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Final Report AFOSR FA9550-13-1-0225:  

Cloud-Based Perception and Control of Sensor Nets and Robot 

Swarms 

Geoffrey Fox, David Crandall  

Indiana University, March 2016 

1. Introduction 

This project investigated the use of Cloud Computing as a key technology for Internet of Things and DDDAS 

applications. We developed an open source framework called IoTCloud[1] to connect IoT devices to cloud services 

and used it to investigated algorithms controlling robots from the cloud. These were major applications needing the 

additional computer power offered by the cloud and we parallelized applications so that they could respond quickly 

to the edge devices.  This project produced six major papers [2-7] and a report [8]. It also contributed to the 

STREAM2015 workshop and its final report [9]. We summarize highlights here of published work and give some 

comments for follow on activities. 

 

IoTCloud consists of: a set of distributed 

nodes running close to the devices to gather 

and do initial processing (sometimes called 

fog layer) of the data, a set of publish-

subscribe brokers to relay the information to 

the cloud services, and a distributed stream 

processing framework (DSPF) coupled with 

batch processing engines in the cloud to 

process the data and return (control) 

information to the IoT devices. Real time 

applications execute data analytics at the 

DSPF layer achieving streaming real-time 

processing. Our open-source IoTCloud 

platform [5] uses Apache Storm [10] as the 

DSPF, RabbitMQ [11] or Kafka [12] as the 

message broker and an OpenStack academic 

cloud [13] (or bare-metal cluster) as the 

platform. To scale the applications with 

number of devices we need distributed 

coordination among parallel tasks and 

discovery of devices; both were achieved 

with a ZooKeeper [14] based coordination 

and discovery service.  

 

In general a real time application running in 

a DSPF can be modeled as a directed graph 

consisting of streams and stream processing 

tasks. Stream tasks are at the nodes of the 
Figure 1 IoTCloud Architecture 
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graph and streams are the edges connecting the nodes. A stream is an unbounded sequence of events flowing 

through the edges of the graph and each such event consists of data represented in some format. The processing 

tasks at the nodes consume input streams and produce output streams. A distributed stream processing framework 

provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation 

nodes. The main tasks of a DSPF include 1) Providing an API to develop streaming applications, 2) Distributing the 

stream tasks in the cluster and managing the life cycle of tasks, 3) Creating the communication fabric, 4) 

Monitoring and gathering statistics about the applications, and 5) Providing mechanisms to recover from faults. 

These frameworks generally allow the same task to be executed in parallel and provide rich communication 

channels among the tasks. Some DSPF’s allow the applications to define the graph explicitly and some create the 

graph dynamically at run time from implicit information. 

 

For most streaming applications, latency is of utmost importance and the system should be able to recover fast 

enough from faults for normal processing to continue with minimal effect to the applications. A detailed study of 

recovery methods possible for streaming applications is available in [15]. In our work, we term real time 

applications that produce correct answers but violate timing requirements as having performance faults. Our 

research addresses (with the same mechanisms) both explicit hardware/software and performance faults. 

 

We are exploring cloud controlled real time IoT applications in two distinct 

dimensions. In one dimension there are computationally intensive algorithms for 

processing device data that can benefit from cloud based processing for real time 

response. These methods are powerful but impossible to run near the devices 

due to high computational and specialized hardware requirements. In the other 

dimension there are applications that have to be scaled to support vast numbers 

of devices and are inherently suitable for central data processing. We have 

developed a parallel particle filtering based SLAM [16, 17] algorithm [6] and 

deep learning based drone [18] control algorithm [4], which both fit into the first 

category. As an application of the second category, we have developed a robot 

swarm algorithm [3] for n-body collision avoidance [19-21] that can scale for a 

large number of robots. In all three cases, we have working versions with good 

performance characteristics and papers published or under consideration. The 

parallel SLAM and n-body collision avoidance algorithms use Turtlebot [22] as 

the robot and ROS [23] as the SDK for connecting to the robot. The overall 

parallel SLAM application is shown in Figure 2. 

 

Through our work in developing these applications, we have identified 

shortcomings in the current technologies, based on current and future 

requirements. These imply IoTCloud extensions, termed IoTCloud++, that can 

give scaling with performance guarantees and represent possible future research illustrated by our recent extensions 

[7] to Apache Storm to improve its communication performance. Our future work includes more extensive 

performance testing and additional applications. 

 

2. Streaming Application DDDAS Challenges for IoT Cloud Controller 
 
We present five categories of streaming DDDAS applications based on challenges they present to the backend 

Cloud control system. 

Figure 2 Parallel SLAM 

Application  
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1) Set of independent events where precise time sequencing unimportant. Example: independent search requests 

or tweets from users 

2) Time series of connected small events where time ordering is important. Example: streaming audio or video; 

robot monitoring 

3) Set of independent large events where each event needs parallel processing with time sequencing not critical 

Example: processing images from telescopes or light sources with material or biological sciences. 

4) Set of connected large events where each event needs parallel processing with time sequencing critical. 

Example: processing high resolution monitoring (including video) information from robots (self-driving cars) 

with real time response needed 

5) Stream of connected small or large events that need to be integrated in a complex way. Example: tweets or 

other online data where we are using them to update old and find new clusters rather just classifying tweets 

based on previous clusters as in 1), i.e. where we update model as well as using it to classify event. 

6)  
7) Figure 2a 

 
Figure 3b 

Figure 3a Fluctuations in Time of IoTCloud using RabbitMQ and Kafka with Minimal Processing in Storm           

Figure 3b Fluctuation in Time of IoTCloud with processing Kinect data from TurtleBot with RabbitMQ 

 

Figure 4 a) Performance of Cloud-based Deep Learning and 4 b) Typical region split and recognition of multiple 

objects in a single image. 

 

These 5 categories can be considered for single or multiple heterogeneous streams. Our initial work has identified 

difficulties in meeting real time constraints in cloud controlled IoT due to either the intrinsic time needed to process 

events or due to fluctuations in processing time caused by virtualization, multi-stream interference and messaging 

fluctuations. Figure 3a shows the fluctuations we observed with RabbitMQ and Kafka with minimal processing in 
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Apache Storm and Figure 3b show fluctuations in processing 3d point cloud Kinect data in Storm from a Turtlebot 

with RabbitMQ. Large computational complexity in event processing is naturally addressed by using parallelism in 

the Storm bolts, but that also can lead to further sensitivity to fluctuations. Currently IoTCloud can handle 1) 

automatically and 3) with user designed parallelism. The other cases require careful tuning on a case by case basis 

and still can see unexpected large fluctuations in processing time that currently we do not address except by over-

provisioning. 

 

Category 4) is illustrated by our work on deep learning for drones. The idea is that state of the art deep learning-

based object detectors can recognize among hundreds of object classes and this capability would be very useful for 

mobile devices, including robots. However as a model for a single object can have billions of parameters, the 

compute requirements are enormous with classification requiring ~20 sec/image on a high end CPU,  and ~2 

sec/image on a high-end GPU. Our results using Regions with Convolutional Neural Networks CNNs (R-CNNs) 

trained on ImageNet are shown in figure 4. Note for this problem latency is unimportant as the cloud processing 

time is so long. 

 

A future IoTCloud++ will enhance IoTCloud to allow real-time guarantees and fault tolerance in both execution 

and performance. We will achieve this autonomic behavior by allowing dynamic replication and elastic parallelism 

in a self-monitored environment. This work will be delivered as an enhancement to Storm extending the work in 

[7]. 

 

4. Related Work  
 
Industry is realizing the need of data analytics driven approaches to support efficient operations at all levels to 

reduce the costs and increase innovation. The machines are getting intelligent with software controls and 

communication to outside services. Industry can benefit immensely from real time central management to deploy, 

manage, upgrade, and decommission these intelligent machines. Concepts like Brilliant machines [24] by GE 

Software are pushing the industry towards such connected and intelligent infrastructure. A Brilliant machine 

connected to the Industrial Internet of Things can run software that will make the machines react to changes in data 

and its environment both in operation and configuration and can communicate with other machines. Software 

Defined Machines (SDM) is a software environment to program such machines with a generic API hiding the 

underlying details such as hardware details. A SDM for a brilliant machine can run close to the machine or can be 

hosted in the cloud. Having generic distributed open platforms such as IoTCloud to execute both data analytics and 

SDMs in cloud will be beneficial for such applications. 

 
Distributed stream processing provides frameworks to deploy, execute and manage event based applications at 

large scale. Many years of research [8] have produced software frameworks capable of executing distributed 

computations on top of event streams. Examples of such early event stream processing frameworks include Aurora 

[25], Borealis [26], StreamIt [27] and SPADE[28]. With the emergence of Internet scale applications in recent 

years, new distributed stream processing systems like Apache S4 [29], Apache Storm [10], Apache Samza [30], 

Spark Streaming [31] and commercial solutions including Google Millwheel [32] and Amazon Kinesis [33] have 

been developed. 

 

Apache Storm applications are developed in the model of the graphical dataflow we introduced earlier. A Storm 

application consists of Spouts, Bolts, and Streams. Spouts and Bolts are the nodes in the graph connected by 

streams and a single such application is called a Topology. Storm uses its own servers to manage and distributes the 

tasks among the cluster nodes. The communication fabric is built on top of TCP using the Netty library. Storm 
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provides at least once processing guarantees at its core. Apache Samza is another open source stream-processing 

framework developed on top of Kafka message broker and Apache Yarn. Samza applications are similar to Storm 

applications in the graph structure, and differences between Storm and Samza include technical details in how they 

distribute the tasks and how they manage the communications. Because the Samza messaging layer is backed by a 

file based message broker Kafka, its latency is expected to be higher compared to other processing engines.  

 
Apache Spark streaming extends the Spark batch processing system. Spark is a batch processing system targeting 

iterative algorithms and interactive analytics problems on top of large data sets. In the streaming case, Spark reads 

input from a stream source like a message queue. It uses small batches of incoming data as input to the running 

jobs, creating the illusion of continuous processing. Such batching of the inputs is not very attractive for real time 

applications.  S4 is another fully distributed real time stream processing framework. The processing model is 

inspired by map-reduce and uses a key-value based programming model. S4 creates a dynamic network of 

processing elements (PEs) and these are arranged in a DAG at runtime. One of the biggest challenges in the PE 

architecture is that key attributes with very large domains can create large numbers of PEs in the system at any 

given time. 

 

A comprehensive list of optimizations possible to reduce the latency of the stream processing applications are 

mentioned in [34]. These optimizations include features like operator reordering, load balancing, fusion, fission, 

etc. All the operations mentioned are targeted towards optimizing the average performance metrics of the system. 

For real time applications individual tuple latency is also very important.  

 

There are many open source message brokers available that can act as gateways to the stream processing platforms. 

Such brokers includes ActiveMQ [35], RabbitMQ [11], Kafka [12], Kestrel, and HornetMQ. ActiveMQ, 

RabbitMQ, Kestrel and HornetMQ, are all in memory message brokers with optional persistent storages. On the 

other hand, Kafka is a store first broker backed by a message log. Compared to other message brokers Kafka has 

better parallel consumption semantics, scalability and fault tolerance due to its topic partition and replication across 

the cluster. Our measurements [2] showed that RabbitMQ illustrated in fig. 2 has comparable or superior 

performance compared to other brokers and Kafka has large fluctuations in latency. We should revisit this question 

when the performance enhancements of IoTCloud++ are implemented. 

 

Implementing real time applications with critical time requirements in the vanilla Java virtual machine is a 

challenge itself due to garbage collection and other unpredictable factors. There has been efforts to improve the 

Java runtime and JDK to fit these requirements [36-38]. Most of these studies are related to real time requirements 

in embedded systems that control the devices. In our platform the actual software controlling the IoT devices will 

be running near the device and the cloud processing will enhance this processing for stages where some latency 

(~few 100ms) can be tolerated.  

 

Robot Operating System (ROS) is an open source platform that offers a set of software libraries to build robotics 

applications. Popular off the shelf robots have ROS applications already written and these applications combined 

with the available wide range of tools such as visualization tools and simulators create a powerful environment for 

researchers. In some of our cloud applicationsm we use ROS as the first layer to connect to the robot, collect data 

and control it. We transform the ROS data structures to data structures required by cloud applications at the 

gateways.    

 

Open standards like MQTT [39] and MTConnect [40] are being developed to bridge the gap between the 

application data requirements and the device data. IoTCloud support the MQTT transport and can transfer data 
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between gateways and cloud using MQTT. If the devices send data with the MQTT protocol, they can be sent 

without transformation at the gateways directly to the cloud. 

 
 
5. Proposed Research Plan for Robust Open Source Cloud IoT Controller 
with Real Time QoS 
 

Our research has identified the need to 

achieve real-time QoS in spite of 

fluctuations in computation time and we 

have designed IoTCloud++ to address 

this, although we did not have resources 

to address this outside the recently 

published extensions to Storm [7]. The 

architecture of the new IoTCloud++ 

platform is shown in Figure 5. In this 

architecture, we propose to dynamically 

replicate the streaming computation tasks 

within cloud clusters to achieve good 

performance in at least one replica. This 

replication will not be universal but 

rather done only when achieving QoS 

demands it as for example when 

monitoring shows that initial task is 

delayed. This as-needed replication will 

drastically reduce overhead from 

replication in many cases. We will 

dynamically identify the streaming tasks 

that require replication and replicate at 

the task level rather than at the streaming 

application level. This dynamic 

replication of streaming tasks will be 

implemented for Apache Storm 

described above. Apache Storm consists of two types of servers called Nimbus and Supervisor. Nimbus manages 

the streaming applications running in the cluster. Each Supervisor consists of a fixed number of workers capable of 

executing the stream tasks belonging to a job. To dynamically increase the Storm servers, we will use a resource 

manager such as Apache Yarn. Apache Storm is already ported to run on top of Apache Yarn and we will extend 

this framework to support elastic cluster resizing.  
 

A resource management framework such as Yarn only works with the allocated computation resources. We will use 

the IaaS layer to dynamically scale computation nodes in the cluster. We have extensive expertise at the 

infrastructure level where we can instantiate systems on demand that can then support the dynamic scaling of the 

system. We will explore the Google Compute engine for the infrastructure level. Streaming computation nodes will 

be managed by the resource management layer and this will be controlled by a separate component. We can either 

use the messaging system or a distributed key value store to replicate the state as is done in MillWheel [32]. The 

fluctuations in time at the broker are from fig. 3 much less (than those in processing stage) in RabbitMQ but 

Figure 5 IOTCloud++ Architecture 
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important in Kafka. We will scale the brokers at runtime to minimize such effects to the system by monitoring 

performance of brokers. Then a controller will directly use the IaaS infrastructure to scale the brokers as needed by 

increasing the number of assigned VMs. 

 

To scale an application that receives input from multiple sources as a single stream and needs to differentiate each 

source, the larger stream must be partitioned into sub streams according to the source. This can be done with 

current processing frameworks but when parallel processing and state tracking is needed, the user code becomes 

complex. Also for parallel processing the scheduling is not adequate because each task will get a sub task for every 

sub stream. We will solve this by introducing new data abstractions and scheduling at the sub stream level and task 

level. The IoTCloud project is largely built on top of Apache Open Source projects. We have extensive experience 

in working with Apache projects (as users, committers and ASF members) and will contribute the results of this 

research back to the open source community.  
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