA am-
phiphiles because the dendrimer 
unit was deemed unnecessary, and 
the monomeric structures offer in-
creased synthetic flexibility.  To 
test our hypothesis, we synthesized 
sequences 11 and 12, in which 11 
is functionalized with a C18 stearyl 
group to promote aggregation into 
micelles, and 12 is the cocaine ap-
tamer which is complementary to 
11, but also has a long toehold that 
can be used for displacement by cocaine or a complementary nucleic acid target.  Using a previously re-
ported FRET-based method,2 we measured the rate of guest exchange between micelles, as this is repre-
sentative of the rate of diffusion of guest molecules in and out of the micelles.  As shown in Figure 2b, the 
rate of guest exchange for 11 alone is 3.8 x 10-2 s-1, compared with 6.0 x 10-4 s-1 for hybridized 11:12 
micelles.  We were very encouraged to observe that by modulating the DNA:polymer ratio, we could 
achieve a 63-fold difference in guest diffusion rate.   
 
III. Alternative solvatochromic fluorophores for measuring CMC values 
 In the process of measuring CMC 
values for our DNA amphiphiles, we rec-
ognized that a significant need exists for 
new solvatochromic fluorophores capable 
of use in CMC measurement.  Nile red is 
frequently used to measure CMC values,3 
but in our hands, we have found that it ad-
heres strongly to even non-stick plastic-
ware (e.g., Eppendorf tubes), making its 
use inconvenient (Figure 4a).  Addition-
ally, while pyrene was successfully em-
ployed to measure CMC values for our 

 

Figure 3. (a) Stimuli-responsive release of guest molecules by 
modulating DNA:polymer ratio. (b) Kinetic rate plots of guest 
exchange for hybridized (11:12) and un-hybridized (11) micelles. 

Figure 4. (a) Nile Red adheres to plasticware. (b) Struc-
ture and fluorescence enhancement for DiO. 



DNA amphiphiles, the small changes in relative emission peak heights precludes use of a fluorescence plate 
reader for analysis.  Rather, cuvette-based measurements are necessary, which is low throughput and thus 
very time consuming. 
 In response to this need for new solvatochromic fluorophores, we evaluated 3,3′-dioctadecyloxa-
carbocyanine perchlorate (DiO) as an alternative fluorogenic dye for the measurement of CMC values (Fig-
ure 4b). We investigated the utility of DiO for fluorescence-based CMC measurement, and directly com-
pared its performance to that of NR. We found that DiO is compatible with a variety of surfactant types, 
and while NR and DiO both provide CMC measurements that agree with literature values, DiO did not 
suffer from failed measurements, as NR often did. Additionally, DiO was easier to handle than NR, as 
solubility and aggregation problems were not observed with DiO, but were frequent with NR.4 Therefore, 
we concluded that DiO provides an accurate and reliable method for measuring CMC values without the 
need for specialized equipment.  In future experiments aimed at characterizing DNA amphiphiles, we will 
utilize DiO for CMC measurement. 
 
IV. Function of DNA aptamers in the presence of surfactants 
 Considering that the DNA amphiphiles we had synthesized are essentially large surfactants, we 
became interested in the question of whether aptamers are capable of functioning in the presence of surfac-
tants.  We envisioned that this study would be of use to our own project, but could also have far-reaching 
implications, as protein-based affinity reagents such as antibodies are readily denatured by most surfactants. 
To explore the effect of surfactants on aptamer function and substrate binding preference, we used a series 
of structure-switching DNA aptamer biosensors previously reported by Stojanovic and co-workers that bind 
to steroid targets.5  We chose the aptamer for dehydroisoandrosterone 3-sulfate sodium salt dihydrate (DIS) 
as a model to survey the effect of varying surfactant types on substrate binding. Using five common sur-
factants that represent all four ionic states including cationic, anionic, nonionic, and zwitterionic, we meas-
ured the fluorescence response of the aptamer biosensor to DIS in the presence of 1% (w/v) of each surfac-
tant. This concentration is above the CMC for each of the surfactants, ensuring the formation of micelles. 
We were very encouraged to observe that in the presence of SDS, Tween 20, or Triton X-100, the biosensor 
shows only a slightly attenuated response compared to its behavior in pure buffer (Figure 5).6 However, the 
biosensor shows no detectible response in the presence of 
positively charged CTAB, and in zwitterionic CHAPS, 
the biosensor begins to show a response only at the high-
est DIS concentrations. This is not surprising, as surfac-
tants having a positively charged functional group are 
more likely to interact with the negatively charged DNA 
backbone. We surveyed three additional small-molecule-
binding aptamers and found that substrate binding for hy-
drophilic targets was only minimally perturbed even with 
SDS concentrations as high as 4% (w/v). The ability of 
aptamers to maintain their function in the presence of 
commonly used surfactants provides an additional com-
petitive advantage relative to antibodies, and is likely to 
significantly increase the scope of analytical applications 
for which aptamers can be employed. 
 

Figure 5. Response of the DIS biosensor 
to increasing concentrations of DIS ligand 
in the presence of 1% of various com-
monly used surfactants.  
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