

AFRL-RY-WP-TR-2016-0030

SPARSE DISTRIBUTED REPRESENTATION &
HIERARCHY: KEYS TO SCALABLE MACHINE
INTELLIGENCE

Gerard (Rod) Rinkus, Greg Lesher, Jasmin Leveille, and Oliver Layton

Neurithmic Systems, LLC

APRIL 2016
Final Report

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

© 2016 Neurithmic Systems, LLC

STINFO COPY

AIR FORCE RESEARCH LABORATORY

SENSORS DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals.

AFRL-RY-WP-TR-2016-0030 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION
IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

// Signature// // Signature//

KERRY L. HILL BRADLEY J. PAUL, Chief
Program Manager Advanced Sensor Components Branch
Advanced Sensor Components Branch Aerospace Components & Subsystems Division
Aerospace Components & Subsystems Division

// Signature//

MARK G. SCHMITT
Chief (Acting)
Aerospace Components & Subsystems Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

April 2016 Final 29 April 2013 – 30 November 2015
4. TITLE AND SUBTITLE

SPARSE DISTRIBUTED REPRESENTATION & HIERARCHY: KEYS TO
SCALABLE MACHINE INTELLIGENCE

5a. CONTRACT NUMBER
FA8650-13-C-7342

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Gerard (Rod) Rinkus, Greg Lesher, Jasmin Leveille, and Oliver Layton
5d. PROJECT NUMBER

1000
5e. TASK NUMBER

N/A
5f. WORK UNIT NUMBER

 Y0Z9
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER
Neurithmic Systems, LLC
468 Waltham Street
Newton, MA 02465

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
 AGENCY ACRONYM(S)

Air Force Research Laboratory
Sensors Directorate
Wright-Patterson Air Force Base, OH 45433-7320
Air Force Materiel Command
United States Air Force

Defense Advanced Research
Projects Agency
(DARPA/MTO)
675 North Randolph Street
Arlington, VA 22203-2114

AFRL/RYDI
11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)

AFRL-RY-WP-TR-2016-0030

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
DISTAR Case Number: 25997, cleared 9 March 2016. © 2016 Neurithmic Systems, LLC. This work was funded in whole or in
part by Department of the Air Force Contract FA8650-13-C-7342. The U.S. Government has for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license to use, modify, reproduce, release, perform, display, or disclose the work by
or on behalf of the U. S. Government. Report contains color.

14. ABSTRACT
We developed and tested a cortically-inspired model of spatiotemporal pattern learning and recognition called Sparsey. Sparsey is a
hierarchical model allowing an arbitrary number of levels consisting of coding modules that code information, specifically particular
spatiotemporal input moments using sparse distributed representations (SDRs). The modules are called “macs” as they are proposed
as analogs of the canonical cortical processing module known as macrocolumns. Sparsey differs from mainstream neural models,
e.g., Deep Learning, in many ways including: a) it uses single-trial, Hebbian learning rather than incremental, many-trial, gradient-
based learning; and b) it multiplicatively combines bottom-up, top-down, and horizontal, evidence at every unit (neuron) in every
mac at every level on every time step during learning and inference (retrieval). However, Sparsey’s greatest distinguishing
characteristic is that it does both learning (storage) and retrieval of the best matching stored input in time that remains constant
regardless of how many patterns (how much information) has been stored. Thus, it has excellent scaling potential to “Big Data”-
sized problems. We conducted numerous studies establishing basic properties and capacities, culminating in demonstration of 67%
classification accuracy on the Weizmann data set, accomplished with 3.5 minutes training time, with no machine parallelism and
almost no software optimization.

15. SUBJECT TERMS
video event recognition, neural network, sparse distributed representations, machine intelligence, probabilistic models, hierarchy,
cortical model, brain model

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT:

SAR

8. NUMBER OF
PAGES
 232

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Kerry Hill
19b. TELEPHONE NUMBER (Include Area Code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39-18

i
Approved for public release; distribution unlimited.

Table of Contents

Section Page

LIST OF FIGURES .. IV
LIST OF TABLES ... VIII
1. ACKNOWLEDGEMENT ... 1
2. SUMMARY .. 2
3. INTRODUCTION ... 4

3.1 The First Key: Sparse Distributed Representations .. 6
3.2 The Second Key: Hierarchy .. 7
3.3 Putting the Two Keys Together .. 8
3.4 Final State of the Research ... 11

4. METHODS, ASSUMPTIONS, AND PROCEDURES .. 14
4.1 Overview of Model Architecture ... 14
4.2 The Algorithm .. 15

4.2.1. CSA: Learning Mode ... 16
4.2.1.a. Step 1: Determine if the Mac will become Active .. 17
4.2.1.b. Step 2: Compute Raw U, H, and D-Summations for each Cell, i, in the Mac .. 18
4.2.1.c. Step 3: Normalize and Filter the Raw Summations .. 18
4.2.1.d. Step 4: Compute Overall Local Support for Each Cell in the Mac 20
4.2.1.e. Step 5: Compute the Number of Competing Hypotheses that will be
Active in the Mac once the Final Code for this Frame is Activated 21
4.2.1.f. Step 6: Compute Correction Factor for MCHs to be Applied to Efferent
Signals from this Mac ... 23
4.2.1.g. Step 7: Determine the Maximum Local Support in each of the Mac’s CMs 24
4.2.1.h. Step 8: Compute the Familiarity of the Mac’s Overall Input 24
4.2.1.i. Step 9: Determine the Expansivity/Compressivity of the I/O Function to be
used for the Second and Final Round of Competition within the Mac’s CMs 25
4.2.1.j. Step 10: Apply the Modulated Activation Function to all the Mac’s Cells,
Resulting in a Relative Probability Distribution of Winning over the Cells of each CM ... 28
4.2.1.k. Step 11: Convert Relative Win Probability Distributions to Absolute
Distributions .. 29
4.2.1.l. Step 12: Pick Winners in the Mac’s CMs, i.e., Activate the SDC 29
4.2.1.m. Learning Policy and Mechanics ... 31

4.2.2. CSA: Retrieval Mode ... 33
4.2.3. CSA: Simple Retrieval Mode ... 40

5. RESULTS .. 42
5.1 Individual Macs Implement SISC .. 42
5.2 Simple Features Support High Class Accuracy ... 43
5.3 Sanity Tests (Test Set = Train Set) ... 43

5.3.1. Sanity and Noisy Recognition Tests with Edge-Filtered Videos 44
5.3.2. Lower Resolution Weizmann Edge... 46
5.3.3. Sanity Test: 3-Level Model Revealing DCCI Principle 47

5.4 Family-Resemblance Classification Style .. 52
5.5 Experiments with More Powerful Input Feature, HOFs .. 55
5.6 Principles/Mechanism of Invariance .. 60

ii
Approved for public release; distribution unlimited.

Section Page

5.7 Application to Purely Spatial Pattern Recognition Problems 63
5.7.1. Re-use of Existing Knowledge in Hierarchical Networks 75

5.8 Large-Scale Episodic Memory Capacity Study ... 85
5.9 Effect of π-bounds × U-RF Interaction on Capacity/Accuracy 86

5.9.1. Effect of U-RF Sizes/Overlaps, and π-bounds on Capacity/Accuracy 92
6. DISCUSSION ... 98

6.1 Regarding Sparsey’s Information Storage Capacity .. 98
6.2 Supervised Learning via Cross-Modal Unsupervised Learning 99
6.3 Hierarchical Exemplar-Based Categorization .. 104
6.4 Optimal Normalization Thresholds .. 117
6.5 Fraction of Represented Features Should Remain near 100% at All Levels 118
6.6 Hierarchical Compression .. 122
6.7 Trace Accuracy can be Quite Low, While Supporting High Classification

Accuracy ... 123
6.8 Minimize the Number of Post-Quiescent Mac Activations 126
6.9 Correct Cells are Correlated, Incorrect Cells are Not .. 127

7. CONCLUSIONS ... 130
7.1 Importance of Unitary Explanation of Episodic and Semantic Memory 131

8. RECOMMENDATIONS .. 132
8.1 Applying Supervision at Multiple Scales ... 134
8.2 Outstanding Questions Regarding Parameter Settings ... 136

8.2.1. Backoff .. 136
9. REFERENCES .. 138
APPENDIX A - EDGE FILTERING DETAIL ... 142

A.1 The Video Datasets .. 142
A.2 Preprocessing Protocol ... 143

1. Stage 1: Gaussian Smoothing .. 144
2. Stage 2: Gabor Edge Detection ... 145
3. Stage 3: Orientation and Phase Superposition .. 146
4. Stage 4: Surround Suppression .. 147
5. Stage 5: Edge Thinning ... 149
6. Stage 6: Hysteresis Thresholding .. 149
7. Stage 7: Suppression Slope ... 150
8. Future Considerations ... 151

APPENDIX B - SISC PROPERTY ... 153
B.1 Study 1: Basic SISC Properties ... 153
B.2 Explanation of the Code Selection Algorithm (CSA) .. 158
B.3 Study 2: SISC Properties as Function of V-to-µ Mapping Parameter, π 167
B.4 Study 3: Arbitrary Temporal Context Window Length of SISC Property 170
B.5 Conclusions .. 172

APPENDIX C - ROBUST CAPABILITY TO HANDLE COMPLEX SEQUENCES 174
APPENDIX D - MECHANISMS UNDERLYING INVARIANT RECOGNITION 183
APPENDIX E - RELATION OF INPUT ACCURACY MEASURE TO
RECOGNITION ACCURACY .. 194

E.1 Example Computation for a Level 2 Mac .. 194

iii
Approved for public release; distribution unlimited.

Section Page

E.2 Sample Input Accuracy from a Simulation .. 195
E.3 Distribution of RA% in a Feedforward Network ... 195

APPENDIX F - SPATIOTEMPORAL COMPOSITIONAL
HIERARCHIES IN SPARSEY .. 197
APPENDIX G - STATEMENT OF WORK .. 209

G.1 Task List ... 209
10. SYMBOL TABLE .. 218
LIST OF ABBREVIATIONS AND ACRONYMS ... 220

iv
Approved for public release; distribution unlimited.

LIST OF FIGURES

Figure Page

Figure 1: Comparison of Localist and SDC-based Hierarchical Vision Models 9
Figure 2: Notional Mapping of Sparsey to Brain.. 11
Figure 3: Snapshot of Best Performing Model in Study .. 13
Figure 4: The Currently Active Mac Code Simultaneously Physically Functions as the
Entire Likelihood Distribution over all Hypotheses Stored in the Mac.. 15
Figure 5: Generic “Circuit Model” for Reference in Describing Some Steps of the CSA 17
Figure 6: Mac Normalization Policy Handles Inputs with Varying Numbers of Features 20
Figure 7: Illustration of Method for Handling MCHs ... 22
Figure 8: Consequences on Probabilistic Code Selection of Amount of Prior Learning and
Varying Characteristics of G-based Sigmoid Transform .. 27
Figure 9: More Rightward Sigmoid Inflection Point Protects Against Mounting Crosstalk 28
Figure 10: The “Weight Table” Indexed by Age and Permanence ... 32
Figure 11: Formation of Hierarchical Spatiotemporal Memory Trace, Unrolled in Time 35
Figure 12: Motivation for the Back-Off Strategy for Computing G in Retrieval Mode.............. 37
Figure 13: Back-Off Allows Internal State to Remain Synchronized with Nonlinearly
Time-Warped Instances of Known Snippets .. 39
Figure 14: Demonstration of SISC Property for 4-item-long Sequences 42
Figure 15: Original and Preprocessed Frames of a Weizmann Snippet 43
Figure 16: Original Edge-filtered Frame and Corresponding 40% Noisy Frame 44
Figure 17: Snapshot of 2-level Model Used in Sanity Test Study ... 45
Figure 18: Lower Spatial Resolution (42x60) Original and 20% Noisy Frame 46
Figure 19: Model Achieving ~100% Class Accuracy in Weizmann Sanity Test 49
Figure 20: Example Showing Richness of Sparsey’s Modular, i.e., Mac-Based,
Representation of the Hierarchical Part-Whole Structure of Inputs ... 51
Figure 21: Substantially Different Though Overlapped Sets of Active L1 and L2 Macs
Between Original and Noisy Version of a Snippet ... 53
Figure 22: Model Achieving ~100% Accuracy on HOF-filtered Weizmann Dataset 56
Figure 23: 4-Frame HOF Snippet and Corresponding Spatiotemporal Memory Trace 57
Figure 24: Original and 40% Noisy Frames of the Ido_Bend Snippet .. 59
Figure 25: Demonstration of Invariant Recognition .. 61
Figure 26: Demonstration of Robust Invariance .. 63
Figure 27: Sample of Original MNIST Data and Our Preprocessed Versions 64
Figure 28: The 10 Instances of Digit ‘5’ Used in this Experiment .. 64
Figure 29: The 4-level Model with Preprocessed MNIST Digit ‘8’ Active in Input Level 65
Figure 30: The 10 Instances of All 10 Digits with Superimposed V0 Aperture Grid 68
Figure 31: A Second Model Used in MNIST Digit Experiments .. 69
Figure 32: Chart Representation of Table 9 ... 70
Figure 33: Learned Bases in Four V1 Macs for MNIST Experiment.. 71
Figure 34: Approximate Bases for All Six V2 Macs ... 75
Figure 35: Sketch of Model Used in Study 1 ... 76
Figure 36: Ten Digit ‘4’ Instances in Train/Test Set and Detailed SDR Codes for All
Active Macs for Instance 2 Learning Trial ... 77

v
Approved for public release; distribution unlimited.

Figure Page

Figure 37: The Two Prior Learning Trials with Identical Inputs in Some Apertures and
Codes in the Associated L1 Macs ... 79
Figure 38: Detailed Pixel Patterns Present for Two Instances and Compositional Views of
Featural Hierarchies Comprising Overall Concepts ... 81
Figure 39: Full Hierarchical Codes (Memory Traces) for Instance 0 of Digit ‘2’ (top) and
Instance 0 of Digit ‘4’ (bottom) .. 82
Figure 40: A Study of Invariances Across Three Scales ... 84
Figure 41: The 8-level Network Used in Large-Scale Episodic Memory Study 86
Figure 42: Three of the 8-Frame 32x32 Snippets Used in Section 5.9 Studies 87
Figure 43: Snapshot of 7-Level Model Used in Section 5.9 Studies ... 89
Figure 44: Gross Architectures of Models Used in Studies of Table 13-Table 15 94
Figure 45: Mapping from High-Dimensional Visual Input Space to Notional V1 Mac 100
Figure 46: Implementation of Supervised Learning as an Instance of Cross-Modal
Unsupervised Association ... 101
Figure 47: Abstraction-Based vs. Exemplar-Based Categorization Schemes 103
Figure 48: A Multi-level Sparsey Network Implements a Hierarchical, Exemplar-Based
Clustering/Categorization Scheme.. 105
Figure 49: Network of Figure 48 but Emphasizing One Particular Active L2 Mac 107
Figure 50: Network of Prior Figures but Emphasizing the L3 Mac .. 108
Figure 51: All Frames of the Input Set of Study 1 of Technical Report 7 109
Figure 52: 3D View Emphasizing the Hierarchical, Compositional Nature of the
Multi-Level Representations ... 110
Figure 53: 2D View of Features Comprising the Particular Top-Level Feature Present in this
Ongoing Example ... 111
Figure 54: Correspondence of 3D and 2D Visualizations of Compositional Hierarchies 112
Figure 55: Hierarchical Compositional Memory Traces of First Four Moments of
Figure 51 ... 113
Figure 56: Alternate View of Figure 55c in the Style of Figure 53 ... 114
Figure 57: Three Top-Level Feature Instances and Hypothetical Inputs with Varying
Pixel-Wise and Semantic Relatedness to Those Instances ... 115
Figure 58: Spatiotemporal Generalization of Figure 48 Showing that SDR Codes Actually
Represent Spatiotemporal Features... 117
Figure 59: A Case in which a Higher U Normalization Threshold Would Yield Substantially
Higher Correctness of the Reinstated Code .. 118
Figure 60: Surviving Input Features at All Internal Levels on Four Example Frames.............. 120
Figure 61: Illustration of Overlapping L1 U-RFs .. 121
Figure 62: Illustration of Progressive Code Compression up Through the Model’s Levels 123
Figure 63: Example of Highly accurate Recognition at Higher Level Despite Highly
Inaccurate Recognition at Lower Level .. 125
Figure 64: Demonstration of the Large Fraction of All L1 Activations that are PQAs 127
Figure 65: Example of Partial Recovery of Code Accuracy Despite Completely Incorrect
Inputs Due to Second Order Correlations Resulting from SISC Property 129
Figure 66: Illustration of Applying Supervised learning at Multiple Scales in the Network
of Figure 35 ... 135

vi
Approved for public release; distribution unlimited.

Figure Page

Figure 67: Example Gabor Wavelets Used in Our Preprocessing ... 145
Figure 68: Gradient Image Frames Computed by Gabor Wavelet Filtering 146
Figure 69: Gabor Wavelet Image Gradients with Different Parameter Values for the Spatial
Wavelength, Aspect Ratio, and Bandwidth .. 147
Figure 70: Illustration of Texture Suppression Kernel wσ ... 148
Figure 71: Effects of Texture Surround Suppression on Image gradient of Sample Frame 148
Figure 72: The Results of Edge Thinning by Non-Maxima Suppression 149
Figure 73: Binarization Results Following Hysteresis Thresholding .. 150
Figure 74: Final Binarized Stage 7 Output Following Application of Suppression Slope 151
Figure 75: Comparison of Binarization Without (top) and With (bottom) Slope Suppression . 151
Figure 76: Six 2-Frame Sequences Used in Study 1 and Codes Assigned to S0....................... 154
Figure 77: Portrayal of the Spatiotemporal SISC Property ... 156
Figure 78: Graphical Explanation of How Winners are Chosen in the CMs and Thus, How
Entire Codes are Chosen ... 161
Figure 79: Graphical Explanation of Code Selection on the Second Moment, [AX], of the
Second Presentation of S0 .. 164
Figure 80: Graphical Explanation of Code Selection on First Moment, [E], of S3=[EX] 166
Figure 81: Graphical Explanation of Code Selection 2nd Moment, [EX], of S3=[EX] 167
Figure 82: Presentation of Moment [EX] when π = 100 ... 169
Figure 83: (a) Library of 16 Input Items from which Train and Test Sequences are
Constructed and (b) The Input Set for Study 3 ... 170
Figure 84: Experimental Protocol For Demonstrating that Spatiotemporal Similarity (G)
Reflects the Whole History Leading up to the Current Moment .. 171
Figure 85: Demonstration of Spatiotemporal SISC Property for 4-Item-Long Sequences 172
Figure 86: The Four Sequences Comprising the Train/Test Set for the Complex Sequence
Study and the Model Used in the Study.. 174
Figure 87: The Situation in the Network when the First Frame of Seq. 1 is Presented 175
Figure 88: The Situation in the Network on Learning Moment (1,1) .. 177
Figure 89: Comparison of Two Recognition Moments, (1,0) and (4,7), in which the Input
Pattern is the Horizontal Bar Across the Bottom Row of L0 ... 179
Figure 90: All Three Relevant Codes Activated on Recognition Moment (1,0) and Detailed
Trace Information for the L2 Mac Showing Presence of Multiple Competing Hypotheses 180
Figure 91: Correct Resolution of Multiple Competing Hypotheses based on Temporal
Context Signals Mediated by H and D Inputs .. 181
Figure 92: The Overall Recognition Performance for All Four Sequences 182
Figure 93: Demonstration of Invariant Recognition .. 184
Figure 94: Invariance: The Same Code Activates in 2

402M Despite Very Different Immediate
Input Patterns from L1 .. 186
Figure 95: Examples of Invariances Learned .. 187
Figure 96: Invariant Recognition at L4 Mac 4

152M ... 189
Figure 97: Invariant Recognition at L6 Mac 6

19M ... 191
Figure 98: The Portions of the Input, i.e., Features or Parts, Coded by Each of the 16
Active L6 Macs on Frame 7 of the Input Snippet ... 193
Figure 99: Distribution of RA% as a Function of IA in Level 2 Macs 195

vii
Approved for public release; distribution unlimited.

Figure Page

Figure 100: Sets of Active Macs Cross Levels and Frames While Processing an 8-Frame
Snippet of an “Extend Arm” Event, Showing Dropping Out of Features At Higher Levels 198
Figure 101: Illustration of Redundant Representation of Features (Parts) 199
Figure 102: 3D Version of Figure 101’s Center Panel to Clarify the Exposition...................... 200
Figure 103: L2 Features are Larger and More Complex than L1 Features 201
Figure 104: Detail of the Featural Transform Between L2 and L3 ... 202
Figure 105: L4 Representation of Frame 4 Consisting of four Large features, Some of
which are Fairly Complex ... 204
Figure 106: Progressively Larger-Scale, More Complex, and More Overlapped Features at
Successive Network Levels (Starting with L2) .. 206
Figure 107: A Visualization Clarifying the U-RF structure Across Network Levels 208
Figure 108: Prospective 2-Modality Fusion Architecture Combining Edge & HOF
Features ... 217

viii
Approved for public release; distribution unlimited.

LIST OF TABLES

Table Page

Table 1. Classification Results on Weizmann Data as Function of SVM Cost Parameter 12
Table 2. The CSA during Learning.. 30
Table 3. Performance of 2-level Model on Weizmann Edge Snippets .. 45
Table 4. Model Performance on Low Space-Time Resolution Weizmann Edge Snippets 47
Table 5: 3-Level Model Performance in “Train = Test” Condition .. 48
Table 6. 3-Level Model Performance in “Test = 20% Noisy Train” Condition 54
Table 7. Performance of 2-level Model on “Test = Train” Condition ... 58
Table 8. Recognition Accuracy Results for Experiment 1 .. 66
Table 9. D-summations at all Category Units for Test Trials for the 10 Instances of ‘0’ 70
Table 10. Results of 64x64 Snippet Episodic Recognition Memory Study 85
Table 11. Recognition Accuracy Results for this Study .. 88
Table 12. Recognition Accuracy Results for Section 5.9 Studies ... 91
Table 13. Recognition Accuracy Results for this Study .. 92
Table 14. Recognition Accuracy Results for this Study .. 95
Table 15. Recognition Accuracy Results for this Study .. 96
Table 16. Symbol Definitions for this Section... 97
Table 17. Video Datasets ... 143
Table 18. Overview of Video Processing Stages to Detect Edges and Binarize Videos 144
Table 19. Experimental Studies Described in this Section .. 153
Table 20. Code Similarity Decreases with Spatiotemporal Similarity of Moments 157
Table 21. The Code Selection Algorithm .. 159
Table 22. Reasoning Underlying the Global Spatiotemporal Familiarity Measure, G 162
Table 23. Reasoning Underlying the Computation of a Unit’s Local Support, V 163
Table 24. Variation of SISC Property with Parameter, π .. 168
Table 25. Top 8 IA Distributions Ranked by Average RA% .. 196
Table 26. Bottom 13 IA Distributions Ranked by Average RA% ... 196
Table 27. List of L2-Scale Simple Shape Features .. 201
Table 28. List of L3-Scale Simple Shape Features .. 203
Table 29. List of L4-Scale Simple Shape Features .. 204
Table 30. SOW Task Final Status .. 209
Table 31. Major Symbols in CSA Equations ... 218

1
Approved for public release; distribution unlimited.

1. ACKNOWLEDGEMENT

In addition to the authors of this report, I would like to acknowledge Harald Ruda, Nick Nowak
and Anastasia Tyurina for the great supporting work they performed, which improved the quality
of the research. I also would like to thank my two Program Managers, Dan Hammerstrom
(Defense Advanced Research Projects Agency (DARPA)) and Kerry Hill (Air Force Research
Laboratory (AFRL)), and their organizations for seeing the value of our research and for their
strong support throughout the project.

2
Approved for public release; distribution unlimited.

2. SUMMARY

The overall goal of this two year project1 was to investigate how representing information in the
form of hierarchical sparse distributed representations (SDRs), a.k.a., sparse distributed codes
(SDCs), yields extremely efficient solutions to spatiotemporal recognition, and more specifically,
video event recognition, problems. As this is highly uncharted territory2, this has been very
much a basic research project. Though in the latter half of the project, we turned our focus more
towards the applied research goal of achieving state-of-art (SOA) classification performance on
benchmark video event recognition problems. We have carried out studies involving the
Hollywood 2, KTH, and Weizmann data sets. In the final months of the performance period, we
have focused almost exclusively on Weizmann in our effort to attain SOA performance. As of
this date, the best performance of the specific model we are working with , Sparsey®, is at 67%
which is significantly below SOA, which is 100% (chance = 10%). However, our results so far
should be viewed in light of the following critical points:

1. Sparsey’s train time on Weizmann is ~3.5 minutes, with no machine parallelism whatsoever.
An augmented Weizmann set (90 original snippets + 5 noisy versions of each of the original
for a total of 540 snippets, are presented once each). Precise training times on Weizmann are
not reported for any of the SOA-achieving models, but many use gradient-based learning and
machine parallelism and likely have considerably longer training times. This raises a crucial
point of distinction: Sparsey is leveraging algorithmic parallelism whereas most Deep
Learning approaches have relied heavily on leveraging machine parallelism, specifically
graphics processing units (GPUs). While machine parallelism is clearly essential, providing
many orders of magnitude speedup, we argue in Section 4.8 that algorithmic parallelism,
which is an orthogonal to and can be leveraged along with machine parallelism), actually
yields even greater speedup.

2. The runtime of Sparsey’s learning/inference algorithm depends only on fixed quantities,
dominated by the number of weights, and therefore remains fixed for the life of the system.
Regardless of how many sequences (snippets) have been stored, the time to learn the next
snippet remains constant, as does the time to find the closest-matching stored snippet. We
know of no other model, in particular the Deep Learning models, for which this claim has
been made.

3. Sparsey uses extremely simple input features, binary pixels, as opposed to the more
complex/informative features used by virtually all other systems, e.g., Histogram of Oriented
Gradient (HOG), Histogram of Optical Flow (HOF), Motion Boundary Histograms (MBHs),
and other such features. We believe it is likely that we could boost performance considerably
by also using such features or by adding such features to our edge features. In fact, we did
conduct a series of HOF-based studies but, for several reasons we did not attain high
recognition accuracy and decided to focus back on using only our primitive edge/pixel
features.

1 Two NCTE’s increased it to 2.5 years
2 Other than Rinkus (2005, 2014), there are no other published reports describing hierarchical models that use SDR
at multiple levels solving problems of any kind, let alone complex sequence recognition with time-warping and
video event recognition.

3
Approved for public release; distribution unlimited.

4. An individual Sparsey module, which we call a macrocolumn, or "mac", since we view it as
analogous to the cortical macrocolumn, has 100s of parameters (probably reducible to a few
tens of meta-parameters). Thus far, we have done a very small amount of parameter
searching and in fact, we still have a great deal to learn about the optimal relations between
parameters both within any individual mac and between macs across levels. Thus, we are
quite confident in being able to boost performance into the SOA range, i.e., 90-100%,
relatively quickly.

5. The highly modular structure of the subject system, Sparsey, the local (in space and time)
nature of its core algorithm, and the very low numerical precision it requires (binary neurons,
7-bit or less weights) all make it ideally suited to parallelization and novel low-power
computing technologies.

In view of points 3 and 4 above, we have complete confidence that Sparsey will attain SOA
classification accuracy on Weizmann and other video benchmarks in the very near future. We
will continue on that research path and, given the technology’s very high potential payoff, we
will seek follow-on funding via appropriate channels.

We also anticipate significant transfer learning as we extend Sparsey to additional datasets.
After all, all mid-level visual events (features) from essentially any natural visual domain can be
composed, to reasonably good approximation, from a relatively small set of lower-level visual
events. Similarly, all high-level visual events (again, from essentially any domain) can be
composed from a relatively small set of mid-level visual events. As low- and mid-level features
are learned (on the basis of the initial datasets presented to the model) at intermediate levels,
additional novel higher-level events, e.g., from different datasets, will be learned progressively
more quickly (because to a large extent, they are just novel spatiotemporal compositions of
already-learned component features, and thus relatively little new learning is needed).

We believe our research has established the feasibility of hierarchical sparse distributed
representations for the learning, recognition, prediction, of arbitrary spatiotemporal patterns
(high-dimensional multivariate time series). Along the way, we have discovered a number of
core broad design principles for the architecture and dynamics of such networks, described in
Section 3.

4
Approved for public release; distribution unlimited.

3. INTRODUCTION

The biological brain, and the human brain in particular, remains the most advanced information
processing device known. The remarkable structural homogeneity across the entire neocortical
sheet suggests a core computational module, i.e., a “canonical cortical microcircuit”, operating
similarly in all regions (Douglas, Martin et al. 1989, Douglas and Martin 2004, Rinkus 2010).
The overarching rationale for our research is therefore that if we want to build computers that
process information as well as humans, then we should understand the detailed structure and
operation of said canonical cortical algorithm/circuit.

Based on a large body of evidence, we identify the canonical module with the cortical
“macrocolumn” (a.k.a. “hypercolumn” in early visual cortex, or “barrel”-related volumes in
rat/mouse primary somatosensory cortex). We’ll use “mac” as the generic name of the cortex’s
core computational model and we’ll define it operationally as a volume of cortex, ~200-500 um
diameter, which operates autonomously and crucially, within which SDRs—i.e., small sets of the
mac’s total pool of neurons—come to represent global input patterns experienced by the mac.
The mac’s essential operations can be viewed as:

a) storage (learning) of spatial/spatiotemporal input patterns, and
b) retrieval of the closest matching, or most relevant, stored patterns.

As in most modern machine learning / pattern recognition models, the mac’s retrieval operation,
which includes recognition, recall, and prediction, is construed / modeled as probabilistic
inference. Our model of the canonical cortical algorithm, and thus of the operation of the mac, is
known as the Code Selection Algorithm (CSA) and the overall theory, e.g., hierarchical networks
consisting of large numbers of macs and possibly processing information from multiple sensory
modalities, as Sparsey®.

We emphasize at the outset that the spatiotemporal pattern learning/recognition model, Sparsey
(formerly, TEMECOR), approaches learning, memory and recognition of patterns (information)
in a fundamentally different manner than mainstream machine learning approaches. In the
mainstream, usually task-driven, approach, the items of the training set, which are samples from
a typically very high dimensional input space, are presented numerous times to the model and the
model’s parameters (e.g., called synaptic weights) are moved in small increments up (or down)
the gradient of some objective function, e.g., mean square error (MSE), so as to minimize
classification error over the training set. The problem is that when the objective function is
highly nonlinear, or more specifically, as described in (Bengio 2007), when the second derivative
changes sign many times, following the gradient can become extremely slow or fail altogether.
This is at the core of the reason why the mainstream, utilitarian view of learning, memory and
recognition, i.e., of “cognition”, has failed to achieve truly human-like artificial intelligence.
Can we do better by emulating biology?

We begin by noting a key difference between the mainstream, utilitarian view of learning,
memory and recognition, i.e., of “cognition”, and biological, specifically human, cognition. In
the former approach, there is no explicit need to learn/remember the details of the individual
training items as long as overall classification performance is acceptable. Consequently,

5
Approved for public release; distribution unlimited.

traditional pattern recognition approaches generally do not explicitly remember these details:
they “remember” only the parameters necessary to perform well with respect to the objective
function.

In contrast, clearly humans generally do retain, sometimes for entire lifetimes, details of inputs
that are not related to any particular task. In psychology, this type of detailed memory of
specific inputs, e.g., specific spatiotemporal events experienced, has been referred to as episodic
memory (Tulving 1972). We emphasize that by definition, single-trial (or at least, very-few-
trial) learning is central to episodic memory: the types of events/episodes most germane here are
unique events, e.g., your 5th birthday, your wedding day, the day Kennedy was shot, etc., which
happen only once. Episodic memory is generally contrasted with semantic memory, which is
memory for the meanings, i.e., classes, of objects/events, and of the features of objects/events,
which are themselves viewable as just lower-level objects/events. Semantic memory therefore
generally corresponds to the type of information learned/used in the mainstream approaches to
pattern recognition, machine learning, and cognitive modeling. [Note that the idea that retaining
memories of the individual items experienced is important in enabling a system to learn highly
nonlinear classifications of the data is beginning to appear in the traditional machine learning
research thread (Bengio, Courville et al. 2012)].

We ask: Is it possible that a system designed explicitly to retain as much information as possible
about the specific inputs experienced, can simultaneously, as a by-product, learn/construct
computationally efficient (from both a time and space perspective) representations of the,
perhaps highly nonlinear, class structure, of input domains, in particular spatiotemporal domains,
such as vdeo? Sparsey, constitutes a positive answer to that question. As noted above, we have
not yet shown SOA levels of performance on event classification. However, 67% is not too far
short. Moreover, its time efficiency for both learning (storage) and closest-match retrieval
(recognition) exceeds SOA. Specifically, for any particular model instance, both the time it
takes to store a new input item (either spatial or spatiotemporal) and the time it takes to retrieve
the closest-matching item (or in other words, recognize a novel item) remains constant over the
life of the system. No other competing model has this time efficiency, including Semantic
Hashing (Salakhutdinov and Hinton 2009) and Locality-Sensitive Hashing (LSH) (Andoni and
Indyk 2008), for both of which the time it takes to learn new items increases with number of
items. The key ingredient that makes this performance possible is the use of SDRs.

The switch from the mainstream approach to modeling cognition in which
classification/recognition performance (semantic memory) is primary and simply storing (and
later being able to remember) details of individual inputs experienced (episodic memory) is
irrelevant to an approach in which episodic memory is primary and semantic memory is a by-
product constitutes a sea-change. The idea of explaining semantic memory as being based on
memories of individual items has been investigated for many years in the field of psychology
(Hintzman 1986, Brooks 1987, Kruschke 1992, Whittlesea and Dorken 1993, Vokey and Brooks
1994). However, these theories and mechanisms have not been shown to be particularly efficient
from a computational standpoint, most likely due primarily to the fact that these other models use
localist representations rather than SDRs.

6
Approved for public release; distribution unlimited.

In addition, the experimental methods of neuroscience have matured enough so that we can now
literally see memory traces (albeit, still rather coarsely) that very recently formed, recurring in
the hours, days and weeks after their formation (Wilson and McNaughton 1994, Ji and Wilson
2007, Jafarpour, Fuentemilla et al. 2014). Hebb described the process of cognition in terms of
“phase sequences”, essentially causal chains, of cell assemblies, i.e., SDRs (Hebb 1949).
Luczak, McNaughton et al. (2015) provide further evidence for this view, though allowing some
variability in the precise order of cell assemblies. Additional recent support consistent with this
view comes from the Olshausen Lab “Receptive field models don’t fail to predict responses of
V1 neurons to natural movies”, Buszaki (“neural syntax” paper), and others. Rafael Yuste’s Lab
is also directly focused on the problem of understanding how sparse distributed codes (they use
“ensembles”) are learned and how they represent information in the brain. This recent PNAS
paper strongly supports what we are seeing in our Sparsey simulations.

We are confident that as methods continue to mature, there will be increasing evidence that the
primary mode of operation of cortex, and more specifically, each macrocolumn, is rapid (even
single-trial) storage of novel inputs in the form of SDRs and immediate reactivation of those
SDRs when future inputs are sufficiently similar to those originally stored.

3.1 The First Key: Sparse Distributed Representations

With respect to information processing, “intelligence” connotes two main functionalities:

a) Learning, i.e., the ability to build up, via both unsupervised and supervised methods,

representations of objects and relationships in the input domain; and
b) Human-like reasoning, i.e., the ability to do logical/probabilistic inference/prediction

involving the represented objects/relationships.

Formally, we consider a representation to include a set of representational units (RUs) for
representing domain objects, both spatial and spatiotemporal, and a set of parameters, called
weights, for representing relationships between objects. Representations may vary in the nature
of the mapping from domain objects to RUs. In a localist representation, objects are represented
by individual RUs, in 1-to-1 fashion. These are also referred to as symbolic representations since
the representees of even the lowest-scale representations in the system, i.e., single RUs, are
macroscopic domain entities, i.e., entities to which symbols (names) are typically attached. In
contrast, in a distributed (or sub-symbolic) representation, all representees, even the smallest
domain objects/events to which names are typically given, e.g., an oriented “edge” contour in a
tiny region of visual space, are represented by patterns of activity over multiple RUs. Our
proposed research will center on a particular kind of distributed representation scheme, termed
SDR, in which the RUs are binary and objects are represented by (relatively) small sets of RUs
chosen from a much larger overall population of RUs.3 We describe the specific SDR formalism
used by Sparsey in Section 3.

3 Our use of “sparse distributed” differs from its mainstream usage in computational neuroscience, popularized by
Olshausen and Field, in which “sparse” means that the set of features comprising a representational basis (lexicon) is
small compared to set of all possible features definable on the input space, and “distributed” means that
representation of any particular input is generally a composition of multiple features. However, to my knowledge,
all models described as sparse and distributed, in this mainstream sense, are in fact localist, i.e., each individual

http://redwood.berkeley.edu/bruno/research/sfn04-poster.pdf
http://redwood.berkeley.edu/bruno/research/sfn04-poster.pdf
http://www.buzsakilab.com/content/PDFs/Buzsaki2010Neuron.pdf
http://www.columbia.edu/cu/biology/faculty/yuste/index.html
http://www.columbia.edu/cu/biology/faculty/yuste/Publications/PNAS-2014-Miller-1406077111.pdf
http://www.columbia.edu/cu/biology/faculty/yuste/Publications/PNAS-2014-Miller-1406077111.pdf

7
Approved for public release; distribution unlimited.

The vast majority of artificial intelligence (AI) and machine intelligence (MI) models and
undoubtedly, virtually all commercial software systems use localist representations. Most
neuromorphic AI/MI models—i.e., those whose learning schemes are characterized in terms of
gradient descent/ascent or statistical sampling—have used densely or fully distributed
representations. Only a tiny fraction of AI/MI research to date has focused on SDR, e.g.,
(Kanerva 1988, Moll and Miikkulainen 1995, Rinkus 1996, Rachkovskij and Kussul 2001,
Hecht-Nielsen 2005). Nevertheless, we must emphasize that there is considerable evidence that
the only truly intelligent system known, the biological brain, uses sparse distributed
representations throughout cortex.

3.2 The Second Key: Hierarchy

Representations may also vary in the pattern of connections (weights) amongst the RUs. In
particular, the RUs may be divided into any number of levels such that the RUs in any level
connect directly only with RUs in their own and adjacent levels. Multi-level representations are
referred to as hierarchical. Hierarchy per se has been used to improve information
storage/processing efficiency since time immemorial, from the game of “20 Questions” to
computer algorithms and architectures. And, it is explicitly used in the majority of AI/MI
models, e.g., semantic networks, Bayesian belief nets. It is therefore uncontentious to claim that
optimizing the usage of hierarchy should be a key to achieving scalable MI, where by this we
mean building domain models:

a) that remain tractable while scaling to ~8-10 levels, and beyond, but more importantly,
b) in which the components of hierarchical representations of high-level objects, e.g., airplane,

correspond to natural parts of those hierarchical objects, e.g., wing, fuselage, tail, horizontal
stabilizer, engine, etc., i.e., systems which learn representations that “cut nature at its joints”.

We emphasize that for a large fraction of the sampling/gradient-based neuromorphic model
classes alluded to above, extension beyond three or four levels had remained impractical until
recently (Hinton, Osindero et al. 2006). However, even with the recent advances in training deep
belief nets, there has yet been very little compelling demonstration of the second aspect of
optimizing the usage of hierarchy (point b, above), i.e., of hierarchical representations being
learned, whose components correspond to natural parts of the overall objects. And, this is
especially true in the spatiotemporal domain, i.e., activity/event recognition. Yet, demonstration
of such is needed to provide a more immediate and compelling bridge to top-down “AI”
approaches, which assume a priori, compositional, grammatical, symbolic knowledge
representations and rules of inference. We believe that this particular “cutting nature at its
joints” criterion is essential if we are to understand, interact with, and trust applications charged
with monitoring, mining, and predicting over heterogeneous databases of massive scale.

feature is represented by a single unit. In contrast, in our approach, representations of all objects/events/features, at
all levels, are relatively small (sub)sets of RUs from a much larger population. Note: the two usages are completely
compatible and in fact, our SDR-based model is “sparse” and “distributed” in both senses.

8
Approved for public release; distribution unlimited.

3.3 Putting the Two Keys Together

The hierarchical organization of visual cortex is captured in many biologically inspired
computational vision models with the general idea being that progressively larger scale (both
spatially and temporally) and more complex visual features are represented in progressively
higher areas (Riesenhuber and Poggio 1999, Serre, kouh et al. 2005). Our cortical model,
Sparsey, is hierarchical as well, but as noted above, a crucial, in fact, the most crucial difference
between Sparsey and most other biologically inspired vision models is that Sparsey encodes
information at all levels of the hierarchy, and in every mac at every level, with SDCs. This
stands in contrast to models that use localist representations, e.g., all published versions of the
HMAX family of models, e.g., (Murray and Kreutz-Delgado 2007, Serre, Kreiman et al. 2007)
and other cortically-inspired hierarchical models (Kouh and Poggio 2008, Litvak and Ullman
2009, Jitsev 2010) and the majority of graphical probability-based models (e.g., hidden Markov
models, Bayesian nets, dynamic Bayesian nets). There are several other models for which SDC
is central, e.g., SDM (Kanerva 1988, Kanerva 1994, Jockel 2009, Kanerva 2009), Convergence-
Zone Memory (Moll and Miikkulainen 1997), Associative-Projective Neural Networks
(Rachkovskij 2001, Rachkovskij and Kussul 2001), Cogent Confabulation (Hecht-Nielsen 2005),
Valiant’s “positive shared” representations (Valiant 2006, Feldman and Valiant 2009), and
Numenta’s Grok (described in Numenta white papers). However, none of these models has been
substantially elaborated or demonstrated in an explicitly hierarchical architecture and most have
not been substantially elaborated for the spatiotemporal case.

Figure 1 illustrates the difference between a localist, e.g., an HMAX-like, model and the SDC-
based Sparsey model. The input level (analogous to thalamus) is the same in both cases: each
small gray/red hexagon in the input level represents the aperture (U receptive field (U-RF)) of a
single V1 mac (gray/red hexagon). In Figure 1a, the representation used in each mac (at all
levels) is localist, i.e., each feature is represented by a single cell and at any one time, only one
cell (feature) is active (red) in any given mac (here the cell is depicted with an icon representing
the feature it represents). In contrast, in Figure 1b, any particular feature is represented by a set
of co-active cells (red), one in each of a mac’s minicolumns: compare the two macs at lower left
of Figure 1a with the corresponding macs in Figure 1b (blue and brown arrows). Any given cell
will generally participate in the codes of many different features. A yellow call-out shows codes
for other features stored in the mac, besides the feature that is currently active. If you look
closely, you can see that for some macs, some cells are active in more than one of the codes.

Looking at Figure 1a, adapted from Serre, kouh et al. (2005), one can see the basic principle of
hierarchical compositionality in action. The two neighboring apertures (pink) over the dog’s
nose lead to activation of cells representing a vertical and a horizontal feature in neighboring V1
macs. Due to the convergence/divergence of U-projections to V2, both of these cells project to
the cells in the left-hand V2 mac. Each of these cells projects to multiple cells in that V2 mac,
however, only the red (active) cell representing an “upper left corner” feature, is maximally
activated by the conjunction of these two V1 features. Similarly, the U-signals from the cell
representing the “diagonal” feature active in the right-hand V1 mac will combine with signals
representing features in nearby apertures to activate the appropriate higher-level feature in the
V2 mac whose U-RF includes these apertures (small dashed circles in the input level). Note that
some notion of competition (e.g., the “max” operation in HMAX models) operates amongst the
cells of a mac such that at any one time, only one cell (one feature) can be active.

9
Approved for public release; distribution unlimited.

We underscore that in Figure 1, we depict simple (solid border) and complex (dashed border)
features within individual macs, implying that complex and simple features can compete with
each other. We believe that the distinction between simple and complex features may be largely
due to coarseness of older experimental methods (e.g., using synthetic low-dimensional stimuli):
newer studies are revealing far more precise tuning functions (Nandy, Sharpee et al. 2013),
including temporal context specificity, even as early as V1 (DeAngelis, Ohzawa et al. 1993,
DeAngelis, Ghose et al. 1999), and in other modalities, somatosensory (Ramirez, Pnevmatikakis
et al. 2014) and auditory (Theunissen and Elie 2014).

Figure 1: Comparison of Localist and SDC-based Hierarchical Vision Models

The same hierarchical compositional scheme as between V1 and V2 continues up the hierarchy
(some levels not shown), causing activation of progressively higher-level features. At higher
levels, we typically call them concepts, e.g., the visual concept of “Jennifer Aniston”, the visual
concept of the class of dogs, the visual concept of a particular dog, etc. We show most of the
features at higher levels with dashed outlines to indicate that they are complex features, i.e.,
features with particular, perhaps many, dimensions of invariance, most of which are learned

10
Approved for public release; distribution unlimited.

through experience. In Sparsey, the particular invariances are learned from scratch and will
generally vary from one feature/concept to another, including within the same mac. The
particular features shown in the different macs in this example are purely notional: it is the
overall hierarchical compositionality principle that is important, not the particular features
shown, nor the particular cortical regions in which they are shown.

The hierarchical compositional process described above in the context of the localist model of
Figure 1a applies to the SDC-based model in Figure 1b as well. However, features/concepts are
now represented by sets of cells rather than single cells. Thus, the vertical and horizontal
features forming part of the dog’s nose are represented with SDCs in their respective V1 macs
(blue and brown arrows, respectively), rather than with single cells. The U-signals propagating
from these two V1 macs converge on the cells of the left-hand V2 mac and combine, via
Sparsey’s CSA, to activate the SDC representing the “corner” feature, and similarly on up the
hierarchy. Each of the orange outlined insets at V2 shows the input level aperture of the
corresponding mac, emphasizing the idea that the precise input pattern is mapped into the
closest-matching stored feature, in this example, a “upper left 90° corner” at left and a “NNE-
pointing 135° angle” at right. The inset at bottom of Figure 1b zooms in to show that the U-
signals to V1 arise from individual pixels of the apertures (which would correspond to individual
LGN projection cells).

In the past, IT cells have generally been depicted as being narrowly selective to particular objects
(Desimone, Albright et al. 1984, Kreiman, Hung et al. 2006, Kiani, Esteky et al. 2007, Rust and
DiCarlo 2010). However, as DiCarlo, Zoccolan et al. (2012) point out, the data overwhelmingly
support the view of individual IT cells as having a “diversity of selectivity”; that is, individual IT
cells generally respond to many different objects and in that sense are much more broadly tuned.
This diversity is notionally suggested in Figure 1b and Figure 2 in that individual cells are seen
to participate in multiple SDCs representing different images/concepts. However, the particular
input (stimulus) dimensions for which any given cell ultimately demonstrates some degree of
invariance is not prescribed a priori. Rather they emerge essentially idiosyncratically over the
history of a cell’s inclusions in SDCs of particular experienced moments. Thus, the dimensions
of invariance in the tuning functions of even immediately neighboring cells may generally end
up quite different.

Figure 2 embellishes the scheme shown in Figure 1b and (turning it sideways) casts it onto the
physical brain. We add paths from V1 and V2 to a MT representation as well. We add a
notional PFC representation in which a higher-level concept involving the dog, i.e., the fact that
it is being walked, is active. We show a more complete tiling of macs at V1 than in Figure 1b to
emphasize that only V1 macs that have a sufficient fraction of active pixels, e.g., an edge
contour, in their aperture become active (pink). In general, we expect the fraction of active macs
to decrease with level. As this and prior figures suggest, we currently model the macs as having
no overlap with each other (i.e., they tile the local region), though their RFs [as well as their
projective fields (PFs)] can overlap. However, we expect that in the real brain, macs can
physically overlap. That is, any given minicolumn could be contained in multiple overlapping
macs, where only one of those macs can be active at any given moment. The degree of overlap
could vary by region, possibly generally increasing anteriorly. If so, then this would partially
explain (in conjunction with the extremely limited view of population activity that single/few-

11
Approved for public release; distribution unlimited.

unit electrophysiology has provided through most of the history of neuroscience) why there has
been little evidence thus far for macs in more frontal regions.

Figure 2: Notional Mapping of Sparsey to Brain

3.4 Final State of the Research

As mentioned earlier, our highest accuracy achieved thus far on a benchmark video event
recognition dataset, Weizmann, is 67%, which trained in 3.5 minutes. The overall experimental
protocol was:

1. Unsupervised pre-training on augmented training set

2. Supervised leave one out (LOO) support vector machine (SVM) training

3. Test on the held-out snippets

To augment the data, we created additional training snippets by making five new 10% noisified
versions of the each of the 90 original Weizmann snippets (Figure 4 shows an example of a 20%
noisified frame). We call these noisy versions “cousins” and the group consisting of an original
and its five cousins a “cousin-group”. We pre-trained will all 540 snippets (90 cousin groups x 6
cousins per group).

12
Approved for public release; distribution unlimited.

We then conducted the supervised LOO SVM training. Specifically, for each of the 540 training
snippets, we hold out one of those snippets and its five cousins, training on the remaining 534
(89x6) snippets. In experimental condition 1 (Column 2 of Table 1), we test on the six (original
+ 5 cousins) held-out snippets. We then average over the 90 LOO iterations, i.e., over the
90×6=540 tested snippets. In experimental condition 2 (Column 3 of Table 1), we test only on
the original snippet of each cousin-group; thus we present only the original 90 Weizmann
snippets at test and average over them.

As Table 1 shows, our best result (67%) is constant across 5 orders of magnitude of the C
parameter. We are somewhat surprised that we do so much better when the final testing is only
on the 90 original snippets as opposed to on all 540 snippets (originals + augmented). We have
double-checked the sanity of our methods, but we would like to further understand the
underlying cause. As noted earlier, the unsupervised training takes 3.5 minutes on a single
processor. The SVM takes an additional 2.5 minutes in the “Test on All” condition, but only a
few seconds on the “Test only on Originals” condition. In any case, our use of this protocol
involving the SVM is only temporary. Once the parameter tuning is completed, we will return to
our original protocol where at test, the top-level codes directly drive the category nodes.

Table 1. Classification Results on Weizmann Data as Function of SVM Cost Parameter

C Test on All Test Only on Original Snippets.
100 0.50 0.67
10 0.50 0.67
1 0.50 0.67
0.1 0.50 0.67
0.01 0.50 0.67
0.001 0.47 0.60
0.0001 0.47 0.59
0.00001 0.47 0.60
0.000001 0.47 0.59
0.0000001 0.46 0.59

Figure 3 shows a picture of the model used in these studies on one particular frame of one
snippet. L1 has 12x18 macs and L2 had 6x9 macs. Example videos of the network in action can
be seen at this web page. It has approximately 7.5 million weights. The U-RFs at L1 of three L2
macs (green outline) are shown in cyan (active L1 macs within cyan patches are purple). Two
U-RFs are overlapped and their borders cannot be discerned. The U-RFs in L0 of several active
L1 macs are also shown; they are the darker cyan patches in L0. The lighter cyan patches in L0
are the L0 U-RFs of the L2 macs (i.e., as mediated by the L1 macs). The black pixels in the L1
mac U-RFs are the active pixels which are causing those L1 macs to activate. The purple L1
macs in the L1 mac U-RFs are the active macs which are causing the L2 macs to activate.

http://www.sparsey.com/Current_Best_Weizmann_Results.html

13
Approved for public release; distribution unlimited.

Figure 3: Snapshot of Best Performing Model in Study

14
Approved for public release; distribution unlimited.

4. METHODS, ASSUMPTIONS, AND PROCEDURES

4.1 Overview of Model Architecture

In contrast, because SDCs physically overlap, if one particular SDC (and thus, the hypothesis
that it represents) is fully active in a mac, i.e., if all Q of that code’s cells are active, then all other
codes (and thus, their associated hypotheses) stored in that mac are also simultaneously
physically partially active in proportion to the size of their intersections with the single fully
active code. Furthermore, if the process/algorithm that assigns the codes to inputs has enforced
the similar-inputs-to-similar-codes (SISC) property, then all stored inputs (hypotheses) are active
with strength in descending order of similarity to the fully active hypothesis. We assume that
more similar inputs generally reflect more similar world states and that world state similarity
correlates with likelihood. In this case, the single fully active code also physically functions as
the full likelihood distribution over all SDCs (hypotheses) stored in a mac. Figure 4 illustrates
this concept. We show five hypothetical SDCs, denoted with φ(), for five input items, A-E (the
actual input items are not shown here), which have been stored in the mac shown. At right, we
show the decreasing intersections of the codes with φ(A). Thus, when code φ(A) is (fully) active,
φ(B) is 4/7 active, φ(C) is 3/7 active, etc. Since cells representing all of these hypotheses, not
just the most likely hypothesis, A, actually spike, it follows that all of these hypotheses
physically influence the next time step’s decision processes, i.e., the resulting likelihood
distributions, active on the next time step in the same and all downstream macs. At bottom of
the figure, we show the activation strength distribution over all five codes (stored hypotheses),
when each of the five codes is fully active. If SISC was enforced when these codes were
assigned (learned), then these distributions are interpretable as likelihood distributions.

We believe this difference to be fundamentally important. In particular, it means that performing
a single execution of the fixed-time CSA transmits the influence of every represented hypothesis,
regardless of how strongly active a hypothesis is, to every hypothesis represented in downstream
macs. We emphasize that the representation of a hypothesis’s probability (or likelihood) in our
model—i.e., as the fraction of a given hypothesis’s full code (of Q cells) that is active—differs
fundamentally from existing representations in which single neurons encode such probabilities in
their strengths of activation (e.g., firing rates) as described in the recent review of (Pouget, Beck
et al. 2013).

15
Approved for public release; distribution unlimited.

Figure 4: The Currently Active Mac Code Simultaneously Physically Functions as the
Entire Likelihood Distribution over all Hypotheses Stored in the Mac

4.2 The Algorithm

During learning, Sparsey’s core algorithm, the CSA, operates on every time step (frame) in every
mac of every level, resulting in activation of a set of cells (an SDC) in the mac. The CSA can
also be used, with one major variation, during retrieval (recognition). However, there is a much
simpler retrieval algorithm, essentially just the first few steps of the CSA, which is preferable if
the system “knows” that it is in retrieval mode. Note that this is not the natural condition for
autonomous systems: in general, the system must be able to decide for itself, on a frame-by-
frame basis, whether it needs to be in learning mode (if, and to what extent, the input is novel) or
retrieval mode (if the input is completely familiar). We first describe the CSA’s learning mode,

16
Approved for public release; distribution unlimited.

then its variation for retrieval, then it’s much simpler retrieval mode. The symbols used
throughout this report are defined in Table 31.

4.2.1. CSA: Learning Mode

The overall goal of the CSA when in learning mode is to assign codes to a mac’s inputs in
adherence with the SISC property, i.e., more similar overall inputs to a mac are mapped to more
highly intersecting SDCs. With respect to each of a mac’s individual afferent RFs, U, H, and D,
the similarity metric is extremely primitive: the similarity of two patterns in an afferent RF is
simply an increasing function of the number of features in common between the two patterns,
thus embodying only what Bengio, Courville et al. (2012) refer to as the weakest of priors, the
smoothness prior. However, the CSA multiplicatively combines these component similarity
measures and, because the H and D signals carry temporal information reflecting the history of
the sequence being processed, the CSA implements a spatiotemporal similarity metric.
Nevertheless, the ability to learn arbitrarily complex nonlinear similarity metrics (i.e., category
boundaries, or invariances), requires a hierarchical network of macs and the ability for an
individual SDC, e.g., active in one mac, to associate with multiple (perhaps arbitrarily different)
SDCs in one or more other macs.

The CSA has 12 steps which can be broken into two phases. Phase 1 (Steps 1-7) culminates in
computation of the familiarity, G (normalized to [0,1]), of the overall (H, U, and D) input to the
mac as a whole, i.e., G is a function of the global state of the mac. To first approximation, G is
the similarity of the current overall input to the closest-matching previously stored (learned)
overall input. As we will see, computing G involves a round of deterministic (hard max)
competition resulting in one winning cell in each of the Q competitive modules (CMs). In Phase
2 (Steps 8-12), the activation function of the cells is modified based on G and a second round of
competition occurs, resulting in the final set of Q winners, i.e., the activated code in the mac on
the current time step. The second round of competition is probabilistic (soft max), i.e., the
winner in each CM is chosen as a draw from a probability distribution over the CM’s K cells.

In neural terms, each of the CSA’s two competitive rounds entail the principal cells in each CM
integrating their inputs, engaging the local inhibitory circuitry, resulting in a single spiking
winner. The difference is that the cell activation functions (F/I-curves) used during the second
round of integration will generally be very different from those used during the first round.
Broadly, the goal is as follows: as G approaches 1, make cells with larger inputs compared to
others in the CM increasingly likely to win in the second round, whereas as G approaches 0,
make all cells in a CM equally likely to win in the second round.

We now describe the steps of the CSA in learning mode. We will refer to the generic “circuit
model” in Figure 5 in describing some of the steps. The figure has two internal levels with one
small mac at each level, but the focus, in describing the algorithm, will be on the L1 mac, 1

jM ,

highlighted in yellow. 1
jM consists of Q=4 CMs, each with K=3 cells. Gray arrows represent the

U-wts from the input level, L0, consisting of 12 binary pixels. Magenta arrows represent the D-
wts from the L2 mac. Green lines depict a subset of the H-wts. The representation of where the
different afferents arrive on the cells is not intended to be veridical. The depicted “Max”

17
Approved for public release; distribution unlimited.

operations are the hard max operations of CSA Step 7. The blue arrows portray the mac-global
G-based modulation of the cellular V-to-ψ map (essentially, the F/I curve). The probabilistic
draw operation is not explicitly depicted in this circuit model.

Figure 5: Generic “Circuit Model” for Reference in Describing Some Steps of the CSA

4.2.1.a. Step 1: Determine if the Mac will become Active

As shown in Eq. 1, during learning, a mac, m, becomes active if either of two conditions hold: a)
if the number of active features in its U-RF, ()U mπ , is between Uπ

− and Uπ
+ ; or b) if it is already

active but the number of frames that it has been on for, i.e., its code age, ()mϒ , is less than its
persistence, ()mδ . That is, during learning, we want to ensure that codes remain on for their
entire prescribed persistence durations. We currently have no conditions on the number of active
features in the H and D RFs.

18
Approved for public release; distribution unlimited.

() ()
() ()U U U

true m m
Active m true m

false otherwise

δ
π π π− +

ϒ <
= ≤ ≤

 (Eq. 1)

4.2.1.b. Step 2: Compute Raw U, H, and D-Summations for each Cell, i, in the Mac

Every cell, i, in the mac computes its three weighted input summations, u(i), as in Eq. 2a. RFU is
a synonym for U-RF. a(j,t) is pre-synaptic cell j’s activation, which is binary, on the current
frame. Note that the synapses are effectively binary. Although the weight range is [0,127], pre-
post correlation causes a weight to increase immediately to max 127w = and the asymptotic
weight distribution will have a tight cluster around 0 (for weights that are effectively “0”) and
around 127 (for weights that are effectively “1”). The learning policy and mechanics are
described in Section 0. ((,))F j tζ is a term needed to adjust the weights of afferent signals
from cells in macs in which multiple competing hypotheses (MCHs) are active. If the number of
MCHs (ζ) is small then we want to boost the weights of those signals, but if it gets too high, in
which case we refer to the source mac as being muddled, those signals will generally only serve
to decrease SNR in target macs and so we disregard them. Computing and dealing with MCHs is
described in Steps 5 and 6. h(i) and d(i) are computed in analogous fashion (Eqs. 2b,c), with the
slight change that H and D signals are modeled as originating from codes active on the previous
time step (t-1).

U
RF() (,) ((,)) (,)ju i a j t F j t w j iζ∈= × ×∑ (Eq. 2a)

HRF() (, 1) ((, 1)) (,)jh i a j t F j t w j iζ∈= − × − ×∑ (Eq. 2b)

DRF() (, 1) ((, 1)) (,)jd i a j t F j t w j iζ∈= − × − ×∑ (Eq. 2c)

4.2.1.c. Step 3: Normalize and Filter the Raw Summations

The summations, u(i), h(i), and d(i), are normalized to [0,1] interval, yielding U(i), H(i), and
D(i). We explained above that a mac m only becomes active if the number of active features in
its U-RF, ()U mπ , is between Uπ

− and Uπ
+ , referred to as the lower and upper mac activation

bounds. Given our assumption that visual inputs to the model are filtered to single-pixel-wide
edges and binarized, we expect relatively straight or low-curvature edges roughly spanning the
diameter of an L0 aperture to occur rather frequently in natural imagery. Figure 6 shows two
examples of such inputs, as frames of sequences, involving either only a single L0 aperture
(panel a) or a region consisting of three L0 apertures, i.e., as might comprise the U-RFs of an L2
mac (panel b). The general problem, treated in this figure, is that the number of features present
in a mac’s U-RF, ()U mπ , may vary from one frame to the next. In Figure 6a, an edge rotates
through the aperture over three time steps, but the number of active features (in this case, pixels)
varies from one time step (moment) to the next. In order for the mac to be able to recognize the
5-pixel input (T=1) just as strongly as the 6 or 7-pixel inputs, the u-summations must be divided
by 5. In Figure 6b, the U-RFs of macs at L2 and higher consist of an integer number of
subjacent level macs, e.g., here, 2

iM ’s U-RF consists of three L1 macs (blue border). Each active

19
Approved for public release; distribution unlimited.

mac in 2
iM ’s U-RF represents one feature. As for panel a, the number of active features varies

across moments, but in this case, the variation is in increments/decrements of Q synaptic inputs.
Grayed-out apertures have too few active pixels for their associated L1 macs to become active.

Note that for macs at L2 and higher, the number of features present in an RF is the number of
active macs in that RF, not the total number of active cells in that RF. The policy implemented
in Sparsey is that inputs with different numbers of active features compete with each other on an
equal footing. Thus, normalizers (denominators) in Eqs. 3a,b,c use the lower mac activation
bound, Uπ

− , Hπ
− , and Dπ

− . This necessitates hard limiting the maximum possible normalized
value to 1, so that inputs with between Uπ

− and Uπ
+ active features yield normalized values

confined to [0,1]. There is one additional nuance. As noted above, if a mac in m’s U-RF is
muddled, then we disregard all signals from it, i.e., they are not included in the u-summations of
m’s cells. However, since that mac is active, it will be included in the number of active features,

()U mπ . Thus, we should normalize by the number of active, non-muddled macs in m’s U-RF
(not simply the number of active macs): we denote this value as *

Uπ . Finally, note that when the
afferent feature is represented by a mac, that feature is actually being represented by the
simultaneous activation of, and thus, inputs from, Q cells; thus the denominator must be adjusted
accordingly, i.e., multiplied by Q and by the maximum weight of a synapse, maxw .

max
*

max

max(1, ()) 1
()

max(1, () min(,)) 1
U

U U

u i w L
U i

u i Q w L
π

π π

−

−

 × =
=

× × >
 (Eq. 3a)

*
max() max(1, () min(,))H HH i h i Q wπ π−= × × (Eq. 3b)

*
max() max(1, () min(,))D DD i d i Q wπ π−= × × (Eq. 3c)

20
Approved for public release; distribution unlimited.

Figure 6: Mac Normalization Policy Handles Inputs with Varying Numbers of Features

4.2.1.d. Step 4: Compute Overall Local Support for Each Cell in the Mac

The overall local (to the individual cell) measure, V(i), of evidence/support that cell i should be
activated is computed by multiplying filtered versions of the normalized inputs as in Eq. 4. V(i)
can also be viewed as the normalized degree of match of cell i’s total afferent (including U, H,
and D) synaptic weight vector to its total input pattern. We emphasize that the V measure is not a
measure of support for a single hypothesis, since an individual cell does not represent a single
hypothesis. Rather, in terms of hypotheses, V(i) can be viewed as the local support for the set of
hypotheses whose representations (codes) include cell i. The individual normalized summations
are raised to powers (λ), which allows control of the relative sensitivities of V to the different
input sources (U, H, and D). Currently, the U-sensitivity parameter, Uλ , varies with time (index
of frame with respect to beginning of sequence). We will add time-dependence to the H and D
sensitivity parameters as well and explore the space of policies regarding these schedules in the
future. In general terms, these parameters (along with many others) influence the shapes of the
boundaries of the categories learned by a mac.

21
Approved for public release; distribution unlimited.

()

(0)

() () () 1
()

() 0

UH D

U

tH i U i D i t
V i

U i t

λλ λ

λ

 × × ≥=
=

 (Eq. 4)

As described in Section 4.1.2, during retrieval, this step is significantly generalized to provide an
extremely powerful, general, and efficient mechanism for dealing with arbitrary, nonlinear
invariances, most notably, nonlinear time-warping of sequences.

4.2.1.e. Step 5: Compute the Number of Competing Hypotheses that will be Active in the

Mac once the Final Code for this Frame is Activated

To motivate the need for keeping track of the number of competing hypotheses active in a mac,
we consider the case of complex sequences, in which the same input item occurs multiple times
and in multiple contexts. Figure 7 portrays a minimal example in which item B occurs as the
middle state of sequences [ABC] and [DBE]. Here, the model’s single internal level, L1,
consists of just one mac, with Q=4 CMs, each with K=4 cell. Figure 7a shows notional codes
(SDCs) chosen on the three time steps of [ABC]. The code name convention here is that φ
denotes a code, the superscript “1” indicates the model level at which code resides. The
subscript indicates the specific moment of the sequence that the code represents; thus, it is
necessary for the subscript to specify the full temporal context, from start of sequence, leading
up to the current input item. Successively active codes are chained together, resulting in
spatiotemporal memory traces that represent sequences. Green lines indicate the H-wts that are
increased from one code to the next. Black lines indicate the U-wts that are increased from
currently active pixels to currently active L1 cells (red). Thus, individual cells learn
spatiotemporal inputs in correlated fashion, as whole SDCs Learning is described more
thoroughly in Section 0.

As portrayed in Figure 7b, if [ABC] has been previously learned, then when item B of another
sequence, [DBC], is encountered, the CSA will generally cause a different SDC, here, 1

DBφ , to be
chosen. 1

DBφ will be H-associated with whatever code is activated for the next item, in this case
1
DBEφ for item E. This choosing of codes in a context-dependent way (where the dependency has

no fixed Markov order and in practice can be extremely long), enables subsequent recognition of
complex sequences without confusion.

However, what if in some future recognition test instance, we prompt the network with item B,
i.e., as the first item of the sequence, as shown in Figure 7c? In this case, there are no active H-
wts and so the computation of local support (Eq. 4) depends only on the U-wts. But, the pixels
comprising item B have been fully associated with the two codes, 1

ABφ and 1
DBφ , which have been

assigned to the two moments when item B was presented, [AB] and [DB]. We show the two
maximally implicated (more specifically, maximally U-implicated) cells in each CM as orange to
indicate that a choice between them in each CM has not yet been made. However, by the time
the CSA completes for the frame when item B is presented, one winner must be chosen in each
CM (as will become clear as we continue to explain the CSA throughout the remainder of
Section 3.2). And, because it is the case in each CM, that both orange cells are equally
implicated, we choose winners randomly between them, resulting in a code that is an equal mix

22
Approved for public release; distribution unlimited.

of the winners from 1
ABφ and 1

DBφ . In this case, we refer to the mac as having multiple competing
hypotheses active (MCHs), where we specifically mean that all the active hypotheses (in this
case, just two) are approximately equally strongly active.

The problem can now be seen at the right of Figure 7c when C is presented. Clearly, once C is
presented, the model has enough information to know which of the two learned sequences, or
more specifically, which particular moment is intended, [ABC] rather than [DBE]. However,
the cells comprising the code representing that learned moment, 1

ABCφ , will, at the current test
moment (lower inset in Figure 7c), have only half the active H-inputs that they had during the
original learning instance (i.e., upper inset in Figure 7c). This leads, once processed through
steps 2b, 3b, and 4, to V values that will be far below V=1, for simplicity, let’s say V=0.5, for the
cells comprising 1

ABCφ . As will be explained in the remaining CSA steps, this ultimately leads to
the model not recognizing the current test trial moment [BC] as equivalent to the learning trial
moment [ABC], and consequently, to activation of a new code that could in general be arbitrarily
different from 1

ABCφ .

Figure 7: Illustration of Method for Handling MCHs

23
Approved for public release; distribution unlimited.

However, there is a fairly general solution to this problem where multiple competing hypotheses
are present in an active mac code, e.g., in the code for B indicated by the yellow call-out. The
mac can easily detect when an MCH condition exists. Specifically, it can tally the number cells
with V=1—or, allowing some slight tolerance for considering a cell to be maximally implicated,
cells with ()V i Vζ> , where Vζ is close to 1, e.g., 0.95Vζ = —in each of its Q CMs, as in Eq. 5a.
It can then sum qζ over all Q CMs and divide by Q (and round to the nearest integer, “rni”),
resulting in the number of MCHs active in the mac, ζ , as in Eq. 5b. In this example, 2ζ = , and
the principle by which the H-input conditions, specifically the h-summations, for the cells in

1
ABCφ on this test trial moment [BC] can be made the same as they were during the learning trial

moment [ABC], is simply to multiply all outgoing H-signals from 1
Bφ by 2ζ = . We indicate

the inflated H-signals by the thicker green lines in the lower inset at right of Figure 7d. This
ultimately leads to V=1 for all four cells comprising 1

ABCφ and, via the remaining steps of the
CSA, reinstatement of 1

ABCφ with very high probability (or with certainty, in the simple retrieval
mode described in Section 4.1.3), i.e., with recognition of test trial moment [BC] as equivalent to
learning trial moment [ABC]. The model has successfully gotten through an ambiguous moment
based on presentation of further, disambiguating inputs.

We note here that uniformly boosting the efferent H-signals from 1

Bφ also causes the h-
summations for the four cells comprising the code 1

DBEφ to be the same as they were in the
learning trial moment [DBE]. However, by Eq. 4, the V values depend on the U-inputs as well.
In this case, the four cells of 1

DBEφ have u-summations of zero, which leads to V=0, and
ultimately to essentially zero probability of any of these cells winning the competitions in their
respective CMs. Though we don’t show the example here, if on the test trial, we present E
instead of C after B, the situation is reversed; the u-summations of cells comprising the code

1
DBEφ are the same as they were in the learning trial moment [DBE] whereas those of the cells

comprising the code 1
ABCφ are zero, resulting with high probability (or certainty) in reinstatement

of 1
DBEφ .

0 (i) VK
q i V ζζ

=
 = > ∑ (Eq. 5a)

()1

0rni Q
qj Qζ ζ−

=
= ∑ (Eq. 5b)

4.2.1.f. Step 6: Compute Correction Factor for MCHs to be Applied to Efferent Signals

from this Mac

The example in Figure 7 was rather clean in that it involved only two sequences having been
learned, containing a total of six moments, [A], [AB], [ABC], [D], [DB], and [DBE], and very
little pixel-wise overlap between the items. Thus, cross-talk between the stored codes was
minimized. However, in general, macs will store far more codes. If for example, the mac of
Figure 7 was asked to store 10 moments where B was presented, then, if we prompted the
network with B as the first sequence item, we would expect almost all cells in all CMs to have

24
Approved for public release; distribution unlimited.

V=1. As discussed in Step 2, when the number of MCHs (ζ) in a mac gets too high, i.e., when
the mac is muddled, its efferent signals will generally only serve to decrease signal-to-noise ratio
(SNR) in target macs (including itself on the next time step via the recurrent H-wts) and so we
disregard them. Specifically, when ζ is small, e.g., two or three, we want to boost the value of
the signals coming from all active cells in that mac by multiplying by ζ (as in Figure 7d).
However, as ζ grows beyond that range, the expected overlap between the competing codes
increases and to approximately account for that, we begin to diminish the boost factor as in Eq.
6, where A is an exponent less than 1, e.g., 0.7. Further, once ζ reaches a threshold, B, typically
set to 3 or 4, we multiply the outgoing weights by 0, thus effectively disregarding the mac
completely in downstream computations. We denote the correction factor for MCHs as ()F ζ ,
defined as in Eq. 6. We also use the notation ((,))F j tζ as in Eq. 2, where (,)j tζ is the
number of hypotheses tied for maximal activation strength in the owning mac of a pre-synaptic
cell, j, at time (frame) t.

1()
0

A BF
B

ζ ζζ
ζ

 ≤ ≤=
>

 (Eq. 6)

4.2.1.g. Step 7: Determine the Maximum Local Support in each of the Mac’s CMs

Operationally, this step is quite simple: simply find the cell with the highest V value, ˆ
jV , in each

CM, jC , as in Eq. 7. Multiple cells in a CM may be tied for ˆ
jV .

{ }ˆ max ()

jj i CV V i∈= (Eq. 7)

Conceptually, the cell with ˆ
jV in a CM is the cell most implicated by the mac’s total input

(multiple cells can be tied for ˆ
jV), or in other words, the most likely winner in the CM. In fact, in

the simple retrieval mode (Section 4.1.3), the cell with ˆ
jV in each CM is chosen winner.

4.2.1.h. Step 8: Compute the Familiarity of the Mac’s Overall Input

The average, G, of the maximum V’s across the mac’s Q CMs is computed as in Eq. 8: G is a
measure of the familiarity of the macs overall input. This is done on every time step (frame), so
we sometimes denote G as a function of time, ()G t . And, G is computed independently for each
activated mac, so we may also use more general notation that indicates mac as well.

1
ˆQ
kq V QG ==∑ (Eq. 8)

25
Approved for public release; distribution unlimited.

The main intuition motivating the definition and use of G is as follows. If the mac’s current
input moment has been experienced in the past, then all active afferent weights (U, H, and D) to
the code activated in that instance would have been increased. Thus, in the current moment, all
Q cells comprising that code will have V=1. Thus, G=1. Thus, a familiar moment must always
result in G=1 (assuming that MCHs are accounted for as described above). On the other hand,
suppose that the current overall input moment is novel, even if sub-components of the current
overall input have been experienced exactly before. In this case, provided that few enough codes
have been stored in the mac (so that crosstalk remains sufficiently small), there will be at least
some CMs, jC , for which ˆ

jV is significantly less than 1. Thus, 1G < . Moreover, as the
examples in the Results section will show, G correlates with the familiarity of the overall mac
input. Thus, G measures the familiarity, or inverse novelty, of the global input to the mac.

Note that in the brain, this step requires that the Q cells with ˆ
jV V= become active (i.e., spike)

so that their outputs can be summed and averaged. This constitutes the first of two rounds of
competition that occurs within the mac’s CMs on each execution of the CSA. However, as
explained herein, this set of Q cells will, in general, not be identical to (and can often be
substantially different from, especially when G≈0) the finally chosen code for this execution of
the CSA (i.e., the code chosen in Step 12).

4.2.1.i. Step 9: Determine the Expansivity/Compressivity of the I/O Function to be used

for the Second and Final Round of Competition within the Mac’s CMs

Determine the range, η, of the sigmoid activation function, which transforms a cell’s V value into
its relative (within its own CM) probability of winning, ψ. We refer to that transform as the V-
to-ψ map. We refer to χ as the sigmoid expansion factor and γ as the sigmoid expansion
exponent.

1
1
G G K

G

γ

η χ
−

−

+ − = + × × −
 (Eq. 9)

As noted several times earlier, the overall goal of the CSA when in learning mode is to assign
codes to a mac’s inputs in adherence with the SISC property, i.e., more similar overall inputs to a
mac are mapped to more highly intersecting SDCs. Given that G represents, to first
approximation, the similarity of the closest-matching stored input to the current input, we can
restate the goal as follows.

1. as G goes to 1, meaning the input X is completely familiar, we want the probability of
reinstating the code Xφ that was originally assigned to represent X, to go to 1. It is
the cells comprising Xφ , which are causing the high G value. But these are the cells

with the maximal V’s (ˆ 1jV V= =) in their respective CMs. Thus, within each CM,

26
Approved for public release; distribution unlimited.

jC , we want to increase the probability of picking the cell with ˆ
jV V= relative to

cells with ˆ
jV V< , i.e., we want to transform the V’s via an expansive nonlinearity

2. as G goes to 0 (completely novel input), we want the set of winners chosen to have
the minimum average intersection with all stored codes. We can achieve that by
choosing the winner in each CM from the uniform distribution, i.e., by making all
cells in a CM equally likely to win, i.e., transform the V’s via a maximally
compressive nonlinearity.

The first goal is met by making the activation function a very expansive nonlinearity. Figure 8
shows how the expansivity of the V-to-ψ map affects cell win probability, and indirectly, whole-
code reinstatement probability. All nine panels concern a small example mac with Q=6 CMs
each comprised of K=7 cells. The panels show hypothetical V and ρ vectors over the cells of the
CMs, across two parametrically varying conditions: model “age” (across columns), which we
can take as a correlate of the number of stored codes and thus, of the amount of interference
(crosstalk) between codes during retrieval, and expansivity (η) (across rows) of the V-to-ψ map.
As described shortly, the V values are first transformed to relative probabilities (ψ) (Step 10),
which are then normalized to absolute probabilities (ρ) (Step 11). In all panels, the example V
vector in each CM has one cell with V=1 (pink bars). Thus, by Step 8, all panels correspond to a
G=1 condition. The other six cells (black bars) in each CM are assigned uniformly randomly
chosen values in defined intervals that depend on the age of the model (i.e., amount of input
experienced). The intervals for “Early”, “Middle”, and “Late”, are [0.0, 0.1], [0.1, 0.5], and [0.2,
0.8], respectively, simulating the increasing crosstalk with age.

For each age condition, we show the effects of using a V-to-ψ map with three different η values.
Note that in actual operation (specifically, Step 9), all panels would be processed with a V-to-ψ
map with the maximal η value (again, because G=1 in all panels). But our purpose here is just to
show the consequences on the final ρ distribution for a given V distribution (the V distribution is
the same for all three rows in any given column) as a function of η. And, note that the minimum
ψ value in all cases is 1. Thus, for the “Early” column, the highly expansive V-to-ψ map
(η=300) (top row) results in a 300/306≈98% probability of selecting the cell with V=1 (pink) in
each CM. This results in a (300/306)6≈89% probability of choosing the pink cell in all Q=6
CMs, i.e., of reinstating the entire correct code. In the second row, η is reduced to 30. Each of
the six black cells ultimately ends up with a 1/36 probability of winning and the pink cell, with a
30/36=5/6 win probability. In this case the likelihood of reinstating the entire correct code, is
(5/6)6≈33%. In the bottom row, η=1, i.e., the V-to-ψ map has been collapsed to the constant
function, ψ=1. As can be seen, all cells, including the cell with V=1 become equally likely to be
chosen winner in their respective CMs.

Greater crosstalk can clearly be seen in the “Middle” condition. Consequently, even for η=300,
several of the cells with non-maximal V end up with significant final probability ρ of being
chosen winner in their respective CMs. The ρ-distributions are slightly further compressed
(flatter) when η=30, and completely compressed when η=1 (bottom row). The “Late” condition
is intended to model a later period of the life of the model, after many memories (codes) have
been stored in this mac. Thus, when the input pattern associated with any of those stored codes

27
Approved for public release; distribution unlimited.

is presented again, many of the cells in each CM will have an appreciable V value (again, here
they are drawn uniformly from [0.2, 0.8]). In this condition, even if η=300, the probability of
selecting the correct cell (pink) in each CMs is close to chance, as is the chance of reinstating the
entire correct code. And the situation only gets worse for lower η values.

Figure 8: Consequences on Probabilistic Code Selection of Amount of Prior Learning and

Varying Characteristics of G-based Sigmoid Transform

Note that for any particular V distribution in a CM, the relative increase to the final probability of
being chosen winner is a smoothly and faster-than-linearly increasing (typically, 2γ ≥) function
of G. Thus, in each CM, the probability that the most highly implicated (by the mac’s total
input) cell (those corresponding to the pink bars in Figure 8) wins increases smoothly as G goes
to 1. (Strictly, this is true only for the portion of the sigmoid nonlinearity with slope > 1). The
initial (left) and final (right) portions of the sigmoid are compressive ranges.) And since the
overall code is just the result of the Q independent draws, it follows that the expected
intersection of the code consisting of the Q most highly implicated cells, i.e., the code of the
closest-matching stored input, with the finally chosen code is also an increasing function of G,
i.e., thus realizing the “SISC” property.

28
Approved for public release; distribution unlimited.

4.2.1.j. Step 10: Apply the Modulated Activation Function to all the Mac’s Cells,
Resulting in a Relative Probability Distribution of Winning over the Cells of each
CM

Apply sigmoid activation function to each cell. Note: the sigmoid collapses to a constant
function, ψ(i) = 1, when η = 1 (i.e., when G G−<).

2 3 4
1

(())
(1)() 1

1()V ii
e σ σ σ

ηψ
σ − −

−
= +

+
 (Eq. 10)

In a more general development, the CSA could include additional prior steps for setting any of
the other sigmoid parameters, 1σ , 2σ , 3σ , and 4σ , all of which interact to control overall
sigmoid expansivity and shape. In particular, in the current implementation, the horizontal
position of the sigmoid’s inflection point is moved rightward as additional codes are stored in a
mac. Figure 9 shows that doing so greatly increases the probability of choosing the correct cell
in each CM and thus, of reinstating the entire correct code, even when many codes have been
stored in the mac. In the “Middle” condition, even if η=30, the probability of choosing the pink
cell in each CM is very close to 1. For the “Late” condition, setting η=30 significantly improves
the situation relative to the top right panel of Figure 8 and setting η=300 makes the probability of
choosing the correct cell close to 1 in four of the six CMs. Thus, we have a mechanism for
keeping memories accessible for longer lifetimes.

Figure 9: More Rightward Sigmoid Inflection Point Protects Against Mounting Crosstalk

29
Approved for public release; distribution unlimited.

4.2.1.k. Step 11: Convert Relative Win Probability Distributions to Absolute
Distributions

In each of the mac’s CMs, the ψ values of the cells are converted to true probabilities of winning
(ρ) and the winner is selected by drawing from the ρ distribution, resulting in a final SDC, φ, for
the mac, as in Eq. 11.

()()
()k CM

ii
k

ψρ
ψ∈

=
∑

 (Eq. 11)

4.2.1.l. Step 12: Pick Winners in the Mac’s CMs, i.e., Activate the SDC

The last step of the CSA is just selecting a final winner in each CM according to the ρ
distribution in that CM, i.e., soft max. This is the second round of competition. Our hypothesis
that the canonical cortical computation involves two rounds of competition is a strong and
falsifiable prediction of the model with respect to actual neural dynamics, which we would like
to explore further.

The CSA is given in Table 2.

30
Approved for public release; distribution unlimited.

Table 2. The CSA during Learning

 Equation Short Description

1
() ()

() ()U U U

true m m
Active m true m

false otherwise

δ
π π π− +

ϒ <
= ≤ ≤

 Determine if mac m will become
active.

2
U

RF() (,) ((,)) (,)ju i x j t F j t w j iζ∈= × ×∑

HRF() (, 1) ((, 1)) (,)jh i x j t F j t w j iζ∈= − × − ×∑

DRF() (, 1) ((, 1)) (,)jd i x j t F j t w j iζ∈= − × − ×∑

Compute the raw U, H, and D
input summations.

3

max
*

max

max(1, ()) 1
()

max(1, () min(,)) 1
U

U U

u i w L
U i

u i Q w L
π

π π

−

−

 × =
=

× × >

*
max() max(1, () min(,))H HH i h i Q wπ π−= × ×

*
max() max(1, () min(,))D DD i d i Q wπ π−= × ×

Compute normalized, filtered
input summations.

4
()

(0)

() () () 1
()

() 0

UH D

U

tH i U i D i t
V i

U i t

λλ λ

λ

 × × ≥=
=

Compute local evidential support
for each cell.

5a

5b

0 (i) VK
q i V ζζ

=
 = > ∑

1

0
Q

qj Qζ ζ−

=
=∑

(a) Compute #cells representing a
maximally competing hypothesis
in each CM. (b) Compute # of
maximally active hypotheses, ζ ,
in the mac.

6
1()

0

A BF
B

ζ ζζ
ζ

 ≤ ≤=
>

Compute the multiple competing
hypotheses (MCH) correction
factor, ()F ζ , for the mac.

7 { }ˆ max ()
jj i CV V i∈= Find the max V, ˆ

jV , in each CM,
Cj.

8 1
ˆQ
kq V QG ==∑ Compute G as the average V̂

value over the Q CMs.

9 1
1
G G K

G

γ

η χ
−

−

+ − = + × × −

Determine the expansivity of the
sigmoid activation function.

10
2 3 4

1
(())

(1)() 1
1()V ii

e σ σ σ
ηψ

σ − −
−

= +
+

Apply sigmoid activation
function (which collapses to the
constant function when G G−<)
to each cell.

31
Approved for public release; distribution unlimited.

 Equation Short Description

11
()()

()k CM

ii
k

ψρ
ψ∈

=
∑

In each CM, normalize the
relative probabilities of winning
(ψ) to final probabilities (ρ) of
winning.

12 Select a final winner in each CM according to the ρ distribution in that CM, i.e., soft
max.

4.2.1.m. Learning Policy and Mechanics

Broadly, Sparsey’s learning policy can be described as Hebbian with passive weight decay. As
noted earlier, the model’s synapses are effectively binary. By this we mean that although the
weight range is [0,127], the several learning related properties conspire to cause the asymptotic
weight distribution to tend towards having two spikes, one at 0 and the other at max 127w = , thus
effectively being binary.

In actuality, a synapse’s weight, (,)w j i , where j and i index the pre- and post-synaptic cells,
respectively, is determined by two primary variables, its age, (,)j iσ , which is the number of
time steps (e.g., video frames) since it was last increased, and its permanence, (,)j iθ , which
measures how resistant to decrease the weight is (i.e., the passive decay rate). Figure 10
provides a visual depiction of the learning law; weight age is indexed by column and
permanence by row. The learning law is implemented as follows. Whenever a synapse’s pre-
and postsynaptic cells are coactive [i.e., a “pre-post correlation”, () 1 () 1a j a i= ∧ =], its age is
set to zero, as in Eq. 12a., which has the effect of setting its weight to maxw . This can be seen in
the “weight table” of Figure 10 in that an age of zero always maps to maxw . Otherwise, (,)j iσ
increases by one on each successive time step (across all frames of all sequences presented) on
which there is no pre-post correlation (Eq. 12c), stopping when it gets to the maximum age, maxσ
(Eq. 12d). Also note that once a synapse has reached maximum permanence, maxθ , its age stays
at zero, i.e., its weight stays at maxw (Eq. 12b). At any point, the synapse’s weight, , is
gotten by dereferencing and (,)j iθ from the weight table shown in Figure 10.

The intent of the decay schedule (for any permanence value) is to keep the weight at or near

maxw for some initial window of time (number of time steps), ()Tσ θ , and then allow it to decay
increasingly rapidly toward zero. Thus, the model “assumes” that a pre-post correlation reflects
an important / meaningful event in the input space and therefore strongly embeds it in memory
(consistent with the notion of episodic memory). If the synapse experiences a second pre-post
correlations within the window ()Tσ θ , its permanence is incremented as in Eq. 13 and
is set back to 0 (i.e., its weight is set back to maxw); otherwise the age, , increases by one
with each time step and the weight decreases according to the decay schedule in effect. Thus,
pre-post correlations due to noise or spurious events, which will have a much longer expected
time to recurrence, will tend to fade from memory. Sparsey’s permanence property is closely

(,)w j i
(,)j iσ

(,)j iσ
(,)j iσ

32
Approved for public release; distribution unlimited.

related to the notion of synaptic tagging (Frey and Morris 1997, Morris and Frey 1999,
Sajikumar and Frey 2004, Moncada and Viola 2007, Barrett, Billings et al. 2009)).

max

max

0 , () 1 () 1
0 , (,)

(,)
(,) 1 , () 0 () 0
(,) , (,)

a j a i
j i

j i
j i a j a i
j i j i

θ θ
σ

σ
σ σ σ

= ∧ =
 == + = ∨ =
 =

(Eq. 12a)
(Eq. 12b)
(Eq. 12c)
(Eq. 12d)

(,) 1 , () 1 () 1 (,) ((,))
(,)

(,) , otherwise
j i a j a i j i T j i

j i
j i

σθ σ θ
θ

θ
+ = ∧ = ∧ ≤

=

 (Eq. 13)

The exact parametric details are less important, but as can be seen in the weight table, the decay
rate decreases with (,)j iθ and the window, ()Tσ θ , within which a second pre-post correlation
will cause an increase in permanence, increases with (,)j iθ (three example value shown).
Permanence can only increase and in our investigations thus far, we typically make a synaptic
weight completely permanent on the second or third within-window pre-post correlation [

max 1θ = or max 2θ = , respectively]. The justification of this policy derives from two facts: a) a
mac’s input is a sizable set of co-active cells; and b) due to the SISC property, the probability
that a weight will be increased correlates with the strength of the statistical regularity of the input
(i.e., the structural permanence of the input feature) causing that increase. These two facts
conspire to make the expected time of recurrence of a pre-post correlation exponentially longer
for spurious / noisy events than for meaningful (i.e., due to structural regularities of the
environment) events.

Figure 10: The “Weight Table” Indexed by Age and Permanence

33
Approved for public release; distribution unlimited.

If we run the model indefinitely, then eventually every synapse will experience two successive
pre-post correlations occurring within any predefined window, Tσ . Thus, without some
additional mechanism in place, eventually all afferent synapses into a mac will be permanently
increased to max 127w = at which point (total saturation of the afferent weight matrices) all
information will be lost from the afferent matrices. Therefore, Sparsey implements a “critical
period” concept, in which all weights leading to a mac are “frozen” (no further learning) once
the fraction of weights that have been increased in any one of its afferent matrices crosses a
threshold. This may seem a rather drastic solution to the classic trade-off that Grossberg termed
the “stability-plasticity dilemma” (Grossberg 1980). However, note that: a) ‘critical periods’
have been demonstrated in the real brain in vision and other modalities (Wiesel and Hubel 1963,
Barkat, Polley et al. 2011, Pandipati and Schoppa 2012); b) model parameter settings can readily
be found such that in general, all synaptic matrices afferent to a mac approach their respective
saturation thresholds roughly at the same time (so that the above rule for freezing a mac does not
result in significantly underutilized synaptic matrices); and c) in Sparsey, freezing of learning is
applied on a mac-by-mac basis. We anticipate that in actual operation, the statistics of natural
visual input domains (filtered as described earlier, i.e., to binary 1-pixel wide edges) in
conjunction with model principles/parameters will result in the tendency for the lowest level
macs to freeze earliest, and progressively higher macs to freeze progressively later, i.e., a
“progressive critical periods” concept. Though clearly, if the model as a whole is to be able to
learn new inputs throughout its entire “life”, parameters must be set so that some macs, logically
those at the highest levels, never freeze. We are still in the earliest stages of exploring the vast
space of model parameters that influence the pattern of freezing across levels.

The ultimate test of whether the use critical periods as described above is too drastic or not is
how well a model can continue to perform recognition/retrieval (or perform the specific
recognition/retrieval-contingent tasks with which it is charged) over its operational lifetime
(which will in general entail large numbers of novel inputs), in particular, after many of its lower
levels have been frozen.

4.2.2. CSA: Retrieval Mode

In this section, we will first motivate the need for introducing some complexity to the
computation of G when in retrieval mode and then describe the modification. We begin by
thinking about how the model should respond to test trials involving previously learned
sequences corrupted in particular ways. For example, if the model has learned the sequence
S1=[BOUNDARY] in the past and is now presented with S2=[BOUNDRY], should it decide
that S2 is functionally equivalent to S1? That is, should it respond equivalently to S2 and S1?
More precisely, should its internal state at the end of processing S2 be the same as it was at the
end of processing S1? The reader will probably agree that it should. We all encounter spelling
errors like this all the time and read right through them. Similarly, if one encountered
S3=[BBOUNDARY], S4=[BBOOUUNNDDAARRYY], S5=[BOUNNNNNNDARY], or any of
numerous other variations, he/she would likely decide it was an instance of S1. We could think
of all these variations (corruptions) simply as omissions/repetitions. However, we prefer to think
of this class of corruptions as instances of the class of nonlinearly time-warped instances of
(discrete) sequences. Thus, S2 can be thought of as an instance of S1 that is presented at the
same speed as during learning up until item “D” is reached, at which time the process presenting

34
Approved for public release; distribution unlimited.

the items momentarily speeds up (e.g., doubles its speed) so that “A” is presented but then
replaced by “R” before the model’s next sampling period. Then the process slows back down to
its original speed and item “Y” is sampled. Thus S2 is a nonlinearly time-warped instance of S1.
We can construct similar explanations, involving the underlying process producing the sequences
undergoing a schedule of speedups and slowdowns relative to the original learning speed, for S3,
S4, etc. In fact, S4 is even simpler; it’s just a uniform slowing down, to half speed, of the whole
process.

Of course, there are limits to how much we want a system to generalize regarding these
warpings. And the final equivalence classes, in particular for processing language, must be
experience-dependent and idiosyncratic. For example, should a model think that S6=[COD] is
just an instance of S7=[CLOUDS], produced twice as fast as during the learning instance? In
general, probably not. Furthermore, we have not even considered in these examples the fact that
the individual sequence items are actually pixel patterns which can themselves by noisy, partially
occluded, etc., which would of course influence the normative category decisions. Nevertheless,
the ubiquity of instances such as described above, not just in the realm of language, but of lower-
level raw sensory inputs, suggests that a model have some mechanism for dealing with them, i.e.,
some mechanism for treating moments produced by nonlinearly time-warping as equivalent.
Our explanation of the modified G computation in retrieval mode uses an example involving a
3-level model that has only one mac at each level. Figure 11 shows representative samples of the
U, H, and D learning that occurs as the model is presented with the sequence, [BOTH]. Note
that the model is unrolled in time here, i.e., the model is pictured at four successive time steps
and in particular, the origin and destination cell populations of the increased H synapses (green)
are the same. This figure illustrates several key concepts. First, learning a sequence involves
increasing the H-wts from the previously active code to the currently active code. The D-wts
(magenta) are also increased from the previously active code (in this case, in the L2 mac) to the
currently active destination code in the L1 mac. Note however that the U-wts (blue) are
increased from the currently active input (L0 code) to the currently active L1 code. We show the
full set of afferent U, H, and D wts that are increased for one cell—the winner in the upper left
CM of the L1 mac—at each time step. Thus, this figure emphasizes that, on each moment,
individual cells become associated with their entire afferent input (spatiotemporal context) in one
fell swoop. Though we only show this occurring for one cell on each frame, all winners in a mac
code will receive the same weight increases simultaneously. Thus we can say not only that
individual cells become associated with the mac’s entire spatiotemporal contexts but that whole
mac codes become associated with the mac’s entire spatiotemporal contexts.

The second key concept illustrated is progressive persistence, in this case, that L2 codes persist
for twice as long as L1 codes. Cell color in this figure is used to make persistence clear. Thus,
the first L2 code that becomes active D-associates with two L1 codes. And, because of the
modeling decision that D-wts are increased from previously active to currently active codes, the
two L1 codes are those at t=2 and t=3. The second L2 code to become active (orange) D-
associates with the L2 code at t=3 and would associate with a t=4 L1 code if one occurred.

35
Approved for public release; distribution unlimited.

Figure 11: Formation of Hierarchical Spatiotemporal Memory Trace, Unrolled in Time

The trace of Figure 11 can be said to have been produced using both chaining (increasing H-wts
between successively active codes at the same level) and chunking (increasing U and D wts
between single higher-level (L2) codes and multiple lower-level (L1) codes.

Having illustrated (in Figure 11) the nature of the hierarchical spatiotemporal memory trace that
the model forms for [BOTH], Figure 12 compares model conditions when processing one
particular moment—the second moment—of a test trial that is identical to the learning trial
(Figure 12a) to conditions when processing the second moment of a time-warped instance of the
learning trial—specifically, a moment at which the item that originally appeared as the third item
of the learning trial, “T”, now appears as the second item immediately after “B”, i.e., “O” has
been omitted (Figure 12b). We can represent the two test trial moments as [BO] and [BT],
respectively, where bolding indicates the frame currently being processed and the non-bolded
letters indicate the context leading up to the current moment. The first thing to say is that the
second moment of the time-warped instance is simply a novel moment. Thus, the caveat we
mentioned above applies. That is, deciding whether a particular novel input moment should be
considered a time-warped instance of a known moment or as a new moment altogether cannot be
done absolutely.

Figure 12a shows the case where the test trial moment [BO] is identical to the learning trial
moment [BO]. The main point to see here is that, given the weight increases that will have
occurred on the learning trial, all three input vectors, U, H, and D, will be maximal (equal to 1)
for the red cell (which is in 1

2φ) in each L1 CM. At right (yellow), we zoom in on the conditions
only for the upper left L1 CM, but the conditions are statistically similar for all L1 CMs. We
show that for the red cell, U=1, H=1, and D=1. The blue cell (which is in 1

3φ) also has maximal
D-support and the blue, green, and black cells have non-zero U inputs (their U-inputs are not
shown in the main figure to minimize clutter), due to the pixel overlap amongst the four input

36
Approved for public release; distribution unlimited.

patterns, but they all have H=0. Thus, according to Eq. 4 of the CSA (Table 2), the red cell has
V=U×H×D=1, whereas the others have V=0. We refer to red cell as having a “3-way match” in
that all three evidence vectors are maximal and agree. Also, we refer to the G version computed
using all three input vectors as HUDG . Thus, in this case, where the test moment is identical to a
learned moment, CSA Eq. 4 is sufficient as is.

However as shown in Figure 12b, when an item (“O”) has been omitted with respect to the
learning trial, the H and D vectors to the red cell will no longer agree with its U vector. Various
policies could be imagined for handling this situation. The model could simply consider such a
case as being a novel moment, [BT]. This would require no modification to the CSA. Or, as
discussed earlier, the model could check to see whether the current moment could have resulted
from a nonlinear time-warping process, and should therefore be judged identical to some
previously learned moment. In this case, the current moment [BT] is identical to the learning
trial moment [BOT] if we assume that the process presenting the sequence to the model sped up
by 2x at t=1, causing the “O” to be missed.

So, how does the model check this possibility? It is quite simple. All it needs to do is disregard
the H signals when computing the V’s (CSA Step 4). In other words, it “backs off” from the
more stringent 3-way HUDG match criterion to the more permissive 2-way UDG criterion. Note
that the model begins by computing the highest-order G available at the current moment, in this
case, using all three input vectors. Only if that highest-order G falls below a threshold, which we
typically set rather high, e.g., 0.9HUDG + = , does it bother to compute the next lower order
version(s) of G, i.e., UDG , HUG , and HDG . Similarly, only if whichever 2-way version has been
considered falls below another threshold, which is typically set even higher than the first, e.g.,

0.95UDG + = , does the model back-off to the next lower order match criterion.

37
Approved for public release; distribution unlimited.

Figure 12: Motivation for the Back-Off Strategy for Computing G in Retrieval Mode

In this example, 1UDG = , meaning that there is a code stored in the L1 mac—specifically, the set
of blue cells assigned as the L1 code at t=3 of the learning trial (Figure 11)—which yields a
perfect 2-way match. Thus, there is no need to back-off to the “1-way” match criterion, UG .
However, there are many naturally occurring instances in which backing all the way off to the
lowest-order criterion (i.e., basing the V values and thus, the G, on only the U signals, ignoring
the H and D signals) is appropriate. There are myriad policy considerations regarding possible
precedence orders of the different G versions and whether or not and under what conditions the
various versions should be considered. We are actively exploring these issues, but cannot delve
into this topic in this paper.

38
Approved for public release; distribution unlimited.

Figure 13 completes this example by showing that the back-off policy allows the model to keep
pace with nonlinearly time-warped instances of previously learned sequences. That is, the
model’s internal state (i.e., the codes active in the macs) can either advance more quickly (as in
this example) or slow down (not demonstrated herein) to stay in sync with the sequence being
presented. Figure 13a is given for comparison, showing the full memory trace that becomes
active during a retrieval trial for an exact duplicate of the training trial, [BOTH]. In this case, no
back-off would be required because all signals at all times would be the same during retrieval as
they were during learning. Figure 13b shows the trace that obtains, using the back-off protocol,
throughout presentation of the nonlinearly time-warped instance of the training trial, [BTH].

The back-off from HUDG to UDG occurs in the L1 mac at t=2 (as was described in Figure 12b).
Since 1UDG = , the V-to-ψ map is made very expansive, resulting in activation, at t=2 of the test
trial, of the code, 1

3φ (blue cells), which was originally activated at t=3 in the learning trial. Thus,
the back-off has allowed the model’s internal state (in L1) to “catch up” to the momentarily sped
up process that is producing the input sequence. Once 1

3φ is activated, it sends U-signals to L2
(blue signals converging on orange cell in rose highlight box). This results in the L2 code, 2

3φ
(orange cells), being activated without requiring any back-off. That’s because the L2 code from
which H signals arrive at t=2, 2

1φ (purple cells) increased its weights not only onto itself (at t=2
of the learning trial) but also onto 2

3φ at t=3 of the learning trial. Thus, the six cells comprising
2
3φ (orange) yield 1HUG = (note that HUG is the highest order G version available at L2 since

there is no higher level). Consequently, a maximally expansive V-to-ψ map is used in the L2
mac, resulting in reinstatement of 2

3φ . At this point—t=2 of the test trial—the entire internal state
of the model (i.e., at L1 and L2) is identical to its state at t=3 of the learning trial (two central
dashed boxes connected by double-headed black arrow): the model, as a whole, has “caught up”
with the momentary speed up of the sequence. The remainder of the sequence proceeds the same
as it did during learning, i.e., state at t=3 of retrieval trial equals state at t=4 of learning trial.

39
Approved for public release; distribution unlimited.

Figure 13: Back-Off Allows Internal State to Remain Synchronized with Nonlinearly

Time-Warped Instances of Known Snippets

The final, and really the most important, point of this section is that Sparsey’s back-off policy
does not change the time complexity of the CSA: it still runs with fixed time complexity, which is
essential in terms of scalability to real-world problems. True, expanding the logic to compute
multiple versions of G increases the absolute number of computer operations required by a single
execution of the CSA. However, the number of possible G versions is small and more to the
point, fixed. Thus, adding the back-off logic adds only a fixed number of operations to the CSA
and so does not change the CSA’s time complexity.

During each execution of the CSA, all stored codes compete with each other. In general, the set
of stored codes will correspond to moments spanning a large range of Markov orders. For
example, in Figure 11, the four moments, [B], [BO], [BOT], and [BOTH], are stored, which are

40
Approved for public release; distribution unlimited.

of progressively greater Markov order. During each moment of retrieval, they all compete.
More specifically, they all compete first using the highest-order G, and then if necessary, using
progressively lower-order G’s. However, it is crucial to see that with back-off, not only are the
explicitly stored (i.e., actually experienced) moments compared, but so are a far larger number of
time-warped versions of the actually-experienced moments. For example in Figure 12b and
Figure 13b, the moment [BT], which never actually occurred competes and wins (by virtue of
back-off) over the moment [BO], which did occur. And crucially, as noted above, all these
comparisons take place with fixed time complexity! Space does not permit here, but the above
mechanism and reasoning generalizes to arbitrarily deep hierarchies. As the number of levels
increases, with persistence doubling at each level, the space of hypothetical nonlinearly time-
warped versions of actually experienced moments, which will materially compete with the actual
moments (on every frame and in every mac) grows exponentially. And, we emphasize that these
exponentially increasing spaces of never-actually-experienced hypotheses are envelopes around
the actually-experienced moments: thus, the invariances implicitly represented by these
envelopes are (a) learned and (b) idiosyncratic to the specific experience of the model.

4.2.3. CSA: Simple Retrieval Mode

Both the learning mode CSA and the retrieval mode CSA described above, which is just the
learning mode CSA augmented by the back-off protocol, involve the G-based modification of the
cell activation functions and the second, probabilistic round of competition for choosing the final
code (CSA Steps 8-12, Table 2). If the model is operating as a truly autonomous agent, then it,
or rather any of its constituent macs, may be presented with a truly novel input pattern at every
moment experienced. Thus, a mac must be prepared to learn, i.e., assign a new SDC, at every
moment.4 As described in earlier sections, the CSA’s two competitive stages, with the second,
probabilistic stage using the G-modulated cell activation functions, satisfies the requirements for
autonomous operation. That is, as G decreases, the expected intersection of the final code (for
the current frame) chosen with the closest matching stored code decreases to chance, which
results in the occurrence of novel pre-post correlations, and thus new learning. On the other
hand, as G increases towards 1, the expected intersection of the finally chosen code with the
closest matching stored code increases to complete, which results in no (or at least, statistically,
very few) novel pre-post correlations and thus no new learning.

However, if the model “knows” that is operating in pure retrieval mode, i.e., that at each moment
each mac should simply activate the code of the learned moment that most closely matches its
current input moment, then there is no advantage to having the second G-dependent probabilistic
stage of competition. In fact, the optimal strategy in this case is simply to choose the cell with
the highest V value in each CM. The transfer of global information (G) back into the local
(within each CM) winner selection processes, which occurs in steps 8-12, does not help and in
fact, can only hurt (i.e., it can only reduce the probability of the maximally likely cell in a given
CM winning). Thus, in this “simple retrieval mode”, in which the model knows that it will not
be asked to learn anything new, the optimal algorithm is just the first seven steps of the CSA
given in Table 2, but augmented with the back-off protocol described in the previous section.

4 Actually, in a hierarchical model faced with the prospect of possibly having to learn something new on every
moment of its operational lifetime, its sufficient only that at least one mac (which would typically be at the highest
level) be prepared to learn at every moment (cf. earlier discussion of cirtical periods).

41
Approved for public release; distribution unlimited.

Thus, we do not state the simple retrieval mode of the CSA separately. We will clearly indicate
which of the two retrieval modes is used in the studies reported in the next section.

We emphasize that the deterministic “simple retrieval mode” algorithm cannot be used during
learning because it would result in essentially mapping all of the mac’s input patterns to one or a
very small number of codes, vastly over-utilizing only a tiny fraction of the mac’s cells and
vastly decreasing the number of codes (amount of information) that can be stored in the mac.

However, based on first principles, it seems plausible that for the vast majority of Sparsey’s
envisioned operational regime, i.e., the regime in which the number of codes stored in the macs
(or more specifically, the faction of synapses that have been increased) remains below a
threshold, the simple retrieval mode should always do better (on average) than the probabilistic
retrieval mode Specifically, recall that in probabilistic retrieval mode, the winner in a CM is
chosen as a draw from the V distribution. Depending on the particular shape/statistics of the V
distribution, the cell with the maximum V might therefore be chosen winner only a small fraction
of the time. Yet, that max-V cell is the most likely cell given the total evidence (from the U, H,
and D signals) arriving at the mac. In simple retrieval mode, the max-V cell always wins.
Again, provided that the fraction of the mac’s afferent synapses that have been increased remains
low enough, simply choosing the max-V cell as winner yields higher expected accuracy.

42
Approved for public release; distribution unlimited.

5. RESULTS

5.1 Individual Macs Implement SISC

The focus of the first Technical Report delivered for this project was to show that Sparsey’s core
algorithm, the CSA, maps spatiotemporal similarity in the input space into similarity in internal
representation, or code, space. We refer to this property as similar-inputs-map-to-similar-code..
Of course, any pattern recognition system must possess this property. However, we emphasize
that Sparsey, more specifically, each individual Sparsey mac, learns a particular spatiotemporal
similarity measure based on its inputs. The space of possible metrics that can become embedded
in a mac is constrained by various of the CSA’s parameters, but the exact metric depends on and
is tuned to the statistics of the inputs actually experienced by the mac. This is in contrast to
pattern recognition systems in which the similarity metric is prescribed a priori, which limits
autonomy.

Figure 14: Demonstration of SISC Property for 4-item-long Sequences

Figure 14 shows an example of the SISC property with respect to a single mac. The
spatiotemporal similarity (GHU) of the final sequence moment (D′) to the final moment of the
learned sequence, [ABCD], falls from panel a to panel d. The size of intersection of the codes of
those moments (highlighted in yellow) falls correspondingly. A similar correlation exists for the
third sequence moments as well (highlighted in pink). Although mistakes are made on the first

43
Approved for public release; distribution unlimited.

and second moments, the number of mistakes remains statistically constant across panels for
these moments. This particular relation between spatiotemporal input similarity and code
similarity realized in this example depends on the specific parameters of the sigmoid mapping
from cells’ V values to their win probabilities (within their CMs). A more detailed analysis of
the SISC property is given in Appendix B.

5.2 Simple Features Support High Class Accuracy

In our current studies, we edge filter, binarize, apply bounding box, and scale down the original
(180x144, grayscale) Weizmann frames to be 42x60 pixels. We also decimate frames. The
original and resulting frames for one of the Weizmann snippets is shown in Figure 15. Despite
the clearly reduced information present in the inputs fed to Sparsey, relatively high classification
accuracy (67%) is achieved. It is quite possible that higher classification accuracy would result
given less time decimation, less spatial scaling, etc. This would be a good candidate for a
follow-on research task. Appendix A provides a more detailed description of our edge filtering
pipeline.

Figure 15: Original and Preprocessed Frames of a Weizmann Snippet

5.3 Sanity Tests (Test Set = Train Set)

We performed a great many “sanity test” experiments throughout the project. Such tests do more
than simply show that the model can output the correct class of snippets that it has seen during
training. Specifically, they show that highly detailed, hierarchical, spatiotemporal memory
traces, spanning many frames, and involving thousands of precisely-timed individual cell
activations can be recapitulated during testing with very high accuracy: we refer to this measure
as trace accuracy, denoted by the symbol R (e.g., R* and RΩ), throughout. We have found that
precise recapitulation of memory traces is not generally needed to support good classification in
the “test ≠ train” case. However, it is necessary to emulate human episodic memory, which is
highly detailed memory for specific, generally temporally-extended, experiences. Sparsey’s
(formerly TEMECOR’s) development over the past 25 years has always had the dual goals of
explaining both semantic memory, which is essentially classification/recognition capability, and
episodic memory. We describe three sanity (“train = test”) experiments here.

44
Approved for public release; distribution unlimited.

5.3.1. Sanity and Noisy Recognition Tests with Edge-Filtered Videos

Figure 16 shows one edge-filtered frame (84x120) from one of the 90 Weizmann snippets (left)
and the corresponding 40% noisy version of the same frame. Figure 17 shows the model on a
particular frame of one of the snippets, showing the U-wts (blue lines) from active pixels to the
four cells (black) comprising the active code in the single active mac on this frame. The
horizontal (H) weights carrying signals from the previously active code (gray cells) in a
neighboring mac are shown (green arcs).

Figure 16: Original Edge-filtered Frame and Corresponding 40% Noisy Frame

The presence of only one internal level in this model forced some non-standard parameter
settings, e.g., all L1 cells receive inputs from all input (L0) cells (pixels). This degree of fan-in
will not be present in true hierarchical models. In any case, the model successfully learns all 90
snippets with single trials, in 187 seconds (on single hyperthread of 3.2 GHz processor, i.e., no
machine parallelism), and recognizes them, in terms of both trace (93%) and classification (98%)
accuracy, almost perfectly, as well as also recognizing highly noisy (40%) versions of the
snippets as well (see Table 3). The training set contained 90 snippets, from 12 to 33 frames long,
for a total of 1,722 frames. Web pages provide additional details of the sanity and noise
experiments.

http://www.sparsey.com/Weizmann_EDGE_episodic_memory.html
http://www.sparsey.com/Classification_Noisy_Weizmann_EDGE_snippets.html

45
Approved for public release; distribution unlimited.

Figure 17: Snapshot of 2-level Model Used in Sanity Test Study

Note that we could easily have found parameters to bring recognition accuracy in either
experiment, in particular in the 40% noise experiment, arbitrarily close to 100%. E.g., simply
raising K from 5 to 6, which would increase run times slightly, would likely achieve accuracy
~100%. Also, although our particular noisification method yields frames in which the perturbed
pixels move to locations adjacent to the original contour, the algorithm is not sensitive to how far
the pixels are moved: the results would be essentially similar for salt-and-pepper noise, and in
fact for more structured perturbation, e.g., displacing/transforming whole segments of contour.

Table 3. Performance of 2-level Model on Weizmann Edge Snippets

Common Properties Across Experiments
of Macs = 20, #CMs / mac (i.e., Q) = 4, #cells / CM (i.e., K) = 5
weights
(U+H)

4,391,500 (small fraction of wts increased, so probably could store
several fold more snippets while still getting very high accuracy)

input pixels 84x120 = 10,080
Snippets = 90, # Frames = 1,722
 Test = Train Test ≠ Train”; 40% Noise
Recognition
(trace) Accuracy

Ave. over all frames: 93%
Ave. snippet-final frames: 92%

Ave. over all frames: 92%
Ave. snippet-final frames: 93%

Class Accuracy 98% (88/90) 93% (84/90)
Train Time 187 sec. 187 sec.
Test Time 160 sec. 148 sec.

46
Approved for public release; distribution unlimited.

5.3.2. Lower Resolution Weizmann Edge

We believed it likely that the Weizmann classification task could be accomplished with
substantially lower spatial and temporal resolution. We therefore produced a set of Weizmann
Edge snippets with half the spatial resolution, e.g., 42×60 = 2,520 pixels, and half as many
frames. Figure 18 shows example frames at the lower resolution. The much smaller number of
pixels comprising the input surface allowed us to reduce the number of L1 macs needed to cover
the range of active pixels per frame fairly well.

Figure 18: Lower Spatial Resolution (42x60) Original and 20% Noisy Frame

As Table 4 shows, the 2-level model was able to learn the training set with very high fidelity, one
trial each, in 18 sec. For the “Test=Train” case, the test run yielded 100% classification accuracy
and very high trace accuracy and took only 10 sec. Note that we can easily find parameters to
bring trace accuracy very close to 100%, e.g., making the 16 macs be used more evenly, which
lowers crosstalk during retrieval. However, we concluded that achieving 100% class and 97%
trace accuracy in the “Test=Train” (sanity) case is sufficient to move on to other
tasks/experiments.

47
Approved for public release; distribution unlimited.

Table 4. Model Performance on Low Space-Time Resolution Weizmann Edge Snippets

Common Properties Across Experiments
of Macs = 16, #CMs / mac (i.e., Q) = 4, #cells / CM (i.e., K) = 5
weights
(U+H)

920,000 (small fraction of H wts increased, so probably could store
several fold more snippets while still getting very high accuracy)

input pixels 42x60 = 2,520
Snippets = 90, # Frames = 883
 Test = Train Test ≠ Train”: 40% Noise
Recognition
(trace) Accuracy

Ave. over all frames: 89%
Ave. snippet-final frames: 97%

Ave. over all frames: 97%
Ave. snippet-final frames: 99%

Class Accuracy 100% (90/90) 100% (90/90)
Train Time 18 sec. 17 sec.
Test Time 10 sec. 10 sec.

We also produced various noisy versions of the low space-time resolution Weizmann data. We
produced two types of noisy data, a) “structured” noisy data in which, for each frame, we moved
a randomly chosen subset of pixels but moved them to nearby locations (see Figure 18a); and b)
salt-n-pepper noisy data, where we moved randomly chosen pixels to arbitrarily distant locations
in the frame (no figure shown). For each type of noise, we produced 10, 20, and 40% noisy
versions of the snippets. The model performs essentially equally well on both types of noise and
so we only report results for the 40% salt-n-pepper noise condition in Table 4. As can be seen,
the model performs nearly perfectly for this condition and the test time is the same as for the
sanity test, 10 sec. Again, regarding processing speed, we emphasize that in addition to the fact
that no machine parallelism is used here, we expect we could achieve at least 10x-100x speed-up
via standard algorithm and software optimizations.

5.3.3. Sanity Test: 3-Level Model Revealing DCCI Principle

Here, we show that a 3-level Sparsey can achieve the same classification performance as the 2-
level model in the “test=train” condition. Comparing Table 5 to Table 4 and Table 3 shows that
the trace accuracy achieved by the 3-level model is substantially lower than the 2-level model.
However, this is in fact not a problem. In fact it reveals a key principle:

Differential correlation of correctly vs incorrectly active cells with correct classifications
(DCCI, “differential correlation of correct and incorrect”): When many macs are involved
in the class decision, the codes in those macs can contain many errors (i.e., low trace
accuracy) while still supporting high class accuracy. This is because the correct cells
across all active macs influencing the class decision are highly correlated with the correct
class cell, whereas the incorrect cells across those macs are far less correlated. Thus, the
input summation of the correct class cell from those macs will tend to rise above the
summations of all the other (incorrect) class cells.

48
Approved for public release; distribution unlimited.

Looking at Table 5, one can see that for all cases where K>1, trace accuracy (the R measures)
can be quite low, e.g., 40%, while still yielding nearly 100% class accuracy.

Table 5: 3-Level Model Performance in “Train = Test” Condition
 # Snippets = 90, # Frames = 883, L1 has M1 = 468 macs (18x26), L2 has M2 = 192 macs (12x16)

 Train
Time
(sec)

Test
Time
(sec)

L1 L2
Wts
(106) R* RΩ Class

Acc. Q K R* RΩ Q K R* RΩ

1 112 37 6 6 0.43 0.40 5 6 0.47 0.46 9.97 0.45 0.43 0.99

2 124 30 5 6 0.43 0.39 5 6 0.49 0.46 7.86 0.46 0.43 0.98

3 90 21 4 6 0.43 0.39 4 6 0.46 0.43 5.11 0.44 0.41 0.98

4 60 18 4 5 0.45 0.41 4 5 0.49 0.48 3.62 0.47 0.45 1.00

5 49 16 4 4 0.46 0.43 4 4 0.53 0.51 2.39 0.50 0.47 0.98

6 34 14 4 3 0.51 0.48 4 3 0.60 0.59 1.41 0.56 0.54 1.00

7 27 13 4 2 0.62 0.60 4 2 0.70 0.69 0.68 0.66 0.65 0.97

8 16 11 3 2 0.63 0.61 3 2 0.70 0.69 0.41 0.66 0.65 0.97

9 13 10 3 1 1.00 1.00 3 1 1.00 1.00 0.13 1.00 1.00 0.96

10 12 9 2 2 0.62 0.61 2 2 0.70 0.69 0.21 0.66 0.65 0.92

11 10 8 2 1 1.00 1.00 2 1 1.00 1.00 0.07 1.00 1.00 0.96

12 9 8 1 1 1.00 1.00 1 1 1.00 1.00 0.03 1.00 1.00 0.96

The goal of the experiments in Table 5 was to see how small we could make the model (how few
weights it could have) while still passing the sanity test. As is clear, we were able to reduce the
size of the macs all the way down to the localist condition, i.e., each mac had only one cell, while
still achieving nearly 100% accuracy. In that condition (row 12), there were < 30,000 weights
and the model learned in 9 seconds (again, standard software optimizations could probably
reduce this by 10-100x).

Figure 19 shows the 3-level model used in these experiments. It has 468 L1 macs and 192 L2
macs. The bottom-up receptive fields, U-RFs, of several L1 and L2 macs are shown (cyan
patches). Active macs are shaded rose unless they fall within a depicted RF (“RF” is used for
“U-RF” in the figure since there is no ambiguity) in which case they are shaded purple. For
example L1 mac A’s U-RF consists of ~40 pixels (the darker cyan patch falling within the U-RF
of L2 mac X).

49
Approved for public release; distribution unlimited.

Figure 19: Model Achieving ~100% Class Accuracy in Weizmann Sanity Test

We make the following points regarding Figure 19:

1. Any mac at any level represents a particular part, or feature, of the whole. Each such part is a

composition of several lower-scale parts represented at the subjacent level. Three L2-scale
parts are shown superimposed over the L2 macs that represent them (black pixels). Mac X is
actively representing a vertical edge segment, Y is representing an upper left rounded corner,
and Z is representing a less canonical looking feature.

50
Approved for public release; distribution unlimited.

2. Though not shown here, in general, the U-RFs of neighboring macs at any level have
substantial overlap. The immediate U-RF of a mac at L2 or higher consists of a patch of macs
in the subjacent level. We refer to the U-RF at level J of a mac, m, at a higher level, as U-
RF(m,J). We show three multi-level-spanning U-RFs, U-RF(X,0), U-RF(Y,0), and U-RF(Z,0),
at L0.

3. There is generally substantial pixel-level overlap between the parts represented by nearby
active macs. This is one form of overcompleteness present in Sparsey; we call it inter-mac
overcompleteness. There is also intra-mac overcompleteness: the input patterns represented
by the different codes stored in any particular mac will also generally have a substantial pixel-
level overlap. An additional nuance that must be appreciated is that for macs at L2 and higher,
whose U-RFs are sets (patches) of subjacent macs, we can also define overcompleteness in
terms of mac-level overlap (in contrast to pixel-level overlap).

4. One can see that there are seven active L1 macs in L2 mac X’s U-RF. Parameters determine
the range of active macs in a mac’s U-RF for which it will become active. We tile these π-
bound parameters over the mac sheet so as to ensure, probabilistically, that any particular
active feature (either a pixel or a mac) at any level is likely to fall within the U-RF of at least
one active superjacent mac.

5. The U-RFs of several L1 macs are also shown at L0. These are the slightly darker cyan
patches falling within the larger patches. It is the portions of the input that falls within these
L1 mac U-RFs that are causing those macs to become active. It can be seen, most clearly
within U-RF(X,0), that parts represented by L1 macs are smaller than those represented by L2
macs. In fact, two disjoint parts corresponding to two L1 macs, A and one other, are clearly
seen. The part represented by X is the union of these two parts and those represented by the
other five active L1 macs in X’s immediate U-RF (to reduce clutter, their U-RFs are not
shown).

Figure 20 shows another example, from another frame of another snippet, illustrating the
richness of Sparsey’s modular, i.e., mac-based, representation of the hierarchical part-whole
structure of inputs. At top, we show the portion of the input pattern represented by an L2 mac
(with blue lines leading to it) superimposed over it (black pixels). This “whole” is naturally
describable as consisting of three parts, e.g., as “three roughly parallel roughly vertical edge
segments spread out horizontally and rising slightly toward the right”. One could imagine it
being a potentially useful feature/part that could appear as a part of many possible larger images.
The representations of the three constituent parts can be seen at L1. One can see that the L1
mac’s have substantially overlapping U-RFs. Thus, four L1 macs (purple) L1 macs actually
participate in representing those three parts: the two parts associated with the middle L1 macs are
highly overlapped and appear as one.

51
Approved for public release; distribution unlimited.

Figure 20: Example Showing Richness of Sparsey’s Modular, i.e., Mac-Based,

Representation of the Hierarchical Part-Whole Structure of Inputs

52
Approved for public release; distribution unlimited.

5.4 Family-Resemblance Classification Style

It has long been appreciated that precise definitions of natural objects and events in terms of lists
of necessary and sufficient features (or parts) are easy to break. This underlies the “brittleness”
of classical, logic-based AI systems. Natural categories are better described in terms of family
resemblances, i.e., lists of features (parts) associated with instances of a category but no one (or
any small subset) of which is absolutely necessary (Wittgenstein 1953). In terms of Sparsey, a
family-resemblance based classification style is revealed to the extent that different though
overlapping sets of top-level macs are active as the representation of different instances of the
same class, an effect revealed in this experiment.

We tested the 3-level model of Figure 19 (with parameters set as in row 2 of (Table 5) on 20%
noisy versions of the training set. Table 6 reports the results of a subset of these numerous
experiments while searching for good parameter configurations. In Experiment 1 (row 1), we
presented only 20 of the 90 snippets (two exemplars of each of the ten classes). Class accuracy
was 80% (16 out of 20). The very interesting point here is that the trace accuracy is very low at
both L1 (~15%) and L2 (~13%). This is strong evidence of the DCCI principle described above.
In Experiment 2, we ran the same model on all 90 snippets. The class accuracy dropped
substantially due to the increasing effects of crosstalk, but still remained far above chance
(chance=10%).

We noticed that the set of active snippet-final, top-level macs (i.e., the macs whose outputs drive
the classifications) differed substantially across exemplars of the same class. We see this even in
comparing a training snippet with a 20% noisy version of itself, as shown in Figure 21. There
are many active (rose) L2 macs in common between the left and right panels, but there are also
many differences. The same is true for the L1 macs as well. Since we see this even when one
snippet is a noisy version of the other, we certainly expect to see this effect when comparing
training snippets to novel test snippets of the same class. Since the L2 macs drive the
classifications, we need to understand principles by which substantially different sets of L2
macs, as well as substantially different codes in those macs, can learn to activate the same class
cell.

53
Approved for public release; distribution unlimited.

Figure 21: Substantially Different Though Overlapped Sets of Active L1 and L2 Macs

Between Original and Noisy Version of a Snippet

In some sense, one goal of our parameter search must be to find parameters that result in greater
similarity over the set of all snippet-final top-level active mac sets within any given class (and
thus, averaged across all classes). All else equal, this increases the separability of the inputs and
should increase performance. In order to achieve this, it is clear that the macs need to be
somewhat lenient in their match [more specifically, familiarity (G)] computation during test.
Accordingly, a principal goal guiding the parameter search underlying the results in Table 6 was
to maximize classification accuracy, by increasing the leniency of the spatiotemporal match.
There are many parameters that influence this: the normalization thresholds applied to each of
the H, U, and D, inputs; the sharpening (raising to a power), also applied to the individual inputs
prior to mixing, and the parameters of the sigmoid during learning, and others. Table 6 presents a
few data points in this search process. General principles about the needed relationships of the
parameters are still emerging.

54
Approved for public release; distribution unlimited.

Table 6. 3-Level Model Performance in “Test = 20% Noisy Train” Condition
 Num.

Frames
L1 L2

R*,
RΩ

Class
Acc.

Sharp.
exps

U,H,D
(train,
test)

Norm max
cutoff
U,H,D
(train)

Norm max
cutoff
U,H,D
(test)

Sig.
upper

V
cutoff

R*,
RΩ

Sharp.
exps

U,H,D
(train,
test)

Norm max
cutoff
U,H,D
(train)

Norm max
cutoff
U,H,D
(test)

Sig.
upper

V
cutoff

R*,
RΩ

1 208 2,2,2
2,2,2

0.9, 0.9,
0.9

0.9, 0.9,
0.9

0.99 0.15,
0.14

3,3,2
3,3,2

0.9, 0.9,
0.9

0.9, 0.9,
0.9

0.99 0.11,
0.11

0.13,
0.12

0.80
16/20

2 883 2,2,2
2,2,2

0.9, 0.9,
0.9

0.9, 0.9,
0.9

0.99 0.12,
0.11

3,3,2
3,3,2

0.9, 0.9,
0.9

0.9, 0.9,
0.9

0.99 0.09,
0.09

0.11,
0.10

0.52
47/90

3 208 1,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.15,
0.16

1,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.13,
0.12

0.14,
0.14

0.65
13/20

4 208 2,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.15,
0.15

1,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.13,
0.13

0.14,
0.14

0.55
11/20

5 208 2,2,2
1,2,2

0.95, 0.95,
0.95

0.4, 0.8,
0.7

0.3 0.13,
0.13

1,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.13,
0.13

0.13,
0.13

0.60
12/20

6 208 2,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.15,
0.15

2,2,2
1,2,2

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.12,
0.12

0.14,
0.13

0.65
13/20

7 208 2,2,2
1,1,1

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.16,
0.15

2,2,2
1,1,1

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.3 0.12,
0.12

0.14,
0.14

0.65
13/20

8 208 2,2,2
1,1,1

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.8 0.13,
0.12

2,2,2
1,1,1

0.95, 0.95,
0.95

0.8, 0.8,
0.7

0.8 0.10,
0.10

0.12,
0.11

0.70
14/20

55
Approved for public release; distribution unlimited.

5.5 Experiments with More Powerful Input Feature, HOFs

In the May-June 2015 timeframe, we were encountering difficulty tuning parameters of multi-
level Sparsey models to perform well on classification of the edge-filtered versions of the KTH
snippets. We therefore decided to test Sparsey using more powerful inputs features, in
particular, the motion features known as HOF (Laptev, Marszalek et al. 2008). We point out that
all SOA results on video event classification benchmarks have been achieved using motion
features, e.g., HOF, MBHs, etc.

We implemented a preprocessor that produces HOF-filtered versions of video data sets. To
increase our chance of success, we also switched from using KTH snippets, to the slightly easier
Weizmann snippets. However, we still encountered difficulty achieving SOA classification
performance on Weizmann. Not only that, our multi-level model was also having difficulty
getting high scores on the “sanity test” baseline, i.e., in which the test set is the same as the
training set. We therefore decided to remove the hierarchical parameter tuning problem from the
equation by scaling back to a 2-level model (i.e., having only one internal level of macs). This
led immediately to achieving nearly 100% accuracy (in terms of both recapitulating the exact
spatiotemporal activation traces and outputting the correct class/label) in the “train=test”
condition. Figure 22 shows the 2-level model that achieved 97% recognition accuracy on all 90
HOF-filtered Weizmann snippets, which were presented once each. This web page contains a
concise description, but with videos, of this model and the HOF input data format. We note the
following properties of this model:

1. The single internal level contains 20 macs

2. These are small macs, having only Q=5 CMs, and each CM having only K=7 cells. Thus,
each mac code, a SDC, is just a set of 5 active cells.

3. The bottom-up receptive field (U-RF) of every mac is the same and includes the entire input
level (24x120=2,880 binary pixels). Of course, these binary “pixels” represent
presence/absence of motion in a small number of canonical directions at a particular locale of
visual space. See this page for more description of the input format.

4. The horizontal receptive field (H-RF) of every mac includes the other 19 macs.

5. Each mac has been set to activate for a different range of active (black) pixels. E.g., the
upper left mac activates if between 5 and 14 (out of the entire 2,880 pixel input surface)
pixels are active, the next one if between 15 and 28 pixels are active, and so on, down the
lower right mac, which activates if between 389 and 450 are active. By assigning disjoint
activation ranges, we ensure only one mac is active on any frame. This: a) makes it easier to
see and understand what the model is doing, i.e., building spatiotemporal chains of SDCs as
representations of spatiotemporal input patterns (sequences); and b) minimizes the rate at
which wts (both U and H) are increased during learning, which indirectly increases the
number of such sequences that can be learned (i.e., storage capacity).

6. Figure 22 shows all U (blue) and H (green) wts leading to the active (black) cells in the
active (rose) mac that were increased at any time during learning. Despite appearances, only
a small fraction of the model’s overall wts were increased during learning, suggesting the

http://www.sparsey.com/Weizmann_HOF_episodic_memory.html
http://www.sparsey.com/Snippets_24x120_HOF_Weizmann.html

56
Approved for public release; distribution unlimited.

model could probably store a great deal more such snippets while still achieving very high
recognition and classification accuracy.

7. By items 4 and 5 above, we get simple chains of mac activations activating over the course of
the snippet and such that on all frames except the first frame of each snippet, a mac becomes
active in the context of both U inputs and H inputs, i.e., in a spatiotemporal context. As
explained in earlier reports (and throughout my work) this makes the codes selective to those
spatiotemporal contexts and reduces confusion during recognition, enabling better accuracy.
Figure 23 shows an example of a 4-frame HOF input (produced from about 30 original
frames of the “Ido_Walk” Weizmann snippet) and its spatiotemporal memory trace
embedded in the mac level. U (blue) and H (green) wts that have been learned in the past and
are coming from currently active pixels (in the case of U wts) or from previously active
internal cells (in the case of H wts) are shown. Note that any given mac can become active
multiple times during the snippet, e.g., the same mac is active on frames 2 and 4, though in
general, the code will be different on different occasions (as is the case here).

Figure 22: Model Achieving ~100% Accuracy on HOF-filtered Weizmann Dataset

57
Approved for public release; distribution unlimited.

Figure 23: 4-Frame HOF Snippet and Corresponding Spatiotemporal Memory Trace

This model’s performance on the sanity test condition is given in Table 7. It achieved 97% class
accuracy and took only 25 seconds to train on a single 3.2 GHz processor. Note that minor
variations of some of the parameters, led to many runs that achieved 99% accuracy.
Furthermore, for many reasons, the train time can probably be greatly reduced. Notably, the
input surface is large (2,880 pixels) and the HOF vectors produced have huge redundancy. It is
very likely that we can find an input representation that is far smaller and at least as easily
learned. In addition, we believe at least 10x-100x speed-up is possible just from more thorough,
but standard, algorithm/code optimizations.

58
Approved for public release; distribution unlimited.

Table 7. Performance of 2-level Model on “Test = Train” Condition

of Mac 20
CMs / mac (Q) 5
cells / CM (K) 7
weights (U+H) 2,529,065 (small fraction of wts increased; likely could store

several fold more snippets and maintain very high accuracy)
input pixels 2,880
Snippets 90
Frames 547
Recognition
(trace) Accuracy

Ave. over all frames: 90%
Ave. of last frames of snippets: 96%

Class Accuracy 97% (87/90)
Train Time 25 sec. (single core, 3.2 ghz). Likely at least 10x-100x

speed-up with standard algorithm/software optimizations.
Test Time 15 sec.

Having demonstrated that Sparsey can pass the sanity (test = train) case of the Weizmann data
set, our next step was to demonstrate that it could pass the actual benchmark (test ≠ train)
Weizmann task. However, we still had the following problem. As is apparent comparing the
nine frames of a snippet shown in the first column of Figure 24, our HOF vectors are large
(relative to the amount of information likely needed to disambiguate these event classes) and
highly redundant. Moreover, it appears that the within-class variance over the inputs is as large
as the between-class variance, which makes learning a classification hard. Therefore, before
moving to the full “test ≠ train” case, we decided to first verify that Sparsey could recognize
noisy instances generated from the training set.

We created noisy versions of our HOF-filtered Weizmann data set. Figure 24 column two shows
a 40% noisified version of one of the original snippets (“Ido_Bend“) shown in column one. We
took each frame of each snippet and randomly changed x% of the active pixels, for 10, 20 and
40%. This web page shows the original and noisy movies corresponding to another snippet
(ideally, the two snippets should be synchronized; sometimes hitting the reload button does that).
Note that since each of the resulting noisy snippets was produced from a single original snippet,
we know that the noisy snippet will with probability close to one be much more similar (in terms
of Hamming distance) to the snippet from which it was produced than to any other (either within
its own class or across classes). Therefore, the class of the noisy snippet will be the same as the
class of the original from which it was produced.

Despite this substantial difference between the original and noisy snippets, the Sparsey model of
Figure 22 achieved 96% accuracy in classifying even the 40% noisy data set. Specifically, we
created 5 different instances of the 40% noisy data, resulting in 450 test instances, 45 of each of
the 10 classes; the model got 432 of the 450 correct. We note also that the model parameters
were actually set to enforce rather stringent spatiotemporal similarity metric in this experiment
and that less stringent settings easily achieves close to 100% classification accuracy.

http://www.sparsey.com/Classification_Noisy_Weizmann_HOF_snippets.html

59
Approved for public release; distribution unlimited.

Figure 24: Original and 40% Noisy Frames of the Ido_Bend Snippet

While achieving such high tolerance to this “salt and pepper”-type noise does not demonstrate
learning the underlying structural regularities (in space and time) that define these high-level
event classes, it does demonstrate that Sparsey can assign spatiotemporally more similar input
patterns to more similar internal representations (SDCs, and chains of SDCs). We were
encouraged by the noisy test results since, at some level, this SISCs property must be true of any
successful recognizer of any class. However, when we carried out the full “test ≠ train”
experiment, the model did not attain high classification accuracy.

At this point in the research, we had a choice to make as to whether to continue using the HOF
features or return to using edge features. We decided on the latter path for three reasons:

1. Increasing our success with the HOF features would have required a significant investment
of time to cause our HOF-generating preprocessor to generate far less redundant and far more
compressed codes that we believe are needed to increase classification performance. In
contrast, our edge-filtered inputs already have low redundancy even when we substantially
compress them.

60
Approved for public release; distribution unlimited.

2. Regardless of which feature set we would use, we knew that we still required significant
exploration of the model’s very large parameter space. In particular, any realistic final model
capable of solving any applied video event recognition task will consist of multiple levels.
As we have noted throughout the project and as those at the leading edge of the field know,
hierarchical decomposition of the input/problem space is essential to scalability and
generalizability. We faced the hurdle of understanding the correct parameter relations across
levels regardless of the feature type used. Thus, this criterion did not favor either approach.

3. Sparsey’s overall concept of operations (CONOPS) is that it will automatically be able to
discover all higher-level features of the input space, both spatial and spatiotemporal, from
scratch. That is, it will be able to build low-level motion primitives, e.g., translating edges,
rotating edges, directly from sequences of purely spatial features, i.e., the pixels. And, it will
be able to scaffold this same principle up through multiple levels (spatiotemporal scales).
This last criterion argued strongly to return to using edges.

For those reasons, we decided to return to using edge features. While it is possible that we may
have been able to achieve higher classification accuracy on the benchmark Weizmann task more
quickly using HOF features, we believe that the fact that we are close to achieving SOA
classification levels on Weizmann vindicates our choice. That said, we have completed a great
deal of infrastructural work and experimentation using HOF features and we will complete our
planned bi-modal fusion, “edges + HOFs” investigations (see Figure E-1) in the near future.

5.6 Principles/Mechanism of Invariance

A main goal of our research has been to understand how whole Sparsey networks, consisting of
many levels and hundreds/thousands of macs, can tolerate not only noise but more structured
perturbations, e.g., omissions/insertions of whole parts (features), etc. In other words, what
principles/mechanisms underlie Sparsey’s ability to learn the kinds of large-scale, highly
nonlinear invariances that necessary to perform well on any of the existing video data sets (KTH,
UCF, etc.)? We describe some of the essential principles/mechanisms in this section and the
associated appendices.

We have seen numerous instances in which a mac at a given level, J, (we’ll refer to this mac as
the target mac) receives input from several level J-1 macs (the source macs), some of which
have low G values (indicating poor recognition of their inputs), but nevertheless achieves high,
often 100%, recognition accuracy. Given that each of these active source macs represents the
presence of a particular feature, such instances indicate the target mac is recognizing novel
inputs invariant to often large deformations, even complete omissions or intrusions, of individual
features. Figure 25 shows one such example.

Figure 25a depicts the overall situation in which L2 mac 2

402M activates in response to input in its
receptive field (outlined in yellow in bottom level). The inset at left places this example in the
context of the whole 9-level network. The yellow ellipse in L1 shows the set of 10 L1 macs
comprising 2

402M ‘s immediate RF, two of which are active (purple), 1
773M and 1

813M (this RF is
also more clearly visible in inset at upper left of panel c). To understand this example, we must
compare the situation in panel b, where the same input frame has been presented as on the

61
Approved for public release; distribution unlimited.

training trial (“Test = Train”) to that of panel c, where a noisy version of that input frame has
been presented (“Test ≠ Train”). Panel b shows that when the original training input was
presented, L1 macs 1

773M and 1
854M activated. This is because they each had an appropriate

number of active pixels in their U-RFs. 1
773M ’s U-RF is outlined in green in the box adjacent to

its tree node and 1
854M ’s is outlined in red in the box next to its node. At upper right, we show

how these two U-RFs overlap and where they fall within 2
402M ’s larger U-RF. Note that mac

2
813M is not active (its node is gray and connector is red) because it has too many active pixels in

its U-RF (outlined in purple). Thus, in panel b, 2
402M activates on the basis of its inputs from

1
773M and 1

854M , each of these can be viewed as representing the presence of the particular feature,
or part, shown in their respective U-RFs. Note further that these two parts have some common
pixels.

Figure 25: Demonstration of Invariant Recognition

To complete the example, we now consider panel c. The small green-bordered inset at top
middle of panel c shows the noisy input in the vicinity of 2

402M ’s U-RF. One can see how it
differs from original training input by comparing this to the analogous panel at top middle of
panel b. Because of how the noisy pixel pattern falls upon the U-RFs of the L1 macs, in general,
a different subset of 2

402M ’s L1 macs may activate than did for the original input. Furthermore,
even if a given L1 mac activates in both instances, the exact pattern of active pixels in its U-RF
may differ. As it happens, in this example, both of these apply. First, 1

854M ’s U-RF no longer
has enough active cells to activate (it has only 3). Second, 1

813M ’s RF now has an appropriate
number (5) of active pixels and so it activates. Finally, note that although 1

773M activates in both
cases, its active pixel patterns differ (slightly).

62
Approved for public release; distribution unlimited.

Thus, 2
402M has what can only be considered a very different pattern of inputs, as mediated by L1,

for the noisy input versus the original training input. Yet, the same exact SDC, activates in 2
402M

in both cases (code not shown). Thus, 2
402M responds invariantly to the two inputs. There are

several mechanisms/principles underlying this invariant recognition capability, the two most
important probably being:

1. We use the max-V version of the CSA. That is, we simply pick the cell with the max V in
each of a mac’s CMs as winner. As long as the crosstalk between SDCs stored in a mac
remains low enough, this allows the exact same cell to win despite wide variation in the exact
V distributions within any given CM, and thus allows reactivation of the exact same overall
SDC across wide variation in the mac’s inputs. In fact, we provide a detailed description of
this, with respect to the example of Figure 25, in Appendix D.

2. Even though whole afferent macs (and so the features that their active codes represent) might
be omitted or inserted in the test trial relative to the training trial, the fact that those macs’ U-
RFs will generally overlap (as is the case for 1

773M , 1
813M , and 1

854M , in our example (see
upper right insets in Figure 25b,c) mean that sub-features (in this case, pixels) mediated by
one afferent mac will not necessarily drop out even if that mac fails to activate because they
are also mediated (redundantly) by other macs. To quantify this phenomena, we developed a
new measure, “input accuracy (IA)”, which measures how similar a mac’s inputs are, in a
way that takes account of omitted/inserted afferent macs. Preliminary results involving IA
and its relation to recognition accuracy (R) in the target mac are given in Appendix E.

We emphasize that this invariant recognition capability is not programmed into Sparsey in any
ordinary sense. That is, many past approaches build in certain large-scale invariances from
scratch, e.g., log-polar-Fourier transform, to achieve scale-position-rotation invariance. While
powerful in some applications, it has long been noted that such approaches are blind to the part-
whole (compositional) structure of inputs, e.g., to the possibility that different parts of a whole
entity can have different positions, scales, and rotations, etc., relative to each other and to the
whole, and even be missing or inserted relative to other instances. The degree of invariance
shown in the example of Figure 25 is perhaps not too impressive. After all, if you blur your eyes
(low pass filter), the original and noisy input patterns to 2

402M (green-bordered insets at top
middle of Figure 25b,c) look very similar. However:

1. The mechanism giving rise to this invariance is extremely low-level (imposes only a very

weak prior on the input space) and learned, not programmed.

2. The same mechanism operates simultaneously at all scales (levels) of the hierarchy.

Figure 26 summarizes the example of Figure 25, emphasizing the very different patterns of L1
activation that arise in response to re-presentation of original learned input, X (panel a), vs.
presentation of a noisy version, X′, (panel b). For X, L1 macs 1

773M and 1
854M attain G values of

1.0 and the original codes (assigned during the learning trial of X) are reinstated perfectly, i.e.,
R=100%, which causes 2

402M to be perfectly reinstated. In contrast, for X′, 1
773M is reinstated

perfectly, 1
854M fails to activate at all, while another mac, 1

813M , which was not active for X, also
activates. Despite these large differences in its immediate inputs from L1, the same code

63
Approved for public release; distribution unlimited.

activates in 2
402M as did for X, demonstrating a quite robust invariance of 2

402M to its immediate
inputs. It may seem counterintuitive that the intermediate codes, at L1, are more widely
separated than the inputs themselves. However, we are finding that the tolerance to input-level
differences increases with level, as the next two examples will show.

Figure 26: Demonstration of Robust Invariance

We chose these particular examples because they suggest how large the invariances can be.
Broadly, it seems that most of these cases could be described as parts either being present in the
original learned input but not in the noisy version (red ellipses), or vice versa (green ellipses).
Thus, the dynamics of whole hierarchies of numerous macs appear to be realizing what looks
like a quite general form of part-invariant recognition. And, because the various parts of an
object go in and out of view as an object undergoes transforms in 3-space, part-invariant
recognition is closely related to view-invariant recognition. We are still in the midst of building
our understanding of how the invariances displayed by individual macs work together, across
numerous macs and many levels, and across frames, to account for the types of large-scale
invariances present in human object/event recognition. However, we are very encouraged by the
robust part-invariance displayed by individual macs.

5.7 Application to Purely Spatial Pattern Recognition Problems

We have implemented supervised learning in the Sparsey simulation platform. We are currently
conducting experiments with the Mixed National Institute of Standards and Technology
(MNIST) handwritten digit database, i.e., with purely spatial images. We pre-processed all the
original 28x28-pixel grayscale MNIST images to 24x24-pixels, binary, and 1-pixel-wide edge
filtering. Figure 27 shows some original examples from the database and our corresponding
preprocessed versions. For each of the digits, 0-5, we show the first ten instances of the original
28x28 grayscale images cropped to 24x24 and the preprocessed 24x24 binary, edge-filtered
images.

64
Approved for public release; distribution unlimited.

Figure 27: Sample of Original MNIST Data and Our Preprocessed Versions

We have a total of 1000 instances of each of the digits, 0-9. Our current tests, which have been
for the purpose of sanity checking of various aspects of the code, getting bugs out, etc., use only
10 instances of each digit. Also, in these experiments, the test set = training set. Figure 28
shows the 10 instances of digit ‘5’. Note the substantial variability across instances.
Superimposed on each digit is the grid showing the 6x6-pixel input level, “V0” (a.k.a. L0)
apertures of this model. These V0 apertures connect, 1-to-1, with the V1 macs. That is, the
bottom-up receptive field (U-RF) of each V1 mac is just its corresponding 36-pixel V0 aperture.

Figure 28: The 10 Instances of Digit ‘5’ Used in this Experiment

Figure 29 shows the 4-level model used with an instance of the digit ‘8’ active in V0. The first
“cortical” level, V1, is a sheet of 4x4 macs. When an image is presented during training, if the
number of active pixels in a V0 aperture is within a range (in this experiment, between 1 5π − =
and 1 8π + =), its associated V1 mac forms an internal SDR code that represents the pattern (i.e.,
feature) in that aperture. Black dots indicate the active cells comprising the SDR code in each of
the five active V1 macs. The next higher level, V2, consists of 4 macs (three of which are active
here), each receiving input from the four V1 macs under it. The top level, V3, consists of one
mac that receives input from all four V2 macs. This figure shows the recognition test trial in
which the ‘8’ was presented, giving rise to a flow of U-signals activating codes in macs
throughout the hierarchy, and finally a top-down flow from the activated V3 code to the Label
field, where the unit with maximal D-summation, the ‘8’ unit, wins.

65
Approved for public release; distribution unlimited.

Figure 29: The 4-level Model with Preprocessed MNIST Digit ‘8’ Active in Input Level

The processing is similar in all macs at all levels: if there is sufficient activity in its U-RF, it
becomes active and assigns an SDR to represent the feature present in its U-RF. The U-RF of
one mac at each internal level is highlighted by a semitransparent blue prism: there is no overlap
between the U-RFs of different macs at the same level, but future studies will also investigate
overlapping U-RFs. The process by which an SDR code is chosen in a mac (our CSA) was
described in previous reports. Once all the SDR codes throughout all the levels have been
chosen, the (binary) weights between codes at adjacent levels are increased by Hebbian learning.
A small sample of increased U-wts (black lines), top-down weights (D-wts, magenta), and naïve
(w=0) U-wts (gray) are shown in Figure 29. Finally, the D-wts wts from the active V3 code to
the single active unit representing the correct category (label) are increased (the U-wts from the
category unit to the V3 code are also increased, but these are not needed to test recognition).

To test performance, we present the test images (again, in this experiment, the test images were
the same as the training images). When an image is presented during recognition, signals
propagate up through the visual levels (via the U-wts) and cause SDR codes to be re-activated in
the macs at the different levels. Once the V3 code is active, the D-signals from the active cells
comprising that are propagated to the label field and we activate the unit with the highest top-
down (D) summation. Table 8 shows a typical result from the current experiments that we are
running. The model got 75% of the test set correct. For each level, we report the average across
all macs of the level and across all images in the test set of the measure, R*, which is the

66
Approved for public release; distribution unlimited.

accuracy of SDR codes activated during recognition compared to those assigned during learning
are is reported.5

Table 8. Recognition Accuracy Results for Experiment 1

Num. of Test Images Correct Classification accuracy
100 75 75%

SDR Code Accuracy By Level R*
L3 0.81
L2 0.79
L1 0.85

Ave. Over Levels 0.82

We are currently exploring the relationships amongst the model’s many parameters vis-à-vis
various performance measures. For example, we are varying: numbers of macs per level,
numbers of winner-take-all (WTA) CMs per mac, numbers of cells per CM, parameters
controlling the normalization of a cell’s input summation into a likelihood of becoming active,
etc. Figure 30 shows the dataset, cropped to a frame size of 16x24 and with V0 aperture size set
to 4x4 pixels. The highlighted patches will be explained in conjunction with Figure 33.

Figure 31 shows the model used in this study (except that the numbers of CMs/mac and cells/CM
are larger than depicted). V1 is 4x6 array of macs, compared to the 4x4 array of macs in the
model discussed in Figure 27 and Figure 28. V2 is a 2x3 array of macs, and V3 is a single mac.
The blue prisms show the bottom-up receptive fields (U-RFs) of the mac at the top of the prism.
The prism at lower left shows that a single V0 4x4-pixel aperture is the U-RF of a single V1
mac. Five pixels are active in that aperture. Yellow highlighted V0 apertures are ones meeting
the 1 1(,)π π− + constraints: thus their associated V1 macs are active (black cells denote the active
SDR codes in the macs).

1. The blue prism at left between levels V1 and V2 shows that the lower left V2 mac’s U-RF
consists of the four indicated V1 macs. Only one of those V1 macs is active. The SDR code
active in that V1 mac represents the whole 5-pixel contour active in its V0 aperture. From
the standpoint of the V2 mac, it represents the presence of one feature in the V2 mac’s 8x8-
pixel aperture.

2. The blue prism at right between V1 and V2 shows that the upper right V2 mac has two
features active in its aperture.

3. The prism between V2 and V3 indicates that the V3 mac’s U-RF is the entire sheet of V2
macs; thus, the V3 mac “sees” the entire input surface (visual field). Five out of a possible

5 Actually, R* is the average accuracy (across the macs of the level) of SDR codes activated during recognition
compared to those assigned during learning, averaged over all frames of all sequence. RΩ is the average accuracy
(across the macs of the level) of the SDR code activated during recognition compared to those assigned during
learning averaged only over the final frames of all sequences. But in these MNIST studies, the inputs are not
sequences, but just single frames. and “R_omega” is that measure averaged only over the final frames of all
sequences. But in this case, the sequences only had one frame each, i.e., they were images (so R_star = R_omega).

67
Approved for public release; distribution unlimited.

six V2-scale features are active in V3’s U-RF. This corresponds to seven active V1-scale
features.

The reason for investigating smaller V0 apertures, is that as aperture size decreases, the space of
possible features that can occur in the aperture decreases exponentially. In addition, the smaller
the aperture, the tighter the bounds on the number of active pixels necessary for the associated
V1 mac to activate 1 1(,)π π− + can be. These facts, combined with the strong reduction in possible
features imposed by our preprocessing scheme (1-pixel-wide edge filtering), suggest that the
representational bases achieving a given level of representational fidelity may be able to be much
smaller and learned much more quickly for smaller apertures vs. larger apertures. We will
present these comparisons on an ongoing basis.

68
Approved for public release; distribution unlimited.

Figure 30: The 10 Instances of All 10 Digits with Superimposed V0 Aperture Grid

69
Approved for public release; distribution unlimited.

Figure 31: A Second Model Used in MNIST Digit Experiments

Table 9 gives the D-summations (arriving from the active V3 code) to all ten category, i.e.,
“label”, units (rows) for the test trials for the 10 instances of digit ‘0’ (columns). Category unit
‘0’ has the maximal sum for all instances except instance 3, where it is tied with category units
‘4’ and ‘6’ (orange), and instance 9, where it is beaten by most of the other category units.
Figure 32 presents Table 9 in chart form. The model got 77 out of 100 test trials correct in this
experiment and the results for the test trials of digits, ‘1’ to ‘9’, were similar to those for digit
‘0’: i.e., usually getting 7-8 instances correct and making a mistake on 2-3.

70
Approved for public release; distribution unlimited.

Table 9. D-summations at all Category Units for Test Trials for the 10 Instances of ‘0’

 Instance of Digit ‘0’

Category 0 1 2 3 4 5 6 7 8 9

0 1905 2032 1778 1651 2032 2032 2032 2032 2032 1270
1 762 889 1524 889 762 1143 635 1143 1016 762
2 1016 889 1397 1143 1016 1016 635 1143 1270 1397
3 1397 762 889 1143 1016 889 889 1016 1397 1397
4 1524 1270 1651 1651 1016 1397 1270 508 889 1397
5 1397 1143 1397 1270 635 1016 1143 762 1016 1397
6 1524 1016 1651 1651 1143 1016 381 381 1016 1651
7 762 889 1143 1143 889 381 1397 1524 762 1016
8 1270 1143 1524 1397 889 889 1016 762 1270 1524
9 1270 1270 1143 1143 889 635 1397 508 1651 1270

Figure 32: Chart Representation of Table 9

We step back here to elaborate on the hierarchical nature of the recognition process. As Figure
28 shows, it is only the top-level code in the visual hierarchy that is associated with a category
(label). Due to convergence / divergence of the synaptic U matrices, the top-level code is the
most abstract and compact representation of the visual information, just as progressively more
anterior cortical regions are the most abstract. One meaning of ‘most abstract’ is ‘most tolerant
to variation across instances of a category’. In Sparsey, as in other hierarchical models, the job
of dealing with variation is handled in a piecemeal, hierarchical fashion by the different macs
across the different levels. During learning, each mac accrues (stores) a set of features that it
experiences. During recognition, each mac finds the closest one of those stored features to its
current input, activates the SDR code for that feature and sends that information out to the macs
in the next higher level. In the process of doing that, each mac is handling variation in the
portion of the input that it sees (i.e., its U-RF). Macs at the next higher level then perform the

71
Approved for public release; distribution unlimited.

same operation—i.e., finding their best-matching stored features, activating the codes for those
features, and passing the information to the next level. Note that in the purely spatial case
discussed here, H- and D-signals are not used, except for the D-signals from V3 to the label field.
Figure 33 zooms in for a closer look at the above scenario for four of the V1 macs, macs 6, 9, 14,
and 18. The key at left shows locations of these four mac’s V0 apertures. For the particular set
of 100 instances used in this example (shown in Figure 30), Mac 6 experiences 49 instances in
which the number of active pixels in its U-RF falls within the low and high constraints, 1 4π − =
and 1 5π + = . Of these 49 instances, 27 are unique: these are shown in Figure 33. Each of these
27 unique input features is assigned a code in mac 6. In Figure 30, yellow highlight indicates
the first time the feature occurs in Mac 6’s aperture, rose highlights indicate repeat occurrences.
Similarly, for Macs, 9, 14, and 18. Thus, these are pictures of the learned bases of these four
macs. Note that this experiment involved only 100 images, which is small enough so that none
of the V1 macs (or any other macs) were frozen due to their afferent U-wt matrices becoming
saturated. Thus, while these bases appear to cover the space of possible future 4-5-pixel inputs
to their 4x4-pixel apertures with fairly high fidelity, many more features could be stored in each
of the macs.

Figure 33: Learned Bases in Four V1 Macs for MNIST Experiment

72
Approved for public release; distribution unlimited.

We make the following points about the feature bases shown in Figure 33 and about the notion
of feature bases present in Sparsey in general.
1. Every mac, at V1 and at all other levels, learns its basis from scratch. An input pattern is

admitted to a mac’s basis if:
a. It meets the constraints on the number of active features 1 1(,)π π− +
b. It is sufficiently different from any previously stored pattern so that the CSA

assigns it a unique code
c. The total number of features stored in the mac so far is low enough that the mac

has not been “frozen”. Recall, that we need to freeze learning in a mac, i.e.,
prevent any new increases to the afferent wts to the mac, once the fraction of
increased afferent wts to the mac passes a threshold.

2. A code is assigned, with full strength, to a feature upon the feature’s first occurrence.
Specifically, for the case of a code assigned in a V1 mac, the weights from the input units (at
V0) to the mac’s active units are increased to their maximum value in that single instance.
However, that code does not become a permanent element of the basis unless it occurs again
within a specified window of time (e.g., number of frames), which is a model parameter.6
This is the reason we say Sparsey requires two-trial learning, though it is important to
understand that new inputs are stored (learned) with full-force upon their first occurrence
(unlike models that use gradient descent, like Backpropagation, which requires numerous
repetitions of an input to be learned).

3. The input patterns that become part of a mac’s permanent basis reflect the statistics of the
input space at the scale of that mac’s aperture. At the lowest scale, in this case, a 4x4-pixel
patch of input space, and given Sparsey’s preprocessing (edge-filtering), we would expect the
inputs experienced in any one aperture to be statistically quite similar to those of any other
aperture. This is basically supported by the four bases shown in Figure 33.

4. Because of the extremely domain-neutral criteria for admitting an input to a basis (point 1
above), the actual basis elements can look rather irregular. Yes there are some very standard-
looking features, e.g., exactly horizontal edges, exactly vertical edges, perfect diagonals, etc.,
but many seem somewhat arbitrary. However, there are strong arguments based on first
principles, why bases such as these, which contain a large fraction of irregular-looking
features can represent the input space just as well (perhaps even better) as a regular,
engineered basis, e.g., a pre-defined set of Gabor filters. The success of compressive sensing
provides further evidence for this view (Pitkow 2012).

5. Despite the fact that in describing how the mac operates during recognition, we say that it
“finds the stored feature that most closely matches its input”, we emphasize that that “search”
process has fixed time, i.e., as the number of features stored in the mac grows, the time it
takes to find the closest match remains constant. It is not any sort of serial search through
stored items: all stored items are evaluated in parallel. Furthermore, during learning, the time

6 In fact, the transition from being a transient element of a mac’s basis to being permanent
operates at a finer granularity than ‘whole features’. A weight has another parameter,
permanence, which is increased on subsequent instances in which the weight’s presynaptic and
postsynaptic units are co-active if that next instance occurs within the window of time following
the previous instance of pre-post coactivity. In our current experiments, weights are made
permanent (permanence is set to “1”) upon the second instance of pre-post co-activation.

73
Approved for public release; distribution unlimited.

it takes to store each new feature also remains constant as the number of stored features
increases. This is true for every mac at every level for the life of any particular system. It is
this characteristic—fixed-time storage and fixed-time best-match retrieval—that most
strongly distinguishes Sparsey from all extant information processing algorithms.

6. Some would take point 3 above—that the bases learned in different macs at a given level will
likely end up having statistically similar elements—as an argument in favor of maintaining
one central representation of the basis and using it to process all the apertures of the level.
This is generally done in convolutional net models (LeCun and Bengio 1995, Taylor, Fergus
et al. 2010, Le, Zou et al. 2011, Lee, Grosse et al. 2011, Zeiler, Taylor et al. 2011). One
reason given is such a centralized basis representation will have far fewer parameters and
thus require far less training to attain any given level of fidelity to the input statistics.
However, while this point is of course true (known as the ‘curse of dimensionality’ in
statistics), it essentially misdirects us. The strongest empirical argument that it misdirects us
is that the human brain, which is the best computational system known, patently does not use
a central representation of a basis. Clearly, each individual patch of cortex (we think in terms
of macs) maintains (in its weights) its own memory/basis and applies it to its own (local)
inputs on an ongoing basis. There is no sense in which a central canonical representation of a
V1 basis is stored in some part of the brain (or of cortex) and applied sequentially to the
different macs. This would require copying/moving of far too much information. It is
increasingly realized within the hardware community that moving information uses the
majority of processing time and energy. The brain avoids all of this information movement
because all processing is local. Sparsey shares this characteristic with biological brains and
this suggests it will have perhaps exponentially lower compute times and energy usage.

Figure 34 shows the approximate learned bases for all six V2 macs. (Note: the switch of grid line
colors from red in Figure 33 to cyan here is of no consequence.) Each V2 mac receives U-input
from the four V1 macs underlying it. Thus, the V2 input apertures are 8x8-pixels. For example,
V2 Mac 0 becomes active on 32 of the 100 images presented during learning, V2 Mac 1 activates
for 64 of the images, etc. In this experiment, the criterion for a V2 mac to become active is that
between 2 1π − = and 2 4π + = of its afferent V1 macs is active. Recall that in this experiment, V1
macs become active if between 1 4π − = and 1 5π + = of their afferent pixels are active. Thus, in
each of the 8x8-pixel images in Figure 34, only the pixels in 4x4-pixel quadrants that meet that
criteria (yellow) are actually “seen” by (and thus, encoded by) the V2 mac. The active pixels in
the grayed out quadrants are not actually included in the feature being stored in the relevant V2
mac (because their intervening V1 mac does not become active). We show a few examples of
this concept for some 8x8 input patterns for some of the macs. It is for this reason, that we say
that Figure 34 depicts the approximate bases of the V2 macs.

A key point to make with respect to Figure 34 is that, with the 4x larger input aperture, i.e., 8x8
pixels instead of 4x4 pixels, the feature space for a V2 mac is exponentially larger than for a V1
mac. Nevertheless, given the edge-filtering preprocessing and the constraints on V1 activation,
the space of actual inputs that a V2 mac can experience is only a tiny fraction of that overall 8x8
binary pixel space. Furthermore, we suggest that, for the purposes of recognizing higher-level
objects/events, any particular feature stored in a V2 mac basis (e.g., any of those shown in
Figure 34) can represent a fairly large space of similar (in terms of pixel overlap) other features
reasonably well. Thus, we further suggest that bases similar to those depicted in Figure 34,

74
Approved for public release; distribution unlimited.

though probably somewhat larger (perhaps 100-200 features) would be able to represent future
inputs with quite high fidelity. This is an empirical question which we will be investigating in
detail on an ongoing basis.

In these experiments Sparsey learns, in unsupervised fashion, low-level bases, across a range of
scales, in particular, at the 4x4 scale of V1 (Figure 33), at the 8x8 scale of V2 (Figure 34), and at
the whole 16x24 scale of V3 (essentially, the individual inputs themselves shown in Figure 30).
In addition, the basis elements (SDR codes) assigned in the single V3 mac are associated with
the category-representing units in the Label field. Moreover, the basis elements (again, SDR
codes) at neighboring scales are associatively linked with each other, instantiating the
hierarchical composition of features (across as many scales as there are levels in the network).
All of this proceeds in parallel and on the basis of (essentially) single-trial learning. There is no
gradient descent, or Markov chain Monte Carlo (MCMC) sampling to estimate gradient (or
gradient-like) information.

75
Approved for public release; distribution unlimited.

Figure 34: Approximate Bases for All Six V2 Macs

5.7.1. Re-use of Existing Knowledge in Hierarchical Networks

This study provides expanded results and discussion of the MNIST task. We describe how the
hierarchical and compositional structure of naturalistic input spaces can be efficiently captured by
(embedded in) hierarchical Sparsey networks, specifically, how the explicit hierarchical network
structure, in which receptive field size and code activation duration (persistence) increase with
level, will automatically capture, represent efficiently, and leverage during recognition, the
hierarchical structure of natural input domains. In the case of MNIST, we are talking about

76
Approved for public release; distribution unlimited.

spatial hierarchical structure, but the described principles/mechanisms generalize to the
spatiotemporal case as well.

Figure 35 shows the model instance used in Study 1. Its input surface (V0, a.k.a. L0) is 16x24
pixels, its V1 (L1) level is a 4x6 array of macs, each with a 4x4-pixel aperture, V2 (L2) is a 2x3
array of macs, each with a 2x2 array of V1 macs comprising its U-RF, and V3 (L3) is a single
mac with all six V2 macs comprising its U-RF. The V3 mac is fully connected with the Label
field, S0, which consists of 10 units representing the 10 digit classes. A sample of the D-wts
from V3 to S0 are shown in gray. Magenta lines indicate increased D-wts which, in the
recognition trial depicted, would yield the maximal D-summation for label unit ‘0’. Because
some of the active V3 cells will also be included in SDR codes of instances of other digits, the
other label units’ D-summations will in general also be non-zero.

Figure 35: Sketch of Model Used in Study 1

The training set and test were the same and consisted of the 100 inputs shown in Figure 30. The
10 instances of digit ‘4’ in the train/test set are shown in Figure 36 (Top). The 4x6 array of 4x4-
pixel apertures, which are the U-RFs of the V1 macs is superimposed on each instance (red
lines). Figure 36 (Bottom) shows the exact SDR codes assigned in all active macs on the single
learning trial of instance 2 of digit ‘4’. For each active mac, we report the G value, which
represents the familiarity of the U-input to the mac, and the indexes of winning units (neurons) in
each of the mac’s K=16 CMs (in this case, K=16 for macs at all three internal levels). In this

77
Approved for public release; distribution unlimited.

particular experiment, the lower and upper bounds on the number of active features (pixels) in a
V1 mac’s U-RF needed to cause that mac to become active are 1 4π − = and 1 6π + = . Yellow-
highlighted apertures are those which satisfy those bounds. The V2 and V3 bounds are 2 1π − = ,

2 4π + = , 3 1π − = , and 3 6π + = .

Figure 36: Ten Digit ‘4’ Instances in Train/Test Set and Detailed SDR Codes for All Active

Macs for Instance 2 Learning Trial

The information shown in Figure 36 (Bottom) is for the learning presentation of instance 2 (the
3rd instance) of digit ‘4’. Up to this point, the model will have been presented with three
instances each of digits, ‘0’, ‘1’, ‘2’, and ‘3’, and two instances each of digits ‘4’ through ‘9’.
Notice that G=1 for three L1 macs, 1

11M , 1
14M , and 1

15M . This means that on this, the 25th learning
trial, the patterns in these mac’s apertures are being judged as completely (100%) familiar. In
other words, on one or more of those 24 prior training trials, the same exact pixel pattern has
occurred in each of these apertures. Figure 37 shows these two prior instances, instance 0 of
digit’2 (bottom left) and instance 0 of digit ‘4’ (bottom right). Rows highlighted in same color
indicate codes for which the input pattern (to the relevant mac’s aperture) was identical. The
identical feature patterns between instances are highlighted in color-keyed fashion and linked
with the corresponding SDR codes.

78
Approved for public release; distribution unlimited.

In 1
11M , the same vertical bar that appears in the learning trial for instance 2 of digit ‘4’ (bottom

center) also appeared in the learning trial for instance 0 of digit ‘2’ [highlighted in blue, and blue
paths link to the specific SDR codes activated (also highlighted in blue) in those instances.]
Note that even though the input in 1

11M ’s aperture is identical in these two instances, the SDR
codes differ by two cells (red underlines). This is due CSA’s probabilistic nature: even when
G=1 (perfect familiarity), the maximally-implicated cell (i.e., the cell with the highest V value in
its CM) sometimes loses. Nevertheless, the two SDR codes still have 14 out of 16 cells in
common. Also, notice that the pattern in 1

11M ’s aperture in instance 0 of ‘4’ has only one pixel in
common with the pattern in the other two instances. Due to Sparsey’s SISC property, this results
in a very different SDR code becoming active in 1

11M (dashed blue arrow).

Both the horizontal bar in 1

14M ’s aperture (green) and the vertical bar in 1
15M ’s aperture (green),

which occur in the learning trial for instance 2 of digit ‘4’ also appeared in the learning trial for
instance 0 of digit ‘4’. Consequently, the two 1

14M codes have 15 out 16 cells in common. The
two 1

15M codes only have 11 out 16 cells in common. Again, this is because parameters allow
non-maximally-implicated cells to win with some probability. Furthermore, the precise details
of the specific history of other patterns that have occurred in 1

15M and the codes to which they
have been assigned influence the win probability distributions in the CMs. We could have used
different parameters for this experiment which would have resulted in exactly the same codes
becoming active in and in instance 2 of digit ‘4’.

The importance of Figure 37 is that it shows the re-usage of previously learned lower-level
(specifically, L1) features in new higher-level (specifically, L2) concepts. The horizontal bar
feature that is stored in 1

14M during presentation of instance 0 of ‘4’ is reactivated again during
the learning trial of instance 2 of ‘4’. By “reactivation” of the feature, we mean that the SDR
code of that feature is reactivated. To be precise, that code is almost precisely reactivated, i.e.,
15 out of 16 of its cells are reactivated. As noted above, we can adjust parameters to make the
probability of perfectly reinstating the entire code as close as we want to unity. So, let’s assume
for a moment that:

• the SDR code activated in 1

11M in instance 2 of ‘4’ is identical to the code activated in in
instance 0 of ‘2’, and that

• the SDR codes activated in 1
14M and 1

15M are identical the codes activated in those macs
during instance 0 of ‘4’.

1
14M 1

15M

1
11M

79
Approved for public release; distribution unlimited.

Figure 37: The Two Prior Learning Trials with Identical Inputs in Some Apertures and

Codes in the Associated L1 Macs

Under these assumptions, there is no new learning between L0 and these three L1 macs on the
learning trial of instance 2 of ‘4’. However, there will still be learning from these L1 macs to the
L2 macs to which they project. For example, 2

3M ’s U-RF consists of L1 macs, 1
10M , 1

11M , 1
14M ,

and 1
15M . Even though, in the present instance (the learning trial of instance 2 of ‘4’), all three

active macs in 2
3M ’s U-RF have previously learned codes active (we will refer to previously

learned codes as old codes), those three codes have in fact never occurred together. Thus, the
overall input to 2

3M is novel and a new code is activated in 2
3M . Since 2

3M ’s code is new, there
will in general be new learning from all of 2

3M ’s afferent L1 macs, even from those in which old
codes are active.

Figure 38 compares the conditions during the learning trials of instance 0 (panel a) and
instance 2 (panel b) of digit ‘4’. Figure 38a (Left) shows the pixel patterns active in the L0
apertures “seen by” the L1 and L2 macs on the learning trial of instance 0 of digit ‘4’. The seven
active L1 macs are highlighted in yellow. The blue-outlined rectangular prism shows the four L1

80
Approved for public release; distribution unlimited.

macs comprising the U-RF of L2 mac, 2
3M , three of which, 1

11M , 1
14M , and 1

15M , are active.
Thus, we say that 2

3M has three active features in its U-RF. Consequently, 2
3M is active. The

feature hierarchy (Figure 38a, Right) shows a compositional view of the features at all three
internal scales (L1, L2, and L3).7 We might reasonably term the concept active in 2

3M as a
“T junction”: it’s not a perfect “T” but pretty close. It is composed of the three L1-scale features
shown and includes their specific spatial arrangement. The feature hierarchy also shows that the
concept active at the top level (L3) is composed of the four L2 features shown, which are active
in L2 macs, 2

1M , 2
2M , 2

3M , and 2
5M , and also includes their specific spatial arrangement.

Now consider Figure 38b. Figure 38b (Left) shows the pixel patterns active in the apertures seen
by L1 and L2 macs on the learning trial of instance 2 of digit ‘4’. Overall, instance 2 of digit ‘4’
is quite different from instance 0. However, the portions of the image falling in the apertures of
L1 macs, 1

14M and 1
15M , are the same as in instance 0 (highlighted with green glow in the feature

hierarchies of panels a and b). The third L1 feature active in 2
3M ’s U-RF, i.e., the feature falling

in 1
11M ’s aperture, differs greatly between the two instances. Consequently, the overall U-input to

2
3M differs significantly between the two instances. The two different overall pixel patterns

(features) present in 2
3M ’s U-RF are highlighted with orange glow in panels a and b.

Consequently, the SDR code assigned in 2
3M in instance 2 of digit ‘4’ will differ significantly

(have low intersection with) the code assigned in 2
3M in instance 0. This can be seen by

comparing the SDR code active in 2
3M in instance 2 of ‘4’ (Figure 36 (bottom), violet highlight)

with the one active in instance 0 of ‘4’ (Figure 39, violet highlight): in fact, the two codes have
six out of 16 cells in common. Thus, a new feature/concept (a new instance of a “T Junction”)
will be stored in and it will include (i.e., be synaptically linked with) two old features (in

 and) and one new feature (in). This demonstrates the re-use of old knowledge in
the construction of new higher-level concepts.

In addition, one can see that the patterns present in the other three active L2 macs differ greatly
between panels a and b. Thus, when instance 2 of digit ‘4’ is presented, the U-inputs from L2 to
L3 will be very different from what they were when instance 0 was presented. Thus, the SDR
assigned at L3, i.e., the representation of instance 2 of ‘4’ (as a whole) will have low intersection
with the SDR code assigned to instance 0 of ‘4’. These two codes are highlighted with aqua
glow in Figure 36 and Figure 39: they have only one cell in common. Consequently, there
would be a lot of new learning between the four active L2 macs and the active L3 mac, all of
which have new codes active.

7 We refer to the top-level concept here, i.e., the instance of digit ‘4’, as a “feature”: operationally, this concept is
just an input pattern to a mac and is handled in the same way as an input to a mac at any other level.

2
3M

1
14M 1

15M 1
11M

81
Approved for public release; distribution unlimited.

Figure 38: Detailed Pixel Patterns Present for Two Instances and Compositional Views of

Featural Hierarchies Comprising Overall Concepts

82
Approved for public release; distribution unlimited.

Figure 39: Full Hierarchical Codes (Memory Traces) for Instance 0 of Digit ‘2’ (top) and

Instance 0 of Digit ‘4’ (bottom)

Figure 40a contains the original feature hierarchy (tree) from Figure 38b. Figure 40b shows an
alternate version of instance 2 of ‘4’ in which we simply made the input pattern in aperture 11
identical to its input pattern in instance 0 of ‘4’. Clearly, this is about as likely as any other
instance of ‘4’ seen in the MNIST database. But, in this case, which we will call instance 2′ of
‘4’, not only do the U-RFs for , 1

14M , and 1
15M , have the same patterns as in instance 0 of ‘4’,

so does the U-RF for the L2 mac, . Thus the codes that become active in macs, , 1
14M ,

and 1
15M , and in instance 2′ of ‘4’ would (with likelihood that we can make arbitrarily high

depending on parameters) be identical to those activated in these macs in instance 0 of ‘4’.
Consequently, there would be no new learning in the U-matrices represented by the green lines
in panel b. Thus, this would be case in which a whole higher-level feature, which is itself a
hierarchical sub-tree of SDR codes linked by large numbers of previously increased synapses,
i.e., “old knowledge”, is re-used in the representation of a new overall input, instance 2′ of ‘4’.

Figure 40c shows another alternative version of instance 2 of ‘4’, instance 2′′ of ‘4’, in which the
inputs to apertures 12 and 13 are also the same as in instance 0 of ‘4’. This results in the
reactivation of known SDR codes in both 2

2M and , constituting a greater degree of re-use of
old knowledge than in panel a. Again, green lines represent U-matrices in which no new
learning will occurs. Figure 40d shows another, further modified version of instance 2 of ‘4’,
which is in fact, identical to instance 0 of ‘4’, and which we therefore call instance 0′ of ‘4’,
except that we’ve added some additional edge segments, in the apertures of 1

3M , 1
4M , and 1

8M ,

1
11M

2
3M 1

11M
2
3M

2
3M

83
Approved for public release; distribution unlimited.

which are not noise but also do not have enough pixels to cause those macs to become active.
We’ve also added some salt and pepper noise. However, because neither the noise nor the small
edge segments cause any macs to activate that were not active in instance 0 of ‘4’ or any new
input pattern in any of the L1 macs that were active in instance 0 of ‘4’, the overall input causes
the same codes to become active at all macs, including the L3 mac, as in instance 0 of ‘4’. Thus,
the model recognizes this novel input as identical to instance 0 of ‘4’. In this case, the entire old
memory trace is reactivated, affording no opportunity for new learning. We could call this
“complete re-usage of old knowledge”; however, it is better referred to as recognition.

This principle applies recursively through all levels of the hierarchy. Sparsey determines, on a
piecemeal basis across the different macs throughout the hierarchy, which fragments of its
overall input are novel (and their degrees of novelty, though this nuance was suppressed in this
example) and which are familiar. It re-uses (reactivates) old codes in macs whose inputs are
familiar and automatically does so as far up the hierarchy as appropriate. It automatically
integrates (synaptically links) old codes with new codes as appropriate. For example, Figure 40c
shows another alternative version of instance 2 of ‘4’, instance 2′′ of ‘4’, in which the inputs to
apertures 12 and 13 are also the same as in instance 0 of ‘4’, which results in 2

2M having the
same input pattern as in instance 0 of ‘4’. Thus, even more old knowledge is re-used in this case.

84
Approved for public release; distribution unlimited.

Figure 40: A Study of Invariances Across Three Scales

The principle we described in preceding figures—i.e., re-use of whole neural subtrees spanning
multiple cortical regions—provides one instantiation of what has been referred to as “schema-
based learning”. This is learning in which new items of knowledge are integrated with existing
knowledge, i.e., into existing schemas. Note that there is also another principle/mechanism by
which Sparsey instantiates schema-based learning. Specifically, it maps more similar inputs to
more highly intersecting SDR codes (cell assemblies). Thus, when novel inputs contain sub-
portions that are familiar, those sub-portions cause the number of neurons activated in response

85
Approved for public release; distribution unlimited.

to the novel input that were also activated in response to the prior similar sub-portion to increase.
The greater the number of currently active neurons that were also active in the prior instance, the
less new learning that occurs (and that needs to occur) in the current instance. This principle of
schema-based learning, and more generally of hierarchical organization of representations, is
possible even in a completely flat representation (cf. the recurrent neural net models of Elman,
Jordan, Plate, and others). Evidence for this type of schema-based learning in hippocampus has
recently been reported (McKenzie, Frank et al. 2014, O’Neill and Csicsvari 2014).

5.8 Large-Scale Episodic Memory Capacity Study

The results of this study are reported in Table 10. Also see this page on Neurithmic’s web site
for animation and further discussion. The table shows the *R and RΩ accuracies separately for
all five snippets and for all seven internal levels, V1-PFC. The 8-level model used is shown (on
a particular frame during processing Snippet 1) in Figure 41 (Table levels V1-PFC correspond to
L1-L7 in the figure). Neurons are not shown here. We only show active macs (red border and
shaded). A tiny fraction of the U, H, and D signals that occur during the trace are shown in blue,
green, and magenta, respectively. The model is much larger than those previously used, having
3,261 macs and ~75 million weights. The five snippets ranged in length from 36 to 76 frames
and the input surface was 64x64 pixels. The primary result shown by the table is that the
model’s recognition traces are essentially perfect from level PIT and up, and very good from V2
up. We emphasize that even the shortest snippet (36 frames) involves thousands of precisely
coordinated mac activations across all levels (and thus tens of thousands of cell activations).
And, learning was single-trial. We will continue to test how many such snippets can be stored in
the model throughout the remainder of the research.

Table 10. Results of 64x64 Snippet Episodic Recognition Memory Study

The table also shows another interesting phenomenon. Specifically, accuracy is poor at V1 and
generally increases with level. This seems counterintuitive because one might think that if codes
begin to go wrong at the lowest cortical level, then they surely must get worse, i.e., compound, at
higher levels. However, this clearly does not happen. Essentially, Sparsey's macs implement a
kind of associative clean-up memory with every new code chosen. We discussed this important
phenomenon in the previous report and will continue analyzing it in subsequent work.

http://www.sparsey.com/DARPA_TR19_Exp_1.html

86
Approved for public release; distribution unlimited.

Figure 41: The 8-level Network Used in Large-Scale Episodic Memory Study

5.9 Effect of π-bounds × U-RF Interaction on Capacity/Accuracy

The goal of this study was to verify basic parameter dependencies affecting how many snippets
could be stored and with what overall recognition accuracy in larger scale models than we have
used in the past. Figure 42 shows three of the 32x32 pixel snippets used and Figure 43 shows the
7-level network tested. The U-RF and π-bound parameters are constant across all five
experiments, as are the numbers of macs per level (Mi, shown at left in Figure 43) and the total
number of macs, which was 476. Table 11 shows some of the relevant parameters and accuracy

87
Approved for public release; distribution unlimited.

measures for a small sample of the configurations tested. We chose this particular sample to
illustrate some of the more important parameter dependencies.

Figure 42: Three of the 8-Frame 32x32 Snippets Used in Section 5.9 Studies

The primary result of Exp. 1 is that the model attained very high recognition accuracy,

* 0.93, 0.95R RΩ= = , and classification accuracy when the train/test set consisted of just 15
snippets (a total of 120 frames). This, despite the use of quite small Q and K values, e.g., 7 and
7, compared to their proposed analogous values in the real brain, e.g., 70-100 and ~30,
respectively, and thus to the values that we anticipate in full-scale instances of the model. We
emphasize that recapitulation of any one of the snippets involves the precisely timed
coordination (which is learned during the single learning trial of a each snippet) of hundreds of
mac activations and thousands of cell activations over the snippet’s 8 frames. Figure 43 shows a
tiny sample of U-RFs of several macs (blue line sprays) to suggest how information about any
given local patch of pixels filters up through the levels. Of course, tens of thousands of top-
down (D) and horizontal (H) signals are also being sent and processed (i.e., combined with the
U-signals) during the recapitulation of a snippet.

Despite the small Q and K values used in Exp. 1, the model has a large number—approximately
7.5 million—of (binary) weights. Thus, the total information stored in bits/synapse is low. We
therefore ran Exp. 2 in which twice as many snippets were presented to the model to see how the
recognition accuracy held up. As one can see, recognition accuracy fell sharply to

* 0.67, 0.68R RΩ= = . In Exp. 3, we increased the Q and K values for the first two internal
levels, L1 and L2, to 9 and 9, to see how much recognition accuracy could recover to the high
levels of Exp. 1. Unfortunately, they only recovered to * 0.75, 0.76R RΩ= = , despite the fact
that the total number of weights rose to over 16 million. In fact, in Exp. 4, increasing L2’s Q and
K values to 11 and 11, increases the total weights to ~23.5 million, but only modestly increases
recognition accuracy relative to Exp. 3. We rounded out this study with Exp. 5, in which we
increased train/test set size to 45 snippets, and again saw a sharp decrease in recognition
accuracy to * 0.53, 0.52R RΩ= = . Thus, simply increasing Q and K, and indirectly, the number
of weights, especially if done without coordinated changes in other parameters, is not a trajectory

88
Approved for public release; distribution unlimited.

through parameter space that allows bits/synapse to remain constant or increase while
maintaining high recognition accuracy. Nevertheless, based on many other experiments we have
performed, we believe that information storage capacity can be greatly increased beyond the
results seen in this study by tightly coordinated setting, across all model levels, of other
parameters, most notably the U-RF sizes and π–bounds, but also the weight saturation thresholds
of the various afferent U, H, and D matrices.

Table 11. Recognition Accuracy Results for this Study

 Ave.
U-RF

Ave
π

Num.
Snips.

Num.
Weights

Class.
Acc.

 Ave

Exp Lev M Q K *R RΩ
*R RΩ

1

6 1 6 6 9 [1,9]

15 7401474 14/15

1.0 1.0

0.93 0.95

5 9 6 6 5 [2,3] 0.99 0.99
4 25 7 7 6 [2,3] 0.95 0.97
3 64 7 7 5 [1,2] 0.91 0.93
2 121 7 7 5 [1,1] 0.89 0.93
1 256 7 7 14 [4,4] 0.84 0.87

2

6 1 6 6 9 [1,9]

30 7401474 16/30

0.65 0.65

0.67 0.68

5 9 6 6 5 [2,3] 0.67 0.68
4 25 7 7 6 [2,3] 0.65 0.69
3 64 7 7 5 [1,2] 0.67 0.69
2 121 7 7 5 [1,1] 0.70 0.71
1 256 7 7 14 [4,4] 0.68 0.67

3

6 1 6 6 9 [1,9]

30 16284560 18/30

0.72 0.72

0.75 0.76

5 9 6 6 5 [2,3] 0.75 0.74
4 25 7 7 6 [2,3] 0.72 0.73
3 64 7 7 5 [1,2] 0.78 0.78
2 121 9 9 5 [1,1] 0.81 0.85
1 256 9 9 14 [4,4] 0.74 0.77

4

6 1 6 6 9 [1,9]

30 23468718 20/30

0.77 0.77

0.78 0.8

5 9 6 6 5 [2,3] 0.76 0.76
4 25 7 7 6 [2,3] 0.74 0.74
3 64 7 7 5 [1,2] 0.83 0.82
2 121 11 11 5 [1,1] 0.84 0.9
1 256 9 9 14 [4,4] 0.75 0.79

5

6 1 6 6 9 [1,9]

45 23468718 12/45

0.44 0.44

0.53 0.52

5 9 6 6 5 [2,3] 0.49 0.48
4 25 7 7 6 [2,3] 0.47 0.45
3 64 7 7 5 [1,2] 0.56 0.52
2 121 11 11 5 [1,1] 0.63 0.63
1 256 9 9 14 [4,4] 0.61 0.59

Key: “Ave. U-RF” is the ave. # afferent features (pixels for L1 macs, subjacent macs for L2
macs and higher) for macs of a given level. “Ave π “: the π range consisting of the ave. π- and
ave. π+ over all macs of a level. Red text indicates values changed from prior experiment.

89
Approved for public release; distribution unlimited.

Figure 43: Snapshot of 7-Level Model Used in Section 5.9 Studies

90
Approved for public release; distribution unlimited.

We tried many combinations of U-RFs and π-bounds at the different levels and for models with
different numbers of levels. Table 12 shows some of the relevant parameters and accuracy
measures for a small sample of the configurations tested. Exp. 1 in this table is the same as in
Table 11 and is given as a baseline to which to compare the other experiments in this study.
Again, the model in Exp. 1 shows high recognition accuracy for the 15-snippet train/test set.
Furthermore, separate analyses show that the fraction of input features represented at all levels
including the top level (L6) remains high. We point out that the L1 mac π bounds are as tight as
possible. The U-RF of almost all of the 256 L1 macs has 14 pixels, with π bounds,

[4, 4]π π− += = ; thus, exactly 4 out of 14 pixels had to be active for the L1 mac to become
active. Recall that in earlier reports we have explained that in general, to minimize interference
(cross-talk) between stored codes, the range of input pattern sizes (numbers of active features)
that cause a mac to activate (and thus, which are stored) should also be minimized, ideally to
zero. This allows all input patterns stored in a mac to be normalized on an equal (unbiased)
footing.
To verify the superiority of tighter π bounds, in Exp. 2, we relaxed the L1 π bounds to

[3, 4]π π− += = . The leads to slightly worse accuracy,
* 0.87, 0.91R RΩ= = , than in Exp. 1. In

Exp. 3, we then tried [4, 5]π π− += = and obtained accuracy of
* 0.87, 0.90R RΩ= = . Although

we do not yet have the exact values reported, we observed anecdotally that the fraction of pixels
represented at the higher levels was larger for the two conditions which had the wider π bounds.
Thus, even though the accuracies are lower in Exps. 2 and 3, more information is being stored.

We then tried [5, 5]π π− += = and found a significant increase in accuracy to
* 0.96, 0.97R RΩ= = . However, we also saw that in this condition, on average, far fewer L1

macs became active on each frame: thus, far fewer pixels were represented at the higher levels

(and thus far less information stored). Finally, we tried [3, 3]π π− += = , which resulted in

accuracy of
* 0.94, 0.96R RΩ= = . The numbers of active L1 macs per frame was much greater

than in Exp. 4 and comparable to Exp. 1. This study supports our belief that having tighter π
bounds per se is better than having looser bounds, but to be more certain, in future studies, we
will add more systematic tabulation of the fraction of pixels represented at the higher levels,
which will allow us to judge the relative information storage capacity between models and thus
make a better overall judgment.

91
Approved for public release; distribution unlimited.

Table 12. Recognition Accuracy Results for Section 5.9 Studies
 Ave.

U-RF
Ave

π
Num.
Snips.

Num.
Weights

Class.
Acc.

 Ave

Exp Lev M Q K *R RΩ *R RΩ

1

6 1 6 6 9 [1,9]

15 7401474 14/15

1.0 1.0

0.93 0.95

5 9 6 6 5 [2,3] 0.99 0.99
4 25 7 7 6 [2,3] 0.95 0.97
3 64 7 7 5 [1,2] 0.91 0.93
2 121 7 7 5 [1,1] 0.89 0.93
1 256 7 7 14 [4,4] 0.84 0.87

2

6 1 6 6 9 [1,9]

15 7401474 14/15

1.0 1.0

0.87 0.91

5 9 6 6 5 [2,3] 0.94 0.96
4 25 7 7 6 [2,3] 0.92 0.96
3 64 7 7 5 [1,2] 0.85 0.92
2 121 7 7 5 [1,1] 0.82 0.88
1 256 7 7 14 [3,4] 0.69 0.74

3

6 1 6 6 9 [1,9]

15 7401474 15/15

0.99 0.99

0.87 0.90

5 9 6 6 5 [2,3] 0.98 0.98
4 25 7 7 6 [2,3] 0.91 0.95
3 64 7 7 5 [1,2] 0.83 0.89
2 121 9 9 5 [1,1] 0.81 0.88
1 256 9 9 14 [4,5] 0.69 0.70

4

6 1 6 6 9 [1,9]

15 7401474 15/15

1.0 1.0

0.96 0.97

5 9 6 6 5 [2,3] 1.0 1.0
4 25 7 7 6 [2,3] 0.97 0.99
3 64 7 7 5 [1,2] 0.95 0.97
2 121 11 11 5 [1,1] 0.95 0.96
1 256 9 9 14 [5,5] 0.91 0.91

5

6 1 6 6 9 [1,9]

15 7401474 15/15

1.0 1.0

0.94 0.96

5 9 6 6 5 [2,3] 0.99 0.99
4 25 7 7 6 [2,3] 0.94 0.97
3 64 7 7 5 [1,2] 0.92 0.95
2 121 11 11 5 [1,1] 0.92 0.96
1 256 9 9 14 [3,3] 0.88 0.91

Also, we must emphasize that in this study, all we did was vary the π bounds of the L1 macs
while keeping all other parameters, in particular, the π bounds of the macs at other levels, and the
U-RF sizes at all levels constant. We strongly believe that maximizing storage capacity at the
same time as maximizing recognition accuracy will entail simultaneous movement through many
of these parameters in coordinated. We will focus on such larger-scale parameter searching in
the next reporting periods, under Tasks C, D, E, and H.

92
Approved for public release; distribution unlimited.

5.9.1. Effect of U-RF Sizes/Overlaps, and π-bounds on Capacity/Accuracy

The model is this study had 712 macs across 6 internal levels, with 400 L1 macs, 196 L2 macs,
etc. (see Figure 43), and with a total of from ~16.1 to 17 million weights. The train-test set
contained N=45 8-frame 32x32 snippets. The baseline experiment, E1, had small Q and K
values at all levels and the same saturation threshold, 0.30, for all afferent matrices at all levels.
The detailed saturation levels attained are reported as well as the recognition accuracy which was
about 60% averaged across all levels.

Table 13. Recognition Accuracy Results for this Study

UZ Ave
π

W
(x106)

UΩ , Uω , % U-RFs sat.

Λ C

 Ave

E L M Q K U H D *R , RΩ
*R ,

RΩ

1

6 1 6 6 9 [1,9]

16.14

.3,0.31,100 .3,0.3,100 NA 70.3

12

.39, .39

0.60,
0.61

5 9 6 6 8 [2,3] .3,0.3,100 .3,0.31,100 .3,0.31,100 69.3

.74, .72
4 25 7 7 12 [4,4] .3,0.29,80 .3,0.31,100 .3,0.29,60 71.5

.77, .77

3 81 7 7 9 [3,3] .3,0.26,33 .3,0.3,100 .3,0.23,11 76.8

.68, .71
2 196 7 7 13 [3,4] .3,0.27,60 .3,0.3,100 .3,0.23,50 85.2

.58, .61

1 400 7 7 17 [4,5] .3,0.31,100 .3,0.26,50 .3,0.25,35 86.0

.46, .44

2

6 1 6 6 9 [1,9]

16.14

.3,0.3,100 .3,0.3,100 NA 70.3

13

.44, .44

0.59,
0.60

5 9 6 6 8 [2,3] .3,0.3,100 .3,0.31,100 .3,0.31,100 69.3

.73, .72
4 25 7 7 12 [4,4] .3,0.3,55 .3,0.3,100 .3,0.26,50 71.5

.75, .75

3 81 7 7 9 [3,3] .3,0.26,50 .3,0.3,100 .3,0.20,15 76.8

.66, .70
2 196 7 7 13 [3,4] .3,0.29,90 .3,0.3,100 .3,0.25,25 85.2

.55, .58

1 400 7 7 17 [4,5] .25,0.26,100 .3,0.26,50 .3,0.25,85 86.0

.42, .40

3

6 1 6 12 9 [1,9]

16.97

.3,0.24,0 .3,0.26,0 NA 70.3

38

.85, .85

0.68,
0.70

5 9 6 10 8 [2,3] .3,0.16,0 .3,0.24,0 .3,0.23,0 69.3

.84, .84
4 25 7 10 12 [4,4] .3,0.22,0 .3,0.23,0 .3,0.15,0 71.5

.77, .80

3 81 7 7 9 [3,3] .3,0.26,33 .3,0.3,100 .3,0.17,0 76.8

.66, .71
2 196 7 7 13 [3,4] .3,0.27,60 .3,0.3,100 .3,0.23,21 85.2

.55, .58

1 400 7 7 17 [4,5] .25,0.26,100 .3,0.27,80 .3,0.25,35 86.0

.42, .40

We saw that R values were poor even at the first internal level, L1, i.e.,
*
1 10.46, 0.44R RΩ= = .

Based on manual analysis of results of individual snippets, we saw that crosstalk interference
was very high at L1, which not only reduces R values for L1, but for higher levels as well since
they depend on the accuracy achieved at L1. We therefore tried reducing the L1 U saturation

threshold (UΩ) from 0.30 to 0.25 in E2 (highlighted in red). We reasoned that this would shut
down learning in the U wts to L1 at an earlier time during learning and thus lower the average U
summations to L1 cells during recognition, thus reducing crosstalk. However, as seen in Table

13, this actually worsened performance at L1 and L2, i.e.,
*
1 10.42, 0.40R RΩ= = ,

*
2 20.55, 0.58R RΩ= = . R values at higher levels remained about the same. We then realized that

http://www.sparsey.com/Snippets_32x32.html

93
Approved for public release; distribution unlimited.

simply shutting down U learning from L0 to L1 at an earlier point in the training run simply
prevents any L0-to-L1 U associations from being made following the frame on which an L1
mac’s U-RF freezes. Clearly, during recognition tests, an L1 mac cannot reliably reinstate L1
codes that were activated on frames following freezing during learning.

We then noticed that all of the RFs (U, H, and D) at higher levels, in particular at L6, on which
the classification decision depends, were frozen (violet values in the table), and in fact, froze
relatively early during learning. In particular, the L6 mac’s U-RF froze during presentation of
the 17th snippet, meaning that no L5-L6 U associations were learned from the 18th snippet on.
This greatly reduced R values and made correct classification of snippets 18 and higher,
impossible. Therefore, to reduce the rate of saturation of higher-level matrices, the model of E3
has increased K values in the three highest levels. As can be seen in the table, this had the
desired effect of preventing higher level matrices from saturating and thus increasing R values at

those levels, including a huge increase at L6 from
*
6 60.44, 0.44R RΩ= = to

*
6 60.85, 0.85R RΩ= = .

Also, 38 of 45 snippets were correctly classified. These K increases did increase the number of
weights, W, from ~16.1 to ~17 million. However, generally speaking, increasing K or Q values
at higher levels, where the numbers of macs (and thus, cells) are small is much more tolerable
than increasing K or Q values at lower levels, e.g., L1 and L2, which greatly increases W.

We underscore that the property discussed in the introduction that recognition accuracy
generally increases with level is clearly seen in these results. We provide detailed results in
Section 6.7 that show the two principles giving rise to the property.

The model used in the study of Table 13 reflects some parametric architectural improvements
from the model reported on in TR17. Over the course of manual searching of parameter space
following the TR17 experiments, we determined that having larger degrees of fan-in from one
level to the next, or in other words, slightly larger U-RF sizes, allowing greater overlap of U-
RFs, while at the same time tightening the π bounds for all levels, seemed to result in both: a)
greater representation of input features at all higher levels; and b) greater recognition accuracy at
higher levels. Figure 44 shows the gross architectural differences between the 476-mac TR17
model and the newer 712-mac model. The model of experiments E4-E6 (Figure 44a) had a total
of 476 macs and smaller and less overlapped U-RFs than those of the model used in E1-E3 and
E7, which had a total of 712 macs (Figure 44b). Small samples (~5-10%) of the weights
comprising the U-RFs of several cells at different levels are shown with blue sprays: these sprays
denote the “fan-in” of U connections.

In addition, we determined that we can follow a level-by-level parameter search/optimization
process starting from L1 and proceeding upward. This has led, thus far, to the 712-mac model
reported on in Table 13. We say “thus far” because although the combination of numbers of
macs per level, U-RF sizes, and π bounds in this model yield markedly better results than those
used in the model of TR17, which had only 476 macs, we do not know how close we are to the
optimal parameters.

94
Approved for public release; distribution unlimited.

Figure 44: Gross Architectures of Models Used in Studies of Table 13-Table 15

We performed the following study to show directly the improvement in recognition accuracy and
other measures in moving by one particular path of parametric variation from the TR17 model,
reported as E4 in Table 14 to the model of E3 in Table 13. We describe motivations for the
specific parameter changes and main resulting differences from one experiment to the next
below.

Because of its higher Q and K values at L1 and L2, the E4 model has many more weights than
the E3 model, ~23.5 vs. ~17 million. Despite this, the E4 model achieves only

* 0.53, 0.53R RΩ= = . Based on some of our findings in experiments, E1-E3, we made two
modifications to E4. First, given that the R values of higher levels and classification accuracy
are reasonably good despite the low L1 and L2 R values (*

1 10.42, 0.40R RΩ= =) in E3, we
decided that we could lower the L1 and L2 Q and K values slightly, as shown, to greatly lower
W, without decreasing attainable R values at higher levels. Second, seeing that higher level
matrices were also frozen (as in E1 and E2), we increased Q and K values at higher levels to
match those of E3. Therefore, the essential difference between E5 and E3 is in the U-RF sizes, π
bounds, and degrees of overlap between neighboring macs’ U-RFs (as illustrated in Figure 44)
and about 2.8 million fewer weights. As expected, these changes led to reduced R values in the
lower levels, e.g., *

1 10.54, 0.54R RΩ= = , but significantly better overall (i.e., R values averaged
across all levels) performance, * 0.58, 0.59R RΩ= = despite having ~9 million fewer weights
that the E4 model.

95
Approved for public release; distribution unlimited.

Table 14. Recognition Accuracy Results for this Study

UZ Ave
π

W
(x106)

UΩ , Uω , % U-RFs sat.

C

 Ave

E L M Q K U H D *R , RΩ
*R ,

RΩ

4

6 1 6 6 9 [1,9]

23.47

.3,0.3,100 .3,0.3,100 NA

11

.36, .36

0.53,
0.53

5 9 6 6 5 [2,3] .3,0.3,100 .3,0.31,100 .3,0.31,100 .51, .51
4 25 7 7 6 [2,3] .3,0.3,100 .3,0.3,100 .3,0.3,95 .56, .55
3 64 7 7 5 [1,2] .3,0.26,50 .3,0.3,100 .3,0.29,90 .57, .58
2 121 11 11 5 [1,1] .3,0.29,0 .3,0.3,100 .3,0.29,50 .61, .63
1 256 9 9 14 [4,4] .3,0.31,100 .3,0.1,0 .3,0.11,0 .58, .58

5

6 1 6 12 9 [1,9]

14.23

.3,0.27,0 .3,0.26,0 NA

33

.73, .73

0.58,
0.59

5 9 6 10 5 [2,3] .3,0.23,0 .3,0.29,50 .3,0.28,20 .59, .61
4 25 7 10 6 [2,3] .3,0.29,55 .3,0.24,40 .3,0.23,0 .55, .58
3 64 7 7 5 [1,2] .3,0.27,50 .3,0.3,100 .3,0.3,50 .51, .53
2 121 9 9 5 [1,1] .3,0.21,0 .3,0.3,100 .3,0.28,50 .53, .56
1 256 8 8 14 [4,4] .3,0.31,100 .3,0.11,0 .3,0.14,0 .54, .54

6

6 1 6 12 9 [1,9]

17.10

.3,0.27,0 .3,0.27,0 NA

38

.84, .84

0.64,
0.67

5 9 6 10 5 [2,3] .3,0.24,0 .3,0.3,80 .3,0.29,20 .70, .72
4 25 7 10 6 [2,3] .3,0.25,40 .3,0.24,33 .3,0.22,0 .63, .67
3 64 9 9 5 [1,2] .3,0.25,50 .3,0.3,100 .3,0.15,5 .56, .61
2 121 9 9 5 [1,1] .3,0.24,0 .3,0.3,100 .3,0.28,50 .57, .61
1 256 8 8 14 [4,4] .3,0.31,100 .3,0.11,0 .3,0.14,0 .55, .56

We then changed the E5 model in two ways to get to the E6 model. We simply increased the Q
and K values for the L3 macs. This added almost 3 million weights, giving the E6 and E3

models comparable total weights (W). It increased accuracy to
* 0.64, 0.67R RΩ= = ,

substantially lower than that of E3,
* 0.68, 0.70R RΩ= = . Given the comparable W values, the

equal numbers of levels, and the equal Q and K values for levels L4-L6, we conclude that the

differences in the U-RFs sizes, UZ , U-RF overlaps, and π bounds between E3 and E6 (as seen
in Figure 44) are important. Specifically, we observe that by:

1. making the U-RF sizes larger,
2. making the average overlaps between neighboring U-RFs larger,
3. at the same time, maintaining or reducing the fraction of afferent U features that

needs to be active in order for macs to activate,
4. and tightening the bounds on the number of active features needed to activate a mac,

the model represents more of the information in the input set and achieves significantly better
recognition accuracy. The above list of modifications begins to look like a general “law” for
designing hierarchical compositional networks. However, much parametric testing remains. For
example, throughout the recent studies of TR17 and this report, we have set the H-RFs at all
levels to include only the single target mac, i.e., H wts only connect cells within a single mac.

96
Approved for public release; distribution unlimited.

Perhaps making the H-RFs larger and overlapped at one or more of the levels would further
increase performance. Similar considerations apply to the D wts as well. These, and many other
manipulations need to be explored before we can feel confident that we understand the optimal
policies for wiring up a hierarchical information processing network.

In the last experiment of this section, E7 in Table 15, we took the E3 model and substantially
increased the number of D-wts, so that the D projections approximately mirrored the U
projections. That is, we set parameters so that in most cases, if an LJ mac projected to an LJ+1
mac, then that LJ+1 mac also projected to that LJ mac: we did not expressly control for this in
prior studies and for the most part the sizes of the D-RFs were smaller than of the reciprocal U-
RFs. Correcting for this added about 3.4 million weights relative to E3. While this significantly
increased R values at L3 and L4 (comparing E7 to E3, blue-highlighted text in Table 15), R
values at higher levels were unchanged and the average R values over all levels were only
slightly improved. Again, we have a great deal more parametric exploration to do in order to
understand, in general, how best to set all of these myriad interacting parameters to maximize
performance / capacities. In particular, we do not draw any strong conclusion from this null
result of Experiment E7.

Table 15. Recognition Accuracy Results for this Study

UZ
Ave

π
W

(x106)

UΩ , Uω , % U-RFs sat.
Λ C

 Ave

E L M Q K U H D *R , RΩ
*R ,

RΩ

7

6 1 6 12 9 [1,9]

20.4

.3,0.23,0 .3,0.26,0 NA 70.3

35

.84, .84

0.70,
0.72

5 9 6 10 8 [2,3] .3,0.16,0 .3,0.23,0 .3,0.23,0 69.3

.84, .84

4 25 7 10 12 [4,4] .3,0.22,0 .3,0.23,0 .3,0.15,0 71.5

.80, .83

3 81 7 7 9 [3,3] .3,0.26,33 .3,0.3,100 .3,0.17,0 76.8

.70, .77
2 196 7 7 13 [3,4] .3,0.28,62 .3,0.31,10

.3,0.23,20 85.2

.58, .63

1 400 7 7 18 [4,5] .25,0.26,100 .3,0.26,50 .3,0.25,35 86.0

.42, .41

97
Approved for public release; distribution unlimited.

Table 16. Symbol Definitions for this Section

Symbol Definition Symbol Definition

E Experiment number. L Hierarchical level of the model

M Number of macs in Level Q Number of CMs per mac

K Number of cells per CM N Num. of snippets in train / test set

UZ Ave. number of afferent U features (pixels for L1 macs, subjacent macs for L2 macs and higher) to a
mac, i.e., aver. U-RF size.

Ave. π π range consisting of the ave. π- and ave. π+ over all macs of a given level, i.e., ,π π− +

1()UZ ∩ Ave. U-RF overlap of adjacent macs. “ 1∩ “ indicates RF intersection with immediately adjacent,
i.e., distance “1”, neighbors

Λ Fraction of input features (pixels) represented at a given level.

W Total num. of wts in network Uω Actual ave. fraction of increased weights in
U-RFs of macs of a given level

UΩ U-RF saturation threshold % of saturated U-RFs

 C Classification accuracy, i.e., number of
correctly classified snippets

*R Ave. trace accuracy over all snippet frames RΩ Trace accuracy on last snippet frame

98
Approved for public release; distribution unlimited.

6. DISCUSSION

The major accomplishments achieved during this research project, which in concert underlie our
successful demonstrations of feasibility, are summarized in this list and throughout the section.

1. We have created a general model allowing

a. an arbitrary number of hierarchical levels

b. communication within between adjacent levels (and between non-adjacent levels)

c. each level can consist of many macs

d. each mac stores information using sparse distributed representations (SDRs)

2. Demonstrated that the model can learn and retrieve a large number of complex
spatiotemporal binary input patterns. Learning is single-trial and learning time for each new
frame remains constant through life of system, i.e., regardless of how many frames are
stored. Retrieval time of best-matching frame also remains constant for life of system.

3. Demonstrated near SOA classification performance on Weizmann video event recognition
data set, while demonstrating world-leading learning time.

6.1 Regarding Sparsey’s Information Storage Capacity

In earlier, related studies of Sparsey, model instances achieved approximately 0.1 bits/synapse,
which is well within an order of magnitude of the theoretical limit for associative memories, of
~0.69 bits/synapse (Willshaw, Buneman et al. 1969). Two remarks are relevant here.
First, even if the model’s storage capacity (essentially equivalent to space complexity)
asymptoted at 0.1 bits/synapse, this would be sufficient to scale to the kinds of massive “big
data” problems of interest to DARPA and business world in general. For example, a Sparsey
instance with 100 billion synapses would be able to store 10 billion bits of information.
Crucially, all of this information would be instantly retrievable in closest-match mode, or in
other words, in context-dependent fashion.

The potential impact can perhaps be more readily appreciated in the terminology of conventional
databases. Sparsey will be able to automatically store, on-the-fly (i.e., in a streaming mode), a
large number (N) of records, each having a large number (M) of fields, and subsequently permit
arbitrary, unanticipated many-field queries, all of which are returned in the same constant time.
In the world of conventional databases, achieving even logN (let alone, constant) time on any
particular m-field query requires the prior construction of an index that is specific to the
particular m fields in that query. Thus, guaranteeing logN response time to all queries up to mth-
order would require prior construction of all M mC indexes. What we are saying is that, due to its
SISC (similar-inputs-to-similar-codes) property, Sparsey automatically discovers the subset of
these M mC queries that would reveal some interesting structure of the input space and effectively

99
Approved for public release; distribution unlimited.

creates an index for each such query—up to some, probably low-moderate8, m value—as a by-
product of the simple act of storing (building hierarchical SDRs for) the individual items as they
are presented. Unlike the case of conventional databases, no additional time or work is needed
for the construction of these “indexes”; they are implicit in the pattern of synaptic weights. And,
just as importantly, there is no need to predefine at the outset the entire set of queries that we can
anticipate may someday be useful. That set is in fact implicit in the statistical structure of the
data and is what is automatically discovered and embedded in the synaptic weights during
storage. Finally, and as noted above, the retrieval time for any of these queries is constant, not
logN as for state-of-the-art tree-based indexes used in existing databases.

Second, we believe it is very likely that we can get close to the theoretical limit (~0.69
bits/synapse) by: a) using hierarchical models with many levels; and b) other techniques /
mechanisms, e.g., enhancements to Sparsey’s learning model. By point a, we mean that
hierarchical data structures can compress information exponentially relative to flat data
structures. As an example, consider the game of Twenty Questions, qua data structure: that first
question, “Animate vs. Inanimate”, a binary question, discounts half of the universe of possible
answers. The information content of that question must be very much larger than one bit.
Regarding point b, one potential improvement would be to make synaptic increases made
to/from cells that have just been activated be larger than increases to/from synaptic cells that
have been active for a number of time steps (more generally, a gradient of increase levels as a
function of number of time steps active). This could be exploited to improve the recognition
accuracy on early frames of a snippet, and thus the overall accuracy over a whole test set. Many
variations on this theme are possible.

6.2 Supervised Learning via Cross-Modal Unsupervised Learning

In general, the categories in the physical world are smooth (linear) in the neighborhood around
any single sample but possibly very nonlinear and intertwined with other classes at the global
scale [cf. (Saul and Roweis 2002)]. This is illustrated with respect to the abstract, high-
dimensional visual space on the left of Figure 45. Lowercase “a” is visually more similar to
lowercase “e” than to uppercase “A”. Yet “a” and “A” are in the same category, while “e” is not.
At right of Figure 45, we show a notional V1 mac to which we will assume the abstract visual
space is mapped. Sparsey handles the local smoothness of natural categories because it has the
SISCs property. The formation of the mapping from “a” to 1V φa induces a hyperspherical region
in the high-dimensional input space within which other inputs will be mapped to 1V φa with a
certain probability (which depends on multiple model parameters).

However, by the same SISC property, the code to which “A” is mapped, 1V φA , will (statistically)
have lower intersection with 1V φa than the code to which “e” is mapped, 1V φe , as shown in Figure
45 (light blue cells are the intersection of 1V φe and 1V φa ; green cells are intersection of 1V φA and

1V φa). So, how can Sparsey physically represent the fact that “a” and “A” are in the same

8 The point is made throughout most leading-edge machine-learning papers, e.g., “Deep Learning”, that the intrinsic
dimensionality of many naturalistic populations (including those derived from human activity, e.g., the set of all
bank records, or all economic databases, etc.) is numbered in the tens or maybe a few hundred, not thousands.

100
Approved for public release; distribution unlimited.

category, while “e” is in a different category? More generally, how can Sparsey address the
highly nonlinear and intertwined nature of natural categories at the more global scale?

Figure 45: Mapping from High-Dimensional Visual Input Space to Notional V1 Mac

Sparsey’s answer is shown in Figure 46. The solution is to associate codes in one field, e.g., a
visual input field, with codes in another field, which represents the categories per se, i.e., their
names (labels). This essentially implements supervised learning via cross-modal unsupervised,
associative learning. Here, the vision (V) modality is a 2-level network, whose top level V1
(a.k.a. L1), corresponds to the mac of Figure 45. The abstract input space of Figure 45 is now
depicted concretely as the hexagonal “aperture”, V0” (a.k.a. L0), which consists of ~140 binary
pixels. The “Symbol (S) Modality” is a 1-level network, i.e., simply an input level, “S0”, which
uses a localist representation of symbols (class labels), and which is fully connected to V1.

101
Approved for public release; distribution unlimited.

Figure 46: Implementation of Supervised Learning as an Instance of Cross-Modal

Unsupervised Association

In Figure 46a, we present input “a”: we name that input pattern, 0

a
V φ , where the lead superscript

means that it is a pattern in V0 (biologically, V0 corresponds to visual thalamus). The U signals
from V0 to V1 cause an SDR code, 1

a
V φ , to be activated in V1. Once activated, U and D learning

occurs between 0
a

V φ and 1
a

V φ . The green lines mean that these weights are being increased for
the first time, i.e., from 0 to 1. Contemporaneously, we activate, as a supervisory signal, the
representation of class ‘A’, 0

A
S φ , in the symbol input field, S0. However, U signals from S0 to

V1 do not influence the choice of winners in V1. Rather, activation of a symbol unit on a
learning trial simply serves to indicate which weights to increase. In Figure 46a, these would be
the U and D weights between 0

A
S φ and 1

a
V φ , which are depicted with a different color (yellow) to

indicate the different semantics of these inter-modal weights. Thus, the internal SDR code, 1
a

V φ ,
becomes associated, in a single-trial, with the class ‘A’. Figure 46d-f make the causal ordering
of steps more explicit, emphasizing that the V1 code is chosen based only on the visual signals.

Figure 46b shows a similar scenario in which presentation of “e” gives rise to code, 1

e
V φ , which is

then associated with 0
E

S φ . The black U weights indicate weights increased on a prior
association; here, in Figure 46a. In Figure 46c, presentation of “A” gives rise to a new V1 code,

1
e

V φ , which (consistent with the SISC property) has less overlap with 1
a

V φ (the two light green
units) than 1

e
V φ did. Nevertheless, we activate the symbol representation, 0

A
S φ , thus associating,

again, with a single trial, this visual pattern (“A”), which looks completely different from “a”,
with the same class as “a”.

102
Approved for public release; distribution unlimited.

This general cross-modal association framework allows arbitrarily different inputs in one
modality, e.g., visual, to be associated with the same category, thus building up via single-trial
learning, categories with arbitrarily nonlinear boundaries, in particular, boundaries that are
formally unions of hyperspheres. In fact, there is substantial evidence that children learn new
words, and thus their corresponding potentially highly nonlinear category boundaries, in this
essentially single-trial associative fashion (Carey and Bartlett 1978, Dollaghan 1985, Jusczyk
1999, Behrend, Scofield et al. 2001, Smith and Yu 2008).

We emphasize that this principle—corresponding to what in cognitive psychology is called
“exemplar-based categorization” (EBC)—is orthogonal to the principle of hierarchical (and
compositional) representation per se. They are separate resources providing independent
sources of computational efficiency. Sparsey utilizes both principles. The success of the Deep
Learning (DL) framework is due to breakthroughs allowing efficient exploitation of hierarchy
(Bengio, Courville et al. 2012). But EBC has thus far been largely absent from DL, as well as
from mainstream pattern recognition and machine learning approaches. The following quote
supports the importance of EBC (given the close relationship of EBC and single-trial learning).

“I think all our favorite [inference] methods – Gibbs sampling, overrelaxation,
hybrid Monte Carlo, variational methods, EM, gradient descent – are all too creepy-
crawly slow... The world isn’t an adversary. It should be possible to solve many
learning problems in a couple of iterations through a reasonable data set, rather than
thousands. It may be too much to ask for a one-shot learning method, but maybe
we should be looking for one-and-a-half-shot learning algorithms.” – David
MacKay in (Frey 1998).

Stepping back, we point out that AI and MI models fall into two classes representing
fundamentally different views on categorization, and consequently, on memory and cognition
(thinking). In the first class, representations of category boundaries, e.g., hypersurfaces in a
representational space, are computed from sets of samples and maintained in memory separate
from the representations of the individual samples themselves. Future input samples are then
compared directly to the category representations, not to the samples. Indeed, the representations
of the individual samples are no longer needed once the category representations have been built.
These explicit category representations have been referred to as abstract categories and this view
of categorization, as abstraction-based. DL, convolutional nets, and HMAX-family models are
in this class.

The second class is the aforementioned EBC, of which Sparsey is an instance. Memory traces,
i.e., SDR codes, of individual inputs are permanently retained and future instances of
categorization (recognition) entail comparing the input to all stored exemplars. However, with
SDR, all the exemplars are physically overlapped in memory. Thus, while Sparsey effectively
iterates over all stored exemplars during the comparison process (during both recognition and
learning), it actually iterates over representational units (i.e., cells), and more finely, over
weights, the numbers of which remain fixed as new traces are stored. Indeed, this underlies
Sparsey’s most important and distinguishing property, fixed-time learning and best-match
retrieval (recognition).

103
Approved for public release; distribution unlimited.

Figure 47 shows the difference between abstraction-based categorization (ABC) and EBC
schemes. As in Figure 45, different colors signify different categories. In the ABC scheme of
Figure 47a, samples of a given category are used to compute a single, connected boundary – e.g.,
a hyperplane (dashed lines), a hypervolume (colored ellipses), etc., and the boundaries are used
to categorize future samples. However, as Figure 47b shows, the more intermingled the
exemplars are, the more nonlinear the category boundaries must be, and the harder it is for
gradient-based or sampling-based methods to converge to those boundaries (Bengio and leCun
2007). In contrast, in the EBC scheme of Figure 47c, category boundaries are implicitly defined
as unions of hyperspheres (superimposed on the global category regions). As Figure 47d
suggests, with EBC, the difficulty of learning categories remains constant regardless of the
degree of intermingling, essentially because category boundaries no longer need to be connected.

Figure 47: Abstraction-Based vs. Exemplar-Based Categorization Schemes

With regard to an overall pattern recognition system, the act of recognition is only half the story.
The other half is the learning process. For ABC systems, this includes the presentation and
storage (at least transiently) of all learning exemplars and construction of the category boundary.
The time complexity of the category boundary construction process is typically the limiting
factor. For example, gradient following supervised learning algorithms like Backpropagation
and contrastive divergence require numerous epochs (iterations over training set). Similarly,
each iteration of the Boltzmann Machine formally requires sampling from the posterior over the
representation’s state space, which, even when only done approximately, e.g., using Gibbs
sampling, is still very slow. However, for EBC systems, learning entails only the presentation
and storage of the exemplars. There is no explicit creation of category boundaries. As discussed
above, the category boundaries remain implicit in the set of exemplar representations, and in the

104
Approved for public release; distribution unlimited.

case of SDR, the creation time of those representations—i.e., the assignment of mac codes—
remains constant for the life of the system.

6.3 Hierarchical Exemplar-Based Categorization

In Technical Report 8, we explained that any single mac in Sparsey implements an exemplar-
based (episodic memory-based) form of categorization (cf. Figure 1 of Tech. Report 8). The
CSA (which runs in each mac) maps similar inputs to similar (more highly intersecting) mac
codes (SISC property). The precise shape of the mapping depends on many parameters
(described elsewhere). In particular, parameters can be set so that novel exemplars that are
within distance, D, of a stored exemplar, reactivate the exact code of the stored exemplar, with
probability, P. The hyperspheres in Figure 48 correspond to this parameter-dependent diameter,
D. In a more veridical representation, these hyperspheres would be depicted as hyperspherically
(or perhaps hyper-ellipsoidally) symmetric probability density clouds with distance dependent
fall-off from the center.

Each mac assigns SDR codes to individual exemplars (samples) that occur (with sufficient
regularity) in its input space (until its afferent weight matrices reach a saturation threshold which
causes the mac to “freeze”, i.e., to prevent any further codes from being assigned). However, the
spatial and temporal scale of the features increases with level, so that as a whole, the network
implements a hierarchically nested clustering. This figure shows the abstract representation of
the 36-Dimensional input space (6x6 binary pixels) of one particular L1 mac, 1

(2,0)M , where
superscript denotes level, and subscript denotes (row,col) of the mac within the level.
Hyperspheres represent several specific inputs (exemplars) that have been stored in 1

(2,0)M .

In the middle of Figure 48 is a detailed view showing the specific code active in one particular
L1 mac, 1

(2,0)M . The dashed arrow shows the correspondence between that particular code and
input instance 1 of the 45° edge class in the abstract space. Small numbers beside input patterns
in the abstract space simply serve to identify specific patterns. At lower left, we show that
different instances of a class, e.g., 45° edges, can have very low pixel-wise overlap, whereas
instances of different classes can have larger overlaps. Thus, instance 1 of the 45° edge class is
depicted as closer in hyperspace to the noisy instance of the 0° class than to instances 2 and 3 of
the 45° edge class. Due to the SISC property, the codes for these 45° edge instances will have
smaller intersection with the code of 45° edge instance 1 than with codes of instances of other
classes, e.g., the 0° and 90° instances in this example.

105
Approved for public release; distribution unlimited.

Figure 48: A Multi-level Sparsey Network Implements a Hierarchical, Exemplar-Based
Clustering/Categorization Scheme

The only way for the different 45° edge instances (blue hyperspheres) that have occurred in

1
(2,0)M ’s aperture to be treated similarly is if their associated codes are associated with the same

code in some other representational field, i.e., some other mac(s), in an overall model. We need
some teaching signal that tells the model that these very different inputs (in terms of pixel
overlap), which therefore would have very different L1 codes, nevertheless have similar
functional implications for the system and are instances of the same functional (semantic) class.
If we cause a representation of the class in one mac to be co-active with the representation in

1
(2,0)M , then a simple Hebbian scheme can associate the codes bi-directionally, thus

accomplishing cross-modal supervised learning, as described in Technical Report 8.

Figure 49 shows the same 4-level network of Figure 48, emphasizing one particular L2 mac (red
outline), 2

(1,0)M . Here we show an abstract version of 2
(1,0)M ’s input space. For simplicity, this

depiction is only of its U input space, or classical RF, a.k.a., “aperture”, which consists of its
four subjacent L1 macs and is thus a 12x12-pixel region. In actuality, 2

(1,0)M ’s total input space,
or non-classical RF, would include H signals from itself and possibly other macs at its own level
and D inputs from one or more macs in L3. Only one of 2

(1,0)M ’s four L1 macs is active in the
present instant. In the abstract space depiction, shaded 6x6 patches are ones in which too few or
too many pixels were active for the corresponding L1 mac to activate. Thus, looking at the
depiction of 2

(1,0)M ’s 12x12 input in the abstract space (at one end of the double-headed dashed
arrow), we can see that only one of the 6x6 patches has an appropriate number of active pixels,
and so is not shaded. The hypersphere colors here represent different classes than in Figure 48.
We show only a tiny subset of classes that could easily be defined over a 12x12 aperture of

106
Approved for public release; distribution unlimited.

visual space. Remember that in our model, these pixels are binary and the preprocessing turns
input color/grayscale video frames into binary edge-filtered frames where all edges are eroded to
be 1-pixel wide. At lower left, we illustrate similar principles as in Figure 48 regarding the
relation of overlap in input space and functional class membership, but at L2’s higher spatial
scale.

While we can show the inputs to 2

(1,0)M as patterns over an entire 12x12 pixel array, it is
important to realize that that input space is formally composed of four separate contiguous (non-
overlapping) smaller spaces, i.e., the 6x6 pixel arrays corresponding to 2

(1,0)M ’s four afferent L1
macs. Suppose for simplicity that all four of these L1 macs have been frozen. That is, their
afferent matrices from L0 have crossed a saturation threshold such that no further codes will be
stored in those macs, i.e., they will undergo no further learning.9 Suppose for simplicity that 100
codes (i.e., basis vectors) have been stored in each of those four L1 macs. That means that the
(bottom-up) input space for 2

(1,0)M is formally 4-D, and specifically, 1004. Because we are
assuming the L1 macs are frozen, there are now exactly 1004 unique input patterns that can ever
occur to 2

(1,0)M . This is a vanishingly small fraction of all possible 12x12 binary pixel patterns
that could occur. But, even this vanishingly small fraction of all possible 12x12-pixel patterns,
1004 = 108, is still orders of magnitude greater than an L2 mac, even one of biologically realistic
size, i.e., Q=70 ad K=20, could safely store. Perhaps an L2 mac might be able to safely store a
few thousand codes at most. But the question is: how big a basis set does a typical L2 mac,
which sees only a 12x12-pixel aperture of visual space need in order to adequately represent all
future patterns that occur in that aperture? We show just a handful of possible 12x12-pixel
patterns that might be contained in 2

(1,0)M ’s basis set. Some of these might appear to be rather
random or arbitrary; we will address this point later.

9 At least, no further long-term learning. Short-term synaptic weight modification, e.g., representing a working
memory concept, might still occur (though that is not currently implemented in the model).

107
Approved for public release; distribution unlimited.

Figure 49: Network of Figure 48 but Emphasizing One Particular Active L2 Mac

Now let’s consider how each of these four input dimensions to 2

(1,0)M (outlined in red in
Figure 49) is ordered. As we have noted, each of those four dimensions has exactly 100 unique
values. Each of these values corresponds to a particular 6x6 pattern, a tiny representative sample
of which can be seen in the abstract space at upper left of Figure 49. In the abstract input space
depiction at left, 6x6 patches are shaded if either too few or too many pixels are active for the
corresponding L1 mac to have become active. See text for further discussion. Note that the
values themselves are not pixel patterns, but SDR codes, in this case, sets of Q=9 binary cells,
one per CM. How are these 100 codes ordered along a dimension? Quite simply, because the
mapping from pixel space to L1 code space preserves similarity, the L1 codes are naturally
ordered in terms of intersection size, i.e., codes with higher intersections represent more similar
6x6-pixel patterns.10 And, since the mappings from each L1 mac to 2

(1,0)M also preserve
similarity, the overall mapping from input (L0) space to L2 code space also preserves similarity.
However, the similarity metric is compositional. That is, 2

(1,0)M ’s measure of the similarity, 2G
(introduced in prior technical reports), of a novel input decomposes as the product of the
similarities, 1G measured in each of its afferent L1 macs.

10 For simplicity, we are ignoring the fact that in actuality, Sparsey’s mac codes are temporal context dependent.
That is, each code stored in a mac actually represents not just the purely spatial (bottom-up, U) input to the mac, but
the specific moment, i.e., the spatial input in the temporal (sequential) context of the frames leading up to the current
spatial input.

108
Approved for public release; distribution unlimited.

Figure 50: Network of Prior Figures but Emphasizing the L3 Mac

The 24x24 pixel patterns shown in the abstract space at left of Figure 50 are actual frames that
were presented to this model in Study 1 of Technical Report 7, which are shown in Figure 51.
All of these frames, or features, were encoded as hierarchical traces involving the
assignment/storage of codes in subsets of L1 and L2 macs, and in the single L3 mac, 3

(0,0)M . For
simplicity, we are assuming here that each of the four afferent L2 macs is frozen and has 500
codes, i.e., 500 L2-scale features, stored in it, for an overall input space (ignoring H inputs)
describable as: 5004. In fact, the frame active at L0 of the network at right of Figure 50 led to
activation in four of 16 L1 macs, all four L2 macs, and 3

(0,0)M . Looking at this frame’s
representation in the abstract space (at one end of the double-headed dashed arrow), we can see
that exactly four of the 6x6 patches have an appropriate number of active pixels, and so are not
shaded. Because each of these four L1 features falls in the RF of a different L2 mac, all four L2
macs become active. However, it is important to realize that the L2 macs are effectively blind to
the active pixels in the shaded patches, as is 3

(0,0)M . Thus, it is specifically the portion of each
frame that occurs in non-shaded 6x6 regions that is stored as a feature in 3

(0,0)M .

109
Approved for public release; distribution unlimited.

Figure 51: All Frames of the Input Set of Study 1 of Technical Report 7

In Figure 52, we show an alternative view of the network shown in Figure 48 to Figure 50,
emphasizing the purely featural view of the activated network across all three internal levels.
Rather than show the CMs and cells comprising the macs, we show the abstract input
feature/concept space for each mac. The point at the center of a hypersphere corresponds to the
feature/concept juxtaposed feature depiction and thus also to the specific SDR code for that
feature. The blue lines show the explicit hierarchical connections between the codes (and thus,
features) active in this instance; each of these represents the bundles of U and D weights that
would be increased between the whole sets of cells comprising the SDR codes at either end of
the blue line. Figure 54 is included to make the relation to earlier figures clearer. Figure 53 is
included to make the actual features we are discussing clearer than in the 3D views. Figure 52 to
Figure 54 emphasize the hierarchical, compositional nature of the representations. The concept
active at the top level (L3) is composed of the four L2 concepts, one active in each of the four L2
macs, and each of these L2 concepts (features) just happens to consist of a single L1 concept
(feature) active in the L2 mac’s RF. In subsequent figures, we will see examples in which the L2
concepts consist of multiple L1 features just as the L3 concept here consists of multiple, i.e.,
four, L2 features.

Let’s take a moment to think about the features at the different hierarchical levels in this
example. We might describe the L3 concept (which, from the system’s point of view consists of
only the four non-shaded patches, and can be seen more clearly in Figure 53) as a “2-sided
region that bends slightly and narrows towards the top”. We say “2-sided region” because it is
not closed at the top or bottom. We external observers of the situation know that this percept is
actually part of a person’s waving arm—i.e., part of the upper arm, elbow, and forearm.
However, given the system’s much more limited experience (it’s only seen the eight 2-frame
sequences in Figure 51), this particular L3 feature must be described as generically as possible.

110
Approved for public release; distribution unlimited.

Hence, our use of simpler concepts like “side”, “region”, “top”, “bottom”, “narrows”, and
“bends”, in the description of the L3 concept.

Figure 52: 3D View Emphasizing the Hierarchical, Compositional Nature of the Multi-

Level Representations

Now, looking at L2 in Figure 53, we see that these simpler component concepts of the L3
concept correspond to the smaller-scale features active in the individual L2 macs and to spatial
relations between those smaller-scale features. That is:

1. In the upper left quadrant of 3
(0,0)M ’s RF—i.e., in the RF of 2

(0,0)M —there is a more-
vertically-than-horizontally-oriented edge, which also has a “bend” in it.

2. In the lower left quadrant of the L3 mac’s RF (2
(1,0)M), there is a diagonal edge that

is consistent, in two ways, with the “narrows towards the top” feature being true of
the higher-scale (L3) concept of which it is a part. First, its orientation (~225°) is
consistent with “narrows towards the top”, e.g., a 135° edge at that particular spatial
location (relative to 3

(0,0)M ’s RF) would not be. Second, its spatial position, both
within 2

(1,0)M ’s RF and relative to the spatial position of the active feature in 2
(0,0)M ’s

111
Approved for public release; distribution unlimited.

RF is consistent with an overall “narrowing-towards-the-top” shape feature at the
scale of 3

(0,0)M .
3. In the upper right quadrant of the L3 mac’s RF (2

(0,1)M), there is a vertical feature.
4. In the lower right quadrant of the L3 mac’s RF (2

(1,1)M), there is a near-vertical
feature. The relative spatial positions of these two features are consistent with an
also near-vertical edge at the scale of 3

(0,0)M .

Thus, the component features in the four L2 macs together with the hard-wired spatial relations
of those four macs justifies the overall generic description of the L3 concept that we stated
earlier, a “2-sided region that bends slightly and narrows towards the top”.

Figure 53: 2D View of Features Comprising the Particular Top-Level Feature Present in

this Ongoing Example

112
Approved for public release; distribution unlimited.

Figure 54: Correspondence of 3D and 2D Visualizations of Compositional Hierarchies

Figure 55 shows examples of four more hierarchical, compositional memory traces of particular
moments (frames). In fact, these are the first four frames of Seq. 1 (see Figure 51) presented in
Study 1 of Technical Report 7. The format is changed slightly from that of Figure 52 to reduce
clutter and shrink the figures: specifically, we show only the single active feature / concept in
each mac, rather than a sample of several of the concepts (basis elements) stored in each mac.
For this reason, the hypersphere color scheme is essentially irrelevant here. The hierarchical
branching patterns (blue lines) make clear that the number of Level J features that compose a
Level J+1 feature can vary, in this model, from one to four. For example, in panel b, the
concepts active in L2 macs, 2

(0,1)M and 2
(1,1)M each have three composing L1 features, while

2
(1,0)M has only one composing feature. In addition, the concept active in 2

(0,1)M varies in
number of composing features from one frame to the next, from one in panel a, to three in panels
b and c, to two in panel d. Figure 56 shows an alternate view of Figure 55c in the style of Figure
53 in order to emphasize the more general case in which the different active macs at any given
level, in this case, L2 in particular, can have varying numbers of active composing concepts.

113
Approved for public release; distribution unlimited.

Figure 55: Hierarchical Compositional Memory Traces of First Four Moments of

Figure 51

114
Approved for public release; distribution unlimited.

Figure 56: Alternate View of Figure 55c in the Style of Figure 53

The variable numbers of composing features across macs both within and across levels, shown in
Figure 55 and Figure 56, underscores the need for a variable normalization process in the model,
which has been described in earlier sections. That is, although the number of features
comprising the L2 concept (and thus, roughly, the complexity of the L2 concept) varies from one
to three, the neurons participating in the codes of these four L2 concepts must register a maximal
degree of match in each case. However, their raw U summations will vary widely (in fact, by 3x
in this example) across these L2 concepts. Thus, each neuron must know not only its raw U
summation, but the number of active U inputs (i.e., the number of active composing features) on
each frame in order to know how to normalize its U summation. The same is true for the H and
D inputs although they are not present in this example.

It may seem that we have belabored the explanation of the hierarchical, compositional nature of
the representations here. But, we need this detailed understanding in order to:

a) Evaluate the adequacy / appropriateness of the features learned by Sparsey, i.e., the features
that become elements of the bases of the macs, and

b) Understand the nature of the invariances learned (and learnable) by Sparsey.

Regarding (a), in the key of Figure 50, we gave a notional set of somewhat more complex
features that might be reasonable basis elements over a 24x24-pixel region. These features
generally have longer names than those in Figure 49 and Figure 48. And, they are clearly rather

115
Approved for public release; distribution unlimited.

generic. The 24x24-scale feature discussed in Figure 52 to Figure 54 is also generic, though its
description is somewhat more complex than those of Figure 50’s key and it seems to be more
random or ad hoc than those of Figure 50. Let’s take a moment to consider that 24x24 feature in
relation to the 24x24 feature in Figure 56 and to that in Figure 55a. We show these three 24x24
features across the top of Figure 57. In the dashed box immediately below each figure we show
two other very similar instances, which would with high probability cause the same mac codes to
activate at all levels, i.e., the same hierarchical SDR memory trace. The key point here is that
the inputs to the different L1 macs vary from that in the learned instance, but the variation is
globally uncorrelated (i.e., noise-like), and in particular, not of the type that would be caused by
structural variation across instances of a category. Such structural variation can be either
intrinsic, e.g. a one-armed man is still a man, or imposed by viewing conditions in 3-space, e.g.,
a person behind a counter looks like they have no legs, but is still a person.

In the next tier down in the figure, we show two other instances of each top-row feature that
would be semantically similar to that top-row feature, but which have much wider variation
within the composing macs’ RFs (at L1 and L2). Due to the large differences between these
localized (to individual mac RFs) inputs and those that occurred in the original learning instance,
these would lead to very different mac codes in many of the macs at the different model levels,
and in particular, in the L3, 3

(0,0)M . Thus, these second-tier examples show instances in which
supervised learning would be needed in order for the model to put these semantically similar, but
pixel-wise quite different, inputs into the same categories as the instances at the top.

Figure 57: Three Top-Level Feature Instances and Hypothetical Inputs with Varying

Pixel-Wise and Semantic Relatedness to Those Instances

116
Approved for public release; distribution unlimited.

In the third tier, we show instances in which the same 6x6-pixel sub-patterns occur, but in the
RFs of different L1 macs. That is, the L1 features are spatially scrambled with respect to their
spatial arrangements in the instances at the top of the columns. Despite having identical L1
components, these overall 24x24 patterns do not look like plausible instances of the same
categories of the patterns at the top of the columns.

One key point of Figure 57 is the notion of invariance. The noise-like variation seen in the first-
tier instances of Figure 57 is handled by Sparsey’s SISC property. With respect to the bottom-up
pattern to each mac at any given level, the noisy instance would correspond to a point falling
within one of the hyperspheres in the mac’s high-dimensional abstract input space. The variation
seen in the second tier examples, which is more indicative of structural changes in the input
space (either intrinsic or due to 3D viewing conditions), correspond to highly nonlinear
transformations (from the original learned instance) and require a supervised learning process to
be learned. The variation in the third tier examples is also consistent with (gross) structural
change, but these examples are not likely exemplars of the original instances (tops of the
columns) from which they were made. This emphasizes that strong spatial constraints on the
classes of objects are present in natural worlds. These constraints are too a large extent
automatically adhered to by virtue of explicit spatial arrangement of the macs at each level of the
visual processing hierarchy. In other words, these constraints do not need to be explicitly
computed, either during learning or retrieval, which saves a huge amount of computational costs
relative to a system in which these spatial constraints are not reified in architecture.

A second point visible in Figure 57 and in all of the prior figures as well is that in our approach,
the features/concepts—i.e., the basis vectors stored in any given mac—can generally look quite
random or noisy. Thus, Sparsey’s approach to pattern recognition differs fundamentally from
that of the vast majority of existing pattern recognition, i.e., classification, models, which use
hand-designed features from the lowest level to the highest. That is, recognition systems often
have higher level models of objects and/or events, often expressed in some (probabilistic)
grammar, or other formalism, which are used to constrain the bottom-up recognition process
(e.g., the “language” model in speech recognition systems). Sparsey does not use or require any
such higher-level a priori knowledge.

The features that macs store are actually spatiotemporal, not purely spatial.

All of the foregoing in this section has been explained in terms of purely spatial features /
concepts. However, Sparsey is an inherently spatiotemporal model and has been explained in
those terms in all of the prior technical reports of this research program. Thus, each code stored
in a mac actually represents a particular temporal context-dependent moment, not simply the
purely spatial input presented on a particular frame. Depicting this added complexity in the
format of the prior figures is difficult, and so for simplicity, the foregoing exposition and figures
pretended as though the features being stored were purely spatial. But for completeness and to
accurately convey what’s being stored in the model, Figure 58 shows that the features
corresponding to each hypersphere are actually moments, i.e., frames in the context of the
longest unbroken frame sequences leading up to them. Thus, Figure 58 generalizes Figure 48.
We will develop similar figures for higher levels in subsequent work. Figure 48 shows that the
SDR codes stored in the L1 macs actually represent moments of varying duration but of the 6x6-

117
Approved for public release; distribution unlimited.

pixel spatial scale. Note that formally, we have changed the abstract feature space from being
36-dimensional to being 36T-dimensional, where T is the number of prior frames of context. In
Sparsey, T is not of fixed order.

Figure 58: Spatiotemporal Generalization of Figure 48 Showing that SDR Codes Actually

Represent Spatiotemporal Features

6.4 Optimal Normalization Thresholds

Figure 59 shows a situation in which a higher U normalization threshold would yield
substantially higher correctness of the reinstated code. Determining the optimal normalization
thresholds (and policies) as well as optimal weight saturation thresholds for the U, H, and D
afferent matrices for all levels will remain an ongoing pursuit in our follow-on research, one
which will be carried out simultaneously with optimization of the U-RF, π bound, and other
parameters. Read the figure annotations in numerical order.

118
Approved for public release; distribution unlimited.

Figure 59: A Case in which a Higher U Normalization Threshold Would Yield

Substantially Higher Correctness of the Reinstated Code

6.5 Fraction of Represented Features Should Remain near 100% at All Levels

 One of our main research goals was to understand how representations of parts, i.e., ecologically
meaningful parts (segments) of objects/events, automatically and unsupervisedly emerge during
learning in Sparsey. In Appendix A of TR16, we introduced what can be viewed as a
prerequisite capability that must be present if the model is to be able to automatically learn to
recognize natural parts of objects and events. Specifically, the model’s parameters must be set
so that all or most of the input features (i.e., the active pixels in the input level, L0) end up being
represented at the model’s top level. By “being represented” we mean “influencing the choice of
cells comprising the code”. Being represented at the top level entails being represented at all the
intervening levels as well.

Figure 60 clarifies this issue. It shows the active macs (rose shaded) at all levels on each of four
frames while processing an 8-frame snippet. Superimposed on each level, it also shows the
portion of the input pixels represented at that level. One can see that on all frames, a substantial
fraction of the input pixels in all regions of L0 are represented at L1 and L2. However, one can
also see that on frame 2, the entire left half of the input pattern (which shows a part of an arm)
drops out of the representation at L3 (green arrows indicate the comparison). Why do they drop
out at L3? As explained in TR16 Appendix A, it is due to the interactions of the sizes of the

119
Approved for public release; distribution unlimited.

U-RFs and the mac activation bounds (π- and π+) for macs comprising the left side of L3. In
contrast, the combination of U-RF, π-, and π+, settings for the three active L3 macs happen to be
appropriate for them to be activated. Consequently, a significant fraction of the pixels in the
right half of the input image end up being represented at L3. Similarly, the parameters of the
rose-shaded L4 mac are also appropriate for it to become active. Note that L5 does not become
active on frame 2 because we have introduced an explicit level-specific hard delay parameter
(referred to as “staged activation” in TR16) to the model and in this simulation, L5 could activate
no earlier than frame 3.

In any case, the situation at frame 2, in which an entire macroscopic region of the input (e.g., the
left half) drops out of the representation at higher levels must be avoided. If mid or higher level
object/event classes are generally defined in terms of their parts and the relations between their
parts, then we must ensure (at least statistically) that all parts of the input image remain
represented at the higher levels. Thus, finding general rules for the probabilistic assignment of
parameters, which maximize the fraction of input features (pixels) represented at the top (and all
intervening) levels is a key goal. In fact, one can see that on frames 5, 6, and 7, the overall input
image is much better represented up through all levels. Even though perhaps only 40-50% of the
pixels remain represented (survive) at L5 on frames 6 and 7, the particular pixels that do survive
reflect the overall shape of the input image. Nevertheless, we found that such low percentages of
represented features often allowed well-structured elements of the input image to fail to be
registered at L1.

120
Approved for public release; distribution unlimited.

Figure 60: Surviving Input Features at All Internal Levels on Four Example Frames

121
Approved for public release; distribution unlimited.

Around the timeframe of TR16, we generalized the model’s wiring policy to allow the U-RFs of
the L1 macs, which are regions of pixels, to overlap. This greatly increases the chances of any
given active pixel falling within the U-RF of at least one L1 mac that meets its [π-, π+] activation
criteria. Figure 61 shows how L1 U-RFs now overlap. (Actually, this kind of overlap can also
be seen in many earlier figures in this report, e.g., Figure 3, Figure 19, and Figure 20.) The blue
line sprays show the U-RFs of two neighboring active L1 macs (A, B) and the red arrows
indicate two pixels shared by both U-RFs. These two pixels influence the codes chosen in both
macs. There are five active pixels in A’s U-RF and six in B’s, which must meet their respective
π criteria (or they would not be active). Thus, each of these two pixels (features) has two
chances to contribute to an overall local activation pattern that satisfies criteria and thus be
encoded at L1.

Allowing LI U-RF overlap led to an immediate large increase in the fractions of input pixels
represented throughout all model levels. The models used in many of our studies attain 90-95%
effective feature representation. In follow-on work, we will make modifications to bring that to
100%. This same principle whereby overlapping RFs (U, H, and D) maximize the fraction of the
input pixels (features) represented by active mac codes operates at all model levels.

Figure 61: Illustration of Overlapping L1 U-RFs

122
Approved for public release; distribution unlimited.

6.6 Hierarchical Compression

It might seem counter-intuitive to have the goal be that all input features remain represented at
the highest level. Typically, one thinks of the highest levels of a representational hierarchy as
having a more abstract/summary character, i.e., omitting much of the lower-level details.
Amongst other things, this would seem essential in order for a high-level representation, i.e.,
code, to represent invariances. We make the following points in answer to this concern.

1. Even if the information from all parts of the input image reaches the top level and thus
influences the selection of the top level code, it is nevertheless the case that that top level
code will generally consist of a far smaller number of active cells than lower level codes. In
general, the number of active cells falls sharply with level. Figure 62 illustrates this
progressive code compression, in particular for frame 5 of our example. The represented
(coded) information is at left and the specific codes (black or black/gray cells) and number of
active cells per level is at right. Moreover, the increasing code persistence at higher levels
means there is increasing temporal compression as well. In this particular simulation for
example, L4 (L5) codes persisted for 4 (5) frames, respectively, meaning that for a 5-frame
span with approximately the same amount of input activity on each frame, a single 9-cell L5
code can represent approximately the same information as order 500+ L1 cells, for at least
50x compression.

2. Even if all input features influence the choice of cells comprising the L5 code, that does
mean that those features are explicitly present in that code per se. That is, merely knowing
the set of Q=9 cells comprising the L5 code in Figure 62 does not recover for us the details
of those features. For that, we would have to propagate D (and H) signals, down through the
hierarchy and across time to cause the entire hierarchical trace to recapitulate. We’ve
generally referred to this process as retrieval of a stored memory but it can also be viewed as
un-packing or decompressing the top (and intermediate) level codes.

3. Regarding the abstractness issue, note that in general, different spatiotemporal input patterns,
i.e., different spatiotemporal feature patterns, can cause the same L5 code to activate. In that
case, said L5 code would implicitly represent whatever invariances exist over the set of
inputs that cause it to activate. Other input patterns will cause other codes to activate. It is
the pattern of overlaps over the set of codes stored that encodes the higher level statistical
(i.e., abstract) structure of the input space. Thus, our stated goal that all input features should
ideally be represented (i.e., influence code selection) at all levels does not preclude higher
level codes from being abstract and capturing certain higher-order statistical regularities
(invariances) in the input space.

123
Approved for public release; distribution unlimited.

Figure 62: Illustration of Progressive Code Compression up Through the Model’s Levels

6.7 Trace Accuracy can be Quite Low, While Supporting High Classification

Accuracy

One of the most robust properties that we are seeing in our multi-level (~5-8 levels) simulations
is that even though recognition accuracy at the lowest levels, e.g., L1 and L2, might be low, e.g.,
60%, recognition accuracy at the higher levels can be nearly 100%. At first glance, this seems
counterintuitive: how can higher level processing, which receives signals from lower level
processes, do better than the lower level processes? Thus far, we can see two principles
responsible for this property:

1. Recall a mac at level J often receives input from multiple level J-1 macs. The codes active in
those level J-1 macs may individually have errors. However, if those errors are not
correlated, then when the U signals arriving from those macs are added together, the resulting
summed U input distribution to the cells of a CM may can still be peaked at the correct cell
(the uncorrelated errors having averaged out). Figure 63 shows a specific example of this.

2. Recall that in Step 4 of Sparsey’s CSA, the three input signals to each cell in a mac, the U, H,
and D signals, are multiplied to yield V. And recall that during recognition, we simply pick
the max V cell in a CM as winner. The H and D signals carry temporal context information
and in particular, the D signals carry larger-scale (i.e., more slowly varying) temporal context

124
Approved for public release; distribution unlimited.

information because they originate from higher level cells which generally have longer
persistence. We observe quite frequently that while the individual U, H, and D vectors of
signals to the K cells comprising a CM have errors (including the case where multiple cells
are tied for the maximal value), the product of the three vectors, the V vector, is peaked at the
correct cell. Again, the errors in the three factor vectors, being uncorrelated, are attenuated
due to the multiplication process. This effect can also be seen in the example in Figure 63.

We believe that this finding may be quite important in understanding the design principles of
hierarchical information processing systems and anticipate generating many related results in the
coming months. This finding also raises quite interesting issues related to episodic memory.
Specifically, it suggests that when a person engages in detailed episodic recall of specific
experienced events, while the memory trace playing out in the higher levels might indeed be
highly veridical to the original experience, the unfolding traces at the lower levels—i.e., the
spatiotemporal pattern of activations across hundreds of L1 and L2 macs over many frames—
might actually contain a substantial fraction of errors (i.e., incorrect winners in CMs). The
experience of recalling a specific event might feel subjectively highly accurate partly if one’s
conscious awareness/attention depends more on the higher level macs than the lower level macs.
There have been many studies (e.g., concerning the veracity of eyewitness testimony) showing
that the actual low-level details of remembered events are often wrong, essentially having been
filled in by statistically (semantically) reasonable lower-scale component events (i.e.,
confabulation). In the terminology we have used in the last several reports, such a confabulation
event would be the reactivation of a closely matching, but not the exactly correct, basis element
stored in the mac. In fact, if the original event occurred after L1 froze, then the original
encoding of the event would have been in terms of already-learned (closest-matching) basis
elements (i.e., even during the original perception of the event, the raw sensory inputs would
already be channeled into familiar vocabulary).

As discussed above, it has become clear that the accuracy of information retrieval processes
generally (i.e., for most parameter setting tested, though again, we are far from having a
complete understanding of the huge parameter space) increases with level and that even when L1
and L2 accuracy is in the 40-50% range, accuracies in the 80-90% are realized at the highest
network levels. Figure 63 shows an example of this situation in which the two L1 macs, 1

302M
and 1

284M (shaded purple), providing U input to an L2 mac, 2
166M , have errors in their codes, with

43% and 71% accuracy, respectively, yet the code in 2
166M is 100% accurate. Note that due to

size limitations, the individual cells/CMs of the macs are not shown here. In the plots,
black/red/green bars indicate correct winners, incorrect winners, and incorrect non-winners,
respectively.

125
Approved for public release; distribution unlimited.

Figure 63: Example of Highly accurate Recognition at Higher Level Despite Highly

Inaccurate Recognition at Lower Level

Note that this figure zooms in on what is happening only in a tiny section of the 7-level 712-mac
network on one particular frame of one of the 45 8-frame snippets presented (a single time each)
during the learning phase of one experiment. This type of situation in which the combination of
various sources of information via both the additive and multiplicative principles specified in the
introduction (bullets 1 and 2) corrects errors and either maintains or improves the accuracy of the
unfolding spatiotemporal hierarchical memory trace typically occurs hundreds/thousands of
times during the recognition of even a single 8-frame snippet.

At upper left of Figure 63, we show the conditions that existed at the time the prior code (at T-1)
was chosen in 2

166M . That code was chosen as the product of U and H signals and one can see
(you may have to zoom in a bit) that in six of the CMs, the product of the filtered U and H
signals, denoted “Ux” and “Hx”, result in the correct cell (black bars) having the maximal V
value, yielding an 86% correct code. Signals from that code arrive via the recurrent H wts
(green) at time T and are combined multiplicatively with even more error-full U signals from the

126
Approved for public release; distribution unlimited.

two L1 macs, 1
302M and 1

284M . At upper right of the figure, we see these various incoming signal
vectors to 2

166M at time T. We point out that although the H signals are more ambiguous (i.e.,
there are 2-3 cells tied for the maximal Hx in each CM), multiplication with the more selective U
signals leaves only the correct cell in each CM with a maximal V value.

To summarize this example, we have a case where three sources of information have accuracies
of 86%, 43%, and 71%, respectively, and combine via the CSA to retrieve (activate) a code with
100% accuracy. Note that in this particular case, there were no active D signals to this L2 mac.
While we as yet have a great deal to learn about these dynamics, we emphasize that these
“evidence combination” dynamics are apparently largely working correctly in the context of
quite sizable models and furthermore, working in the fully spatiotemporal case.

6.8 Minimize the Number of Post-Quiescent Mac Activations

In general, we will want H-RFs to extend to at least some neighboring macs. This is because
doing so increases the number of instances in which a mac becomes active in a context. Perhaps
the most difficult general problem in sequence recognition is the problem of having to
distinguish large numbers of sequences that start with the same item (or sequence of items), call
it the “common prefix” problem. This was the motivation for inventing the Overcoding-and-
Paring (OP) method. Note that this potential problem applies on an individual basis to each mac
in a network (since the macs operate autonomously).

As the size of the input surface (L0) and L1 sheet of macs grows, the number of instances in
which an L1 mac is active on a frame T after having been inactive at T-1 can become a
substantial fraction of all L1 activations. Let’s call such an activation event as a post-quiescent
activation (PQA). We distinguish this from instances in which a mac is active at T but was also
active at T-1, which we will call a post-active activation (PAA).

Figure 64 shows one of the 8-frame snippets with the 8x8 grid of 4x4-pixel L0 apertures
indicated. All PAAs are highlighted in yellow. The rest (unhighlighted) are therefore PQAs. At
L1, PQAs are clearly the rule rather than the exception, occurring about 70% of the time, while
at progressively higher levels, the PQA/PAA ratio drops.

If H-RFs include only source macs—i.e., if a mac’s neurons receive H-wts only from the other
neurons in their own mac—then in all PQAs, the code is chosen only on the basis of the pattern
in a mac’s U-RF (disregarding the D-RF for the moment). This is true even though most of these
PQAs will occur on non-initial frames of sequences, and therefore on frames on which temporal
context information would often be present if H-RFs included larger neighboring regions of
macs. The problem with macs choosing codes based only on U-signals is that the space of
possible U-signals is exponentially smaller than the space of UxH-signals, and therefore
crosstalk effects (which degrade storage capacity and recognition accuracy) will accumulate
much faster. We therefore would like to minimize the number of instances in which mac codes
are chosen based only on U-signals. Consequently, we will focus on parameter regimes in which
the H-RFs of macs at all levels include at least some surrounding macs.

127
Approved for public release; distribution unlimited.

Figure 64: Demonstration of the Large Fraction of All L1 Activations that are PQAs

6.9 Correct Cells are Correlated, Incorrect Cells are Not

One major finding of our research has been an essential principle by which Sparsey is able to
learn invariances:

When many macs are involved in the class decision, the codes in those macs can
contain many errors (i.e., low trace accuracy) while still supporting high class
accuracy. This is because the correct cells across all active macs influencing the
class decision are highly correlated with the correct class cell, whereas the
incorrect cells across those macs are far less correlated. Thus, the input
summations of the correct class cells will tend to rise above the summations of
all the other (incorrect) class cells.

However, there is an even more subtle principle that boosts Sparsey’s recognition power. When
multiple macs contribute to the summations in a given target mac, the codes in those afferent
macs can be even completely erroneous, while still enabling the target mac to activate a
significant fraction of the correct cells. This is because even though all cells in all active afferent
macs may be wrong, those afferent macs will still have enforced SISC during learning. This
means that there will still be positive, though probably small, correlations (through second-order
effects) amongst the wrong cells across all afferent macs.

An instance of this principle is shown in Figure 65. It shows the state of the model on the last
frame (frame 14) of the “Daria-bend” snippet of the Weizmann dataset. The model has two
internal levels, L1 and L2, with 18x26 and 12x16 macs, respectively. L2 mac Y mac has 5 CMs

128
Approved for public release; distribution unlimited.

and only two of the winners are correct (black, discernable in insets A and C). In the other three
CMs, the winner is incorrect (red) and the cell that should have won is green. Inset C uses the
same color scheme and shows the detailed levels of most of the algorithm’s intermediate
variables: gray bars are for the other cells in the CM. L2 mac Y has only two active afferent L1
macs at this moment (B and C) and no H or D input. Therefore the code selected in mac Y
depends only on the U-input from these two L1 macs. As can be seen, both macs’ codes are
entirely wrong (red cells, which correspond to red bars in insets D and E).

The reason why L2 mac Y is able to recover the correct cell in two of its five CMs even though
all 12 of its input source cells (six in each of the two L1 macs) are wrong can be stated as
follows:

1. Let Ψ1 and Ψ2 be two similar learned moments.

2. Suppose we are now at Ψ2 of a test.

3. Because of the similarity, the set of L1 macs activated in Ψ1 will have a substantial
intersection with the set of L1 macs activated in Ψ2.

4. Also because of the similarity and because of SISC, the codes active in any such common L1
mac in the two instances will have a substantial intersection.

5. By points 3 and 4, set of L2 macs activated in Ψ1 will have a substantial intersection with the
set of L2 macs activated in Ψ2.

6. By points 3, 4, and 5, the codes active in any such common L2 mac in the two instances will
have a substantial intersection.

7. Because SISC is a basic property of a mac, it follows that for any L1 mac that is active in
both the prior moment and current moment, the expected intersection of the codes active in
those two instances should be higher than if the two moments in question had lower
similarity. Denote the class of L1 cells in that intersection, ξ1.

8. The effect of any cells in ξ1 on any L2 mac that is efferent to any such L1 mac, or any set of
such L1 macs, will be to cause the expected intersection of the code activated in such an L2
mac on the prior moment and the code activated in it on the current moment to be higher than
if the two moments in question were less similar. Denote the class of L2 cells in that
intersection, ξ2.

9. Weight increases that were made between cells in ξ1 and cells in ξ2 on that prior moment will
contribute disproportionately to the summation of cells ξ2.

10. Since cells in ξ2 are by definition common to the code active in the L2 mac in the prior
similar moment and in the code active in the training moment corresponding to the current
test moment, such cells are correct.

129
Approved for public release; distribution unlimited.

Figure 65: Example of Partial Recovery of Code Accuracy Despite Completely Incorrect

Inputs Due to Second Order Correlations Resulting from SISC Property

130
Approved for public release; distribution unlimited.

7. CONCLUSIONS

The biological brain, and the human brain in particular, remains the most powerful information
processing device known. The remarkable structural homogeneity across the entire neocortical
sheet suggests a core computational module, i.e., a “canonical cortical microcircuit”, operating
similarly in all regions (Douglas, Martin et al. 1989, Douglas and Martin 2004, Rinkus 2010).
The overarching rationale for our research is therefore that if we want to build computers that
process information as well as humans, then we should understand the detailed structure and
operation of said canonical cortical algorithm/circuit. Based on a large body of evidence, we
identify the canonical module with the cortical “macrocolumn” (“mac”) (a.k.a. “hypercolumn”
in early visual cortex, or “barrel”-related volumes in rat/mouse primary somatosensory cortex).
Also based on a large and increasing body of evidence, we believe the two most essential
principles of intelligence are: a) representing information with SDRs; and b) hierarchical, or
heterarchical, organization of the overall knowledge base, i.e., in part-whole, fashion in which
parts at any level may components of many higher-level wholes.

The overall goal of our two-year project was to investigate how representing information in the
form of hierarchical sparse distributed representations SDRs yields extremely efficient solutions
to spatiotemporal recognition, and more specifically, video event recognition, problems. The
most important result of our research was the continued confirmation and elaboration of the facts
that both learning and best-match retrieval of spatiotemporal patterns, result specifically from the
use of SDRs in all representational fields at all levels of the heterarchy. As this is highly
uncharted territory, this has been very much a basic research project. In addition to this primary
result, we have greatly increased our knowledge of many other essential principles of intelligent
processing, particularly in regard to the compositional nature of the overall, ongoing
computations and how they give rise to invariance.

In the latter half of the project, we turned our focus more towards the applied research goal of
achieving SOA classification performance on benchmark video event recognition problems. We
have carried out studies involving the Hollywood 2, KTH, and Weizmann data sets. In the final
months of the performance period, we have focused almost exclusively on Weizmann in our
effort to attain SOA performance. As of this date, the best performance of the specific model we
are working with , Sparsey®, is at 67% which is significantly below SOA, which is 100%
(chance = 10%). But, for the reasons stated at the outset of this report, we believe we will
achieve SOA classification with even substantially faster times in the very near future. We
emphasize that these are the first results we know of a model that uses SDR at all internal coding
fields performing on any benchmark video recognition problem. Furthermore, this is the first
published result of a hierarchical model based on SDR performing any benchmark task.

Given the model's extremely simple representation of unit state and weights, which implies that
very low precision is sufficient, and that fact that its operations, learning and retrieval, have
constant time regardless of how much information is stored, we believe that Sparsey will be a
strong platform on which to base extremely low-power, extremely fast, and extremely scalable
applications in the realm of spatiotemporal (and as a special case, spatial) pattern recognition,
going forward. This includes any type of purely sequential pattern recognition task, e.g., any
type of language processing application, as well.

131
Approved for public release; distribution unlimited.

We have also only begun to scratch the surface of leveraging transfer learning. Clearly, all
natural video involving human-centric actions share the same low-level features, e.g., oriented
edges, oriented moving (translating + rotating) edges, and other regular low-statistical order
features. We should therefore expect that once these low- and perhaps mid-level features are
learned, probably on a relatively small amount of data, all subsequent high-level video tasks will
be able to proceed much more quickly. As we are still working out the basic model principles
and parameters needed to learn our first data set (Weizmann), we are not yet able to demonstrate
the potentially large amortization of learning (reduced learning time across data sets/tasks) that
will be possible due to transfer learning.

7.1 Importance of Unitary Explanation of Episodic and Semantic Memory

Human memory can be broken into two types: a) episodic memory, which is highly detailed
memory for specific, experienced events, which can last on the order of a lifetime; and b)
semantic memory, which is knowledge of classes of objects/events or more generally, of the
statistical/causal structure of the world. Almost all (object, speech, video) pattern recognition
work to date, including the Deep Learning thread, implicitly concerns only semantic memory.
The paradigm has been largely one of batch learning in which class boundaries are gradually
learned (generally using gradient-based methods) so that new exemplars can be correctly
classified, but there is almost never any demonstration that such systems can also output detailed
replicas of any of the individual exemplars used to train them. The details of individual training
experiences are lost as the model becomes an optimal classifier.11

However: a) human cognition clearly includes often highly capacious and long-lived episodic
memory (and by definition, episodic memories are of events that occur only once, i.e., single-
trial learning); and b) it is possible that a single architecture/algorithm can accomplish both
episodic and semantic memory. Sparsey is one such model.12 In fact, Sparsey started as a purely
episodic memory of spatiotemporal patterns and was extended to explain semantic memory
(pattern recognition) as well. Sparsey’s means for accomplishing classification (semantic
memory) is scaffolded on a more primitive and primary episodic memory operation mode.

11 While it may be true that even in the human cognitive system, the details of the individual exemplars of low-level
object/events, e.g., a particular oriented edge occurring in a particular small patch of the visual field, or a particular
edge moving in a certain way in that patch, may be lost (inaccessible), this becomes less true as we consider
objects/events of progressively higher scales. This could be taken as evidence for different learning/memory
mechanisms operating at low and high scales. However: a) there is a continuum of scales, not just two; and b) there
could be one underlying mechanism whose phenomenology changes (gradually) with scale. Sparsey is such a
mechanism.
12 There are other theories addressing both types of memory, but in general, either: a) they have not dealt natively
with spatiotemporal patterns; or b) they involve physically distinct subsystems that communicate with each other,
e.g., the complementary learning systems (CLS) model of McClelland & O’Reilly.

132
Approved for public release; distribution unlimited.

8. RECOMMENDATIONS

We believe that the following steps would have high likelihood of boosting Sparsey’s
performance into the SOA range, ~90-100%.

1. Allow RF radius parameters to vary within a level: Adding this variability would make it far
easier to find mac grid tilings at any given level, which maximize the fraction of the input
feature (pixel) instances, across all frames of all snippets, represented by that level. Ideally,
this “effective features” statistic should remain as close as possible to 100% throughout all
levels of a network. To the extent this statistic drops with level, the codes at said level, are
being chosen without using the information contained in the “dropped features”. There are
several ways in which we can maximize effective features, but there are costs associated with
them. By allowing neighboring macs to have different size RF radii, we can more easily
achieve 100% effective features through all levels without incurring (or at least with
minimizing) these costs.

2. Add mac construction mode in which several parameters are sampled from distributions in
correlated fashion: Our simulation platform currently has the ability to assign π bound
parameters from a specified distribution. A different distribution can be specified for each
level of the network. We could add this capability to other parameters fairly easily. These
overall list of such parameters could include:

• π bounds

• RF radiuses (H, U, and D)

• Sharpening exponents (H, U, and D)

• Normalization cutoffs (min and max, for H, U, and D)

In addition to simply adding the ability for these other parameters to be selected from
specifiable distributions, we would implement a meta-level protocol to ensure that the set of
parameters chosen for any one mac are correlated in appropriate ways. For example, the
larger the RF radius, the larger the π bounds should be. Essentially, this protocol would
reduce to introducing meta-parameters. This gives the model more flexibility in terms of the
space of functions that it can learn.

3. Implement analogs of “ventral” and “dorsal” visual pathways: This is not the same thing as
implementing bi-modal input to the model itself. We already have a task, still incomplete, in
which we will investigate fusing two visual input sources, an edge input and a HOF input. In
this case, the motion features, in the form of HOFs, are computed in preprocessing, i.e.,
external to the model. While this holds considerable promise to improve performance, it is
not our preferred ultimate solution. Ultimately, we want our model to rely only on inputs
similar to the inputs that cortex receives, i.e., from thalamus. There are multiple broad output
signals from thalamus, minimally, the “parvo” and “magno” channels. In some sense, the
“parvo” can be viewed as analogous to our edge input stream and the “magno” can be viewed
as analogous to a HOF stream. In any case, cortical V1 receives parvo and magno and they
are likely heavily mixed. V1 then gives rise to the dorsal (optimized for form recognition)
and ventral (optimized for motion and broad arrangement).

133
Approved for public release; distribution unlimited.

We propose to construct models that explicitly have a V1 which outputs to separate areas
analogous to V2 and MT, both of which then project to a single higher area. This is a
simplification with respect to actual cortex, but we believe such an architecture may further
optimize performance. In our hands, the mac parameters of the “V2” and “MT” analogs
would be set in broad analogy to these cortical areas.

4. Investigating a range of data augmentation techniques: We currently use only a very simple
form of augmentation: we create five slightly noisy variants of each input and use those to
train the model as well.

5. Improve the learning rule: Currently, when an association is made from a code Aφ to another
code Bφ , the ages of the two codes, i.e., how they have been active, are not used to influence
the strength of the association. However, doing so would likely improve performance. For
example, a level J code J

Tφ associates with two subjacent codes 1J
Tφ
− and 1

1
J

Tφ
−
+ that become

active in sequence. We can imagine that increasing the weights from J
Tφ to 1

1
J

Tφ
−
+ less than

from J
Tφ to 1J

Tφ
− would help to correctly disambiguate future similar instances in which

time-warping has occurred.

6. Implement user-settable learning parameter specification in configuration files: This would
allow us to more easily include these parameters in our large-scale parameter search process.

7. Slaving dynamics at lower levels to familiarity measures at higher levels: We have long
wanted to investigate this principle. There is considerable evidence that the brain uses this
principle. Specifically, the neuromodulatory systems relevant to detecting novelty vs.
familiarity and for setting dynamics appropriately project to all cortical levels, but receive
preponderantly from the highest areas. In out model’s terminology, we would say that a G
value (or average of G’s) produced in one or macs at a higher level is driving a global
sigmoid modulation function which is applied (broadcast) to macs at all levels.

8. Quantify correlation between classification accuracy and trace accuracy: As reported in
TR23 and prior reports, we see that classification accuracy can be quite high even when trace
accuracy (averaged across all macs at all levels) is quite low, i.e., when there are numerous
errors at the single-unit level. In fact, one can see that there are numerous single-unit errors
(red cells) in the L2 macs in Figure 1 (due to scaling in the figure, we cannot show the exact
codes in the L1 macs, but they too contained numerous unit-level errors). We would like to
more systematically quantify the relation of classification accuracy to trace accuracy (and to
trace accuracy at each of the individual internal levels). We offered a partial explanation of
the reason for this in the prior report, referring to it as the DCCI effect. But there are
additional principles/mechanisms underlying the robustness of the class accuracy despite low
trace accuracy. We would like to explore them more fully.

9. Explore the parameters of the Backoff Mechanism in detail: During recognition, the model
can be set to use “Backoff” or not. Backoff is an automated procedure for choosing which
version of the G measures available to a mac to use to choose the code. In general, it seems
like the best choice is to use the highest-order G available, where the order is the number of
evidence sources being multiplied to produce the distributions (in each CM) from which a
winner is chosen. For example, if a mac has active U, H, and D inputs, then it seems
plausible that the best estimates of the distributions would result from combining all three

134
Approved for public release; distribution unlimited.

evidence sources: in this case, the HUDV values would be used, resulting in the HUDG version
of G.

However, if the input space is such that speed-ups or slow-downs of spatiotemporally
localized subsets of overall spatiotemporal inputs, relative to prior instances of such overall
inputs, occur appreciably frequently, then it may often occur that lower-order G’s than the
highest order G available yield higher values. If a lower order G attains a value significantly
higher than the higher order G, this can indicate that the current input instance is equivalent
to a prior instance under one or more highly structured transforms, e.g., translation, rotation,
omission or insertion of whole parts. In such cases, it may lead to higher recognition
accuracies at the scale of the overall inputs than if all macs were always forced to always use
the highest-order G available. In other words, backoff is part of a general strategy and set of
principles for invariant recognition. That said, while we have mechanism of backoff in place
and operating, tuning the many parameters that specify it is still very much an open
issue/question. While some general principles suggest the broad form of the backoff policy
(i.e., the schedule of backoff thresholds), we have large uncertainty as to the optimal specific
parameter values. Moreover, these parameters can vary by level.

8.1 Applying Supervision at Multiple Scales

Stepping back to Section 5.6, we emphasize that while the two instances of digit ‘4’ in Figure 37
may look pretty similar to a human, Sparsey will assign very different L3 codes to them.
Without additional supervisory information and a framework for using that information, Sparsey
would not capture the fact that these two instances are of the same category. By the same token,
the reader has likely readily concurred that the two patterns in 2

3M ’s U-RF in Figure 38
(highlighted in orange glow) can be considered instances of the class, “T Junction”. However, as
can be seen in comparing the violet highlighted codes in Figure 36 and Figure 39, Sparsey
assigns very different codes to these two instances. Moreover, a human might easily agree that
the two patterns that occur in 1

13M ’s U-RF (highlighted with rose glow) constitute instances of the
class “Horizontal Edge”; the instance in Figure 37a is not perfectly horizontal—the rightmost
pixel is out of line with the other three—but at that tiny scale (a 4x4 pixel aperture), this could be
easily be construed as simply a noisy version of a perfect horizontal. Yet as can be seen by
comparing the codes assigned to these two instances (gray highlights in Figure 36 and Figure
39), the codes assigned to the two “Horizontal Edge” instances are very different.

The point we are building towards here is that supervisory information, i.e., category labels, can
potentially be used at multiple conceptual/featural scales. Certainly, supervised learning is
applied at progressively larger scales in the case of human learning. Even as infants, our
behavior is channeled (supervised) in numerous ways. Generally, teaching signals given to
infants, concern relatively small-scale features. In the early years, we are explicitly taught how
to draw straight line segments, curves, etc. When we are a little older we begin to be taught
letters, including in terms of the basic strokes of which they are composed, then pairs/groups of
letters, then words, etc.

135
Approved for public release; distribution unlimited.

We did not follow this rubric in the experiments of Section 5.6: rather, we applied supervised
learning only at the L3 scale, as shown in Figure 35. However, in future research, we plan to
experiment with applying supervision at a progression of scales, as suggested in Figure 66. First,
we would teach the network, or rather, individual L1 macs, the concepts of ‘vertical edge’,
‘horizontal edge’, ‘diagonal’, etc. Once the L1 macs have learned their features sufficiently well,
we would begin providing labels to L2 macs, then at the L2 level, and then at L3. However, the
model also allows supervised learning to be applied in interleaved fashion across levels. There is
no strict requirement for proceeding upward, level by level. However, note that even if we apply
supervised learning at L1, unsupervised learning will still occur throughout all levels of the
network. That is, codes in macs at L2 and higher will be learned (stored) from the very first
learning trials presented to the model.

Figure 66: Illustration of Applying Supervised learning at Multiple Scales in the Network

of Figure 35

136
Approved for public release; distribution unlimited.

Thus, we emphasize that Figure 66 simply suggests some aspects of a possible overall
architecture. The operational details of multiple-scale, interleaved supervised learning need to be
developed. A key question is: how would the results of supervised learning at a lower scale, e.g.,
L1 (V1), be used to abet/guide learning at higher levels, e.g., L2, L3, etc.? And, this has several
sub-questions: how would it abet/guide:

1. The unsupervised learning of higher level SDC codes in the macs of a sensory (non-

symbolic, non-label-representing) network?
2. The supervised learning of such codes, i.e., the association of higher-level mac codes to

representations of other categories?
3. The unsupervised learning of codes in macs at any hierarchical level in other sensory

networks of other modalities, e.g., auditory, somatic, etc.

Regarding the first question, we described in Sec. VI of TR4 two different supervised learning
modes, Sup-mode 1 and Sup-mode 2. Thus far, our studies have only involved Sup-mode 1, in
which the supervised learning is only from the L3 (V3) codes to the category codes. Thus, there
is no influence of previously acquired category information on the choice of subsequent SDC
codes. In other words, U-signals from the category codes to the sensory codes are not used in
choosing winners in the CMs of macs. However, they could be, and in natural systems probably
are, an important influence on the learning process. We intend to implement and explore this
principle, i.e., Sub-mode 2, in the near future.

8.2 Outstanding Questions Regarding Parameter Settings

8.2.1. Backoff

During recognition, the model can be set to use “Backoff” or not. Backoff is an automated
procedure for choosing which version of the G measures available to a mac to use to choose the
code. In general, it seems like the best choice is to use the highest-order G available, where the
order is the number of evidence sources being multiplied to produce the distributions (in each
CM) from which a winner is chosen. For example, if a mac has active U, H, and D inputs,
plausibly the best estimates of the distributions would result from combining all three evidence
sources: in this case, the HUDV values would be used, resulting in the HUDG version of G.

However, suppose that the input space is such that speed-ups or slow-downs of spatiotemporally
localized subsets of overall spatiotemporal inputs, relative to prior instances of such overall
inputs, occur appreciably frequently. In that case, it may often occur that lower-order G’s than
the highest order available yield higher G (familiarity) values than the higher order G’s. In such
cases, if a lower order G attains a value significantly higher than the higher order G, this can
indicate that the current input instance is equivalent to a prior instance under one or more highly
structured transforms, e.g., translation, rotation, omission or insertion of whole parts. In such
cases, it may lead to higher recognition accuracies at the scale of the overall inputs than if all
macs were always forced to use the highest-order G available. In other words, backoff is part of
a general strategy and set of principles for invariant recognition. That said, while we have
mechanism of backoff in place and operating, tuning the many parameters that specify it is still
very much an open issue/question.

137
Approved for public release; distribution unlimited.

At more mundane level, we do not yet have general principles for setting the specific parameters
of the backoff procedure. A particular example of a “backoff schedule” is shown below. This
says that for macs at level 2, if the highest-order G available is HUDG , then if 0.5HUD HUDG ≥ G = ,
then use HUDG (and the underlying HUDV values to choose the code. Otherwise evaluate the next
lower order versions of V and G, i.e., the HU and UD versions, and see if the max of those G’s
attains another threshold, 2 0.85way−G = . If it does, then use it. Otherwise backoff to the next
lower order G, which here would be UG and see if it passes yet another threshold, 0.96UG = .
While some general principles suggest the broad form of the backoff, we have large uncertainty
as to what the optimal specific numeric parameters should be. Moreover, these parameters can
vary by level.

138
Approved for public release; distribution unlimited.

9. REFERENCES

Andoni, A. and P. Indyk (2008). "Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions." Communications of the ACM 51(1): 117-122.
Barkat, T. R., D. B. Polley and T. K. Hensch (2011). "A critical period for auditory thalamocortical
activity". Nature Neuroscience." Nature Neurosci. 14(9): 1189-1196.
Barrett, A. B., G. O. Billings, R. G. M. Morris and M. C. W. van Rossum (2009). "State Based Model of
Long-Term Potentiation and Synaptic Tagging and Capture." PLoS Computational Biology 5(1):
e1000259.
Behrend, D. A., J. Scofield and E. E. Kleinknecht (2001). "Beyond fast mapping: Young children's
extensions of novel words and novel facts." Developmental Psychology 37(5): 698.
Bengio, Y. (2007). On the challenge of learning complex functions. Progress in Brain Research. P. Cisek,
T. Drew and J. F. Kalaska, Elsevier. Volume 165: 521.
Bengio, Y., A. Courville and P. Vincent (2012). Representation Learning: A Review and New
Perspectives, U. Montreal.
Bengio, Y. and Y. leCun (2007). Scaling Learning Algorithms towards AI. Large-Scale Kernel Machines.
L. Bottou, O. Chapelle, D. DeCoste and J. Weston, MIT Press.
Brooks, L. R. (1987). Decentralized Control of Categorization: the role of prior processing episodes.
Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization. Emory
Symposia in Cognition 1 (Oct. 1984). U. Neisser, Cambridge University Press: 141-174.
Carey, S. and E. Bartlett (1978). "Acquiring a single new word." Papers and Reports on Child Language
Development 15: 17-29.
DeAngelis, G. C., G. M. Ghose, I. Ohzawa and R. D. Freeman (1999). "Functional micro-organization of
primary visual cortex: receptive field analysis of nearby neurons." J Neurosci 19(10): 4046-4064.
DeAngelis, G. C., I. Ohzawa and R. D. Freeman (1993). "Spatiotemporal organization of simple-cell
receptive fields in the cat's striate cortex. I. General characteristics and postnatal development." J
Neurophysiol 69(4): 1091-1117.
Desimone, R., T. D. Albright, C. G. Gross and C. Bruce (1984). "Stimulus-selective properties of inferior
temporal neurons in the macaque." J. Neurosci. 4(8): 2051-2062.
DiCarlo, James J., D. Zoccolan and Nicole C. Rust (2012). "How Does the Brain Solve Visual Object
Recognition?" Neuron 73(3): 415-434.
Dollaghan, C. (1985). "Child meets word: "fast mapping" in preschool children. ." Journal of speech and
hearing research 28(3): 449-454.
Douglas, R. J., K. A. Martin and D. Witteridge (1989). "A canonical microcircuit for neocortex." Neural
Computation 1(4): 480-488.
Douglas, R. J. and K. A. C. Martin (2004). "Neuronal Circuits of the Neocortex." Annual Review of
Neuroscience 27(1): 419-451.
Feldman, V. and L. G. Valiant (2009). "Experience-Induced Neural Circuits That Achieve High
Capacity." Neural Computation 21(10): 2715-2754.
Frey, B. J. (1998). Graphical models for machine learning and digital communication, MIT Press.
Frey, U. and R. G. M. Morris (1997). "Synaptic tagging and long-term potentiation." Nature 385(6616):
533-536.
Grigorescu, C., N. Petkov and M. A. Westenberg (2004). "Contour and boundary detection improved by
surround suppression of texture edges." Image and Vision Computing 22(8): 609-622.

139
Approved for public release; distribution unlimited.

Grossberg, S. (1980). "How does a brain build a cognitive code?" Psychological Review 87(1): 1-51.
Hebb, D. O. (1949). The organization of behavior. New York, Wiley.
Hecht-Nielsen, R. (2005). "Cogent confabulation." Neural Networks 18(2): 111-115.
Hinton, G. E., S. Osindero and Y.-W. Teh (2006). "A Fast Learning Algorithm for Deep Belief Nets."
Neural Computation 18(7): 1527-1554.
Hintzman, D. L. (1986). ""Schema abstraction” in multiple-trace memory model " Psychological Review
93: 411-428.
Jafarpour, A., L. Fuentemilla, A. J. Horner, W. Penny and E. Duzel (2014). "Replay of Very Early
Encoding Representations during Recollection." The Journal of Neuroscience 34(1): 242-248.
Ji, D. and M. A. Wilson (2007). "Coordinated memory replay in the visual cortex and hippocampus
during sleep." Nat Neurosci 10(1): 100.
Jitsev, E. (2010). On the self-organization of a hierarchical memory for compositional object
representation in the visual cortex, Goethe University Frankfurt am Main.
Jockel, S. (2009). Crossmodal Learning and Prediction of Autobiographical Episodic Experiences using a
Sparse Distributed Memory. PhD, University of Hamburg.
Jusczyk, P. W. (1999). "How infants begin to extract words from speech." Trends in Cognitive Sciences
3(9): 323-328.
Kanerva, P. (1988). Sparse distributed memory. Cambridge, MA, MIT Press.
Kanerva, P. (1994). The Spatter Code for encoding concepts at many levels. Proceedings of International
Conference on Artificial Neural Networks, Sorento, Italy, Springer-Verlag.
Kanerva, P. (2009). "Hyperdimensional Computing: An Introduction to Cmoputing in Distributed
Representation with High-Dimensional Random Vectors." Cognitive Computing 1: 139-159.
Kiani, R., H. Esteky, K. Mirpour and K. Tanaka (2007). "Object Category Structure in Response Patterns
of Neuronal Population in Monkey Inferior Temporal Cortex." J Neurophysiol 97(6): 4296-4309.
Kouh, M. and T. Poggio (2008). "A Canonical Neural Circuit for Cortical Nonlinear Operations." Neural
Computation 20(6): 1427-1451.
Kreiman, G., C. Hung, A. Kraskov, R. Q. Quiroga, T. Poggio and J. Dicarlo (2006). "Object selectivity of
local field potentials and spikes in the macaque inferior temporal cortex." Neuron 49: 433-445.
Kruschke, J. K. (1992). "ALCOVE - An Exemplar-Based Connectionist Model of Category Learning."
Psychological Review 99(1): 22-44.
Laptev, I., M. Marszalek, C. Schmid and B. Rosenfeld (2008). Learning realistic human actions from
movies. . CVPR.
Le, Q. V., W. Zou, S. Yeung and A. Y. I. Ng, 2011 (2011). Learning hierarchical spatio-temporal features
for action recognition with independent subspace analysis. CVPR-11.
LeCun, Y. and Y. Bengio (1995). Convolutional networks for images, speech, and timeseries.
Lee, H., R. Grosse, R. Ranganath and A. Ng (2011). "Unsupervised Learning of Hierarchical
Representations with Convolutional Deep Belief Networks." Communications of the ACM 54(10): 95-
103.
Litvak, S. and S. Ullman (2009). "Cortical Circuitry Implementing Graphical Models." Neural
Computation 21(11): 3010-3056.
Liu, J., J. Luo and S. M. (2009). Recognizing realistic actions from videos “in the Wild”. CVPR.

140
Approved for public release; distribution unlimited.

Luczak, A., B. L. McNaughton and K. D. Harris (2015). "Packet-based communication in the cortex." Nat
Rev Neurosci 16(12): 745-755.
Marszalek, M., I. Laptev and C. Schmid (2009). Actions in Context. CVPR.
McKenzie, S., Andrea J. Frank, Nathaniel R. Kinsky, B. Porter, Pamela D. Rivière and H. Eichenbaum
(2014). "Hippocampal Representation of Related and Opposing Memories Develop within Distinct,
Hierarchically Organized Neural Schemas." Neuron 83(1): 202-215.
Moll, M. and R. Miikkulainen (1995). Convergence-Zone Episodic Memory: Analysis and Simulations,
University of Texas at Austin, Dept. of Computer Science.
Moll, M. and R. Miikkulainen (1997). "Convergence-Zone Episodic Memory: Analysis and Simulations."
Neural Networks 10(6): 1017-1036.
Moncada, D. and H. Viola (2007). "Induction of Long-Term Memory by Exposure to Novelty Requires
Protein Synthesis: Evidence for a Behavioral Tagging." J. Neurosci. 27(28): 7476-7481.
Morris, R. G. M. and U. Frey (1999). "Tagging the Hebb synapse: Reply." Trends in Neurosciences
22(6): 256.
Murray, J. F. and K. Kreutz-Delgado (2007). "Visual Recognition and Inference Using Dynamic
Overcomplete Sparse Learning." Neural Computation 19(9): 2301-2352.
Nandy, Anirvan S., Tatyana O. Sharpee, John H. Reynolds and Jude F. Mitchell (2013). "The Fine
Structure of Shape Tuning in Area V4." Neuron 78(6): 1102-1115.
O’Neill, J. and J. Csicsvari (2014). "Learning by Example in the Hippocampus." Neuron 83(1): 8-10.
Pandipati, S. and N. E. Schoppa (2012). "Age-dependent adrenergic actions in the main olfactory bulb
that could underlie an olfactory-sensitive period." Journal of Neurophysiology 108(7): 1999-2007.
Pitkow, X. (2012). Compressive neural representations of sparse, high-dimensional probabilities.
Advances in Neural Information Processing Systems.
Pouget, A., J. M. Beck, W. J. Ma and P. E. Latham (2013). "Probabilistic brains: knowns and unknowns."
Nat Neurosci 16(9): 1170-1178.
Rachkovskij, D. A. (2001). "Representation and Processing of Structures with Binary Sparse Distributed
Codes." IEEE Transactions on Knowledge and Data Engineering 13(2): 261-276.
Rachkovskij, D. A. and E. M. Kussul (2001). "Binding and Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning." Neural Computation 13: 411-452.
Rachkovskij, D. A. and E. M. Kussul (2001). "Binding and Normalization of Binary Sparse Distributed
Representations by Context-Dependent Thinning." Neural Computation 13(2): 411-452.
Ramirez, A., E. A. Pnevmatikakis, J. Merel, L. Paninski, K. D. Miller and R. M. Bruno (2014).
"Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input." Nat
Neurosci 17(6): 866-875.
Riesenhuber, M. and T. Poggio (1999). "Hierarchical models of object recognition in cortex." Nat
Neurosci 2(11): 1019.
Rinkus, G. (1996). A Combinatorial Neural Network Exhibiting Episodic and Semantic Memory
Properties for Spatio-Temporal Patterns. Ph.D., Boston University.
Rinkus, G. J. (2010). "A cortical sparse distributed coding model linking mini- and macrocolumn-scale
functionality." Frontiers in Neuroanatomy 4.
Rodriguez, M., J. Ahmed and M. Shah (2008). Action mach: A spatio-temporal maximum average
correlation height filter for action recognition. ICCV.

141
Approved for public release; distribution unlimited.

Rust, N. C. and J. J. DiCarlo (2010). "Selectivity and Tolerance (“Invariance”) Both Increase as Visual
Information Propagates from Cortical Area V4 to IT." The Journal of Neuroscience 30(39): 12978-12995.
Sajikumar, S. and J. U. Frey (2004). "Resetting of `synaptic tags' is time- and activity-dependent in rat
hippocampal CA1in vitro." Neuroscience 129(2): 503-507.
Salakhutdinov, R. and G. Hinton (2009). "Semantic hashing." International Journal of Approximate
Reasoning 50(7): 969-978.
Saul, L. K. and S. Roweis (2002). Think Globally, Fit Locally: Unsupervised Learning of Nonlinear
Manifolds, U. Penn.
Schuldt, C., I. Laptev and B. Caputo (2004). Recognizing Human Actions: A Local SVM Approach.
ICPR, Cambridge, UK.
Serre, T., M. kouh, C. Cadieu, U. Knoblich, G. Kreiman and T. Poggio (2005). A Theory of Object
Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual
Cortex. AI Memo 2005-036, MIT.
Serre, T., G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, T. Poggio and T. D. a. J. F. K. Paul Cisek
(2007). A quantitative theory of immediate visual recognition. Progress in Brain Research, Elsevier.
Volume 165: 33.
Smith, L. and C. Yu (2008). "Infants rapidly learn word-referent mappings via cross-situational statistics."
Cognition 106(3): 1558.
Taylor, G. W., R. Fergus, Y. LeCun and C. Bregler (2010). Convolutional Learning of Spatio-temporal
Features. European Conference on Computer Vision (ECCV'10).
Theunissen, F. E. and J. E. Elie (2014). "Neural processing of natural sounds." Nat Rev Neurosci 15(6):
355-366.
Tulving, E. (1972). Episodic and Semantic Memory. Organization of Memory. E. Tulving and W.
Donaldson. New York, Academic Press.
Tulving, E. (1983). Elements of Episodic Memory. Oxford Oxford University Press.
Valiant, L. (2006). "A quantitative theory of neural computation." Biological Cybernetics 953(3): 205-
211.
Vokey, J. R. and L. R. Brooks (1994). "FRAGMENTARY KNOWLEDGE AND THE PROCESSING-
SPECIFIC CONTROL OF STRUCTURAL SENSITIVITY." Journal of Experimental Psychology-
Learning Memory and Cognition 20(6): 1504-1510.
Whittlesea, B. W. A. and M. D. Dorken (1993). "Incidentally, things in general are particularly
determined - An episodic-processing account of implicit learning." Journal of Experimental Psychology-
General 122(2): 227-248.
Wiesel, T. N. and D. H. Hubel (1963). "Effects of visual deprivation on morphology and physiology of
cell in the cat’s lateral geniculate body." J. Neurophys. 26(6).
Willshaw, D. J., O. P. Buneman and H. C. Longuet-Higgins (1969). "Non Holographic Associative
Memory." Nature 222: 960-962.
Wilson, M. A. and B. L. McNaughton (1994). "Reactivation of hippocampal ensemble memories during
sleep." Science 265(5172): 676-679.
Wittgenstein, L. (1953). Philosophical Investigations, Blackwell.
Zeiler, M. D., S. F. Taylor and R. Fergus (2011). Adaptive Deconvolutional Networks for Mid and High
Level Feature Learning. ICCV-13.

142
Approved for public release; distribution unlimited.

APPENDIX A - Edge Filtering Detail

The video datasets contain sequences of humans performing natural actions and movements
characteristic to many sports and activities. In order to accomplish the project’s goals, we
preprocess all the videos within each dataset to standardize the spatial resolution, perform edge
detection, and binarize. This preprocessing results in visual input features similar to the output of
the lateral geniculate nucleus (LGN) in the primate thalamus. First, we describe the video
datasets. Second, we report the video processing protocol that we developed to detect edges and
binarize videos in the datasets. Sample frames are shown throughout the presentation of the
video processing methodology with different parameter settings.

A.1 The Video Datasets

We consider the KTH dataset (Schuldt, Laptev et al. 2004), UCF sports action dataset
(Rodriguez, Ahmed et al. 2008), YouTube action dataset (Liu, Luo et al. 2009), and the
Hollywood 2 dataset (Marszalek, Laptev et al. 2009). Table 17 depicts representative sample
frames from each dataset and describes characteristic actions contained within each. The KTH
dataset consists of video sequences of 25 human subjects in 4 indoor and outdoor scenes,
performing 6 actions. The UCF dataset consists of 200 video sequences of human subjects in
outdoor scenes performing 9 categories of actions. The YouTube action dataset consists of 1100
video sequences: 11 human action categories such as diving, cycling, golf swinging, and
horseback riding, 25 action type groupings, and 4 clips in each group. Finally, the Hollywood 2
dataset is composed of 3669 action clips of human actions and scenes from Hollywood films.
There are 12 classes of human actions, such as kissing, picking up a phone, and sitting, and 10
classes of scenes, such as bedroom, hotel, kitchen, and office. Videos in each dataset vary in
encoding scheme, color depth, and spatial resolution. Before edge detection and binarization, we
standardized all videos by converting them to 8 bit 300x240 grayscale sequences in avi format.

143
Approved for public release; distribution unlimited.

Table 17. Video Datasets

A.2 Preprocessing Protocol

We implemented an automated routine in MATLAB to recursively traverse a folder hierarchy of
each dataset, locate all video files, convert the videos into 8 bit 300x240 grayscale videos, and
detect edges in each video. The outputs are uncompressed binarized videos that TEMECOR can
accept as input. Table 18 presents an overview of video processing cascade. We now present
each processing stage in detail.

Video Dataset Actions Sample Frames
KTH

(Schuldt, Laptev et
al. 2004)

Running, boxing,
hand waving,
walking, etc.

UCF Sports Action

(Rodriguez, Ahmed
et al. 2008)

Golf swings,
biking, diving,
horse riding, etc.

Youtube Action

(Liu, Luo et al.
2009)

Shooting, cycling,
juggling, kicking,
etc.

Hollywood 2

(Marszalek, Laptev
et al. 2009)

Answering phone,
hand shaking,
sitting, eating,
kissing, etc.

144
Approved for public release; distribution unlimited.

Table 18. Overview of Video Processing Stages to Detect Edges and Binarize Videos

1. Stage 1: Gaussian Smoothing

In the first stage, we perform Gaussian filtering of each frame of video. We found that this
smoothing procedure improved edge detection performance. The next stage computes gradients
in each image frame, which is prone to video compression artifacts, discretization and noise,
since differences are computed over small neighborhoods of the frame. Low pass filtering using
a Gaussian filter reduces the subsequent effects of these artifacts. We used the following
normalized 2D Gaussian filter G in computations:

Stage Technique Description Sample Frame

1 Gaussian
filtering Spatial smoothing for noise reduction

2 Gabor edge
detection

Extract 112 grayscale maps (16 edge orientations,
7 spatial phases)

3
Orientation
and phase
superposition

Obtain grayscale gradient image by taking the L2-
norm of orientation and L∞-norm phase maps.

4 Surround
Suppression

Suppress regions in each frame that contain high
spatial frequency textures are not central to the
action being performed in the scene. The
technique reduces noise and variance across
consecutive frames.

5

Edge
thinning
(non-maxima
suppression)

Reduce the width of image contours to one pixel.

6 Hysteresis
thresholding

Binarize video frames based on neighborhood
connectivity and contour magnitude

7 Suppression
Slope

Suppress surviving contours based on the
likelihood they are texture edges, and not central
to the action taking place in the video.

145
Approved for public release; distribution unlimited.

𝐺𝐺𝑢𝑢(𝑥𝑥,𝑦𝑦) =
𝑒𝑒−

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2

√2𝜋𝜋𝜋𝜋

A-1

𝐺𝐺(𝑥𝑥,𝑦𝑦) =
𝐺𝐺𝑢𝑢(𝑥𝑥,𝑦𝑦)

∑ ∑ 𝐺𝐺𝑢𝑢(𝑥𝑥,𝑦𝑦)𝑦𝑦𝑥𝑥

Our Gaussian filters had a 5x5 pixel size and we fixed 𝜋𝜋 = 1.5, and x and y correspond to spatial
positions of pixels within the filter neighborhood.

2. Stage 2: Gabor Edge Detection

In this stage, we compute image gradients by filtering each frame with Gabor wavelets that have
7 spatial phases and 16 orientations. Figure 67 depicts a subset of the filters with 6 different
orientations (top row) and 6 different phases (bottom row).

Figure 67: Example Gabor Wavelets Used in Our Preprocessing

Gabor filters are defined according to Eq. A-2:

𝐵𝐵(𝑥𝑥, 𝑦𝑦) = cos�
2𝜋𝜋𝑥𝑥′
𝜆𝜆

+ 𝜑𝜑�𝑒𝑒−
𝑥𝑥′2+𝛾𝛾2𝑦𝑦′2

2𝜎𝜎2 A-2

𝑥𝑥′ = 𝑥𝑥 cos(𝜃𝜃) + 𝑦𝑦 sin(𝜃𝜃)

𝑦𝑦′ = −𝑥𝑥 sin(𝜃𝜃) + 𝑦𝑦 cos(𝜃𝜃)

In Eq. A-2, 𝜆𝜆 defines the filter wavelength in pixels, 𝜑𝜑 is the spatial phase, 𝜋𝜋 signifies the
standard deviation of the Gaussian component, 𝛾𝛾 corresponds to the filter aspect ratio, (x’,y’) is
the rotation matrix that aligns the Gabor filter in the direction of the orientation 𝜃𝜃. The value for
parameter 𝜋𝜋 is specified directly according to the spatial bandwidth b, defined by Eq. A-3, which
describes the spatial frequency of the half-maximum response of the Gabor filter.

𝜋𝜋 =
𝜆𝜆
𝜋𝜋
�𝐿𝐿𝐿𝐿𝐿𝐿(2)

2
2𝑏𝑏 + 1
2𝑏𝑏 − 1

 A-3

146
Approved for public release; distribution unlimited.

The Gabor filter size is automatically determined according to the ratio 𝜎𝜎
𝛾𝛾
. We set default

parameters to 𝜆𝜆 = 3, 𝛾𝛾 = 0.5, 𝑏𝑏 = 10. The result of convolution of each video frame with the
Gabor filter bank B is 112 feature maps (16 orientations x 7 phases). The next stage specifies
how the extracted features are combined to form a single image gradient map of each frame.

3. Stage 3: Orientation and Phase Superposition

Orientation and phase superposition refers to the combination of the corresponding feature maps
into a single image gradient. Orientation features are merged according to the L2-norm, i.e.
√𝑋𝑋2 + 𝑌𝑌2 + ⋯ for orientation feature maps X, Y,… According to this orientation superposition
scheme, edges detected at a number of orientations factor into the final value at each pixel. We
use the L∞-norm to combine phases, i.e. max (𝑋𝑋,𝑌𝑌, …), under the assumption that any particular
edge in the video frame will have a dominant spatial phase. Figure 68 shows the detected
gradient maps on frames at the beginning, middle, and end of sample videos. Figure 69 depicts
how different values of 𝜆𝜆, 𝛾𝛾, and 𝑏𝑏 affect the gradient map of a sample frame of video.

Figure 68: Gradient Image Frames Computed by Gabor Wavelet Filtering

147
Approved for public release; distribution unlimited.

Figure 69: Gabor Wavelet Image Gradients with Different Parameter Values for the

Spatial Wavelength, Aspect Ratio, and Bandwidth

4. Stage 4: Surround Suppression

In this stage, we implement a technique to improve the quality of edges that are detected in video
frames called surround suppression (Grigorescu, Petkov et al. 2004). The operation enhances
the response to isolated region boundaries, edges due to objects, and lines, but weakens the
response to video artifacts, noise, and jagged texture edges. The approach is motivated by the
finding in primate primary visual cortex (V1) that neurons demonstrate suppression if a stimulus
appears outside the classical receptive field (Figure 70). Texture in the surrounding
neighborhood of pixel (x,y) (orange) will be suppressed. First, an annulus-shaped kernel is
constructed to select the values surrounding each pixel in the gradient map. We implement the
annular kernel through a difference-of-Gaussians (DoG) (Eq. A-4) followed by a normalization
and half-wave rectification stage (Eq. A_5).

𝐷𝐷𝐿𝐿𝐺𝐺𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦) =
1

2𝜋𝜋(4𝜋𝜋𝑑𝑑)2
𝑒𝑒
− 𝑥𝑥2+𝑦𝑦2
2(4𝜎𝜎𝑑𝑑)2 −

1
2𝜋𝜋(𝜋𝜋𝑑𝑑)2

𝑒𝑒
−𝑥𝑥

2+𝑦𝑦2
2(𝜎𝜎𝑑𝑑)2 A-4

𝑤𝑤𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦) =
max�𝐷𝐷𝐿𝐿𝐺𝐺𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦), 0�
�max�𝐷𝐷𝐿𝐿𝐺𝐺𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦), 0��

1

 A-5

148
Approved for public release; distribution unlimited.

In Eq. A-5, we fix 𝜋𝜋𝑑𝑑 = 1.6, and ‖𝑋𝑋‖1 refers to the L1-norm.

Figure 70: Illustration of Texture Suppression Kernel wσ

Next, we convolve the image gradient M of each video frame with the on-surround kernel 𝑤𝑤𝜎𝜎𝑑𝑑 in
Eq. A-6 and obtained the suppressed grayscale gradient map 𝑆𝑆𝜎𝜎𝑑𝑑 by applying the suppression
strength factor α, which we fix to 0.6.

𝑡𝑡𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦) = �𝑀𝑀𝜎𝜎𝑑𝑑(𝑥𝑥 − 𝑢𝑢,𝑦𝑦 − 𝑣𝑣)𝑤𝑤𝜎𝜎𝑑𝑑(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣

𝑆𝑆𝜎𝜎𝑑𝑑 = max (𝑀𝑀𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦) − α 𝑡𝑡𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦), 0) A-6

Figure 71 shows the performance of surround suppression on the sample video clip with different
settings for suppression strengths (α). Edges non-essential to the action taking place in the scene
are suppressed, while the edges of the human performing the action are preserved.

Figure 71: Effects of Texture Surround Suppression on Image gradient of Sample Frame

149
Approved for public release; distribution unlimited.

5. Stage 5: Edge Thinning

Stage 5 thins contours present in the output of the surround suppression stage (𝑆𝑆𝜎𝜎𝑑𝑑) to be one
pixel wide. The approach is called non-maxima suppression. From the orientation maps
computed during Stage 2, we construct a map for each video frame that labels the orientation that
garnered the largest value at each pixel location. This tells us the local contour orientation if
there a contour of an object in the scene that passes through location (x,y). From the contour
orientation estimates at each location, we interpolate a line in the specified direction in the local
pixel neighborhood. If the central pixel magnitude is greater those of the surrounding pixels in
the neighborhood that intersect the line, then the central pixel value is preserved. However, if the
neighboring pixels on the line are greater, the central pixel is suppressed. This thinning is
efficiently implemented by shifting the entire frame in the direction of the dominant local pixel
orientation and comparing the magnitude central and neighboring pixel values. Figure 72
displays frames from video clips following non-maxima suppression edge thinning.

Figure 72: The Results of Edge Thinning by Non-Maxima Suppression

6. Stage 6: Hysteresis Thresholding

The output of Stage 6 is a binary image of each video frame, which is achieved by a hysteresis
thresholding procedure based on the strengths of contours computed in Stage 5. There is a low
threshold 𝑡𝑡𝑙𝑙1below which pixels in the output of Stage 5 are set to zero, and a high threshold
𝑡𝑡ℎ1above which pixels are preserved. Intermediate pixel values between the two thresholds are
preserved when they border candidate pixels with values greater than 𝑡𝑡ℎ1, otherwise they are set
to zero. In other words, candidate binary edge pixels need to have active neighbors that connect
them to a larger edge in the image. We compute the thresholds according to the image statistics:
𝑡𝑡𝑙𝑙1is set to the 0.25-quantile of pixel values, and 𝑡𝑡ℎ1 is set to 2𝑡𝑡𝑙𝑙1. This approach confers the
advantage that the thresholds generalize to videos with very different content and adaptively
threshold video frames based on the distribution of pixel values. Figure 73 shows sample
binarized video frames.

150
Approved for public release; distribution unlimited.

Figure 73: Binarization Results Following Hysteresis Thresholding

7. Stage 7: Suppression Slope

This stage applies a post-processing enhancement to the binary videos called the suppression
slope (Grigorescu, Petkov et al. 2004). In Stage 4, we performed surround suppression to
mitigate the appearance of texture in the image gradients. From Eq. A-6, 𝑡𝑡𝜎𝜎𝑑𝑑 correlates with how
much texture exists around each pixel: higher values indicate a higher likelihood that the pixel
was surrounded by texture, while lower values indicate a low chance the pixel is surrounded by a
texture. By computing the derivative, the suppression slope, we can quantify the probability that
each pixel is a texture pixel and not part of a more global smooth contour. Eq. A-7 defines the
suppression slope E as proportional to the ratio between the surround suppression strength
𝑡𝑡𝜎𝜎𝑑𝑑and the image gradient 𝑀𝑀𝜎𝜎𝑑𝑑:

𝐸𝐸(𝑥𝑥,𝑦𝑦) = arctan �
𝑡𝑡𝜎𝜎𝑑𝑑(𝑥𝑥, 𝑦𝑦)
𝑀𝑀𝜎𝜎𝑑𝑑(𝑥𝑥,𝑦𝑦)

� A-7

To implement a strategy that preserves pixel values that have low suppression slopes (i.e., are not
texture elements) and set pixel values that have high suppression slopes to zero (i.e., are likely
texture elements), we apply a second hysteresis thresholding stage based on the values of E
computed across each video frame. There is a low threshold 𝑡𝑡𝑙𝑙2below which pixels in the output
of Stage 5 are preserved, and a high threshold 𝑡𝑡ℎ2above which pixels are set to zero. The low
threshold 𝑡𝑡𝑙𝑙2 is set to the 0.25-quantile value among the distribution of suppression slope values,
and 𝑡𝑡ℎ2 = 2𝑡𝑡𝑙𝑙2.

The final output of the video processing cascade is given by the intersection of binary outputs
computed in Stages 6 and 7 (i.e., their product). Sample frames of the final binary images are
presented in Figure 74. Figure 75 compares the outputs of Stages 6 and 7, without and with the
suppression slope, respectively.

151
Approved for public release; distribution unlimited.

Figure 74: Final Binarized Stage 7 Output Following Application of Suppression Slope

Figure 75: Comparison of Binarization Without (top) and With (bottom) Slope

Suppression

8. Future Considerations

Edge detection using Gabor wavelets confers the advantage that edges in video can be detected
at different spatial scales. We are currently investigating the merging of Gabors of different
scales to further improve edge detection. We have also implemented and are testing a method to
suppress jitter (e.g., sudden appearance/disappearance of contours) using spatiotemporal video
characteristics. The method involves: detecting optic flow between frames in the grayscale
video, segmenting regions that have supra-threshold motion magnitudes, preserving the
sharpness of the moving regions, and iteratively blurring sub-threshold pixels across time.

152
Approved for public release; distribution unlimited.

We have also begun development of preprocessing that will isolate actions being performed in
the scene by motion segmentation (i.e., delete background pixels). This spatiotemporal filtering
helps reduce temporal noise in the edge maps the most in scenes with a stationary camera. We
plan to develop this preprocessing method as a separate motion information channel in analogy
to the magnocellular (motion) pathway of LGN. Once integrated, the model will have the edge
channel (analogous to the parvocellular LGN pathway, which responds to more static and finer
details), which is in spatial register with the motion channel. The combined edge and motion
information should enhance the model’s ability to learn higher-level, more non-linear,
spatiotemporal feature/action/event categories. Finally, we emphasize that all of the
preprocessing methods we are using are strictly local in space and time and: a) are not
computationally expensive; and b) have substantial neurophysiological support.

153
Approved for public release; distribution unlimited.

APPENDIX B - SISC Property

Table 19 describes the experiments we conducted to establish the basis SISC property.

Table 19. Experimental Studies Described in this Section

Study Brief Description

1 Basic SISC: Show that intersection between learned SDR codes co-varies with
spatiotemporal similarity of the corresponding moments

2 Show how correlation between input moments and learned codes varies as function of the
parameters of the sigmoid V-to-µ mapping (nonlinear neuronal activation function)

3

Demonstrate the generality of the SISC property/mechanism with a set of longer
sequences. Specifically, show that the model intrinsically and automatically computes a
spatiotemporal similarity metric that is sensitive to all time steps (moments) from start of
sequence. We say that the temporal order of the spatiotemporal similarity metric is not of
fixed order.

B.1 Study 1: Basic SISC Properties

The purpose of Study 1 is to demonstrate that TEMECOR maps spatiotemporally more similar
inputs to more highly intersecting internal representations, i.e., SDR codes, which we refer to as
the similar-inputs-to-similar-codes (SISC) property. This is an instance of what others have
referred to as the “smoothness prior” (Bengio, Courville et al. 2012). The set of six 2-frame
sequences used in this study are shown in Figure 76a; they are S0 through S5. All sequences
have the same second item, X, while the pixel-wise overlap of the sequence-initial item with
S0’s first item, A, decreases across sequences, S1=[BX], S2=[CX], etc. Thus, the spatiotemporal
similarity of the second frame of each sequence with the second frame of S0 drops across
sequences (even though the purely spatial similarity of the second frame remains the same at
100%). We will show that the codes assigned to the second frame of the progressively
spatiotemporally less similar sequences have progressively smaller intersection with the code
assigned to the second frame of S0. That code, for X, can be seen at right of Figure 76b.

154
Approved for public release; distribution unlimited.

Figure 76: Six 2-Frame Sequences Used in Study 1 and Codes Assigned to S0

The model instance used in this study has two levels, an input level, L0, and one internal
(representation) level, L1. L0 is a 12x12 pixel grid. L1 consists of a single macrocolumn
(“mac”) consisting of Q=25 WTA competitive modules (CMs), a.k.a. “clusters” or minicolumns.
Each CM consists of K=9 binary units (neurons). During learning, on each frame of an input
sequence, an L1 code is chosen using TEMECOR’s Code Selection Algorithm (CSA) and
associative learning occurs. Specifically, bottom-up (U) weights from active L0 units (active
pixels) to active L1 units are increased to their maximum value, 1. Also, from the second frame
(T=1) onward, horizontal (H) weights from L1 units active on the prior frame to currently active
units are increased to 1. Figure 76b shows the memory trace assigned to sequence S0=[AX].
The trace consists of two codes, each consisting of 25 units, one unit in each of the 25 CMs. One
might also refer to the set of weight increases made during presentation of [AX] as the “memory
trace”, however, it is the sets of co-active coding units at each time step which, unless otherwise
stated, we refer to as the memory trace of a sequence. Note that because [AX] is the first
sequence presented to the model, the particular units chosen on both frames of S0 are chosen at
random.

155
Approved for public release; distribution unlimited.

Before describing the results, we first describe our “moment” terminology. We refer to the
frames of a sequence as representing particular “moments” in time. Thus, sequence S0 consists
of two moments, the presentation of item A as the first item of the sequence and the presentation
of X as the second item of the sequence when A was the first. To uniquely specify a moment, it
is necessary to specify the full sequence (prefix) of items leading up to the moment. To
distinguish a sequence, e.g., [ABCD], from a particular moment of that sequence, e.g., the third
moment, when item C is presenting, we bold the item presenting at that moment, e.g., [ABC].
Thus, sequence [ABCD] consists of the four moments, [A], [AB], [ABC], and [ABCD]. Each
moment of a sequence is mapped to a unique, purely spatial, L1 code; thus, codes of different
Markov orders (different lengths of prefix on which the code depends) are stored in
superposition in a mac. To foreshadow, this further implies that during retrieval, when the goal
is to (re)activate the code of the most likely moment, all stored codes, reflecting moments of a
wide range of Markov orders, all compete with each other. The CSA effectively searches over all
stored codes, although crucially, it does not iterate over the stored codes. Rather, it iterates over
the underlying representational units and the model’s weights, the numbers of which remain
constant as additional codes are stored, conferring constant [a.k.a. “O(1)”] time complexity
nearest-neighbor retrieval.

Figure 77 now shows, in panels b-f, the memory traces assigned to five sequences, [BX], [CX],
[DX], [EX], and [FX], which are progressively less spatiotemporally similar to [AX]. In
addition, Figure 77a shows the memory trace reactivated in response to a second presentation of
[AX]. For each of the experiments represented by the six panels of Figure 77, the sequence
shown is presented as the second sequence experienced by the model. For example, when
S4=[EX] is presented, it is presented to the model after the model has only learned [AX], not the
rest of the intervening sequences, S1-S3.

156
Approved for public release; distribution unlimited.

Figure 77: Portrayal of the Spatiotemporal SISC Property

The main result visible in Figure 77 is that in comparing the L1 codes assigned to frame 2 of
each sequence, S1 to S5, to the L1 code assigned to frame 2 of S0 (in Figure 77b), we see
progressively smaller intersection, i.e., the SISC property. These five L1 codes are highlighted
in yellow and these are to be compared to the L1 code assigned to the second moment of S0
(highlighted in blue), [AX] (Figure 76b). Black units are units which are the same as for frame 2
of [AX] in Figure 76b; red units are different.13 The G values are the model’s estimates of
spatiotemporal similarity of the current moment. Thus, on the second moment, [BX], of
sequence S1, the code assigned, 1

1 [B]S φ X , has 21 out of the max possible 25 units in common with

the code, 1
0 [A]S φ X , assigned to the second moment, [AX], of S0, i.e., 1 1

1 [B] 0 [A] 21S Sφ φ∩ =X X . The

13 If we viewed the presentations of S1 to S5 as recognition trials in which we were presenting progressively more
perturbed variants of [AX], then these red units would be considered errors. However, in this case, we are viewing
these presentations as presentations of similar but not identical sequences to S0, in which case it is appropriate for
the model to assign unique codes. In this case, the red units are not errors, but simply just different from the unit
chosen in the corresponding CM in frame 2 of S0.

157
Approved for public release; distribution unlimited.

code name convention here is that φ denotes a code, the superscript “1” indicates the model level
at which code resides, i.e., L1, the lead subscript indicates the sequence in which the code
occurs, and the trailing subscript, the specific moment of the sequence that the code represents.
As the spatiotemporal similarity of the second sequence moment with [AX] decreases further
across panels c-f, the intersection of the assigned code with 1

0 [A]S φ X trends downward, despite

the fact that in this particular instance, 1 1
1 [C] 0 [A] 23S Sφ φ∩ =X X even though [CX] must clearly be

considered less similar to [AX] than [BX] is to [AX]. Despite this statistical blip, the codes
assigned for the remaining progressively less spatiotemporally similar moments, [DX], [EX], and
[FX], have monotonically decreasing intersection with 1

0 [A]S φ X as summarized in the right-hand
column of Table 20 below. In fact, the same trend obtains with respect to the first sequence
moment as well (left-hand column). However, note that in the latter case, it is purely spatial
similarity in the input space that is relevant (since no temporal context information is present on
the first moment of a sequence).

Table 20. Code Similarity Decreases with Spatiotemporal Similarity of Moments

Decreasing Similarity of 1st Moment Decreasing Similarity of 2nd Moment

1 1
0 [] 0 [] 22 (88%)S Sφ φ∩ =A A 1 1

0 [A] 0 [A] 23 (92%)S Sφ φ∩ =X X

1 1
1 [] 0 [] 22 (88%)S Sφ φ∩ =B A 1 1

1 [B] 0 [A] 21 (84%)S Sφ φ∩ =X X

1 1
2 [] 0 [] 23 (92%)S Sφ φ∩ =C A 1 1

2 [C] 0 [A] 23 (92%)S Sφ φ∩ =X X

1 1
3 [] 0 [] 18 (72%)S Sφ φ∩ =D A 1 1

3 [D] 0 [A] 16 (64%)S Sφ φ∩ =X X

1 1
4 [] 0 [] 16 (64%)S Sφ φ∩ =E A 1 1

4 [E] 0 [A] 13 (52%)S Sφ φ∩ =X X

1 1
5 [] 0 [] 4 (16%)S Sφ φ∩ =F A 1 1

5 [F] 0 [A] 3 (12%)S Sφ φ∩ =X X (~chance)

We emphasize that each of the memory traces shown in Figure 77 is a particular instance. The
winner in a CM is chosen as a draw from a likelihood distribution over the CM’s units, i.e.,
“softmax”, not by simply choosing the max likelihood unit, i.e., plain (“hard”) max. Thus, we
will generally see some variation in the chosen codes across instances of the same experiment
and the amount of variation will increase as the similarity of the test sequence to the learned
sequence, [AX], decreases. This statistical variation, for example, is why the memory trace in
Figure 77a is not perfect. Due to the statistical nature of Sparsey’s CSA, demonstration of the
SISC property requires running many instances of each of the experiments shown in Figure 77
and reporting average results. Such a protocol was followed in Study 2. However, before
moving to Study 2, we present a detailed explanation of how the probabilistic CSA works and
how it realizes the SISC property. This is partially redundant to Section 3.2, however it
elaborates the explanation substantially, particularly with respect to achieving SISC.

158
Approved for public release; distribution unlimited.

B.2 Explanation of the Code Selection Algorithm (CSA)

Important Note: The version of the CSA stated in Table 21 is an older, less detailed version than
stated in Table 2. Further, it differs notationally. In particular, the sigmoid parameters have
different identifiers, as does the un-normalized win probability, which is denoted in the section
abut was denoted throughout the rest of the report. We decided to stick with these alternate
conventions because this section is self-contained and contains many figures and notations that
would have had to have been updated.

159
Approved for public release; distribution unlimited.

Table 21. The Code Selection Algorithm

 Equation Short Description

1a

1b

1c

()
() (,)

tUj RFu i w j i∈=∑

(1)() (,)
Hj RF th i w j i∈ −=∑

()() (,)
Dj RF td i w j i∈=∑

Compute unit i’s raw U, H, and D input summations, u(i), h(i),
and d(i), independently. RFU(t) is the set of units in i’s
bottom-up receptive field, RFU, which are active at time, t,
RFH(t-1) is the set of active units in i’s horizontal RF, RFH,
active at t-1, and RFD(t) is the set of units in i’s top-down RF,
RFD, active at t. Again, because unit activations are binary,
we can simply sum the weights, w(j,i), which are also binary.

2a

2b

2c

() 1
()

() () 2U U

u i S L
U i

u i f RF L
=

= ≥

() () ()H HH i h i f RF=

() () ()D DD i d i f RF=

Normalize the summations independently. In the case of the U
input to L1, we normalize by the expected number of active
units (pixels) in an L1 mac’s RFU, which we denote by S. For
cases in which the afferent field is organized into macs,
normalization is more complex. These f functions are
placeholders and will be specified/discussed as needed.

3a
3b

() () ()

()

() () () 1
()

() 0

H U D

U

t t t

t

H i U i D i t
V i

U i t

λ λ λ

λ

 ≥=
=

Compute local evidential support. On the 1st
time step (t=0), before codes have become
active throughout the hierarchy, only U signals
are available at each level. Thereafter, all
signals are present at each level and are
multiplicatively combined. The exponents
modulate the sensitivity to the similarity of
each source, and thus, the shape/granularities
of the spatiotemporal tuning functions learned.

4 { }ˆ max ()
jj i CV V i∈= Find the max V, ˆ

jV , in each CM, Cj.

5
1
0

ˆQ
kq V QG −

=≡∑
Compute G as the average V̂ value over the Q CMs. G
is a population-level measure of the spatiotemporal
familiarity of the current moment.

6
1

T

T

G GK
G

χ

η π
+ − = × × −

Determine the range, η, of the of the sigmoid activation function,
which transforms a unit’s V value into its relative (within its own
CM) probability of winning, µ, the “V-to-µ map”. In a more
general development, this step may also determine any of the other
sigmoid parameters, α, β, γ and ν, which interact to control overall
sigmoid shape. However, in this report, α, β, γ, and ν will be fixed
on any particular run.

7 (())
(1)() 1

1()V ii
e α β ν
ηµ

γ − −
−

= +
+

Apply sigmoid activation function to each unit. Note:
the sigmoid collapses to constant function, µ(i)=1,
when η=0 (i.e., when G≤ GT).

8
()()

(j)j CM

ii µρ
µ∈

=
∑

 In each CM, normalize the relative probabilities of
winning (µ) to final probabilities (ρ) of winning.

9 Select a final winner in each CM according to the ρ distribution in that CM, i.e., soft max.

160
Approved for public release; distribution unlimited.

We will describe the steps of Table 21 and via a series of examples to follow. At the most
general level, the CSA chooses units to participate in codes in probabilistic fashion, i.e., as draws
from distributions (Step 9). Broadly the CSA modulates the distributions (in the CMs), on a
moment-to-moment basis, with the goal of increasing the probability that the locally most
favored unit, i.e., the one with the highest V in its CM, wins in proportion to the global
spatiotemporal familiarity, G, of the current input moment. Provided the amount of
information—more specifically, the number of codes—stored in a mac is low enough so that the
effects of crosstalk (interference) between codes remain sufficiently small, G approximates the
maximum spatiotemporal similarity of the current moment to all previously experienced (and
thus, stored) moments. The ultimate effect of this distribution modulation policy is that more
spatiotemporally similar moments get assigned to more highly intersecting codes, i.e., the SISC
property. In this report, the primary means of modulating the distributions will be to vary the
range, η, of the sigmoid activation function (Step 6) through which a unit’s V value is passed
(Step 7) on its way to determining a unit’s final probability (ρ) of being chosen (Step 8). With
this broad overview in mind, we now proceed to a series of detailed examples of the CSA in
operation on some of the moments of the sequences in Study 1.

Figure 78 shows how the distributions from which winners are ultimately drawn are computed
by the successive stages of the CSA on presentation of A, given that sequence S0=[AX] has
previously been presented and learned. The figure shows the details for only a few CMs, though
conditions in all Q=25 CMs are statistically the same. Broadly, the U signals arising from the 12
active pixels of input A give rise to maximal u-summations for the units which won and were
assigned as the code, 1

0 []S φ A , of input A when it first occurred (see Figure 78b). The U
connections carrying these signals (blue) are shown for a few of the L1 units. The maximal u-
summations normalize to U-values of 1 and, via the rest of the CSA (working up the rows of the
panel b), to final win probabilities (ρ) of 92%. Because there is no crosstalk between stored
codes in this example, each of the other eight units in each CM have u=0, U=0, and ultimately
~1% chance of winning (ρ). In the particular run depicted in Figure 78a, it so happens that in
three of the Q=25 CMs, e.g., CM 2, one of these other units (red) was drawn from the
distribution. Thus, even though the input moment [A] is 100% familiar, the CSA’s probabilistic
nature, allows less likely units to be chosen occasionally.

161
Approved for public release; distribution unlimited.

Figure 78: Graphical Explanation of How Winners are Chosen in the CMs and Thus, How

Entire Codes are Chosen

The reader may ask why the model does not simply pick the unit with maximum V in each CM.

In this particular case, that would ensure perfect reactivation of 1
0 []S φ A . Why allow the other

eight units in each CM to have any chance of winning? The reason is that in general, when an
intelligent system, natural or machine, is operating autonomously in a real environment, it cannot
know a priori, whether any particular moment that it experiences will be novel or familiar. In
other words, it cannot know in general whether it is or should be in learning (train) or retrieval
(test) mode on any particular moment. It must be able to learn potentially new information at
every moment. Thus, while it is true that when the model is presented with an exact duplicate of
an earlier moment (as in the case of Figure 78), the optimal policy is simply picking the max-V
unit in each CM, that is not the case when the moment is less than 100% familiar. If the current
moment contains any novelty (new information) at all, it could be that that new information is
important, in which case, the model must assign a new code for the moment. That is the reason
for the CSA’s policy of drawing winners from distributions rather than simply picking the unit
with maximum support, V.

162
Approved for public release; distribution unlimited.

Figure 78c describes the transformation from V values (which reflect only information that is
purely local to a unit) to µ values (which reflect information global to the entire mac), the
“V-to-µ map”. Specifically, that global information is the aforementioned global spatiotemporal
familiarity of the current input moment, G. Formally, G is just the average of the maximum V
values in the CMs (CSA Step 5). Thus, G is normalized to [0,1]. The reasoning behind the
definition of G is given in Table 22 below.

Table 22. Reasoning Underlying the Global Spatiotemporal Familiarity Measure, G

1 Assume that the current moment ξ has been experienced before.
2 Then it will have been assigned a code 1

ξφ and the weights from all active

presynaptic units to the units comprising 1
ξφ will have been increased to the max

weight of 1.
3 By 1 and 2, the set of currently active presynaptic units is the same as in the earlier

instance of ξ .
4 By 2 and 3, all of the units comprising 1

ξφ will have V=1.

5 Thus
1

0
ˆQ
qq

G V Q−

=
=∑ = 1, indicating complete familiarity of the current moment.

6 On the other hand, assume that the current moment ξ differs from all previously
experienced moments.

7 In this case, the average V value over the units comprising any specific previously
assigned code 1

ζφ , which we denote 1()V ξξ φ , will be less than 1, provided the
number of codes have been stored is low enough so that the effects of crosstalk
(interference) between codes remain sufficiently small.

8 Again, provided crosstalk is sufficiently low, Point 7 implies that the expected G
value will also be less than 1, indicating the lower familiarity of the current
moment.

9 However, the strength of the implication from 7 to 8 diminishes and is eventually
nullified as crosstalk increases. Thus, Sparsey requires a mechanism to keep
crosstalk below a threshold. That mechanism is to prevent further learning once a
specified fraction of a unit’s afferent weights have been increased, i.e., impose a
“critical period”.

In accord with the fact that Sparsey’s codes are sparse distributed codes, i.e., sets of co-active
units, which are assigned as wholes (i.e., in unitary events), it is appropriate that the familiarity
measure used by the model, G, is a population-, or code-level (i.e., global) measure, not a unit-
level (local), measure.

In CSA Step 6, G is then used to set the range, η, of the sigmoid activation function. η is
maximized when G=1. In this example, the number of units per CM, K, equals 9. We refer to
the parameter, π, as the sigmoid expansion factor and parameter, χ, as the sigmoid expansion

163
Approved for public release; distribution unlimited.

exponent. To simplify explanation is these studies, χ is set to 1. The value π =10 in this Study
was chosen arbitrarily, but π’s effect on the relative (µ) and total (ρ) probability distributions will
quickly be made clear in the rest of this section. The larger is π, the greater is η, and the higher
the probability that the unit with the maximum V value in a CM wins. The particular ρ values in
Figure 78b, i.e., 92% for the units with V=1 and 1% for units with V=0, depend directly on the
choice of π = 10. We will demonstrate the effect of varying π shortly, but first we continue our
thread of explaining how the SISC property is achieved (for any particular value of π).

Figure 79 describes the probabilistic code selection on the second moment, [AX], of the second
presentation of S0. This figure is quite similar to the previous one except that it includes the
horizontal (H) signals, which arise from the L1 code activated on the prior time step (moment),
[A], and arrive back at this same field of units on the second moment, when X is the input (a
representative sample of these H signals are shown as blue arcs from the previous moment’s
winners (gray) to the current winner in CM 2). On the second and subsequent time steps of any
sequence, a unit’s local evidential support includes this temporal context information and is in
fact simply computed as the product of its normalized inputs. In this case, since level L1 is the
top level, there are no D signals. Thus, CSA Step 3a simplifies to just the product of the H and U
factors. The logic behind determining a unit’s total support, V, in this way is given in Table 23
below.

Table 23. Reasoning Underlying the Computation of a Unit’s Local Support, V

1 If a unit, x, was chosen winner and thus included in a code for some moment ξ in
the past, then its afferent synapses, U, H, and D (if present), from all units active
on that occasion will have been increased to 1.

2 In fact, x may generally have been included in the codes of many past moments. If
any of those moments is identical to the current moment, then x’s current input
summations will be maximal and its U, H, and D (if present) values will equal 1.
In this case, multiplying these normalized summations yields a value of V=1,
correctly indicating that x has maximal local evidential support.

3 On the other hand, to the extent that any of U, H, or D fall below 1, that indicates
decreasing spatiotemporal similarity of the current moment to any past moment, or
in other words, increasing novelty of the current moment. In this case, the product
of U, H, and D, will reflect this.

A unit’s normalized u value, U, is computed by dividing u by the size of input patterns, i.e., the
number, S, of active pixels, which in these examples is held constant at S=12. The normalized h
value, H, is computed by dividing h by then number of afferent H-signals that a unit expects to
have. In this model instance, the H matrix is nearly full; specifically, all L1 units have H
synapses onto all other L1 units except those in their own CMs. Since all L1 codes consist of
exactly Q=25 active units, it follows that the maximal h a unit can have is 24. Thus, CSA Step
2b becomes: () () 24H i h i= .

164
Approved for public release; distribution unlimited.

Figure 79: Graphical Explanation of Code Selection on the Second Moment, [AX], of the

Second Presentation of S0

As external observers to the system, we know that this second moment [AX] is identical to the
one experienced during the first presentation of [AX] (in Figure 76b). However, all that the
model has to help judge the spatiotemporal familiarity of the current moment is the information
coming from its internal state at the prior moment, i.e., the H-signals arriving from the

previously active L1 code, 1
0 []S φ A . Because of the three incorrect units (red) activated as the

code for the prior moment [A] (in Figure 77a and Figure 78a), the h-summations for the units
comprising the code originally assigned to [AX] (in Figure 76b), will be lower than expected.
When normalized, these h-summations yield H ≈ 0.92 for those units. By CSA Step 3a, these
units also have V ≈ 0.92. This yields GHU = 0.92, which in turn yields 82η = . In CSA Steps 7
and 8, the units’ V values are transformed to relative (µ) and then to total (ρ) probabilities. In
this case, the correct unit in each CM ends up with ~91% chance of winning and the other eight
units, with ~1% chance of winning. Finally in CSA Step 9, winners are chosen from those
distributions. In this case, the wrong unit (red) is chosen in 2 out of Q=25 CMs. In other words,
the L1 code for this second instance of moment [AX] has very high overlap with the L1 code
chosen in that initial experience of [AX].

165
Approved for public release; distribution unlimited.

Figure 80 shows the situation when we present S3=[EX] after the model has learned [AX]. In
this case, items E and A have only 8 out of 12 features (pixels) in common. This leads to
u-summations of 8 for each of the 25 units that won when A was presented, i.e., the 25 units
comprising the code, 1

0 []S φ A . With Figure 80, we begin to see how the CSA realizes the SISC

property. The lower u values yield U=0.79 for the units of 1
0 []S φ A . By CSA Steps 3-5, this

yields G=0.7, which by CSA Step 6, yields a maximal µ value, η = 60. In Step 7, the V values
of all units are passed through the sigmoid activation function. In this case, the units that were in

the code, 1
0 []S φ A , have V=0.7, which maps to 28µ ≈ . Renormalization of the µ values in Step 8

yields final win probabilities of ρ = 77%. The other eight units in each CM have V = 0, which
maps to µ =1 and then to ρ ≈ 3%. These particular values depend on the particular sigmoid
parameters used in this example, 14, 0.9, 0.4, 0.4α β γ ν= = = = . These values were chosen to
give a long approximately linearly-increasing region, yielding a correspondingly linear
correlation between G and code intersection size over an appreciable range of V. The ultimate
result of the fact that the spatiotemporal similarity (as measured by G), Sim([E],[A]), is lower
than Sim([A],[A]) is that 1 1

4 [] 0 [] 16S Sφ φ∩ =E A is lower than 1 1
0 [] 0 [] 22S Sφ φ∩ =A A .

166
Approved for public release; distribution unlimited.

Figure 80: Graphical Explanation of Code Selection on First Moment, [E], of S3=[EX]

For completeness, Figure 81 shows the presentation of the second moment, [EX], of
sequence [EX]. While the current bottom-up input, from item X, is perfectly familiar, this is the
second moment and so the model computes a spatiotemporal familiarity based on
multiplicatively combining the current U signals with the temporal context information carried in
the H signals. The novelty of the prior moment, [E], causes the model to find the current
moment quite novel (i.e., GHU = 0.7), which yields compressed distributions (60η =) and
ultimately, choosing a unit other than the max-V unit (red units in Figure 81) in 12 of 25 CMs.

167
Approved for public release; distribution unlimited.

Figure 81: Graphical Explanation of Code Selection 2nd Moment, [EX], of S3=[EX]

B.3 Study 2: SISC Properties as Function of V-to-µ Mapping Parameter, π

The previous four figures have hopefully elucidated the essential nature of Sparsey’s
probabilistic code selection algorithm (CSA), showing why it achieves the SISC property.
Again, these four examples referred to particular runs. However, to clearly demonstrate the
correlation between spatiotemporal familiarity, G, and code intersection, we must report
averages over many runs. We do so here in Study 2. Study 2 uses the same model trained in the
learning phase of Experiment 1, i.e., the network of Study 1 trained on the single sequence,
[AX]. The test set was the same as in Study 1 but included four additional sequences, S6=[GX],
S7=[HX], S8=[IX], and S9=[JX]. All data points in Table 24 are averages of 30 runs.

We also promised earlier to demonstrate the effect of varying the parameter, π (the sigmoid
expansion factor). Increasing π stretches the sigmoid, giving proportionately greater µ values to
units with higher V values compared to those with lower V values. If a unit has a high V value
for a given input moment, then it has been active in past moments that are spatiotemporally
similar to the current moment. Thus, increasing the relative advantage of higher V units over
lower V units makes units that have been included in the codes of more similar moments

168
Approved for public release; distribution unlimited.

relatively more likely to win than units that have been included in the codes of less similar
moments. This means that, all else equal, increasing π leads to the formation of broader (larger)
categories and decreasing it, to finer (smaller) categories.

This correlation can clearly be seen in Table 24. Rows correspond to different test sequences
organized in decreasing similarity order. Column two gives the pixel-wise overlap of the first
moment of the test sequence with the first moment, [A], of S0. Code similarity is reported as
intersection size with the code of the second moment, [AX], of S0 expressed as a percent of the
maximum possible intersection size, i.e., Q=25. Again, all reported values are averages over 30
runs. Thus, the correlation between category broadness (coarseness) and π is clearly evident.
For any given sequence (row), moving across the table to higher π values leads to higher
intersections with 1

0 [A]S φ X . At π =1000, even very spatiotemporally different moments, e.g., [JX],

are mapped to 1
0 [A]S φ X . That is, at π =1000, all of these sequences are co-classified.

At the other extreme, when π = 10, we see a wide range of intersection sizes starting at 91% and
dropping down to 16% (which corresponds approximately to chance level). In particular, for
π=10, the correlation between spatiotemporal similarity of input moments and code intersection
size, i.e., the SISC property, can be reasonably approximated as linear from sequence [DX]
through [IX]. This dynamic range of the SISC property shrinks as π increases.

Table 24. Variation of SISC Property with Parameter, π

The preceding discussion considered varying π from the vantage point of learning as a way to
control category granularity. However, we can also consider varying π from the vantage point of
retrieval. In this case, we could view the sequences from [BX] to [JX] as progressively degraded
instances of [AX] in which case increasing π makes the model better able to retrieve the correct
memory in the face of degradation/noise (i.e., “clean up memory” in the associative memory
nomenclature). Specifically, increasing π increases the probability that the most favored
(highest V) unit in each CM wins, and indirectly, the probability of the whole code of the most

169
Approved for public release; distribution unlimited.

spatiotemporally similar moment (in this case, 1
0 [A]S φ X), or in other words, the most likely

hypothesis, being activated.

Earlier, we pointed out that if the model “knows” that it is in a retrieval trial and will not be
asked to learn anything new (even if the current input moment does contain new information),
then the optimal strategy is simply to pick the max-V unit in each CM. In particular, this would
cause 100% recognition of the second presentation of [AX] (in Figure 79). As can be readily
extrapolated from Table 24, increasing π asymptotically achieves this same result; as π→∞, the
CSA approaches simply choosing the hard max (of V) in each CM.

To aid intuition, we include Figure 82 which is essentially a repeat of the Figure 81, except that π
has been set to 100. Even though the max-V unit in each CM still only has V=0.7, the greatly
expanded µ range (η=600) greatly increases the probability of choosing these max-V units,
ρ > 97%. This higher probability (than when π = 10) substantially increases the probability that
the entire code, 1

0 [A]S φ X , is reactivated.

Figure 82: Presentation of Moment [EX] when π = 100

170
Approved for public release; distribution unlimited.

B.4 Study 3: Arbitrary Temporal Context Window Length of SISC Property

This study also uses a 2-level model. In the training phase, the 4-item sequence, [ABCD], Seq. 0
in Figure 83b, is presented once, resulting in a trained network. For each of the original frames,
we constructed a sequence of three progressively less similar frames, e.g., reading down the
leftmost column of Figure 83a, we see the original frame, A, with 12 active pixels, then A’
which has 9 pixels in common with A, then A’’ with 6 pixels in common with A, and finally
A’’’ with only 3 pixels in common with A: similarly, for B, C, and D.

Figure 83: (a) Library of 16 Input Items from which Train and Test Sequences are

Constructed and (b) The Input Set for Study 3

We then created a large number of 4-frame test sequences from this library, which are listed in
Figure 84. The blocks in Figure 84 are organized so that the spatiotemporal similarity with the
original sequence, [ABCD], decreases with row. For example, Sequences 1-3 of Figure 83b
(which correspond to the block “Exp. 1”) clearly decrease in similarity with [ABCD] since the
third moment of each sequence, i.e., C’, C’’, and C’’’, decrease in spatial similarity to C, while
the spatial inputs at the other three moments, i.e., A, B, and D, remain constant across the
sequences. The goal of this study is to demonstrate that the model’s SISC property is sensitive to
all moments, from the start of the sequence, leading up to the current moment.

171
Approved for public release; distribution unlimited.

Figure 84: Experimental Protocol For Demonstrating that Spatiotemporal Similarity (G)

Reflects the Whole History Leading up to the Current Moment

In the training phase, a single 4-item sequence, [ABCD], is presented once, resulting in a trained
network. Then each of four test sequences are presented. In each case, the network is initialized
to the trained network state it had immediately after having learned [ABCD]. For each test
sequence, we measure similarity of the codes assigned to its 4 moments to the codes assigned to
the corresponding moments of the learning trial.

Figure 85 demonstrates the SISC property for Exp. 1. (a) The intersection of the L1 code for the
final moment [###D] of each test trial with training moment [ABCD] decreases with the
similarity of the 3-item prefix leading up to D and the 3-item prefix, [ABC], that occurred in the
training trial. These particular codes resulted from individual runs of each of the test sequences.
The spatiotemporal similarity (GHU) of the final sequence moment to the final moment of the
learned sequence, [ABCD], falls from panel a to panel d. The size of intersection of the codes of
those moments (highlighted in yellow) falls correspondingly. A similar correlation exists for the
third sequence moments as well (highlighted in pink). Although mistakes are made on the first
and second moments, the number of mistakes remains statistically constant across panels for
these moments.

172
Approved for public release; distribution unlimited.

Figure 85: Demonstration of Spatiotemporal SISC Property for 4-Item-Long Sequences

B.5 Conclusions

The studies reported herein constitute a good introduction and overview of what is perhaps the
most important property of sparse distributed representations (SDR), the ability to represent
similarity in the input space by overlap (intersection) in representation space (code space),
“similar-input-similar-codes” (SISC). It is because of this property, that Sparsey simultaneously
possesses O(1) time complexity for both storage (learning) and nearest-neighbor retrieval.
Possessing simultaneous O(1) time complexity storage and nearest-neighbor retrieval for the
case of purely spatial inputs would already constitute a revolution in computing. However, as
the studies in the report show, Sparsey achieves this for the case of spatiotemporal inputs, which
means that this hitherto unattainable computational efficiency can be applied to all information
processing problems involving multivariate time series data, streaming or static DB. This
includes real-time vision (including event recognition, understanding) for robotics, surveillance,
image/video-based search, speech recognition, language understanding, biosequence analysis
(e.g., motif discovery), and any of the myriad “Big Data” applications, e.g., mining huge
medical, financial, commercial, manufacturing, economic databases for useful information.
At core, the SISC capability stems from three facts:

173
Approved for public release; distribution unlimited.

1. A code is a set of Q units that are chosen independently as draws from probability
distributions over separate populations (the CMs).

2. The shape of each of those distributions varies so that the probability of choosing a unit
varies directly with the degree of match between the unit’s current input and its receptive
field (RF).

3. The input fields of all units in all Q CMs must be the same or at least very highly overlapped.
Taken together, these facts imply that the expected intersection between two codes varies as a
function of the similarity of their corresponding inputs. In particular, if the input fields of all
Q×K units in the coding field (macrocolumn) are not highly overlapped, then the SISC property
breaks down. The complete or approximately complete connectivities of all afferent fields to a
macrocolumn is required for Sparsey’s dynamics to discover/embed the similarity relations
(correlations) present in the union of those afferent fields. If one of those afferent fields happens
to encode temporal information, i.e., Sparsey’s H matrix, then those similarity relations are
spatiotemporal in nature.

174
Approved for public release; distribution unlimited.

APPENDIX C - Robust Capability to Handle Complex Sequences

In this study, the training set consists of the four 8-frame sequences shown in Figure 86 (left).
This is a complex sequence set, meaning that the individual frames occur multiple times in
different spatiotemporal contexts. In this case, the input surface, L0, is 12x12 pixels. Figure 86
(right) shows the 3-level network used in this study. L1 consisted of four macrocolumns, each
with Q=16 CMs, and each CM with K=9 cells. Each of the four L1 CMs is fully connected (in
both U and D directions) with the 6x6-pixel portion (“aperture”) of the input surface, L0
(indicated for one L1 mac by the transparent blue prism). Given this wiring scheme, each L1
mac will see and assign codes to the spatiotemporal pixel patterns that play out only in its
associated aperture. The cells comprising the four L1 macs (there are 16x9=144 cells in each) are
completely connected (in both U and D directions) with the 81 cells comprising the L2 mac.
Each L1 mac has full recurrent horizontal (H) connectivity with itself and its two immediate
neighbors (shown for the upper left L1 mac by the green shading).

Figure 86: The Four Sequences Comprising the Train/Test Set for the Complex Sequence

Study and the Model Used in the Study

During learning, if the number of active pixels in an L1 mac’s aperture ≥ a threshold, then that
L1 mac will become active and assign a code to the input pattern comprised of those active
pixels. Thus, the number of active L1 macs can vary during processing. For example, during the
first five frames of Seq. 1, only the bottom two L1 macs, 1

2M and 1
3M are active. During the final

three frames of Seq. 1, only the top two L1 macs, 1
0M and 1

1M are active.

There are many possible policies by which higher-level macs could decide whether or not to
become active. The currently implemented policy is that an internal mac, e.g., the single L2
mac, 2

0M , in this network, becomes active if at least one of the L1 macs in its bottom-up

175
Approved for public release; distribution unlimited.

receptive field (U-RF) is active. In this example, 2
0M ’s U-RF includes all four L1 macs. Due to

this convergence, codes assigned in 2
0M can represent spatiotemporal combinations, or

compositions, of smaller-scale spatiotemporal pixel patterns playing out in the four L1-scale
apertures.

Figure 87 shows the situation in the network when the first frame of Seq. 1 is presented. U
signals are sent from the active pixels to 1

2M and 1
3M . Only representative subsets of the

involved synaptic connections are shown. This is the first input the model experiences and so all
weights are still zero. Thus, the U signals arriving at L1 all have zero weight and the u-
summations for all cells in 1

2M and 1
3M are zero. Nevertheless, codes are activated in 1

2M and
1
3M . We denote the code in 1

2M as 1
2(,1,0)L Mφ , meaning the code active in 1

2M during the
learning presentation of frame 0 of sequence 1, i.e., learning moment (1,0). These codes are
chosen at random via the code selection algorithm (CSA) described in Table 21. Once

1
2(,1,0)L Mφ and 1

3(,1,0)L Mφ are active, they send U-signals to L2. The resulting u-summations
for the cells of L2 are also zero and a random code, 2

0(,1,0)L Mφ , is chosen in 2
0M .

Figure 87: The Situation in the Network when the First Frame of Seq. 1 is Presented

Once the codes are activated at all levels, Hebbian learning occurs. Specifically, the weight from
any active cell to any other active cell to which it connects is increased to the maximal value. In
our model, weights range from 0 to 127. However, the weights are effectively binary since they
are always set to the maximum, 127, when they undergo a Hebbian increase. As discussed in

176
Approved for public release; distribution unlimited.

TR1, weights undergo a gradual passive decay with disuse. However, the overall effect of the
learning policy is such that the weights are “effectively binary”.

Figure 88 shows the situation in the network on the second moment, (1,1), of Seq. 1. At L1, we
focus on what’s happening in 1

2M , though the same situation exists in 1
3M as well. U-signals

arise from the new input pattern, but again all of these weights will still be zero. At the same
time, H-signals (summarized by green arrows) will be arriving from the codes active on the prior
frame, 1

2(,1,0)L Mφ and 1
3(,1,0)L Mφ . Winners are shown in in 1

3M to indicate that that is prior
code, 1

3(,1,0)L Mφ , not the new code that will be chosen in 1
3M at (1,1). Note that H-signals also

arrive recurrently from 1
2M itself though here we only show the newly chosen code (black cells).

Finally, D-signals arrive from the code, 2
0(,1,0)L Mφ , that was activated in 2

0M at moment (1,0)
and that remains active at (1,1). Recall that code persistence (δ) increases with level; in
particular, the persistence of L2 codes, 2δ is 2. All three sources of input, U, H, and D, to 1

2M
are multiplicatively combined (according to the CSA). Because the h-summations, in particular,
are all zero on this frame, the degree of match, G, between the three sources, which is a measure
of the spatiotemporal familiarity of the current moment, is zero, which ultimately results in
choosing the winners in 1

2M on the current frame (black cells) completely randomly. The same
dynamics unfolds in 1

3M at the same time, also resulting in G=0 and a completely randomly
chosen code (not shown). As stated above, 2

0(,1,0)L Mφ remains active in 2
0M on this second

frame. Once all macrocolumns at all levels have had their codes updated (modulo persistence),
synaptic weights are updated in Hebbian fashion. In particular, on this second frame, the H-
weights from the cells comprising 1

2(,1,0)L Mφ and 1
3(,1,0)L Mφ onto the currently active cells in

those two macs are increased. And, the H-weights from 2
0(,1,0)L Mφ to 2

0(,1,1)L Mφ are increased:
since they are the same code, we can refer to this as an instance of autoassociation.

177
Approved for public release; distribution unlimited.

Figure 88: The Situation in the Network on Learning Moment (1,1)

The model proceeds along in this fashion through all eight frames of Seq. 1, with codes being
updated on every frame in L1 macrocolumns (since 1 1δ =) (if sufficiently many pixels are active
in the mac’s U-RF), codes being updated in every second frame in 2

0M , and large numbers of U,
H, and D weight increases being made within and between macs on the same and neighboring
levels. Thus, the processing of a single instance of a sequence leaves behind a strong (because
all involved weight increases are maximal), multi-level, spatiotemporal memory trace. Because
this strong trace is formed with a single trial, we view this process as a model of human episodic
memory (Tulving 1983). As our results show (see Figure 92), such traces are sufficient to
support highly accurate recognition of subsequent instances of the same sequences. In prior
studies, we have also shown that randomly perturbed instances of the training traces can also be
recognized with great accuracy. This latter capability—i.e., activating the same exact internal
memory trace in response to novel, but similar, instances of complex spatiotemporal input
sequence—shows that the model actually builds category representations, which is the basis of
semantic memory (which is knowledge of the higher-order statistics of the input set) and does so
on-the-fly and based on single trials.

Some of our earlier studies involved randomly perturbed instances of training inputs for
networks with only a single mac (e.g., see “Results/Best-Match” tab of Neurithmic Systems
homepage). The categories learned in those cases were simple. However, as shown by this
study and others reported in the main body of this report, our research has progressed to focusing

http://rodrinkus.zxq.net/ONR_TR2_Result_2_best_random.html

178
Approved for public release; distribution unlimited.

on much larger models and larger/longer input sequences, resulting in large and complex patterns
of activity involving multiple macs across multiple levels. Our more general goal is to analyze
categories defined in higher-level macs whose codes depend on combinations of lower-level
codes. Our goal is to show the emergence of more complex, nonlinear, categories that could be
expressed more in terms of parts-based definitions of categories. Note that as discussed in TR2,
we expect that the learning of highly nonlinear categories [as discussed in (Bengio, Courville et
al. 2012)] will require the cross-modal “supervised” learning scenario between a-symbolic codes
(e.g., those based only on raw visual inputs) and symbolic codes which will be derived from
textual labels/annotations that are in register with the a-symbolic input sources (e.g., captions in
video).

This complex sequence study has three major points:

1. Showing that the model can recognize complex sequence sets—i.e., sequences in which the
same state occurs multiple times in different contexts—which is the general condition for
language, i.e., the order 105 English words are all composed from an alphabet of just 26
letters. Moreover, this can be achieved with single-trial learning.

2. Showing that a sequence’s memory trace, the activation of which constitutes recognition of
the sequence, can involve multiple macs operating in tight coordination and where the time-
scale of the dynamics differs across levels; here L2’s time-scale is half that of L1.

3. Showing that the model can momentarily deal with multiple competing hypotheses. That is,
at any given moment, if the total inputs to a mac equally implicate N of the hypotheses
(codes) that have been previously stored in the mac, then all N hypotheses will become
partially active. Specifically, each hypothesis will (statistically) be represented with Q/N of
the cells comprising that hypothesis’ full code. If subsequent inputs are consistent with
subsets of the active hypotheses, the inconsistent hypotheses are winnowed out and, with
each such winnowing, the degrees of activation of the remaining hypotheses increase until
just one is active at full strength (i.e., all Q of that hypothesis’s winners are active).

Figure 89 (left) shows the internal variables that exist during recognition moment (1,0), which is
a moment at which two competing hypotheses become active. Note that the trace information (in
the charts at bottom) show the variables only for the first six of the Q=16 CMs in 1

2M , but
conditions are statistically similar in all 16. The existence of two equally strong hypotheses can
be seen in the ρ trace in that in almost every CM, there are two equally probable winners. In
each CM, one of these cells is contained in 1

2(,1,0)L Mφ and the other is contained in 1
2(, 4,7)L Mφ .

1
2(,1,0)L Mφ , shown in Figure 87, is repeated here in the inset. The code chosen during learning

moment (4,7), 1
2(, 4,7)L Mφ , is shown in the inset in Figure 89 (right). In this particular case,

although the two possible cells are equally probable, it so happens that the winner from
1
2(,1,0)L Mφ is chosen in 75% of the CMs. In the other 25%, the winner is from 1

2(, 4,7)L Mφ . We
denote the code activated on recognition moment (1,0), 1

2(,1,0)R Mφ , to distinguish it from the
1
2(,1,0)L Mφ . The resolution of the two co-active hypotheses on the next moment (1,1) is shown in

Figure 91. But before turning to that figure, we point out that in the other recognition moment
where this same input pattern presents, (4,7), shown in Figure 89 (right), only one hypothesis is

179
Approved for public release; distribution unlimited.

present. This is because when recognition moment (4,7) occurs there are H- and D-signals
present which, when combined with the U-signals, implicate only code 1

2(, 4,7)L Mφ .

Figure 89: Comparison of Two Recognition Moments, (1,0) and (4,7), in which the Input

Pattern is the Horizontal Bar Across the Bottom Row of L0

Figure 90 shows the codes active in both L1 macs and 2

0M at recognition moment (1,0). It also
shows the detailed trace information for 2

0M , in which the two approximately equally strongly
implicated cells can be seen in most of the CMs. Note: the reason why there in only one strongly
implicated cell in CM 5 is that the same cell, cell 1, was chosen in both competing codes,

2
0(,1,0)L Mφ and 2

0(, 4,7)L Mφ . The presence of three approximately equally strongly implicated
cells in CMs, 0, 4, and 7, is due to crosstalk between the stored traces.

Note that in 1

3M and 2
0M , the numbers of winners from the two competing hypotheses in each

mac is much closer to the expected value, Q/2. The detailed variable trace information is shown
for 2

0M . The codes for the two possible learning moments that the current moment could be,
based only on U-signals, which are the only signals present, are shown at top right. About half
the winners chosen at the current moment are from 2

0(,1,0)L Mφ and about half from 2
0(, 4,7)L Mφ .

The winners from 2
0(, 4,7)L Mφ are shown in red because they are incorrect, given that the current

recognition moment is in fact (1,0), not (4,7).

180
Approved for public release; distribution unlimited.

Figure 90: All Three Relevant Codes Activated on Recognition Moment (1,0) and Detailed
Trace Information for the L2 Mac Showing Presence of Multiple Competing Hypotheses

Figure 91 shows how the two competing hypotheses in 1

2M , 1
3M , and 2

0M are correctly resolved
with the arrival of disambiguating input on the following frame. The conditions at recognition
moment (1,0) are repeated at left. Green/magenta arrows suggest, in summary fashion, the H-/D-
signals that will influence the choice of codes on the following recognition moment, (1,1).
However, note that because the codes at the origins of these arrows all have two hypotheses
active, the strength of evidence from both of these sources (H, D) will only be about half as great
as they were during the original learning moments. That is, in each of the source macs only
about Q/2 of the cells contained in either of the two competing hypotheses (codes) is active,
Thus, the h- and d-summations at the destination macs will be only about half as great as they
were during learning, when the full Q cells representing any of the relevant hypotheses were
active.

As described in TR1, the CSA normalizes any of a cell’s raw summations, e.g., its h-summation,
by dividing by the largest possible h-summation it could have, given the number of active macs
in its H-RF. The largest possible h-summation would correspond to the case where all Q cells in
each of active macs in its H-RF have (during learning) increased their weights to the cell to their
maximum value. In this case, that normalizer would equal 2×Q×(the weight of an increased
synapse). However, as noted above, in the present instance, the h- and d-summations are only
about half as large as they were during learning, which will lead to normalized H and D values of
approximately 0.5. This would in turn lead to low V values and ultimately, to low win
probabilities for any of the cells in any of the codes of consistent successor moments. However,
looking at the trace information for 1

2M at lower left, the reader can see that the maximum value
for both H and D, in all CMs (we show only the data for the first 8 CMs) is 1.0, not 0.5. This is
due to the following crucial operational principle of our model. On every frame of every
sequence, during both learning and recognition, every macrocolumn computes the number of
multiple competing hypotheses that are active. This can be approximated as the average number

181
Approved for public release; distribution unlimited.

of cells per CM that have V close to 1.0. If that average is 2, then the mac knows that there are
two approximately equally probably winners in each CM and therefore that, following code
selection, there will be two codes active at approximately half strength (Q/2 cells active). In this
case, the mac simply multiples its outgoing signals by 2. This means that macs downstream to a
given mac, X, will receive full H- and D-support for all hypotheses (codes) that were successors
of any of the codes co-active in X at recognition moment (1,0). However, for each of the
relevant macs, the new input on recognition moment (1,1) is consistent only with one of those
potential successor codes. For example, in 1

2M , only 1
2(,1,1)L Mφ has the full U, H, and D support

to become active. This can be seen in the in the charts at bottom: only the cells in 1
2(,1,1)L Mφ

have U, H, and D all equal to 1 (thin red rectangle shows representative case in one CM). Thus,
only one cell has very high probability of winning in each CM, resulting in a much higher
accuracy on recognition moment, (1,1). Similar considerations apply to 1

3M and 2
0M as well.

Figure 91: Correct Resolution of Multiple Competing Hypotheses based on Temporal

Context Signals Mediated by H and D Inputs

182
Approved for public release; distribution unlimited.

Figure 92: The Overall Recognition Performance for All Four Sequences

The overall recognition performance for all four sequences is shown in at the top of Figure 92.
The detailed frame-by-frame, and mac-specific codes and accuracies are given only for Seq. 1.
However, the performance was similar for the other three sequences as well. There are many
points of discussion possible regarding this data. At present, we simply emphasize that:

1. The complex, space-time, multilevel traces of the 4 sequence, containing many duplicate
instances of input states in different contexts, which are constructed on-the-fly based on
single trials, reactivate with nearly perfect fidelity, evincing strong recognition capability.

2. The model moves transiently through ambiguous moments, resolving the ambiguity based on
incremental presentation of disambiguating evidence.

3. Individual CM-level mistakes occur with some statistical regularity (which depends on many
model parameters). However, these mistakes are continually corrected on each frame.

183
Approved for public release; distribution unlimited.

APPENDIX D - Mechanisms Underlying Invariant Recognition

Figure 93 is an expanded version of Figure 25. It shows the U-summations and V values of all
cells in the relevant macs during the recognition trial of the original training frame (“test=train”,
top of figure) and the noisy test frame (“test≠train”, bottom). Figure 93a shows the overall
64x64 frame; the inset zooms in on the particular patch of the pixels (cyan) that is the input level
(L0) receptive field (RF) of 2

402M , which we denote (2,402,0)UF . But, L2 does not receive U-
inputs directly from L0, but rather via L1. The yellow inset shows the set of L1 macs (cyan and
purple) comprising 2

402M ‘s L1 RF, denoted (2,402,1)UF . There are 10 L1 macs in the set; two are
active (purple), 1

773M and 1
854M . The same set is seen in perspective in the yellow ellipse, but the

blue lines, representing a tiny sample of the U-wts comprising the relevant RFs, make them hard
to see. Figure 93b is present to make clear the relation of the three levels in this example
(though the network in this case has nine levels, as can be seen in the inset of Figure 25a).

Figure 93d shows the relevant signals present in 1

773M while processing this frame. The seven
bar plots in each row correspond to the Q=7 CMs comprising 1

773M ; the x-axis of each plot
ranges over the K=7 cells comprising each CM. The bottom row of plots shows the raw U
summations (u), the next one, the normalized U summations (U), then U2, and then the V values,
which in this case, since only U signals are present, equal the U2 values. The green-bordered
inset zoom in on the L0 RF of 1

773M , (1,773,0)UF , which has five active pixels (black) out of 19.
(1,773,0)UF is also shown superimposed on (2,402,0)UF in the inset above. Again, the input

frame here was presented exactly on a prior learning trial. Due to the learning that would have
taken place on that learning trial, when it presents again here, the U-signals from the active
pixels to 1

773M will yield high U-summations specifically for the cells that won on that learning
trial.14 The single black bars in the plots correspond to those winning cells, i.e., the sparse
distributed code (SDC), or cell assembly (CA), chosen to represent the input to 1

773M at that time.
The fact that all 7 winners have V=1 here, yields G =1.0, which means that this input is perfectly
familiar to this mac. In the experiments reported herein, we used the max-V CSA version to pick
winners during recognition, so the CA activated in 1

773M on the learning trial is perfectly
reinstated, i.e. 1

773M has recognition accuracy, R = 100%.

Figure 93e shows similar information for 2

402M ’s other active afferent L1 mac on this occasion,
1
854M . The inset shows 1

854M ‘s RF, (1,854,0)UF , which has five out of 17 active pixels.
(1,854,0)UF is also shown superimposed on (2,402,0)UF in the inset in Figure 11a, which shows

how the L1 mac RFs overlap. The situation in 1
854M is qualitatively the same as for 1

773M : the
input is the same as during learning and the same CA is activated (R = 100%).

14 In general, other cells will also have non-zero U-summations (due to crosstalk), but in this example, since only
three 8-frame snippets were presented during learning, there is no crosstalk.

184
Approved for public release; distribution unlimited.

Figure 93: Demonstration of Invariant Recognition

185
Approved for public release; distribution unlimited.

Once the two L1 macs, 1
773M and 1

854M , are activated, they send U-signals to 2
402M . Figure 93c

shows the resulting signals in 2
402M . In this case, each of the cells comprising the CA that won in

2
402M on the learning trial will be receiving a u-input from 14 cells, the 7 winners in 1

773M and the
7 winners in 1

854M . Since these weights will all have been maximized, i.e., set to 127, on the
learning trial, their U-summations will be 14×127=1,778. As in the case for the two L1 macs,
the CA activated in 2

402M is identical to that activated on the learning trial, R = 100%.
Now we describe the situation when processing the noisy version of the input. Figure 93f shows
the noisy 64x64 input and the inset shows 2

402M ’s RF with the RFs of the three L1 macs, 1
773M ,

1
854M , and 1

813M , superimposed. There are several points explaining 2
402M ’s invariant response:

1. Compare Figure 93i to Figure 93d. The only difference is that in Figure 93i, there are only
four active pixels, whereas in Figure 93d, there were 5. This leads to lower U-summations
for the winning cells, 508 vs. 635. However, the threshold is set at 508 in both cases, which
yields U=1.0 for every winning cell, and ultimately G=1.0. Since the max-V CSA is used,
the exactly correct code is reinstated (R=100%). This illustrates one invariance mechanism
at play in this example.

2. As explained in Figure 25, 1
854M is not active because it has only three active pixels. Thus, it

does not send any U-signals to 2
402M , indicated by 1

854M being grayed out. This wholesale
omission of an entire mac’s worth of U-signals relative to the original training input seems
like it should present quite a problem, but it does not as we shall see.

3. L1 mac 1
813M , which is not active for the original training input, is active for noisy input.

Again, such a large-scale perturbation to the inputs arriving at 2
402M would seem problematic.

However, because 1
813M was not active on the learning trial for this input, none of the cells

currently active in 1
813M have increased their weights onto any of the cells in 2

402M . In
general, if we had stored many more snippets in this model, there would be some crosstalk
coming from the cells active in 1

813M , but in this example there is none. So although there is
an intruding feature present in the input, it exerts no effect on the code selection process in

2
402M . This is a 2nd invariance mechanism at play in the example.

Finally, if we now look at the signals present in 2

402M (in Figure 93h) we see a third principle of
invariance. Even though the u-summations to the cells that won for the training input are lower
than they were for the training input—in fact, they are only about half as high as they were for
the training input (because of the absence of the signals from 1

854M)—those cells still have the
max V’s in their respective CMs. Thus, those cells win. Note that even though the G value in

2
402M is only 0.256, the entire code chosen for the original input is exactly reinstated for the noisy

input (R = 100%). Thus, as noted earlier, this use of the max-V CSA constitutes a third, very
powerful, mechanism of invariance in the model.

Figure 94 shows are more summary view of Figure 25 in which, despite very different input
pattern from L1, the same code is activated in 2

402M (actual code not shown). The large
difference in 2

402M ’s immediate inputs, the difference between X and X′, at the input level (L0),

186
Approved for public release; distribution unlimited.

was rather small; compare the insets in the lower right of each panel. Because, in this example,
X and X′ are actually quite similar, one might conclude that the ultimate invariance shown at L2
(by 2

402M) is not that impressive. However, in our experiments, we are finding the size of the
differences tolerated, i.e., the degree of invariance, increases with level. We provide two
detailed examples of this, one for L4 mac 4

152M (Figure 96); one for an L6 mac 6
19M (Figure 97).

Figure 94: Invariance: The Same Code Activates in 2

402M Despite Very Different
Immediate Input Patterns from L1

Figure 95 summarizes those two instances and provides six more from macs at L5 (panels c-h),
providing a small sample of the large and complex invariances exhibited by macs in our
simulations. In each panel, we show the portion of the overall input present in the L0 receptive
field (cyan or outlined in green) of a given mac for a repeat of a learned input (X) and a
presentation of a noisy version of that learned input (X′). The nomenclature 6

19(2, 7,)X e f M is
read as “the subset of the active pixels in 6

19M ’s L0 RF when frame 7 of learned episode e2 is
presented, which actually end up being coded by the sparse distributed code active in 6

19M ”.

187
Approved for public release; distribution unlimited.

Figure 95: Examples of Invariances Learned

It is crucial to understand that in all these cases, the exact same code is activated in the relevant
mac for X and X′. That is, in each case, the mac is equating these two inputs: it is recognizing
X′ as identical to X. Thus, in Figure 95b, when 6

19(2, 7,)X e f M occurred during learning, the
code 6

19((2, 7,))X e f Mφ was selected (activated) and, by virtue of the learning that took place,
stored in 6

19M , as one of its basis vectors (dictionary elements).15 The fact that 6
19((2, 7,))X e f Mφ

is activated in response to 6
19(2, 7,)X e f M′ means that 6

19M considers 6
19(2, 7,)X e f M to be its

closest matching basis element to 6
19(2, 7,)X e f M′ even though 6

19(2, 7,)X e f M has one part that
6
19(2, 7,)X e f M′ does not (red ellipse) and 6

19(2, 7,)X e f M′ has one part that 6
19(2, 7,)X e f M

lacks (green ellipse). To evaluate how reasonable this is, we would need to move to larger
examples in which macs have stored many more elements (codes) and compute some kind of
average measure of how appropriate / reasonable the invariances are, across substantial numbers
of (X,X′) pairs. We will pursue this type of analysis in future work.

15 We have several variations of our notation for codes. Most generally, we use to denote a code, i.e., a sparse
distributed code. Sometimes, use sub/super-script to denote the mac in which the code occurs, the frame on which it
occurred, or other information. Here, for simplicity, 6

19(())X Mφ , denotes the code in 6
19M that activates in

response to the input, 6
19()X M .

188
Approved for public release; distribution unlimited.

In conjunction with Figure 25 of the main body and the rest of the figures in this appendix,
Figure 96 and Figure 97 show that the extent and nature of the differences between X and X′ that
are tolerated (responded to invariantly) increases and becomes more complex at progressively
higher levels.

Figure 96 demonstrates invariant responding at L4 mac 4

152M . Figure 96a shows which macs are
active within 4

152M ’s U-RF at all lower levels. 4
152M ’s immediate U-RF consists of the seven L3

macs shown, two of which, 3
274M and 3

296M , are active. Though not shown here, G=1.0 and
R=100% for both of these L3 macs in this case. The connecting lines to a level J mac show the
immediate U-RFs from level J-1. Black lines are from active macs (purple) and gray, from
inactive (cyan at L2 and L3, white at L1). Thus, we can see that 3

274M ’s U-RF consists of seven
L2 macs of which 2

432M and 2
460M are active, that 3

296M ’s U-RF also consists of seven L2 macs in
which 2

460M and 2
490M are active, and that these two U-RFs overlap (they share four of seven L2

macs). Note that 4
152M ’s U-RF at L2 consists of the 21 L2 macs shown. Continuing down the

hierarchy, we see that 2
432M ’s U-RF consists of eight L1 macs of which 1

856M and 1
897M are active,

etc. 4
152M ’s U-RF at L1 consists of the 68 L1 macs shown. At bottom right of Figure 96a-i, we

show actual input pattern in 4
152M ’s input-level U-RF (outlined in green). This U-RF is the union

of the U-RFs of the 68 L1 macs comprising 4
152M ’s L1 U-RF; we show the U-RFs for three of

these L1 macs, 1
856M , 1

897M , and 1
937M . Not all active pixels falling within a given higher-level

mac’s L0 U-RF actually end up being coded by that mac due to the multiple stages of nonlinear
thresholding occurring in intervening levels. Figure 96a-ii shows the subset of the active pixels
that actually end up being coded by the sparse distributed code active in 4

152M , seen at upper left.
We’ll denote this subset as 4

152()X M (read as “X as seen by 4
152M ”).

189
Approved for public release; distribution unlimited.

Figure 96: Invariant Recognition at L4 Mac 4

152M

Figure 96b shows the situation when a noisy version of the input is presented; compare the
“Actual L0 input” figures at lower right of each panel. We make the following points regarding
the figure.

1. The same exact code is active in 4
152M for the noisy input at well. i.e., 4

152M has equated the
two actual input patterns, X and X′.

190
Approved for public release; distribution unlimited.

2. There is a pattern across levels in the differences between the codes for X and X′.
Specifically, X and X′ are actually quite similar at L0. The two L1 codes also have high
overlap, i.e., the set of active (purple) macs at L1 for X has high overlap with that for X′.
The codes then diverge more at levels L2 and L3. Finally, as we already pointed out, the L4
codes are identical. Thus, there seems to be increasing separation of codes through some
levels, which at some point, reverses to become increasing completion.

3. Although the two L0 patterns within 4
152M ’s L0 U-RF are quite similar, the “as seen by”

subsets, 4
152()X M and 4

152()X M′ , are quite different.

4. There exist multiple paths up through the levels by which a pixel or an active mac at any
level can influence a higher level mac. E.g., the pixels causing L1 mac 1

897M to activate in
Figure 96a influence code selection in 2

432M and 2
460M , which both influence code selection in

3
274M . Thus, due to the overlapping U-RFs, any particular feature (at L0, a pixel is a feature;

at any higher level, the code active in a mac represents a feature) generally has multiple
“chances” to influence (be represented by) codes at higher levels.

5. In Figure 96a, note that L2 mac 2
490M is active even though none of its 10 afferent L1 macs is

active. What’s happening here is that 2
490M was activated on the prior frame and it has a

persistence of two frames. So it remains active on this frame even though its U inputs are no
longer such that they would cause it to activate if it was not already active.

We complete our explanation of how progressively higher macs can represent progressively
larger-scale invariances with an example of an L6 mac, 6

19M , in Figure 97. We do not show the
degree of detail in this figure as we did in the last because it would get too dense. At upper left
of each panel, we see the whole 9-level network, in which 6

19M is highlighted in purple at L6. At
upper right of each panel, we show that the code activated in both instances is identical. At
middle, we show the L0 U-RF of 6

19M (cyan), which includes a large region of L0: the actual
input is superimposed. Note there are 36 L6 macs, so their L0 U-RFs are highly overlapped. At
lower left of each panel, we show the subset of pixels that end up “surviving” the effects of the
multiple intervening levels of nonlinear thresholding and influencing the code selection process
in at least one L6 mac. Using our “as seen by” naming convention, we refer to these subsets as

(6)X L and (6)X L′ , respectively. In general, we’d like the fraction of surviving pixels to remain
quite high at all levels, perhaps 90% or so, so we’re a little low in the case shown here. Finally,
at lower right of each panel, we show the subset of pixels actually seen by (and thus, actually
influencing code selection in) 6

19M , 6
19()X M and 6

19()X M′ , respectively. Thus, again we see a
substantial degree of invariance (tolerance) in 6

19M ’s responding. These two inputs could both be
characterized as a “vertical-ish contour with slight bend at top”, but there are significant
differences, e.g., 6

19()X M′ has a large gap where 6
19()X M actually has a contour and the centroid

of 6
19()X M is noticeably higher (~10 pixels) that of 6

19()X M′ .

191
Approved for public release; distribution unlimited.

It is crucial to understand that since the exact same code is activated in 6
19M in both cases, it is

equating these two inputs. It is recognizing 6
19()X M′ as identical to 6

19()X M . That is, when
6
19()X M occurred during learning, the code 6

19(())X Mφ was selected (activated) and, by virtue of
the learning that took place, stored in 6

19M , as one of its basis vectors (dictionary elements).16
The fact that 6

19(())X Mφ is activated in response to 6
19()X M′ means that 6

19M considers 6
19()X M

to be its closest matching basis element to 6
19()X M′ . To evaluate how reasonable this is, we need

to move to larger examples in which macs have stored many more elements and compute some
kind of average measure of how appropriate / reasonable the invariances are, across substantial
numbers of (X,X′) pairs.

Figure 97: Invariant Recognition at L6 Mac 6

19M

16 We have several variations of our notation for codes. Most generally, we use to denote a code, i.e., a sparse
distributed code. Sometimes, use sub/super-script to denote the mac in which the code occurs, the frame on which it
occurred, or other information. Here, for simplicity, 6

19(())X Mφ , denotes the code in 6
19M that activates in

response to the input, 6
19()X M .

192
Approved for public release; distribution unlimited.

Figure 98 shows the portions of the input, in other words, the features or parts, coded by each of
the 16 active L6 macs on frame 7 of input snippet. We note the following:

1. There is redundancy: certain subsets of pixels are represented by more than one mac, e.g., the
small curved edge feature represented by 6

0M is also represented by 6
6M and 6

2M . Amongst
other things, this type of redundancy should provide robustness to faults: e.g., if either of 6

0M
or 6

6M fails, the other could still represent the presence of the feature.

2. The size and complexity of represented features varies significantly across macs: compare
what’s represented by 6

8M with what’s represented by 6
0M .

3. Some active macs do not appear to represent any subset of pixels: this is because such macs,
e.g., 6

12M , are only active due to persistence (what they actually represent is more complicated
and we leave that discussion for later).

4. These features are clearly rather arbitrary looking and do not correspond to the nice, clean,
“regular” features that would typically be designed. In fact, these features are the particular
features that occurred in the relevant macs’ RFs during learning and were assigned to codes
stored in the mac.

5. We emphasize that in each of panels, the active feature shown is just one of the features
stored in the respective mac’s (purple) basis. In general, there is substantial redundancy
across the features comprising the basis set of any single mac. This corresponds to what has
been termed overcompleteness. In future work, we will produce examples/figures like this
one, but which also show the complete set of features stored in each mac. This will make it
easier to see/analyze the relation to across-mac and within-mac redundancy.

193
Approved for public release; distribution unlimited.

Figure 98: The Portions of the Input, i.e., Features or Parts, Coded by Each of the 16

Active L6 Macs on Frame 7 of the Input Snippet

194
Approved for public release; distribution unlimited.

APPENDIX E - Relation of Input Accuracy Measure to Recognition
Accuracy

Input Accuracy (IA) is defined as the fraction overlap (expressed as a percentage) of a mac’s
inputs across training and recognition. IA is computed for each active mac at each level and on
each frame. IA is computed differently for Level 1 than for subsequent Levels.

IA for Level 1 (L1)

Level 1 macs receive inputs from L0 in the form of a pixel array. Percent overlap is thus
computed as the normalized Hamming distance:

A(())

1 ()
A(())

U

rec
m train

i F mU

IA i
F m

δ
∈

= ∑ (D-1)

where 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is set to 1 if pixel input i is the same across the training and recognition frame and
0 otherwise. (())UA F m is the set of active input pixels in mac m’s aperture.

IA for Level 2 (L2) and Higher

Computing l

mIA for Levels l = 2,…, L, follows the same approach except that macs that were
inactive during both training and recognition are discounted. Let (())UA F m be the set of macs
in the U-RF of mac m of level l, where each input mac was active during either training or
recognition or both, for the particular frame considered. The IA is then computed as:

 (())

1 ()
(()) U

l rec
m traini A F m

c CMU

IA c
A F m Q

δ
∈

∈

=
∗ ∑ ∑ (D-2)

where c is the index of the winner in each of the mac’s Q CMs. The function 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑐𝑐) here
indicates whether the index of the winner in CM c was the same during training and recognition.

E.1 Example Computation for a Level 2 Mac

Whereas the IA is easy to understand for Level 1, the discounting of inactive macs for the IA
computed at Level 2 and up is a bit confusing at first. The following example illustrates the
rationale for this modification to the usual similarity metric.

Let a mac at L2 have a U-RF consisting of three L1 macs. Let’s assume that two of the input
macs were silent during both training and recognition. If the third input mac‘s activity during
recognition perfectly matches its activity during training, then Eq. D-2 would indicate a IA of 1.
On the other hand, if the training and recognition activity patterns for that mac are completely
different, the IA would be evaluated at 0. If inactive input macs were not discounted in the
calculations of Eq. D-2, the resulting IA would instead be within the interval 2 ,13

 depending

195
Approved for public release; distribution unlimited.

on the amount of overlap in the active mac. In other words, by discounting inactive macs the IA
coefficient spans the whole range of possible overlap.

E.2 Sample Input Accuracy from a Simulation

A two-level network was run on 64x64 snippets from the preprocessed VIHASI dataset. Level 1
contains 1600 macs, and Level 2, 784 macs. The Level 2 U-RFs contain between 6 and 9 input
macs, and each Level 2 mac is active only if between 2 and 4 of its input macs are active. The
network is trained and tested on different snippets.

Figure 99 shows a sample distribution of Level 2 mac recognition accuracy percentage (RA%)
during recognition as a function of their corresponding IA. As expected, the scatter plot shows a
weak tendency for the RA% to be positively correlated with the IA.

Figure 99: Distribution of RA% as a Function of IA in Level 2 Macs

E.3 Distribution of RA% in a Feedforward Network

In addition to the mean IA computed above, it is useful to look at the distribution of RA% across
input macs. This is useful to determine whether a single input mac with high RA can lead an
output mac to a high RA% despite the presence of other, low RA input macs. This would be
analogous to a Max operator where the state of the output mac is determined by the state of the
maximally accurate input mac. The same network as above was used.

Table 25 shows the top eight IA distributions ranked as a function of average RA%. The table
can be interpreted as follows. The highest RA% observed tend to occur when all four input macs
have an IA between 75 and 100%. Table 25 may show some form of irregularity in the
distribution, for example, comparing the third and seventh rows suggests that higher RA% is
accomplished by having a single input mac in the topmost bin, followed by two macs in the third
bin, and one mac in the second bin, then by having three macs in the topmost bin and one in the
third bin. It is not clear at the moment how such a result could arise.

196
Approved for public release; distribution unlimited.

Perhaps more interesting is the comparison with Table 26 which shows the lowest 13
distributions, again ranked by RA%. Note that 13 distributions are shown here because they all
had the same average RA%. It is clear that most of the weight in the distributions is shifted to
the left in Table 26. This is not surprising: in general the more the inputs to a mac vary across
training and recognition periods, the lower the RA%.

Table 25. Top 8 IA Distributions Ranked by Average RA%
0 – 25 25 – 50 50 – 75 75 – 100 Average RA%

0 0 0 4 0.95
0 0 0 3 0.90
0 1 2 1 0.85
0 0 0 2 0.81
0 1 0 3 0.76
0 0 1 2 0.73
0 0 1 3 0.72
0 2 2 0 0.71

Table 26. Bottom 13 IA Distributions Ranked by Average RA%

0 – 25 25 – 50 50 – 75 75 – 100 Average RA%
3 0 2 1 0
3 0 0 3 0
5 0 1 1 0
3 2 0 0 0
1 0 2 2 0
1 0 0 4 0
4 0 2 0 0
2 1 1 2 0
3 0 3 0 0
3 0 1 2 0
1 1 2 1 0
1 1 0 3 0
2 2 1 0 0
1 0 1 3 0

However, it can be seen that a substantial number of the lowest distributions have at least one
highly accurate input mac. In other words, the presence of an accurate input mac does not seem
sufficient to lead to a high output RA%, suggesting that the feedforward network considered here
does not behave in a max-like way.

197
Approved for public release; distribution unlimited.

APPENDIX F - Spatiotemporal Compositional Hierarchies in Sparsey

The bottom row of Figure 100 shows an 8-frame snippet depicting an “Extend Arm” event.
Within individual frames, we can see several components, or parts, e.g., a head, an arm, a hand.
For each individual part, we can see sub-parts, e.g., back-of-hand, (curled) fingers, top-edge-of-
arm, bottom-edge-of-arm, top-of-head, forehead, cheek. Furthermore, if this is in fact the arm of
a person being extended, then we know that the full extent of the arm in some of these frames,
must include segments corresponding to the upper arm, to the elbow, to the forearm, and to the
wrist, perhaps to the shoulder as well. Figure 100 also shows the mac arrays and the active macs
(rose shaded) at each higher level and over all eight frames. In each panel, we also overlay the
subset of pixels represented by the set of active macs at that level and frame. Not all active
pixels end up being represented at L1 by dint of the interactions of the specific L1 mac’s U-RFs
and π-bounds. However, because the U-RFs overlap, most pixels end up represented by one or
more active L1 macs. The same principles apply all the way up the hierarchy. One place in
particular, where a significant portion of the pixels “fall out of the representation” is at L3 on
frame 7, i.e., most of the pixels corresponding to the top edge of the arm. However, as the reader
can see, those pixels do remain represented at all levels on the surrounding frames. In general,
such momentary dropping out of features from a spatiotemporally evolving global representation
may be quite tolerable, but this must investigated thoroughly going forward.

Also, one can readily see delayed activation proceeding up the hierarchy. Finally, note that macs
at higher levels persist for progressively longer periods, L2 and L3 codes persist for two frames,
and L4-L6 codes persist for four frames (or till end of snippet).

How are the different parts, sub-parts, sub-sub-parts, etc., represented in a multilevel Sparsey
network? We will demonstrate how over the next series of figures. At the outset, we remind the
reader that Sparsey learns the part representations from scratch and that parts represented at level
J generally contribute to more than one “whole” represented at level J+1. We will begin by
explaining / demonstrating this in purely spatial patterns and then extend to the spatiotemporal
case, i.e., spatiotemporal events, consist of multiple smaller-scale spatiotemporal events, which
Sparsey also learns from scratch, and also such that smaller scale events generally participate in
multiple higher-level events.

198
Approved for public release; distribution unlimited.

Figure 100: Sets of Active Macs Cross Levels and Frames While Processing an 8-Frame
Snippet of an “Extend Arm” Event, Showing Dropping Out of Features At Higher Levels

While Figure 100 shows the subset of pixels collectively represented by the union of all active
macs at each level and frame, we would also like to know which pixels are represented by any
particular level J mac on any particular frame. That is, we want to be able to say that at any
given level and frame, this or that mac is representing this or that specific feature, or “part”, of
the whole. Figure 101 (center) shows the sets of pixels (black) that are active in the U-RFs of 10
L1 macs highlighted in purple. [The full U-RFs (pixel fields) for each purple mac are shown, in
cyan, in Figure 102: each one consists of about 15 pixels.] Each of these 10 small groups of 4-5
active pixels constitutes an L1 feature (approximating a short oriented edge). These 10 features
do not overlap only because we chose the purple L1 macs to be sufficiently far apart. However,
the full L1 representation of the input pattern is actually the union of all 76 active (rose or
purple-shaded) macs. And, in general, any small local portion of the input is “seen by” (is in the
U-RF of) several overlying L1 macs. This is illustrated by the four outer panels of Figure 101,
which show the active pixels falling within the U-RFs of four nearby L1 macs, 1

69M , 1
90M , 1

108M ,
and 1

110M , indicated by the red lines. The pixels are numbered to show the overlap. For

199
Approved for public release; distribution unlimited.

example, pixels 3, 4, and 5 are represented by L1 macs 69 and 108, pixel 5 is represented by all
four, pixels 8 and 9, only by mac 110, etc. Thus, the overlapped U-RFs entails a substantial
degree of redundancy. However, this is a complex form of redundancy in that the multiple local
patterns (contexts) in which any given pixel (feature) occurs are generally unique. For example,
the SDR code active in mac 1

69M (note that the codes are not shown here) represents pixels 3, 4,
and 5, in the context of pixels 1 and 2, whereas the code in 1

108M represents pixels 3, 4, and 5, in
the context of pixel 7. As we will see, this same general scheme of overlapping U-RFs and its
concomitant redundancy applies all the way up the hierarchy.

Figure 101: Illustration of Redundant Representation of Features (Parts)

Figure 102 shows a 3D version of the middle pattern of Figure 101, showing only levels L0 and
L1 of the 7-level model. In this case, the clumps of cyan pixels show the U-RFs of the aligned
overlying purple L1 macs and the blue lines show suggestive subsets of the U-wts from the
pixels comprising those U-RFs to the cells of the L1 macs (the cells are not visible). In some
cases, the U-RFs of the purple macs abut each other, but none of them overlap. In contrast, in
the inset, we show how the U-RFs of the four nearby macs mentioned in Figure 102 (yellow
ellipse) do overlap significantly.

200
Approved for public release; distribution unlimited.

Figure 102: 3D Version of Figure 101’s Center Panel to Clarify the Exposition

Figure 103 extends the concepts of Figure 101 and Figure 102 from levels L0 and L1 to L1 and
L2. This begins to let us explain how the “parts”, or “features”, become progressively larger and
more complex with level, as do the “wholes” composed of those features. The L2 mac grid
showing all active macs and all pixels represented at L2 (on frame 4 of snippet) is shown at
center of Figure 103b. The L1 mac grid is shown at bottom center for reference. Around the
periphery are panels showing the specific sets of pixels represented by seven L2 macs (the purple
mac in each panel). Red circles show approximate extent of L2 mac U-RFs at level L0. The
reader can see that the features represented by these seven active L2 macs are generally larger
and more complex than the 10 L1 features in the center panel of Figure 101. We introduce the
convention that a feature name consists of:

A tag naming the principal shape present, e.g., L (straight line), SWC (a southwest corner).

• Table 27 gives a possible list of L2-scale features.

• An optional size measure of shape, e.g., angle in degrees for angle feature, in parens.

• A “.”, followed by the principal approximate orientation, in degrees, of the shape.

• A “.”, followed by an indication of which general sector(s) of the U-RF the centroid of
the shape falls within, e.g., central (C), N, NE, E, etc., as in Figure 103.

• The reader can also see the significant overlap between these L2 features, i.e., the 45°
line segment represented by the purple mac in the bottom right panel is the same as the
lower edge represented by the purple mac in the panel directly above it. However, the

201
Approved for public release; distribution unlimited.

overall features represented by these two macs are clearly different: the bottom right one
represents that 45° line in isolation while the one above it represents that line in the
context of a nearby 0° edge above it. As another example, the features in the panels at
left and lower left have high overlap. But, while the two overall contexts are different,
they are so similar as to be considered representing essentially the same semantic feature.

Figure 103: L2 Features are Larger and More Complex than L1 Features

Table 27. List of L2-Scale Simple Shape Features

Feature Tag Name Feature Tag Name

L Straight Line Segment

Z Zig-Zag

SWC, NEC,

etc.
Southwest Corner,

Northwest Corner, etc.
RL Radiating Lines

T T Junction

CR Cross

PG Parallel Gap

SG Skewed Gap

We point out that our feature naming convention is deliberately designed to be as un-semantic as
possible. That is, the reader knows that the 2-segment feature depicted at the right of Figure
103b actually represents the top and bottom edges of an arm, but that’s only because the reader
brings a huge amount of prior knowledge to interpreting this pattern. However, a “blank slate”
instance of Sparsey has no prior knowledge, and a key part of future work is to explain how such

202
Approved for public release; distribution unlimited.

knowledge is acquired over time and examples, most of which are unlabeled, but a small fraction
of which are labelled. So we try to assign feature names that carry minimal extra information
beyond what could actually be inferred given only the information within the red circle.

Figure 104 now extends our explanation to levels L2 and L3. It has the same scheme as Figure
103b with a grid showing all active L3 macs at center (L1 and L2 are shown below it just for
reference) and various specific L3 features around the periphery. To increase clarity, the circles
are colored. The circles for three of the panels in the dashed square are not shown in the central
L3 panel. Again, the reader can readily see the increasing scale and complexity of the features
relative to L2. We would need a substantially richer set of symbolic names of basic shapes at
this scale, e.g., as in Table 28. For example, we introduce the notion of an “arc”, as distinct from
simply a straight edge, at this scale. The increasing degree of overlap between features
represented by neighboring macs is emphasized in the dashed box.

Figure 104: Detail of the Featural Transform Between L2 and L3

203
Approved for public release; distribution unlimited.

Table 28. List of L3-Scale Simple Shape Features

Feature Tag Name Feature Tag Name

L Straight Line Segment

Z Zig-Zag

A Angle

RL Radiating Lines

T T Junction

CR Cross

PG Parallel Gap

SG Skew Gap

ARC Arc

? ?

CR Closed Rounded

CB Closed Box

PL3 Three parallel Lines

? ?

PG-LRS Parallel Gap with left

rear Serif
? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

U U Channel

ARC-LRS Arc with left rear serif

ARC-DLRS Arc with detached

left rear serif

Figure 105 extends the discussion to levels L3 and L4 and again follows the scheme of Figure
103b. Only four of the L4 macs activate on frame 4 of this snippet. The outer panels show the
subsets of the L0 pixels represented by each of the four active L4 macs. There is even more
overlap (redundancy) of representation at L4 than L3 [despite much fewer macs (and cells) being
active]. Furthermore, the size and complexity of the L4 features are much greater than at L3.
Note that one of the features (lower left) has two segments, which are highly overlapping with
portions of the other three features. One important point to note here is that the bottom contour
of the arm drops out at L4. Again, this occurs because the interaction of the U-RF and π bound
parameters at L4 fail to allow any L4 macs whose U-RF includes those pixels to activate. But as
suggested earlier, this type of drop-out event is usually seen to be transient, with the dropped-out
feature typically being actively represented in proximal frames.

204
Approved for public release; distribution unlimited.

Figure 105: L4 Representation of Frame 4 Consisting of four Large features, Some of

which are Fairly Complex

Table 29. List of L4-Scale Simple Shape Features

Feature Tag Name Feature Tag Name

N-FRB Neck from right of

body
ARC-DLRS Arc with detached

left rear serif

ARC-LRS Arc with left rear serif

Figure 106 shows a small subset of instances of progressively larger-scale, more complex, and
more overlapped features at successive levels (starting with L2). The L2 mac grid is shown at
center with seven copies of the grid, each one showing the U-RF pattern (“feature”) (black
pixels) for an L2 mac (highlighted in purple). The idea is that following along paths roughly
radiating out from center, we show sequences of features that are the parts comprising
progressively larger wholes. Following the two heavy dashed right arrows, we see two instances
of the L3 mac grid, each one showing the U-RF of an L3 mac (purple) whose U-RF includes the
L2 mac at the arrow’s origin. Both of these L3 macs fall within the U-RF of the purple L4 mac
at far right, whose name is 4

24M . Consequently, the two L3 features are present, as two
component “parts” comprising the “whole” feature shown in 4

24M ‘s U-RF. Note that 4
24M ‘s U-

RF includes other active L3 macs as well, which accounts for the other pixels shown in 4
24M ‘s

U-RF. Consequently, the SDR code active in 4
24M (shown in the inset at top right of Figure 107)

205
Approved for public release; distribution unlimited.

represents the complex feature shown, which could be described in myriad ways, but perhaps
most simply as “horizontally extended region with top and bottom edges”.

The reader can continue to follow the heavy dashed arrow to the L5 mac grid at lower right,
which shows the U-RF of L5 mac, 5

7M . This larger-scale feature combines the feature in 4
24M ‘s

U-RF, with that in 4
16M ’s U-RF, which can be denoted N-FRB.90.NE, i.e., “Neck exiting from

right of body, where that entire feature is oriented at 90° and whose centroid is in the NE sector
of the U-RF”. We invite the reader to peruse the other features present at the different levels. In
general, the idea is that following along dashed paths roughly radiating out from center, we show
sequences of features that are the parts comprising progressively larger wholes. Overall, Figure
APPENDIX F - -8 shows the generally increasing size, complexity, and redundancy of the
represented features, as well as the how the topological relationships amongst the features
represented at any given levels are preserved, though gradually less so with each increasing
level. Finally, it shows how a feature at one level generally contributes to multiple features at
the next higher level, as seen especially in the bottom and bottom left portions of the figure.

The L6 mac grid (which has only one mac) is shown in inset at top left, along with the subset of
pixels represented by the code active in the L6 mac. That subset, which includes almost all the
active pixels could, for example, be described as consisting of a “head” and an “arm” feature
(and with their implicit spatial relationships), but again, such features are highly loaded with
semantics. And, much of those semantics can only have been learned by observing how such
features change over time. So we reiterate that we are not suggesting that the codes stored in the
macs during the (still very limited) learning phases of our simulations represent high-level
features (classes) like, “head”, “arm”, etc. Nevertheless, we do suggest that with more extensive
learning, and in larger models, these codes will eventually carry such higher-level semantics, and
thus provide a basis for intelligent cognition.

There are two key concepts not captured in the preceding figures. First, they don’t capture the
temporal aspect of the features. That is, Sparsey’s macs actually learn (natively) spatiotemporal
features, which cannot be fully conveyed by static images. For that reason, we will eventually
construct a slide fashioned after Figure 106, which has little animations running in each of the
small mac grid panels. This will allow the viewer to get a much better sense of how
spatiotemporal features at level J are composed of smaller-scale spatiotemporal features at level
J-1. In addition to the progressively larger spatial sizes of the U-RFs at higher levels, persistence
increases with level, so the little animations will have progressively longer temporal periods at
higher levels.

206
Approved for public release; distribution unlimited.

Figure 106: Progressively Larger-Scale, More Complex, and More Overlapped Features at

Successive Network Levels (Starting with L2)

The second major concept not portrayed in earlier figures is the relation of the SDR code active
in a mac to the actual input in that mac’s U-RF. We did show the actual SDR code active in

4
24M at the top right of Figure 107. And, it is the case that that code does represent the current

input falling within 4
24M ’s U-RF. However, we would like to see the spatiotemporal input

pattern that occurred in 4
24M ’s U-RF during the learning phase to which that SDR code was

associated. In fact, one can see that there are errors (red cells) in the SDR code shown in the
Figure 107 inset. We can truly call these errors because the recognition trial from which the
preceding figures were generated involved the exact same input snippet as used during the
training trial. However, in general, the model will experience a huge number of future input
moments that have more or less similarity to learned moments, but are not exact duplicates. In

207
Approved for public release; distribution unlimited.

such cases, winners that differ from those that occurred during the closest matching learned
moment cannot absolutely be considered errors; that is, such differing winners might correctly
reflect the different statistics of the novel current input moment compared to that closest
matching learned moment.

Figure 107 shows another visualization to help clarify the U-RF structure across levels of a
Sparsey network. The gray “influencing cone” simply shows the expanding U-RF of mac 4

24M
at progressively lower levels. At L4, we show the subset of pixels represented by the code
(shown in inset at top right) active in L4 mac, 4

24M . As explained on previous occasions, these
are the active pixels falling within the region of the input surface (L0) that can influence 4

24M
(generally, via multiple vertical sequences of intervening macs). The annotations around the
figure explain how the U-RF of a mac at level J, is the union of the macs comprising its
immediate subjacent afferent macs at level J-1 (which we can refer to as said mac’s “direct U-
RF”), and the same compositional scheme continues down the hierarchy to the input level.

So, in the more general case, where the test snippet ≠ training snippet and where nevertheless the
code activated is identical or very close to one of the codes activated in the mac for a particular
learned moment, we would like to see that learned moment. If the model is to be viable, then it
should be the case that in most such instances, the current input moment should be similar to that
learned moment. More generally, rather than constraining the prior point such that the code
activated during recognition be “identical or very similar” to a code stored during learning, we
could simply show the moment corresponding to the learned code having greatest overlap with
the code activated during recognition. Or, we could show the moments corresponding to the
several learned codes with highest overlap. In any event, adding this capability is essential if we
are to be able to view the operating model and judge its ability to retrieve the learned moment
that most closely matches the current recognition moment.

208
Approved for public release; distribution unlimited.

Figure 107: A Visualization Clarifying the U-RF structure Across Network Levels

209
Approved for public release; distribution unlimited.

APPENDIX G - Statement of Work

The project was a two-year seedling effort, which was extended to 2.5 years via an NCTE. The
SOW was slightly revised as part of the NCTE. That final-form SOW consists of 21 overall
tasks. Table 30 gives our final status on these tasks.

Table 30. SOW Task Final Status

Task Short description Status
3.1 Characterize Basic Computational Properties/Capacities of the Core Model Complete
3.2 Obtain and Preprocess Datasets Complete
3.3 TEMECOR Benchmarking Complete
3.4 Transfer Learning Incomplete
3.5 Parametric Analysis of Specific Contribution of Higher Representational Levels Incomplete
3.6 Investigate Unsupervised Learning of Low/Mid-Level Visual Features Complete
3.7 Investigate Cross-Modal Unsupervised Learning Incomplete
3.8 Investigate Driving Model Based on Only on Global Familiarity (G) Values of

Higher Level Macrocolumns
Incomplete

3.9 Stored Concepts Simultaneously Ordered on Many Dimensions Incomplete
3.10 Program Management Complete
3.11 Characterization/Analysis of Low-Level Visual Features Complete
3.12 Characterization/Analysis of Mid-Level Visual Features Complete
3.13 Explore Macrocolumn Weight Freezing Policy Complete
3.14 Study Effects of Varying Schedule of Persistence Increase Across Levels Complete
3.15 Investigate Impacts of Modified Learning Policies/Parameters Incomplete
3.16 Investigate Variation in Network Connection Schemes (Topologies) Complete
3.17 Develop/Extend Simulation & Testing Infrastructure Complete
3.18 Investigate Combining Inputs from Multiple Sensory Modalities to Improve Video

Event Recognition
Incomplete

3.19 Additional Preprocessing Methods to Provide Cleaner Input to Sparsey Incomplete
3.20 Compare Performance of Rectangular vs. Hexagonal Grid Topologies Incomplete
3.21 Conduct Tests on Full-Size Videos, Higher-Level Event Classes, and Segmentation Complete

G.1 Task List

3.1 Characterize Basic Computational Properties/Capacities of the Core Model: The
Contractor shall conduct an initial investigation demonstrating various properties/capacities of
learning and recognition performance of TEMECOR SOR model. This task shall involve
model instances with a single aperture and single coding modules at each internal level. Key
model parameters varied across experiments shall include: input aperture size, number of
hierarchical levels, size parameters, control of nonlinear neuron activation function,
convergence/divergence of weight matrices, and learning protocol parameters. The Contractor
shall sample a tiny fraction of the combinatorially huge space of possible experiments defined
by the above parameters. The Contractor shall provide several measures and visualizations in
these experiments, including: run-time for training, run-time for retrieving (recognizing), total
information (in bits - stored in a module), recall/recognition accuracy, confusion matrices,

210
Approved for public release; distribution unlimited.

precision, recall, and AUC-PR measures.

3.2 Obtain and Preprocess Datasets: The Contractor shall obtain and preprocess the
benchmark video datasets so that they can be input into TEMECOR. The Contractor shall
develop a flexible standalone preprocessing module to maximally automate production of
datasets. Preprocessing research exploration for this task shall include edge-filtering
(spatiotemporally local filtering), binarization, the use of intrinsically spatiotemporal features
such as optic flow features, known neuronal response profiles of the lateral geniculate nucleus
(LGN), the ability to decimate (in time) input videos to any desired output frame rate, the
ability to create and convert to any desired spatial resolution, and adding color features to
input representation.

3.3 TEMECOR Benchmarking: The Contractor shall conduct a battery of experiments
ranging over the parameter space described in 3.2. These experiments shall generally have
300x240 pixel inputs and use models with up to 2000 (50x40) L1 coding modules (each
having a 6x6 pixel aperture). The Contractor shall experiment with models with as many as
10 levels, up to several thousand coding modules, several million RUs, and several billion
weights. In all cases, the Contractor shall report recognition accuracy using the same
measures already present in published results, e.g., Precision-Recall curves. In addition, the
Contractor shall report the runtime for training and testing, and other statistics, such as
degrees of saturation of weight matrices. The Contractor shall also prepare analyses and
visualizations of the RF tuning profiles of modules in a subset of the experiments. The
Contractor shall investigate event recognition performance on the benchmarks as a function
of input frame rate.

3.4 Transfer learning: The Contractor shall conduct experiments (similar in spirit to those
described in (Le, Zou et al. 2011)) in which one trains on one dataset and tests on another.
The Contractor shall define a small set of parametric studies, and analyze the transfer
obtained as functions of the relevant parameter(s).

3.5 Parametric analysis of specific contribution of higher representational levels: The
Contractor shall conduct experiments investigating the advantages of a hierarchical
architecture.

3.5.1 To research potential for increased information storage capacity the Contractor shall
create a synthetic or naturally-derived dataset of sequences. The Contractor shall compute the
amount of information, in bits, contained in each sequence and in the set as a whole: The
Contractor shall conduct a parametric search over model space, holding the number of levels
J at some low fixed value, e.g., J=3 and the total number of weights at W. The Contractor
shall follow a training protocol in which, after the presentation of each new sequence, they
shall test recall/recognition accuracy on all sequences stored. The Contractor shall iterate this
procedure until recall/recognition accuracy falls below a threshold (typically set close to
100%), yielding an estimate, l(J=3) (in bits), of the model's information storage capacity. The
Contractor shall conduct another parametric search of model space, but holding J=4, and the
total number of weights at W. For each model instance tested during this search, the
Contractor shall perform the same training protocol as above. The Contractor shall attempt to

211
Approved for public release; distribution unlimited.

show that the l(J=4) > l(J=3). The Contractor shall then repeat this process for J=5, etc., with
the goal of showing that, all else equal, more levels means higher capacity. The Contractor
shall seek to understand general principles/mechanisms underlying this relationship for the
particular case of SOR being used with hierarchy.

3.5.2 The Contractor shall try to assess impact of naturalness of Mid-level Features
(Synthetic). The Contractor shall create a set of synthetic datasets having specific statistical
properties, i.e., spatiotemporal correlations of different scales and orders, or in other word,
specific spatiotemporal features. Each such dataset shall be divided into a training set and a
testing set. For each dataset, the Contractor shall conduct a parametric search through model
space with the goal of finding model instances, or rather spaces of model instances, which
can learn the known, multi-scale correlational structure of the dataset as closely as possible.
The Contractor shall measure how well the dataset's statistics are learned by measuring
recognition accuracy on the test set.

3.6 Investigate unsupervised learning of natural low- and mid-level visual features: The
Contractor shall carry out experiments involving the benchmark datasets, which contain
numerous instances of natural, high-level events, e.g., hugging, walking, clapping, boxing,
golf swinging, horseback riding, skating, etc.

3.6.1 The Contractor shall research visualizations of bases of mid-level coding modules by
creating model instances with many levels (-10) and training them on natural video from the
benchmark datasets. The Contractor shall provide visualizations of the receptive field (RF)
tuning profiles for a large sample of coding modules across levels, models, and experiments.
A module's RF shall be shown as the exhaustive set (catalog) of the basis elements (features)
stored in it. The Contractor shall show the particular SOR code for each such feature as well
and shall organize these results by level with the goal of demonstrating the increasing
complexity of features with level and the naturalness of features learned at each level.

3.6.2 The Contractor shall compute summary statistics of the features comprising a basis to
demonstrate the naturalness of the features learned. For each RU in a module, the Contractor
shall compute various summary statistics over the subset of features in whose codes that RU
participated. The Contractor shall directly compare these "single-unit" RFs to single-neuron
RF profiles from areas throughout the cortical hierarchy.

3.7 Investigate cross-modal unsupervised learning

3.7.1 The Contractor shall extend model simulation for lexical modality. The Contractor
shall modify the model simulation to allow an arbitrary number of separate input levels, all of
which would be at "LO" level. The Contractor shall implement a preprocessing module that
maps text tokens (i.e., of words) into a localist code, i.e., one unit per word. The Contractor
shall also develop modules automating extraction of text from video subtitle/caption tracks,
beginning with reviewing the specific techniques of (Marszalek, Laptev et al. 2009).

212
Approved for public release; distribution unlimited.

3.7.2 The Contractor shall implement a preprocessing module that uses OTS speech
recognition to extract speech (audio tracks) from video and time-align the transcribed text to
the video frames.

3.7.3 The Contractor shall extend model simulation for audio modality. To match
TEMECOR's current binary input format, the Contractor shall define a binary audio modality
representation. The Contractor shall develop an audio preprocessing module which maps
digital audio track data into that representation.

3.7.4 The Contractor shall test multi-modal learning by training a model instance on one of
the benchmark datasets, presenting the visual and lexical modalities concurrently. The
Contractor shall investigate the formation of associations between modalities, which form (as
SOR codes) in modules at higher-levels. The Contractor shall compare classification
performance with and without the additional modalities and focus on demonstrating the
facilitation of learning highly nonlinear categories as described in earlier sections. The
Contractor shall carry out a series of studies as described in this subtask, exploring the space
of models and using different datasets.

3.7.5 The Contractor shall develop an operational mode of the model which allows cross-
modal retrieval testing. Using the models trained in prior subtasks, the Contractor shall
present the visual input only of novel examples of given event categories and quantify the
model's ability to activate the correct symbol/category representation in the Lexical modality.
The Contractor shall also investigate the visual representations that become active given
lexical inputs.

3.7.6 The Contractor shall conduct another series of experiments similar to 3.7.3 & 3.7.4 in
which the Contractor shall train with three concurrent modalities and test several of the
possible retrieval scenarios, e.g., prompt with visual and retrieve lexical, prompt with audio
and re1rieve lexical, etc.

3.8 Investigate computing global familiarity (G) at higher levels: In the current TEMECOR
simulation, each module at every level computes the familiarity, G, of its total input
(including top-down, bottom-up, and horizontal inputs.

3.8.1 The Contractor shall implement variable use of G functionality by adding to their
simulation, the ability to operate with G being computed only at a specified level and higher,
with modules at lower levels using those G values. The Contractor shall implement gradation
of the relative use of G values produced at other levels.

3.8.2 The Contractor shall investigate variable use of G functionality by investigating
variants of the model in which the G-dependent activation function modulation mechanism
operates only at higher levels, and perhaps even with a gradient of efficacy across those
higher levels. The Contractor shall repeat several of the synthetic and natural event
recognition tasks used in prior tasks while investigating the effect on the tasks of varying the
minimum level at which modules compute and use their own G values.

213
Approved for public release; distribution unlimited.

3.9 Stored Features/Concepts simultaneously ordered on many dimensions: In TEMECOR,
items (objects, concepts, records) stored in an SOR-based memory/database can be
simultaneously physically stored in sorted order on multiple feature dimensions. The
Contractor shall conduct a series of simulation-based studies that will demonstrate this
property.

3.9.1 The Contractor shall construct a small synthetic dataset of Y sequences (separable)
which vary on a predefined set of M=3 separable (orthogonal) input space features (at least
one of which will be spatiotemporal features). The Contractor shall ensure that the features
are uncorrelated and/or highly anti-correlated. Thus, the sequences will have different
orderings on all M dimensions.

3.9.2 The Contractor shall establish simultaneous orderings (separable). The Contractor
shall present the Y sequences to the model for single-trial learning. The model used in this
experiment shall be of sufficient size (and number of levels) so that only a single code at the
topmost level is needed to represent the whole sequence. Assuming persistence doubles with
each level above L1, the Contractor shall investigate sequences up to 128 items long with
models having eight internal levels. The Contractor shall verify that set of code intersections
simultaneously respects the M featural orderings.

3.9.3 The Contractor shall construct a synthetic dataset of Y sequences that vary on
predefined set of M=3 non-separable spatiotemporal input space features.

3.9.4 The Contractor shall establish simultaneous ordering (non-separable) by conducting a
series of experiments and analyses following the same protocol as in 3.9.2.

3.10 Program Management: The Contractor shall manage both the technical and
programmatic aspects of this program including managing technical performance of the team
assuring technical progress is made as planned, preparing for program reviews and preparing
required program documentation and reports. The Contractor shall notify the government of
any program risks in a timely manner.

-----------------------------Proposed Year 2-----------------------------

3.11 The Contractor shall perform Characterization/analysis of low-level features,
corresponding to visual features learned at the first two "cortical" levels, analogous to V1 and
V2. The Contractor shall investigate how the model's many parameters affect the features
learned, including the numbers of features that can be learned/stored in individual macs and in
whole networks. The Contractor shall continue to investigate this parameter space, which
includes, #of CMs/mac (Q) for each level, #of cells/CM (K) for each level, parameters
specifying the bounds on the numbers of features in a. mac's receptive field (RF), which must
be active, for the mac to be activated, parameters controlling sensitivity of matching as
function of normalized inputs to cell, (i.e., the exponents of U, H, and D in CSA Eq. 3),
threshold parameters for backing off to lower-order match computations, whether model uses
CSA-based or ML-based recognition, parameters controlling the sigmoid map from a cell's V
measure to its final probability of winning, and parameters controlling how the presence of

214
Approved for public release; distribution unlimited.

multiple competing hypotheses in a mac are handled. All of these parameters and many
more will affect the (space-time) structures of the features learned, including features in the
lowest level macs.

3.12 The Contractor shall perform Characterization/analysis of mid-level features
corresponding to visual features learned at the next two ''cortical" levels, analogous to V4 to
AIT. The same type of investigations can be done for macs at any network level. Due to
increasing spatial and temporal size of mac RFs at higher levels, the features being learned
shall be of increasing spatiotemporal scale and increasing complexity. The Contractor shall
conduct a series of experiments to find systematic relationships between model parameters
and the mid-level features that the model learns.

3.13 The Contractor shall explore macrocolumn weight-freezing policy, i.e., "critical
periods". There is clear evidence for "critical periods" in biological brains, across multiple
modalities. The most natural physical explanation for a critical period is that the set of
weights leading to (and perhaps from) a given region of cortex become permanent. We
implement the concept of critical period directly in Sparsey via a policy in which. all .the
weights leading to/from a mac are frozen if the rate of saturation in any one of the projections
leading to the mac, e.g., H, U, or D, reaches a threshold. The contractor shall conduct
parametric studies of model parameters, and interactions of parameters, that influence the
rates of saturation and therefore the schedules/patterns of freezing that obtain. And, there are
many functional consequences of any particular schedule/pattern of freezing. We will
investigate these principles, parameters, and consequences of weight freezing.

3.14 The Contractor shall study the effects of varying the schedule of persistence increase
across levels. Weight freezing requires control of how quickly the various synaptic
projections to a mac (e.g., U, H, and D) become saturated. H projections tend to become
saturated way sooner than the U- or D-projections. The consequence is that learning is shut
off in a mac, when its H-projection is about half saturated but when only a small fraction, -5-
10% of the U- or D-weights have been increased. This seems suboptimal from the standpoint
that associative memories achieve maximum storage capacity at 50% saturation. The
Contractor shall investigate multiple ways of balancing/controlling relative rates of saturation.
A primary method is to increase the rate of persistence increase across levels. Basically, if LJ
codes stay on for 4x as long as LJ-1 codes that should lead to faster saturation of the U-
projection from LJ-1 to LJ, than if LJ codes stay only 2x as long as LJ-1 codes.

3.15 The Contractor shall investigate the impacts of modifying policies/parameters of
learning as follows: modify learning law so that strength of weight increase depends on how
long the pre- and post-synaptic units have been on and how long the units remain co-active,
implement richer synaptic decrease policy, e.g., akin to the decay regime of the STOP
learning rule, and investigate properties of parameters controlling size of weight increases as
functions of current weight value and permanence values.

3.16 The Contractor shall investigate variation of network connection schemes (topologies).
As noted in tech reports submitted under the baseline project, our current simulation
environment allows significant control of the extent/pattern of synaptic connectivity

215
Approved for public release; distribution unlimited.

within/between macs at the same and neighboring levels. We have gained some
understanding of broad principles, e.g., tradeoffs between degrees of connectivity and rates
of saturation, etc. As one example, the greater the increase in persistence in going from
network level J-1 to level J, the more slowly the bottom-up (U) projections will saturate, all
else equal (because the rate at which new SOR codes are stored in level J macs will be lower).
This influences the numbers of basis elements (codes) ultimately stored in all macs involved
and indirectly, the ultimate set of (spatiotemporal) classes learned by the model (which will
have an associated cost vis-a-vis the classification task). But, all of these considerations will
vary as a function of the degree of U- connectivity from level J-1 to J (e.g., if each level J
mac has 5 level J-1 macs in its bottom-up (U) RF, vs. if it has only 1, or 9, etc.). The
contractor will carry out systematic analyses of interactions of parameters, including
connection topologies, and input space statistics. There is a major overarching principle
which strongly limits the space of wiring topologies that needs to be searched: specifically, in
the brain, neurons typically connect only to -5-1Ok other neurons, i.e., the brain's topology is
local. This bodes well regarding eventual mapping of brain-like computation to hardware.

3.17 The Contractor shall continue to develop and extend the simulation & testing
infrastructure as follows: Combine the "command line" version of Sparsey and the "GUI"
version, add/extend GUI functionality to allow better viewing of learning (increased
synapses, wts of synapses, permanences of synapses), etc., viewing of spatiotemporal
receptive fields, viewing of spatiotemporal features (i.e., basis elements) stored in macs,
viewing of charts showing state CSA variables (u, U, h, H, d, D, V, mu, rho, etc.) for each
CM of a mac, automated presentation of graphics for use in papers, and movies for use in
presentations/web, automation of unit testing, validation suites, e.g., automatically running a
set of benchmark problems, integration of front-end pre-processing (edge-filtering,
binarization) into the main application, maintaining a development version and a version that
can be made available to users wanting to test Sparsey.

3.18 The Contractor shall investigate combining inputs from multiple sensory modalities
to improve video event recognition.

3.18.1 The Contractor shall implement a motion feature representation of video inputs based
on histogram of flow (HOF). These motion features constitute a second visual modality of
input to the model, the first visual modality being the binary edge features.

3.18.2 The contractor shall produce Sparsey networks that combine (fuse) the two
modalities, edges and HOFs, in analogy to the ventral/dorsal (or, “what/where”) division of
cortical processing. The fusion scheme is depicted in Figure 108.The contractor shall test
these multimodal models for classification accuracy on known video benchmark datasets,
e.g., KTH, Weizmann, against accuracy achieved by either single modality model.

3.19 The Contractor shall investigate additional preprocessing methods to provide cleaner
input to Sparsey.

216
Approved for public release; distribution unlimited.

3.19.1 The contractor shall investigate additional generic preprocessing methods including
human actor detection, tighter bounding boxes, and part (limb) labeling to reduce intra-class
variation in Sparsey’s inputs, in support of better class recognition performance.

3.19.2
The Contractor shall investigate additional preprocessing methods that may yield:
• More complete (unbroken) contours
• Fewer noise pixels, i.e., pixels unconnected with major body outline edges.
• Easier registration of contour segments from one frame to the next.
• Better localization of the single actor in each KTH frame
• Fewer instances of the BB excluding important parts of the image.
• Fewer inclusions of non-informative, e.g. outer frame, edges.

We believe such improvements, though not requiring substantial increase in computational
complexity to an overall system [since the algorithms are local (in space and time)], may yield
significant increases in Sparsey’s ultimate recognition accuracy. We expect improved accuracy
because the cleaner data implies reduced intra-class variation without reducing inter-class
variation, which makes the classes more separable. Several software packages exist for
performing human body localization. The Contractor shall evaluate such packages and if
beneficial, will regenerate cleaner binary edge versions of the KTH data, re-test Sparsey with the
new data, and analyze performance improvements.

In addition to producing cleaner binary edge imagery, some of these software methods label
regions with the specific part, i.e., body limb. In principle, this limb localization information can
be used to improve KTH class recognition, e.g., knowing that a particular contour in the upper
left quadrant of a frame, which is rotating counter-clockwise, is a “forearm” limb greatly
increases the probability that the overall action being performed is “hand-waving”. The
Contractor shall investigate the feasibility of using such limb localization information to improve
recognition accuracy on KTH.

3.20 The Contractor shall compare performance of rectangular vs. hexagonal grid
topologies. The Contractor shall compare the two topologies using a large number of
problem/network instances and quantify the performance differences. It is expected that
hexagonal will significantly outperform rectangular grids in the lower visual levels due to the
improved feature size normalization (e.g., in a V1 mac, the number of pixels active in its LGN
aperture) afforded by the increased symmetry of a hexagonal vs. rectangular field. However,
it is also expected that this advantage will become irrelevant at higher network levels, because
such levels are more abstract and less topological in nature. At higher levels, the shapes of
macs may in fact become far more irregular and overlapped, which would go a long way
towards explaining why macrocolumns have not been reported in frontal brain areas.

3.21 The Contractor shall conduct tests on full-size videos, higher-level event classes, and
segmentation. The Contractor shall continue to test on full-size videos as
additions/improvements to the model are made in order to validate the model's storage
capacity, speed, and the characteristics of higher-level event classes that can and cannot be
recognized by the model. The Contractor shall also continue to investigate the model's ability

217
Approved for public release; distribution unlimited.

to segment spatiotemporal objects/events out of the input stream.

Figure 108: Prospective 2-Modality Fusion Architecture Combining Edge & HOF

Features

218
Approved for public release; distribution unlimited.

10. SYMBOL TABLE

Table 31. Major Symbols in CSA Equations

SYMBOL DEFINITION

()U tλ Power to which U is raised prior to being multiplied with H and D signals. It can
vary as a function of time from beginning of the sequence (snippet) being processed.

()mδ Persistence, in number of time steps, of mac m. Currently, all macs of a given level
have the same persistence.

()mϒ Age, in number of time steps (frames), of the currently active code in mac m.

U + Upper threshold above which a cell’s U value is considered 1. H + , D+ analogous

*
Uπ Number of active features in a mac’s U-RF, which are active in macs with Bζ ≤ .

U − Lower threshold below which a cell’s U value is considered 0. H − , D− analogous

Uπ The # of active features in a mac’s U-RF.

()V i Overall local evidence that cell i should become active. Product of functions of ()U i ,
()H i , and ()D i .

Vζ Threshold for a cell to be considered as part of an active hypothesis

ˆ
jV Maximum V(i) in CM, Cj .

G− Threshold below which the mac’s G value is considered effectively zero.

γ The sigmoid expansion exponent

G
()G t Average V̂ value over a mac’s Q CMs. It is a measure of the familiarity of a mac’s

total input, normalized to [0,1].
χ The sigmoid expansion factor

η Range of the V-to-ψ map, which transforms a cell’s V value into its relative (within
its own CM) probability of winning, ψ.

jM Number of macs in Level j.

ζ The number of maximally active hypotheses, ζ , in a mac.

(,)a j t Activation (0,1) of cell j at time t.

qζ # of cells in CM q with ()V i Vζ> . Typically, Vζ
 is set close to 1, e.g., 0.95.

((,))F j tζ The MCH correction factor ()F ζ at time t for mac that contains cell j.

B Threshold on ζ above which we ignore completely signals from the source mac.

219
Approved for public release; distribution unlimited.

SYMBOL DEFINITION

()F ζ The correction factor for increasing the weights of outgoing signals from cells in
macs that have multiple competing hypotheses (MCHs), i.e., 1ζ > .

A Exponent (<1.0) for discounting MCH correction factor when 1ζ > .

()iρ The absolute probability of activating cell i in a mac.

()iψ The relative probability of activating cell i in a mac.

UG
G computed based only on the U signals to a mac. Similarly, HUDG is G computed based

on all three input vectors, U, H, and D. Similarly, for HUG , UDG , HDG , HG

()HUG t+

Threshold below which we back off to the next lower-order (or more generally, the
next-considered) version of G. Here, we suggest that this threshold can be a function
of time (frame).

()u i ,
()h i , ()d i

Raw sum of weighted signals from cells comprising cell i’s U-RF. ()h i , ()d i are
analogous

Uπ
− ,

Uπ
+

Lower and upper bounds on the number of active features that must be present in a
mac’s U-RF for that mac to activate.

Q , iQ Number of CMs per mac; same but for a specific level, i.

K , iK Number of cells per CM; ; same but for a specific level, i

Hλ , Dλ Analogous to ()U tλ except that for now they are not functions of time.

1σ , 2σ

3σ , 4σ

Parameters that interact to control overall sigmoid expansivity and shape, e.g.,
horizontal position of inflection pt., etc.

()U i , ()H i ,
()D i ()U i is the normalized ()u i , to [0,1] range. ()H i , ()D i are analogous.

Active(m) Whether mac m is active or not
M2,3

3
4M

The mac at coordinates (2,3) (when the level is unambiguous). Alternate notation:
Mac with index “4” at level “3”.

U-RF,
H-RF,
D-RF

U-RF is a bottom-up receptive field. Can be applied to single cells or to whole
macs. For cells/macs at L1 the U-RF is a set (or array) of individual binary cells
(e.g., pixels). For cells/macs at higher levels, the U-RF is a set (array) of macs.
H-RF and D-RF are analogous, but they always consist of a set (array) of macs.

220
Approved for public release; distribution unlimited.

LIST OF ABBREVIATIONS AND ACRONYMS

ACRONYM DESCRIPTION
ABC abstraction-based categorization
AFRL Air Force Research Laboratory
AI artificial intelligence
CM competitive module
CONOPS concept of operations
CSA code selection algorithm
D top-down
DARPA Defense Advanced Research Projects Agency
DCCI differential correlation of correct and incorrect
DL Deep Learning
EBC exemplar-based categorization
GPU graphics processing unit
H horizontal
HOF histogram of optical flow
HOG histogram of oriented gradient
H-RF horizontal receptive field
IA input accuracy
LOO leave one out
LSH locality-sensitive hashing
mac macrocolumn
MBH motion boundary histogram
MCH multiple competing hypothesis
MCMC Markov chain Monte Carlo
MI machine intelligence
MNIST Mixed National Institute of Standards and Technology
MSE mean square error
OP Overcoding-and-Paring
PAA post-active activation
PF projective field
PQA post-quiescent activation
R recognition accuracy
RF receptive field
RU representational unit
S symbol
SDC sparse distributed code
SDR sparse distributed representation
SISC similar-input-to-similar-code
SNR signal-to-noise ratio
SOA state-of-art
SVM support vector machine
U bottom-up
U-RF bottom-up receptive field
V vision
WTA winner-take-all

	1. Acknowledgement
	2. Summary
	3. Introduction
	3.1 The First Key: Sparse Distributed Representations
	3.2 The Second Key: Hierarchy
	3.3 Putting the Two Keys Together
	3.4 Final State of the Research

	4. Methods, Assumptions, and Procedures
	4.1 Overview of Model Architecture
	4.2 The Algorithm
	4.2.1. CSA: Learning Mode
	4.2.1.a. Step 1: Determine if the Mac will become Active
	4.2.1.b. Step 2: Compute Raw U, H, and D-Summations for each Cell, i, in the Mac
	4.2.1.c. Step 3: Normalize and Filter the Raw Summations
	4.2.1.d. Step 4: Compute Overall Local Support for Each Cell in the Mac
	4.2.1.e. Step 5: Compute the Number of Competing Hypotheses that will be Active in the Mac once the Final Code for this Frame is Activated
	4.2.1.f. Step 6: Compute Correction Factor for MCHs to be Applied to Efferent Signals from this Mac
	4.2.1.g. Step 7: Determine the Maximum Local Support in each of the Mac’s CMs
	4.2.1.h. Step 8: Compute the Familiarity of the Mac’s Overall Input
	4.2.1.i. Step 9: Determine the Expansivity/Compressivity of the I/O Function to be used for the Second and Final Round of Competition within the Mac’s CMs
	4.2.1.j. Step 10: Apply the Modulated Activation Function to all the Mac’s Cells, Resulting in a Relative Probability Distribution of Winning over the Cells of each CM
	4.2.1.k. Step 11: Convert Relative Win Probability Distributions to Absolute Distributions
	4.2.1.l. Step 12: Pick Winners in the Mac’s CMs, i.e., Activate the SDC
	4.2.1.m. Learning Policy and Mechanics

	4.2.2. CSA: Retrieval Mode
	4.2.3. CSA: Simple Retrieval Mode

	5. Results
	5.1 Individual Macs Implement SISC
	5.2 Simple Features Support High Class Accuracy
	5.3 Sanity Tests (Test Set = Train Set)
	5.3.1. Sanity and Noisy Recognition Tests with Edge-Filtered Videos
	5.3.2. Lower Resolution Weizmann Edge
	5.3.3. Sanity Test: 3-Level Model Revealing DCCI Principle

	5.4 Family-Resemblance Classification Style
	5.5 Experiments with More Powerful Input Feature, HOFs
	5.6 Principles/Mechanism of Invariance
	5.7 Application to Purely Spatial Pattern Recognition Problems
	5.7.1. Re-use of Existing Knowledge in Hierarchical Networks

	5.8 Large-Scale Episodic Memory Capacity Study
	5.9 Effect of π-bounds × U-RF Interaction on Capacity/Accuracy
	5.9.1. Effect of U-RF Sizes/Overlaps, and π-bounds on Capacity/Accuracy

	6. Discussion
	6.1 Regarding Sparsey’s Information Storage Capacity
	6.2 Supervised Learning via Cross-Modal Unsupervised Learning
	6.3 Hierarchical Exemplar-Based Categorization
	6.4 Optimal Normalization Thresholds
	6.5 Fraction of Represented Features Should Remain near 100% at All Levels
	6.6 Hierarchical Compression
	6.7 Trace Accuracy can be Quite Low, While Supporting High Classification Accuracy
	6.8 Minimize the Number of Post-Quiescent Mac Activations
	6.9 Correct Cells are Correlated, Incorrect Cells are Not

	7. Conclusions
	7.1 Importance of Unitary Explanation of Episodic and Semantic Memory

	8. Recommendations
	8.1 Applying Supervision at Multiple Scales
	8.2 Outstanding Questions Regarding Parameter Settings
	8.2.1. Backoff

	9. References
	1. Stage 1: Gaussian Smoothing
	2. Stage 2: Gabor Edge Detection
	3. Stage 3: Orientation and Phase Superposition
	4. Stage 4: Surround Suppression
	5. Stage 5: Edge Thinning
	6. Stage 6: Hysteresis Thresholding
	7. Stage 7: Suppression Slope
	8. Future Considerations

	10. Symbol Table
	List of Abbreviations and Acronyms
	StmtBCover.pdf
	AFRL-RY-WP-TR-2016-0030

	SF298.pdf
	REPORT DOCUMENTATION PAGE

