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  Accomplishments/New Findings:  
 

• The creation, in collaboration with Chris Torbet at UCSB, of a new system to perform in-
SEM ultrasonic testing. This is, to the best of the investigator’s knowledge, the only 
system of its type in the world, and provides the capability to monitor and track crack 
growth in-situ at the microstructural length scale during Very High Cycle Fatigue 
(VHCF). 

• The successful creation of a new experimental methodology for small-scale 
characterization that combines ultrasonic fatigue testing at 20 kHz; in-SEM, full-field 
deformation mapping at the microstructural length scale; and pre- and post-mortem 
crystallographic characterization via EBSD. The in-SEM deformation mapping at the 
microstructural length scale necessitated the creation of new chemical techniques for the 
self-assembly of nanoparticles (used as tracking markers) on Ti6242, and the 
development of correction algorithms for the complex spatial and temporal distortions 
that are inherent to SEM micrographs.  

• Environment (humidity) played a large role in determining fatigue life in the VHCF 
regime. The magnitude of this effect was remarkable, as VHCF imparts very low crack 
opening displacements.  

• Interestingly, fatigue lifetimes at 133 Pa high purity H2 were significantly longer, on the 
order of a factor of 2x-4x, than lifetimes at the same vapor pressure (133 Pa) of either 
high purity 02 or H2O.  

• In the VHCF regime, there was predominately transgranular crystallographic crack 
growth with a high propensity of cracking along the basal planes, particularly in primary 
alpha grains.  

• Decelerations in the fatigue crack growth rate were correlated with crack-tip interactions 
with the local microstructure. 

• A change in environmental conditions – such as the introduction of increased levels of 
oxygen - was found to have the capability to assist a crack in overcoming a 
microstructural barrier where it had arrested. It is interesting to note the influence of 
environment on the fatigue crack growth rate even at extremely fast ultrasonic 
frequencies of ~20,000 cycles per second.  

• The relative importance of basal versus prismatic sip in fatigue crack initiation is under 
on-going debate in the community. It was determined that grains located at the end of 
FIB notches with low Schmid factor for basal slip and a high Schmid factor for prismatic 
slip did not initiate visibly detectable cracks (within the resolution of the SEM).  
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ABSTRACT 
 

Very high cycle fatigue (VHCF), in which components undergo fatigue lifetimes well 
beyond traditional design limits of 107 cycles, is not well understood and is becoming an 
increasingly prevalent deformation state in aerospace applications. Components are now 
designed to handle increasingly long lifetimes (>109 cycles), and it is critically important to be 
able to accurately predict when these components will fail and to intelligently tailor them for 
improved performance. Toward this end, a new methodology was developed for the small-scale 
investigation of fatigue crack initiation and growth during VHCF loading, and was used to 
investigate environmental and microstructural effects on the fatigue lifetimes of the 
polycrystalline titanium alloy Ti-6242S. Small fatigue crack growth in Ti-6242S, a commonly 
utilized alloy in aerospace applications, was examined in vacuum and in controlled partial 
pressures of water vapor, high purity oxygen, and high purity hydrogen.  

Microstructural heterogeneity dominates the failure process in the VHCF regime. In order 
to understand what drives damage accumulation and failure in materials of interest to the Air 
Force under VHCF, there is a need to have small-scale experimental data linking fatigue crack 
nucleation and growth back to the microstructure. The research funded by this award addressed 
this gap in experimental data and resulted in in-situ, in-SEM comparisons between small fatigue 
crack growth behavior and the underlying microstructure under varied environmental conditions. 
A pronounced increase in the fatigue crack growth rate with increasing partial pressure of H2O 
vapor was found, and high purity oxygen was found to be more detrimental than high purity 
hydrogen. In vacuum, no significant crack propagation was found at the same stress amplitude 
used in the H2O vapor tests, in which stable crack growth was observed. Cracks frequently 
decelerated or arrested at high angle α/α and α/α+β grain boundaries, and demonstrated a 
pronounced sensitivity to microstructure. Micro-notch tips that were machined by focused ion 
beam in regions unfavorably oriented for basal slip tended to initiate cracks later, or in some 
cases not at all. 
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PROJECT DETAIL 
 

In this research, fatigue crack formation and growth in the near alpha titanium alloy Ti-
6242S was examined under very high cycle fatigue (VHCF) loading. To accomplish these 
investigations, a custom experimental setup was designed and built in order to employ in situ 
ultrasonic fatigue at a cyclic frequency of 20 kHz inside an environmental scanning electron 
microscope (ESEM)*. The role of environment on small fatigue crack initiation and growth was 
investigated in vacuum and in variable pressures of saturated water vapor, as well as in 
laboratory air. The research funded by this award resulted in the first quantitative, full-field, in-
SEM comparisons between small fatigue crack growth behavior and the underlying 
microstructure under varied environmental conditions. A pronounced increase in the fatigue 
crack growth rate with increasing partial pressure of H2O vapor was found, and oxygen was 
shown to be the significantly more detrimental species. In vacuum, no significant crack 
propagation was found at the same stress amplitude used in the H2O vapor tests, in which stable 
crack growth was observed. Cracks frequently decelerated or arrested at high angle α/α and 
α/α+β grain boundaries, and demonstrated a pronounced sensitivity to microstructure. Micro-
notch tips that were machined by focused ion beam in regions unfavorably oriented for basal slip 
tended to initiate cracks later, or in some cases not at all. In addition to the scientific findings 
described below, this research also successfully demonstrated the usefulness of in situ ultrasonic 
fatigue instrumentation (termed here as “UF-SEM”) as a new tool for the characterization of 
environmental and microstructural influences on VHCF behavior. 

  There is a growing need to extend the service life of systems and components well 
beyond traditional fatigue design limits of 107 cycles, into what is known as the very high cycle 
fatigue (VHCF) regime. Researchers have conventionally assumed the existence of a fatigue 
limit, or threshold stress amplitude below which fatigue life is infinite [1]. This assumption is 
historically linked to fatigue studies of ferrous metals in the high cycle fatigue (HCF) regime, a 
fatigue life range of 106 to 107 cycles [2].  However, recent studies conducted at 30-100 Hz [3, 4] 
and at ultrasonic frequencies [5, 6] reveal that this assumption may not be a valid design 
approach for materials operating in the VHCF regime. Even at low applied stresses (well below 
the conventional fatigue threshold) and at nominally elastic strains characteristic of VHCF, 
significant damage accumulation at the microstructural length scale can lead to crack initiation 
and fatigue failure [7-10]. Furthermore, fatigue life in this regime is dominated by crack 
initiation and the growth of microstructurally small cracks. Thus, a significant portion of the 
fatigue life involves micro-scale mechanistic responses to cyclic stresses [11]. The sensitivity of 
cyclic deformation mechanisms to microstructural influences adds complexity and greater 
uncertainty to lifetime predictions.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This system was built in collaboration with C. Torbet at the University of California Santa Barbara.  
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Ultrasonic fatigue testing has been used since the early 1950s [12, 13] to provide a powerful 
and time-effective means for interrogating VHCF of a wide range of materials including cast 
aluminum alloys [14, 15], nickel-base superalloys [7, 16], titanium alloys [10], and high strength 
steels [17, 18]. Over the past forty years, the technique has been extended to enable VHCF 
studies under various environmental conditions [7, 19], in crack growth studies [20-22], and in 
conjunction with other techniques such as synchrotron x-ray imaging [16]. However, the data 
acquired from ultrasonic fatigue testing largely remains limited to determination of total fatigue 
life, crack growth rates, and deformation processes that are inferred from fractography and 
surface microscopy. Observations regarding crack initiation and ultimate failure are linked to 
microstructure in a before-and-after methodology through grain mapping techniques like electron 
backscatter diffraction, with limited in situ observations. Efforts have been made to track the 
evolution of deformation and formation of early fatigue damage, such as slip bands, by using 
methods that probe the damage micro-mechanisms taking place as a function of the number of 
cycles. For example, replication is a common technique used to obtain surface fatigue damage 
history as a function of applied cycles [21]. Stanzl-Tschegg et al. [23] used a combination of 
high resolution SEM and atomic force microscopy (AFM) to investigate fatigue damage in 
copper polycrystals in the VHCF regime with cycling. This technique was ex situ and required a 
significant amount of time, but added useful information to the current understanding of the 
progression of fatigue damage.  

Ultrasonic Fatigue SEM (UF-SEM) System 

High spatial resolution (≈ 5 nm) imaging of fatigue damage at the microstructural length 
scale was accomplished using a custom combination of ultrasonic fatigue and scanning electron 
microscopy, termed UF-SEM and shown in Fig. 1. This system combines ultrasonic fatigue 
testing instrumentation with a Philips XL30 ESEM. The ultrasonic fatigue instrumentation 
operates using the principles described in [12] and summarized here. The load line of the system 
is comprised of Ti-6Al-4V components tuned to a 20 kHz resonant frequency. The components 
include an ultrasonic converter that imparts a controlled sinusoidal displacement using a 
piezoelectric material stack, an amplification horn that magnifies the displacement from the 
ultrasonic converter, a lambda rod, and the fatigue test specimen. The system, which is mounted 
to a custom built SEM chamber door, is controlled by instrumentation that accurately maintains 
the resonant frequency within ± 1 Hz in displacement control by monitoring the input 
displacement to the specimen using a piezoelectric transducer in a closed-loop control system. 

Integrating the ultrasonic fatigue instrumentation into an ESEM provides the capability to 
perform fatigue studies under environmental conditions ranging from vacuum (3.7 x 10-4 Pa) to 
low partial pressures (133 Pa to 2660 Pa) of selected gases. A gaseous secondary electron (GSE) 
detector was used for electron imaging in low vacuum and gaseous environments. The fatigue 
specimen is positioned in the desired imaging orientation using a McAllister Technical Services 
MB1500 manual manipulator stage with five translational adjustments (including insertion). The 
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numerous degrees of freedom in the manual manipulator stage permitted the observation and 
tracking of multiple cracks or microstructural features such as large grains, grain clusters or 
regions of microtexture. Furthermore, rotation of the assembly about the longitudinal axis of the 
specimen enabled in situ EBSD mapping for crystallographic characterization. 

 

Fig. 1. Ultrasonic fatigue scanning electron microscope (UF-SEM) system combining ultrasonic 
fatigue at 20 kHz with the high resolution imaging capabilities of a SEM. This system was built 
in collaboration with C. Torbet, UCSB.  

 
Material and Methods 

Material 
Ti-6242S, a polycrystalline, near-alpha titanium alloy was provided in the form of a forged 

disc. The alloy was processed to produce a bimodal microstructure and had a nominal 
composition of wt.%. 6Al, 2Sn, 4Zr, 2Mo, 0.1Si, and Ti (balance). The microstructure consisted 
of primary α grains in a transformed β matrix, as shown in Fig. 2. The average primary α grain 
size measured by the linear intercept method was 12.5 µm ± 5.5 µm. The area fraction of the 
primary α phase was approximately 30% ± 3%. The measured Young’s modulus and yield stress 
were 121 GPa and 926 MPa, respectively. 
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Fig. 2. Back-scattered electron (BSE) micrograph of Ti-6242S microstructure showing primary α 
grains in a transformed β matrix.  
 
Specimen Preparation 

Fatigue test specimens were machined from slices extracted in the circumferential orientation 
from a forged disc†. Cylindrical blanks with a 4 mm diameter and 10 mm long gauge section 
were cut from the source material. Ti-6Al-4V rod was inertia welded to the specimen ends for 
shoulder and grip regions. Diametrically opposed surface flats extending from the specimen 
shoulder regions were machined into the gauge section to facilitate fatigue crack growth 
observations and microstructural mapping using electron backscatter diffraction (EBSD) 
techniques. Final machining included low-stress grinding to minimize compressive residual 
stresses and was completed by Metcut Research Inc. To minimize surface compressive residual 
stresses, fatigue specimens were electropolished in a solution of 590 ml methanol, 350 ml butyl 
cellosolve, and 60 ml perchloric acid at -40°C for 90 minutes. Approximately 100 µm was 
removed from the surface by electropolishing. 

To investigate small crack growth behavior, micro-notches were machined in the specimen 
flats using a FEI Nova Nanolab focused ion beam (FIB) SEM equipped with a gallium ion 
source operating at 30 kV and a probe current of 3.0 nA. FIB machining processes induce 
damage by gallium ion implantation that can alter the local mechanical properties. However, 
previous studies reported the penetration of 30 kV gallium ions to be much less than 1 µm [24]. 
Furthermore, a reduced probe current of 3.0 nA was used to minimize the depth of gallium ion 
penetration to less than approximately 200 nm.  Three 30 µm long and approximately 15 µm 
deep FIB micro-notches were machined in the center region of the gauge section of each 
specimen, with a spacing of 1 mm between notches, as shown schematically in Fig. 3. FIB-

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
†	
  We gratefully acknowledge our Air Force Research Laboratory collaborators, especially Dr. James M. Larsen, Dr.  
Sushant Jha, and Dr.Christopher Szczepanski (currently at Special Metals Corp.) for providing material and support.  
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deposited Pt markers were placed in a 200 µm by 100 µm rectangle centered about each FIB 
micro-notch to enable alignment of the EBSD and fatigue test field of view (FOV). Local 
microstructural information was determined in these neighborhoods by EBSD.  

   
 

Fig. 3. Schematic of ultrasonic fatigue specimen with surface flats and three FIB micro-notches 
placed in the center gage section. A BSE image of a FIB micro-notch is shown with the 
corresponding inverse pole figure (IPF) map of the surrounding microstructure.  

 
Ultrasonic Fatigue Testing 

Ultrasonic axial fatigue testing was performed in lab air and in the ESEM at a vacuum level 
of 3.7 x 10-4 Pa. The use of ultrasonic fatigue allowed the attainment of fatigue lifetimes of  >107 
cycles in a matter of hours, rather than days as required by conventional methods. Fatigue testing 
in laboratory air was accomplished using the ultrasonic fatigue instrument described in [16] and 
shown in Fig. 4. For testing in laboratory air, observations of fatigue crack growth were made 
using a Navitar 12X Ultrazoom lens system equipped with a 20X Mitutoyo infinity corrected 
objective and a 5-megapixel CCD (Point Grey GRAS-50S5C). The custom-built UF-SEM 
system was used for all in-SEM tests. All tests were carried out at a stress ratio of R = -1 (fully 
reversed) and a testing frequency of approximately 20 kHz. For all tests, a constant displacement 
amplitude was maintained to produce a stress amplitude of 400 MPa.  

 

                     
Fig. 4. (a) Laboratory air setup including Navitar 12X Ultrazoom optical system and ultrasonic 
testing system and (b) a magnified view of the ultrasonic testing system. 
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Intermittent cycling (200 milliseconds pulse and 3 second pause) was used in both laboratory 
air and in-SEM tests to minimize the temperature increase associated with high frequency 
loading. In vacuum, the specimen temperature was maintained to within 10°C of room 
temperature as determined by thermal imaging (model FLIR SC5000) and K-type 
thermocouples. In laboratory air tests, specimen temperature was maintained to within 2°C of 
room temperature as determined by IR imaging. Additionally, forced air cooling was used for 
tests in laboratory air. No auxiliary cooling methods were used in the in-SEM fatigue 
experiments.  

In-ESEM VHCF fatigue experiments were performed in the following vapor environments to 
investigate the effect of environment on small crack growth:  

• H2O: 1330 Pa, 665 Pa, 133 Pa, and 65 Pa 
• High Purity 02: 133 Pa  
• High Purity H2: 133 Pa  
• Vacuum  
• Lab Air 

Cycling was paused every 10,000 to 25,000 cycles, depending on the fatigue crack growth 
rate (FCGR), to observe damage and capture micrographs for the subsequent determination of 
crack growth rates. The stress intensity factor range was calculated using the equations of 
Newmann and Raju [25] for a surface crack in a finite elastic plate, where c/a was assumed to be 
unity. The fatigue crack growth rate, dc/dN, was calculated using the secant method. Higher 
resolution micrographs, described later in this report, were obtained ex situ using a Tescan Mira-
3 SEM. 

Results & Discussion 

Environmental Effects on Small Crack Growth Behavior 
The effects of the environments listed above are shown in Figure 5. For clarity, fatigue crack 

growth data from non-fatal cracks was omitted from the plots in Fig. 5. However, the data from 
non-fatal cracks is in agreement with the reported data for the fatal cracks in each test case. 
Higher H2O vapor pressures resulted in significantly increased fatigue crack growth rates and 
reduced fatigue lifetimes. An order of magnitude increase in fatigue life was observed for tests 
carried out in significantly lower (133 Pa and 65 Pa) H2O vapor over those carried out in 
laboratory air. The crack growth rates for 133 Pa H2O were moderately higher than 65 Pa H2O. 
As seen in Fig. 5, fatigue lifetimes were markedly shorter and crack propagation rates were much 
higher in laboratory air tests than for in-SEM tests. As the H2O vapor pressure approached 1330 
Pa, the crack length (c) vs. cycle number (N) curve approached that of lab air, until the two 
curves overlaid each other.  

The impact of high purity hydrogen (H2) and high purity oxygen (O2) was examined and it 
was found that high purity oxygen was significantly more detrimental for VHCF fatigue crack 
growth. The role of hydrogen versus oxygen has been under debate in the very high cycle fatigue 
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community. The mechanisms underlying the independent roles of these species and their 
interactions are now under active investigation.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig.  5.  Fatigue crack growth in laboratory air, high purity hydrogen, high purity oxygen, and 
water vapor environments. (top) Crack length (c) vs. cycle number (N) is shown. Fatigue 
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lifetimes were substantially lower in air than in the vapor H2O vapor environments, with 
lifetimes uniformly decreasing as vapor pressure increased. Oxygen was the more deleterious 
species as compared with hydrogen. (bottom) The fatigue crack growth rate (dc/dN) vs. ΔK for 
three H2O vapor environments showing a pronounced increase in FCGR for laboratory air versus 
H2O vapor environments. Significant dips in the fatigue crack growth rate dc/dN were also found 
to be correlated to microstructural barriers.   
 

Fatigue crack growth under a 3.7 x 10-4 Pa environment (SEM chamber vacuum) was also 
examined as shown in Figure 5. Small fatigue crack growth rates were lowest in the vacuum 
environment (3.7 x 10-4 Pa). In all vacuum experiments, the crack initiated well after 106 cycles 
and propagated for a small distance before crack arrest. After the crack had arrested for a 
minimum of 107 cycles, the stress amplitude was increased in 10% increments until crack growth 
resumed. The results of a vacuum experiment shown in Fig. 5(a) are from a test in which an 
approximately 12 µm long crack was observed at 4 x 106 cycles, where σmax = 400 MPa. Further 
cycling of the specimen to 107 cycles resulted in a small increase in crack advance (< 2 µm). 
Growing fatigue cracks in vacuum using the same stress amplitudes used for environmental tests 
proved challenging because of their low growth rate. Due to time and cost restraints, in the 
present work vacuum tests were either step tested to much higher stress amplitudes to cause 
fatigue failure (up to 700 MPa), or water vapor was introduced to accelerate crack growth. 

The work performed under this award significantly contributes to our understanding of the 
roles of oxygen, hydrogen, and water vapor in fatigue crack propagation and their interactions. 
This has been under debate in the community – for example, from elevated temperature (550 °C) 
studies on a Ti-6242 alloy, Sarrazin-Baudoux et al. [26] reasoned that water vapor is the more 
detrimental species and oxygen plays a secondary role. They came to this conclusion from 
demonstrations that humidified argon substantially increased fatigue crack propagation rates 
compared to that observed in humidified argon with added oxygen. They argued that oxygen 
limits the effects of water vapor on the oxide layer formation that results primarily from water 
vapor dissociation, and proposed that the formation of such an oxide layer on fresh crack faces is 
responsible for the observed increase in fatigue crack growth rates. However, Bache et al. [27] 
investigated the role of internal oxygen content on fatigue crack propagation in a Ti-6Al-4V 
alloy in low vacuum (13.3 Pa) at room temperature and concluded that oxygen was responsible 
for the increase in growth rate, partially through enhanced facet formation. Fatigue crack growth 
rates were also observed to be slightly lower in pure hydrogen gas than laboratory air. They 
proposed that hydrogen serves to shield the crack tip from harmful species such as water vapor 
and oxygen and, because the gas was nominally dry (< 3ppm water), oxygen must play a critical 
role. It is possible that the relative influence of water vapor and oxygen are tied to temperature, 
which is a topic of interest for future work.  

In studies aimed at understanding intrinsic crack growth mechanisms (in the absence of 
environmental effects) in titanium alloys by vacuum testing, FCGRs in the near threshold regime 
were lower in vacuum than in air [27-31]. The present study also shoes lower FCGRs in vacuum, 
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even though tests were conducted at 20 kHz instead of the much lower frequencies associated 
with conventional fatigue testing. The decrease of FCGRs in vacuum could be due to local 
heating at the crack tip. Sugano et al. [31] reported a sharp increase in fatigue lifetimes (of 
nominally 500,000 cycles) for a pressure reduction from 10 Pa to 1 Pa in pure Ti up to a testing 
frequency of 1 kHz. They attributed this increase to gas absorption processes and internal 
frictional heating of the specimen in vacuum that led to increased plasticity at the crack-tip. A 
model was postulated for which heating of active slip planes at the crack-tip, on the order of 200 
°C, caused a decrease in fatigue crack growth rates through crack-tip blunting and the 
development of compressive residual stresses around the plastic zone of the crack-tip. In the 
present study, more work is needed to determine the role of temperature increase on the decrease 
in FCGR in vacuum and low pressure water vapor at ultrasonic fatigue frequencies, if any. The 
overall specimen temperature was maintained to within 10 °C of the ambient temperature using a 
pulse/pause duty cycle, so temperature is not believed to have a significant effect on the crack 
growth behavior observed in this study.  

Crack Initiation 

Environment significantly influenced fatigue crack initiation lifetime, Ni , from FIB micro-
notches, with the shortest initiation lifetimes in laboratory air and longest in vacuum. Here, crack 
initiation was defined as the formation of a discontinuity that extended from the micro-notch to a 
minimum length of 50 nm. As shown in Table 1, Ni ranged from 7 x 103 to 3 x 104 cycles for 
laboratory air fatigue tests, while no cracks initiated prior to 106 cycles in high vacuum tests at 
the same stress amplitude (400 MPa). Ni for cracks grown in low vacuum saturated water vapor 
experiments fell between these values, with a range of 2.6 x 104 to 3 x 105 cycles to initiate an 
observable crack.  

Table 1. Fatigue crack initiation lifetimea ranges from FIB micro-notches for each test 
environment. 
Environment Cycles to observed crack initiation 
Laboratory air 7,000 – 30,000 
133 Pa H2O vapor 26,000 – 300,000 
65 Pa H2O vapor 40,000 – 105,000 
3.7 x 10-4 (vacuum) >106 
 
aCrack initiation was defined as the formation of a crack at least 50 nm long. 
 

Crack initiation behavior was influenced by the microstructural neighborhoods at the micro-
notch tips. Although the number of tests was limited, it was apparent that the ease of basal slip in 
the local microstructure is critical to fatigue crack initiation. Specifically, when the notch tips 
ended in primary α grains favorably oriented for basal slip, early crack initiation was observed. 
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Cracks tended to initiate later or decelerate in grains that were not favorably oriented for basal 
slip.  

In several cases and independent of environment, crack initiation did not occur in some 
micro-notch tip neighborhoods before the specimen failed from a different micro-notch. The 
common characteristic of the “non-initiating” micro-notch tips was their location in primary α 
grains with orientations such that basal planes were nearly perpendicular to the nominal crack 
growth direction, and which therefore exhibited low basal Schmid factors for the prescribed 
specimen loading direction. Table 2 summarizes the microstructural characteristics of grains 
located at micro-notch ends in fatigued specimens in laboratory air, 65 Pa H2O vapor, and 133 Pa 
H20 vapor environments, for which a surface fatigue crack did not initiate before fatigue fracture 
occurred from another micro-notch on the sample at 3.9 x 105 cycles, 2.9 x 106 cycles, and 3.5 x 
106 cycles, respectively. The basal Schmid factors ranged from 0.14 to 0.20 and the inclination 
of the basal plane with respect to the loading axis (φ) was 13° to 17°. These grains also had high 
prismatic Schmid factors (0.47-0.49).  

 
Table 2. Microstructural characteristics of grains located at micro-notch ends where no cracks 
initiated. 
Environment Basal Schmid factor Prismatic Schmid 

factor 
φ (°) 

Laboratory air 0.15 0.47 17 
133 Pa H2O vapor 0.14 0.49 13 
65 Pa H2O vapor 0.20 0.48 15 

 
 
This research demonstrated that environment as well as neighborhood characteristics plays a 

significant role in small crack initiation behavior in titanium alloys, even at the high frequencies 
and low loads associated with ultrasonic fatigue. The effect of basal plane orientation on fatigue 
crack initiation has been studied previously, but those studies mainly focused on the role of 
microstructure on small crack growth rather than environmental effects. Bache et al. [33] 
examined short crack growth behavior in a near α titanium alloy and also concluded that the 
orientation of the basal plane in which a fatigue crack initiates plays a significant role in 
determining fatigue life scatter. Szczepanski et al. [34] observed a moderate effect of the 
microstructure adjacent to micro-notches on fatigue crack initiation lifetimes at 20 kHz in a 
microtextured α + β titanium alloy. Specifically, neighborhoods that were favorably oriented for 
basal and prismatic slip tended to promote early fatigue crack initiation.  
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Fig. 6. Small fatigue cracks propagated in a 133 Pa saturated H2O vapor environment from three 
FIB micro-notches machined into the same test specimen. The specimen failed at a fatal crack 
that was initiated and grown from Notch 1. Transgranular, crystallographic crack growth was 
observed in each case.  
 
Microstructural Effects on Fatigue Crack Growth  

Cracks propagated transgranularly along specific crystallographic directions in the small 
crack region and up to crack lengths of approximately 1 mm. In primary α grains, cracks tended 
to propagate along basal planes in the early stages of growth. An example of this is shown in Fig. 
6 for an in-ESEM test in a 133 Pa saturated water vapor environment. Here, an overlay of the 
grain orientation maps from EBSD with crack paths is provided to demonstrate that cracks 
propagated along basal planes in primary α grains. Another example of early propagation along 
basal planes is shown in Fig. 7 for a test in laboratory air, where the crack propagated along basal 
planes in two primary α grains before arresting at a high angle α/α grain boundary. 
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Fig. 7. A small fatigue crack was initiated and grown in laboratory air. The right image shows 
the local microstructure surrounding the notch with the IPF map overlaid, where black lines 
denote basal plane traces. The SEM micrograph on the left shows the fatigue crack propagated 
along basal planes and arrested at a high angle α/α grain boundary after 3.0 x 104 cycles. 
 

Significant local variability in the small fatigue crack growth rate was observed in each 
environment, and was frequently correlated with microstructural features such as high 
misorientation angle grain boundaries and phase boundaries. Fig. 7 shows a fatigue crack that 
propagated in laboratory air along basal planes in two neighboring primary α grains for 3.0 x 104 
cycles before arresting for the duration of the test (3.1 x 105 cycles) at an  α/α grain boundary 
with a misorientation of approximately 80°.  Fig. 8 shows a fatigue crack grown in 133 Pa H2O 
vapor that arrested for approximately 105 cycles at an α/α+β phase boundary. The misorientation 
angle between these two grains was low and likely not responsible for the reduction in crack 
growth rate observed at this boundary. Rather, this reduction could be an effect of the crack 
crossing from a primary α grain to a transformed β phase region, as lamellar regions have a 
higher fatigue crack growth resistance [35]. Crack arrest at the grain boundary may also have 
been affected by the low basal Schmid factor of the transformed β region, as grains that are 
unfavorably oriented for basal slip have been observed to impede crack growth in titanium alloys 
[34]. 
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Fig. 8. A small fatigue crack was initiated and grown in 133 Pa H2O vapor. A micrograph of the 
local microstructure surrounding the notch and the propagated crack with the IPF map overlaid is 
shown. The black lines denote basal plane traces. The left side fatigue crack propagated along 
basal planes in α grains and arrested at the α/α+β phase boundary indicated by the arrow for 
approximately 105 cycles.  
 
Fractography 

In both the 133 Pa H2O vapor and 65 Pa H2O vapor environments, fatigue cracks propagated 
transgranularly and were microstructurally sensitive in the low ΔK regime. Observed fracture 
surface features for the two low vacuum water vapor environments were similar, consistent with 
the moderate difference in fatigue crack growth rate. Example fractographs obtained in the early 
crack growth region for each environment are shown in Fig. 9. Macroscopically smooth faceted 
crack growth across primary α grains was observed for ΔK < 7.0 MPa√m, as shown in Fig. 10. 
Correlation of primary α grain facets with the adjacent surface EBSD maps showed that faceting 
predominantly occurred along basal planes. Higher magnification imaging of faceted surfaces 
revealed crack growth markings, or bands, indicative of a slowly advancing crack, rather than a 
cleavage-like fracture mechanism. The frequency of primary α facets decreased with increasing 
crack length. This is attributed to an increase in the crack-tip stress intensity as the crack gets 
longer and thus, an increase in plastic deformation at the crack-tip.  
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Fig. 

9. 

Fracture surfaces of fatal cracks for (a) laboratory air, (b) 133 Pa H2O vapor, and (c) 65 Pa H2O 
vapor. The images on the left show the specimen fracture surface as viewed along the loading 
direction. The images on the right show the corresponding fracture surfaces on the left with a 
BSE image of the adjacent surface microstructure as viewed by a 45° tilt with respect to the 
loading direction.. Facetted fracturing is observed in each of the test environments in the early 
stage crack growth region. 
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Fig. 10. SEM micrograph of the fracture surface of a fatal crack propagated in the 133 Pa 
saturated water vapor environment. The right image is a high magnification of the area in the 
yellow box in the left image, and shows a macroscopically smooth primary α facet with distinct 
crack growth features indicating that the facet was created by a slowly advancing crack (dc/dN ≈ 
1.8 x 10-10 m/cycle) rather than a cleavage mechanism. The crack propagation direction is from 
bottom to top.  
 

Crystallographic, microstructurally sensitive fatigue crack growth was also observed in 
laboratory air. The fracture surfaces of fatal cracks propagated in laboratory air showed primary 
α grain faceting during early crack growth. EBSD maps of fractured primary α grains that 
intersected the specimen surface indicated that low ΔK crack advance took place mainly along 
basal planes, but likely took fewer numbers of cycles for facet formation. Higher magnification 
micrographs of macroscopically smooth faceted surfaces showed little to no striation-like 
markings (Fig. 11), in contrast with the features shown on a faceted primary α grain in Fig. 10. 
This was in agreement with the observed increase in fatigue crack growth rate in laboratory air 
versus vacuum environments, where a faster fracture in laboratory air produced fewer fatigue 
markings on faceted planes. Some facets with coarse band-like features were also observed in the 
laboratory air experiments, but not in the saturated water vapor and vacuum environments at 
equivalent crack lengths. 
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Fig. 11. SEM micrographs of the fracture surface of a fatal crack propagated in laboratory air. At 
right is a high magnification micrograph of the area in the yellow box in the left image, and 
shows a macroscopically smooth primary α facet with no striation-like features. The crack 
propagation direction is from bottom to top (dc/dN ≈ 6.2 x 10-10 m/cycle).  

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. SEM micrograph of extruded material from a surface crack of a specimen fatigued in 
vacuum (3.7 x 10-4 Pa). The extruded material transitions from a thin feather-like structure in the 
primary alpha grain to a globular extrusion upon entering the adjacent lamellar region. 
 

Interestingly, a thin material appears to have been ejected from the crack faces and is still 
adhered to the specimen surface, as shown in Fig. 12. This phenomenon was observed in 
numerous tests and depended on microstructure and environment. The test shown in Fig. 12 was 
conducted in vacuum, and exhibits a transition from a feather-like extrusion in a primary α grain 
to a more globular morphology in the adjacent transformed β region. The frequency and intensity 
of the observed extruded material was greater in fatigue tests conducted in vacuum and partial 
pressures of water vapor than laboratory air. However, note that the specimens tested in 

DISTRIBUTION A: Distribution approved for public release



	
   20/25	
  

laboratory air were subjected to high velocity air jets, which may have removed extruded 
material. Sugano et al. [31] observed a similar feature on the specimen surface of a titanium alloy 
in vacuum fatigue tests at a pressure of 6.7 x 10-3 Pa, R = -1, and 108 cycles.  The detected 
ribbon-like extrusions occurred at slip bands on the specimen surface. They also observed a 
decrease in intensity and fraction of these extrusions in specimens fatigued in laboratory air 
versus vacuum. The mechanism for the creation of these features is likely related to crack closure 
effects and oxide layer formation. More analysis is underway to determine the composition of 
these formations and the mechanism by which they are created. 

 
Summary  

An in situ combined ultrasonic fatigue scanning electron microscope system (UF-SEM) for 
high resolution observations of fatigue damage accumulation and subsequent crack initiation and 
growth behavior was designed and built.  The system was successfully used to examine the 
microstructural and environmental dependence of crack initiation and propagation in the near 
alpha titanium alloy Ti-6242S. In-SEM small fatigue crack growth behavior was compared to 
fatigue tests in laboratory air using a different ultrasonic fatigue instrument that operates from 
the same principles as the UF-SEM system. Our work resulted in the following findings:  

• Fatigue crack growth rates determined by in-SEM tests increased with increasing partial 
pressures of H2O vapor. A pronounced increase in fatigue crack growth rate was 
observed in laboratory air compared to 133 Pa and 65 Pa H2O vapor environments.  

• In vacuum, no significant crack propagation was observed at the same stress amplitude 
used in laboratory air and H2O vapor tests, in which stable crack growth was observed. 

• The impact of high purity hydrogen (H2) and high purity oxygen (O2) was examined, and 
it was found that high purity oxygen was significantly more detrimental for VHCF 
fatigue crack growth. 

• Fatigue crack initiation lifetime (Ni) was shortest in laboratory air and longest in vacuum. 
• Cracks frequently decelerated or arrested at high angle α/α and α/α+β grain boundaries 

and demonstrated sensitivity to microstructure that has typically been observed in small 
crack growth behavior. 

• The local microstructural neighborhood near the micro-notch tips influenced crack 
initiation life. Micro-notch tips in regions unfavorably oriented for basal slip tended to 
initiate cracks later or in some cases not at all. 

• Primary α grain faceted fracture along basal planes was observed in each environment. 
Facets from specimens fatigued in vacuum and H2O vapor environments frequently 
showed fatigue markings indicative of a low ΔK crack advance mechanism, while no 
such markings were observed from laboratory air tests. 

 
The results of the present study provide a basis for future studies to probe the mechanisms 

that underlie small crack initiation and growth behavior in the VHCF regime.  
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