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Abstract

Integrating knowledge from multiple sources is an important aspect of automated reasoning
systems� In the �rst part of this series of papers� we presented a uniform declarative framework�
based on annotated logics� for amalgamating multiple knowledge bases when these knowledge bases
�possibly� contain inconsistencies� uncertainties� and non�monotonic modes of negation� We showed
that annotated logics may be used� with some modi�cations� tomediate between di�erent knowledge
bases� The multiple knowledge bases are amalgamated by embedding the individual knowledge
bases into a lattice� In this paper� we brie	y describe an SLD�resolution based proof procedure that
is sound and complete w�r�t� our declarative semantics� We will then develop an OLDT�resolution
based query processing procedure� MULTI OLDT� that satis�es two important properties
 ��� e�cient

reuse of previous computations is achieved by maintaining a table � we describe the structure of this
table and show that table operations can be eciently executed� and ��� approximate� interruptable

query answering is achieved� i�e� it is possible to obtain an �intermediate� approximate� answer
from the QPP by interrupting it at any point in time during its execution� The design of the
MULTI OLDT procedure will include the development of run�time algorithms to incrementally and
eciently update the table�

� Introduction

Complex reasoning tasks in the real world utilize information from a multiplicity of sources� These
sources may represent data and�or knowledge about di�erent aspects of a problem in a number of
ways� Wiederhold and his colleagues ���� �	
 have proposed the concept of a mediator � a device that
will express how such an integration is to be achieved�

This is the second in a series of papers developing the theory and practice of integrated databases�
In Part I of this series of papers� we developed a language for expressing mediators� and reasoning
with them� In particular� we showed that an extension of the �generalized annotated program �GAP�

�This work was supported by the Army Research O�ce under Grant Nr� DAAL�������G����	 and by the Air Force
O�ce of Scienti
c Research under Grant Nr� F�������������	� and by ARPA Order Nr� A�� administered by Rome
Labs under contract F���������C����� NOTE TO REFEREES� Appendix A contains material that can be removed
from the paper after acceptance�
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paradigm of Kifer and Subrahmanian ���
 may be used to express mediators� We de�ned the concept
of the �amalgam of �local databases DB�� � � � � DBn with a mediatory database� M � and proved a
number of results linking the semantics of the local databases with the semantics of the amalgam�

The primary aim of this paper is the development of query processing procedures �QPPs� for short�
that possess various desirable properties� We will �rst develop a resolution�based QPP and show it to
be sound and complete� However� it is well known that resolution proof procedures are notoriously
ine�cient� often solving previously solved goals over and over again� OLDT�resolution� due to Tamaki
and Sato ���
 is a technique which caches previously derived solutions in a table� The theory and
implementation of OLDT has been studied extensively by several researchers including Seki ��	� ��
 and
Warren and his colleagues �	� ��
� Furthermore� it is known that OLDT and magic set computations
��� �� ��
 are essentially equivalent� though they di�er in many �relatively minor� details� We will use
the OLDT technique as our starting point� and extend it as follows�
���Multiple Databases� As di�erent databases may provide di�erent answers to the same query� OLDT�
resolution needs to be modi�ed to handle a multiplicity of �possibly mutually incompatible� answers
to the same query�
��� Uncertainty and Time� Previous formulations of OLDT�resolution did not handle time and uncer�
tainty� We will show how temporal and uncertain answers can be smoothly incorporated into the OLDT
paradigm�
��� Approximate� Interruptable Query Answering� In some situations� the user may wish to interrupt
the execution of the query processing procedure and ask for a �tentative answer� This kind of fea�
ture becomes doubly important when databases contain uncertain and temporal information� When
processing a query Q such as �Is the object O at location L an enemy aircraft �� it is desirable that
uncertainty estimates of the truth of this query be revised upwards in a monotonic fashion as the QPP
spends more and more time performing inferences� Thus if the user interrupts the QPP�s execution at
time t and asks �What can you tell me about query Q �� the KB should be able to respond with an
answer of the form� �I�m not done yet� but at this point I can tell you that Q is true with certainty
��� or more�
��� Table Management� Relatively little work has been done on the development of data structures
for managing OLDT�tables �cf� Warren �	� ��
�� When a single database with neither uncertainty nor
time is considered� the structure of the OLDT�table can be relatively simple� However� when multiple
database operations� uncertainty estimates �that are constantly being revised�� and temporal reasoning
are being performed simultaneously� the management of the OLDT�table becomes a signi�cant issue�
We will develop data structures and algorithms to e�ciently manage the OLDT�table�

Our query processing procedure� called MULTI OLDT� incorporates all the above features and is described
in detail in this paper� In particular� we prove that MULTI OLDT is a sound and complete query
processing procedure� Restricted termination results are also established�

The paper is organized as follows� in Section �� we provide two examples motivating our work� These
examples will be used throughout the paper to illustrate various de�nitions� data structures� and
algorithms� Section � contains a brief description of a resolution�style proof procedure including
soundness and completeness results� The MULTI OLDT procedure is described in detail in Section � � in
particular� this section contains details on the organization of the OLDT�table� We compare our results
with relevant work by other researchers in Section ��

�



� Preliminaries

In this section� we give a quick overview of GAPs and the amalgamation theory developed in the �rst
of this series of papers ���
�

��� Overview of GAPs �Generalized Annotated Programs�

The GAP framework syntax proposed in ���
 is an extension of the logic programming� It has been
proposed as a framework within which inconsistencies� temporal information and probabilistic logic
can be handled in a uniform way� The GAP framework assumes that we have a set T of truth values that
forms a complete lattice under an ordering �� For instance� �T ��� may be any one of the following�

��� Fuzzy Values� We can take T � ��� �
 � the set of real numbers between � and � �inclusive� and �
to be the usual � ordering on reals�
��� Time� We can take T to be the set TIME � �R

�

where R� is the set of non�negative real numbers�
�R

�

is the power�set of the reals� and � is the inclusion ordering� The reader may note that interval
time can therefore be represented� So can sets of time points like the set f�� �� �g which refers to the
time points ��� and �� furthermore� f�� �g�f�� �� �g since f�� �g � f�� �� �g�
��� Fuzzy Values Time� We could take T � ��� �
�TIME and take� to be the ordering� �u�� T�
��u�� T�

i� u� � u� and T� � T�� Here u�� u� are real numbers in the ��� �
 interval and T�� T� are sets of real
numbers�
��� Four�Valued Logic� Four valued logic ��� ��
 uses the truth values FOUR � f�� t� f ��g ordered as
follows� ��x and x�� for all x � FOUR� In particular� t and f are not comparable relative to this
ordering� ��� �� ��
 show how this FOUR�valued logic may be used to reason about databases containing
inconsistencies�

This is only a small sample of what T could be� Using the elements of T � as well as variables ranging
over T �called annotation variables�� and function symbols of arity n 	 � on T �called annotation
functions�� Annotation terms are de�ned as follows� ��� any member of T is an annotation term� ���
any annotation variable is an annotation term� and ��� if f is an n�ary annotation function symbol�

and t�� � � � � tn are annotation terms� then f�t�� � � � � tn� is an annotation term� For instance� if T � ��� �

and  � 
 are annotation function symbols interpreted as �lus and �times� respectively� and V is an
annotation variable� then �V  �� 
 ��� is an annotation term� Strictly speaking� we should write this
in pre�x notation as� 
� �V� ��� ����� but we will often abuse notation when the meaning is clear from
context�

If A is an atom �in the usual sense of logic�� and � is an annotation� then A � � is an annotated atom�
For example� when considering T � ��� �
� the atom broken�c�� � ���� may be used to say� �there is at
least a ��� degree of certainty that component c� is broken� If T � ��� �
� TIME� then annotations
are pairs� and an annotated atom like at robot��� �� � ����� f�� �� �g
 says that at each of the time points
�� �� �� there is at least a ��� certainty that the robot is at xy�coordinates ��� ���

An annotated clause is a statement of the form�

A� � �� � A� � ��! � � �!An � �n

where� ��� each Ai � �i� � � i � n is an annotated atom� and ��� for all � � j � n� �j is either a
member of T or is an annotation variable� i�e� �j contains no annotation functions� In other words�

�As done by Kifer and Subrahmanian ���� we will assume that all annotation function symbols can be interpreted in
only one 
xed way�
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annotation functions can occur in the heads of clauses� but not in the clause bodies� The above
annotated clause �when the annotations are ground� may be read as� �A� has truth value at least ��
if A� has truth value at least �� and � � � An has truth value at least �n�

Kifer and Subrahmanian developed a formal model theory� proof theory� and �xpoint theory for
GAPs that accurately captures the above�mentioned notion of "�rability� In brief� an interpretation I

assigns to each ground atom� an element of T � Intuitively� if T � ��� �
� then the assignment of ��� to
atom A means that according to interpretation I � A is true with certainty ��� or more� Interpretation
I satis�es a ground annotated atom A � � i� ��I�A�� The notion of satisfaction of formulas containing
other connectives� such as !���� and quanti�ers � � is the usual one ���
� In particular� I satis�es
the ground annotated clause A� � �� � �A� � ��! � � �!An � �n� i� either I �j� �A� � ��! � � �!An � �n�
or I j� A� � ��� The symbol �j� is read �satis�es� I satis�es a non�ground clause i� I satis�es each
and every ground instance of the clause �with annotation variables instantiated to members of T and
logical variables instantiated to logical terms��

��� Overview of Amalgamation Theory

Suppose we have a collection of �local databases DB�� � � � � DBn over a complete lattice� T � of truth
values� In this section� we recall� from ���
� how the theory of GAPs may be successfully applied to
de�ne a new lattice of truth values that forms the basis for a �mediatory or �supervisory database�
To do so� we �rst de�ne the DNAME lattice� this is the power set� �f������n�mg� The integer i refers to
database DBi� while m refers to the mediator� Note� in particular� that �f������n�mg is a complete lattice
under the set inclusion ordering�

We assume that we have a set of variables �called DNAME variables � ranging over �f������n�mg� If A � �
is an atom over lattice T � V is a DNAME�variable� and D � f�� � � � � n�mg� then A � �D� �
 and A �
�V� �
 are called amalgamated atoms� Intuitively� if T � ��� �
� the amalgamated atom at robot��� �� �
�f�� �� �g� ���
 says that according to the �joint� information of databases �� � and �� the degree of
certainty that the robot is at location ��� �� is ��� or more �

An amalgamated clause is a statement of the form�

A� � �D�� ��
 � A� � �D�� ��
 ! � � �!An � �Dn� �n


where A� � �D�� ��
� � � � � An � �Dn� �n
 are amalgamated atoms� An amalgamated database is a collection
of clauses of this form�

Mediatory Database� Suppose DB�� � � � � DBn are GAPs� A mediatory database� M is a set of
amalgamated clauses such that every ground instance of a clause in M is of the form�

A� � �fmg� �
 � A� � �D�� ��
 ! � � �!An � �Dn� �n


where� for all � � i � n� Di � f�� � � � � n�mg�

Intuitively� ground instances of clauses in the mediator say� �If the databases in set Di� � � i � n�
�jointly� imply that the truth value of Ai is at least �i� then the mediator will conclude that the truth
value of A� is at least �� This mode of expressing mediatory information is very rich � in ���
� it

�When the databases being integrated are geographically dispersed across a network� it is common to distribute the
mediator so that bottlenecks �e�g� due to network problems� do not have a devastating e�ect� In this paper� we will not
study issues relating to implementing distributed mediators �though we are doing so in a separate� concurrent e�ort��
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is shown that it is possible to express prioritized knowledge about predicates� prioritized knowledge
about objects� as well as methods to achieve consensus in this framework�

We now de�ne the concept of an amalgam of local databases DB�� � � � � DBn via a mediator M �
First� each clause C in DBi of the form

A� � �� � A� � ��! � � �!An � �n

is replaced by the amalgamated clause� AT �C��

A� � �fig� ��
 � A� � �fig� ��
 ! � � �!An � �fig� �n
�

We use AT �DBi� to denote the set fAT �C�jC � DBig� The amalgam ofDB�� � � � � DBn via amediator
M is the amalgamated knowledge base �M �

Sn
i��AT �DBi���

The model theory for amalgamated knowledge bases is �slightly� di�erent from that of individual GAPs
because it must account for a new type of variable� viz� the DNAME variables� An A� interpretation�
J � for an amalgamated database is a mapping from the set of ground atoms of our base language to the
set of functions from f�� � � � � n�mg toT � Thus� for each A � BL� J�A� is a mapping from f�� � � � � n�mg
to T � In other words� if J�A��i� � �� then according to the interpretation J � DBi says the truth
value of A is at least �� Given a subset� D� of f�� � � � � n�mg we use J�A��D� to denote ti�D�J�A���i��
An A � interpretation� J � satis�es the ground amalgamated atom A � �D� �
 i� �� ti�D �J�A���i��
Here� t denotes �least upper bound �lub�� The concepts of A�model and A�consequence are de�ned
in the usual way� All the other symbols are interpreted in the same way as for ordinary T �valued
interpretations with the caveat that for quanti�cation� DNAME variables are instantiated to subsets of
f�� � � � � n�mg and other annotation variables are instantiated to members of T � Note that we will
always use the word A � interpretation to denote an interpretation of an amalgamated KB and use
the expression �interpretation or �T �interpretation to refer to an interpretation of a GAP�

� Motivation

In this section� we will present two motivating examples � the �rst is a set of deductive databases
expressed using FOUR�valued logic describing a static robotic domain �i�e� one where the world remains
constant�� The second example extends this to reason about a dynamically changing world� and thus
incorporates both uncertainty and time� These examples will be used throughout the paper to illustrate
various intuitions as they arise in the paper�

We will assume that the reader is familiar with generalized annotated programs �GAPs� as de�ned in
���
�

��� Robot Example

Consider two mobile robots� r� and r�� that are operating in a common workspace� Each of these two
robots has access to three databases� one of these databases represents information about the locations
of objects in the workspace �cf� Figure ��� the second represents information about the weight of these
objects� while the third represents information about the temperature of the objects� The last two
databases also contain information about what kinds of loads the individual robots can lift� Each of
these three databases is expressed over the lattice FOUR shown in Figure � and examples of clauses in
each database is given below�
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Figure �� The truth value lattice FOUR
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Figure �� The locations of objects in the workspace
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DB��

at�r�� �� �� � t �

at�r�� �� �� � t �

at�a� �� �� � t �

at�b� �� �� � t �

at�c� �� �� � t �

at�d� �� �� � t �

right�E�� E�� � t � at�E�� X�� Y �� � t! at�E�� X�� Y �� � t!X� � X��

left�E�� E�� � t � at�E�� X�� Y �� � t! at�E�� X�� Y �� � t!X� � X��

at�E�� X� Y � � f � at�E�� X� Y � � t!E� �� E��

This database speci�es where the objects are located �including the robots�� and also speci�es relations
such as �entity E� is to the right of entity E� if � � � � and �entity E� is to the left of E� if � � � ��
There is also a rule saying that two things cannot be at the same place� We assume that relations like
�� �� and � are evaluated in the standard way� Intuitively� the �rst rule above says �If the entity E�
is at location �X�� Y �� and entity E� is at location �X�� Y �� and X� � X�� then E� is to the right
of E��

DB��

weight�a� ��� � t �

weight�b� �	� � t �

weight�c� ��� � t �

weight�d� ��� � t �

can lift�r�� X� � t � weight�X�W � � t!W � ���

can lift�r�� X� � f � weight�X�W � � t!W 	 ���

can lift�r�� X� � t � weight�X�W � � t!W � ���

can lift�r�� X� � f � weight�X�W � � t!W 	 ���

DB��

temp�a� 	�� � t �

temp�b� ��� � t �

temp�c� ��� � t �

temp�d� ���� � t �

can lift�r�� X� � t � temp�X� T � � t!T � ���

can lift�r�� X� � f � temp�X� T � � t!T 	 ���

can lift�r�� X� � t � temp�X� T � � t!T � ����
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can lift�r�� X� � f � temp�X� T � � t!T 	 ����

Using DB� alone� we may conclude that r� can lift any of a� b� c� d� while using DB� alone� we may
conclude that r� can lift only c� Similarly� DB� alone tells us that r� can lift b and d� while using
DB� alone� we may conclude that r� can lift all of a� b� c and d� Clearly this leads to inconsistency� In
addition to resolving such con#icts� we may wish to coordinate what should be done by the two robots
r� and r�� A mediatory database is a database that speci�es how to resolve such con#icts and how to
achieve the desired coordination� For instance it may be the case that r� moves easily in the vertical
direction� while r� moves easily in the horizontal direction� If an object is above or below r�� and the
mediator determines that r� can lift that object� then the mediator may decide to command r� to lift
that object� Similarly� if an object is to the left or right of r�� and the mediator determines that r�
can lift that object� then the mediator may decide to command r� to lift that object� If the object is
not exactly above or below r� or to the right� left of r�� then the mediator will �rst command r� to
lift the object� If no command is issued to r� to lift an object� then r� will be commanded to lift that
object� These are formalized using the following �mediatory knowledge base�

can lift�r�� X� � �fmg� V � � can lift�r�� X� � �f�� �g� V 
�

can lift�r�� X� � �fmg� V�u V�
 � can lift�r�� X� � �f�g� V�
 ! can lift�r�� X� � �f�g� V�
�

command lift�X� r�� � �fmg� V 
 � can lift�r�� X� � �fmg� V 
 ! above�X� r�� � �f�g� t
�

command lift�X� r�� � �fmg� V 
 � can lift�r�� X� � �fmg� V 
 ! below�X� r�� � �f�g� t
�

command lift�X� r�� � �fmg� V 
 � can lift�r�� X� � �fmg� V 
 ! left�X� r�� � �f�g� t
�

command lift�X� r�� � �fmg� V 
 � can lift�r�� X� � �fmg� V 
 ! right�X� r�� � �f�g� t
�

command lift�X� r�� � �fmg� V 
 � can lift�r�� X� � �fmg� V 
�

command lift�X� r�� � �fmg� t
 � can lift�r�� X� � �f�� �g� t
 ! command lift�X� r�� � �fmg� f 
�

The �rst two rules in the above mediatory knowledge base are very interesting� As far as robot r�
is concerned� the mediator is willing to accept the truth value provided by any of the databases � in
other words� the mediator is indecisive and acts as if both what DB� says is correct and what DB�

says is correct �even though they may contradict each other�� This may be an appropriate strategy
when robot r� is a very inexpensive robot� and the task of lifting the objects is critical� The second
rule says that the mediator only concludes that r� can lift an object if both databases DB� and DB�

say it can �consensus��

The amalgam of local databases DB�� DB�� DB� with the mediatory database M � is found as de�ned
in ���
� To do this� D�term annotation in all the clauses in database DBi are set to fig and these
modi�ed clauses are added to the amalgam�
For example the clause�

can lift�r�� X� � �f�g� t
� temp�X� T � � �f�g� t
 !T � ���

is added to the amalgam by modifying the clause

can lift�r�� X� � t� temp�X� T � � t!T � ���

in database DB�� Similarly� for the clause�

t�E�� X� Y � � f � at�E�� X� Y � � t!E� �� E��
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in database DB�� the following clause is added to the amalgam�

at�E�� X� Y � � �f�g� f 
� at�E�� X� Y � � �f�g� t
 !E� �� E��

� A Resolution�Based Query Processing Procedure

In this section� we will develop a framework for processing queries to amalgamated databases� This
procedure is a resolution�based procedure� and hence� inherits many of the disadvantages of existing
resolution�based strategies� It is similar to work by Lu� Murray and Rosenthal ���
 who have inde�
pendently developed a framework for query processing in GAPs� As stated by Leach and Lu ���
�
the work of ���
 applies to not just the Horn�clause fragment of annotated logic �which is the case
in our work�� but to the full blown logic� However� ���
 does not deal with annotation variables and
annotation functions � our results apply to those cases as well�

The work described here is intended as a stepping stone for the development of a more sophisticated
procedure� called MULTI OLDT� that will be described in Section ��

We now de�ne the concept of the up�set of an annotation� or a set of annotations� Intuitively� given
a set Q of annotations� the up�set of Q is simply the set of all elements in the truth value lattice that
are larger than some element in Q�

De�nition � Suppose hR��i is a partially ordered set and Q � R� Then� � Q � fy � R j ��x �
Q�x � yg�

De�nition � Given an annotation � where � � T � and a function fs � T � �T the expression fs���
is called a set expansion of ��

For example� we may take fs to be the function such that fs��� �� �� or we may take fs to be the
function such that fs��� � T n � �� If we take fs to be the latter� and we consider the lattice FOUR�
then fs�t� � f�� fg� It will turn out that the two examples of fs given above will be particularly
important�

In the sequel� we will often use the notation �s to denote a set of truth values �annotations�� If A is
an atom� and D is a DNAME�term� then A � �D� �s
 is called a set�expanded atom� Intuitively� A � �D� �s

is read as� �The truth value of A� as determined jointly by the databases in D is in the set �s�

Using the concept of set expanded atoms� we now de�ne the concept of a regular representation of a
clause� Later in this section� we will de�ne a resolution�based strategy that uses regular representations
of amalgamated clauses instead of the amalgamated clauses themselves� The advantage is that the
expensive reductant rule of inference introduced by Kifer and Lozinskii ���
 and later studied by Kifer
and Subrahmanian ���
 can be eliminated by using regular representations�

De�nition � Given a clause C of the form�

A� � �D�� ��
� A� � �D�� ��
! � � �!An � �Dn� �n


the regular representation of C� denoted by C�� is the expression�

A� � �D��� ��
� A� � �D��� ��
! � � �!An � �Dn�� �n


In other words the regular representation is obtained by replacing the annotation terms by their
up�sets�

	



Example � �Robot Example Revisited� Consider the following rule fromDB� of the Static Robot
example�

can lift�r�� X� � t � weight�X�W � � t!W � ���

The amalgamated form of this� as de�ned in ���
� is

can lift�r�� X� � �f�g� t
 � weight�X�W � � �f�g� t
 !W � ���

The regular representation of this is�

can lift�r�� X� � �f�g�� t
 � weight�X�W � � �f�g�� t
 !W � ���

and since � t � ft��g� the above clause becomes�

can lift�r�� X� � �f�g� ft��g
 � weight�X�W � � �f�g� ft��g
 !W � ���

�We assume that the constraint W � �� is a prede�ned evaluable relation�� �

De�nition 	 �S
satisfaction� AnA�interpretation I S�satis�es an expanded atom A � �D� �s
 where
D � f�� � � � � n�mg and �s � �T i� I j�A A � �D� �
 for some � � �s�

The notion of an S�logical consequence is similar to that in classical logic � only now� S�satisfaction is
considered instead of ordinary satisfaction�

De�nition � An set annotated amalgamated atom A � �D�� fs�����
 is said to be an S�consequence
of another set annotated amalgamated atom B � �D�� fs�����
 �denoted by B � �D�� fs�����
 j�

S

A � �D�� fs�����
�� i� any A�interpretation I that S�satis�es B � �D�� fs�����
 also S�satis�es A �
�D�� fs�����
�

Example � Let the truth value lattice be FOUR and let I be anA�interpretation such that I�A���� � �
and I�A���� � t�

F
d�f���g I�A��d� � t� Hence� I S�satis�es A � �f�� �g� ft� f ��g
 since t � ft� f ��g� �

Just as we de�ned the notion of �regular representation of clauses� we also need to de�ne the notion
of �regular representation of queries�

De�nition � A query Q is a statement of the form�

� A� � �D�� ��
! � � �!An � �Dm� �m


where all the free variables of the query are assumed to be universally quanti�ed�� A set�expanded
query is a query of the form

� A� � �D�� �s� 
! � � �!An � �Dm� �sm 


where each Ai � �Di� �si 
� Given a query� the regular representation of the query Q� denoted Q
� is the

expression�

A� � �D�� T � � ��
 � � � ��An � �Dm� T � � �m
�

Thus� Q� is a special kind of set expanded query�

�A query can be thought of as a headless Horn�clause� i�e� ��� Q�� The negation of the above query is the statement
����A� � �D�� ���� � � ��An � �Dm� �m���

��



The following result follows immediately from the de�nitions and is given without proof�

Proposition � Suppose I is an A�interpretation�

�� I satis�es a ground clause C i� I S�satis�es C��

�� I satis�es a ground query Q i� I S�satis�es Q�� �

We now come to the central concept in this section� viz� that of an S�resolvent�

De�nition  �S�resolution� Let C� be the regular representation of a clause C and be given by�

A� � �D��� ��
� A� � �D��� ��
! � � �!An � �Dn�� �n


and let W � be the following set annotated query�

B� � �Dq�� �qs� 
� � � ��Bm � �Dqm� �qsm 
�

where �qsi � � � j � m� are in set expansion form� Suppose Bi and A� are uni�able via mgu � and
suppose D� � Dqi � Then the S�resolvent of W

� and C� is the expression�

� A� � �D�� T � � ��
 � � � �� An � �Dn� T � � �n
�

B� � �Dq� � �qs� 
 � � � �� Bi�� � �Dqi�� � �qsi�� 
 �Bi�� � �Dqi�� � �qsi�� 
 � � � ��Bm � �Dqm� �qsm 
 �

Bi � �Dqi� �qsi � �� ���
 �� �

In case� �qsi� � �� ���� � �s is ground and �s evaluates to �� then we simplify the above S�resolvent

by removing the atom
�
Bi � �Dqi� �qsi � �� ���


�
��

All the atoms �A� � �D�� T � � ��
��� � � ��An � �Dn� T � � �n
��� �Bi � �Dqi� �qsi � �� ���
�� in the
S�resolvent of W � and C� will be referred to as the children of the set annotated atom Bi � �Dqi � �qsi 
�
Similarly� Bi � �Dqi� �qsi 
 is the parent of all the atoms in the S�resolvent� The atom �A� � �D�� ��
�� will
be referred to as the twin of Bi � �Dqi � �qsi 
� These expressions will be used when MULTI OLDT�resolution
is introduced�

Two important points that distinguish S�resolution for amalgamated knowledge bases from GAPs are
the following�

� First� it is possible that no atom may be �eliminated during an S�resolution step� This occurs
if �s above is not equal to ��

� Second� S�resolvents are inherently asymmetric due to the use of the inequality D� � Dqi �

Before proceeding to study soundness and completeness issues pertaining to S�resolution� we present
an example�

Example � Consider the truth value lattice FOUR� Let C be the clause

p�a� � �f�g� f�g
�

let Q be the query � p�X� � �f�� �g� t
� The regular representation� Q�� of the above query is

p�X� � �f�� �g� ff ��g
� �

��



� � fX � ag is the mgu of p�a� and p�X�� and hence C� and Q� can be S�resolved� yielding

�p�X� � �f�� �g� ff ��g � f�g
��fX � ag

as the S�resolvent� This is reduced to the empty clause because ff ��g � f�g � �� �

De�nition � An S�deduction from a query Q� and an amalgamated knowledge base AKB is a se�
quence� hQ�

�� C
�
�� ��i� � � � � hQ

�
n� C

�
n� �ni such that Q

�
i�� is an S�resolvent of Q

�
i and C�

i via mgu �i�
�� � i � n�� Q�

� is the regular representation of Q� and C
�
i is the regular representation of some clause

C� �� � i � n��

An S�deduction is called an S�refutation if it is �nite and the last query is the empty clause�

Theorem � �Soundness of S
resolution� Suppose I S�satis�es a clause C� � A� � �D��� ��
 �
A� � �D��� ��
 ! � � �! An � �Dn�� �n
 and a set�annotated query Q

�
k � B� � �Dq�� �qs� 
 � � � � � Bm �

�Dqm� �qsm 
�� Then� I S�satis�es the S�resolvent of C
� and Q�

k� �

The following de�nition from ���
 is needed for proving the Completeness results for amalgamated
knowledge bases� Given an amalgamated knowledge base Q� it is possible to associate with Q� an
operator AQ that maps A�interpretations to A�interpretations�

De�nition � ���
 Suppose Q is an amalgamated knowledge base� We may associate with Q� an
operator� AQ� that maps A�interpretations to A�interpretations as follows�

A
�

Q�I��A��D� � tf� j A � �D� �
 � B� � �D�� ��
! � � �!Bn � �Dn� �n
! not�Bn�� �
�Dn��� �n��
�! � � �!not�Bn�m � �Dn�m� �n�m
�g is a ground instance of a clause in Q

and for all � � i � n��i � I�Bi��Di� and for all �n �� � j � �n m���j �� I�Bj��Dj��

AQ�I��A��D� � tD��DA
�

Q�I��A��D
�

�� for all D � f�� � � � � n� sg�

Subrahmanian ���
 proved that AQ is monotonic� Hence� AQ has a least �xpoint which is identical
to AQ � � for some ordinal �� Unlike ordinary logic programs� even if � is 	� it is possible that
�AQ � 	��A��i� � �� but there is no integer j � 	 such that �AQ � j��A��i� � �� This may occur
because � is the lub of an in�nite sequence� ��� ��� � � � where �k � �AQ � k��A��i��

An amalgamated knowledge base is said to possess the �xpoint reachability property i� whenever
�AQ � ���A��i� � �� there is an integer j � 	 such that �AQ � j��A��i� � �� The �xpoint reachability
property is critical for completeness because otherwise� we need to take recourse to in�nitary proofs�
It is well�known ���
 that even in the case of GAPs� the �xpoint reachability property is critically
necessary for obtaining completeness results� The proof of the following result is contained in Appendix
A�

Theorem � �Completeness of S
resolution� Suppose P j� Q where P is an amalgamated knowl�
edge base that possesses the �xpoint reachability property� Then� there is an S�refutation of �� Q��

from P � �

The above completeness theorem speci�es the existence of refutations of queries that are consequences
of P � In this paper� we do not deal with computation rules���
� The use of di�erent fair computation
rules in implementing a search strategy for resolution has been studied by many authors such as
Vielle ���
� Our MULTI OLDT procedure described in the rest of the paper may work with any of these
computation rules�

��



� MULTI OLDT Resolution

The previous section describes a sound and complete proof procedure for amalgamated knowledge
bases� The completeness result for S�resolution asserts the existence of a refutation for �� Q��

whenever Q is a logical consequence of a program P possessing the �xpoint reachability property�

Consider a query of the form � can lift�r�� a� � V in the robot example� An S�resolution may
terminate by setting V � � which is a correct refutation � however� in this query� we are really
interested in �nding the maximal truth value � such that can lift�r�� a� � � is true� The completeness
of the S�resolution procedure described in the preceding section does not guarantee that this refutation
will be found� it only guarantees that some substitution which causes can lift�r�� a� � V to be true
will be found�
In general� this kind of problem may be characterized by the following maximization problem�

Given an atom A �whose truth value we want to �nd out� and a set D of local databases�
�nd the maximal truth value V such that A � �D� V 
 is an S�consequence of the amalgamated
knowledge base P �

Second� the robot may have a hard deadline within which to perform its action�s�� Thus� it should
have the ability to interrupt the query processing module and request the �best answer obtained thus
far�

How these two goals are achieved e�ciently is the subject of this section of the paper� As a preview�
we give a small example�

Example 	 Consider the databases DB�� DB� and DB� in the static robot example� and suppose
we ask the query�

� can lift�r�� b� � �f�� �� �g� V 
�

The query Q says� �What is the maximal truth value V such that can lift�r�� b� � �f�� �� �g� V 
 can
be concluded � Q� is� can lift�r�� b� � �f�� �� �g�T� � V 
�� Let us see what happens�

�� Resolving this query with the �regular representation of the� �rst rule in DB� yields� as resolvent�
Q�

� ��

can lift�r�� b� � �f�� �� �g� �T� � V �� � t
 � weight�b�W � � �f�g� T � � t
 � W 	 ��� �

�� Resolving this query with the �regular representation of the� second fact in DB� yields

can lift�r�� b� � �f�� �� �g� �T� � V �� � t
 � weight�b� �	� � �f�g� �T� � t�� � t
 � �	 	 ��� �

As �T � � t�� � t � �� the atom weight�b� �	� � ��T � � t�� � t
 can be eliminated from the
resolvent� and the evaluable atom �	 	 �� may also be so eliminated� thus leaving us with the
resolvent

can lift�r�� b� � �f�� �� �g� �T� � V �� � t
� �

Note that at this stage� we are in a position to conclude that V must be at least t for the following
reasons�

��



� All atoms in the body of the �rst rule in DB� have been resolved away �i�e� the subgoals
generated by atoms in the body of this rule have been achieved�� and

� V � t represents the maximal lattice value such that

�T � � V �� � t � ��

Hence� we may conclude that V �s truth value is at least t �w�r�t� the lattice ordering��

�� After concluding that V �s truth value is at least t� we continue resolving the query from � ��
above� We resolve it with the second clause in DB� to get�

can lift�r�� b� � �f�� �� �g� �T� � V �� � t� � f 
 � temp�b� T � � �f�g� T� � t
 � T � ��� �

�� Resolving the above query with the second fact in DB� gives�

can lift�r�� b� � �f�� �� �g� �T� � V �� � t� � f 
� temp�b� ��� � �f�g� �T� � t�� � t
� �� � ��� �

As explained in �� second and third atoms in the query can be eliminated� leaving us with the
query�

can lift�r�� b� � �f�� �� �g� �T� � V �� � t� � f 
� �

To evaluate this query to the empty clause� we must �nd the maximal truth value of V that
satis�es the following equation� �T � � V �� � t� � f � �� This is equivalent to� �T � �
V � � f�g � � and we conclude that V � � is the solution to this equation that maximizes the
value of V � �

As we can see from the example above� �nding the maximum truth value of an annotation variable
that enables us to eliminate a query atom results in a maximization problem with some constraints�
Each resolution with the atom introduces new restrictions on the set of truth values its annotation
variable can legitimately have� Notice that these restrictions can be part of another maximization
problem� As an example� suppose we have the following clause in the �regular representation of�DB��

can lift�X� b� � �f�g�� V�
� can lift�X� b� � �f�g�� V�
�

In other words� DB� contains the information that DB� is a more reliable source of information as
far as the object b is concerned� When we resolve this clause with the original query in the above
example� we get the following query�

can lift�r�� b� � �f�� �� �g� �T� � V �� � V�
 � can lift�X� b� � �f�g� T� � V�
� �

Here V� is going to be maximized as well� and we want to know how the current maximum value of V
is a�ected by the changes in the value of V�� We are now going to formalize this idea�

	�� Maximization Problems

De�nition �� �Maximization Problem� let T be a complete lattice of truth values� V�� � � � � Vn be
annotation terms and fobj � T

n � T � A maximization problem MP is given as follows�

maximize fobj�V�� � � � � Vn�

subject to T� $�� f���V�� $�� � � � $�n f�n�Vn� � �

� � �

Tm $m�
fm�

�V�� $m�
� � � $mn fmn�Vn� � �

��



where Ti � T � fij is a map from T to �T � and $ij � f���� ng for all � � i � m� � � j � n� Intuitively�
the expressions on the left of the equalities above are unions�intersections�di�erences of terms denoting
subsets of T �

A mapping M � fV�� � � � � Vng � T is said to be a maximal solution to MP i� ��� the assignment of
M�Vi� to variable Vi �� � i � n� satis�es the constraints and ��� for all other mappingsM

�

that satisfy
the constraints� the inequality fobj�M�V��� � � � �M�Vn�� �� fobj�M

�

�V��� � � � �M
�

�Vn�� holds w�r�t� the
given lattice ordering�

Example � Consider the truth value lattice FOUR and suppose we wish to solve the maximization
problem

maximize V� t V�

subject to f�� fg � �� V�� � �� V�� � �

Then� V� � V� � ��V� � �� V� � t and V� � t V� � � are all maximal solutions to the above
problem� However� the solution V� � �� V� � t does not maximize V� t V�� hence it is not a maximal
solution� �

When dealing with lattices� it is possible to have more than one maximal solution to a maximization
problem� For example� the problem� maximize V subject to fV g � f�g � � has two maximal
solutions� V � t and V � f � It turns out that the maximization problems that arise as a result
of successive S�resolutions have a special form� We will show that maximization problems generated
during the course always have a unique solution�

As an example� consider the query Q� � A � �D� T � � V�
 �� As has been illustrated in Example ��
when processing this query by performing successive S�resolutions� the atom A �when it occurs in
successive resolvents in an S�deduction� will always have an annotation of the form

�T � � V�� � �� V�� � � � �� �� Vn�

where n 	 �� When attempting to evaluate the �current best known truth value for A� we need to
maximize the value of V� subject to the constraint

�T n � V�� � �� V�� � � � � � �� Vn� � �

This is because V� occurs in the query Q� and we wish to obtain maximal possible values of V��
Theorem � below shows that there is a unique maximal solution to this problem� and it is obtained
by setting V� � V� t � � �t Vn� Prior to proving Theorem �� we need to prove an elementary result�

Lemma � If V� � V� t � � �t Vn� then � V� � �� V�� � � � � � �� Vn��

Proof�

� Since Vi � V� �� � i � n�� V� � �� Vi�� Hence for all V� � V
�

� V
�

� �� Vi� and �� V�� � ���
V�� � � � � � �� Vn���

� Let Vs � �� V�� � � � � � �� Vn�� For all V
�

� Vs� we have that Vi � V
�

�� � i � n� � Since
V� � V� t � � �t Vn� it must be the case that V� � V

�

� Hence V
�

�� V� and ��� V�� � � � � � ��
Vn�� �� V�� �

��



Theorem � For any maximization problem MP given as follows�

maximize V�

subject to �T n � V�� � �� V�� � � � � � �� Vn� � �

where all the Vi�� � i � n are annotation terms� the maximal solution is� V� � V� t � � �t Vn�

Proof� The theorem will be proved by induction on the number� n� of annotation variables�

Basis The problem MP� be given as follows�

maximize V�

subject to �T n � V�� � �

Then� the maximal solution to MP� is V� � ��

� tfg � �� therefore V� � � is the solution given in the theorem�

� Since � V� � T � �T n � V�� � � and hence V� � � is a solution to the constraint given in MP��

� There is no solution V
�

� such that � � V
�

� � Since that implies � � �T n � V
�

��� V
�

� does not satisfy
the constraint�

Inductive Step Let for all i � n the solution to the problem MPi �

maximize V�

subject to �T n � V�� � � � �� �� Vi� � �

be given as V� � V� t � � �t Vi� Let the problem MPn be �

maximize V�

subject to �T n � V�� � � � �� �� Vn� � �

Then the solution to MPn is V� � V� t � � �t Vn�

� Let 
 � V� t � � � tVi�� and � � 
 t Vi� By the inductive hypothesis 
 is a solution toMPi���
By lemma � it is true that

� 
 � �� V�� � � � � � �� Vi���

�� 
� � �� Vi� � �� V�� � � � � � �� Vi��� � �� Vi�

By lemma �� � �
 t Vi� � �� 
� � �� Vi� � � �� Then�

�T n � �� � �� V�� � � � �� �� Vi� � �

and � is a solution to MPi�

� � is the only solution since for all V
�

�� � is true that � �� � V
�

and � � �T n � V
�

�� By the
argument above we know that

� � � �� V�� � � � �� �� Vi�

� � ��� V�� � � � �� �� Vi��

� � ��T n � V
�

� � ��� V�� � � � �� �� Vi��
 �� �

Hence� V
�

doesn�t satisfy the constraints for MPi and cannot be a solution� �

��



Example � Consider the maximization problem�

maximize V

subject to �T � V �� � V� � � � �� � Vn�� � �

The solution to this problem is Vold � V � V�t � � �tVn��� Now� suppose the term � Vn is added to the
constraint� Then� the new maximum value of V is V � Vold t Vn� In other words� having calculated
Vold once� we can use it to solve larger problems maximizing the same variable� For instance� in the
case of example �� we had calculated the maximal truth value of V to be t �in the second step�� At
step �� we introduce the term � f into the constraint� Then� the new maximal value of V became
V � t t f � �� Therefore we� can conclude that V � � without solving the maximization problem
from scratch� �

When using the above theorem to compute the maximal value of V� subject to the constraint that

�T n � V�� � �� V�� � � � � � �� Vn� � �

we need to address how the maximal value of V� changes when the value of one of the Vi�s changes�
The following theorem shows how this may be easily computed�

Theorem 	 Let MPn be the maximization problem given in Theorem � and V� � 
 � V� t � � �t Vn
be the maximum solution� The problem MP

�

n is de�ned by replacing Vi by V
�

i for some � � i � n

where Vi � V
�

i � The maximal solution to MP
�

n is V� � 
 t V
�

i �

Proof� Since � Vi � � V
�

i �� V
�

i and by lemma �� � �
 t V
�

i � �� 
� � V
�

i � then

� 
 � � V� � � � �� � Vn

� 
 � � V
�

i � � V� � � � �� � V
�

i � � � �� � Vn

�T n � �
 t V
�

i �� � � V� � � � �� � V
�

i � � � �� � Vn � �

Hence� V� � 
tV
�

i satis�es the constraint given in MP
�

n and it is the maximum such value as a result
of the second equality above� �

We will now start de�ning a mathematic description of the data structures needed for an OLDT type
proof processing procedure� First of all� a table is needed for caching information obtained in the
intermediate levels of resolution� Just as ���
 stores sets of atoms in the table� the table in our will
framework will store a set of annotated atoms� This leads to two key distinctions behind our framework
and that of Sato and Tamaki�s ���
�

� As the atoms being inserted are annotated atoms� the insertion of new annotated atoms to the
table and checking if an atom is true in the table are signi�cantly more complicated operations
compared to the simple case in ���
� This will necessitate the development of three new sub�
operations called revision� merging and simpli�cation� In the next section� we will de�ne these
operations in detail�

� In addition� in our framework� whenever a new atom is inserted into the table� there may be
a need to �implicitly or explicitly� solve a maximization problem� This is not true in the ���

framework�

��



	�� MULTI OLDT Table

Kifer and Subrahmanian ���
 have de�ned how substitutions �in the ordinary sense� cf� Lloyd ���
�
may be extended to apply to annotated atoms� The only di�erence is that now� substitutions may
assign terms to annotation variables� and these terms must range over the appropriate truth value
lattice� Application of substitutions to annotated atoms may then be de�ned in the obvious way� For
instance� when the truth value domain is the unit interval ��� �
� the substitution

� � fX � a� Y � f�Z� a�� U � ����g

when applied to the annotated atom p�X� Y�X� � �f�g� U��
� 
 yields the annotated atom p�a� f�Z� a�� a� �

�f�g� ������
� 
� at this stage� we will assume that the annotation term ������

� is evaluated to yield the
annotated atom p�a� f�Z� a��A� � �f�g� �����
�

Throughout the rest of this paper� whenever we use the word 	substitution
� we will mean a substitution
in the extended sense de�ned above�

De�nition �� A MULTI OLDT table is a set of annotated atoms of the form A � �D� �
�

We now describe how the MULTI OLDT�table gets updated when a new atom is inserted� If the atoms
A � �D�� ��
 and A � �D�� ��
 are true in the amalgamated knowledge base� then the merged atom
A � �D� � D��t���� ���
 must also be true� Suppose the �rst atom is already in the table and the
second is just being inserted� Do we compute every possible consequence generated by the new atom
and an existing atom� Do we just add the above merged atom� In many cases� the D�term D� �D�

may not be needed at all when processing a speci�c query� Hence� the above merging operation should
only be performed when the resulting D�term is relevant to the query�

A MULTI OLDT�table is updated by executing three di�erent steps� We will �rst de�ne these steps� and
then explain how these steps are used when a new atom is inserted into a MULTI OLDT�table�

����� The Revision Step

De�nition �� �Revision Step� Suppose % is a MULTI OLDT�table� and A� � �D�� ��
 is an annotated
atom� Given any set X of annotated atoms of the form A � �D� �
� we use X �i	 to denote the set
fA � �D� �
 j A � �D� �
 � X ! card�D� � ig of all annotated atoms in set X whose D component has
cardinality i�

The revision R of the atom A� � �D�� ��
 with table % is given as follows�

� R� � fA� � �D�� ��
g�

� Ri�� � Ri � fA��� � �D��t������ ����
 j A
�
� � �D�� �

�
�
 � R

i is uni�able with A� � �D�� ��
 � %�i��	

via mgu � and D� � D�g�

� R�Rcard
D���

Intuitively� the revision step �nds all the atoms in a table that contain information relevant to the
new atom and updates the �maximal truth value that may be associated with the new atom� This
process starts by comparing the new atoms with the atoms having a singleton D�term� Then it is
compared with atoms with D�terms of cardinality ������� until the cardinality of the current D�term is
reached� Since there cannot be a D�term which is a subset of the current D�term after this point� the
execution stops�

��



Example  Suppose % is as given below�

% � f p�X� c� � �f�g� t
� p�f�Y �� Y � � �f�g� f 
� p�a� Y � � �f�g� t
�

p�a� Y � � �f�� �� �g� f 
� p�f�Y �� Y � � �f�� �� �g� t
g�

Then� the revision of p�U� b� � �f�� �g� f 
 with the table % is the set R�

R � fp�U� b� � �f�� �g� f 
� p�f�b�� b� � �f�� �g� f 
� p�a� b� � �f�� �g��
g�

�

Complexity of Revision� Suppose %�i	 � fA � �D� �
 j A � �D� �
 � % and card�D� � ig� Then� the
worst�case time complexity of computing Ri�� from Ri is O�card�Ri�card�%�i��	�l� where l is the cost
of checking whether two annotated atoms are uni�able and checking whether D� � D�� As uni�cation
is a well�known linear time problem �cf� Martelli and Montanari ���
�� it follows immediately that l is
linear in the number of symbols in the atoms�

It is easy to see that card�Ri��� � card�Ri�  card�%�i��	�� Thus� the total cost of the revision step
for an atom Aj � �Dj � �j
 with % where card�Dj� � d is given by�

CR �
dX

i��

�
card

�
%�i	
�
l

�
�  

i��X
k��

card
�
%�k	
���

�

Assuming that card�%�i	� � 
 for all i� the above upper bound on CR reduces to CR � ��dl
d���
� �

�
�� 
�dl� Hence� the worst�case complexity of revision is O�
�d�l� and card�R� � d
 �� In short�
revision is a polynomial�time operation�

����� The Merging Step

De�nition �� �Merging Step� Suppose the set R contains a set of atoms that are to be inserted
into a MULTI OLDT�table %� Then� the merge of R with % is the set M � fA�� � �D��t����� ����
 j
A� � �D�� ��
 � R is uni�able with A� � �D�� ��
 � % via mgu � and D� � D�g�

The basic intuition �in the case when annotation variables are ground� behind merging is the following�
when inserting an atom A� � �D�� �
 � R into the MULTI OLDT�table %� we examine all atoms A� �
�D�� ��
 � % such that D� � D� and such that A� and A� are uni�able via mgu � � the insertion of
A� � �D�� �
 may cause the truth value of A� � �D�� ��
 to �increase from �� to t���� ���� The above
de�nition uses this intuition to de�ne merging when annotation variables may be non�ground� The
following example shows how merging behaves on an example�

Example � Consider the table % given in the example above� Let R be given by

R � fp�U� b� � �f�� �g� f 
� p�f�b�� b� � �f�� �g� f 
� p�a� b� � �f�� �g��
g�

Since f�� �g � f�� �� �g� only the atoms p�a� Y � � �f�� �� �g� f 
 and p�f�Y �� Y � � �f�� �� �g� t
 in % will be
considered for merging� The merge of R and % is the set

M � fp�a� b� � �f�� �� �g��
� p�f�b�� b� � �f�� �� �g��
g�

�

�	



Complexity of Merging� Suppose % is a MULTI OLDT�table and %�i	 � fA � �D� �
 j A � �D� �
 �
%! card�D� � ig� Suppose there are n deductive databases in the amalgamated system� Then the
time complexity of merging % with a set R is given by�

CM �
nX
i�d

card�%�i	�card�R�l�

Assuming again that card�%�i	� � 
� CM � card�R�l
�n� d �� and card�M� � 
�n� d ��� Thus�
the complexity of merging is polynomial time�

We now come to the third and �nal step that is used in de�ning the insertion of an annotated atom
A � �D� �
 into a MULTI OLDT�table� This step is called simpli�cation� The basic idea in simpli�cation
is that �redundant atoms in a table should be eliminated�

����� The Simpli�cation Step

De�nition �	 �Simpli�cation Step� Suppose % is a MULTI OLDT�table� Then� a simpli�ed version
of % is a table %� where %� is a minimal subset of % such that for all atoms A � �D� �
 � �%� %��� there
exists an atom A� � �D�� ��
 � %� such that A� � �D�� ��
 j� A � �D� �
�

Note that given a MULTI OLDT�table %� there may be many tables %� which are simpli�cations of %�
Any of these will su�ce for our purposes�

Example � Now� consider the sets R�M and % given in examples � and �� The union of these sets
is the set %� given below�

%� � f p�X� c� � �f�g� t
� p�f�Y �� Y � � �f�g� f 
� p�a� Y � � �f�g� t
� p�U� b� � �f�� �g� f 
�

p�f�b�� b� � �f�� �g� f 
� p�a� b� � �f�� �g��
� p�a� Y � � �f�� �� �g� f 
�

p�f�Y �� Y � � �f�� �� �g� t
� p�a� b� � �f�� �� �g��
� p�f�b�� b� � �f�� �� �g��
g

Now� p�f�Y �� Y � � �f�g� f 
 j� p�f�b�� b� � �f�� �g� f 
 and p�a� b� � �f�� �g��
 j� p�a� b� � �f�� �� �g��
�
Then� the simpli�ed version %� of the table %� is given as�

%� � %� � fp�f�b�� b� � �f�� �g� f 
� p�a� b� � �f�� �� �g��
g�

�

Complexity of Simpli�cation� In the worst case� the simpli�ed version of a setM of atoms may be
computed in O�card�M��l�� The reason for this is the following� consider the ordering � onM de�ned
as follows� A� � �D�� ��
 � A� � �D�� ��
 i� A� � �D�� ��
 j� A� � �D�� ��
� � is a re#exive and transitive
ordering on M and hence� induces an equivalence relation � on M de�ned as� A� � �D�� ��
 � A� �
�D�� ��
 i� A� � �D�� ��
 � A� � �D�� ��
 and A� � �D�� ��
 � A� � �D�� ��
� The � relation can now
be extended to the equivalence classes generated by � as follows� �A� � �D�� ��

 �

� �A� � �D�� ��
 i�
A� � �D�� ��
 � A� � �D�� ��
� �� is a partial ordering on equivalence classes� The simpli�cation step
corresponds to �nding the ���maximal equivalence classes and then picking exactly one member from
each of these ���maximal equivalence classes�

The step of computing whether A� � �D�� ��
 � A� � �D�� ��
 is a linear time operation as it only
involves checking whether there exists a substitution � such that� ��� A�� � A�� and ��� D� � D�

��



and ��� ��� � ���� Computing equivalence relations can be performed in time that is quadratic in
the number of annotated atoms in M� �cf� Knuth�Alg� E� p� ���
��	
�� Finding the �� maximal
elements of the ��equivalence classes can be done in linear�time using standard topological sorting
�cf� Knuth�pps �������
��	
�� In short� the complexity of simpli�cation is quadratic�

In the worst case� the cardinality of the simpli�ed version of a set is the same as the cardinality of the
original set�

����	 Table Insertion

In this section� we will show how the three operations of revision� merging� and simpli�cation may be
jointly used to update a given table�

De�nition �� �Table Insertion� Suppose % is a MULTI OLDT�table� and A� � �D�� ��
 is an annotated
atom� The result of inserting A� � �D�� ��
 into % is a new table %� constructed as follows�

�� SetM to fA� � �D�� ��
g�

�� WHILE M �� � DO
BEGIN

�a� Find the revision Ri of all the atoms Ai � �Di� �i
 �M�

�b� Set R� to
S
iRi�

�c� Set R to the simpli�ed version of R��

�d� Find the mergeM� of R and %�

�e� SetM to the simpli�ed version of M��

�f� Set % to % � R�

END

�� Find the simpli�ed version %� of %� set the �nal table to %��

That is� the insertion of A� � �D�� ��
 into the table % is a two step process �after initialization�� in
the �rst step� the atoms in the table are compared and merged with the new atom in a continuous
loop� In the second step� the redundant atoms are removed� This process is guaranteed to terminate�
as explained by the lemma below�

Lemma � At all times in the table insertion process� the following invariant is maintained�
�If i and i � are two consecutive executions of the while loop in de�nition �� and Mi�Mi�� are the
simpli�ed versions of the merges obtained at the end of the i�th and i  ��th executions of step ��e�
respectively� then

� either Mi�� is empty�

� or if Di
min is a D�term with the smallest cardinality among the D�terms of the atoms in Mi�

then all the D�terms Di�� of the atoms in Mi�� satisfy the property that

card�Di
min� � card�Di���� 

��



Proof� Let Ri be the revision obtained at step ��c� and %i be the table obtained at step ��f� of the
i�th execution of the repeat loop� Since the loop is executed an �i ���th time� we know that Mi is
not empty�
Now� observe that if Ak � �Dk� �k
 is an atom inM

i� then all the atoms in the revision Rk of this atom
with %i have the same D�term� namely Dk� Hence� the cardinality of the D�terms with the smallest
cardinality in R��i�� obtained in step ��b�� is the same as that ofMi� namely card�Di

min�� Since� the
simpli�cation step only removes atoms from the set� the same is true for Ri��� i�e� D�terms with the
smallest cardinality in Ri�� still have the cardinality card�Di

min��
Now� consider the merge M��i�� of Ri�� and %i� In case M��i�� is empty� the invariant is automat�
ically maintained� If it is non�empty� we know from the de�nition of the merging step that for all
atoms Ai��� � �Di���t��i���� �i��
 in M��i��� it is true that there exists an atom Ai � �Di� �i
 in
Ri�� that is uni�able with an atom Ai�� � �Di��� �i��
 in %i via mgu � and such that Di � Di���
Thus� card�Di� � card�Di���� Since all the D�terms with the smallest cardinality in Ri�� have the
cardinality card�Di

min�� we have that card�D
i
min� � card�Di� and card�Di

min� � card�Di���� This is
true for all the atoms in M��i�� and since the simpli�cation step only removes atoms fromM��i�� it is
also true for all atoms in Mi��� �

Corollary ��� �Termination of the Table Insertion Algorithm� Let Dmax be a D�term in %
with the biggest cardinality� Then� the insertion of an atom A � �D� �
 into % using the algorithm given
in de�nition �� terminates after at most card�Dmax� executions of the WHILE loop�

Proof� By lemma �� we know that at each execution of the WHILE loop in de�nition ��� the
cardinality of D�terms with the smallest cardinality in M is strictly larger than that of the previous
execution of the body of this loop� Moreover� we know that the D�terms of the atoms obtained in
the revision and the merge steps are either equal to the D�term of the new atom A � �D� �
 or to
the D�term of an atom in %� Hence� card�Dmax� remains constant� Then� if the WHILE loop is
executed card�Dmax��� times� at the end of this set of iterations� all D�terms inM with the smallest
cardinality have cardinality card�Dmax�� At the card�Dmax��th execution of the repeat loop� the
following happens� the revision step doesn�t change the cardinality of the D�terms in M� since there
are no atoms in % with D�terms having cardinality strictly larger than card�Dmax�� and consequently�
the merge is empty� Hence� the WHILE loop is exited� and the algorithm terminates� �

The following examples illustrates the notion of insertion into an MULTI OLDT�table�

Example �� Suppose we consider the MULTI OLDT�table

% � fp�a� b� � �f�� �g� ���
� q � �f�� �g� ���
� r � �f�g� ���
g�

The table that results from the insertion of p�a�X� � �f�� �g� ���
 is

%� � fp�a�X� � �f�� �g� ���
� q � �f�� �g� ���
� r � �f�g� ���
g�

Note that the atom p�a� b� � �f�� �g� ���
 is implied by the universal closure of the atom being inserted�
viz� p�a�X� � �f�� �g� ���
� and hence� p�a� b� � �f�� �g� ���
 is eliminated from the table %�

A slightly more complicated example is the following�

Example �� Suppose we are considering the lattice FOUR� and % � fp � �f�� �g� t
g� and we are
inserting the atom p � �f�g� f 
� The merge of these atoms is p � �f�g��
� The table % before the
execution of the simpli�cation step consists of

% � fp � �f�� �g��
� p � �f�� �g� t
� p � �f�g� f 
g�

��



A minimal subset %� is
%� � fp � �f�� �g��
� p � �f�g� f 
g�

The following example illustrates the execution of the revision and merge steps of the table insertion
routine�

Example �� Let us consider the lattice �N of time points� An atom of the form p � �f�� �g� ft�� t�g

in this lattice can be read as �p is true at time points � and � according to databases � and � jointly�
Now� suppose the table in this example contains the atoms�

% � fp � �f�g� ft�� t�g
� p � �f�g� ft�� t�g
� p � �f�g� ftg
� p � �f�� �� �g� ft�g
� p � �f�� �� �� �g� ft�� t�g
g�

and the atom p � �f�� �g� ft�g
 is being inserted into %� The following operations take place�

� Step �� M is set to fp � �f�� �g� ft�g
g�

� Step ��a�b�� The atom p � �f�� �g� ft�g
 is revised according to atoms p � �f�g� ft�� t�g
 and
p � �f�g� ft�� t�g
 in % to give p � �f�� �g�t�ft�g� ft�� t�g� ft�� t�g�
 � p � �f�� �g� �ft�� t�� t�g
� R is
set to fp � �f�� �g� �ft�� t�� t�g
g�

� Step ��c�d�� M is set to fp � �f�� �� �g� ft�� t�� t�� t�g
� p � �f�� �� �� �g� ft�� t�� t�� t�g
g� % is set to
% � R�

� Step ��a�b�� R is set to the revision of all atoms inM� i�e� R� fp � �f�� �� �g� ft�� t�� t�� t�� tg
� p �
�f�� �� �� �g� ft�� t�� t�� t�� t�� tg
g�

� Step ��c�d��M is set to fp � �f�� �� �� �g� ft�� t�� t�� t�� t�� tg
g� % is set to % � R�

� Step ��a�d�� R is set to fp � �f�� �� �� �g� ft�� t�� t�� t�� t�� tg
g andM is set to the empty set� % is
set to % � R

� Step �� The table before simpli�cation contains the atoms

% � f p � �f�g� ft�� t�g
� p � �f�g� ft�� t�g
� p � �f�g� ftg
� p � �f�� �� �g� ft�g
�

p � �f�� �� �� �g� ft�g
� p � �f�� �g� �ft�� t�� t�g
�

p � �f�� �� �g� ft�� t�� t�� t�� tg
� p � �f�� �� �� �g� ft�� t�� t�� t�� t�� tg
g�

This table is simpli�ed to give the �nal table

%� � f p � �f�g� ft�� t�g
� p � �f�g� ft�� t�g
� p � �f�g� ftg
� p � �f�� �g� ft�� t�� t�g
�

p � �f�� �� �g� ft�� t�� t�� t�� tg
� p � �f�� �� �� �g� ft�� t�� t�� t�� t�� tg
g�

�

Lemma � �Soundness of Table Insertion� Suppose % is a MULTI OLDT�table� A � �D� �
 an annotated
atom� and I an A�interpretation� Let %� be the table obtained by inserting A � �D� �
 into %� Then� I
A�satis�es all the atoms in %� i� I A�satis�es A � �D� �
 and all the atoms in %�

��



Proof� Suppose I is an A�interpretation that A�satis�es A � �D� �
 and all the atoms in %� If I
A�satis�es all the atoms introduced in the revision and merging steps� then I A�satis�es all the atoms
in %� �the simpli�cation step only reduces the size of the table�� Assume A� � �D�� ��
 is an atom in
% that is uni�able with A � �D� �
 via some substitution � and such that D� � D� Then the atom
A� � �D�t���� ����
 is added to the table� Clearly I A�satis�es both A� � �D� ��
 and A�� � �D�� ���
�
By the de�nition of A�satisfaction� �� � ti�DI�A���i� and ��� � ti�D�I�A����i�� But� D� � D�
hence t���� ���� � ti�DI�A���i� and I A�satis�es A� � �D�t���� ����
� �

It follows from the above lemma� that if A � �D� �
 is true in the table % at a given point in time during
the computation of a query� this annotated atom will continue to be true at all times in the future �
the main di�erence is that A � �D� ��
 may also be known to be true where � � ��� In other words� the
set of consequences of the table is growing monotonically as more time is spent processing a query�

Complexity of Table Insertion� The table insertion procedure �De�nition ��� is a polynomial�time
procedure� To see this we observe that the loop in the table insertion procedure can be executed at
most n times where n is the total number of deductive databases being integrated� Each iteration of
the loop takes polynomial�time as the steps of revision� merging� and simpli�cation� are all polynomial�
time operations� Hence� the overall complexity of table insertion is polynomial�time�

Improving the E�ciency of Table Insertion� The running�time of the table insertion algorithm
given in de�nition �� can be reduced if certain assumptions are made about the MULTI OLDT�table�
Consider MULTI OLDT�tables % that satisfy the following two conditions at all times�

� �Complete information� Whenever there are two atoms A� � �D�� ��
 and A� � �D�� ��
 in the
table that are uni�able via mgu � and such that D� � D� then there must be an atom in % that
subsumes the atom A�� � �D��t����� ����
�

� �No redundant information� At all times the simpli�ed version of the table is the same as the
original table�

These conditions will be referred to as the compactness conditions�

Furthermore� suppose the table is organized in such a way that all the atoms A � �D� �
 having the
same predicate symbol are stored consecutively in non�decreasing order of the cardinality of their
D�terms� In other words� the atoms with singleton sets as D�terms come �rst� then the atoms having
D�terms with two elements and so on� For instance� the table % of Example � can be stored in the
order shown below�

% � f p�X� c� � �f�g� t
� p�f�Y �� Y � � �f�g� f 
� p�a� Y � � �f�g� t
�

p�a� Y � � �f�� �� �g� f 
� p�f�Y �� Y � � �f�� �� �g� t
g�

However storing it in the order

% � f p�f�Y �� Y � � �f�� �� �g� t
� p�f�Y �� Y � � �f�g� f 
� p�a� Y � � �f�g� t
�

p�a� Y � � �f�� �� �g� f 
� p�X� c� � �f�g� t
g�

is not permitted�

Given that the table satis�es the above conditions� the insertion routine for inserting the atom A� �
�D�� ��
 into the table % can be modi�ed as follows�

��



�� Set R to the simpli�ed version of the revision of A� � �D�� ��
 with %�

�� Set % to % � R�

�� FOR i � card�D�� TO card�largest D�term� DO

begin

�a� Find the set %�i	 � fAj � �Dj � �j 
 j Aj � �Dj� �j 
 � %! card�Dj� � ig�

�b� Find the simpli�ed versionM of the merge of R and %�i	�

�c� Set % to % � M�

�d� Set R to R � M�

end

�� Find the simpli�ed version %� of %� set the �nal table to %��

The di�erence between this algorithm and the original insertion algorithm is that this algorithm doesn�t
perform the revision operation in each iteration of the loop � instead� it is performed only once �viz�
in Step � above�� The set R stores the set of new atoms i�e� atoms that were produced as a result
of revision or merge steps� Unlike the previous algorithm� the merge operation is performed with the
set R of new atoms and the atoms in non�decreasing order of the cardinality of their D�terms� As a
result� every atom in the original table will be processed only once� In other words� if the size of the
table storing atoms with the same predicate symbol as A is � then the for loop is executed at most
 times�

The running�time of the simpli�cation step can be further reduced if special data structures are used
to store the atoms in the MULTI OLDT�table� One such arrangement is that atoms having the same D�
terms are arranged according to a secondary key� In other words� if A� � �D� ��
 subsumes A� � �D� ��

then A� � �D� ��
 comes before A� � �D� ��
 in the table� Moreover� A� � �D� ��
 contains links that can
be traversed to reach A� � �D� ��
 and all the other atoms that are subsumed by A� � �D� ��
� One
advantage of such a data structure is that whenever it is determined that the atom being inserted
subsumes an atom B already in the table� then all the atoms that are subsumed by B can be removed
without processing the entire list of such atoms� by simply dereferencing a pointer� More details about
the actual data structures will be given later�

	�� Dynamic MULTI OLDT
Computation

In this section� we will show how deductions may be constructed using the MULTI OLDT�table�

De�nition �� Suppose % is an MULTI OLDT�table and let W be the expression

B� � �Dq�� �qs� 
� � � ��Bm � �Dqm� �qsm 
�

where �Dqi � �qsi 
� � � i � m� are in set expansion form� �Note that every query has a regular repre�
sentation of this form�� Then an MULTI OLDT�child of W w�r�t� % is�

�� any S�resolvent ofW with �the regular representation of� a clause in the amalgamated knowledge
base P � or

��



�� any S�resolvent of W with �the regular representation of� an annotated atom in %�

Note that if we have a �xed MULTI OLDT�table %� then the above de�nition of MULTI OLDT�child asso�
ciates a tree with any query Q� This may accomplished by the following inductive de�nition� the root
of the tree is labeled with the regular representation� Q�� of Q� furthermore� if N is a node in the tree
labeled with a set�annotated query Q�

� and if Q
�
� is an MULTI OLDT�child of Q�

�� then N has a child
labeled with with Q�

�� We call this tree� the static MULTI OLDT tree associated with query Q and table
%�

However� using a �xed� static table is completely antithetical to the concept of OLDT�resolution� The
basic idea of OLDT�resolution is that the table serves as a cache that gets �built up as we attempt
to answer a query� Below� we will de�ne a dynamic variant of the above static tree�

����� De�nition of Dynamic MULTI OLDT
Computation

De�nition � �Dynamic MULTI OLDT Computation� Given a query Q� and an amalgamated
knowledge base� P � a dynamic MULTI OLDT computation associated with Q� denoted DYNP �Q� is
a sequence of distinct� queries Q�

�� Q
�
�� � � � � Q

�
n and a sequence of �not necessarily distinct� tables

%��%�� � � � �%n where�

�� Q�
� is the regular representation of the original query Q�

�� %� � ��

�� Q�
i�� is an MULTI OLDT�child of Qj for some j � i� and

�� %�i�� � %i is Q
�
i�� is an MULTI OLDT�child of Q�

i w�r�t� the table %i using condition ��� of the
de�nition ���

�� If Q�
i�� is an MULTI OLDT�child of Q�

i w�r�t� the table %i using condition ��� of the de�nition ���
then %�i�� is obtained from %i as follows�

�a� If the clause in P with which Q�
i S�resolves has one or more atoms in its body� then

%�i�� � %i�

�b� Otherwise� %�i�� is the obtained as follows�

i� Let T� be the table obtained by inserting �into table %�i �� the annotated atom Ai �
�Di� �i
� where Ai � �Di� �i
 is the head of the clause in P that participated in the S�
resolution step that generated Q�

i�� and � is the unifying substitution used in performing
that resolution�

ii� Consider now� the parent� P � of the atom Aj � �Dsj � �sj 
 occurring in Q
�
i � If there exists

a substitution � such that all the children B � �D�� ��s 
 of the parent are true in T� via
substitution � �i�e�� there exists an atom B� � �D�� ��
 in T� such that B� is an instance
of B�� D� � D� and ��s�� � �� � ��� then insert Pt� to the table T� where Pt is the
twin of P � Repeat Step ��b�ii till either no such substitution exists� or till no parent
exists�

The �nal result of this construction is the table %�i���

�Two set annotated queries are called distinct if they�re not variants of each other�

��



with clause ���

with clause �	�

with clause �
�

with clause ���

with table

EMPTY QUERY

r � �f
g� ff ��g � p � �f
g� ff � t��g �

p � �f
� �g� ff � t��g � p � �f
g� ff � t��g �

p � �f
g� ff � t��g �

q � �f
� �g� ff ��g �

p � �f
� �g� ff ��g � p � �f
g� ff � t��g �

r � �f
g� t

p � �f
g� t

p � �f
g� f 

q � �f�g� t

Figure �� Dynamic MULTI OLDT�computation of � q � �f�� �g� t
�

The following examples show a dynamic computation associated with an amalgamated knowledge base
P and a query�

Example �� Suppose we consider the lattice FOUR� Let P be the very simple program�

p � �f�g� t
 � ���

p � �f�g� f 
 � ���

q � �f�g� t
 � r � �f�g� t
 ! p � �f�� �g��
 ���

r � �f�g� t
 � p � �f�g��
 ���

and let Q be the query� q � �f�� �g� t
� The regular representation ofQ is given by q � COMP��f�� �g� t
��
which is the same as q � �f�� �g� f�� fg
 �� The �gure below shows an example of a dynamic
MULTI OLDT�computation�

We now explain how the �gure shown corresponds to an dynamic MULTI OLDT computation�

�� The regular representation of the original query is q � �f�� �g� ff ��g
� � this resolves with the
regular representation of clause ���� yielding

r � �f�g� ff ��g
 � p � �f�g� ff � t��g
� �

Note that both set�annotated atoms in this S�resolvent have q � �f�� �g� ff ��g
 as their parent� and
this is shown by dotted links in the diagram� Similarly� the �twin of the atom q � �f�� �g� ff ��g


��



is the head of the clause� i�e� q � �f�g� t
� The broken lines with arrows at both ends shown in
the diagram link atoms and their twins� As this resolution did not occur with a program clause
that had an empty body� the table remains empty after the S�resolution step�

�� At this stage� r � �f�g� ff ��g
 � p � �f�g� ff � t��g
� S�resolves with the regular representation
of clause ��� in the program� yielding

p � �f�� �g� ff � t��g
 � p � �f�g� ff � t��g
�

Note that the parent of p � �f�� �g� ff � t��g
 is r � �f�g� ff ��g
� As this resolution did not occur
with a program clause that had an empty body� the table remains empty after the S�resolution
step�

�� p � �f�� �g� ff � t��g
 � p � �f�g� ff � t��g
� now resolves with regular representation of clause ���
yielding

p � �f�� �g� ff ��g
 � p � �f�g� ff � t��g � �

Note that the parent of the set annotated atom p � �f�� �g� ff ��g
 is p � �f�� �g� ff � t��g
� As this
resolution occurs with a program clause that had an empty body� this means that the annotated
atom p � �f�g� t
 gets added to the table� i�e�

% � fp � �f�g� t
g�

�� In the next step� p � �f�� �g� ff ��g
 � p � �f�g� ff � t��g
 � S�resolves with clause ���� yielding
p � �f�g� ff � t��g
�� As this resolution too occurred with a program clause having an empty
body� the annotated atom p � �f�g� f 
 must be inserted into the MULTI OLDT�table� %� As %
already contains the atom p � �f�g� t
 which is not implied by the atom p � �f�g� f 
 being inserted�
these two atoms must be �merged� this leads to the new table

% � fp � �f�g��
g�

Since all the children of p � �f�� �g� ff ��g
 are solved� its twin which is p � �f�g� f 
 should be
inserted into %� Since p � �f�g��
 subsumes p � �f�g� f 
� % remains unchanged� Now� all the
children of p � �f�� �g� ff � t��g
 are solved� and its twin p � �f�g� t
 is inserted into the table�
Since this atom is also subsumed by the atom in %� the table remains the same� At the next
step of the propagation� the twin of the atom r � �f�g� ff ��g
 which is r � �f�g� t
 is inserted to
the table giving�

% � fp � �f�g��
� r � �f�g� t
g�

At the �nal step of the propagation� the atom q � �f�� �g� ff ��g
 is solved� and its twin q � �f�g� t

is added to the table to give the �nal table�

% � fp � �f�g��
� r � �f�g� t
� q � �f�g� t
g�

�� Finally� the set�annotated atom p � �f�g� ff � t��g
 resolves with �the regular representation of�
p � �f�g��
 in the table� yielding the empty query�

��



with clause ���

with clause ���

p � �f
g�T � � V� � q � �f
� �g� ft��g �

p � �f
g�T � � V� �

t � �fmg� �T � � V �� � V� � s � �fmg�T � � V� � r � �f
g�T � � V� �

t � �fmg� �T � � V �� � V� � s � �fmg� �T � � V��� � V� � r � �f
g�T � � V��

t � �fmg� �T � � V �� � V� � s � �fmg� �T � � V��� � V� � r � �f
g�T � � V��

with table

EMPTY QUERY

Step �

Step �

Step �

Step �

�

�

�

t � �fmg�T � � V  �

q � �f
� �g� ft��g is solved as shown in �gure �

Figure �� Dynamic MULTI OLDT�computation of � t � �fmg� V 


The preceding example does not show how the MULTI OLDT�table gets modi�ed when an atom has
more than one children or when atoms contain annotation variables� To illustrate this better� consider
the following example�

Example �	 Consider the amalgamated knowledge base in Example ��� and suppose we add the
following clauses to it�

s � �fmg� V�
 � p � �f�g� V�
 ! q � �f�� �g� t
� ���

t � �fmg� V�
 � s � �fmg� V�
 ! r � �f�g� V�
� ���

Let us now consider the simple query Q �� t � �fmg� V 
� The regular representation of Q is Q� �
t � �fmg� T� � V 
 �� The dynamic MULTI OLDT�computation associated with this query is shown
in Figure � � the twins of the atoms are not shown in the �gure� Let us examine how this query is
processed�

�� Initially� the MULTI OLDT�table is empty� and the root of the dynamic MULTI OLDT�computation
has Q� � t � �fmg� T� � V 
� as its label�

�	



This S�resolves with the clause ���� yielding the S�resolvent�

t � �fmg� �T� � V �� � V�
 � s � �fmg� T� � V�
 � r � �f�g� T� � V�
� �

The three new set�annotated atoms all have t � �fmg� T� � V 
 as their parent �cf� dotted lines
in Figure �� The twin of t � �fmg� T� � V 
 is t � �fmg� V�
� Since the body of clause ��� is not
empty� the table remains empty�

�� In the next step� the atom s � �fmg� T� � V�
 is S�resolved with clause ��� in the program to
give the resolvent�

t � �fmg� �T� � V �� � V�
 � s � �fmg� �T� � V��� � V�
 � r � �f�g� T � � V�
�

p � �f�g� T � � V�
 � q � �f�� �g� ft��g
 �

The three new atoms p � �f�g� T � � V�
� q � �f�� �g� ft��g
 and s � �fmg� �T� � V��� � V�
 all
have s � �fmg� T� � V�
 as their parent� The twin of s � �fmg� T� � V�
 is s � �fmg� V�
� Again�
the table % remains empty�

�� At this stage� q � �f�� �g� ft��g
 is chosen and it is processed as shown in Figure � and the table
at the end of this process is as follows�

% � fp � �f�g��
� q � �f�g� t
� r � �f�g� t
g�

�� �Propagation Step� Since one of the atoms in the query at step � is solved� the propagation of
the result starts from this point� Consider the substitution �� � fV� � �� V� � V�g� The atom
�p � �f�g� T � � V�
�� is true in %� and the atom �s � �fmg� �T� � V��� � V�
��� � s � �fmg� �

is a tautology� hence all the children of s � �fmg� T� � V�
 are solved via substitution �� Hence�
the twin of �s � �fmg� T� � V�
��� which is �s � �fmg� V�
��� � s � �fmg��
 is inserted into %
giving�

% � fp � �f�g��
� q � �f�� �g� t
� r � �f�g� t
� s � �fmg��
g�

The propagation continues� Since an atom in the query at step � is solved� its parent should be
checked� Now� consider the substitution �� � fV� � V � tg� This satis�es all the children of
t � �fmg� �T � � V �
 since the atoms �r � �f�g� T � � V�
��� � r � �f�g� ff ��g
 and �s � �fmg� T � �
V�
��� � s � �fmg� ff ��g
 are both true in % and the atom �t � �fmg� �T � � V �� � V�
���
� t � �fmg� �
 is a tautology� Hence� the twin of �t � �fmg� T� � V 
��� which is the atom
t � �fmg� t
 is inserted into % to give the table�

% � fp � �f�g��
� q � �f�� �g� t
� r � �f�g� t
� s � �fmg��
� t � �fmg� t
g�

�� Finally� the original query is resolved with the atom t � �fmg� t
 in % via substitution fV � tg
to give the empty clause�

����� Soundness and Completeness of Dynamic MULTI OLDT
Computation

We are now in a position to establish the soundness and completeness of dynamic MULTI OLDT�
computations�

��



Theorem � �Soundness and Completeness of Dynamic MULTI OLDT
Computation� Suppose
P is an amalgamated knowledge base and Q is a query� Then�

�� If Q�
�� � � � � Q

�
n and %�� � � � �%n is a dynamic MULTI OLDT computation associated with Q� and if

A � �D� �
 is in %n� then P j� A � �D� �
�

�� Suppose C � �A� � �D�� ��
 ! � � �!Ak � �Dk� �k
�� If P j� ��C� for some substitution �� then
there exists a dynamic MULTI OLDT computation associated with Q �� C� and a table %j in
this MULTI OLDT�computation such that for all � � i � k� either �i� � � or there exists an atom
A�i � �D

�
i� �

�
i
 � %j such that A

�
i � �D

�
i� �

�
i
 subsumes Ai� � �Di� �i�
�

Proof� ��� By induction on n�
Base Case �n � ��� A � �D� �
 � %� means � � � which means that A � �D� �
 is a tautology in the
logic� and so P j� A � �D� �
�
Inductive Case �n � m ��� In this case� by the induction hypothesis� all atoms A � �D� �
 � %m are
logical consequences of P � Qm�� is obtained in one of two ways�

�� The �rst possibility is that Qm�� is the S�resolvent of an atom A� � �D�� ��
 � %n and Qj�j � n�
on an atom A� � �D�� ��s
 via mgu �� In this case� no atoms are added to the table as a result of
the resolution� But� if it is the case that ���s��� � ����� � �� then the parents of A� � �D�� ��s

has to be checked� For this we will prove the soundness of propagation in item � below�

�� The second possibility is that Qm�� is obtained by S�resolving a clause C with Qj�j � n� on
an atom A� � �D�� ��s
 via mgu �� If the body of the clause C is non�empty� then no atoms are
added to the table� Otherwise� suppose C � A� � �D�� ��
 �� Then this atom is added to the
table� Clearly P j� A� � �D�� ��
� Now� the propagation step starts�

�� �Soundness of propagation� Suppose A � �D� �s
 is an atom in Qk �k � m� and suppose its twin
is the atom At � �Dt� �t
� The children of this atom are Ai � �Di� T � � �i
�� � i � m� and
A� � �D� �s�� � �t
 for some mgu �� Clearly� At � �Dt� �t
� A� � �D�� ��
 ! � � �!Am � �Dm� �m

is an instance of a clause C in P � hence P j� C� Now� suppose there exists a substitution � such
that all the children �Ai � �Di� T � � �i
�� and �A� � �D� ��s� � ���
�� of A � �D� �
 are true in
%n� In this case� �At � �Dt� �t
�� is added to %n��� By the de�nition of an atom being true in the
table� there must be an atom A�i � �D

�
i� �

�
i
 � %n such that Ai� is an instance of A

�
i� D

�
i � Di and

�T � � �i��� � ��i � �� By the induction hypothesis P j� A�i � �D
�
i� �

�
i
� Thus� P j� Ai� � �Di� �

�
i
�

Since �T � � �i��� � ��i � �� then �i� � ��i is a solution to this equation� this implies that
P j� Ai� � �Di� �i�
� Thus� all the atoms in the body of C are logical consequences of P and the
same is true for the head of C� i�e� P j� �At � �Dt� �t
���

��� Clearly� every MULTI OLDT�resolution corresponds to an S�deduction� By de�nition of dynamic
MULTI OLDT�computations� an annotated atom is placed in the corresponding MULTI OLDT table as
soon as it is solved� Hence by the completeness of S�resolution� if P is an amalgamated knowledge
base having the �xpoint reachability property and if P j� �Ai � �Di� �i
��� then either �i� � � or
there exists an S�refutation for the atom A�i � �D

�
i� �

�
i
 where A

�
i � �D

�
i� �

�
i
 subsumes �Ai � �Di� �i
���

In the �rst case� the statement of the theorem is proven automatically� In the second case� the atom
A�i � �D

�
i� �

�
i
 will be placed in the MULTI OLDT�table� �

��



����� Termination Properties of Dynamic MULTI OLDT
Computations

In the de�nition of dynamic MULTI OLDT�computations� the sequence of queries and the sequence of
tables is �nite� Conceptually� there is no reason these sequences cannot be in�nite �though compu�
tational considerations bene�t from �niteness�� Suppose P is an amalgamated knowledge base� Q
is a query and DYNP �Q� is a dynamic MULTI OLDT�computation associated with Q of the distinct se�
quence of queries Q�

�� Q
�
�� � � � � Q

�
n and the sequence of MULTI OLDT tables %��%�� � � � �%n� An in�nitary

extension of DYNP �Q� is any in�nite sequence of queries Q
�
�� Q

�
�� � � � � Q

�
n� Q

�
n��� � � � and any sequence

of MULTI OLDT�tables %��%�� � � � �%n�%n��� � � � having Q�
�� Q

�
�� � � � � Q

�
n and %��%�� � � � �%n� respectively�

as pre�xes� These sequences satisfy all the same conditions as MULTI OLDT�tables � the only di�er�
ence is that they are in�nite� We would like to ensure that such computations do not arise when an
interpreter attempts to construct dynamic MULTI OLDT�computations� We now de�ne conditions on
MULTI OLDT�computations that will allow in�nite computations to be eliminated�

De�nition �� �Finitary Dynamic MULTI OLDT
Computation� Suppose P is an amalgamated
knowledge base� Q is a query and DYNP �Q� is a dynamic MULTI OLDT�computation associated with Q
of the distinct sequence of queries Q�

�� Q
�
�� � � � � Q

�
n and the sequence of MULTI OLDT tables %��%�� � � � �%n

Then� DYNP �Q� is said to be �nitary i� whenever an atom A � �D� �s
 in query Q
�
i � i � n is S�resolved

with a clause C in the program to give Q�
j � i � j � n it is the case that�

�� �Subsumption Rule� neither A � �D� �s
 nor any of the parents of A � �D� �s
 are entailed by any
of the children of A � �D� �s
�

�� �Irredundancy Rule� there is no other query in the above sequence of queries that was obtained
from Q�

i by S�resolving on atom A � �D� �s
 with clause C in the program� and

�� �Halting Rule� if Q�
i is the empty query� then i � n�

De�nition �� �Sub
Computations� Suppose P is an amalgamated knowledge base� Q is a query�
��Q�

�� Q
�
�� � � � � Q

�
n� Q

�
n��� � � ��� �%��%�� � � � �%n�%n��� � � ��
 is an in�nite MULTI OLDT�computation of Q

w�r�t� P � Any MULTI OLDT�computation

��Q�
�
��� Q

�
�
��� � � � � Q

�
�
m��� �%

�
��%

�
�� � � � �%

�
m�


where

�� Q�
� � Q�

�
��� and

�� %� � %
�
�� and

�� each Q�
�
i� � Q�

j for some � � i � j�

is said to be a subcomputation of the in�nite MULTI OLDT�computation given above�

The following result shows that given any atom A � �D� �
 that is true in a table associated with an
in�nitary MULTI OLDT�computation� there is an equivalent subcomputation�

Lemma 	 Suppose P is an amalgamated knowledge base that has no function symbols �logical and
annotation�� Suppose Q is a query� Then� for every in�nite MULTI OLDT�computation�

C � ��Q�
�� Q

�
�� � � � � Q

�
n� Q

�
n��� � � ��� �%��%�� � � � �%n�%n��� � � ��


��



of Q w�r�t� P � there exists a �nitary MULTI OLDT�subcomputation

C� � ��Q�
�
��� Q

�
�
��� � � � � Q

�
�
m��� �%

�
��%

�
�� � � � �%

�
m�


of C such that if A � �D� �
 is entailed by an atom in
S�
i�� %i� then A � �D� �
 is entailed by an atom in

%�m�

Proof� As there are no annotation functions and Datalog function symbols� only �nitely many anno�
tated atoms �upto renaming of variables� that can be generated in C� Thus� there exists an integer i
such that %i implies A � �D� �
 i�

S�
j�� %j implies A � �D� �
� �

By the above lemma� under the syntactic restrictions of the lemma� all MULTI OLDT�computations can
be made ��nitary� The space of MULTI OLDT�computations associated with a query may be viewed
as a �nitely branching tree� all of whose paths are MULTI OLDT�computations� As each path can� by
the above lemma� be �truncated at a �nite level� this means that this tree is �nite� Hence� there
exists a search procedure that searches this space �the well�known A� algorithm ���
 can be used� with
guaranteed termination�

	�� Implementation of MULTI OLDT Resolution

��	�� Overview

Two di�erent data structures are needed for the implementation of dynamic MULTI OLDT�computations�
a table and a list of queries� These structures will be referred to as TABLE and QUERY� respectively�
The technical report version of this paper ��
 contains a detailed description of these data structures�
as well as pseudo�code to manipulate these data structures� All these data structures and algorithms
have been implemented by Kullman ���
 �with minor modi�cations��

There are a couple of di�erences between the mathematical model of dynamic MULTI OLDT�computations
and the real data structures used to implement them� In the implementation� QUERY is just a list of
atoms� In contrast� in the mathematical model� an atom in a query contained pointers to its parent�
its children� and its twin �when applicable�� This information will not be stored in the QUERY data
structure� Instead� this information will be encapsulated within the TABLE data structure� Jointly�
the TABLE and QUERY data structures will contain the same information present in the mathematical
framework given in the preceding section�

Recall that dynamic MULTI OLDT�computations consists of a sequence Q�
�� � � � � Q

�
n of queries and a list

%�� � � � �%n of MULTI OLDT tables� At step n� the TABLE data structure contains all the atoms in %n
and the QUERY data structure will contain all the atoms in Q�

� through Q
�
n� Since the queries in the

sequence may have some atoms in common� duplication will thus be eliminated� As the sequence of
queries is #attened to a single query� links are established in the TABLE to indicate the relative positions
of atoms in QUERY�

In contrast to the queries in dynamic MULTI OLDT�computations� the atoms in QUERY are atoms of the
form A � �D� V 
 � note that a query of the form A � �D� �
 can be viewed as� �Find a value V such
that A � �D� V 
 is true and where V is greater than or equal to the desired value� ��

TABLE is a linked list of records� Each record in the list contains information about an atom in QUERY�
Hence� if A � �D� V 
 is an atom in QUERY� then the TABLE record R corresponding to this atom contains
links to the parent� the children and the twin of A � �D� V 
� R also has a �eld that stores the list of

��



substitutions �for both ordinary and annotation variables� � such that A� � �D� ��
 is in %n� The table
insertion routine will update this �eld only�

��	�� Description of Data Structures

In this section� we brie#y describe data structures to implement the dynamic MULTI OLDT�computations
described above�

The QUERY Data Structure� As explained in section ���� every resolution step results in a new
maximization problem in the annotation term� Consider the situation when the query A � �D� T � �
T�
� is S�resolved with the clause A � �D� T�
�� to give the resolvent A � �D� �T � � T��� � T�
� As
explained in section ���� the maximal truth value of T� that causes the annotation term in the above
resolvent to evaluate to � is T� � T�� Suppose now that the above resolvent is further resolved with
the clause A � �D� T�
 �� The new resolvent is A � �D� �T � � T��� � T�� � T�
 and the maximum
truth value of T� that causes the annotation term to evaluate to the � is T� � T� t T��

As we can see from the above example� there is no need to explicitly store the set�annotations pro�
duced during intermediate levels of resolution� Instead� only the current maximal truth value of the
annotation term �there is always a unique solution to the corresponding maximization problem by
theorem �� and the unifying substitution for this term need to be saved� If the annotation term T� in
the original query had been ground �T� � ���� then it can be replaced with an annotation variable�
V�� The query A � �D� T � � ��
 � will be solved when the current maximal truth value� ���� of V��
exceeds ��� �If �� � ��� then �T � � ���� � ��� � ��� Note that annotation functions are only allowed
in the heads of clauses� hence T� can only be a variable or a constant�

If the annotation term T� above is a variable V� then initially V��s truth value is unknown� hence its
maximal �current� truth value is �� Whenever V��s value changes� this change should be re#ected to
T� since T� � V�� In case T� is a complex function of the form f�V�� � � � � Vm� and initially the values
of V�� � � � � Vm are all unknown� then the initial truth value of T� is T� � f��� � � � ���� This value is
updated every time the value of one of Vi� � � i � m changes�

Hence� only the atoms A � �D� V 
 are stored in QUERY� whereas details such as the name of the anno�
tation variable� its truth value if it is ground or the address of the code implementing the annotation
function� are stored in the TABLE� Finally� when the atom A � �D� T � � V�
 � is S�resolved with
another clause A � �D�� V �

�
 �� the maximum truth value of V� is set to lub of T �� and the current
maximum truth value of V� by lemma ��

The TABLE Data Structure� The TABLE data structure is a linked collection of records� Each record
contains information about an atom A � �D� V 
 in the query� This information can be categorized as
follows�

� Information about the annotation term V � If V was a variable substituted for a ground term ��
then the value of � is stored� Otherwise a status bit indicating that V was non�ground is set�

� Information about the position of the atom in the query sequence� A link is set to the parent
of this atom� and all the children of the same atom are placed next to each other in the table�
This way� all the children of an atom will constitute a block of atoms in TABLE having the same
parent link�
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� Information about the twin of an atom� Note that twins are obtained when an S�resolution is
performed� After an S�resolution� the children of A � �D� V 
 are placed consecutively in the
table� Then� an additional record for the twin of A � �D� V 
 is added to the end of the block
containing the records for the children of A � �D� V 
� If the twin �the head of a clause� contains
an annotation function� the address of the code implementing this function is also placed in this
additional record�

� Information about the current instances of A � �D� V 
 that have been proven to be true� This �eld
is stored as a list of substitutions�

Suppose C is a clause in the amalgamated knowledge base� Then� the head of C may contain an
annotation function of the form f�V�� � � � � Vm�� In this case� the following assumptions are made about
C�

� All of Vi� � � i � m are variables only�

� There is no nesting amongst the function symbols in f�V�� � � � � Vm��

� Every variable occurs only once in the term�

� All the variables in f�V�� � � � � Vm� occur at least once in one of the atoms in the body of C�

� The atoms in the body of C is arranged so that all the atoms with the annotation variable V�
comes �rst� then those with V� and so on�

There is no loss of generality in the above assumptions � for instance� the annotation term f�V�� � � � � h�Vm��
which contains nested functions can be replaced by another term f�V�� � � � �W � where W � f�Vm��

The Interruptability of MULTI OLDT
Computations� At any given stage during an MULTI OLDT�
computation� the user may wish to halt processing and examine the MULTI OLDT�table� As the infor�
mation in the MULTI OLDT�table is monotonically improving �i�e� the set of annotated atoms entailed
by the table increases as more and more time is spent processing the query�� this means that the user
can halt processing when he needs to� and do the best he can with the answers obtained thus far �if
he has no further time to continue processing��

The reader who is interested in details of the algorithms manipulating the QUERY and TABLE data
structures may read the technical report for the required pseudo�code ��
� They implement the al�
gorithms described in Section ��� using the TABLE and QUERY data structures described above� The
pseudo�code has also been implemented by Kullman in Germany ���
�

� Related Work

A great deal of work has been done in multidatabase systems and interoperable database systems����
��� ��
� However� most of this work combines standard relational databases �no deductive capabilities��
Not much has been done on the development of a semantic foundation for such databases� The work
of Grant et� al� ���
 is an exception� the authors develop a calculus and an algebra for integrating
information from multiple databases� This calculus extends the standard relational calculus� Further
work specialized to handle inter�operability of multidatabases is critically needed� However� our paper
addresses a di�erent topic � that of integrating multiple deductive databases containing �possibly�
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inconsistencies� uncertainty� non�monotonic negation� and possibly even temporal information� Zicari
et� al ���
 describe how interoperability may be achieved between a rule�based system �deductive
DB� and an object�oriented database using special import�export primitives� No formal theory is
developed in ���
� Perhaps closer to our goal is that of Whang et� al� ���
 who argue that Prolog
is a suitable framework for schema integration� In fact� the approach of Whang et� al� is in the
same spirit as that of metalogic programming discussed earlier� Whang et� al� do not give a formal
semantics for multi�databases containing inconsistency and�or uncertainty and�or non�monotonicity
and�or temporal information�

Baral et� al� ��� �
 have developed algorithms for combining di�erent logic databases which generalizes
the update strategy by giving priorities to some updates �when appropriate� and as well as not giving
priorities to updates �which corresponds to combining two theories without any preferences�� Com�
bining two theories corresponds� roughly� to �nding maximally consistent subsets �also called #ocks by
Fagin et� al� ���� ��
�� As we have shown in ���
� our framework can express maximal consistency as
well� ��� �
 do not develop a formal model�theoretic treatment of combining multiple knowledge bases�
whereas our method does provide such a model theory� ��� �
 are unable to handle non�monotonicity
�in terms of stable�well�founded semantics�� nor uncertainty� nor time�stamped information � our
framework is able to do so�

Dubois� Lang and Prade ���
� also suggest that formulas in knowledge bases can be annotated with�
for each source� a lower bound of a degree of certainty associated with that source� The spirit behind
their approach is similar to ours� though interest is restricted to the ��� �
 lattice� the stable and well�
founded semantics are not addressed� and amalgamation theorems are not studied� However� for the
��� �
 case� their framework is a bit richer than ours when nonmonotonic negations are absent�

In ���
� Fitting generalizes results in ���� �
� to obtain a well�founded semantics for bilattice�based logic
programs� We have given a detailed comparison of our declarative framework with Fitting�s in ���
�

Our work builds upon work by Lu� Murray and Rosenthal ���
 who have independently developed a
framework for query processing in GAPs� As stated by Leach and Lu ���
� the work of ���
 applies to
not just the Horn�clause fragment of annotated logic �which is the case in our work�� but to the full
blown logic� However� ���
 does not deal with annotation variables and annotation functions � our
results apply to those cases as well� Finally� our development of MULTI OLDT�resolution is new�

Warren and his co�workers ���� 	
 have studied OLDT�resolution for ordinary logic programs �both
with�and without nonmonotonic forms of negation�� In this paper� we have dealt only with the
monotonic case� and have focused on ��� how truth value estimates of atoms can be monotonically
improved as computation proceeds and how this monotonic improvement corresponds to solving certain
kinds of incremental optimization problems over a lattice domain� ��� how OLDT tables must be
organized so as to e�ciently support such computations� As shown by Warren ���
� OLDT�resolution
is closely related to magic set computations� and hence� our work enjoys the same relationships with
magic sets discussed in ���
�

� Conclusions

Wiederhold has proposed mediators as a framework within which multiple databases may be inte�
grated� In the �rst of this series of papers ���
� it has been shown that certain forms of annotated logic
provide a simple language within which mediators can be expressed� In particular� it was shown that

��



the semantics of �local databases can be viewed as embeddings within the semantics of amalgamated
databases�

In ���
� we did not develop an operational theory for query processing in amalgamated KBs� In
this paper� we have provided a framework for implementing such a query processing paradigm� This
framework supports�

� incremental� approximate query processing in the sense that truth value estimates for certain
atomic queries will increase as we continue processing the query� Thus if a user �or a machine�
wishes to interrupt the processing� then at least an approximate estimate will be obtained�based
on which a knowledge based system may take some actions�

� reuse of previous computations using the table data structure�s�� In particular� we have speci�
�ed access paradigms for updating answers� i�e� �substitution� truth�value� pairs as processing
continues�

In future work� we will extend the above paradigm to handle non�monotonic modes of negation� The
work being described here is being implemented as part of system called HERMES �Heterogeneous
Reasoning and Mediator System� that allows not only for the integration of multiple databases� but
also multiple data structures� software packages� and reasoning paradigms ���
�
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Appendix A	 Proofs of Results on S�Resolution

Proof of Theorem �� Suppose C� is the regular representation of a clause and Q� is a set annotated
query as speci�ed in De�nition � and �� Let � be the mgu of A� and Bi�

Suppose I S�satis�es C� and Q�
k and �Q

�
k���� is a ground instance of �Q

�
k���� Since Q

�
k�� and C

���

must be ground and I j�S Q�
k�I j�

S C� it must be the case that I j�S Q�
k�� and I j�

S C���� We need
to show that I S�satis�es �Q�

k���� Since I S�satis�es Q
�
k��� it must S�satisfy one of the amalgamated

atoms Bj � �Dqj � �qsj 
��� There are two cases to consider�

� Case �� �j �� i� In this case� �Bj � �Dqj � �qsj 
��� occurs in �Q
�
k���� and I S�satis�es this atom

in �Q�
k����� and therefore satis�es the resolvent�

� Case �� �j � i� In this case� I must S�satisfy Bi � ��Dqi� �qsi 
��� in Q�
k��� Since I S�satis�es

C���� there are two cases to consider�

� Case ���� I falsi�es the body of C���� Then� there must be at least one atom �Ak � �Dk��
�k
��� that is not S�satis�ed in I � Let �I � td�Dk

I�A����d�� Since �I �� �k � it must be
the case that� �I � �T n �k�� Then� �Ak � �Dk� T � � �k 
��� must be S�satis�ed in I � Since
this atom occurs in �Q�

k����� I satis�es �Q
�
k����

� Case ���� I S�satis�es both the body and the head of the clause C���� Then� by the
de�nition of S�satisfaction there exists a truth value �

�

�� �� such that I A�satis�es
�A� � �D�� �

�


���� Then� since D� � Dqi� I must A�satisfy an annotation �Bi � �Dqi � �
��


���
such that� �

��

	 �
�

	 �� This implies that� �
��

�� � and this annotation occurs in the
resolvent� Therefore� I S�satis�es the resolvent� �

The proof of the Completeness Theorem �Theorem �� for S�resolution needs several intermediate
theorems that are stated below�

Theorem � �Ground Completeness of S
resolution� Suppose Q is the ground query � A �
�D� �
� P j� A � �D� �
� and that P possesses the �xpoint reachability property� Then� there is an
unrestricted S�refutation of �� Q�� from P ��
�An unrestricted refutation does not require the uni�er used at each deduction step to be the most
general uni�er��

Proof� As P satis�es the �xpoint reachability property� we know that AQ � k satis�es A � �D� �

for some k � 	� We proceed by induction on k�
Base case �k � �� According to the de�nition of AQ� there exist ground instances

A � �D�� ��
 �

A � �D�� ��
 �

� � �

A � �Dm� �m
 �

of a �nite set of clauses

A� � �D
�

�� �
�

�
 �

��



A� � �D
�

�� �
�

�
 �

� � �

Am � �D
�

m� �
�

m
 �

in P � m 	 �� such that tf��� � � � � �mg 	 � and
S
��j�mDj � D� Note that for all � � i � m� there is

a substitution �i� such that Ai�i � A� �D
�

i� �
�

i
� � �Di� �i
� By the de�nition of regular representation�
P � contains ground instances

A � �D��� ��
 �

A � �D��� ��
 �

� � �

A � �Dm�� �m
 �

of unit clauses

A� � �D
�

��� �
�

�
 �

A� � �D
�

��� �
�

�
 �

� � �

Am � �D
�

m�� �
�

m
 �

and �� Q�� � A � �D� T � � �
 �� Since for all � � i � m� Di � D� �� Q�� resolves with all
Ai � �Di�� �i
� It follows that there is an S�refutation

hA � �D� T � � �
�� A � �D��� ��
�� ��i�
hA � �D� T � � � � �� ���
���� A � �D��� ��
�� ��i �
� � � �
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We must show that the last query evaluates to �� Let �lub � tf��� � � � � �mg� Since �lub 	 �� we
have � �lub �� �� hence � �lub � �T n � �� � �� Then� it su�ces to show that ����i�m � �i� �� �lub�
For all �k � ����i�m � �i�� we have that �k 	 �j for all j� Since �lub is the smallest such truth value�
we must have �k 	 �lub and therefore �k �� �lub�

Inductive Case �k � �� By the de�nition of AQ� there exist ground instances C���� � � � � Cm�m of the
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in P �m 	 � such that tf��� � � � � �mg 	 ��
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 and there is a substitution �i� such that Ai�i � A� �D
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the de�nition of regular expression� P � contains ground instances C�
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By the inductive hypothesis� there is an S�refutation Ri of

Bi
� � �D

i
�� T � � �i�
! � � �!Bi

ki
� �Di
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� T � � �iki 
�

for all � � i � m� By the same argument above� �T n � �� � ���i�m � �i � �� Therefore� �� Q��

has an unrestricted S�refutation as follows�

hA � �D� T � � �
�� C�
i � �ii�

� � � �

hA � �D� �T n � �� � ���i�m � �i � �
�����i�
R�� � � � � Rm�
h�����i� �

The completeness of S�resolution may now be established from the ground completeness result using
standard techniques�

Lemma � �Mgu Lemma� Suppose there is an unrestricted S�refutation �� Q��� from an amalga�
mated knowledge base P � Then there is an S�refutation of �� Q�� from P � �

Lemma � �Lifting Lemma� Suppose there is an S�refutation of �� Q��� from an amalgamated
knowledge base P � Then there is an S�refutation of �� Q�� from P � �

The completeness of S�resolution is an immediate consequence of the ground completeness theorem
and Mgu lemma�
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