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Optimal resource utilization is one of the most general “meta”-settings in operations research: many hard 

optimization problems can be casted as problems of optimal resource utilization. Additional challenges 

are introduced by uncertainties; the difficulties are further multiplied in a dynamic context. This project 

has considered a class of discrete and combinatorial optimal resource utilization problems under 

uncertainties that arise in the context of the optimal stopping problems. In addition, as a generalization of 

traditional stochastic formulations that optimize the expected payoff or cost, we considered risk averse 

discrete and combinatorial optimization problems, where the risk of the stopping decision was estimated 

using a coherent or convex risk measure. In particular, we developed a special class of certainty 

equivalent (CE) measures of risk that can be represented via solution of a specially formulated 

(stochastic) optimization problem. A number of solution techniques for discrete and combinatorial 

problems involving CE measures have been developed, including exact methods based on polyhedral 

approximations, branch-and-bound and branch-and-cut algorithms, scenario decomposition techniques, 

and combinatorial branch-and-bound methods for risk-averse combinatorial optimization problems. 

Particularly, the developed class of certainty equivalent (CE) measures of risk allows builds upon a new 

representation for coherent and convex measures of risk that expresses the risk measure in the form of 

infimal convolution of some kernel function, and, importantly, formalizes a key idea that measure of risk 

is a solution of a stochastic programming problem. One of the key properties of this new representation is 

that it admits incorporation in stochastic programming problems in the form of convex constraints. By 

selecting the kernel function in this representation in the form of the certainty equivalent, a well-known 

construct in utility theory and decision making under uncertainty, we constructed a family of CE convex 

nonlinear measures of risk, which allow for direct incorporation of decision-makers preferences, as 

expressed by his/her utility function, into downside risk measure, and also encompass a number of 

existing in literature risk measure, such as Conditional-Value-at-Risk, Higher-Moment Coherent Risk 

measures, etc. The corresponding results are presented in [2].  

Implementation of the developed measures of risk in decision making problem under uncertainties leads 

to mathematical programming problems with a specific set of constraints. A number of computational 

methods for solving such problems were developed in the course of the project. In particular, we 

considered special cases of CE measures, corresponding to the choice of the utility function in the form of 

a power function and an exponential function. In the case of power utility function, the corresponding 

certainty equivalent measures of risk reduce to higher-moment coherent measures of risk, which are 

implementable in stochastic programming problems via p-order cone constraints. p-Order cones represent 

a generalization of well-known second-order cones, but unlike the latter, they are not self-dual, which 
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precludes development of fast, long-step self-dual interior point method algorithms for solving p-cone 

programming problems. To this end, we developed solution methods based on polyhedral approximations 

of p-order cones and subsequent decomposition of the obtained approximating linear programming (LP) 

problems.  It has been shown that the developed method allows one to formulate an exact solution method 

for p-cone programming problems, with iteration complexity that is on par with state-of-the-art first-order 

methods for second-order programming problems. The corresponding results are subsequently used in 

exact branch-and-bound algorithm for discrete and combinatorial p-cone programming problems. The 

utilization of polyhedral approximations of p-cones at each node of the branch-and-bound tree allows for 

taking advantage of “warm-start” capabilities of linear programming solvers, and subsequently reduces 

solution time by orders of magnitude, compared to branch-and-bound schemes based on solving the 

nonlinear relaxation of integer p-order programming problem at each branch-and-bound node [4]. A 

separate research thrust was dedicated to development of branch-and-cut techniques for integer p-order 

cone programming. In this context, mixed-integer rounding cuts and lifted cuts were developed in [6]. A 

scenario decomposition technique for solving large-scale stochastic programming problems with risk 

measures represented in the form of infimal convolution, including certainty equivalent measures of risk, 

was proposed in [1]. Importantly, this method has been proven to terminate in a number of iterations that 

does not exceed the number of scenarios, a significant advantage over decomposition methods based on 

supporting hyperplane representations, where number of iterations could be exponential in the size of the 

scenario set. In [11], a number of methods for handling a special class of nonlinear convex constraints 

were proposed as a generalization of earlier developed techniques for p-order cone programming 

problems.  

The developed models and solution approaches were applied to problems of data mining and machine 

learning [8], identification or robust and risk-averse structures in graphs and combinatorial structures [5, 

7, 9, 12, 13]. In papers that consider risk-averse combinatorial problems, a number of combinatorial 

branch-and-bound algorithms were developed that incorporated solving a stochastic programming 

problem at each node of combinatorial branch-and-bound tree so as to obtain a bound on the risk of 

combinatorial substructure corresponding to the branch-and-bound node.  
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Identifying resilient structures in stochastic networks:
A two-stage stochastic optimization approach

Maciej Rysz1 Pavlo Krokhmal2� Eduardo L. Pasiliao3

1National Research Council, AFRL
Eglin AFB, FL 32542

2Department of Mechanical and Industrial Engineering,
University of Iowa, 3131 Seamans Center, Iowa City, IA 52242

3Air Force Research Lab, 101 West Eglin Blvd, Eglin AFB, FL 32542

Abstract

We propose a two-stage stochastic programming framework for designing or identifying “re-
silient”, or “repairable” structures in graphs whose topology may undergo a stochastic transforma-
tion. The repairability of a subgraph satisfying a given property is defined in terms of a budget
constraint, which allows for a prescribed number of vertices to be added to or removed from the
subgraph so as to restore its structural properties after the observation of random changes to the
graph’s set of edges. A two-stage stochastic programming model is formulated and is shown to be
NP-complete for a broad range of graph-theoretical properties that the resilient subgraph is required
to satisfy. A general combinatorial branch-and-bound algorithm is developed, and its computational
performance is illustrated on the example of two-stage stochastic maximum clique problem.

Keywords: Maximum subgraph problem, two-stage stochastic optimization, combinatorial branch-
and-bound algorithm, stochastic maximum clique problem.

1 Introduction and motivation

An important feature to incorporate in a networked system’s design is an inherent resilience to withstand
random structural changes that affect the relationship characteristics between its components. A reliable
system should, therefore, possess a high tolerance against a broad range of possible (failure) scenarios,
and, moreover, be constructed in such a way that its properties can be restored within available resource
limits.

In the present study we pursue an approach that regards a distributed subsystem, or subgraph, to be
resilient if it can be “repaired” at a minimum (or fixed) cost after a random change in the underlying

�Corresponding author, e-mail: krokhmal@engineering.uiowa.edu.
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graph’s topology. More specifically, many graph-theoretical and network optimization problems consist
in finding a subgraph with prescribed properties that has the largest (respectively, smallest) size, weight,
etc. Well-known examples include the shortest path problem, maximum clique/independent set problem,
minimum vertex cover problem, and so on. In situations when the topology of the underlying graph
or network may be subject to changes (e.g., deletions of vertices and/or edges), the “resilience” of the
selected subgraph is often of interest. A large body of literature has been accumulated on this subject,
where various interpretations of “reliability”, “resilience”, or “robustness” of subgraphs have been ex-
plored (see, among others [11, 13, 22, 25, 28]). Typically, robustness in this context is associated with
the ability of the selected subgraph to satisfy (exactly or to a certain degree) a given property, or perform
a given function, etc., after deletion of edges and/or vertices. Several examples include network flow
control, preservation of vertex and edge connectivity, maximization of overall algebraic connectivity,
and prevention of catastrophic cascade failures [6–8, 13].

In this work we adopt the point of view that a structure in a network or graph is “resilient” if it is
“repairable” with respect to randomized changes in the graph’s topology. Namely, we consider the
following general framework: assume that the given graph G D .V;E/ may undergo a randomized
change in the future, resulting in G0 D .V;E 0/, where E 0 is generally not a subset of E. Then, it is of
interest to identify vertex subsets S; S 0 � V such that the induced subgraphs GŒS� and G0ŒS 0� satisfy a
prescribed property …, with additional requirements:

(i) the difference between sets S and S 0 is within a prescribed boundM , i.e., jS nS 0j C jS 0 nS j �M ;

(ii) the size of S and the expected size of S 0 should be as large as possible.

In other words, the problem is to identify such a set S thatGŒS� has property… and is as large as possible
under the condition that, after a random change to the graph’s set of edges, the set S may be modified
or “repaired” to form a set S 0, such that G0ŒS 0� satisfies … and the expected size of S 0 is also as large as
possible.

The described framework has obvious interpretations in, for example, the defense domain, where one
may be interested in identifying the largest networked or distributed system that can maintain its structure
– with, perhaps, necessary repairs – under adversarial attacks.

Mathematically, the described framework lends itself naturally to the context of two-stage stochastic
optimization [5, 19], which models decision making process in the presence of uncertainties that involves
two sequential decisions. The first-stage decision is made before the actual realization of uncertain
factors can be observed. The second-stage, or recourse decision is made upon observing the realization of
uncertainties, and takes into account both the preceding first-stage decision and the observed realization
of stochastic parameters.

Stochastic recourse problems have gained much attention in the network literature due to their versatility
for modeling uncertainties. Particular emphasis has been placed on network problems with random
elements evidenced in forms that influence the overall flow distribution, demands, and costs. A number
of applications examine stochastic factors in the context of vehicle routing and network flow problems
where uncertainties are attributed to arc capacities or node demands (see e.g., [3, 9, 14, 15, 27]). Several
similar considerations utilized a two-stage recourse framework to enhance the design of stochastic supply
chain networks and network resource allocation [10, 24]. Other studies examined the preservation of
connections between vertices when the edge costs are uncertain [7, 16], as well as decision making in
routing problems with stochastic edge failures [26].

2
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Although uncertainty in the aforementioned studies mostly influenced decisions related to directed
flows and routing, less focus has been put on developing two-stage recourse constructs for design-
ing/identifying graphs that are adept at maintaining their connection properties in situations when ran-
dom factors affect/alter/damage their original physical characteristics. A notable non-recourse problem
of finding the largest subset of vertices that form a clique with a specified probability, given that edges
in the graph can fail with some probabilities, was studied in [17]. A similar approach in application
to certain clique relaxations was pursued in [31]. In this work, we introduce a two-stage stochastic re-
course framework for identifying “sustainable” subgraphs whose structural properties are influenced by
definite edge failures and/or construction in each random scenario realization. The proposed model is
general and in principle can be adapted to address a broad range of structural graph properties, along
with uncertainties in the form of vertex failures.

The remainder of the article is organized as follows. In Section 2 we discuss the deterministic graph-
theoretic underpinnings and establish a mathematical programming representation of the two-stage
stochastic recourse maximum subgraph problem. Section 3 presents an efficient graph-based (combina-
torial) branch-and-bound solution algorithm for instances when the desired subgraphs possess hereditary
structural properties. Finally, Section 5 considers a numerical case study demonstrating the effective-
ness of the proposed algorithm for solving two-stage stochastic recourse maximum clique (i.e., complete
graph) problems.

2 Problem definition

In this section we present a formal graph-theoretical description of the discussed framework. Before
introducing the stochastic model that represents the focus of the present work, we outline the relevant
deterministic concepts, which pertain to problems involving identification of the largest subgraph/subset
of a system’s vertices that collectively possess a specified structural property.

2.1 Deterministic maximum subgraph problem

LetG D .V;E/ represent an undirected graph where each vertex i 2 V is a component of the networked
system, and an edge .i; j / 2 E defines a connection/relation between vertices i and j . Then, the problem
of finding the largest (sub)graph S � V of vertices with a prescribed structural property …, also known
as the maximum subgraph problem, or maximum … problem, is given by

max
S�V

˚
jS j W GŒS� 3 …

	
; (1)

where GŒS� denotes the subgraph of G induced by S , i.e., a graph such that any of its vertices i; j are
connected by an edge if and only if .i; j / is an edge in graphG. Here and throughout the text the relation
GŒS� 3 … stands for “GŒS� satisfies property …” (we also say that S is a …-subgraph of G); similarly,
GŒS� 3= … represents a converse statement.

In the context of the maximum subgraph problem (1), an important class of graph-theoretical properties
… is represented by properties that are hereditary with respect to induced subgraphs (or just hereditary
for short). Namely,… is called hereditary with respect to induced subgraphs if for any graph that satisfies
…, removal of any vertex from this graph results in an induced subgraph that also satisfies … [1, 4,
30]. The class of hereditary properties encompasses many well-known and important graph-theoretical
properties, such as completeness, independence, planarity, and so on.

3
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The practical and theoretical significance of the class of hereditary properties in relation to the maximum
subgraph problem (1) stems from the fact that a large number of important and difficult graph-theoretical
problems are special cases of (1) when … is hereditary and “meaningful” in some sense. Namely, … is
called nontrivial if it is satisfied by a single-vertex graph yet not satisfied by every graph, and is called
interesting if the order of graphs satisfying … is unbounded [30]. Then, the following fundamental
observation regarding problem (1) holds:

Theorem 1 (Yannakakis [30]) If property … is hereditary with respect to induced subgraphs, nontriv-
ial, and interesting, then the maximum subgraph problem (1) is NP-complete.

In many practical applications, the topology of graph G in the maximum subgraph problem (1) may not
always be assumed constant, and is subject to unpredictable, or stochastic changes (e.g., edge and/or
vertex failures). Once graph G is assumed to be stochastic, however, formulation (1) becomes ill-posed,
since it does not provide a guarantee or conditions under which the selected subgraph GŒS� satisfies the
sought property…. Therefore, in the presence of uncertainties formulation (1) of the maximum subgraph
problem has to be modified so as to explicitly specify the conditions under which its solution can be
considered a …-subgraph of (stochastic) graph G. One common approach in the literature is to require
that the solution of an optimization problem with stochastic data satisfies the required properties with
a prescribed probability; an application of this approach to a maximum clique problem on stochastic
graphs was considered in [17]. In the present endeavor, we require that the solution of the maximum
subgraph problem on a stochastic graph is “repairable” in some sense.

2.2 A two-stage stochastic maximum subgraph problem

Here we introduce an approach for determining “resilient” maximum …-subgraphs in situations when
the topology of the underlying graphG may be subject to uncertain (random) future changes that is based
on two-stage stochastic programming and which was tentatively outlined in Section 1.

Given a probability space .�;F ;P /, where� is the set of random events, F is the sigma-algebra, and P
is the probability measure, we assume that the topology of a graph G D .V;E/ may undergo a random
transformation at some moment in the future, resulting in an updated graph G.!/ D .V;E.!//, ! 2 �.
In this work, it is assumed for simplicity that only the set of edges E D E.!/ may be dependent on the
random event !, while the set of vertices V is constant. As it will be seen next, the proposed formulation
and solution method can be generalized to account for possibility of a stochastic set V .

Traditionally to stochastic programming literature, it is assumed that the set � is finite, � D

f!1; : : : ; !N g, such that P .!k/ D pk > 0 for k D 1; : : : ; N , and
P

k pk D 1. Consequently,
the possible changes to the topology of graph G are observed in the form of N discrete scenar-
ios fG.!1/; : : : ; G.!N /g, where G.!k/ D .V;E.!k//. For notational convenience, we will denote
Gk D G.!k/, Ek D E.!k/; also, to emphasize that the original graph G represents the unchanged, or
“null” state of a distributed system, we denote G0 D G D .V;E0/, where E0 D E represents the initial
set of edges in the graph.

Characterization of “resilient” substructures in graphs subjected to randomized topology changes via the
formalism of two-stage stochastic programming is the key feature of the proposed approach. In general,

4
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a two-stage stochastic programming model may be presented in the form

min f1.x/C Ef2.x; y.!/; !/
s. t. h1.x/ � 0;

h2.x; y.!/; !/ � 0; 8! 2 �:
(2)

Here x represents the first-stage decision/action that is made before the actual realization of the uncertain
event ! can be observed. Associated with the first-stage decision are the first-stage cost f1.x/ and the
first-stage constraints h1.x/ � 0 that the vector x has to satisfy. Since the first-stage decision x may
not be optimal for every given possible realization of !, a recourse, or second-stage corrective decision
y D y.!/ is made after the actual realization of ! has been observed, so as to minimize some second-
stage cost f2.x; y.!/; !/. Importantly, the second-stage decision must also satisfy specific second-stage
constraints h2.x; y.!/; !/ � 0 for any given first-stage x. Note that the second-stage decision depends
explicitly on the specific realization of ! as well as on the first-stage decision x. In turn, the first-stage
decision must take into account all possible realizations of the random element ! and the corresponding
subsequent recourse decisions y.!/. This interdependency is emphasized by the following “nested”, or
recourse representation of the (extensive) form of two-stage stochastic programming formulation (2):

min
˚
f1.x/C EQ.x; !/ W h1.x/ � 0

	
; (3a)

where Q is the second-stage function that represents the optimal second-stage cost given the first-stage
vector x and the observed realization !:

Q.x; !/ D min
˚
f2.x; y.!/; !/ W h2.x; y.!/; !/ � 0

	
: (3b)

According to the above, the following two-stage framework is adopted for identification of “resilient”
…-subgraphs in G0:

– Given a graph G0 D .V;E0/, find a set of vertices S0 � V such that the induced subgraph G0ŒS0�

satisfies … (“first stage”).

– Graph G0 undergoes a randomized change of topology. It is assumed that the resulting graph
Gk D .V;Ek/ is chosen at random with probability pk from a collection of graphs fG1; : : : ; GN g

(“observation of uncertainty”).

– For any given realization Gk , select sets �C
k
� V n S0 and ��

k
� S0, such that after “augmenta-

tion” or “repair” of the original set S0 the resulting set Sk ,

Sk WD .S0 n�
�
k / [�

C

k
;

induces a subgraph GkŒSk� on Gk that satisfies … (“second, or recourse stage”).

– Sets S0 and �˙
k

must be chosen in such way that the expected size of …-subgraph in the first and
second stages is maximized, and sets �˙

k
contain no more than M vertices,

j�C
k
j C j��k j �M: (4)

5
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Then, the two-stage stochastic maximum subgraph (TSMS) problem can be stated in the graph-theoretical
formulation as follows:

max jS0j C

X
k2N

pkjSkj (5a)

s. t. GkŒSk� 3 …; 8k 2 f0g [N (5b)

jS0 n Skj C jSk n S0j �M; 8k 2 N (5c)

Sk � V; 8k 2 f0g [N ; (5d)

where N D f1; : : : ; N g. Obviously, the defined above delta-sets �˙
k

are related to the second-stage sets
Sk as

�C
k
D Sk n S0; ��k D S0 n Sk; k 2 N :

The above extended formulation of the two-stage stochastic programming problem can be presented in
the recourse form similar to (3):

max
S0�V

�
jS0j C

X
k2N

pkQk.S0/ W G0ŒS0� 3 …

�
; (6a)

where the second-stage function Qk has the form

Qk.S/ D max
Sk�V

˚
jSkj W GkŒSk� 3 …; jS n Skj C jSk n S j �M

	
: (6b)

Complexity of the two-stage stochastic maximum subgraph problem (5)–(6) is established in the next
two propositions. For this, consider the decision version of the two-stage stochastic maximum sub-
graph problem (5)–(6), denoted as h.G0; : : : ; GN /; .p1; : : : ; pN /;M; qi: given a set of N C 1 graphs
G0; : : : ; GN such that V.G0/ D : : : D V.GN /, a set of positive rational numbers p1; : : : ; pN such that
p1 C : : : C pN D 1, an integer M � 0, and a rational q � 0, determine whether graphs Gi contain
…-subgraphs Si such that jS0 nSi jC jSi nS0j �M for all i D 1; : : : ; N , and jS0jC

PN
iD1 pkjSkj � q.

Similarly, the decision version of the maximum subgraph problem, denoted as hG;mi, is as follows:
given a graph G and a nonnegative integer m, determine whether G contains a …-subgraph S such that
jS j � m.

Proposition 1 The decision version of the two-stage stochastic maximum subgraph problem (5) is NP-
complete, provided that the corresponding maximum subgraph problem is NP-complete.

Proof: Noting that the two-stage stochastic maximum subgraph problem is obviously in NP , we prove
its NP-completeness by reduction from the maximum subgraph problem. Given an instance hG;mi of
the maximum subgraph problem, let G�i D G for i D 0; : : : ; N , select arbitrary rational p�i > 0 such
that p�1 C : : : C p

�
N D 1, an arbitrary integer M � � 0, and let q� D 2m. Then, a collection of sets

S�0 D : : : D S�N � V.G
�
i /, i D 0; : : : ; N , satisfies the condition jS�0 n S

�
i j C jS

�
i n S

�
0 j � M

�, and,
moreover, satisfies jS�0 j C

PN
iD1 p

�
i jS
�
i j � mCm D q

� if and only if there exists S � V.G/ of order
jS j � m. �

Next, we observe that for any given first-stage solution, “repairing” it in the second stage via solving
the second-stage problem (6b) is NP-complete as well. To this end, the corresponding decision version

6
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hGk; S;M; qi of second-stage maximum subgraph problem is formulated as follows: given a second-
stage graph Gk , a first-stage solution S � V.G0/ D V.Gk/, and integer numbers M � 0 and q � 0,
determine if a …-subgraph Sk � V.Gk/ of order at least q exists such that jS n Skj C jSk n S j � M .
Then, the next observation holds.

Proposition 2 The decision version of the second-stage maximum subgraph problem problem (6b) at
any scenario k 2 N is NP-complete if property … is such that the maximum subgraph problem is
NP-complete.

Proof: First, note that the second-stage maximum subgraph problem is in NP . Next, observe that the
order of the…-subgraph ofGk that satisfies the budget constraint jS nSkjCjSk nS j �M cannot exceed
min fjS j CM; jV jg. Then, for a given instance of the maximum subgraph problem hG;mi, construct an
instance hG�

k
; S�;M �; q�i of second-stage maximum subgraph problem with G�

k
D G, S� D fig for

a fixed i 2 V.G/, M � D m � 1, and q� D m. The order of the largest …-subgraph S�
k

of thusly
constructed instance hG�

k
; S�;M �; q�i of second-stage maximum subgraph problem is always less than

or equal to m according to the above observation; moreover, it is equal to m if and only if there exists a
…-subgraph of G of order m that contains vertex i . Therefore, the question of whether a graph G has a
…-subgraph withm vertices can be answered by solving no more than jV.G/j instances hG; fig; m�1;mi
of second-stage problem as described above. �

Note that while the introduced model assumes a common property … for the subgraphs selected during
both decision stages, possible extensions may include distinct properties at each stage. Further, the
model may be enhanced by imposing nonuniform cost structures associated with selecting, adding and
removing the vertices; or by introducing different budgetary restrictions in different scenarios.

3 A combinatorial branch-and-bound solution technique for the two-
stage stochastic maximum subgraph problem

In this section we introduce an exact graph-based, or combinatorial branch-and-bound (BnB) algorithm
for solving problem (5)–(6). We emphasize, however, that the computational efficiency of the proposed
method – as with all BnB schemes – depends to a great extent on the specific branching and bounding
criteria used for processing of the search space with respect to a particular property …. An illustration
of the proposed procedure is furnished in Section 5 for the case when … represents the completeness
property of a subgraph.

The proposed technique for solving the two-stage stochastic maximum subgraph problem relies on the
recourse representation (6a)–(6b) and employs “nested” BnB algorithms for construction of first- and
second-stage …-subgraphs, respectively, that satisfy the interrelationships imposed by the budgetary re-
pair constraints (5c). Namely, a first-stage BnB procedure identifies first-stage subgraphs in G0 that
satisfy property … while an embedded second-stage BnB is used to determine the largest possible asso-
ciated … subgraphs in G1; : : : ; GN that can be supported within the repair budget after changes to the
original graph G0 occur. Both algorithms work by navigating between levels of the respective BnB trees
until the subgraphs of G0 and Gk , k D 1; : : : ; N , that maximize the objective of (5)–(6) are found.

For convenience of notation, it is assumed that S0 and Sk , k 2 N , represent feasible solutions (sub-
graphs) during all but the last iterations of the respective BnB algorithms, upon which they coincides
with the optimal solution(s) to problem (6).

7
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3.1 First stage branch-and-bound algorithm

The first-stage BnB algorithm begins at level ` D 0 with a partial solution S0 WD ;, and a partial and
global lower bounds on the objective value of problem (6a), Z WD �1 and Z� WD �1, respectively.
Throughout the algorithm the partial solution S0 contains the vertices in V such that G0ŒS0� satisfies
property ….

At the current node of the BnB tree, level ` is associated with the candidate set C` of vertices from
which any single vertex can be added to the partial solution S0 without violating property …. Branching
is conducted by removing a branching vertex q from C` and adding it to the partial solution S0. The
algorithm is initialized with C0 WD V , and once a vertex q is selected, the candidate set at level `C 1 is
constructed by eliminating all the vertices from C` whose inclusion in S0 would violate the property …:

C`C1 WD
˚
i 2 C` W G0ŒS0 [ i � 3 …

	
: (7)

As it will be readily seen next, the operation of constructing candidate set C`C1 from the preceding
candidate set C` constitutes one of the basic steps of the algorithm, and the computational cost of this
step can affect significantly the computational performance of the solution method. In this regard, a
major question is whether one can efficiently verify property … for any given subgraph. The associated
decision problem is a follows: given a subgraph S , determine whether S satisfies property…, or whether
some fraction of the representation of S can be modified in order for S to satisfy property …. In the
latter case it is said that S is �-far from satisfying property …, where � corresponds to the fraction of
modifications that need to be made. With respect to hereditary properties, a substantial body of literature
was accumulated in recent years to address this question. For example, Alon and Shapira [2] showed that
every hereditary property is testable with one-sided error. Further, several characterizations of hereditary
properties have been proposed [12]. As described above, a property … is said to be node-hereditary if
it is closed under taking induced subgraphs of G, and is subgraph-hereditary if it is closed under taking
subgraphs ofG. A property is minor-hereditary if any graph minor1 S of graphG satisfies…. In a series
of seminal studies [20, 21], Robertson and Seymour established the graph minor theorem which, among
others, predicated polynomial time identification of hereditary properties closed under graph minors.

In what follows, we implicitly assume that the property … of a graph can be tested in polynomial time.

Bounding2 of the partial subgraph S0 involves determining the quality of the solution that can be obtained
by further exploring the vertices in C`C1. Observe that the most opportune realization of uncertainties is
such that the structure of edges sets Ek , k 2 N , would preserve the property … of S0 in each graph Gk;
and – provided that sufficiently many favorable edge modifications occur – the budgetM can exclusively
be used to add new vertices from set V nS0 to subgraph S0. In other words, under “ideal” circumstances
a second-stage solution of size minfjS0j C M; jV jg is obtained in any given scenario k 2 N . For a
given S � V.G/, let �….GŒS�/ represent an upper bound on the size of the largest possible …-subgraph
contained in the induced graph GŒS�, where subscript … indicates that the properties and computation
of this bound depend explicitly on …. Then, min

˚
�….G0ŒS0 [ C`C1�/CM; jV j

	
represents an upper

bound on the potential contribution of the recourse action, whence the left-hand-side of the expression

�…

�
G0ŒS0 [ C`C1�

�
Cmin

˚
�….G0ŒS0 [ C`C1�/CM; jV j

	
� Z� (8)

1A graph S is a minor of G if edge contractions can be performed of a subgraph of G to obtain S .
2The specific mechanisms of both branching and bounding should be selected according to the subgraph property … under

consideration.
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provides a “best-case” objective value for problem (6a) with respect to the current partial solution S0

and candidate set C`C1. Inequality (8) determines whether the algorithm branches further or backtracks,
namely, if (8) is violated, the algorithm proceeds to solve the second-stage recourse problems (6b) for all
k 2 N , otherwise the algorithm backtracks.

In general, the modified sets of edges Ek , k 2 N , will not preserve the property… of S0 as described. A
significant drawback of condition (8) is therefore its disregard for structural variations between G0 and
Gk , particularly relative to how well solution S0 and the vertices in candidate set C`C1 will “perform”
in any given scenario realization k 2 N . It is therefore of interest to introduce several feasibility and
reparability conditions towards improving condition (8) in the context posed by the following question:
given a current first-stage solution S0 and corresponding candidate set C`C1, what is the minimum
number of modifications that must be made to S0 in any second-stage scenario k 2 N in order to
ascertain property …?

One possibility is to perform the feasiblity test furnished by the next proposition prior to solvingQk.S0/

for k 2 N .

Proposition 3 For a given scenario k 2 N , let S .k/
0 represent a subset of S0 that induces a…-subgraph

in GkŒS0�. If the following condition is satisfied,

jS0j � max
S

.k/
0 �S0

nˇ̌
S

.k/
0

ˇ̌
W Gk

�
S

.k/
0

�
3 …

o
> M; (9)

then subgraph S0 is an infeasible (irreparable) first-stage solution to problem (5)–(6).

Proof: Recall that the induced subgraph G0ŒS0� has property … by construction. Clearly, since the
vertices remain fixed between the decision stages, the largest possible set of vertices S .k/

0 such that
Gk

�
S

.k/
0

�
3 … is no larger than jS0j (i.e., S .k/

0 � S0). Hence, the left-hand-side of expression (9)
represents the smallest number ��

k
of vertices that must be removed from S0 in order to obtain a subset

S
.k/
0 that induces a subgraph Gk

�
S

.k/
0

�
with property … under scenario k 2 N . This immediately

implies that if condition (9) holds for any k 2 N , the budget constraint in (6b) cannot be satisfied. �

Finding the maximum subset S .k/
0 that induces a…-subgraph inGkŒS0� by solving a problem of type (1)

for each scenario k 2 N in expression (9) is clearly computationally infeasible. Instead, we utilize the
fact that jS0j � �….GkŒS0�/ �

ˇ̌
S

.k/
0

ˇ̌
, and employ a more efficient condition by replacing the second

term in expression (9) by �….GkŒS0�/,

jS0j � �….GkŒS0�/ > M: (10)

Obviously, condition (9) is satisfied whenever (10) holds. Assuming that subgraph S0 is deemed feasible
under the current assumptions, the left-hand-side of (10) represents an approximation of the minimum
number of vertices that must be removed from S0 under scenario k 2 N .

By a similar argument, it is possible to determine the number of vertices that will have to be removed
from subgraph S0 in the second stage if a vertex i 2 C`C1 is added to S0 in the first stage.

Corollary 1 If inequality (9) is satisfied in scenario k 2 N , then vertex i 2 C`C1 can be removed from
C`C1 if the condition

jS0 [ i j � max
S

.k/

i
�S0[i

nˇ̌
S

.k/
i

ˇ̌
W Gk

�
S

.k/
i

�
3 …

o
> M; (11)
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holds for some …-subgraph S .k/
i in the induced subgraph GkŒS0 [ i �.

An analogous approximation to that of (10) is then obtained,

jS0 [ i j � �….GkŒS0 [ i �/ > M: (12)

All vertices i 2 C`C1 that satisfy (12) are removed prior to computing �….G0ŒS0[C`C1�/; the resulting
“refined” candidate set

C 0`C1 WD
˚
i 2 C`C1 W jS0 [ i j � �….GkŒS0 [ i �/ �M; 8k 2 N

	
;

produces a more conservative estimate �….G0ŒS0 [ C`C1�/ in (8). To simplify the notation, it will
hereafter be assumed that C`C1 denotes the refined candidate set C 0

`C1
.

In the case when inequality (10) is violated at all scenarios k 2 N , then prior to solving problems
Qk.S0/, k D 1; : : : ; N , the following bounding condition for the objective value of problem (6a) is
verified at the current node of the BnB tree:

�….G0ŒS0 [ C`C1�/C
X
k2N

pk min
˚
�….GkŒS0 [ C`C1�/CMk; jV j

	
� Z�; (13)

where Mk DM � .jS0j � �….GkŒS0�//, k 2 N , represent reduced budgets obtained from (10).

If inequality (13) is violated, then there are two possibilities that can arise with respect to the second-
stage problems (6b). First, the second-stage problem (6b) may be infeasible for some k, given the
current solution S0. Then, the corresponding second-stage function Qk.S0/ and the respective recourse
function E! ŒQ.S0/� D

P
k2N pkQk.S0/ assume value of �1. In this case, vertex q is removed from

S0 and the next branching vertex is selected from the candidate set if C` ¤ ;. An illustration of such
a case is given in Figure 1. Alternatively, all second stage problems are feasible and functions Qk.S0/,
k D 1; : : : ; N , are finite, whence the current objective value associated with problem (6a) is updated as
Z D jS0j C

P
k2N pkQk.S0/; the global lower bound Z� is replaced by Z if Z� < Z . Then, if the

candidate set is non-empty, C`C1 ¤ ;, the algorithm selects a branching vertex q from the next level
` C 1. The branching vertex q at level ` is stored as q` for backtracking purposes. Alternatively, if
C`C1 D ;, the algorithm backtracks by removing vertex q from S0.

Whenever condition (13) is satisfied, there is no possibility of achieving an improvement over the global
lower bound Z� by exploring further levels of the BnB tree; vertex q is removed from S0. If C` D ;, the
algorithm backtracks to level `� 1 by removing from S0 the most recent branching vertex that was used
at level `�1, namely vertex q`�1. The described first-stage BnB procedure is formalized in Algorithm 1.

3.2 Second-stage branch-and-bound algorithm

The BnB algorithm for solving the second-stage problem Qk.S0/, k 2 N , identifies the largest sub-
graph S�

k
� V.Gk/ with property … that satisfies the budget constraint (5c). As in the first-stage BnB

technique, it navigates the levels of the (second-stage) BnB tree by exploring branching vertices from
candidate sets that individually satisfy the property… with respect to the partial solution Sk . The bound-
ing procedure of the second-stage algorithm pertains to eliminating unfavorable search space relative to
the budgetary restriction M . Namely, the subgraph selected in the second stage must be feasible with
respect to the first-stage partial solution S0 in the sense that the number of added and removed vertices
from S0 in scenario k do not exceed the budget M .
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Algorithm 1: First stage combinatorial BnB method

1 Initialize: ` WD 0I C0 WD V I S0 WD ;I Z D Z� D �1I M 2 ZC;
2 while ` � 0 do
3 if C` ¤ ; then
4 select a vertex q 2 C`;
5 C` WD C` n q;
6 S0 WD S0 [ q;
7 for k 2 N do
8 if jS0j � �….GkŒS0�/ > M then
9 S0 WD S0 n q;

10 goto Step 3
11 else
12 Mk WDM � .jS0j � �….GkŒS0�//

13 C`C1 WD fi 2 C` W G0ŒS0 [ i � 3 …g;
14 C`C1 WD fi 2 C`C1 W jS0 [ i j � �….GkŒS0 [ i �/ �M; 8k 2 N g;
15 if �….G0ŒS0 [ C`C1�/C

P
k2N pk min

˚
�….GkŒS0 [ C`C1�/CMk; jV j

	
> Z� then

16 for k 2 N do
17 compute Qk.S0/;
18 if Qk.S0/ D �1 then
19 S0 WD S0 n q;
20 goto Step 3;
21 else
22 Z WD jS0j C

P
k2N pkQk.S0/;

23 if Z > Z� then
24 Z� WD Z;

25 if C`C1 ¤ ; then
26 q` WD q

27 ` WD `C 1;
28 else
29 S0 WD S0 n q;

30 else
31 S0 WD S0 n q

32 else
33 S0 WD S0 n q`�1;
34 ` WD ` � 1;

35 return Z�;
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Figure 1: An example with three scenarios demonstrating the reparability of subgraph S0 with a repair budget M D 2 and
property… representing completeness. Black vertices represent those belonging to a complete subgraph. Observe that solution
S0 is feasible (repairable) with respect to scenarios !1 and !2, but is infeasible (not repairable) with respect to scenario !3.
Scenario !2 also illustrates that the subgraphs in the first or second second stages need not be maximal.

The algorithm begins by selecting a branching vertex q from the candidate set C k
`

; initially C k
0 WD V .

Due to the fact that adding and removing vertices from S0 imposes a budgetary penalty, the natural
tendency is to maintain as similar of a structure as possible in the second stage. Noting that vertices
common to C k

`
and the solution S0 do not utilize the budget M , a vertex q 2 fS0 \ C

k
`
g is always

selected first if fS0 \ C
k
`
g ¤ ;. Once q is added to the second-stage partial solution Sk , the candidate

set at the next level C k
`C1

is constructed by removing all the vertices from C k
`

whose inclusion in Sk

would violate property ….

Given the first- and second-stage partial solutions S0 and Sk , respectively, the left-hand-side of con-
straint (5c) can easily be computed so that ı D jS0 nSkjCjSk nS0j. Observe that the number of vertices
in C k

`C1
that could preserve or reduce the value of ı at consecutive levels of the BnB tree is given by

 D jS0 \ C
k
`C1
j. Several bounding consideration emerge as a result.

The following conditions are possible when ı �  �M :

(C1) If ı �M , then (5c) is satisfied via vertices in Sk , and Sk replaces S�
k

if jSkj > jS
�
k
j. In cases when

ı D M and  > 0, a branching vertex q 2 fS0 \ C
k
`C1
g is selected and the algorithm branches to

level ` WD `C 1. On the other hand, if  D 0, adding more vertices to Sk will violate (5c); thus,
the algorithm backtracks by removing the most recent branching vertex q from Sk . If ı < M and
C k

`C1
¤ ;, the algorithm always branches.

(C2) If ı > M , the partial solution Sk is infeasible with respect to (5c). However, the set fS0 \ C
k
`C1
g

necessarily contains a sufficient number of vertices to (potentially) satisfy M at deeper levels of
the BnB tree, i.e.,  � ı �M . The algorithm branches accordingly.

In cases when ı �  > M , restriction (5c) cannot be satisfied by exploring the vertices in C k
`C1

, and,
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therefore, the algorithm backtracks as before.

Algorithm 2 outlines the described solution technique for the second-stage problem Qk.S0/, k 2 N .
Notice that enhancing the branching and/or bounding scheme is possible by applying structural consid-
erations relative to property …. However, in an effort to maintain a purely budgetary-based solution
procedure that is independent of graph-structural properties, this notion is reserved for future investiga-
tions.

Algorithm 2: Second stage combinatorial BnB method for computing Qk.S0/

1 Input: GkI S0I

2 Initialize: ` WD 0I C k
0 WD V I Sk WD ;I S

�
k
WD ;;

3 while ` � 0 do
4 if C k

`
¤ ; then

5 if jS0 \ C
k
`
j ¤ ; then

6 select a vertex q 2 fS0 \ C
k
`
gI

7 else
8 select a vertex q 2 C k

`
I

9 C k
`
WD C k

`
n q;

10 Sk WD Sk [ q;
11 C k

`C1
WD fi 2 C k

`
W GkŒi [ Sk� satisfies …g;

12 ı WD jS0 n Skj C jSk n S0j;
13  WD jS0 \ C

k
`C1
j;

14 if ı �  �M then
15 if ı DM and  D 0 then
16 if jSkj > jS

�
k
j then

17 S�
k
WD Sk;

18 Sk WD Sk n q;
19 else
20 q` WD q;
21 ` WD `C 1;
22 if ı �M and jSkj > jS

�
k
j then

23 S�
k
WD Sk;

24 else
25 Sk WD Sk n q;

26 else
27 Sk WD Sk n q`�1;
28 ` WD ` � 1;

29 return Qk.S0/ WD jS
�
k
j;
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4 A mathematical programming formulation of the TSMS problem

A mathematical programming formulation of the maximum subgraph problem (1) can be obtained by,
for example, defining a binary vector x 2 f0; 1gjV j that indicates whether vertex i 2 V belongs to the
sought subset S (i.e., xi D 1 if i 2 S and xi D 0 otherwise), and expressing the property … in the form
of “structural” constraints………G.x/ � 0, such that these constraints are satisfied for a given x if and only
if GŒS� satisfies …, where S D fi 2 V W xi D 1g:

max
n
1>x W………G.x/ � 0; x 2 f0; 1gjV j

o
: (14)

Here 1 denotes the vector of ones of an appropriate dimension. The corresponding 0-1 integer program-
ming formulation of TSMS problem (5) then takes the form

max 1>xC
X
k2N

pk1>yk (15a)

s. t. ………G0
.x/ � 0 (15b)

………Gk
.yk/ � 0; 8k 2 N (15c)

kx � ykk1 �M; 8k 2 N (15d)

x; yk 2 f0; 1g
jV j; 8k 2 N ; (15e)

where the vector x denotes the first-stage decision variables, and the second-stage variables yk are defined
for any fixed k 2 N as yki D 1 if i 2 Sk and yki D 0 otherwise. Constraints (15d) impose the
previously described budgetary restrictions. In correspondence to (6), the above extensive formulation
of the TSMS problem can be equivalently presented in recourse form:

max 1>xC
X
k2N

pkQk.x/ (16a)

s. t. ………G0
.x/ � 0 (16b)

x 2 f0; 1gjV j; (16c)

where the second-stage function is given by

Qk.x/ D max 1>yk (17a)

s. t. ………Gk
.yk/ � 0 (17b)

kx � ykk1 �M (17c)

yk 2 f0; 1g
jV j: (17d)

We next consider a particular instance of the TSMS problem when the property … defines a clique.

5 Two-stage stochastic maximum clique problem

As an illustrative example of the general TSMS problem and the proposed solution approaches, in this
section we consider the two-stage maximum clique problem, a special case of the TSMS problem (5)
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when the property … represents completeness. Then, the graph-theoretical formulation of the two-stage
stochastic maximum clique problem takes the form

max jS0j C

X
k2N

pkjSkj (18a)

s. t. fSk � V W 8i; j 2 Sk; .i; j / 2 Ekg; 8k 2 f0g [N (18b)

jS0 n Skj C jSk n S0j �M; 8k 2 N (18c)

Sk � V; 8k 2 f0g [N : (18d)

The corresponding mathematical programming formulation that we use in this work employs the well-
known edge formulation [18] of the structural constraints that guarantee completeness of the selected
subgraph, namely˚

z 2 f0; 1gjV j W………G.z/ � 0
	
D
˚
z 2 f0; 1gjV j W ´i C j́ � 1 for all .i; j / 2 E

	
;

where E represents the set of edges of the complement of graph G, i.e., .i; j / 2 E , .i; j / … E for
any i; j 2 V . Then, the two-stage stochastic maximum clique problem admits the following 0-1 integer
programming from:

max
X
i2V

xi C

X
k2N

pk

 X
i2V

yik

!
(19a)

s. t. xi C xj � 1; 8.i; j / 2 E (19b)

yik C yjk � 1; 8.i; j / 2 Ek; k 2 N (19c)X
i2V

jxi � yikj �M; 8k 2 N (19d)

xi ; yik 2 f0; 1g; 8i 2 V; k 2 N : (19e)

Formulation (19) can be solved with appropriate integer programming solvers.

The property-specific techniques for finding cliques in all types of graphs via Algorithms 1–2 are de-
scribed next.

5.1 Candidate set generation, branching and bounding techniques

When property … defines a clique, a number of efficient techniques has been developed in literature that
can be utilized for candidate set generation, branching, and bounding. For example, the candidate sets
can be efficiently generated and updated an intersection of neighboring vertices common to the clique
elements. Constructing candidate set (7) is performed by pairwise testing any vertex j 2 S0 against a
vertex i 2 C`, and removing the vertices from C` that are not adjacent to subgraph S0, i.e.,

C`C1 WD fi 2 C` W .i; j / 2 E0;8j 2 S0g:

A refinement criterion with respect to the second-stage graph scenarios as described by Corollary 1 is
furnished by the next proposition.
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Proposition 4 Given a scenario k 2 N and a vertex i 2 C`C1, let �k.i/ WD fj 2 S0 W .i; j / 2 Ekg

represent the (sub)set of vertices such that any two vertices i , j are adjacent in GkŒS0 [ i �. If the
following inequality holds,

jS0j � j�k.i/j > M; (20)

then vertex i can be removed from C`C1.

Proof: If i is added to S0 in the first stage, then it is easy to see that the vertices S0 n �k.i/ must be
removed from S0 in order for GkŒ�k.i/ [ i � to (possibly) form a complete graph in scenario k 2 N .
Note that if subgraph GkŒ�k.i/� is not a clique in k 2 N , then at least one vertex from the set S0 n�k.i/

must be further removed from S0 in the first stage. Thus, j�k.i/ [ i j provides an upper bound on the
size of the maximum clique contained in GkŒS0 [ i �. Consequently, expression (20) approximates the
minimum number of vertices that must be removed from S0 in the second stage if vertex i is included,
which cannot exceed the budget M . �

In this study, we consider two techniques for computing the upper bound �….�/ on the size of maximum
clique and for selecting a branching vertex q 2 C` when property … represents a clique. We emphasize
that proper selection of branching and bounding mechanisms according a graph’s structural character-
istics and the sought property … does heavily influence the computational performance of the solution
method described in Algorithm 1.

5.1.1 An approximate coloring algorithm

The first technique utilizes principles introduced by Tomita et al. [23] to estimate the size of the maximum
clique contained in GŒS�, S � V , by partitioning S into independent sets, also know as numbering or
coloring classes. The vertices in S are first sorted in degree descending order, and a minimum positive
integer ni is assigned to each vertex i 2 S such that ni ¤ nj if the pair i; j 2 S are connected by an
edge .i; j / 2 E.G/. Consequently, vertices associated with a number class nk (i.e., vertices with the
same assigned integer value) form an independent set.

Since that the size of any clique embodied in GŒS� cannot exceed the number of coloring classes gener-
ated from S , one immediately obtains a bound on the maximum clique size as

�….GŒS�/ D maxfni W i 2 Sg:

We use this expression in Algorithm 1 to obtain the bounds �….GkŒS0�/ and �….GkŒS0 [ C`C1�/,
k 2 f0g [N . Condition (13) then takes the form:

jS0j Cmaxfni W i 2 C`C1g C

X
k2N

pk min
n

maxfni W i 2 S0 [ C`C1gk CMk; jV j
o
� Z�: (21)

The branching rule used in connection with the described approximate coloring scheme is as follows:
select a vertex q 2 C` with the maximum number nq WD maxfni W i 2 C`g. Note that an initial coloring
of set C0 WD V is performed prior to Step 2.

5.1.2 Directed acyclical path decomposition

Yamguchi and Masuda [29] proposed a clever technique for finding maximum weighted cliques in graphs
by transforming GŒS�, S � V , into a directed acyclical graph EGŒS� such that the lengths of the resulting
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acyclical paths represent bounds on the size of the maximum clique in GŒS�. The method proceeds as
follows. Without loss of generality, let each vertex i 2 S be associated with a unit weight wi D 1, and
define set U.S/ WD

˚
ui W 8i 2 S

	
, where each element ui is initially equivalent to wi . Then, the set

U.S/ is updated by sequentially “propagating” the elements ui , 8i 2 S , onto adjacent members in S .
Particularly, during each iteration a vertex i that corresponds to the minimum argument ui in set U.S/ is
selected, and ui is propagated by adding it to the weights of vertices j 2 S adjacent to vertex i in graph
GŒS�. The elements adjacent uj are updated are updated as

uj D

(
ui C wj ; if uj < ui C wj ;

uj ; otherwise,
for all j 2 fj W .i; j / 2 E; i; j 2 Sg: (22)

Once a vertex i 2 S has been processed, ui is fixed and cannot be increased in subsequent propagations
from other (unprocessed) adjacent vertices in S . The updating process terminates once all the elements
in U.S/ have been fixed.

Observe that sequentially fixing elements ui produces a directed acyclical graph EGŒS�, where, once all
the elements in U.S/ are fixed, any ui 2 U.S/ represents the longest acyclical path in EGŒS� whose
endpoint is the vertex i 2 S (see [29] for details). Utilizing the fact that the length3 of longest path
in EGŒS� is an upper bound on the maximum clique size in GŒS�, one obtains the bounding condition
�….GŒS�/ D maxfui 2 U.S/g. Expression (13) then takes the form:

jS0j Cmaxfui 2 U.C`C1/g C
X
k2N

pk min
n

maxfui 2 U.S0 [ C`C1/gk CMk; jV j
o
� Z�: (23)

In this case, it is assumed that the vertex with the largest propagated weight from adjacent vertices has a
high probability of being a part of the maximum clique. As a result, the algorithm branches by selecting
the vertex q 2 C` that corresponds to the maximum element in U.C`/.

5.2 Numerical experiments and results

Numerical experiments demonstrating the performance of the proposed BnB algorithms for solving the
TSMS problem when property … represents a clique were conducted. Problem (19) was solved for
randomly generated Erdös-Rényi graphs of orders jV j D 25; 50; 75; 100 with average densities of d D
0:2; 0:5; 0:8. The number N of second-stage graph scenarios was selected as N D 25; 50; 75. For
any given graph configuration, the number of vertices jV j and densities d remained fixed during both
decision stages. The value of constant M in the budget constraints was fixed at M D

˙
�jV j

�
, � D 0:15

throughout.

The combinatorial first- and second-stage BnB algorithms described in Section 3 were coded using C++,
and CPLEX 12.5 integer programming (IP) solver was used for solving the mathematical programming
formulation (19) of the two-stage stochastic maximum clique problem. The computations were ran on
an Intel Xeon 3.30GHz PC with 128GB of RAM, and version 12.5 of the CPLEX solver in Windows 7
64-bit environment was used.

The combinatorial BnB method defined by Algorithms 1 and 2 was implemented in two versions, which
use the branching and bounding techniques described in Sections 5.1.1 and 5.1.2, and which are hence-
forth referred to as “BnB 5.1.1” and “BnB 5.1.2”, respectively. The computational performance of both

3The path length is given by the aggregate weight of vertices that it coincides with.
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variants of Algorithm 1–2 was compared with that of the mathematical programming formulation (19)
as solved by the CPLEX solver. The results are reported in Tables 1, 2, and 3, where columns with head-
ings “CPLEX”, “BnB 5.1.1”, and “BnB 5.1.2” contain the results obtained using the respective methods.
Ten instances of each problem/graph configuration were generated and the corresponding solution times
and objective values were averaged accordingly. A maximum solution time limit of 3600 seconds was
imposed and symbol “—” is used to indicate that the time limit was exceeded for all ten instances for the
given graph configuration. If only a portion of the instances were solved within the time limit, the number
of instances that achieved a solution and their corresponding average solution times are presented.

Table 1 summarizes the computational times for graphs with average edge densities of d D 0:2. Observe
that both BnB algorithms provide improvement in running time of at least three orders of magnitude
on all problem configurations in comparison to the CPLEX IP solver, and the BnB variant based on
acyclical path decomposition produces the best results. It must be noted, however, that sparse graphs put
the mathematical programming formulation (19) the two-stage stochastic maximum clique problem at a
disadvantage, since the employed “edge formulation” of clique constraints is based on the complement
of the graph, which results in a large number of constraints (19b)–(19c) when the underlying graph is
sparse. At the same time, the proposed general combinatorial BnB algorithm performs better when the
depth, i.e., the number of “levels” of the BnB tree is smaller, which is observed on sparse graphs.

Thus, a more fair comparison of the combinatorial and mathematical programming-based schemes can
be accomplished when one considers graphs with densities close to d D 0:5, see Table 2. It still can
be observed, though, that the combinatorial BnB methods drastically outperform the mathematical pro-
gramming formulation, where the difference is especially evident on instances that could be solved by
all three methods, and the branching and bounding rules based on acyclical path decomposition are still
superior. At the same time, graphs of density d D 0:5 present a greater challenge to the proposed BnB
method, as both its variants were unable to solve to optimality larger problems within the allowed time
limit. Note that in the cases when all three methods failed to find an optimal solution within 1 hour, the
BnB methods report partial solutions with higher objective value.

Computational results for two-stage stochastic maximum clique problem on graphs with average densi-
ties of d D 0:8 are presented in Table 3. At these densities, the combinatorial BnB methods are generally
inferior to the mathematical programming formulation (19), which can be explained by the fact that the
number of clique constraints (19b)–(19c) is relatively small for dense graphs, making problem (19) easier
to solve, while the depth of the BnB tree increases with the density of the graph, which leads to dete-
riorated BnB solution times. On the other hand, it can be seen that the combinatorial methods are still
preferable when jV j D 25, suggesting that the proposed algorithms may be beneficial for dense graphs
when the number of scenarios is large relative the number of vertices.

In the case when d D 0:8 and jV j D 100, both BnB algorithms failed to generate superior objective
values in comparison to CPLEX, an obvious deviation from the trend of preceding results for instances
of the same density and jV j D 50; 75. Empirical evidence suggests that the majority of computational
time for these instances was spent on solving the second-stage problems, while very few first-stage
solution were processed. This observation indicates that using a second-stage branching and bounding
criteria solely based on budgetary restrictions may not be effective for very dense underlying graphs,
particularly, once a certain number of vertices is exceeded. Although the present study aims to define a
budgetary-based second-stage BnB approach, it is likely that supplemental graph-structural techniques
analogous to those presented in Sections 5.1.1 – 5.1.2 would produce superior results; a task that we
reserve for future research.
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d D 0:2 CPLEX BnB 5.1.1 BnB 5.1.2

jV j N # Time (s) Obj # Time (s) Obj # Time (s) Obj

25 25 10 24.19 6.29 10 0.02 6.29 10 0.01 6.29
50 10 286.08 6.16 10 0.04 6.16 10 0.01 6.16
75 6 308.47 6.14 10 0.04 6.17 10 0.02 6.17

50 25 10 279.91 8.17 10 0.27 8.17 10 0.17 8.17
50 5 1066.66 8.09 10 0.60 8.11 10 0.34 8.11
75 0 — 8.07 10 0.90 8.09 10 0.55 8.09

75 25 0 — 9.46 10 1.73 9.47 10 1.22 9.47
50 0 — 9.16 10 3.60 9.20 10 2.40 9.20
75 0 — 9.34 10 5.51 9.49 10 4.93 9.49

100 25 0 — 9.96 10 7.90 10.04 10 7.30 10.04
50 0 — 9.88 10 16.09 10.02 10 15.26 10.02
75 0 — 9.32 10 23.09 10.05 10 21.21 10.05

Table 1: Average solution times (in seconds) and objective values for problem (19) on random graphs with an edge density of
0.2 and M D d0:15jV je. All running times are averaged over 10 instances and symbol “—” indicates that the time limit of
3600 seconds was exceeded. Columns corresponding to symbol “#” provide the number of instances solved within the time
limit.

d D 0:5 CPLEX BnB 5.1.1 BnB 5.1.2

jV j N # Time (s) Obj # Time (s) Obj # Time (s) Obj

25 25 10 7.65 9.92 10 0.17 9.92 10 0.04 9.92
50 10 32.04 9.75 10 0.28 9.75 10 0.10 9.75
75 7 123.81 9.50 10 0.37 9.51 10 0.13 9.51

50 25 0 — 13.39 10 37.68 13.43 10 27.31 13.43
50 0 — 14.07 10 74.53 14.11 10 44.07 14.11
75 0 — 13.46 10 93.95 13.72 10 64.64 13.72

75 25 0 — 15.84 10 2631.96 16.06 10 2216.35 16.06
50 0 — 15.74 0 — 16.28 0 — 16.30
75 0 — 15.03 0 — 16.14 0 — 16.31

100 25 0 — 17.13 0 — 17.29 0 — 17.67
50 0 — 16.61 0 — 17.07 0 — 17.65
75 0 — 15.92 0 — 17.04 0 — 17.86

Table 2: Average solution times (in seconds) and objective values for problem (19) on random graphs with an edge density of
0.5 and M D d0:15jV je. All running times are averaged over 10 instances and symbol “—” indicates that the time limit of
3600 seconds was exceeded. Columns corresponding to symbol “#” provide the number of instances solved within the time
limit.

6 Conclusions

We have introduced a new class of two-stage stochastic maximum subgraph problems for finding the
maximum expected size of a graph that satisfies a defined structural property …. Emphasis was put on
identifying subgraphs whose properties can be restored within a limited repair budget in the presence
of structural uncertainties that manifest in the form of random connection (edge) changes/failures. A
combinatorial BnB algorithm exploiting the structure of two-stage stochastic maximum … subgraph
problems was developed. Our technique utilizes two combinatorial BnB algorithms for finding optimal
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d D 0:8 CPLEX BnB 5.1.1 BnB 5.1.2

jV j N # Time (s) Obj # Time (s) Obj # Time (s) Obj

25 25 10 5.55 15.87 10 3.35 15.87 10 1.38 15.87
50 10 14.40 15.79 10 11.44 15.79 10 5.43 15.79
75 10 51.61 14.96 10 12.57 14.96 10 7.22 14.96

50 25 10 1078.03 23.97 0 — 23.25 0 — 23.69
50 6 3125.09 23.43 0 — 23.05 0 — 23.33
75 0 — 22.50 0 — 22.19 0 — 22.85

75 25 0 — 28.07 0 — 26.57 0 — 28.29
50 0 — 27.57 0 — 27.14 0 — 28.31
75 0 — 27.19 0 — 26.24 0 — 27.50

100 25 0 — 30.94 0 — 18.49 0 — 18.44
50 0 — 30.54 0 — 18.41 0 — 18.39
75 0 — 30.14 0 — 18.35 0 — 18.27

Table 3: Average solution times (in seconds) and objective values for problem (19) on random graphs with an edge density of
0.8 and M D d0:15jV je. All running times are averaged over 10 instances and symbol “—” indicates that the time limit of
3600 seconds was exceeded. Columns corresponding to symbol “#” provide the number of instances solved within the time
limit.

first- and second-stage subgraph solutions.

The proposed framework applies to a broad range of graph properties, and in this work we illustrated
the proposed approach on an example when the property of interest … defines a clique. Numerical
simulations on randomly generated graphs indicate that solution times can be reduced by several orders
of magnitude via the proposed BnB algorithm in comparison to an equivalent mathematical programming
solver. Namely, for all the tested graph configurations other than ones with high edge density of d D 0:8,
one or more orders of magnitude in performance improvements were observed.
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Abstract

In this work, we study the problem of detecting risk-averse low-diameter clusters in graphs. It
is assumed that the clusters represent k-clubs and that uncertain information manifests itself in the
form of stochastic vertex weights whose joint distribution is known. The goal is to find a k-club
of minimum risk contained in the graph. A stochastic programming framework that is based on the
formalism of coherent risk measures is used to quantify the risk of a cluster. We show that the selected
representation of risk guarantees that the optimal subgraphs are maximal clusters. A combinatorial
branch-and-bound algorithm is proposed and its computational performance is compared with an
equivalent mathematical programming approach for instances with k D 2; 3; and 4.

Keywords: k-club; low-diameter clusters; stochastic graphs; coherent risk measures; combinatorial
branch-and-bound
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1 Introduction

Graphs are effective tools for modeling many real-world systems and the complex interactions between
their components. A typical graph model assigns vertices to represent a system’s components and a
set of edges to describe the connections and/or relationships between them. Well-known examples of
such frameworks are represented by many systems studied in social network analysis, transportation,
telecommunications, computational finance, and so on. Additionally, graph-based data mining meth-
ods [18] provide powerful techniques for analyzing and understanding systems whose descriptive data
may be represented using a graph.

A principal application of graph-based data mining involves the identification of subgraphs, referred
to as clusters, corresponding to subsystems with a given structural or functional property. For example,
in social networks, detecting highly-connected clusters can be used for advertising and marketing pur-
poses [22, 23, 46]; in stock market graphs, it can be used for identifying diverse portfolios [12]; and in
call graphs, it can be used for detecting communicating clusters [1].

One of the basic problems in this context entails finding the largest “perfectly” cohesive group within
a network such that the confined members are all interconnected, also known as the maximum clique
(complete subgraph) problem. Several prominent studies provided the basis for exact combinatorial
solution algorithms for the maximum clique problem [8, 16, 33]. In particular, Carraghan and Pardalos
[16] introduced a recursive branch-and-bound method for finding maximum cliques by exploiting the
heredity property [42] of complete subgraphs. Subsequent extensions of their work enhanced the process
of reducing solution space via vertex coloring schemes for estimation of upper bounds on the maximum
achievable subgraph sizes during the branch-and-bound procedure (e.g. [15, 24, 41]).

In many practical applications, the requirement that the desired subgraph must be complete may,
however, impose excessive restrictions and therefore warrant some structural relaxation in terms of clus-
ter connectivity. As a consequence, a number of clique relaxation models have been proposed in graph
theory literature, which relax the completeness property relative to the degree of the member vertices,
their distance from each other, or the density of the subgraph. A comprehensive review of clique relax-
ation models is provided in [10]. In the present work, we focus on a specific type of clique relaxation,
known as the k-club [3], which represents a subgraph whose members are connected via at most k � 1
intermediary members. The k-club model effectively represents low-diameter clusters that may reveal
valuable information embedded in social, financial, and telecommunication networks. Several recent
studies proposed combinatorial branch-and-bound methods and presented complexity results associated
with finding maximum k-clubs in graphs [13, 17, 34, 39].

An important extension of the described class of problems involves the imposition of topologically
exogenous information in the form of deterministic vertex weights, and correspondingly finding a subset
of maximum weight that conforms to a defined structural property. Similar exact weight-based branch-
and-bound solution techniques have been developed for determining the maximum-weight subgraphs [7,
28, 32].

Numerous circumstances may further justify the imposition of uncertain exogenous information over
the graph’s edges that influences network flow distribution, robustness, and costs [4, 6, 14, 20, 21, 44].
However, far fewer endeavors consider decision making relative to the optimal allocation of resources
over defined subgraph topologies when uncertainties are induced by stochastic factors associated with
network vertices [38]. For example, in social networks or call graphs, the uncertainties related to the
value or reliability of the information provided by each entity can be modeled by random weights on ver-
tices whose relationships or communications are presented by edges. Similarly, in stock market graphs,
the uncertainties associated with returns on investments from different assets can be defined as random
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weights assigned to their corresponding vertices, with edges linking highly correlated assets (vertices).
In this study, we extend the techniques introduced in [38] to address problems of finding subgraphs of

minimum risk that represent a k-club. A probabilistic framework utilizing the distributional information
of stochastic vertex weights by means of coherent measures of risk [5, 19] is employed to define a
risk-averse k-club (RA-k) problem as finding the lowest risk k-club in a network. As an illustrative
example, we focus on instances when k D 2; 3; 4, and utilize a mathematical programming formulation
introduced in [43] for finding a maximum k-club in a graph. A combinatorial branch-and-bound method
for finding a largest k-club [13, 17, 34] is also modified to accommodate the conditions of RA-k problem
via risk-based branching and bounding schema. We compare the solution performance of the proposed
branch-and-bound algorithm relative to solving the mathematical programming formulation for the RA-k
problem using a state-of-the-art commercial solver.

The remainder of the paper is organized as follows. In Section 2, we examine the general representa-
tion of RA-k problem and discuss its properties. Section 3 presents a mathematical programming formu-
lation and a combinatorial branch-and-bound method for solving the RA-k problem. Finally, Section 4
furnishes numerical studies demonstrating the computational performances of the developed branch-and-
bound method and the aforementioned mathematical programming approach on problems where risk is
quantified using higher-moment coherent risk measures [27].

2 Risk-averse k-club problem

Given an undirected graph G D .V;E/ and any subset of its vertices S � V , let GŒS� represent the
subgraph of G induced by S , i.e., GŒS� D .S;E \ .S � S//. Let Q denote the desired property
which the induced graph GŒS� must satisfy. The present work considers the case when Q represents a
certain relaxation of the completeness property, such that a subgraph with property Q represents a clique
relaxation.

Depending on the characteristic of a complete graph that is relaxed, clique relaxations can be cate-
gorized into density-based [1, 2, 35], degree-based [40], and distance-based [3, 29, 30] relaxations. In
this work, property Q represents a special distance-based relaxation of the completeness property. For a
formal definition, let dG.i; j / denote the distance between nodes i; j 2 V in graph G, measured as the
number of edges in a shortest path between i and j in G. Then, a subset of vertices S � V of graph G
is called a k-clique if

max
i;j2S

dG.i; j / � k:

Note that the definition of the k-clique does not require that the shortest path between i; j 2 S belong
to GŒS�. If one requires that the shortest path between any two vertices i; j in S belong to the induced
subgraph GŒS�, then the subset S such that

max
i;j2S

dGŒS�.i; j / � k; (1)

is called a k-club. Note that a k-club is also a k-clique, while the inverse is not true in general. By
definition, 1-cliques and 1-clubs are cliques. Throughout the remainder of this study, we let �G.k/
denote the set of all k-clubs in graph G:

�G.k/ D
˚
S � V W dGŒS�.i; j / � k; 8i; j 2 S

	
: (2)

Additionally, a k-club is said to be maximal, if it is not strictly contained in another k-club; and a
maximum k-club is a k-club of the largest order in graph G.
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A popular class of graph-theoretical problems is represented by the maximum weight subgraph prob-
lems, which are concerned with finding a subset S of vertices in G such that the induced subgraph
satisfies the given property Q and has the largest weight (defined as the sum of its vertices’ weights).
The maximum weight k-club problem is then formulated as

max
nX
i2S

wi W S 2 �G.k/
o
; (3)

where wi � 0 represents the weight of vertex i and the set �G.k/ is defined by (2). Clearly, an optimal
set S in problem (3) will be maximal, but not necessarily maximum (of the largest order) set with property
Q. If the weight of each vertex is one, the maximum weighted k-club problem is simply referred to as
the maximum k-club problem.

In this work, we consider an extension of problem (3) that assumes stochastic vertex weights. In this
case, a direct translation into a stochastic framework is not straightforward due to the fact that the maxi-
mization of random weights would be ill-posed in context of stochastic programming resulting from the
absence of a deterministic optimal solution. Likewise, maximization of the expected weight of the sought
set is rather uninteresting in the sense that it reduces to the deterministic version of the problem presented
above. A more suitable approach, thus, involves computing the subgraph’s weight via a (nonlinear) sta-
tistical function that utilizes the distributional information about the weights’ uncertainties, rather than a
simple sum of its vertices’ stochastic weights. In particular, we pursue a risk-averse approach so as to
find the subgraph of G that has the lowest risk and satisfies property Q. Let Xi denote a random variable
that represents the costs of losses associated with vertex i 2 V , such that the joint distribution of vector
XG D .X1; : : : ; XjV j/ is known. Then, the problem of finding the minimum risk subgraph in G that has
property Q, or the risk-averse Q problem takes the form:

min
˚
R.S IXG/ W S � V and GŒS� satisfies Q

	
; (4)

where R.S IXG/ is the risk associated with set S given the distributional information XG . In the partic-
ular case when property Q ensures that the subgraph in question is a k-club, formulation (4) defines the
risk-averse k-club problem (RA-k),

min
˚
R.S IXG/ W S 2 �G.k/

	
; (5)

which represents a risk-averse stochastic generalization of the deterministic maximum weight k-club
problem (1), as shown below.

A constructive form of risk function R.S IXG/ can be introduced by employing the well-known in
stochastic optimization literature concept of risk measure [26]. Given a probability space .�;F ;P/,
where � is the set of random events, F is the � -algebra, and P is a probability measure, a risk measure
� is defined as a mapping � W X 7! R, where X is a linear space of F-measurable functions X W
� 7! R. In what follows, the space X is assumed to possess the properties necessary for the risk
measures introduced below to be well-defined. Namely, X is supposed to allow for a sufficient degree of
integrability, in particular, EjX j < 1, and be endowed with an appropriate topology, e.g., the topology
induced by convergence in probability. Lastly, we consider risk measures that are proper functions on
X , i.e., �.X/ > �1 for all X 2 X and fX 2 X W �.X/ <1g ¤ ;.

Then, assuming that risk measure � is lower semi-continuous (l.s.c.), the risk R.S IXG/ of a set
S � V with uncertain vertex weights Xi , i 2 V , can be defined as the optimal value of the following
stochastic programming problem:

R.S IXG/ D min
�
�

�X
i2S

uiXi

�
W

X
i2S

ui D 1I ui � 0; i 2 S

�
: (6)
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Note that this definition of the set risk function R.�/ admits risk reduction through diversification as
illustrated by the following proposition:

Proposition 1 ([38]) Given a graph G D .V;E/ with stochastic weights Xi , i 2 V , and a l.s.c. risk
measure �, the set risk function R defined by (6) satisfies

R.S2IXG/ � R.S1IXG/ for all S1 � S2: (7)

The following observation regarding the optimal solution of the risk-averse Q problem (4) stems
directly from property (7):

Corollary 1 There exists an optimal solution of the risk-averse Q problem (4) with R.S IXG/ defined
by (6) that is a maximal set with property Q in G.

Additional properties of R.S IXG/ as defined by (6) ensue from the assumption that the risk measure
� belongs to the family of coherent measures of risk [5], i.e., satisfies the properties of monotonicity,
�.X/ � 0 for all X � 0; subadditivity, �.X C Y / � �.X/ C �.Y /; transitional invariance, �.X C
c/ D �.X/ C c for all c 2 R; and positive homogeneity, �.�X/ D ��.X/ for all � > 0. Then, the
corresponding set risk function R.S IXG/ satisfies analogous properties with respect to the stochastic
weights vector XG ,

(G1) monotonicity: R.S IXG/ � R.S IYG/ for all XG � YG ;

(G2) positive homogeneity: R.S I�XG/ D �R.S IXG/ for all XG and � > 0;

(G3) transitional invariance: R.S IXG C a1/ D R.S IXG/C a for all a 2 R;

where 1 is the vector of ones, and the vector inequality XG � YG is interpreted component-wise.
Observe that R.S IXG/ violates in general the subadditivity requirements with respect to the stochas-

tic weights. However, risk reduction via diversification is guaranteed by (7), which ensures that the in-
clusion of additional vertices to the existing feasible solution is always beneficial. Further, under the
assumption of nonnegative stochastic vertex weights, XG � 0, the set risk R.S IXG/ can be shown to
be subadditive with respect to subsets of V ,

R.S1 [ S2IXG/ � R.S1IXG/CR.S2IXG/; S1; S2 � V: (8)

Clearly, it is required that S1, S2, and S1 [ S2 satisfy property Q in conformance to the context of
risk-averse Q problems.

3 Solution approaches for risk-averse k-club problems

In this section, we first address the computational complexity of the RA-k problem for any fixed positive
integer k, and show that this problem is NP-hard. We then propose two exact solution algorithms for
this problem. First, we consider a mathematical programming approach for the RA-k problem, where
the risk R.S IXG/ of a set S 2 �G.k/ is defined by (6). To this end, we take advantage of a recent
formulation for the maximum k-club problem developed by Veremyev et al. [43]. Next, we propose
a combinatorial branch-and-bound algorithm for solving RA-k problem that utilizes the same solution
space processing principles for finding maximum k-clubs as the ones used in [13, 17, 34].
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In order to establish the problem’s complexity and derive the corresponding solution methods, we
need to introduce additional assumptions on the properties of stochastic weights XG and risk measure
� involved in the definition of the risk-averse k-club problem (5). Namely, throughout this section it
is assumed that the stochastic weights Xi of vertices i 2 V are nonnegative and rational-valued, Xi W
� 7! QC, i 2 V , where QC denotes the set of nonnegative rational numbers. Also, the corresponding
probability measure P is rational-valued, i.e., PfXi D Xi .!/g 2 QC\ Œ0; 1� for all ! 2 � and all i 2 V .
Similarly, we assume that the risk measure � is such that �.X/ 2 Q whenever X and the underlying
probability measure are rational-valued. In addition, we restrict our attention to risk measures that are
expectation-bounded1 [37], i.e., such that �.X/ > EX for all non-constant X , and �.X/ D EX for all
constant X , or such X that X D const with probability 1.

3.1 Computational complexity

In this section, we derive the computational complexity of the the risk-averse k-club problem from the
complexity of the more general class of risk-averse Q problems (4).

For a given property Q, the decision version of risk-averse Q problem, denoted by hG;XG ; �; ci, is
as follows. Given a graph G D .V;E/, a vector of stochastic weights XG , a l.s.c. risk measure �, and a
c 2 Q, determine whether there exists a set S � V such that GŒS� satisfies Q and R.S IXG/ < c. We
also consider the deterministic maximum Q problem:

maxfjS j W S � V and GŒS� satisfies Qg; (9)

and its decision version, denoted as hG; qi: given a graph G D .V;E/ and an integer q, is there a subset
of V that has property Q and order larger than q?

Theorem 1 If property Q is such that the decision version of (deterministic) maximum Q problem is
NP-hard, then the decision version of risk-averse Q problem is also NP-hard, provided that the risk
measure � is proper, l.s.c., and expectation-bounded.

Proof: The intractability of the risk-averse Q problem is proved by a polynomial-time reduction from the
maximum Q problem. Given a graph G D .V;E/ and a fixed positive integer q, consider the decision
version of the maximum Q problem hG; qi. For any such maximum Q decision problem hG; qi, we
replicate OG D G and let OXi for all i 2 V be a set of independently and identically distributed random
variables with Bernoulli distribution, such that Pf OXi D 0g D Pf OXi D 1g D 1

2
for all i 2 V . As a risk

measure, we select O�.X/ D �2.X/C EX , where �2.X/ denotes the variance of X . Obviously, O�.X/ is
expectation bounded, as well as l.s.c. and proper, so that the corresponding set risk function R is well
defined. It is easy to see that the set risk function R.S; OX OG/ becomes equal to

R.S; OX OG/ D min
n
�2
�X
i2S

ui OXi

�
C
1

2
W

X
i2S

ui D 1I ui � 0; 8i 2 S
o

D
1

4jS j
C
1

2
:

This procedure constructs in polynomial time an instance hG; OXG ; O�; 14q C
1
2
i of risk-averse Q problem

such that there exists a Q-subgraph of order larger than q in G if and only if there exists a Q-subgraph

1“Expectation-boundedness” is also known as “aversity” [36], but we use the former term in this work so as to avoid
semantic confusion when referring to “risk-averse” subgraphs.
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S in G such that R.S I OXG/ < 1
4q
C
1
2

. This shows that the decision version of risk-averse Q problem is
NP-hard if the maximum Q problem is NP-hard. �

The computational complexity of RA-k problem, which we are concerned with in this work, follows
readily from Theorem 1 due to the fact that (deterministic) maximum k-club problem is known to be
NP-hard [9]:

Corollary 2 The decision version of risk-averse k-club problem (RA-k) is NP-hard, provided that risk
measure � is proper, l.s.c., and expectation-bounded.

The condition that risk measure � in the risk-averse Q problem (4) be l.s.c. and proper ensures
that the resulting set risk function R is well-defined. Expectation-boundedness, on the other hand, is
imposed so as to avoid situations in which the risk-averse Q problem becomes trivial. In the presented
framework we advocate for use of coherent measures of risk when constructing the set risk function (6).
It turns out, however, that if one selects �.X/ D EX , which is formally a coherent risk measure yet does
not measure “risk”, then the corresponding problem (4) is polynomially solvable, and, moreover, the
solution is trivial. This can be viewed as an additional supporting argument for pursuing the risk-averse
approach when dealing with graph-theoretical problems on graphs with stochastic vertex weights, since
the traditional “expectation”-based, or risk-neutral approach to problems with stochastic vertex weights
may not yield interesting results. The following proposition formalizes the above observation.

Proposition 2 Consider the risk-averse Q problem (4), where the risk measure � is such that for any
G D .V;E/, XG , and S � V ,

arg min
�
�

�X
i2S

uiXi

�
W

X
i2S

ui D 1I ui � 0; 8i 2 S

�
D

n
u 2 RjS j W uiS D 1I ui D 0; 8i 2 S n fiSg

o
;

(10)

and iS in (10) is computable in polynomial time. Then, the risk-averse Q problem is polynomially
solvable, provided that property Q is such that one can determine in polynomial time whether there
exists a Q-subgraph of G containing a given i 2 V .

Proof: Obviously, condition (10) implies that

R.S;XG/ D �.XiS / D min
i2S

�.Xi /:

Then, in polynomial time one can compute �.Xi0/ D mini2V �.Xi / and it can be verified whether
S0 3 i0 exists such that GŒS0� satisfies Q. If not, �.i1/ D mini2V nfi0g �.Xi / is computed and existence
of S1 3 i1 such that GŒS1� satisfies Q is verified in polynomial time, and so on. Clearly, the risk-averse
Q problem can thus be solved in polynomial time. �

It is easy to see that �.X/ D EX constitutes a special case of the risk measure described in Proposi-
tion 2, and

R.S;XG/ D min
i2S

EXi :

On a related note, Theorem 1 also establishes the computation complexity of risk-averse maximum
hereditary subgraph problems that were discussed in our previous work [38]. Recall that property Q is
called hereditary with respect to induced subgraphs if for any graph G that satisfies Q, removal of any
its vertex creates an induced subgraph that also satisfies Q. Further, property Q is called interesting if the
order of graphs that satisfy it is unbounded, and it is called nontrivial if it is satisfied by a single-vertex
graph and is not satisfied by every graph (see, e.g., [47]).
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Corollary 3 If property Q is hereditary with respect to induced subgraphs, interesting, and nontrivial,
and risk measure � is l.s.c., proper, and expectation-bounded, then the risk-averse Q problem is NP-
hard.

Note that the k-club property is not hereditary with respect to induced subgraphs.

3.2 A mathematical programming formulation

In this section, we formulate the RA-k problem as a (generally nonlinear) mixed integer programming
program. To this effect, let binary decision variables xi indicate whether node i 2 V belongs to a subset
S :

xi D

(
1; i 2 S

0; otherwise:

When the property Q denotes a k-club, one can choose the edge formulation of the maximum k-club
problem proposed by Veremyev et al. [43], whereby the mathematical programming formulation of the
RA-k problem takes the form

min �
�X
i2V

ui Xi

�
(11a)

s. t.
X
i2V

ui D 1; (11b)

ui � xi ; i 2 V; (11c)

y
.k/
ij � xi C xj � 1; 8i; j 2 V; i ¤ j; (11d)

y
.1/
ij D 0; 8.i; j / 2 E; i ¤ j; (11e)

y
.l/
ij D y

.1/
ij ; 8.i; j / 2 E; l 2 f2; : : : ; kg; (11f)

y
.l/
ij �

X
t W.i;t/2E

y
.l�1/
tj ; 8.i; j / 2 E; l 2 f2; : : : ; kg; (11g)

y
.l/
ij � xi ; y

.l/
ij � xj ; y

.l/
ij D y

.l/
j i ; 8i; j 2 V; l 2 f1; : : : ; kg; (11h)

xi 2 f0; 1g; ui � 0; y
.l/
ij 2 Œ0; 1�; 8i; j 2 V; l 2 f1; : : : ; kg; (11i)

where E represents the set of all complement edges of graph G. Note that nonlinearity in (11) is at-
tributable to the possible nonlinearity of the risk measure �. Appropriate nonlinear mixed-integer pro-
gramming solvers can be used to solve formulation (11) provided that risk measure � in admits a suitable
mathematical programming representation. A combinatorial branch-and-bound algorithm for solving
RA-k problem is described next.

3.3 A combinatorial branch-and-bound algorithm

The combinatorial branch-and-bound (BnB) algorithm for solving problem (11) processes solution space
by traversing “levels” of the BnB tree to find a subgraph GŒS� that represents a maximal k-club of
minimum risk in G as measured by (6). The algorithm begins at level ` D 0 with a partial solution
Q WD ;, incumbent solution Q� WD ;, and an upper bound on risk L� WD C1 (risk induced by Q�).
Partial solution Q is composed of vertices that may potentially become a k-club during latter stages of
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the algorithm, while Q� contains vertices corresponding to a maximal k-club whose risk, L�, is the
smallest up to the current stage. A set of “candidate” vertices C` is maintained at each level `, from
which a certain branching vertex v` is selected and added to the partial solution Q, or simply deleted
from set C` without being added to Q. Note that the initial candidate set is C0 WD V . To ensure proper
navigation between the levels of the BnB tree, the notation PC

`
or P�

`
is used to indicate whether the last

node of the BnB tree at level ` was created by adding v` to Q, or by deleting v` from C` without adding
it to Q, respectively.

Whenever a BnB tree node is created at the consecutive level ` C 1, a candidate set C`C1 is con-
structed by removing all vertices from C` whose pairwise distances from the vertices in Q exceed k in
the induced graph GŒQ [ C`�:

C`C1 WD
˚
j 2 C` W dGŒQ[C`�.i; j / � k; 8i 2 Q

	
:

Observe that the refinement of C` may disrupt the structural integrity of the partial solution if the elim-
inated candidate vertices serve as distance intermediaries (i.e., comprise the shortest paths) between the
vertices in Q. In other words, the distance between at least one pair of vertices i; j 2 Q exceeds k
upon removal of one or more vertices from C` when constructing C`C1. Due to this inherent distance-
based dependence of k-clubs, additional considerations are warranted whenever creating a BnB node by
either adding or deleting a vertex v` (i.e., PC

`
or P�

`
, respectively). Therefore, the necessary structural

properties of Q and C`C1 at each BnB node are

(C1) Q is a k-clique in GŒQ [ C`C1�, and

(C2) dGŒQ[C`�.i; j / � k; 8i 2 Q; 8j 2 C`C1.

After constructing setC`C1 (condition (C2) is satisfied by definition ofC`C1), if vertices inC`nC`C1
do serve as distance intermediaries, their removal imposes violations with respect to condition (C1). In
such cases,Q cannot become a k-club by exploring deeper levels of the tree and the corresponding node
of the BnB tree is fathomed2 by infeasibility via violation of condition (C1).

Whenever condition (C1) is satisfied, the next step entails evaluating the quality of the solution that
can be obtained from the subgraph induced by vertices in Q [ C`C1. An exact approach for directly
finding a k-club with the lowest possible risk contained in GŒQ[C`C1� would involve solving problem
(11) with xi D 0 for all i 2 V n.Q[C`C1/; we denote the corresponding solution by S.Q[C`C1IXG/.
Solving such a (nonlinear) mixed 0–1 program at every node of the BnB tree is clearly impractical.
Instead, the following relaxation problem is utilized to obtain a valid lower bound on S.Q[C`C1IXG/:

L.Q [ C`C1IXG/ WD min �
�X
i2V

ui Xi

�
s. t.

X
i2V

ui D 1;

ui D 0; i 2 V n .Q [ C`C1/

ui � 0; i 2 Q [ C`C1:

(12)

If L.Q [ C`C1IXG/ � L�, then the corresponding node of the BnB tree is fathomed by bound due to
the fact that sequential refinement can not achieve a further reduction in risk.

In the case when L.Q [ C`C1IXG/ < L� and Q [ ClC1 is a k-club, the new incumbent solution
will be Q� D Q [ ClC1 and the global upper bound on risk is updated, L� D L.Q [ C`C1IXG/. In

2Indicated in Algorithm 1 by the assignment “fathom WD True”.
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this case, the current BnB node is fathomed by feasibility. If, however, L.Q [ C`C1IXG/ < L� and
Q[ClC1 is not a k-club, a branching vertex v`C1 is selected at the next level `C 1 and BnB node PC

`C1
will be processed.

After fathoming a BnB node, the algorithm backtracks as follows. If the current BnB node is of
type PC

`
, then the vertex v` is removed from Q, and the node associated with the deletion of v`, P�` ,

is created. On the other hand, if the BnB node is of type P�
`

, the algorithm sequentially backtracks to
the last level, `0 < `, associated with a node of type PC

`0 . The node P�
`0 is then constructed by removing

the branching vertex v`0 from Q. Observe that a node can only be of form P�
`

, after PC
`

has been
fathomed/processed.

Empirical observations suggest that branching on a vertex v` with the smallest value of �.Xv`
/ or

EXv`
can significantly enhance computational performance. To this end, the vertices in any candidate

set C` are ordered in descending order with respect to their risks �.Xi / or expected values EXi , and
the last vertex in C` is always selected when adding vertex v` to the partial solution Q. The described
branch-and-bound algorithm procedure for RA-k problem is formalized in Algorithm 1.

As shown in [17], it is important to mention that the number of leaf nodes in the BnB search tree of
Algorithm 1 is O�.1:62jV j/, where the modified notation “O�

�
g.jV j/

�
” implies O

�
g.jV j/ � poly.jV j/

�
for some polynomial function poly.jV j/. Additionally, at each node of the search tree, all pair distances
can be computed in O.jV j3/ time and we solve a linear program to obtain a lower bound on the optimal
solution of the subtree rooted at that node. Therefore, Algorithm 1 runs in O�.1:62jV j/.
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Algorithm 1: Combinatorial branch-and-bound algorithm

1 Initialize: ` WD 0I C0 WD V I Q WD ;I Q� WD ;I L� D1I node WD PC0 I fathom := False;
2 while ` � 0 do
3 if nodeD PC

`
then

4 select a vertex v` 2 C`;
5 C` WD C` n fv`g;
6 Q WD Q [ fv`g;
7 else
8 Q WD Q n fv`g;

9 C`C1 WD fj 2 C` W dGŒQ[C`�.i; j / � k; 8i 2 Qg;
10 if Q is a k-clique in GŒQ [ C`C1� then
11 if L.Q [ C`C1/ < L� then
12 if Q [ C`C1 is a k-club then
13 Q� WD Q [ C`C1;
14 L� WD L.Q [ C`C1/;
15 fathom := True;

16 else
17 fathom := True;

18 else
19 fathom := True;

20 if fathom D True then
21 while ` � 0 and node D P�

`
do

22 ` WD ` � 1;

23 node WD P�
`

;
24 fathom := False;
25 else
26 ` WD `C 1;
27 node WD PC

`
I

28 return Q�;

4 Case study: Risk-averse k-club problem with higher moment coherent
risk measures

In this section, we present a computational framework for problem (11) and conduct numerical exper-
iments demonstrating the computational performance of the proposed BnB algorithm. To this end, we
adopt higher moment coherent risk measures to quantify the risk as described next.

4.1 Higher moment coherent risk measures

The class of higher-moment coherent risk (HMCR) measures was introduced in [27] as optimal values
to the following stochastic programming problem:

HMCR˛;p.X/ D min
�2R

�C .1 � ˛/�1
.X � �/C

p
; ˛ 2 .0; 1/; p � 1; (13)
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where XC D maxf0;Xg and kXkp D
�
EjX jp

�1=p. Mathematical programming problems that contain
HMCR measures can be formulated using p-order cone constraints. Typically, in stochastic program-
ming models, the set of random events � is assumed to be discrete, � D f!1; : : : ; !N g, with the
probabilities Pf!kg D �k > 0, and �1C � � � C�N D 1. The corresponding mathematical programming
model (11) with �.X/ D HMCRp;˛.X/ takes the following mixed 0–1 p-order cone programming form:

min �C .1 � ˛/�1t0

s. t. t0 � k.t1; : : : ; tN /kp;

�
�1=p

k
yk �

X
i2V

uiXik � �; k D 1; : : : ; N;X
i2V

ui D 1;

ui � xi ; i 2 V;

(11d) � (11i);

tk � 0; k D 0; : : : ; N;

(14)

where Xik represents the realization of the stochastic weight of vertex i 2 V under scenario k 2
f1; : : : ; N g. Analogously, the lower bound problem (12) takes the form

L.Q [ C`C1IXG/ D min �C .1 � ˛/�1t0

s. t. t0 � kt1; : : : ; tN kp;

�
�1=p

k
tk �

X
i2V

uiXik � �; k D 1; : : : ; N;X
i2V

ui D 1;

ui � 0; i 2 Q [ C`C1;

ui D 0; i 2 V n .Q [ C`C1/;

tk � 0; k D 0; : : : ; N:

(15)

For instances when p 2 f1; 2g, problems (14) and (15) reduce to linear programming (LP) and second
order cone programming (SOCP) models, respectively. However, in cases when when p 2 .1; 2/[.2;1/
the p-cone is not self-dual and there exist no efficient long-step self-dual interior point solution methods.
Consequently, we employ solution methods for p-order cone programming problems that are based on
polyhedral approximations of p-order cones [45] and representation of rational-order p-cones via second
order cones [31].

4.2 Setup of the numerical experiments and results

Numerical experiments of the risk-averse k-club problem for k D 2; 3; 4 were conducted on randomly
generated Erdös-Rényi graphs of orders jV j D 50; 100; 200 with average densities D.G/ D 0:0125,
0:025, 0:05, 0:1, and 0:15. The specified densities were chosen due to empirical observations indicating
that a graph of order jV j � 50 commonly reduces to a 2-club when the density is in the range Œ0:15; 0:25�.
Clearly, this effect is even more pronounced for k > 2. The stochastic weights of graphs’ vertices were
generated as i.i.d. samples from the uniform U.0; 1/ distribution. Scenario sets with N D 250 scenarios
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were generated for each combination of graph order and density. The HMCR risk measures (13) with
p D 1; 2; 3, and ˛ D 0:9 were used.

The BnB algorithm has been coded in C++, and we used the CPLEX Simplex and Barrier solvers
for the polyhedral approximations and SOCP reformulations of the p-order cone programming lower
bound problem (15), respectively (see [25]). For instances when p D 1, the CPLEX Simplex solver was
utilized to solve problem (15) directly. The computations were conducted on an Intel Xeon 3.30GHz PC
with 128GB RAM, and CPLEX 12.6 solver in Windows 7 64-bit environment was used.

The computational performance of the mathematical programming model (14) was compared with
that of developed BnB algorithm. In the case of p D 1, problem (14) was solved with CPLEX Mixed
Integer Programming (MIP) solver. The CPLEX MIP Barrier solver was used for the SOCP version in
the case of p D 2, and using the SOCP reformulation in the case of p D 3.

Tables 1– 3 present the computational times and the best objective values averaged over five instances
for each graph configuration, as well as the number of instances for which an optimal solution was
attained within a 3600 second time limit. The reported average time is calculated by only considering the
instances where the problem was solved to optimality within the time limit, while the reported average
objective value is calculated by only considering the instances in which at least a feasible solution is
found within the time limit. The symbol “—” was used to indicate that the time limit was exceeded,
and cells containing “NA” correspond to instances for which solution process failed due to CPLEX
running out of memory. Table 1 demonstrates that the BnB algorithm significantly outperforms the
CPLEX MIP solver over all the listed graph configurations when k D 2, achieving up to an order of
magnitude of improvement in computational time. Further, observe that the quality of the average best
objectives obtained by the BnB algorithm was superior whenever both methods failed to reach an optimal
solution within the time limit. In cases when CPLEX failed due to memory capacity issues, the BnB
algorithm either attained an optimal solution or an incumbent solution, in which case the average solution
associated with the best incumbent solutions are provided. Note that the performance of both algorithms
decreases for higher values of p. This becomes particularly pronounced for p D 3 and jV j D 200

in Table 1, where CPLEX could not manage any of the corresponding instances due to the increased
problem size associated with the cutting-plane algorithm for solving polyhedral approximations of p-
order cone programming problems, while the BnB algorithm only solved eleven instances within the
time limit.

A similar improvement in performance can be observed for k D 3 and k D 4 in Tables 2–3. As k
increases, the number of time limit and memory capacity limit violations for CPLEX increases, further
demonstrating the applicability of the proposed BnB method. This observable disadvantage associate
with model (11) results from the fact that the number of constraints in model (11) rapidly increases with
k, thus overwhelming the solver in many cases. All the instances in Table 3 with jV j D 200 are of this
type.

Based on the results presented in Tables 1–3, it is worth noting that as D.G/ increases for a given p
and jV j, the average computation time for the BnB algorithm increases, reaches a maximum value, and
then decreases. This is due to the fact that once D.G/ is large enough, graph G tends to contain larger
components of lower diameter that can be detected at the early stages of the BnB algorithm. Another
interesting observation is that for a given p and D.G/, if jV j is large enough, the average computation
time for BnB algorithm decreases as jV j increases. For instance, in Table 2, for p D 2 andD.G/ D 0:1,
none of the instances with jV j D 100 were solved to optimality, while all the instances with jV j D 200

were solved to optimality within 4.05 seconds on average. This observation can be justified by the fact
that for a given expected edge densityD.G/, if jV j is sufficiently large, the diameter of the random graph
decreases as jV j increases (see, e.g., [11], p. 62). Therefore, in these cases, the graphs with larger jV j

13

DISTRIBUTION A: Distribution approved for public release



tend to have larger components of low diameter that can likewise be detected during the early stages of
the BnB algorithm.

In order to demonstrate the applicability of our algorithms on real-life graphs, Tables 4- 6 present the
results obtained from solving various DIMACS graph instances with the same number of scenarios and
distribution of uncertain vertex weights as above. Observe that the BnB method outperforms CPLEX
over the vast majority of tested instances, and more than two orders of magnitude in improvements
were observed for various cases. However, in several cases even the BnB algorithm failed to obtain an
incumbent solution within the time limit (denoted by “1”), underscoring the complex nature of many
real-life graphs.

p D 1 p D 2 p D 3

jV j jV j jV j

D.G/ Algorithm Output 50 100 200 50 100 200 50 100 200

0:0125

Time (s) 0.95 4.46 61.64 32.18 91.33 3043.69 129.07 278.05 NA
CPLEX Instance 5 5 5 5 5 1 5 5 0

Objective 0.23 0.21 0.19 0.28 0.25 0.37 0.30 0.25 NA
Time (s) 0.23 1.04 5.01 8.63 25.13 80.27 35.64 100.08 301.68

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.23 0.21 0.19 0.28 0.25 0.21 0.30 0.25 0.21

0:025

Time (s) 1.44 7.49 177.34 46.96 233.35 — 93.66 352.55 NA
CPLEX Instance 5 5 5 5 5 0 5 5 0

Objective 0.23 0.20 0.17 0.28 0.23 0.54 0.29 0.23 NA
Time (s) 0.24 1.11 7.62 10.90 30.35 167.98 51.66 141.57 746.82

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.23 0.20 0.17 0.28 0.23 0.19 0.29 0.23 0.19

0:05

Time (s) 1.92 14.64 2185.63 60.53 472.10 — 123.17 776.51 NA
CPLEX Instance 5 5 5 5 5 0 5 5 0

Objective 0.20 0.18 0.15 0.23 0.19 0.20 0.24 0.19 NA
Time (s) 0.26 2.02 37.88 15.43 75.50 1087.92 65.07 368.43 3051.66

BnB Instance 5 5 5 5 5 5 5 5 1
Objective 0.20 0.18 0.15 0.23 0.19 0.16 0.24 0.19 0.16

0:1

Time (s) 4.25 322.01 — 150.96 — — 423.76 — NA
CPLEX Instance 5 5 0 5 0 0 5 0 0

Objective 0.18 0.15 0.14 0.20 0.18 0.41 0.20 0.18 NA
Time (s) 0.59 28.51 — 38.03 1451.43 — 183.78 — —

BnB Instance 5 5 0 5 5 0 5 0 0
Objective 0.18 0.15 0.14 0.20 0.16 0.15 0.20 0.16 0.15

0:15

Time (s) 9.48 2832.38 — 1055.83 — — 1862.11 — NA
CPLEX Instance 5 2 0 5 0 0 5 0 0

Objective 0.17 0.14 0.18 0.18 0.16 0.17 0.18 0.16 NA
Time (s) 2.41 2033.67 — 164.06 — — 707.16 — —

BnB Instance 5 3 0 5 0 0 5 0 0
Objective 0.17 0.14 0.18 0.18 0.14 0.20 0.18 0.15 0.22

Table 1: Average computation times (in seconds), number of instances solved to optimality (out of five)
and the average best objective values obtained by solving problem (11) using the proposed BnB algorithm
and CPLEX with k D 2 and risk measure (13).
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p D 1 p D 2 p D 3

jV j jV j jV j

D.G/ Algorithm Output 50 100 200 50 100 200 50 100 200

0:0125

Time (s) 0.88 6.12 NA 14.16 148.36 NA 86.09 258.75 NA
CPLEX Instance 5 5 0 5 5 0 5 5 0

Objective 0.22 0.19 NA 0.27 0.22 NA 0.27 0.21 NA
Time (s) 0.23 1.04 6.80 8.84 29.01 162.51 36.64 113.63 708.45

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.22 0.19 0.16 0.27 0.22 0.18 0.27 0.21 0.18

0:025

Time (s) 1.26 12.68 NA 27.07 516.78 NA 69.69 577.47 NA
CPLEX Instance 5 5 0 5 5 0 5 5 0

Objective 0.21 0.18 NA 0.24 0.19 NA 0.25 0.19 NA
Time (s) 0.24 1.59 81.50 11.28 65.54 2075.28 52.72 286.93 —

BnB Instance 5 5 5 5 5 4 5 5 0
Objective 0.21 0.18 0.15 0.24 0.19 0.15 0.25 0.19 0.15

0:05

Time (s) 2.79 287.23 NA 163.45 — NA 385.90 — NA
CPLEX Instance 5 5 0 5 0 0 5 0 0

Objective 0.17 0.14 NA 0.19 0.17 NA 0.19 0.16 NA
Time (s) 0.43 44.13 — 29.41 1060.88 — 131.34 1531.64 —

BnB Instance 5 5 0 5 4 0 5 1 0
Objective 0.17 0.14 0.14 0.19 0.15 0.18 0.19 0.15 0.17

0:1

Time (s) 14.27 25.41 NA 2656.62 3425.15 NA 2797.45 3311.62 NA
CPLEX Instance 5 2 0 5 1 0 2 1 0

Objective 0.15 0.11 NA 0.15 0.11 NA 0.15 0.11 NA
Time (s) 3.00 719.53 3.70 367.80 — 4.05 941.06 — 4.96

BnB Instance 5 3 5 5 0 5 5 0 5
Objective 0.15 0.11 0.10 0.15 0.11 0.10 0.15 0.11 0.10

0:15

Time (s) 50.30 480.23 NA 2329.51 — NA 1003.57 — NA
CPLEX Instance 5 5 0 2 0 0 3 0 0

Objective 0.13 0.11 NA 0.13 0.12 NA 0.13 0.12 NA
Time (s) 2.50 0.29 4.63 762.31 0.50 4.94 998.11 1.51 5.89

BnB Instance 5 5 5 5 5 5 4 5 5
Objective 0.13 0.11 0.10 0.13 0.11 0.10 0.13 0.11 0.10

Table 2: Average computation times (in seconds), number of instances solved to optimality (out of five)
and the average best objective values obtained by solving problem (11) using the proposed BnB algorithm
and CPLEX with k D 3 and risk measure (13).

5 Conclusions

We have considered an RA-k problem which entails finding a k-club of minimum risk in a graph. HMCR
risk measures were utilized for quantifying the distributional information of the stochastic factors asso-
ciated with vertex weights. It was shown that the decision version of RA-k problem is NP-hard for any
fixed positive integer k, and the optimal solutions are maximal k-clubs. A combinatorial BnB solution
algorithm was developed and tested on a special case of RA-k problem when k D 2; 3; 4. Numeri-
cal experiments on randomly generated graphs of various configurations suggest that the proposed BnB
algorithm can significantly reduce solution times in comparison with the mathematical programming
model solved using CPLEX MIP solver.
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p D 1 p D 2 p D 3

jV j jV j jV j

D.G/ Algorithm Output 50 100 200 50 100 200 50 100 200

0:0125

Time (s) 0.90 7.30 NA 27.09 206.30 NA 118.25 299.46 NA
CPLEX Instance 5 5 0 5 5 0 5 5 0

Objective 0.21 0.17 NA 0.25 0.18 NA 0.26 0.19 NA
Time (s) 0.23 1.13 15.13 8.25 31.98 409.93 47.41 160.66 2001.38

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.21 0.17 0.14 0.25 0.18 0.15 0.26 0.19 0.15

0:025

Time (s) 1.60 21.97 NA 50.10 1475.67 NA 79.91 1714.83 NA
CPLEX Instance 5 5 0 5 5 0 5 5 0

Objective 0.19 0.15 NA 0.22 0.16 NA 0.23 0.16 NA
Time (s) 0.23 2.46 — 11.58 91.57 — 63.31 514.33 —

BnB Instance 5 5 0 5 5 0 5 5 0
Objective 0.19 0.15 0.12 0.22 0.16 0.13 0.23 0.16 0.13

0:05

Time (s) 4.34 — NA 461.18 — NA 929.33 — NA
CPLEX Instance 5 0 0 5 0 0 5 0 0

Objective 0.16 0.12 NA 0.16 0.12 NA 0.16 0.12 NA
Time (s) 0.66 728.07 2.71 35.37 — 3.06 177.83 — 4.23

BnB Instance 5 5 5 5 0 5 5 0 5
Objective 0.16 0.12 0.10 0.16 0.12 0.10 0.16 0.12 0.10

0:1

Time (s) 33.72 1776.46 NA 898.37 449.72 NA 493.52 500.88 NA
CPLEX Instance 5 4 0 3 3 0 4 3 0

Objective 0.13 0.13 NA 0.13 0.11 NA 0.13 0.11 NA
Time (s) 4.63 0.25 3.71 187.73 0.47 4.07 236.05 1.72 5.33

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.13 0.11 0.10 0.13 0.11 0.10 0.13 0.11 0.10

0:15

Time (s) 25.40 2503.89 NA 282.75 — NA 271.86 — NA
CPLEX Instance 5 5 0 5 0 0 5 0 0

Objective 0.13 0.11 NA 0.13 0.12 NA 0.13 0.12 NA
Time (s) 0.04 0.30 4.63 0.22 0.53 4.97 1.54 1.95 6.42

BnB Instance 5 5 5 5 5 5 5 5 5
Objective 0.13 0.11 0.10 0.13 0.11 0.10 0.13 0.11 0.10

Table 3: Average computation times (in seconds), number of instances solved to optimality (out of five)
and the average best objective values obtained by solving problem (11) using the proposed BnB algorithm
and CPLEX with k D 4 and risk measure (13).
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Mixed-Integer Programming with a Class of Nonlinear
Convex Constraints

Alexander Vinel� Pavlo A. Krokhmal�

Abstract

We study solution approaches to a class of mixed-integer nonlinear programming problems that
arise from recent developments in risk-averse stochastic optimization and contain second-order and
p-order cone programming as special cases. We explore possible applications of some of the solution
techniques that have been successfully used in mixed-integer conic programming and show how they
can be generalized to the problems under consideration. Particularly, we consider branch-and-bound
method based on outer polyhedral approximations, lifted nonlinear cuts, and linear disjunctive cuts.
Results of numerical experiments with discrete portfolio optimization models are presented.

Keywords: Mixed-integer nonlinear programming, measures of risk, branch-and-bound, valid in-
equalities, conic programming

1 Introduction

In this work we consider solution approaches to a special class of mixed-integer nonlinear optimization
problems that includes, among others, mixed integer second- and p-order cone programming problems.
Developing the corresponding solution approaches can also be viewed as a way to explore applicabil-
ity of some of the methods extensively used in mixed-integer conic programming literature in a more
general setting. While our interest in the particular class of problems studied here stems from recent
developments in risk-averse stochastic optimization (Vinel and Krokhmal, 2014b; Rysz et al., 2014),
similar models may arise in other fields of science and engineering in the context of “generalized means”
(see below). Namely, in the present study we consider mixed-integer nonlinear programming problems
of the form

min c>x

s. t. v�1k

 
mkP
jD1

pkj vk

�
nP
iD1

akijxi C b
k
j

�!
�

nP
iD1

aki0xi C b
k
0 ; k D 1; : : : ; K

Hx � h
x 2 Zn1

C
�Rn2

C
;

(1a)

(1b)

(1c)

(1d)
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where n D n1 C n2 is the dimensionality of the mixed-integer decision vector x, and c, h, H are vectors
and a matrix of appropriate dimensions.

The main object of interest in problem (1) is the set of nonlinear constraints (1b), where it is assumed that
coefficients pkj are positive, pkj > 0, for all values of j and k, and functions vk W R 7! R, k D 1; : : : ; K,
have the following properties:

(i) vk.t/ D 0 for t � 0,

(ii) vk.t/ are increasing and convex for t � 0,

(iii) vk are such that constraints (1b) are convex.

To simplify the exposition and notation, in what follows we are going to suppress index k in (1b),
effectively considering problem (1) with a single nonlinear constraint, K D 1. Then, given the above
assumptions on function v, it is straightforward to see that problem (1) can be rewritten in the form

min c>x

s. t. w0 � v
�1

�
mP
jD1

pj v.wj /

�
wj �

nP
iD1

aijxi C bj ; j D 1; : : : ; m

w0 �
nP
iD1

ai0xi C b0

Hx � h; w � 0; x 2 ZN1

C
�RN2

C
:

(2a)

(2b)

(2c)

(2d)

(2e)

The expression in the right-hand side of the nonlinear constraint (2b) is well known in the litera-
ture under the names of quasi-arithmetic, Kolmogorov, or Kolmogorov-Nagumo mean of the sequence
fw1; : : : ; wmg, provided that the positive coefficients pj satisfy p1 C : : : C pm D 1 (see, for exam-
ple, Bullen et al., 1988; Hardy et al., 1952). In the operations research and economics domains, it is
related to the concept of certainty equivalent (Wilson, 1979; McCord and Neufville, 1986), or the de-
terministic quantity such that a rational decision maker with a utility function v would be indifferent
between choosing this certain quantity or a random outcome W that may have realizations w1; : : : ; wm
with probabilities p1; : : : ; pm.

In the present work, our interest in solving problems of the form (1)–(2) derives from risk-averse stochas-
tic optimization models that employ the certainty equivalent measures of risk (Vinel and Krokhmal,
2014b, see also Sections 2 and 5). This application also dictates the above requirements (i)–(iii) on
functions v. At the same time, it is easy to see that conditions (i)–(iii) naturally imply that the nonlin-
ear convex constraint (1b) represents a direct generalization of the second-order cone, or, more broadly,
p-order cone constraints w0 � k.w1; : : : ; wm/kp:

Formulation (1) without the integrality constraints has been previously considered in Rysz et al. (2014).
That work concentrates on linear constraints (2c), particularly in the case when the value of m is large,
which in the stochastic programming setting corresponds to a large number of scenarios (see Section
2). This computational challenge have been addressed by employing an efficient scenario decomposi-
tion framework. In the present endeavor we focus our attention on the challenges associated with the
nonlinear and integrality constraints in (1). From this point of view, problem (1) can be characterized
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as a mixed-integer nonlinear programming (MINLP) problem with a convex continuous relaxation, and
there exists an extensive body of literature discussing solution methods for either general MINLP or
mixed-integer conic programming (MICP). Since the formulation considered here is in some sense “in
between” of these two classes, our discussion is concentrated on attempts to utilize the specific structure
of the nonlinear constraint. While constraint (2b) is no longer necessary conic, in our discussion below
we will show that some of the solution procedures proposed for second- or p-order cone programming
(SOCP or pOCP) problems can be extended to this class as well.

Development of both of the most widely used approaches in mixed-integer programming (branch-and-
bound algorithm and valid inequalities) in relation to problem (2) will be addressed in this paper. We
begin by discussing risk-averse stochastic programming motivation for this problem in Section 2. In
Section 3 we present a version of branch-and-bound method targeted at the specific nonlinear constraints
considered in this paper. Next, in Section 4 we will address two procedures for generating inequalities
valid for the feasible set of (2): lifted nonlinear cuts and disjunctive cuts. Finally in Section 5 we will
present some results of numerical experiments. Relevant literature review will be presented in Sections
3 and 4.

In terms of developed solution procedures the main contributions of this paper in our view are the fol-
lowing. First, we show that two techniques (a special implementation of a branch-and-bound and lifted
nonlinear valid inequalities) that have been proposed in the context of mixed-integer second-order cone
programming (MISOCP) problems can be extended to the more general case considered here. While,
both of this extensions do not require novel theoretical developments, heavily relying on the results
already established in the literature, the novelty of the problem formulation justifies, in our view, our
interest in these extensions. Particularly, we show how these techniques can be reformulated in order
to address this new application area, while still allowing for the use of the already existing theoretical
basis. Secondly, we propose another numerical approach, which relies on a simple geometric idea for
construction of linear disjunctive cuts. To the best of our knowledge this particular scheme has not been
considered in the literature before.

2 Risk-Averse Stochastic Programming Motivation

Consider a function � W X 7! R [ fC1g, where X is an appropriate linear space of F-measurable
functions on a probability space .�;F ;P/ such that X D X.!/ 2 X is interpreted as a random outcome
representing a cost or loss associated with the uncertain event ! 2 �. Then, function � is referred to as a
risk measure, and defines a system of preferences on X (outcome X is preferred to Y iff �.X/ � �.Y /).
Additionally, suppose that outcome X depends on the value of a decision vector x 2 X . In this case
a problem of optimal decision making under uncertainty can be formulated as a (risk-averse) stochastic
programming problem

minfc.x/ j �.X.x; !// � h.x/; x 2 X g: (3)

Problems of this kind involving various forms of risk measure � have been extensively studied in the
literature, see, e.g., Krokhmal et al. (2011) for a survey. In the context of this paper we are concerned with
a particular type of certainty equivalent measures of risk, introduced in Vinel and Krokhmal (2014b),
which are defined as

�.X/ WD min
�

�C
1

1 � ˛
v�1Ev

�
ŒX � ��C

�
;
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where the deutility function v is nondecreasing, convex, such that v�1Ev.X/ is convex, and v.t/ D
v.Œt �C/ D v.maxf0; tg/. The class of certainty equivalent measures of risk possesses important method-
ological characteristics, such as convexity, isotonicity with respect to stochastic dominance ordering
induced by deutility function v (and, in particular, second-order stochastic dominance), etc., and con-
tains some well-known risk measures as special cases, including CVaR (Rockafellar and Uryasev, 2002)
and HMCR (Krokhmal, 2007).

Certainty equivalent measures of risk are amenable to simple implementation in stochastic programming
models via constraints of the form (2b) if the set of random events � can be assumed finite: � D
f!1; : : : ; !mg and Pf!j g D pj > 0 for j D 1; : : : ; m. Then, stochastic programming problem (3) can
be equivalently reformulated as

min
n
c.x/

ˇ̌̌
�C .1 � ˛/�1v�1

� mP
jD1

pj v
�
ŒX.x; !j / � ��C

��
� h.x/; x 2 X ; � 2 R

o
: (4)

If, additionally, it can be assumed that the loss function X.x; !/ is linear with respect to the decision
vector, i.e., X.x; !j / D a>j x C bj , and x 2 Zn1 � Rn2 , then (4) can be written as a special case of
MINLP (2)

min c.x/

s. t. �C .1 � ˛/�1w0 � h.x/

w0 � v
�1
� mP
jD1

pj v.wj /
�

wj � a>j xC bj � �; j D 1; : : : ; m

x 2 Zn1 �Rn2 ; w � 0; � 2 R;

(5a)

(5b)

(5c)

(5d)

(5e)

provided that c.x/ and h.x/ are linear as well. In view of the above, we refer to constraint (2b) as the
certainty equivalent constraint.

3 Branch-and-Bound based on Outer Polyhedral Approximations

3.1 Existing Methods and Approach due to Vielma et al (2008)

Branch-and-bound (BnB) methods for solving MINLP problems are often divided into two categories
depending on the way continuous relaxations are handled. The first group consists of the methods which
solve exact non-linear continuous relaxation, usually using some version of an interior point method
(see, for example Gupta and Ravindran, 1985; Borchers and Mitchell, 1994; Leyffer, 2001 and references
therein). Alternatively, polyhedral approximations can be employed to help with finding approximate so-
lutions of the continuous relaxations (Duran and Grossmann, 1986; Fletcher and Leyffer, 1994; Quesada
and Grossmann, 1992; Bonami et al., 2008; Vielma et al., 2008). This approach has been the basis for
a few MINLP solvers such as Bonmin (Bonami et al., 2008), FilMINT (Abhishek et al., 2010) or AOA
(AIMMS open MINLP solver). For example, outer approximation algorithms (AOA) solve alternating
sequence of MILP master problems and NLP subproblems, while in LP-NLP-based BnB methods (Que-
sada and Grossmann, 1992, FilMINT) the solution of a single master mixed-integer linear programming
(MILP) problem is terminated every time an integer valued candidate is found to solve an exact NLP,
solution of which is then used to generate new outer approximations.
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Another framework has been proposed by Vielma et al. (2008) for the case of mixed-integer second order
cone programming (MISOCP) problems. The authors exploit the fact that there exists an extremely ef-
ficient lifted outer polyhedral approximation of second order cones, and thus propose to solve full-sized
approximating LP at each node of the master MILP, while, as previously, an exact NLP is solved every
time a new integer solution is found. Note that in this case, the algorithm is guaranteed to find a solu-
tion that is "-feasible to the relaxation at each node of the BnB tree, as opposed to LP-NLP approach,
where NLP solution is used to generate new approximating facets. Hence, one of the key differences
between different implementations of such BnB methods can be viewed as a trade-off between the size
of approximating LPs (i.e., the accuracy of the approximation) and the number of exact NLPs that need
to be solved. Note that an exact NLP, of course, provides tighter lower bounds, and thus, more pruning
capabilities, while LPs bring-in superior warm-start efficiencies, consequently speeding up the process-
ing time in each node. In this sense, the approach of Vielma et al. (2008) can be viewed as the most
conservative in terms of the use of the exact solvers: NLPs are only solved when absolutely necessary to
verify incumbent integer solutions.

The fact that this approach relies on an efficient lifted approximation scheme is essential, since other-
wise exponentially large polyhedral approximations may be required to achieve guaranteed "-feasibility
for general nonlinear constraints. The main source of difficulty here can be associated with high di-
mensionality of the constraint, i.e., it can be seen as a manifestation of the “curse of dimensionality”.
In Vinel and Krokhmal (2014c) we have shown that this framework can be competitive even when no
such efficient approximation scheme is available by designing a branch-and-bound based on polyhedral
approximations for mixed-integer p-order cone programming (MIpOCP) problems. The key idea there
was the introduction of a cutting plane generation procedure for approximately solving continuous pOCP
relaxations. In the next subsection we are going to demonstrate that a similar approach is applicable in
the more general setting considered in the current paper. In fact, certainty-equivalent constraints can be
naturally viewed as the most general setting which still allows for direct application of the considered
dimensionality reduction techniques.

3.2 Lifted Approximation Procedure

In the context of MISOCP problems, efficient (in the dimensionality and number of facets) polyhedral
approximations of second-order cones due to Ben-Tal and Nemirovski (2001) are available, which are
constructed via a two-step procedure. During the first step, a lifting technique, dubbed by the authors
“tower of variables”, was used to express the high-dimensional second-order cone set via a number of
two-dimensional second-order cones, and then a clever lifting approximation procedure was applied to
the resulting low-dimensional second-order cone sets. In our previous work (Vinel and Krokhmal, 2014c)
dealing with general p-order cones, the second step of this procedure was replaced by a simpler gradient-
based approximation, which could be constructed via an efficient cutting plane procedure. In the current
endeavor, we again resort to the first-step lifting procedure due to Ben-Tal and Nemirovski (2001), and
then investigate the problem of constructing polyhedral approximations of the resulting low-dimensional
sets using a cutting plane technique.

Let us denote set described by constraint (2b) as

V .mC1/ WD
�

w 2 RmC1
C

ˇ̌̌̌
w0 � v

�1
� mP
jD1

pj v.wj /
��
; (6)

where, in order to unclutter the notation, we omit the dependence of V .mC1/ on the parameters pj and
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function v. We will call a set of form (6) “V -set”. Note also that from here on we assume that w 2 RmC1
C

in order to simplify the exposition. Analogous analysis can be conducted when this condition does not
hold.

Proposition 3.1 (Tower-of-variables). Given pj > 0, j D 1; : : : ; m; and a function v that satisfies as-
sumptions (i)–(iii), there exist values ˇ1; : : : ; ˇ2m�2 > 0 such that the projection of the 2m-dimensional
set eV .2m/ WD ˚w 2 R2mC

ˇ̌
w0 D w2m�1;

wmCj � v
�1
�
ˇ2j�1v.w2j�1/C ˇ2j v.w2j /

�
; j D 1; : : : ; m � 1

	
;

(7)

onto the space of variables w0; : : : ; wm equals the set V .mC1/. Moreover, ǰ can be selected in such a
way that ˇ2j�1 C ˇ2j D 1 for j D 1; : : : ; m � 1.

Proof. As it has been noted above, the set of inequalities in (7) defines a structure that can be referred to
as tower-of-variables, where each variable wj is represented by a node, and edges connect node wjCm
with w2j�1 and w2j . Let us define sets ‡j as ‡j D fj g if j D 1; : : : ; m and ‡mCj D ‡2j�1 [ ‡2j
for j D 1; : : : ; m � 1. In other words, set ‡j is the subset of indexes f1; : : : ; mg corresponding to the
initial (non-lifting) variables descending from wj in the tower-of-variables. In this case, let us take

ˇ2j�1 D

P
k2‡2j�1

pkP
k2‡2j�1[‡2j

pk
; ˇ2j D

P
k2‡2j

pkP
k2‡2j�1[‡2j

pk
; j D 1; : : : ; m � 1: (8)

Now, the claim of the proposition can be verified directly.

Remark Proposition 3.1 represents, perhaps, the most general version of the original “tower-of-
variables” scheme of Ben-Tal and Nemirovski (2001) proposed for second-order cone sets. Note also
that the choice of vector ˇ ensuring that the claim above holds is not unique. The particular approach
proposed in (8) guarantees that ˇ2j�1 C ˇ2j D 1, ensuring that each of the inequalities in (7) describes
a proper V -set.

Proposition 3.1 reduces the problem of constructing a polyhedral approximation for .mC1/-dimensional
V -set (6) to that for m � 1 three-dimensional (3D) V -sets V .3/ in (7),

V .3/ WD
˚
w 2 R3C

ˇ̌
w0 � f .w1; w2/

	
; (9)

where f .w1; w2/ WD v�1
�
ˇ1v.w1/ C ˇ2v.w2/

�
: More importantly, it drastically reduces the dimen-

sionality of the resulting polyhedral approximation; instead of the generally exponential in m number of
hyperplanes needed for approximation of set V .mC1/, only O.mk/ hyperplanes is required to approxi-
mate the lifted seteV .2m/, provided that each 3-dimensional V -set in (7) can be approximated with O.k/
hyperplanes.

In this respect, it is necessary to comment on the precise definition of approximation that we will use in
this work. Namely, we consider set

V .mC1/" WD

�
w 2 RmC1

C

ˇ̌̌̌
.1C "/v.w0/ �

mP
jD1

pj v.wj /

�
;
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and, accordingly, its three dimensional version

V .3/" WD
˚
w 2 R3C

ˇ̌
.1C "/v.w0/ � ˇ1v.w1/C ˇ2v.w2/

	
: (10)

Observe that such a choice of approximating condition allows us to connect the approximation quality of
a single three-dimensional constraint in the tower-of-variables construction with the multi-dimensional
case.

Proposition 3.2. Consider set V .mC1/ and its lifted representation eV .2m/. If each of the triples in
representation eV .2m/ satisfies .wmCj ; w2j�1; w2j /> 2 V .3/� for a given � > 0, then .w0; : : : ; wm/> 2
V .mC1/" , where " � .1C �/dlog2N e � 1 D dlog2N e� CO.�

2/:

Proof. The claim can be verified directly by expanding the tower-of-variables (see also Vinel and
Krokhmal, 2014c, Proposition 3.2).

Along with the primary definitioneV .mC1/" of "-approximation of a V -set, we also consider two additional
approximation approaches

V .3/" WD
˚
w 2 R3C

ˇ̌
v
�
.1C "/w0

�
� ˇ1v.w1/C ˇ2v.w2/

	
;

V
.3/

" WD
˚
w 2 R3C

ˇ̌
v.w0 C "/ � ˇ1v.w1/C ˇ2v.w2/

	
:

(11)

(12)

The set V .3/" is a direct extension of the usual approximation used in the case of conic sets (see, for

example, Ben-Tal and Nemirovski (2001)), while set V
.3/

" represents an absolute error "-approximation
of V -set. It should be emphasized here that only condition in (10) allows for a natural accuracy propaga-
tion analysis for the tower-of-variables construction as in Proposition 3.2. The other two approximating
conditions will be used in the discussion establishing finiteness of the proposed computational procedure
below.

Since the relaxed feasible set considered in the current work is convex, a cutting plane defined as

w0 � f .w
�
1 ; w

�
2 /C f

0
w1
.w�1 ; w

�
2 /.w1 � w

�
1 /C f

0
w2
.w�1 ; w

�
2 /.w2 � w

�
2 /; (13)

which is tangent to the 3-dimensional set V .3/ at point .f .w�1 ; w
�
2 /; w

�
1 ; w

�
2 /, is globally feasible. Hence,

the following general framework can be applied. We will consider a master problem in the form of (2),
where nonlinear constraint is substituted with a set of cutting planes (13):

min c>x

s. t. wmCj � f
�
w
kj

1 ; w
kj

2

�
C f 0w1

�
w
kj

1 ; w
kj

2

��
w2j�1 � w

kj

1

�
C f 0w2

�
w
kj

1 ; w
kj

2

��
w2j � w

kj

2

�
; j D 1; : : : ; m � 1; kj D 1; : : : ; Kj ;

(2c)–(2e);

where Kj is the number of cutting planes on variables wmCj ; w2j�1; w2j for all j , derived around

the pairs
�
w
kj

1 ; w
kj

2

�
, kj D 1; : : : Kj . Then, given a current solution w� of the master problem, we

can add new constraints around pairs
�
w�2j�1; w

�
2j

�
, for those j for which the selected approximation
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condition is violated. Afterwards, the master can be resolved and the iterative process continues. Next
we show that this procedure terminates after a finite number of iterations with a solution that satisfies the
prescribed approximation accuracy, assuming that the feasible sets considered are bounded. As it turns
out, an additional auxiliary approximation scheme may be required.

From here on we will assume that v.t/ D ˛tp C o.tp/ if t ! 0. The following simple lemma will
be useful below. We will omit the proof of this result since it can be obtained using standard calculus
techniques.

Lemma 3.3. If function v is finite, strictly increasing and convex on t � 0 and v.t/ D ˛tp C o.tp/ as
t ! 0, then v�1.�/ D ˛�1=p�

1=p C o.�
1=p/.

This claim allows us to establish asymptotic behavior of function f around zero. Indeed, observe that
f .w1; w2/ D v�1

�
ˇ1v.w1/ C ˇ2v.w2/

�
D v�1

�
ˇ1˛w

p
1 C ˇ2˛w

p
2 C o.w

p
1 C w

p
2 /
�
D .ˇ1w

p
1 C

ˇ2w
p
2 /

1=p C o
�
k.w1; w2/kp

�
. Moreover, since function f is convex, any plane tangent to this p-order

cone defined by constraint w0 � .ˇ1w
p
1 C ˇ2w

p
2 /

1=p is a supporting plane for epif by definition.

In view of this we propose the following auxiliary approximation scheme: whenever the current solution
of the master is such that k.w1; w2/k2 � ‚, then in addition to the regular constraint described above,
add a cutting plane tangent to the p-order cone, i.e.,

w0 � ˇ
1=p
1 w1

cosp�1 ��

.cosp �� C sinp ��/1�1=p
C ˇ

1=p
2 w2

sinp�1 ��

.cosp �� C sinp ��/1�1=p
; �� D arctan

ˇ
1=p
1 w�2

ˇ
1=p
2 w�1

;

where‚ is a preselected parameter. The analysis above implies that this cut does not violate the original
certainty-equivalent constraint, and moreover, as it will be demonstrated below, this approach guarantees
convergence of the proposed cutting plane procedure.

Proposition 3.4. Suppose that for a given solution w� of the master, cuts in the form of (13) are added
around all triples .w�mCj ; w

�
2j�1; w

�
2j /
> … V .3/" , where j 2 f1; : : : ; m � 1g and the described above

auxiliary approximation scheme is applied. Assuming that the feasible region is bounded, this cutting
plane procedure terminates after a finite number of iterations for any given " > 0.

Note that in this proposition we implicitly exclude cases when the original problem is infeasible but its
"-approximation in the sense (10) is feasible for every " > 0. Conditions that guarantee this are given
below in Proposition 3.9.

Before verifying the statement of Proposition 3.4, we establish a few subsidiary lemmas.

Lemma 3.5. If set V
.3/

" is used in the cutting plane scheme described above instead of V .3/" , then the
process terminates in a finite number of iterations even without the auxiliary scheme.

Proof. The claim follows directly from the fact that a bounded convex set in three-dimensions can be
approximately described by a number of supporting planes (one can derive this result directly by consid-
ering Taylor’s expansion of f ).

Lemma 3.6. If v.t/ D jt jp, then for any " > 0 there exists � > 0 such that V .3/� � V .3/" and vice versa,
i.e., for p-order cones the conditions in (10) and (11) are equivalent.
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Proof. Clearly, for any " > 0 there exists � > 0 such that .1C "/p D 1C �, which directly implies the
claim of the lemma.

Lemma 3.7. For any " > 0 and ı" > 0 there exists � > 0 such that

V
.3/

� \
˚
.w0; w1; w2/

>
2 R3

ˇ̌
.ˇ1w

p
1 C ˇ2w

p
2 /

1=p
� ı"

	
� V .3/" :

Proof. Let

� D min
.ˇ1w

p
1 Cˇ2w

p
2 /

1=p�ı"

v�1
�
ˇ1v.w1/C ˇ2v.w2/

�
� v�1

�
ˇ1v.w1/C ˇ2v.w2/

1C "

�
:

Observe that the minimum above is attained and is strictly positive, since we assume that the feasible
region is bounded and v�1 is strictly increasing. Now, if w0 � v�1.ˇ1v.w1/ C ˇ1v.w2// � � and
.ˇ1w

p
1 Cˇ2w

p
2 /

1=p � ı", thenw0 � v�1
�
ˇ1v.w1/Cˇ2v.w2/

1C"

�
, which implies the claim of the lemma.

Lemma 3.8. Consider set P .3/
� WD

˚
w 2 R3

C

ˇ̌
.1C �/w

1=p
0 � ˇ1w

1=p
1 C ˇ2w

1=p
2

	
, which is analogous

to V .3/� for a p-order cone. Then, for any " > 0 there exist � > 0 and ı > 0 such that

P .3/
� \

˚
.w0; w1; w2/

>
2 R3 j .ˇ1w

p
1 C ˇ2w

p
2 /

1=p
� ı

	
� V .3/" :

Proof. In order to establish this result we need to show that there exist � and ı such that if

.ˇ1w
p
1 C ˇ2w

p
2 /

1=p � ı and w0 �
.ˇ1w

p
1 Cˇ2w

p
2 /

1=p

.1C�/1=p
, then w0 � v�1

�
ˇ1v.w1/Cˇ2v.w2/

.1C"/1=p

�
. As we

have observed above, v�1.ˇ1v.w1/ C ˇ2v.w2// D .ˇ1w
p
1 C ˇ2w

p
2 /

1=p C o
�
k.w1; w2/kp

�
. Hence,

v�1
�
ˇ1v.w1/Cˇ2v.w2/

1C"

�
D

.ˇ1w
p
1 Cˇ2w

p
2 /

1=p

.1C"/1=p
C g.w1; w2/; where g.w1; w2/ D o

�
k.w1; w2/kp

�
. Then,

there exists ı, such that .ˇ1w
p
1 Cˇ2w

p
2 /

1=p � ı implies jg.w1; w2/j � .ˇ1w
p
1 Cˇ2w

p
2 /

1=p
�

1

.1C"=2/1=p
�

1

.1C"/1=p

�
. Consequently, it follows that v�1

�
ˇ1v.w1/Cˇ2v.w2/

1C"

�
�

.ˇ1w
p
1 Cˇ2w

p
2 /

1=p

.1C"=2/1=p
for such .w1; w2/.

Then the claim of the lemma is satisfied if we take � such that .1C �/ D .1C "=2/
1=p.

Proof of the Proposition. Assume to the contrary that the cutting plane procedure does not terminate af-
ter a finite number of iterations. Then, for at least one triple .wmCj ; w2j�1; w2j / the approximation
condition is violated infinitely many times and, therefore, infinitely many cutting planes are generated.
Let us denote this triple as .w0; w1; w2/. First, suppose that there exists � such that current solution�
w
.i/
0 ; w

.i/
1 ; w

.i/
2

�
of the master at iteration i satisfies

�w.i/1 ; w.i/2 �p � � for infinitely many itera-
tions. Consider � defined in Lemma 3.7 for " and ı" D �=2. By Lemma 3.5, after a finite number

of iterations the current solution satisfies
�
w
.i/
0 ; w

.i/
1 ; w

.i/
2

�>
2 V

.3/

� , which by Lemma 3.7 implies that�
w
.i/
0 ; w

.i/
1 ; w

.i/
2

�>
2 V .3/" contradicting with our assumption. Hence, this sequence of solutions con-

verges to zero.

In Vinel and Krokhmal (2014c), Proposition 6 we have shown that a finite number cutting planes is
sufficient to achieve any preselected accuracy (11) in the case of p-order cone constraints. In the current
context it implies that solution

�
w
.i/
0 ; w

.i/
1 ; w

.i/
2

�>
2 P.3/� for any preselected � after finitely many

applications of the auxiliary cuts, where P.3/� is defined in Lemma 3.8. Taking into account Lemmas 3.6
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and 3.8 this implies that
�
w
.i/
0 ; w

.i/
1 ; w

.i/
2

�>
2 V .3/" for all sufficiently small

�
w
.i/
1 ; w

.i/
2

�
, i.e, .w1; w2/

does not converge to zero, completing the proof.

Observe that the result of Proposition 3.4 essentially provides an exact algorithm for solving problem (2).
Indeed, once a solution with a desired accuracy " is found, an improved solution can be constructed by
adding new cutting planes. In Vinel and Krokhmal (2014c) a similar result has been established, namely it
has been shown that a cutting plane approximation procedure is guaranteed to terminate with "-feasible
solution in O."�1/ iterations for p-order cone programing and O."�0:5/ in the case of second-order
cones. Yet, an upper bound on the number of iterations that can be obtained from the proof presented
here would be excessively high due to the way this proof is constructed. It can be shown that this bound
is at least not better than O."�1:5/, where the corresponding “big-O” constant is very large. At the same
time, all our experiments with both conic and non-conic problems suggest that in practice only a small
fraction of all possible facets is generated, i.e., the fact that this bound can be very restrictive may not be
detrimental to real-life computational performance.

In conclusion of our discussion, we would like to comment on the relation between the feasible sets of
the initial nonlinear model and the presented approximated problem. Let us denote as Feas.V / the set
defined by constraints (1b) and (1c) and as Feas.V"/ the approximation of Feas.V / according to (10).
Next, we establish the conditions that guarantee that these feasible sets are “close” to each other (note
that it is possible to find examples where Feas.V / is empty, while Feas.V"/ is not). Following the results
presented in Ben-Tal and Nemirovski (2001), Section 4 for the case of second-order cone approximation
we can formulate the following result, which we present without a proof since the arguments in Ben-Tal
and Nemirovski (2001) apply here as well.

Proposition 3.9. Assume that the problem under consideration is: (i) strictly feasible, i.e., there exist Nx
and r > 0 such that

HNx � h; v�1
�P
j

pj v.a>j NxC bj /
�
� a>0 NxC b0 � r; (14a)

and (ii) “semibounded”, i.e., there exists R > 1 such that

Hx � h; v�1
�P
j

pj v.a>j xC bj /
�
� a0xC b0 ) a>0 xC b0 � R: (14b)

Then for every " > 0 such that ."/ D R"=r < 1, one has ."/NxC .1 � ."// Feas.V"/ � Feas.V / �
Feas.V"/:

3.3 Branch-and-Bound Method

Now that an efficient approximation procedure for solving continuous relaxations is determined, it can be
incorporated in a branch-and-bound method due to Vielma et al. (2008). Namely, we consider a master
mixed-integer linear programming (MILP) problem (denoted as P1), which is constructed from problem
(2) by substituting (2b) with a set of initial cutting planes of the form (13). The solution procedure
consists of applying a regular branch-and-bound method toP1, with two adjustments. First, lower bounds
obtained from the continuous relaxations of P1 are found by applying the approximation scheme due to
Proposition 3.4 with a preselected value of " D "1. Note that it is not necessary to remove any of
the added cutting planes before proceeding to the next node of the solution tree, since these constraints
are globally feasible. Second, when an integer-valued solution of P1 is found, in order to check its
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feasibility with respect to the exact nonlinear formulation and declare incumbent or branch further, the
exact continuous relaxation of P1 must be solved with bounds on the relaxed values of variables x
determined by the integer-valued solution in question (see, Vielma et al., 2008 for more details and
formal analysis). In order to solve the exact relaxation, we once again employ Proposition 3.4, that is to
say, we construct a second problem P2, which represents a continuous relaxation of (2). In this case, we
solve it using the same cutting plane procedure due to Proposition 3.4 but with " D "2 � "1 instead. A
sufficiently small value of "2 guarantees an essentially exact solution.

Note that it has been previously observed (see, Vielma et al., 2008; Vinel and Krokhmal, 2014c) that "1
can be selected to be relatively large and still provide promising computational results, which explains the
relation "2 � "1 above. Note also that in this case the described procedure can be viewed as a repetitive
resolving of relatively small-scale LP problems P1, which can benefit from warm-start routines, guided
by a regular branch-and-bound, with occasional calls to a larger-scale P2.

4 Valid Inequalities

4.1 Existing Approaches

It is well-known in the literature that valid inequality theory has been essential in development of efficient
solvers, particularly in mixed-integer linear programming (MILP). Building on this success, various
approaches to generating valid inequalities have been proposed for mixed-integer nonlinear programming
(MINLP) problems. To name a few: Atamtürk and Narayanan (2010, 2011) have proposed mixed-inter
rounding (MIR) and conic lifted cuts for conic programming problems; Stubbs and Mehrotra (1999)
studied cutting plane theory in 0-1 mixed-convex programming; Çezik and Iyengar (2005) proposed
Chvatal-Gomory cuts in conic programming; Bonami (2011) have considered lift-and-project cuts. There
have also been a series of publications addressing possible approaches to designing disjunctive (or split)
cuts in MINLP (for example, Saxena et al. 2008; Burer and Saxena 2012; Cadoux 2010; Kılınç et al.
2010; Modaresi et al. 2015 among others).

In this section we consider two approaches for generation of valid inequalities for the MINLP problem
(2). First, we discuss lifted nonlinear cuts building on the developments in Atamtürk and Narayanan
(2011) and Vinel and Krokhmal (2014a). Afterwards, we will present a simple geometric argument that
allows us to construct a class of linear disjunctive cuts valid for our feasible set.

4.2 Lifted Nonlinear Cuts

A lifting procedure for conic mixed-integer programming has been proposed in Atamtürk and Narayanan
(2011). Authors introduced a lifting scheme, which provides a way of generating new conic valid in-
equalities for mixed-integer conic sets. We have employed this approach for solving MIpOCP problems
in Vinel and Krokhmal (2014a) and obtained promising numerical results for a class of risk-averse port-
folio optimization models. While this technique has been proposed as a way to generate conic cuts for
conic feasible sets, we show next that it can be extended for V -sets as well. As it will be clear from
our discussion below, our main contribution here lies in the reformulation of the procedure in nonconic
terms, while all of the proofs directly follow from the previous developments in Atamtürk and Narayanan
(2011); Vinel and Krokhmal (2014a).
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In this section we will closely follow the notation introduced in Atamtürk and Narayanan (2011). Once
again, consider set V.mC1/ defined by (6). It is going to play the role of conic feasible set used in
Atamtürk and Narayanan (2011). We can then define

T n.b/ WD
�

xi 2 X i
ˇ̌̌̌
b �

nP
iD0

Aixi 2 V.mC1/
�
; (15)

where each X i is a mixed-integer set in Rni and Ai and b are of appropriate dimensions. It is also
assumed that 0 2 X i for all i . Suppose that u W R 7! R satisfies the same assumptions as function v and
construct set U .mC1/ analogously to V.mC1/. Let us further assume that inequality g � F0x0 2 U .mC1/
is valid for T 0.b/. Atamtürk and Narayanan (2011) show how this inequality can be lifted by computing

F` 2 Rn` for ` D 1; : : : ; i so that cut g �
iP̀
D0

F`x` 2 U .mC1/ is valid for T i .b/ when sets V.mC1/

and U .mC1/ are proper cones. Then, the following theorem can be shown to hold for a lifting set ˆi .v/
defined as

ˆi .v/ WD
�

d 2 Rp
ˇ̌̌̌
g �

nP
iD0

Fixi � d 2 U .mC1/ for all .x0; : : : ; xi / 2 T i .b � v/
�
:

Recall also that a parametrized set ˆ.v/ is called superadditive on Rm if ˆ.u/C ˆ.v/ � ˆ.uC v/ for
all u and v, where ˆ.u/Cˆ.v/ denotes the usual Minkowski sum.

Theorem 4.1. 1. ˆi .v/ is closed and convex.

2. 0 2 ˆi .0/

3. ˆiC1.v/ � ˆi .v/

4. F1; : : : ;FiC1 generate a valid inequality for T iC1.b/ iff FiC1xi 2 ˆi .AiC1xi / for all xi .

5. If �.v/ � ˆ0.v/ is superadditive, then F1; : : : ;FiC1 generate a valid inequality for T iC1.b/
whenever FiC1xi 2 �.AiC1xi / for all xi .

Proof. Since the arguments establishing the analogous results in Atamtürk and Narayanan (2011) do not
rely on the conic assumption, we believe it to be unnecessary to repeat those here.

As it was noted above, we employed an analogous result for the case of p-order cones (i.e., V.mC1/ D
f.x0; x/ 2 RmC1 j x0 � kxkpg) in Vinel and Krokhmal (2014a). As it turns out, our results regarding
lifted cuts presented there can be carried through without major changes in case of V -sets. Particularly,
we can consider set bT n.b/ as

bT n.b/ WD (.x; y; t/ 2 ZnC �R2C

ˇ̌̌̌
ˇ v
 �

nP
iD1

aixi � b

�
C

!
C v.y/ � v.t/

)
;

and then show that the following claim holds.

Proposition 4.2. Inequality

v

 �
.1 � f /.x � bbc/C

nP
iD1

˛ixi

�
C

!
C v.y/ � v.t/ (16)
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is valid for bT n.b/, where Œa�C D maxf0; ag, ˛i D
�
ai � b C bbc.1 � f /

M

�
C

, f D b � bbc, and M is

a constant such that xi �M for all i .

This result is a very limited application of Theorem 4.1. Indeed, here we are considering the case when
the set U .mC1/ is the same as the initial set V.mC1/ and, moreover, not only all the analysis is restricted
to three-dimensional nonlinear constraints, but also the second dimension (represented by variable y) is
assumed to be continuous (in other words, integral structure of the second dimension is relaxed). Despite
these simplifications, it was demonstrated in Vinel and Krokhmal (2014a) that such an approach may
yield promising computational results in MIpOCP problems. In Section 5 we will numerically analyze
this procedure in mixed-integer programming with certainty equivalent constraints. In fact, two of these
stipulations can be viewed as natural assumptions for the task of deriving valid inequalities in our case.
Observe that due to the tower-of-variables technique presented in Section 3 the constraints are already
represented in three-dimensional form, and furthermore, it is also highly undesirable from computational
perspective to consider U .mC1/ different from initial set V.mC1/, since this would result in additional
numerical challenges associated with the new type of nonlinearity introduced to the problem.

4.3 Linear Disjunctive Cuts

Throughout this section we will use the following notation: Nx D .x0; x/ 2 RnC1. We will also reformu-
late sets defined y certainty equivalent constraints as

Nx 2 K; K WD
˚
Nx 2 RnC1

ˇ̌
F.x/ � x0

	
; F .x/ WD v�1

�
mP
jD1

v
�
ja>j xC bj j

��
; x 2 Zn

C
: (17)

Note that here we consider F.x/ WD v�1
� mP
jD1

v
�
ja>j x C bj j

��
instead of possible F.x/ WD

v�1
� mP
jD1

v.Œa>j x C bj �C/
�

, which would be in accordance with the stochastic programming motiva-

tions. Such a choice simplifies some of our development below, and since it results in a relaxed set K,
any valid inequality obtained for K will be valid for problem (2) as well.

Disjunctive or split cuts have been extensively studied in the literature, especially when applied to MIP
problems (Balas, 1971). This approach is based on a very intuitive idea: consider disjunction xk �
�0 _ xk � �1 D �0 C 1 with �0 2 ZC, where k 2 1; : : : ; n is preselected. Due to integrality condition
there are no feasible solutions outside of this disjunction, hence, system (17) implies that

Nx 2 conv
��
Nx 2 K
xk � �0

�[�
Nx 2 K
xk � �1

��
: (18)

Consequently, any inequality describing this convex hull is valid for the feasible region of (17). More-
over, in the case of mixed-integer linear programming (MILP) all the sets involved (including the con-
vex hull above) are polyhedral, which substantially simplifies the construction procedures, and hence,
increases the effectiveness of the cuts. There also exists a considerable amount of literature on general-
izing this approach for MINLP problems (Burer and Saxena, 2012; Cadoux, 2010; Kılınç et al., 2010).
Recently, various efforts to design nonlinear disjunctive cuts have also been presented (see Andersen
and Jensen, 2013; Belotti et al., 2012; Bienstock and Michalka, 2014; Modaresi et al., 2015; Burer and
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Kılınç-Karzan, 2014; Kılınç-Karzan, 2015; Kılınç-Karzan and Yıldız, 2015). In some cases (see, for ex-
ample, Modaresi et al., 2015) it may be possible to describe the convex hull (18) using a single nonlinear
constraint; in particular, such a description is available for second-order conic sets. Note that many of the
works mentioned above look at the problem in settings considerably more general than described here.
Next, we will study applicability of the disjunctive cut framework to sets of form (17).

The first question that we could ask here is whether it might be better to aim at finding a closed-form
nonlinear description of (18) following one of the recent developments mentioned above, or whether a
simpler linear description could be more useful in this case. Note that if such a nonlinear description is to
be found and then used in a numerical procedure to solve problem (2), then it is highly desirable for it to
be expressed in the same form as the nonlinear constraint already present in the problem. For example,
if the computational procedures used are tailored specifically to the constraints already present in the
problem, then addition of a new type of “nonlinearity” that is not comparable with these approaches
may be impractical. The descriptions obtained in the literature for mixed-integer second-order cone
programming express the convex hull of the disjunction in terms of quadratic sets, essentially preserving
the second-order conic nonlinearity in many practical cases, thus justifying the approach.

Consequently, consider (18) with certainty equivalent set (17). We can conclude that it is desirable that
its description is itself represented in terms of function F defined in (17). At the same time, consider
supporting hyperplanes for (18). It is easy to see that for at least some of such hyperplanes, their inter-
section with the convex hull is a straight line segment in between xk D �0 and xk D �1. On the other
hand, a boundary of a set defined in terms of function F does not in general contain such segments, since
it is nonconic. Thus, it is reasonable to expect that such a closed-form description of convex hull (18)
cannot be expressed in terms of function F alone. With this in mind, we propose to concentrate on a
more modest goal of constructing supporting hyperplanes for (18), or in other words, linear disjunctive
cuts.

Next we propose an intuitive idea for a procedure aimed at avoiding difficulties associated with the
general disjunctive cut generation techniques available in the literature by exploiting specific struc-
tural properties of (18). Suppose that we have selected a point Nx0 2 K such that x0

k
D �0, i.e.,

Nx0 is located on one side of the disjunction. Given such a Nx0, find Nx1 2 K such that x1
k
D �1

and @.k/F.x1/ \ @.k/F.x0/ ¤ ;, where subdifferential @.k/ is taken with respect to variables xi ,
i ¤ k. A linear disjunctive cut is then constructed as a constraint

P
i

˛ixi C ˇ � x0, where

.˛1; : : : ; ˛k�1; ˛kC1; : : : ; ˛n/
> 2 @.k/F.x0/ \ @.k/F.x1/, while ˛k and ˇ are selected in such a way

that
P
i

˛ix
0
i C ˇ D x

0
0 and

P
i

˛ix
1
i C ˇ D x

1
0 . Geometrically it means that the constructed hyperplane

is such that it passes through both Nx0 and Nx1 and is supporting to both sides of the disjunction at these
points. Clearly, convexity of K implies that this cut is valid.

The described procedure can be formulated as follows. Given Nx0 2 Rn �R, k 2 f1; : : : ; ng, �0; �1 2 Z,
and function v W R 7! R, find Nx1 2 Rn �R and .˛; ˇ/ 2 Rn �R such that
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

nP
iD1

˛ix
0
i C ˇ D x

0
0

nP
iD1

˛ix
1
i C ˇ D x

1
0

x0k D �0

x1k D �1

F.x0/ D x00
F.x1/ D x10
.˛1; : : : ; ˛k�1; ˛kC1; : : : ; ˛n/

>
2 @.k/F.x0/ \ @.k/F.x1/:

(19a)

(19b)

(19c)

(19d)

(19e)

(19f)

(19g)

Let us denote by P the half space valid for the linear cut
nP
iD1

˛ixi C ˇ � x0, i.e., P WD
˚
Nx 2

RnC1
ˇ̌ nP
iD1

˛ixi C ˇ � x0
	
: By @K and @P we will understand boundaries of these sets. In Propo-

sition 4.5 below we will establish validity of this approach, but first we consider a few useful lemmas.

Lemma 4.3. The following statements hold:

(i) Nxi 2 @K for i D 0; 1;

(ii) Nxi 2 @P for i D 0; 1;

(iii) if Nx … P and xk D �0, then Nx … K;

(iv) if Nx … P and xk D �1, then Nx … K.

Proof. Claims (i) and (ii) follow immediately from (19a)–(19b) and (19e)–(19f). In order to see that
(iii) holds, note that (19) implies that on the space restricted by xk D �0 the set @P is a supporting
hyperplane for the set @K, which immediately implies (iii). Analogous observation holds for (iv).

Lemma 4.4. The following statemets hold:

(i) if Nx 2 @P and xk < �0, then Nx … intK;

(ii) if Nx 2 @P and xk > �1, then Nx … intK.

Proof. First, consider claim (i). Suppose that the contrary holds, i.e., Nx 2 intK. Then, there exists an
" > 0 such that Ny D .x0 � "; x/ 2 K and Ny … P . Now consider the segment connecting points Ny and
Nx1, i.e., the set f�NyC .1 � �/Nx1 j� 2 Œ0; 1�g DW T . Since both Ny 2 K and Nx1 2 K, then T � K. Since
�0 < �1 and xk < �0, then there exists Nz D .´0; z/ 2 T such that ´k D �0. At the same time, Nz … P as
Ny … P while Nx1 2 @P . Thus, by Lemma 4.3 (iii) one has that Nx … K, which contradicts the assumption
above. Hence, claim (i) holds. Statement (ii) can be proved analogously.

Proposition 4.5. If Nx 2 K and xk … Œ�0; �1�, then Nx 2 P .
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Proof. Assume the contrary, i.e., that Nx … P , which means that
nP
iD1

˛ixi C ˇ > x0. Then, there exists

Ny D .x0 C "; x/ 2 @P (take " D
nP
iD1

˛ixi C ˇ � x0). Moreover, by definition Ny 2 intK. If xk < �0,

then this conclusion contradicts Lemma 4.4 (i), otherwise, xk > �1 and the conclusion above contradicts
Lemma 4.4 (ii).

This result guarantees that the cut generated by (19) is feasible for (18). Moreover, it is easy to see that
for any Q̌ > ˇ and Q̨ D ˛ the corresponding cut is not feasible due to Lemma 4.3 (i). Hence, system
(19) produces a tight cut in the sense that it cannot be improved by an affine transformation.

Observe that Nx.1/ 2 Rn �R and .˛; ˇ/ 2 Rn �R are the unknowns in the system (19). Given a specific
value of x1 2 Rn such that @.k/F.x.0// \ @.k/F.x.1// ¤ ; it is easy to determine the rest. Indeed, x10 is
uniquely defined by (19f), vector .˛1; : : : ; ˛k�1; ˛kC1; : : : ; ˛n/> can be selected according to (19g), and
˛k and ˇ are fixed by (19a) and (19f). Thus, the most challenging step in this procedure is the selection
of x1 satisfying @.k/F.x.0// \ @.k/F.x.1// ¤ ;. In the end of this section we will show that such x1
can always be found, but let us first note that this step can be numerically cumbersome since function
F defined in (17) is only piecewise continuously differentiable. Consequently, we propose to employ
another approximation procedure in order to achieve this goal. Namely, we consider substituting jt j Ñ
p
t2 C �, and hence, defining QF .x/ WD v�1

�
mP
jD1

v
�q

.a>j xC bj /2 C �
��

. Then, QF is continuously

differentiable and in order to find x1 we need to solve a system of nonlinear equations with a given x0
@ QF
@xi
.x1/ D @ QF

@xi
.x.0//; i D 1; : : : ; k � 1; k C 1; : : : ; n: After this system is solved, the validity of the

found x1 can be verified directly by comparing @.k/F.x.0// and @.k/F.x.1//.

In order to establish existence of vector x1, let us introduce some additional notation. Without
loss of generality we will assume that k D 1, and let us define Qaj D .a2j ; : : : ; anj /

> for all j ,
QA D . Qa>1 I : : : I Qa

>
m/ and Qx D .x2; : : : ; xn/

>, i.e, expressions with tildes represent the values restricted to

variables .x2; : : : ; xn/. Let us also define F `.Qx/ WD v�1
�P
j

pj v
�
jQa>j QxC bj C a1j�`j

��
for ` D 0; 1.

Proposition 4.6. Assuming that QA is full rank, for any Qx0 there exists Qx1 such that @F 1.Qx1/\@F 0.Qx0/ ¤
;.

Proof. Let us consider vector ˛ 2 @F 0. Qx1/. By definition ˛ gives us a supporting hyperplane to epiF 0

at point Qx0. Let us denote this hyperplane as P 0. The full rank of QA guarantees that this hyperplane is
non-degenerate, i.e., both functions F ` substantially depend on all variables Qx. In order to show that the
claim of the proposition holds, we need to establish that there exists a supporting hyperplane to epiF 1

which is parallel to P 0.

First, let us assume that there exists a constantM such that epi.F 1CM/ � epiF 0. Then, the hyperplane
P 0 is valid for epi.F 1 CM/ (meaning that it does not intersect with it). In this case, since domF ` D

Rn�1, there exists a vertical translation of P 0, which is supporting to epi.F 1 C M/. Clearly, this
immediately implies the claim of the proposition.

Now, we will show that such a constant exists. Let us introduce an auxiliary variable vector w 2 Rm

and functions G`.w/ WD v�1
�P
j

pj v
�
jwj C bj C a1j�`j

��
, i.e., G`.w/ D F `.Qx/ if wj D Qa>j Qx for j D

2; : : : ; m and ` D 0; 1. Clearly, both G` are proper and convex and domG` D Rm. Consider recession
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function G`0C of G` (see, e.g., Rockafellar, 1997 for details), .G`0C/.w/ D lim�#0 �G`.��1w/ D
lim�#0 �v�1

�P
j

pj v
�
j��1wjCbjCa1j�`j

��
:Observe that since v�1.0/ D 0 and v�1 is nondecreasing

and concave, then v�1.mt/ � mv�1.t/. With this in mind,

.G`0C/.w/ � lim
�#0

�v�1
�
mmax

j

n
v
�
j��1wj C bj C a1j�`j

�o�
� lim
�#0

mmax
j

n
jwj C �.bj C a1j�`/j

o
D mmaxfjwj jg < C1:

Hence, dom.Gl0C/ D Rm, which implies thatG` is Lipschitz continuous on Rm with Lipschitz constant
L D supf.G`0C/.w/ j kwk D 1g (see, for example, Auslender and Teboulle, 2003, Proposition 2.5.5).
Further, note that G0.w/ D G1.w C �/, where �j D a1j�0 � a1j�1. Thus, jG1.w/ � G0.w/j D
jG1.w/ � G1.w C �/j � Lk�k. Finally, if we set wj D Qa>j Qx, then jF 1.Qx/ � F 0.Qx/j D jG1.w/ �
G0.w/j �M , if M D Lk�k < C1, which completes the proof.

Finally, it is necessary to discuss practical selection of k, �0, �1 and Nx0. If the cut generation procedure
is implemented in a branch-and-bound setting, it can be assumed that a solution of a relaxed problem
Nxrelax is known beforehand. Hence, it is natural to select k 2

˚
f1; : : : ; ng

ˇ̌
xrelax
k
… Z

	
, �0 D bxrelax

k
c and

�1 D �0 C 1. Since the goal of generating a valid inequality is to cutoff Nxrelax, then it is also natural to
pick Nx0 according to x0i D x

relax
i , for i ¤ k, x0

k
D �0 and x00 D F.x

0/.

Before concluding this section, it is worth noting that the proposed procedure does not represent a general
way to generate a split closure for the feasible set (17). Alternatively, it can be seen as a quick and simple
numerical procedure to find a valid inequality that can cuts off the current non-integral solution.

5 Numerical Experiments

In this section we will report the results of numerical case studies designed to evaluate the performance
the proposed techniques. As it has been discussed in the introduction, our main interest in the prob-
lem class considered in this paper stems from risk-averse approaches to stochastic programming, and
hence we base our numerical experiments on this application area. Next, we will discuss the particular
formulation used in our study.

5.1 Model Formulation

According to discussion in Section 2, a scenario-based formulation for risk-minimization problem
minf�.X.x; !// j x 2 X g, where � is a certainty equivalent measure of risk, X.x; !j / D a>j x C bj ,
and x 2 Zn1 �Rn2 , reduces to

min �C
1

1 � ˛
t

s. t. t � v�1
� mP
jD1

pj v.wj /
�

wj � a>j xC bj � �; j D 1; : : : ; m

x 2 Zn1 �Rn2 ; w � 0; � 2 R:

(20a)

(20b)

(20c)

(20d)
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Here, function v is nondecreasing, convex and such that v�1
� mP
jD1

pj v.wj /
�

is convex in w. Some of the

promising choices for v have been discussed in Vinel and Krokhmal (2014b). Particularly, v.t/ D Œt �C
leads to the definition of Conditional-Value-at-Risk (CVaR), a popular risk measure in many stochastic
programming applications (see, Rockafellar and Uryasev, 2000, 2002 for more details). It has also been
observed in the literature (see, Krokhmal, 2007; Vinel and Krokhmal, 2014b) that v.t/ D Œt �p

C
for p > 1

and v.t/ D eŒt�C � 1 can lead to some encouraging decision making performance in the presence of the
so-called heavily tailed distributions of risks.

Computationally, problem (20) with linear v.t/ D Œt �C leads to a linear mixed-integer programming
problem, while v.t/ D Œt �

p
C

results in a MIpOCP problem, both of which have been studied before as
previously discussed. Since the solution approaches proposed in the current paper are targeted towards
the more general non-conic cases, in our numerical experiments here we concentrate on the case of
v.t/ D eŒt�C � 1, which has been referred to in Vinel and Krokhmal (2014b) as Log-Exponential Convex
Risk (LogExpCR) measure.

We utilize financial portfolio optimization model as the basic decision making problem in our study. It is
often used as a test model in the risk-averse stochastic programming literature, and additionally, enjoys
abundance of real-life historic data that can be used in various case studies.

In a standard risk-reward portfolio selection problem, a set of n financial assets is considered. Then, the
loss is defined as the negative portfolio return, X.x; !/ D �r.!/>x, where x stands for the vector of
portfolio weights, and r D r.!/ is the uncertain vector of assets’ returns. Consequently, the goal is to
select portfolio weights x in such a way that the risk associated with this choice, as evaluated by a risk
measure �, is minimized, while maintaining a certain predefined value of the expected return (reward):

min
x2Rn
C

n
�.�r>x/

ˇ̌̌
E.r>x/ � Nr; 1>x � 1

o
; (21)

where Nr is the prescribed level of the expected return, x 2 Rn
C

denotes the no-short-selling requirement,
and 1 D .1; : : : ; 1/>.

We consider two types of investment constraints that lead to mixed-integer portfolio optimization prob-
lems. Many floor trading systems mandate that assets can only be bought in “lots” of shares (for instance,
in multiples of 1,000 shares), which leads to a lot-buying constrained portfolio optimization model:

min
x2Rn
C
; z2Zn

C

�
�.�r>x/

ˇ̌̌̌
E.r>x/ � Nr; 1>x � 1; x D

L

C
Diag.$/ z

�
; (22)

where L is the size of the lot, C is the investment capital (in dollars), and vector $ 2 Rn represents
the prices of assets. Similarly, it may be desirable for a portfolio to contain no more than a prescribed
number of assets, which leads to cardinality-constrained portfolio optimization model:

min
x2Rn
C
; z2f0;1gn

n
�.�r>x/

ˇ̌̌
E.r>x/ � Nr; 1>x � 1; x � z; 1>z � Q

o
; (23)

where Q is the maximum number of assets in the portfolio.

If historical data (scenarios) for the assets’ returns is known, then problem (21) with a LogExpCR risk
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measure can be formulated in the form of (20):

min �C .1 � ˛/�1t

s. t. t � ln
�

mP
jD1

pj e
wj

�
;

wC .r1; : : : ; rN />xC 1� � 0;

x>
�P
j

pj rj
�
� Nr;

1>x � 1; x � 0; w � 0:

(24)

Problems (22) and (23) can be easily reformulated accordingly.

We used historical data for n assets chosen at random from the stocks traded on NYSE, such that histor-
ical prices are available for 5100 consecutive trading periods preceding December, 2012. Returns over
m consequent 10-day periods starting at a (common) randomized date were used to construct the set
of m equiprobable scenarios for the stochastic vector r. The values of parameters were set as follows:
L D 1000, C D 100;000,Q D 5, ˛ D 0:9, Nr D 0:005. Historical values of the assets’ returns have been
scaled by multiplying parameter MUL, i.e., rij D MUL$i;jC10�$i;j

$i;j
, where $i;j is the close price of

asset i at day j . Note that since LogExpCR measure is not positively homogeneous the value of MUL
has an impact on the decisions preferred (see Vinel and Krokhmal, 2014b for more details).

5.2 Preliminary Study: Polyhedral Approximation Method for Convex Portfolio Opti-
mization

As a preliminary computational study, we performed experiments with the convex formulation (21). Our
goal here was to test the performance of the proposed cutting plane approximation procedure compared
to the existing exact approaches. Namely, we implemented the iterative algorithm presented in Section
3.2 using CPLEX LP solver for iteratively resolving the master problem and compared it against MOSEK
NLP interior point solver.

In addition, we also implemented a simpler version of the iterative approximation approach, which is
applicable for the case of exponential constraints. This scheme follows the same iterative master cutting
plane approach with the only difference being the structure of the tangent planes utilized. Observe that

using simple variable substitution, the log-exponential constraint in (24): t � ln
� mP
jD1

pj e
wj

�
can be

equivalently expressed asP
j

pj �j � 1; ewj�t � �j ; �j � 0; j D 1; : : : ; m:

Consequently, the cutting planes (which are actually lines) in this case can be constructed as tangent
to the nonlinear constraint of the form ex � y. In the remainder of this section we will refer to this
approach as simple approximation procedure. Our aim here is to verify whether the lifting procedure
presented in Section 3.2 is superior to this more straightforward approach.

Results of this study are summarized in Table 1. For each combination of number of assets n, number
of scenarios m and the value of scaling parameter MUL we generated 20 random instances based on
the historical data as described above. The columns “MOSEK”, “Simple” and “CP” correspond to the
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average solution time used by MOSEK NLP solver, iterative procedure based on simple approximation
and lifted cutting planes procedure presented in Section 3.2 respectively. Column “MOSEK-CP” reports
maximum absolute difference in portfolio values obtained with MOSEK and lifted cutting planes pro-
cedure, while column “MOSEK-SA” contains the maximum absolute difference between MOSEK and
the simple approximation. The approximation accuracy as well as CPLEX and MOSEK feasibility and
optimality tolerances were set to 10�6.

Observe that for all instances the lifted approach outperforms the simple approximation both in terms of
solution time and accuracy, which confirms the theoretical advantages of the lifting procedure discussed
in Section 3.2. The lifted cutting plane approach returns portfolios that are mostly within the prescribed
tolerance from the exact solutions due to MOSEK. Note that since the values reported are absolute
differences, they naturally increase with the increase in the value of parameter MUL. Moreover, the
approximation procedure finds these solutions significantly faster than MOSEK for the instances with
MUL D 10000 and large-scale instances with MUL D 1 (recall that a change in the scaling parameter
in fact changes the optimal solution, i.e., this scaling is more than a simple computational convenience).
Additionally, MOSEK could not find an optimal solution returning an infinite portfolio value for some
instances with MUL D 10000, whereby the polyhedral approximation-based procedure may be more
stable numerically.

The goal of this preliminary study was to check whether the essentially exact algorithm based on the
approximation procedure can be competitive against the state-of-the-art NLP solvers, and whether the
introduction of lifting leads to computational improvement. We clearly observed that at least for the class
of instances considered here, the cutting-plane method performs favorably compared to MOSEK NLP
solver, outperforming it significantly for some instances. At the same time, the cutting plane procedure
based on simple approximation scheme does not possess any favorable computational properties.

These results, obtained on convex problems, are also of significant importance in the context of branch-
and-bound process for the corresponding mixed-integer programming models. It has been demonstrated
in the literature that in the case of second-order cone programming a branch-and-bound method based
on polyhedral approximation procedure can still outperform conventional approaches even while the ap-
proximation scheme itself may not result in computational improvement for the convex model (Glineur,
2000; Vielma et al., 2008). Our previous experience with solving p-order cone programming problems
suggested a similar conclusion. In view of this, the results of this preliminary study allow us to confirm
that the proposed approach to the mixed-integer model is promising. In the next subsection we will study
this case directly.

5.3 Discrete Portfolio Optimization

CPLEX MIP and LP solvers have been used to implement the branch-and-bound method described in
Section 3. Namely, callback routines have been employed in order to add approximating hyperplanes
at each node of the solution tree, while a goal framework was utilized to guide branching. The exact
algorithm based on approximation scheme presented in Section 3 has been used to verify incumbent
solutions. The two families of valid inequalities have been employed by means of CPLEX callback
routines. In our experiments we only added cuts at the root node of the branch-and-bound tree. A quasi-
Newton’s method has been used to solve the underlying nonlinear systems of equations when finding
linear split cuts presented in Section 4.3.

Two sets of experiments have been conducted to estimate the effects of the techniques proposed in the

20

DISTRIBUTION A: Distribution approved for public release



MUL D 1 MUL D 10000
n m MOSEK Simple CP MOSEK-CP MOSEK-SA MOSEK Simple CP MOSEK-CP MOSEK-SA

20 100 0.11 0.13 0.07 3.00E-06 1.64E-04 0.11 0.09 0.05 0.00E+00 6.00E-04
200 0.07 0.32 0.08 2.00E-07 1.14E-05 0.21 0.25 0.08 1.00E-04 1.50E-03
500 0.14 1.72 0.20 1.00E-06 3.30E-05 0.50 0.92 0.17 0.00E+00 1.20E-03
1000 0.28 7.03 0.55 1.00E-06 3.10E-05 1.69 2.89 0.30 0.00E+00 7.00E-03
2000 0.66 29.26 1.57 2.00E-06 3.40E-05 2.44 11.01 0.58 0.00E+00 6.00E-03
5000 5.83 209.20 5.54 1.00E-06 1.71E-03 8.74 77.57 1.41 0.00E+00 4.00E-02

50 100 0.08 0.09 0.03 0.00E+00 2.52E-04 0.09 0.10 0.05 0.00E+00 1.00E-03
200 0.17 0.36 0.07 1.00E-06 4.60E-05 0.19 0.28 0.09 0.00E+00 8.00E-04
500 0.25 2.44 0.28 1.30E-06 8.50E-06 0.99 1.12 0.24 0.00E+00 1.00E-03
1000 0.53 10.73 0.94 6.00E-07 1.10E-05 3.56 3.26 0.48 0.00E+00 9.00E-03
2000 0.99 47.65 2.29 1.00E-06 4.20E-05 6.09 12.15 0.99 0.00E+00 3.00E-03
5000 5.83 347.72 9.21 2.00E-06 8.03E-04 25.93 74.60 2.41 *** ***

100 100 0.20 0.11 0.03 0.00E+00 1.12E-04 0.11 0.10 0.04 3.00E-03 3.00E-03
200 0.23 0.47 0.08 2.00E-06 0.00E+00 0.23 0.29 0.09 0.00E+00 1.00E-03
500 0.87 3.46 0.37 8.00E-07 5.40E-06 3.13 1.28 0.31 2.00E-04 1.50E-03
1000 1.81 17.73 1.55 8.00E-07 1.05E-05 8.82 3.79 0.69 0.00E+00 8.10E-03
2000 2.53 79.85 2.72 1.00E-06 1.50E-05 12.12 14.99 1.65 1.00E-03 5.00E-03
5000 14.67 458.29 22.37 2.00E-06 6.88E-04 56.00 77.15 2.97 *** ***

200 100 0.12 0.11 0.03 1.00E-06 7.10E-05 0.17 0.11 0.05 2.00E-03 2.00E-03
200 0.32 0.45 0.08 1.00E-06 1.32E-04 0.43 0.35 0.12 1.00E-03 2.00E-03
500 1.93 4.02 0.31 9.00E-07 3.20E-06 1.72 1.54 0.35 1.00E-04 1.30E-03
1000 5.63 23.79 1.38 5.30E-07 5.49E-06 17.71 5.24 1.02 1.00E-05 7.64E-03
2000 4.21 125.77 3.07 5.00E-07 9.70E-06 16.67 17.18 2.48 0.00E+00 5.00E-03
5000 21.41 700.39 59.05 1.00E-06 5.17E-04 104.00 74.34 3.90 *** ***

500 100 0.16 0.14 0.05 1.00E-06 6.32E-04 0.42 0.13 0.07 0.00E+00 1.00E-03
200 0.75 0.58 0.12 3.00E-06 8.40E-05 0.52 0.35 0.13 4.00E-03 4.00E-03
500 3.86 5.78 0.48 3.00E-07 1.40E-06 3.23 1.96 0.51 1.00E-04 1.20E-03
1000 21.02 42.64 2.00 4.00E-07 -2.00E-07 14.62 7.31 1.68 1.00E-04 5.40E-03
2000 87.45 308.63 4.59 2.00E-07 1.30E-06 332.82 27.64 7.31 *** ***
5000 143.58 1312.82 27.77 1.00E-06 2.75E-04 564.27 76.05 9.01 *** ***

Table 1: Performance of the solvers for convex portfolio optimization problems. Columns MOSEK, Simple and
CP represent average solution time (in seconds) over 20 instances of MOSEK NLP solver, cutting planes method
based on simple approximation scheme and cutting planes method with a lifted scheme. The maximum absolute
difference in the portfolio value is reported in columns MOSEK-SA (comparing solution due to MOSEK with the
one due to simple approximation) and MOSEK-CP (MOSEK and lifted cutting planes method). n is the number of
assets, m is the number of scenarios, MUL is the scaling parameter. “***” corresponds to the instances for which
MOSEK returned an infinite portfolio value.
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n 5 10 20

m 10 50 100 10 50 100 10 50 100

CGBNB 0.93 0.87 0.34 0.80 1.46 1.62 1.51 2.70 3.99
AIMMS 49.17 67.10 73.55 104.43 151.35 221.19 195.29 618.61 7710.85

Table 2: Running time of AIMMS-AOA and the proposed implementation of the branch-and-bound method in
lot-buying constrained portfolio optimization. Results averaged over 20 instances.

n 10 20 50

m 500 1000 2000 500 1000 2000 500 1000 2000

CG-BNB 0.74 1.72 5.10 12.03 22.57 50.64 108.67 240.38 263.57
AIMMS 11.65 35.90 96.88 294.74 459.21 639.43 863.50 1489.65 2071.98

Table 3: Running time of AIMMS-AOA and the proposed implementation of the branch-and-bound method in
cardinality constrained portfolio optimization. Results averaged over 20 instances.

paper. First, the implementation of the branch-and-bound method from Section 3 has been compared
against AIMMS AOA implementation. The results for lot-buying and cardinality constrained problems
are summarized in Tables 2 and 3, respectively. Observe that our custom implementation significantly
outperforms AOA method for all choices of the parameters n andm. It is worth noting that, as it is stated
in AIMMS manual, their implementation is much more efficient for binary variables, which is the case
in our cardinality constrained problems. This observation explains the fact that in our experiments the
improvement over AOA method has been less significant for this class of problems. Overall, we can
conclude that these experiments confirm that the branch-and-bound approach presented here can be seen
as a viable strategy for solving the considered class of MINLP problems.

In the second stage of our case study, we aimed at evaluating the effect that valid inequalities defined
in Section 4 can play in solving problems (22) and (23). Results of this case study are summarized in
Table 4 and 5. Note that for each problem size 20 instances were generated and solved with a 1 hour
time limit. We report the number of instances solved within the time limit, solution time and number of
nodes in the branch-and-bound tree averaged over the instances that have been solved in 1 hour by all
three approaches, and the average integrality gap among instances not solved to optimality.

We can observe that in both of the models the usage of the proposed valid inequalities leads to improved
solution performance, especially for larger problems sizes. It is, in our view, particularly important to
note that we are able to solve more problem instances within the time limit, as well as significantly
reduce the integrality gap. It can also be noted that while in the case of lot-buying constrained problems
the lifted cuts presented in Section 4.2 exhibit the best overall performance, in cardinality constrained
optimization, this approach does not provide any improvement over pure branch-and-bound.

6 Conclusions

In this paper we discussed solution approaches for a class of mixed-integer nonlinear programming
problems, which arise from some recent developments in risk-averse stochastic optimization. In our
study, we revisit some of the methods that have been previously proposed in the literature, and show that
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n m number solved running time nodes in solution tree gap after time limit

lifted split no cuts lifted split no cuts lifted split no cuts nonlin split no cuts

50 500 20 20 20 11.57 9.92 11.01 5864.50 4309.05 5905.65 — — —
1000 20 20 20 41.07 38.45 28.57 9307.70 8265.75 6453.65 — — —
2000 20 20 20 68.12 68.11 138.37 7411.30 6559.15 13016.30 — — —
5000 19 19 19 695.14 622.18 581.49 18903.58 16145.32 15368.53 2.41% 5.19% 6.25%

100 500 19 14 14 400.22 436.02 467.32 129745.46 173480.42 190997.69 — — —
1000 15 13 13 456.84 502.90 1300.26 77967.64 86555.38 221685.91 2.68% 14.02% 6.06%
2000 19 20 15 179.06 337.18 223.93 11908.73 24955.93 16974.87 3.01% — 5.46%
5000 19 20 18 673.90 670.20 731.66 16101.59 13831.22 17026.82 — — —

200 500 6 1 0 — — — — — — 87.92% 46.49% 191.83%
1000 0 0 0 — — — — — — 16.31% 24.34% 22.99%
2000 8 6 5 498.57 787.33 2153.11 25654.00 35918.50 138485.00 8.33% 3.84% 6.50%
5000 17 12 12 1408.58 1804.24 1539.48 19271.44 20442.11 22581.56 — — —

500 500 0 0 0 — — — — — — 128.91% 128.89% 200.04%
1000 0 0 0 — — — — — — 109.42% 114.03% 116.02%
2000 0 0 0 — — — — — — 29.27% 29.34% 28.95%
5000 2 1 0 — — — — — — 124.45% 113.67% 213.15%

1000 500 0 0 0 — — — — — — 97.01% 98.57% 106.20%
1000 0 0 0 — — — — — — 227.93% 227.73% 316.26%
2000 0 0 0 — — — — — — 54.65% 55.90% 65.86%
5000 0 0 0 — — — — — — 111.06% 214.31% 219.85%

Table 4: Performance of two valid inequality families in lot-buying constrained portfolio optimization. The rows
refer to: no cuts – pure branch-and-bound presented in Section 3, lifted – lifted cuts from Section 4.2, split –
disjunctive cuts introduced in Section 4.3. Results averaged over 20 instances. Running time and nodes in solution
tree columns reflect only instances solved within 1 hour time limit by all three approaches. Similarly gap after
time limit corresponds to instances for which no optimal solution was found within the time limit for each of the
methods.

n m number solved running time nodes in solution tree gap after time limit

lifted split no cuts lifted split no cuts lifted split no cuts nonlin split no cuts

nonlin split no cuts nonlin split no cuts nonlin split no cuts nonlin split no cuts
50 500 20 20 20 108.84 122.91 108.67 25574.20 26636.55 25574.20 — — —

1000 20 20 20 240.62 252.45 240.38 19634.00 19239.50 19634.00 — — —
2000 20 20 20 263.00 288.33 263.57 7651.90 7506.10 7651.90 — — —
5000 20 20 20 152.99 76.31 151.91 1274.30 994.70 1274.30 — — —

100 500 6 7 6 2001.51 1795.24 1998.73 293837.33 111602.00 293837.33 23.63% 20.40% 23.62%
1000 0 3 0 — — — — — — 29.48% 28.22% 29.36%
2000 3 5 3 2770.52 2440.59 2796.48 54008.00 42317.75 54008.00 13.08% 11.84% 13.07%
5000 18 19 18 1043.44 991.63 1047.82 7770.28 6734.63 7770.28 4.63% 4.60% 4.61%

200 500 0 1 0 — — — — — — 85.93% 74.56% 85.78%
1000 0 0 0 — — — — — — 71.87% 52.10% 71.86%
2000 0 0 0 — — — — — — 37.56% 17.68% 37.56%
5000 0 0 0 — — — — — — 8.87% 8.82% 8.87%

500 500 0 1 0 — — — — — — 178.71% 79.19% 178.56%
1000 0 0 0 — — — — — — 126.57% 26.28% 126.58%
2000 0 0 0 — — — — — — 67.29% 37.03% 67.30%
5000 0 0 0 — — — — — — 21.63% 13.15% 21.63%

1000 500 0 0 0 — — — — — — 223.31% 123.95% 223.31%
1000 0 0 0 — — — — — — 163.56% 65.14% 163.57%
2000 0 0 0 — — — — — — 92.95% 73.52% 92.96%
5000 0 0 0 — — — — — — 219.35% 124.00% 219.36%

Table 5: Performance of two valid inequality families in cardinality constrained portfolio optimization. The rows
refer to: no cuts – pure branch-and-bound presented in Section 3, lifted – lifted cuts from Section 4.2, split –
disjunctive cuts introduced in Section 4.3. Results averaged over 20 instances. Running time and nodes in solution
tree columns reflect only instances solved within 1 hour time limit by all three approaches. Similarly gap after
time limit corresponds to instances for which no optimal solution was found within the time limit for each of the
methods.
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these approaches can be naturally generalized to the MINLP problems in question. In addition, we also
propose a new simple procedure for generating disjunctive cuts. The conducted numerical experiments
produce promising results.
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Certainty Equivalent Measures of Risk

Alexander Vinel Pavlo A. Krokhmal�

Department of Mechanical and Industrial Engineering
University of Iowa, 3131 Seamans Center, Iowa City, IA 52242, USA

Abstract

We study a framework for constructing coherent and convex measures of risk that is inspired by
infimal convolution operator, and which is shown to constitute a new general representation of these
classes of risk functions. We then discuss how this scheme may be effectively applied to obtain a class
of certainty equivalent measures of risk that can directly incorporate preferences of a rational decision
maker as expressed by a utility function. This approach is consequently employed to introduce a new
family of measures, the log-exponential convex measures of risk. Conducted numerical experiments
show that this family can be a useful tool for modeling of risk-averse preferences in decision making
problems with heavy-tailed distributions of uncertain parameters.

Keywords: Coherent risk measures, convex risk measures, stochastic optimization, risk-averse pref-
erences, utility theory, certainty equivalent, stochastic dominance, log-exponential convex measures
of risk

1 Introduction

Informally, a decision making problem under uncertainties can be stated as the problem of selecting a
decision x 2 C � Rn, given that the cost X of this decision depends not only on x, but also on a random
event ! 2 �: X D X.x; !/. A principal modeling challenge that one faces in this setting is to select
an appropriate ordering of random outcomes X , or, in other words, define a way to choose one uncertain
outcome, X1 D X.x1; !/, over another, X2 D X.x2; !/. A fundamental contribution in this context
is represented by the expected utility theory of von Neumann and Morgenstern (1944), which argues
that if the preferences of a decision maker are rational, i.e., they satisfy a specific system of properties
(axioms), then there exists a utility function u W R 7! R, such that a decision under uncertainty is optimal
if it maximizes the expected utility of the payoff. Equivalently, the random elements representing payoffs
under uncertainty can be ordered based on the corresponding values of expected utility of these payoffs.
Closely connected to the expected utility theory is the subject of stochastic orderings (see Levy, 1998),
and particularly stochastic dominance relations, which have found applications in economics, decision
theory, game theory, and so on.

An alternative approach to introducing preference relations over random outcomes X.x; !/, which has
traditionally been employed in optimization and operations research literature, and which is followed
�Corresponding author. E-mail: krokhmal@engineering.uiowa.edu
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in the present work, is to introduce a function � W X 7! R, where X is an appropriately defined space
containing X , such that X1 is preferred to X2 whenever �.X1/ < �.X2/. The decision making problem
in the presence of uncertainties can then be expressed as a mathematical program

minf�.X/ W X D X.x; !/ 2 X ; x 2 C g; (1)

where function � is usually referred to as a risk measure. In stochastic programming literature, the ob-
jective of a minimization problem like (1) has traditionally been chosen in the form of the expected cost,
�.X/ D EX (Prékopa, 1995; Birge and Louveaux, 1997), which is commonly regarded as a represen-
tation of risk-neutral preferences. In the finance domain, the pioneering work of Markowitz (1952) has
introduced a risk-reward paradigm for decision making under uncertainty, and variance was proposed as
a measure of risk, �.X/ D �2.X/. Since then, the problem of devising risk criteria suitable for quan-
tification of specific risk-averse preferences has received significant attention (see a survey in Krokhmal
et al., 2011). It was noticed, however, that “ad-hoc” construction of � may yield risk functionals that,
while serving well in a specific application, are flawed in a general methodological sense. Artzner et al.
(1999) suggested an axiomatic approach, similar to that of von Neumann and Morgenstern (1944), to
defining a well-behaved risk measure � in (1), and introduced the concept of coherent measures of risk.
Subsequently, a range of variations and extensions of the axiomatic framework for designing risk func-
tionals have been proposed in the literature, such as convex and spectral measures of risk (Föllmer and
Schied, 2004; Acerbi, 2002), deviation measures (Rockafellar et al., 2006), and so on, see an overview
in Krokhmal et al. (2011) and Rockafellar and Uryasev (2013). Since many classes of axiomatically de-
fined risk measures represent risk preferences that are not fully compatible with the rational risk-averse
preferences of utility theory, of additional interest are risk measures that possess such a compatibility in
a certain sense.

In this paper we propose a new representation for the classes of coherent and convex measures of risk,
which builds upon a previous work of Krokhmal (2007). This representation is then used to introduce
a class of coherent or convex measures of risk that can directly incorporate rational risk preferences as
prescribed by the corresponding utility function, through the concept of certainty equivalent. This class
of certainty equivalent measures of risk contains some of the existing risk measures, such as the popular
Conditional Value-at-Risk (Rockafellar and Uryasev (2000, 2002)) as special cases. As an application
of the general approach, we introduce a two-parameter family of log-exponential convex risk measures,
which quantify risk by emphasizing extreme losses in the tail of the loss distribution. Two case studies
illustrate the practical merits of the log-exponential risk measures; in particular, it is shown that these
nonlinear measures of risk can be preferable to more traditional measures, such as Conditional Value-at-
Risk, if the loss distribution is heavy-tailed and contains catastrophic losses.

The rest of the paper is organized as follows. In Section 2.1 we briefly discuss the classes of coherent and
convex measures of risk as well as some of their properties. Section 2.2 establishes that the constructive
formula of Krokhmal (2007) does actually constitute a representation for coherent risk measures and
can be generalized to the case of convex measures of risk. Using this representation, in Section 2.3 we
introduce a class of coherent or convex measures of risk that are based on certainty equivalents of some
utility functions. In Section 2.4 we further study some of the properties of this class of risk measures.
Finally, Section 3 discusses the log-exponential convex measures of risk, and illustrates their properties
with two case studies.
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2 Risk Measures Based on Infimal Convolution

2.1 Coherent and Convex Measures of Risk

Consider a random outcome X 2 X defined on an appropriate probability space .�;F ;P/, where X is
a linear space of F-measurable functions X W � 7! R. A function � W X 7! R D R [ fC1g is said to
be a convex measure of risk if it satisfies the following axioms:

(A0) lower semicontinuity (l.s.c.);

(A1) monotonicity: �.X/ � �.Y / for all X � Y ;

(A2) convexity: �
�
�X C .1 � �/Y

�
� ��.X/C .1 � �/�.Y /, � 2 Œ0; 1�;

(A3) translation invariance: �.X C a/ D �.X/C a, a 2 R.

Similarly, function � W X ! R is said to be a coherent measure of risk if it satisfies (A0)–(A3), and,
additionally,

(A4) positive homogeneity: �.�X/ D ��.X/; � > 0.

Remark 2.1. We assume that the space X is endowed with necessary properties so that the corresponding
risk measures are well defined. Specifically, X is a space of integrable functions, EjX j < C1, and is
equipped with an appropriate topology, which is assumed to be the topology induced by convergence
in probability, unless stated otherwise. Also, it is assumed throughout the paper that all considered
functions are proper (recall that function f W X 7! R is proper if f .X/ > �1 for all X 2 X , and
domf D fX 2 X jf .X/ < C1g ¤ ;).

Remark 2.2. In this work we adopt the traditional viewpoint of engineering literature that a random
quantity X represents a cost or a loss, in the sense that smaller realizations of X are preferred. In eco-
nomics literature it is customary to considerX as wealth or payoff variable, whose larger realizations are
desirable. In most cases, these two approaches can be reconciled by inverting the sign of X , which may
require some modifications to the properties discussed above. For example, the translation invariance
axiom (A3) will have the form �.X C a/ D �.X/ � a in the case when X is a payoff function.

Remark 2.3. Without loss of generality, we also assume that a convex measure of risk satisfies nor-
malization property: �.0/ D 0 (observe that coherent measures necessarily satisfy this property). First,
such a normalization requirement is natural from methodological and practical viewpoints, since there is
usually no risk associated with zero costs or losses. Second, due to translation invariance any convex �
can be normalized by setting Q�.X/ D �.X/ � �.0/.

Remark 2.4. It is worth noting that normalized convex measures of risk satisfy the so-called subhomo-
geneity property:

(A40) subhomogeneity: �.�X/ � ��.X/ for � 2 .0; 1/ and �.�X/ � ��.X/ for � > 1.

Indeed, in order to see that the first inequality in (A40) holds, observe that ��.X/ D ��.X/ C .1 �

�/�.0/ � �.�X C .1 � �/0/ D �.�X/ for � 2 .0; 1/. Similarly, if � > 1, then 1
�
�.�X/ D 1

�
�.�X/C�

1 � 1
�

�
�.0/ � �.X/.
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Artzner et al. (1999) and Delbaen (2002) have proposed a general representation for the class of co-
herent measures by showing that a mapping � W X 7! R is a coherent risk measure if and only if
�.X/ D supQ2Q EQX; where Q is a closed convex subset of P -absolutely continuous probability
measures. Föllmer and Schied (2002) have generalized this result to convex measures of risk. Since
then, other representations have been proposed, see Kusuoka (2001, 2012); Frittelli and Rosazza Gianin
(2005); Dana (2005); Acerbi (2002). For example, Acerbi (2002) has suggested a spectral representa-
tion: �.X/ D

R 1
0 VaR�.X/ .�/d�, where  2 L1.Œ0; 1�/. While many of these results led to important

theoretical insights and methodological conclusions, relatively few of them provided practical ways for
construction of new risk measures in accordance with specified risk preferences, which are also con-
ducive to implementation in mathematical programming problems. Below we discuss a representation
that may be better suited for this purpose.

2.2 An Infimal Convolution Representation for Coherent and Convex Measures of Risk

An approach to constructing coherent measures of risk that was based on the operation of infimal con-
volution was proposed in Krokhmal (2007). Given a function � W X 7! R, consider a risk measure �,
which we will call a convolution-based measure of risk, in the form

�.X/ D inf
�
�C �.X � �/: (2)

Then, the following claim has been shown to hold.

Proposition 2.1 (Krokhmal, 2007, Theorem 1). Suppose that function � satisfies axioms (A0)–(A2) and
(A4), and, additionally, is such that �.�/ > � for all constant � ¤ 0. Then the infimal convolution in
(2) is a proper coherent measure of risk. Moreover, the infimum in (2) is attained for all X , and can be
replaced with a minimization operator.

In this section we show that this approach can be substantially generalized, which leads us to formulate
Theorem 2.5 below. Before moving to this general result, we establish a few subsidiary lemmas. First, we
demonstrate that expression (2) is a representation, i.e., any coherent measure of risk can be expressed
in the form of (2).

Lemma 2.2. Let � be a coherent measure of risk. Then, there exists a proper function � W X 7! R
that satisfies axioms (A0)–(A2) and (A4), �.�/ > � for all constant � ¤ 0, and is such that �.X/ D
min� �C �.X � �/:

Proof. For a given proper and coherent � consider ��.X/ D 2Œ�.X/�C, where ŒX�C D maxfX; 0g, and
observe that �� is proper and satisfies (A0)–(A2) and (A4) if � is coherent, and, moreover, ��.�/ D
2Œ��C > � for all real � ¤ 0. Finally, min� � C ��.X � �/ D min� � C 2Œ�.X � �/�C D min� � C
2Œ�.X/ � ��C D �.X/, i.e., any coherent � can be represented in the form of (2).

Remark 2.5. It is easy to see from the proof of Lemma 2.2 that the function � in representation (2) is not
determined uniquely for any given coherent measure �. Indeed, one can choose (among possibly others)
�.X/ D ˛Œ�.X/�C for any ˛ > 1.

Next, we show that the infimal convolution representation (2) can be generalized to convex measures
of risk. Technically, the proof of Proposition 2.1 in Krokhmal (2007) relies heavily on the positive
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homogeneity property (A3) of coherent risk measures, but as we demonstrate below, it can be amended
in order to circumvent this issue. Recall that, given a proper, l.s.c., convex function f on Rn and
x 2 domf , its recession function .f 0C/.y/ can be defined as

.f 0C/.y/ D lim
�!1

f .xC �y/ � f .x/
�

:

Note that the above expression does not depend on x 2 domf , hence .f 0C/.y/ is well-defined (Rock-
afellar, 1997, Theorem 8.5). The result established below mirrors that of Proposition 2.1 in the case of
convex measures of risk.

Lemma 2.3. Suppose that a proper function � satisfies axioms (A0)–(A2), and, additionally, is such that
�.�/ > � for all constant � ¤ 0 and �.0/ D 0. Then the infimal convolution �.X/ D inf� �C�.X ��/
is a proper convex risk measure. Moreover, the infimum is attained for all X , and can be replaced with
min�.

Proof. For any fixed X 2 X consider function �X .�/ D �C �.X � �/. Clearly, since � is proper, l.s.c.
and convex, �X is l.s.c., convex in � and �X > �1 for all �. Next we will show that the infimum in
the definition of � is attained for any X . First, suppose that dom�X D ;, hence �.X/ D C1, and the
infimum in the definition is attained for any � 2 R. Now, assume that there exists Q� 2 dom�X , and
consequently both �.X � Q�/ < C1 and �.X/ < C1. Recall that a proper, l.s.c. function �X attains its
infimum if it has no directions of recession (see Rockafellar, 1997, Theorem 27.2), or in other words, if
�X0

C.�/ > 0 for all � ¤ 0. Observe that

.�X0
C/.�/ D lim

�!1

Q�C �� C �.X � Q� � ��/ � Q� � �.X � Q�/

�

D � C lim
�!1

�.X � Q� � ��/

�
� � C lim

�!1
�
�X � Q�

�
� �

�
;

where the last inequality follows from Remark 2.4 for sufficiently large � . Since � is l.s.c. and �.�/ > �
for all � ¤ 0, we can conclude that lim�!1 �

�
X�Q�
�
� �

�
� �.��/ > ��; whereby .�X0C/.�/ > 0 for

all � ¤ 0, which guarantees that the infimum in the definition is attained, and �.X/ D min� �C�.X��/.
Next, we verify that axiom (A0) holds. As shown above, for any X 2 X there exists �X such that
�.X/ D �X C �.X � �X /. Consequently,

lim inf
Y!X

�.Y / D lim inf
Y!X

�
�Y C �.Y � �Y /

�
� lim inf

Y!X

�
�X C �.Y � �X /

�
D �X C lim inf

Y!X
�.Y � �X / � �X C �.X � �X / D �.X/;

where the last inequality holds due to lower semicontinuity of �. Whence, by definition, � is l.s.c.
Verification of properties (A1)–(A3) is straightforward and can be taken from Krokhmal (2007), Theorem
1.

Lemma 2.4. Let � be a convex measure of risk such that �.0/ D 0. Then there exists a proper function
� W X 7! R that satisfies axioms of monotonicity and convexity, is lower semicontinuous, �.�/ > � for
all � ¤ 0, and such that �.X/ D min� �C �.X � �/:

Proof. Analogously to Lemma 2.2, one can take ��.X/ D 2Œ�.X/�C.
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Combining the above results, we obtain a general conclusion.

Theorem 2.5. A proper, l.s.c. function � W X 7! R is a convex (respectively, coherent) measure of risk
if and only if there exists a proper, l.s.c. function � W X 7! R, which satisfies the axioms of monotonicity
and convexity (and, respectively, positive homogeneity), �.�/ > � for all � ¤ 0, �.0/ D 0, and such that
�.X/ D min� �C �.X � �/.

The importance of infimal convolution representation (2) for convex/coherent risk measures lies in the
fact that it is amenable for use in stochastic programming problems with risk constraints or risk objectives
(note that the problem does not necessarily have to be convex).

Lemma 2.6. Let � be a coherent measure of risk, and for some F;H W X 7! R and C.X / � X consider
the following risk-constrained stochastic programming problem:

minfF.X/ W �.X/ � H.X/; X 2 C.X /g: (3)

Then, for a given convolution representation (2) of �, problem (3) is equivalent to a problem of the form

minfF.X/ W �C �.X � �/ � H.X/; X 2 C.X /; � 2 Rg; (4)

in the sense that if (3) is feasible, they achieve minima at the same values of the decision variable
X and their optimal objective values coincide. Moreover, if risk constraint is binding at optimality
in (3), then .X�; ��/ delivers a minimum to (4) if and only if X� is an optimal solution of (3) and
�� 2 arg minf�C �.X� � �/g.

Proof. Analogous to that in Krokhmal (2007), Theorem 3.

Additionally, representation (2) conveys the idea that a risk measure represents an optimal value or
optimal solution of a stochastic programming problem of special form.

2.3 Convolution Representation and Certainty Equivalents

The infimal convolution representation (2) allows for construction of convex or coherent measures of risk
that directly employ risk preferences of a decision maker through a connection to the expected utility
theory of von Neumann and Morgenstern (1944). Assuming without loss of generality that the loss/cost
elements X 2 X are such that �X represents wealth or reward, consider a non-decreasing, convex
deutility function v W R 7! R that quantifies dissatisfaction of a risk-averse rational decision maker
with a loss or cost. Obviously, this is equivalent to having a non-decreasing concave utility function
u.t/ D �v.�t /. By the inverse of v we will understand function v�1.a/ D sup ft 2 R W v.t/ D ag:

Remark 2.6. Note that if a non-decreasing, convex v.t/ 6� const then, according to the definition above,
the inverse is finite, and moreover, if there exists t , such that v.t/ D a < C1, then v�1.a/ D maxft 2
R j v.t/ D ag. Additionally, let v�1.C1/ D C1.

Then, for any given ˛ 2 .0; 1/, consider function � in the form

�.X/ D
1

1 � ˛
v�1Ev.X/; (5)
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where we use an operator-like notation for v�1, i.e., v�1Ev.X/ D v�1.Ev.X//.

Expression CE.X/ D v�1Ev.X/ represents the certainty equivalent of an uncertain loss X , a deter-
ministic loss/cost such that a rational decision maker would be indifferent between accepting CE.X/ or
an uncertain X ; it is also known as quasi-arithmetic mean, Kolmogorov mean, or Kolmogorov-Nagumo
mean (see, among others, Bullen et al., 1988; Hardy et al., 1952). Certainty equivalents play an impor-
tant role in the decision making literature (see, for example, Wilson, 1979; McCord and Neufville, 1986);
in the context of modern risk theory, certainty equivalents were considered in the work of Ben-Tal and
Teboulle (2007).

In order for function � as defined by (5) to comply with the conditions of Theorem 2.5, the deutility
function should be such that �.�/ D 1

1�˛
v�1v.�/ > � for � ¤ 0. This necessarily implies that

v.�/ D v.0/ for all � � 0, provided that v is proper, non-decreasing and convex. Indeed, if v.��/ < v.0/
for some �� < 0, then according to the above remarks v�1v.��/ D maxf� W v.�/ D v.��/g D ���,
where ��� is such that �� � ��� < 0 and v�1v.���/ D ���, whence �.���/ D .1 � ˛/�1��� < ���.

Additionally, without loss of generality it can be postulated that v.0/ D 0, i.e., zero loss means zero
dissatisfaction. Indeed, Qv�1E Qv.X/ D v�1Ev.X/ for Qv.t/ D v.t/ � v.0/, i.e., such a transformation of
the deutility function does not change the value of the certainty equivalent. Similarly, it is assumed that
v.t/ > 0 for all t > 0. This condition represents a practical consideration that positive losses entail
positive deutility/dissatisfaction, and is not restrictive from methodological point of view. Indeed, it can
be shown that if one allows for t0 D maxft W v.t/ D 0g > 0, then the risk measures based on � as
given in (5) with deutilities v.t/ and v0.t/ D v.t C t0/, such that v0.t/ > 0, t > 0, will differ only by a
constant.

To sum up, we consider non-decreasing, convex deutility function v W R 7! R such that

v.t/ D v
�
Œt �C

�
D

(
v.t/ > 0; t > 0;

0; t � 0:

We will refer to such a function as a one-sided deutility. Then, using the corresponding function � in
representation (2) one obtains a class of certainty equivalent measures of risk:

�.X/ D min
�

�C
1

1 � ˛
v�1Ev.X � �/

D min
�

�C
1

1 � ˛
v�1Ev

�
ŒX � ��C

�
:

(6)

Next we analyze the conditions under which formulation (6) yields a coherent or convex measure of risk.
Recall that we assume the space X to be such that certainty equivalent above is well-defined, particularly,
integrability condition is satisfied.

Proposition 2.7. If v is a one-sided deutility function, then �.X/ D 1
1�˛

v�1Ev.X/ is proper, l.s.c.,
satisfies the axiom of monotonicity and �.�/ > � for all � ¤ 0.

Proof. Clearly, such a � is proper and l.s.c. The monotonicity property of � defined by (5), �.X/ �
�.Y / for all X � Y , follows from both v and v�1 being non-decreasing. Finally, note that

�.�/ D
1

1 � ˛
v�1v.�/ D

1

1 � ˛
v�1v.Œ��C/

D
1

1 � ˛
sup

˚
t W v.t/ D v.Œ��C/

	
�

1

1 � ˛
Œ��C > �

7

DISTRIBUTION A: Distribution approved for public release



for all � ¤ 0.

From Proposition 2.7 we can conclude that in order for the conditions of Theorem 2.5 to be satisfied we
only need to guarantee convexity of the certainty equivalent (5) (note that axiom (A4) is satisfied if cer-
tainty equivalent itself is positive homogeneous). A sufficient condition of this type has been established
in Ben-Tal and Teboulle (2007).

Proposition 2.8 (Ben-Tal and Teboulle, 2007). If v 2 C3.R/ is strictly convex and
v0

v00
is convex, then

the certainty equivalent v�1Ev is also convex.

The following observation adapts this result to establish convexity of certainty equivalents in the case of
one-sided deutility functions.

Corollary 2.9. If v 2 C3Œ0;1/ is strictly convex and
v0

v00
is convex on Œ0;C1/, then certainty equivalent

v�1
C

Ev
C

is convex, where vC.t/ D v.Œt �C/.

Proof. Indeed, note that v�1
C

EvC.X/ D v�1C Ev.ŒX�C/ D v�1Ev.ŒX�C/, which is convex as a superpo-
sition of a convex (Proposition 2.8 for function v) and a non-decreasing convex functions.

Remark 2.7. Conditions of Proposition 2.8 are only sufficient, i.e., it is possible for a certainty equiv-
alent to be convex without satisfying these conditions (as is shown in Corollary 2.9). Moreover, these
conditions are rather restrictive. Thus, it is worth noting that if v is a one-sided deutility function such
that the corresponding certainty equivalent is convex, then the certainty equivalent measure � defined by
(6) is a convex (or coherent) measure of risk, regardless of whether Corollary 2.9 holds. At the same
time, this result can be useful, as it is demonstrated by Proposition 3.1.

Observe that if function � is taken in the form (5), where v is a one-sided deutility, the structure of
the resulting risk measure (6) allows for an intuitive interpretation, similar to that proposed by Ben-
Tal and Teboulle (2007). Consider, for instance, a resource allocation problem where X represents an
unknown in advance cost of resources necessary to cover future losses or damages. Assume that it
is possible to allocate amount � worth of resources in advance, whereby the remaining part of costs,
ŒX � ��C, will have to be covered after the actual realization of X is observed. To a decision maker with
deutility v, the uncertain cost remainder ŒX � ��C is equivalent to the deterministic amount of certainty
equivalent v�1Ev.ŒX � ��C/. Since this portion of resource allocation is “unplanned”, an additional
penalty is imposed. If this penalty is modeled using a multiplier 1

1�˛
, then the expected additional

cost of the resource is 1
1�˛

v�1Ev.ŒX � ��C/. Thus, the risk associated with the mission amounts to
�C .1�˛/�1v�1Ev.ŒX ���C/, and can be minimized over all possible values of �, leading to definition
(6). Moreover, when applied to the general definition (2), this argument provides an intuition behind
the condition �.�/ > � above. Indeed, the positive difference �.�/ � � can be seen as a penalty for an
unplanned loss.

We also note that certainty equivalent representation (6) for coherent or convex measures of risk is related
to the optimized certainty equivalents (OCEs) due to Ben-Tal and Teboulle (2007),

OCE.X/ D sup
�
�C Eu.X � �/: (7)
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While interpretations of formulas (6) and (7) are similar, and moreover, it can be shown that, under
certain conditions on the utility function, �.X/ D �OCE.X/ is a convex measure of risk, there are
important differences between these representations. In (7), the quantity being maximized is technically
not a certainty equivalent, while the authors have argued that specific conditions on the utility function
u allowed them to consider it as one. In addition, representation (7) entails addition of values with
generally inconsistent units, e.g., dollars and utility. Finally, as shown above, representation (6) allows
for constructing both coherent and convex measures of risk, while the OCE approach yields a coherent
risk measure if and only if the utility function is piecewise linear.

Remark 2.8. It is straightforward to observe that by choosing the one-sided deutility function in (6) in the
form v.t/ D Œt �C one obtains the well-known Conditional-Value-at-Risk (CVaR) measure (Rockafellar
and Uryasev, 2002), while one-sided deutility v.t/ D Œt �

p
C

yields the Higher-Moment Coherent Risk
(HMCR) measures (Krokhmal, 2007).

Remark 2.9. In general, risk measure � is called a tail measure of risk if it quantifies the risk of X
through its right tail, ŒX � c�C, where the tail cutoff point c can be adjusted according to risk preferences
(Krokhmal et al., 2011). Observe that the above analysis implies that coherent or convex risk measures
based on certainty equivalents (6) are necessarily tail measures of risk (see also Propositions 2.14 and
2.15 below).

Another key property of the certainty equivalent measures of risk (6) is that they “naturally” preserve
stochastic orderings induced on the space X of random outcomes by the utility function u or, equiva-
lently, deutility v. Assuming again that X is endowed with necessary integrability properties, consider
the properties of isotonicity with respect to second order stochastic dominance (SSD) (see, e.g., De
Giorgi, 2005; Pflug, 2006):

(A10) SSD isotonicity: �.X/ � �.Y / for all X; Y 2 X such that �X <SSD �Y ,

and, more generally, isotonicity with respect to k-th order stochastic dominance (kSD):

(A100) kSD isotonicity: �.X/ � �.Y / for all X; Y 2 X such that �X <kSD �Y ,
for a given k � 1.

Recall that random outcome X is said to dominate outcome Y with respect to second-order stochastic
dominance, X <SSD Y , if Z t

�1

FX .�/ d� �
Z t

�1

FY .�/ d� for all t 2 R;

where FZ.t/ D PfZ � tg is the c.d.f. of a random element Z 2 X . Similarly, outcome X dominates
outcome Y with respect to k-th order stochastic dominance, X <kSD Y , if

F
.k/
X .t/ � F

.k/
Y .t/; for all t 2 R;

where F .k/X .t/ D
R t
�1

F
.k�1/
X .�/d� and F .1/X .t/ D PfX � tg (see, for example, Ogryczak and

Ruszczyński, 2001). Stochastic dominance relations in general, and SSD in particular have occupied
a prominent place in decision making literature (see, for a example, Levy (1998) for an extensive ac-
count), in particular due to a direct connection to the expected utility theory. Namely, it is well known
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(Rothschild and Stiglitz, 1970) that X <SSD Y if and only if Eu.X/ � Eu.Y / for all non-decreasing and
concave utility functions u, i.e., if and only if Y is never preferred over X by any rational risk-averse
decision maker. In general, it can be shown that X <kSD Y if and only if Eu.X/ � Eu.Y / for all
u 2 U .k/, where U .k/ is a specific class of real-valued utility functions; particularly, U .1/ consists of all
non-decreasing functions, U .2/ contains all non-decreasing and concave functions, U .3/ amounts to all
non-decreasing, concave functions with convex derivative, and so on (see, for example, Fishburn (1977)
and references therein). This characterization of kSD dominance relation naturally implies that the pro-
posed certainty equivalent representation yields risk measures that are necessarily kSD-isotonic, given
that the set of considered deutility functions is appropriately restricted.

Proposition 2.10. If deutility function v is such that �v.�t / 2 U .k/, then risk measure � given by the
certainty equivalent representation (6) is kSD-isotonic, i.e., satisfies (A100).

Proof. Follows immediately from the definitions of kSD dominance, kSD isotonicity, and the above
discussion.

Corollary 2.11. If a real-valued function v is a one-sided deutility, then (6) defines a risk measure that
is isotonic with respect to second order stochastic dominance.

Note that Proposition 2.10 does not require the certainty equivalent in (6) to be convex. In this context, the
certainty equivalent representation (6) ensures that the risk-averse preferences expressed by a given utility
(equivalently, deutility) function are “transparently” inherited by the corresponding certainty equivalent
measure of risk.

2.4 Optimality Conditions and Some Properties of Optimal �

Consider the definition of Conditional Value-at-Risk,

CVaR˛.X/ D min
�
�C

1

1 � ˛
EŒX � ��C:

The lowest value of � that delivers minimum in this definition is know in the literature as Value-at-Risk
(VaR) at confidence level ˛, and while VaR in general is not convex, it is widely used as a measure of
risk in practice, especially in financial applications (Jorion, 1997; Duffie and Pan, 1997). Thus, it is of
interest to investigate some properties of ��.X/ 2 arg min

˚
�C 1

1�˛
v�1Ev.X ��/

	
: First, we formulate

the necessary and sufficient optimality conditions.

Proposition 2.12. Suppose that v is a non-decreasing and convex function, certainty equivalent v�1Ev
is convex and E@

˙
v.X � ��/ is well defined, then �� 2 arg min

˚
�C 1

1�˛
v�1Ev.X � �/

	
if and only if

@�v
�1
�
Ev.X � ��/

�
� E@�v.X � �

�/

� 1 � ˛ � @Cv
�1
�
Ev.X � ��/

�
� E@Cv.X � �

�/;

where @
˙
v denote one-sided derivatives of v with respect to the argument.

Proof. Let us denote �X .�/ D �C 1
1�˛

v�1Ev.X � �/. Since certainty equivalent v�1Ev is convex, �X
is also convex, and thus, it has left and right derivatives everywhere on dom�X ¤ ;, and � delivers a
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minimum to �X if and only if @��X .�/ � 0 � @
C
�X .�/: In what follows, we determine closed form

expressions for left and right derivatives of �X . By definition, if � 2 dom�X then

@C�X .�/ D lim
"#0

�X .�C "/ � �X .�/

"

D 1C
1

1 � ˛
lim
"#0

v�1Ev.X � � � "/ � v�1Ev.X � �/
"

:

Repeating a usual argument used to prove the chain rule of differentiation (see, e.g., Randolph, 1952),
we can define

Q.y/ D

8̂<̂
:
v�1.y/ � v�1Ev.X � �/

y � Ev.X � �/
; y < Ev.X � �/;

@�v
�1
�
Ev.X � �/

�
; otherwise;

in which case

@C�X .�/ D 1C
1

1 � ˛
lim
"#0

�
Q
�
Ev.X � � � "/

�Ev.X � � � "/ � Ev.X � �/
"

�
:

Clearly, lim"#0Q
�
Ev.X � � � "/

�
D @�v

�1
�
Ev.X � �/

�
by monotone convergence theorem, and the

only part left to find is

lim
"#0

Ev.X � � � "/ � Ev.X � �/
"

D � lim
"#0

Ev.X � �/ � Ev.X � � � "/
"

:

Observe that lim
"#0

v.x � �/ � v.x � � � "/

"
D @�v.x � �/ for any fixed x 2 R (note that @�v.x � �/

exists since v is convex). Moreover,

v.x � �/ � v.x � � � "/

"
% @�v.x � �/ as "& 0;

where % denotes monotonic convergence from below (Rockafellar, 1997, Theorem 23.1). Thus, by
monotone convergence theorem, we can interchange the limit and expectation:

lim
"#0

Ev.X � �/ � Ev.X � � � "/
"

D E lim
"#0

v.X � �/ � v.X � � � "/

"

D E@�v.X � �/;

i.e., @
C
�X .�/ D 1�

1
1�˛

@�v
�1
�
Ev.X��/

�
�E@�v.X��/: Similar arguments can be invoked to evaluate

@��X .�/ in order to complete the proof.

Corollary 2.13. Condition

.v�1/0.Ev.X � �//Ev0.X � �/ D 1 � ˛

is sufficient for � to deliver the minimum in (5), given that .v�1/0 and v0 are well-defined.

Conditions established above show that for a fixed X , the location of ��.X/ is determined by the param-
eter ˛. Two propositions below illustrate this observation.
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Proposition 2.14. Given an X 2 dom � for all ˛ 2 .0; 1/, if ��˛.X/ 2 arg min �C 1
1�˛

v�1Ev.X � �/,
where v is a one-sided deutility function, and certainty equivalent v�1Ev exists for anyX , and is convex,
then ��˛1

.X/ � ��˛2
.X/ for any ˛1 < ˛2.

Proof. Below we will use ��˛.X/ and ��˛ interchangeably in order to simplify the notation. Let ˛1 < ˛2.
Since v is a one-sided deutility, then v.X � �/ D v.ŒX � ��C/, and by the definition of ��˛.X/,

��˛1
C

1

1 � ˛1
v�1Ev

�
ŒX � ��˛1

�C
�
� ��˛2

C
1

1 � ˛1
v�1Ev

�
ŒX � ��˛2

�C
�
:

Suppose that ��˛1
> ��˛2

, then one has

0 < ��˛1
� ��˛2

�
1

1 � ˛1

�
v�1Ev

�
ŒX � ��˛2

�C
�
� v�1Ev

�
ŒX � ��˛1

�C
��

<
1

1 � ˛2

�
v�1Ev

�
ŒX � ��˛2

�C
�
� v�1Ev.ŒX � ��˛1

�C/
�
:

This immediately leads to

��˛1
C

1

1 � ˛2
v�1Ev

�
ŒX � ��˛1

�C
�
< ��˛2

C
1

1 � ˛2
v�1Ev

�
ŒX � ��˛2

�C
�
;

which contradicts with the definition of ��˛2
, thus furnishing the statement of the proposition.

Proposition 2.15. Given an X 2 dom � for all ˛ 2 .0; 1/, if ��˛.X/ 2 arg min �C 1
1�˛

v�1Ev.X � �/,
where v is a one-sided deutility function, and certainty equivalent v�1Ev exists for any X and is convex,
then

lim
˛!1

��˛.X/ D ess:sup.X/:

Proof. Again, let us consider function �X .�/ D � C 1
1�˛

v�1Ev.X � �/, and since v is a one-sided
deutility, �X .�/ D �C 1

1�˛
v�1

R
X�� v.X � �/dP. Suppose that ess:sup.X/ D A < C1, consequently

P.X � A � "/ > 0 for any " > 0. Note that �X .A/ D A. Now,

�X .A � "/ D A � "C
1

1 � ˛
v�1

Z
X�A�"

v.X � AC "/dP

� A � "C
1

1 � ˛
v�1

Z
X�A� "

2

v.X � AC "/dP

� A � "C
1

1 � ˛
v�1

�
v
�"
2

�
P
�
X � A �

"

2

��
D A � "C

1

1 � ˛
M";

where M" D v�1
�
v
�
"
2

�
P
�
X � A � "

2

��
> 0. Hence, �X .A � "/ > �X .A/ for any sufficiently large

values of ˛, which means that in this case any ��˛.X/ 2 arg min � C 1
1�˛

v�1Ev.X � �/ has to satisfy
��˛.X/ 2 .A � "; A�, and thus lim˛!1 ��˛.X/ D A D ess:sup.X/.

Now, let ess:sup.X/ D C1. Note that
R
X�� v.X � �/dP is a non-increasing function of �. Let A 2 R

and �X .A/ D AC 1
1�˛

v�1
R
X�A v.X � A/dP. Since ess:sup.X/ D C1, there exists QA > A such that

0 <
R
X� QA

v.X� QA/dP <
R
X�A v.X�A/dP. Thus, �X . QA/ D QAC 1

1�˛
v�1

R
X� QA

v.X� QA/dP < �X .A/
for any sufficiently large ˛, which yields ��˛.X/ > A. Since the value of A has been selected arbitrarily,
lim˛!1 ��˛.X/ D C1 D ess:sup.X/.
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3 Application: Log-Exponential Convex Measures of Risk

As it was already mentioned above, CVaR and HMCR measures can be defined in terms of the proposed
certainty equivalent-based representation (6). Note that both cases correspond to positively homogeneous
functions �, and, therefore, are coherent measures of risk. Next we consider a convex measure of risk
resulting from the certainty equivalent representation (6) with an exponential one-sided deutility function
v.t/ D �1C �Œt�C :

�.�/˛ .X/ D min
�

�C
1

1 � ˛
log� E�ŒX���C ; where � > 1 and ˛ 2 .0; 1/: (8)

We refer to such �.�/˛ as the family of log-exponential convex risk (LogExpCR) measures. First, using the
general framework developed above, it can be readily seen that LogExpCR family are convex measures
of risk.

Proposition 3.1. Functions �.�/˛ .X/ defined by (8) are proper convex measures of risk.

Proof. Follows immediately from Theorem 2.5, Proposition 2.7, and Corollary 2.9.

A particular member of the family of LogExpCR measures is determined by the values of two parameters,
˛ and �. Recall that in Section 2.4 we have established that parameter ˛ plays a key role in determining
the position of ��˛.X/ 2 arg min �C 1

1�˛
v�1Ev.X��/, particularly, ˛1 < ˛2 leads to ��˛1

.X/ � ��˛2
.X/,

and lim˛!1 ��˛.X/ D ess:sup.X/. These two properties allow us to conclude that ˛ determines the
“length” of the tail of distribution of X , or, in other words, determines which part of the distribution
should be considered “risky”. This is in accordance with a similar property of the CVaR measure, which,
in the case of a continuous loss distribution, quantifies the risk as the expected loss in the worst 1 � ˛
percent of the cases. See Krokhmal (2007) for a similar argument for HMCR measures.

Furthermore, one has

�.�/˛ .X/ Dmin
�
�C

1

1 � ˛
log� E�ŒX���C D min

�
�C

1

1 � ˛

1

ln�
ln Eeln�ŒX���C

D
1

ln�
min
�
� ln�C

1

1 � ˛
EeŒX ln��� ln��C D

1

ln�
min
�0
�0 C

1

1 � ˛
EeŒX ln���0�C D

1

ln�
�.e/˛ .X ln�/:

This implies that LogExpCR measures satisfy a “quasi positive homogeneity” property:

�.�/˛ .X/ ln� D �.e/˛ .X ln�/;

where parameter ln� plays the role of a scaling factor. Thus, in the case of log-exponential convex
measures of risk (8), scaling can be seen as a way to designate the total range of the loss variable.
Consequently, a combination of the parameters ˛ and � determines both the region of the loss distribution
that should be considered “risky”, and the emphasis that should be put on the larger losses. Note that the
specific values of these parameters depend on the decision maker’s preferences and attitude towards risk.
In practice, they may be determined and/or calibrated through preliminary computational experiments.

It is of interest to note that LogExpCR measures are isotonic with respect to any order k � 1 of stochastic
dominance:
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Proposition 3.2. The family of log-exponential convex measures of risk (8) are kSD-isotonic for any
k � 1, i.e., �.�/˛ .X/ � �

.�/
˛ .Y / for all X; Y 2 X such that �X <kSD �Y .

Proof. Follows immediately from Proposition 2.10 for v defined above.

Based on these observations and the preceding discussion, we can conclude that the introduced family
of LogExpCR measures possesses a number of desirable properties from both optimization and method-
ological perspectives. It is widely acknowledged in the literature that risk is associated with “heavy”
tails of the loss distribution; for example, in Krokhmal (2007) it has been illustrated that evaluating risk
exposure in terms of higher tail moments can lead to improved decision making in financial applications
with heavy-tailed distributions of asset returns. Furthermore, there are many real-life applications where
risk exposure is associated with catastrophic events of very low probability and extreme magnitude, such
as natural disasters, which often turn out to be challenging for traditional analytic tools (see, for exam-
ple, Kousky and Cooke, 2009; Cooke and Nieboer, 2011 and references therein, Iaquinta et al., 2009, or
Kreinovich et al., 2012). By construction, LogExpCR measures quantify risk by putting extra emphasis
on the tail of the distribution, which allows us to hypothesize that they could perform favorably compared
to conventional approaches in situations that involve heavy-tailed distributions of losses and catastrophic
risks. This conjecture has been tested in two numerical case studies that are presented next. The idea
is to evaluate the quality of solutions based on the risk estimates due to nonlinear LogExpCR measure
with those obtained using linear CVaR measure, which can now be considered as a standard approach in
risk-averse applications. Particularly, we were interested in assessing the influence that the behavior of
the tails of the underlying losses distributions has in this comparison.

3.1 Case Study 1: Flood Insurance Claims Model

Dataset description For the first part of the case study we used a dataset managed by a non-profit
research organization Resources for the Future (Cooke and Nieboer, 2011). It contains flood insurance
claims, filed through National Flood Insurance Program (NFIP), aggregated by county and year for the
State of Florida from 1980 to 2006. The data is in 2000 US dollars divided by personal income estimates
per county per year from the Bureau of Economic Accounts (BEA), in order take into account substantial
growth in exposure to flood risk. The dataset has 67 counties, and spans for 355 months.

Model formulation Let random vector ` represent the dollar values of insurance claims (individual
elements of this vector correspond to individual counties), and consider the following stochastic pro-
gramming problem, where � is a risk measure:

min �.`>x/ (9a)

s. t.
X
i

xi D K (9b)

xi 2 f0; 1g: (9c)

Such a formulation allows for a straightforward interpretation, namely, the goal here is to identify K
counties with a minimal common insurance risk due to flood as estimated by �. Clearly, such a simplified
model does not reflect the complexities of real-life insurance operations. At the same time, since the
purpose of this case study is to analyze the properties of risk measures themselves, a deliberately simple

14

DISTRIBUTION A: Distribution approved for public release



formulation was chosen so as to highlight the differences between solutions of (9) due to different choices
of the risk measure � in (9a).

Given that the distribution of ` is represented by equiprobable scenario realizations `i;j , and m is the
number of scenarios (time periods), model (9) with risk measure chosen as the Conditional Value-at-Risk,
�.X/ D CVaR˛.X/, can be expressed as

min �C
1

1 � ˛CVaR

X
j

1

m

hX
i

xi`i;j � �
i
C

(10a)

s. t.
X
i

xi D K (10b)

xi 2 f0; 1g: (10c)

Similarly, if a LogExpCR measure is used, �.X/ D �.e/˛ .X/, then (9) can be formulated as

min �C
1

1 � ˛LogExpCR
log

X
j

1

m
eŒ
P

i xi`i;j���C (11a)

s. t.
X
i

xi D K (11b)

xi 2 f0; 1g: (11c)

Normal data In order to evaluate the effect of the tail behavior of the loss distribution on the obtained
solutions of decision making problems, we additionally generated a similar dataset based on normal
distribution. Particularly, we draw 355 realizations from 67-dimensional normal distribution with mean
� and covariance matrix†, where� and† are mean and covariance estimates of NFIP data respectively.
Our goal here is to make sure that the main difference between the datasets lays in the tails (normal
distribution is a well-known example of a light-tailed distribution), and by preserving mean vector and
covariance matrix we secure that this dataset captures the leading trends present in the original data. Now,
by comparing the decisions due to CVaR and LogExpCR measures for these two datasets we can make
conclusions on the effects that the tails of the distributions have on the quality of subsequent decisions.

Implementation details Problems (10) and (11) represent a mixed-integer linear programming (MIP)
and a mixed-integer non-linear programming (MINLP) problems respectively. MIP problems were
solved using IBM ILOG CPLEX 12.5 solver accessed through C++ API. For the MINLPs of the form
(11) we implemented a custom branch-and-bound algorithm based on outer polyhedral approximation
approach, which utilized CPLEX 12.5 MIP solver and MOSEK 6.0 for NLP subproblems (Vinel and
Krokhmal, 2014).

In order to evaluate the quality of the decisions we employed a usual training-testing framework. Given a
preselected valuem, the firstm scenarios were used to solve problems (10) and (11), then for the remain-
ing N � m scenarios the total loss was calculated as L� D

PN
jDmC1

P
i `i;jx

�
i , where x� represents

an optimal solution of either problem (10) or problem (11), and N is the total number of scenarios in
the dataset. In other words, the decision vector x� is selected based on the first m observations of the
historical data (training), and the quality of this solution is estimated based on the “future” realizations
(testing).
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In this case study we have set ˛CVaR D 0:9, which is a typical choice in portfolio optimization and can
be interpreted as cutting off 90% of the least significant losses. A preliminary test experiment has been
performed to select ˛LogExpCR in such a way that approximately same portion of the distribution was cut
off, which yielded ˛LogExpCR D 0:5. For the sake of simplicity, we set � D e.

Discussion of results Tables 1 and 2 summarize the obtained results for NFIP and simulated normal
data sets, respectively. Discrepancy in the quality of the decisions based on LogExpCR and CVaR
measures is estimated using the value

 D
LLogExpCR � LCVaR

min
˚
LLogExpCR; LCVaR

	 ;
which represents the relative difference in total lossesLLogExpCR andLCVaR associated with the respective
decisions. For example,  D �100% corresponds to the case when losses due to CVaR-based decision
were twice as large as losses due to LogExpCR-based decision.

First of all, we can observe that there is a definite variation between the results obtained with NFIP
data on one hand and with simulated normal data on the other. Particularly, the absolute values of  in
Table 2 on average are considerably smaller compared to those in Table 1, which indicates that in the
case of normal data the risk measures under consideration result in similar decisions, while heavy-tailed
historical data leads to much more differentiated decisions.

Secondly, Table 1 suggests that LogExpCR measure yields considerably better solutions for certain sets
of parameter values. Most notably, such instances correspond to smaller values of both K and m. Intu-
itively, this can be explained as follows. Recall that m is the number of scenarios in the training set, and
N �m is the number of scenarios in the testing set, which means that larger values of m correspond to
shorter testing horizon. Clearly, the fewer scenarios there are in the testing set, the fewer catastrophic
losses occur during this period, and vice versa, for smaller values ofm there are more exceptionally high
losses in the future. Thus, the observed behavior of  is in accordance with our conjecture that LogEx-
pCR measures are better suited for instances with heavy-tailed loss distributions. Parameter K, in turn,
corresponds to the number of counties to be selected, thus, the larger its value is, the more opportunities
for diversification are available for the decision-maker, which, in turn, allows for risk reduction.

To sum up, the results of this case study suggest that under certain conditions, such as heavy-tailed
loss distribution, relatively poor diversification opportunities, and sufficiently large testing horizon, risk-
averse decision strategies based on the introduced log-exponential convex measures of risk can substan-
tially outperform strategies based on linear risk measures, such as the Conditional Value-at-Risk.

3.2 Case Study 2: Portfolio Optimization

As heavy-tailed loss distributions are often found in financial data, we conducted numerical experiments
with historical stock market data as the second part of the case study.

Model description As the underlying decision making model we use the traditional risk-reward port-
folio optimization framework introduced by Markowitz (1952). In this setting, the cost/loss outcome X
is usually defined as the portfolio’s negative rate of return, X.x; !/ D �r.!/>x, where x stands for the
vector of portfolio weights, and r D r.!/ is the uncertain vector of assets’ returns. Then, a portfolio
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allocation problem can be formulated as the problem of minimizing some measure of risk associated
with the portfolio while maintaining a prescribed expected return:

min
x2Rn
C

n
�.�r>x/

ˇ̌̌
E.r>x/ � Nr; 1>x � 1

o
; (12)

where Nr is the prescribed level of expected return, x 2 Rn
C

denotes the no-short-selling requirement, and
1 D .1; : : : ; 1/>. If the risk measure used is convex, it is easy to see that (12) is a convex optimization
problem. In this case study, we again select � in (12) as either a LogExpCR or CVaR measure.

Dataset description We utilized historical stock market data available through Yahoo!Finance. We
picked 2178 listings traded at NYSE from March, 2000 through December, 2012 (total of 3223 trading
days). As it was noted above, financial data often exhibit highly volatile behavior, especially higher-
frequency data, while long-term data is usually relatively normal. In order to account for such differences,
we generated three types of datasets of loss distribution, which were based on two-day, two-week and
one-month historical returns. Particularly, if pi;j is the historical close price of asset i on day j , then we
define the corresponding two-day, ten-day, and one-month returns as ri;j D

pi;j�pi;j��

pi;j��
, where � takes

values � D 2, 10, and 20, respectively.

Implementation details We utilize a training-testing framework similar to the one used in the previous
section, but additionally, we also employ “rolling horizon” approach, which aims to simulate a real-life
self-financing trading strategy. For a given time moment, we generate a scenario set containing, respec-
tively, m two-day, ten-day, and one-month returns immediately preceding this date. Then, the portfolio
optimization problem (12) is solved for each type of scenario set in order to obtain the corresponding
optimal portfolios; the “realized” portfolio return over the next two-day, ten-day, or one-month time pe-
riod, respectively, is then observed. The portfolio is then rebalanced using the described procedure. This
rolling-horizon procedure was ran for 800 days, or about 3 years.

Recall that parameter Nr in (12) represents the “target return”, i.e., the minimal average return of the
portfolio. For our purposes parameter Nr was selected as Nr D � maxifE!ri .!/g, i.e., as a certain per-
centage of the maximum expected return previously observed in the market (within the timespan of the
current scenario set). Parameter � has been set to be “low”, “moderate”, or “high”, which corresponds
to � D 0:1; 0:5; 0:8. For each pair of n and m we repeat the experiment 20 times, selecting n stocks
randomly each time. The parameters ˛LogExpCR, ˛CVaR, and � have been assigned the same values as in
Case Study 1.

Discussion of results Obtained results are summarized in Table 3, and a typical behavior of the port-
folio value over time is presented in Figure 1. As in the previous case, we report relative difference in
the return over appropriate time period (2-day, 2-week, or 1-month) averaged over the testing horizon of
800 days and over 20 random choices of n assets. Note that since in this case the quality of the decision
is estimated in terms of rate of return, i.e., gain, positive values in Table 3 correspond to the cases when
the LogExpCR-based portfolio outperforms the CVaR-based portfolio.

Similarly to the previous case, we can observe that the behavior of the tails of the distribution plays a key
role in the comparison: under 1-month trading frequency the differences between CVaR and LogExpCR
portfolios are relatively insignificant, compared to the 2-day case. Moreover, we can again conclude that
for heavy-tailed loss distributions the introduced LogExpCR measure may compare favorably against
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CVaR; in particular, conditions of restricted diversification options (relatively small value of n) make
utilization of LogExpCR measures more beneficial compared to a linear measure such as CVaR.

4 Concluding Remarks

In this paper we introduced a general representation of the classes of convex and coherent risk measures
by showing that any convex (coherent) measure can be defined as an infimal convolution of the form
�.X/ D min� �C �.X � �/; where � is monotone, convex, and �.�/ > � for all � ¤ 0, �.0/ D 0 (and
positive homogeneous for coherence), and vice versa, constructed in such a way function � is convex
(coherent). Another way to look at this result is to observe that a monotone and convex � only lacks
translation invariance in order to satisfy the definition of a convex risk measure, and infimal convolution
operator essentially forges this additional property, while preserving monotonicity and convexity. Ac-
cording to this scheme, a risk measure is represented as a solution of an optimization problem, hence it
can be readily embedded in a stochastic programming model.

Secondly, we apply the developed representation to construct risk measures as infimal convolutions of
certainty equivalents, which allows for a direct incorporation of risk preferences as given by the utility
theory of von Neumann and Morgenstern (1944) into a convex or coherent measure of risk. This is highly
desirable since, in general, the risk preferences induced by convex or coherent measures of risk are incon-
sistent with risk preferences of rational expected-utility maximizers. It is also shown that the certainty
equivalent-based measures of risk are “naturally” consistent with stochastic dominance orderings.

Finally, we employ the proposed scheme to introduce a new family of risk measures, which we call
the family of log-exponential convex risk measures. By construction, LogExpCR measures quantify
risk by placing emphasis on extreme or catastrophic losses; also, the LogExpCR measures have been
shown to be isotonic (consistent) with respect to stochastic dominance of arbitrary order. The results
of the conducted case study show that in highly risky environments characterized by heavy-tailed loss
distribution and limited diversification opportunities, utilization of the proposed LogExpCR measures
can lead to improved results comparing to the standard approaches, such as those based on the well-
known Conditional Value-at-Risk measure.
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Table 1: Relative difference (in %) in total loss  D LLogExpCR�LCVaR

minfLLogExpCR;LCVaRg
for NFIP data for various values of the

parameters K and m. Entries in bold correspond to the instances for which LogExpCR measure outperformed
CVaR.

Knm 20 60 100 140 180 220 260 300

1 –45038.3 –3944.4 –4652.2 –3663.7 –3663.7 –220.2 –220.2 –220.2
3 –1983.7 –971.0 –211.5 –146.7 –146.7 –68.4 0.0 0.0
5 –1284.2 –464.2 –85.7 –13.1 –13.1 0.0 –6.6 0.0
7 –853.9 –342.5 0.0 0.0 0.0 –0.4 –4.5 –13.1
9 –387.1 –282.9 0.0 0.0 0.0 0.0 –3.1 10.8
11 –369.9 –181.0 0.0 –18.2 14.0 –27.8 5.5 –2.2
13 –360.4 –33.5 0.0 –13.0 1.0 4.3 0.0 41.0
15 –353.9 –27.9 –3.2 3.1 0.0 –3.6 4.8 20.6
17 –129.8 –1.1 –0.2 3.7 –26.5 11.5 25.4 25.4
19 –66.3 21.6 0.9 0.0 0.0 –2042.1 35.4 23.1
21 –64.0 5.0 0.0 –279.0 2.5 –1.6 35.0 8.0
23 –57.4 4.8 0.0 0.7 –65.6 –0.1 20.3 81.8
25 –49.5 0.0 –82.4 0.0 –39.2 4.4 76.9 84.7
27 –48.2 0.0 –52.2 0.0 4.7 4.1 68.7 84.1
29 –47.0 –34.3 33.0 –254.3 –463.8 4.0 81.8 83.5
31 –41.1 –31.2 8.7 –218.4 –309.8 8.5 79.3 83.7
33 –10.6 46.4 –10.0 –162.7 –161.7 8.9 19.6 84.6
35 –9.5 0.0 –12.2 –142.9 –153.1 37.8 53.9 47.6
37 –7.7 12.0 –81.7 5.3 2.7 57.0 15.0 9.9
39 0.0 5.3 –102.8 45.8 45.4 43.4 8.6 5.6
41 0.0 11.4 –77.3 30.9 43.8 34.8 20.7 4.8
43 0.0 –13.4 –11.0 53.8 4.0 50.0 19.8 –3.4
45 0.0 0.0 –28.1 54.5 –36.1 26.2 14.2 8.5
47 –9.1 9.0 4.5 19.4 6.4 17.5 28.2 –2.2
49 0.0 6.4 27.8 –3.5 –20.1 7.0 0.5 –8.5
51 0.0 5.1 49.6 –2.6 1.0 –9.5 –5.0 2.1
53 39.9 –16.2 24.7 28.6 23.0 2.9 –4.9 –137.2
55 –7.1 –8.7 28.0 21.6 –0.9 5.6 –83.5 –19.1
57 0.0 3.0 28.5 3.6 4.1 2.6 –9.1 –9.2
59 0.0 20.0 9.0 2.0 –0.6 0.1 25.3 27.4
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Table 2: Relative difference (in %) in total loss  D LLogExpCR�LCVaR

minfLLogExpCR;LCVaRg
for normal data for various values of the

parameters K and m. Entries in bold correspond to the instances for which LogExpCR measure outperformed
CVaR.

Knm 20 60 100 140 180 220 260 300

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 2.2 –107.1 0.0 0.0 –17.6 22.8 –58.1
7 0.0 14.0 0.0 85.3 28.8 84.8 86.4 21.9
9 0.0 14.2 27.2 11.0 2.9 0.0 0.0 0.0
11 17.2 12.9 0.0 34.8 33.9 66.8 36.0 –50.4
13 19.2 16.6 –3.3 –11.1 2.6 18.0 –12.3 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 0.0 –3.4 34.0 0.0 0.0 312.1 0.0 –355.0
19 43.0 –8.2 8.9 52.3 76.7 –65.9 –20.3 0.0
21 0.0 4.3 21.5 –45.4 506.1 –123.1 –119.2 1.9
23 27.3 –32.1 48.8 75.2 242.3 –63.1 3.0 –112.1
25 –317.3 –8.0 16.9 74.7 151.1 –71.3 –129.0 –64.7
27 9.7 –34.1 31.1 –50.8 96.3 154.3 163.8 –16.8
29 7.4 13.7 19.4 78.4 44.6 272.6 –15.3 –31.4
31 1.8 10.3 5.3 6.4 52.6 234.0 44.8 –5.5
33 10.5 –14.7 –15.2 –31.2 –32.8 11.5 –15.0 10.1
35 9.1 6.0 0.0 0.0 36.8 36.9 437.2 0.0
37 5.1 –1.0 0.0 18.0 39.1 20.8 119.3 0.0
39 0.0 –0.8 –1.4 10.3 13.2 –14.6 –109.7 73.6
41 19.8 18.3 0.0 24.7 22.1 0.0 44.0 762.8
43 7.6 8.7 6.4 0.0 –6.1 0.0 0.0 0.0
45 6.9 5.9 11.4 7.9 6.1 16.9 –20.6 –99.3
47 0.0 1.1 16.6 4.0 13.0 0.0 21.5 46.7
49 –2.8 22.5 17.7 –7.5 –11.2 –2.3 0.0 –294.8
51 0.0 5.1 17.8 5.0 10.4 –28.4 –0.1 –47.4
53 –1.1 0.0 –6.7 –0.5 25.4 0.0 0.0 –39.7
55 6.8 0.0 17.5 18.3 0.0 –9.3 37.8 –87.4
57 1.3 0.0 0.0 –14.5 –21.8 0.0 0.0 0.0
59 6.3 0.0 0.0 0.0 0.0 0.0 0.0 –10.0
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Table 3: Relative difference (in %) in average portfolio return due to LogExpCR measure and CVaR. Parameter
n represents the total number of assets on the market, m is the number of time intervals in the training horizon,
� defines the prescribed expected rate of return as the percentage of the maximum expected return previously
observed in the market. Labels “2-day”, “2-week”, and “1-month” correspond to portfolio rebalancing periods.

n m � 2-day 2-week 1-month

20 2000 0.1 57.3 29.5 8.3
0.5 138.3 1.1 –12.9
0.8 5.9 –24.1 –7.4

200 2000 0.1 –17.9 –14.6 –2.2
0.5 11.1 –21.1 5.4
0.8 17.6 –13.5 –2.2

Figure 1: Typical behavior of portfolio value, as a multiple of the initial investment (1.0), over time.
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Bullen, P. S., Mitrinović, D. S., and Vasić, P. M. (1988) Means and their inequalities, volume 31 of Math-
ematics and its Applications (East European Series), D. Reidel Publishing Co., Dordrecht, translated
and revised from the Serbo-Croatian.

Cooke, R. M. and Nieboer, D. (2011) “Heavy-Tailed Distributions: Data, Diagnostics, and New Devel-
opments,” Resources for the Future Discussion Paper, (11-19).

Dana, R.-A. (2005) “A representation result for concave Schur concave functions,” Math. Finance, 15 (4),
613–634.

De Giorgi, E. (2005) “Reward-Risk Portfolio Selection and Stochastic Dominance,” Journal of Banking
and Finance, 29 (4), 895–926.

21

DISTRIBUTION A: Distribution approved for public release



Delbaen, F. (2002) “Coherent risk measures on general probability spaces,” in: K. Sandmann and P. J.
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Abstract

We present an efficient scenario decomposition algorithm for solving large-scale convex stochas-
tic programming problems that involve a particular class of downside risk measures. The considered
risk functionals encompass coherent and convex measures of risk that can be represented as an infimal
convolution of a convex certainty equivalent, and include well-known measures, such as conditional
value-at-risk, as special cases. The resulting structure of the feasible set is then exploited via iterative
solving of relaxed problems, and it is shown that the number of iterations is bounded by a parameter
that depends on the problem size. The computational performance of the developed scenario decom-
position method is illustrated on portfolio optimization problems involving two families of nonlinear
measures of risk, the higher-moment coherent risk measures and log-exponential convex risk mea-
sures. It is demonstrated that for large-scale nonlinear problems the proposed approach can provide
up to an order of magnitude of improvement in computational time in comparison to state-of-the-art
solvers, such as CPLEX, Gurobi, and MOSEK.

Keywords: Stochastic optimization, risk measures, utility theory, certainty equivalent, scenario de-
composition, higher moment coherent risk measures, log-exponential convex risk measures.

1 Introduction and Motivation

Quantification of uncertainties and risk via axiomatically defined statistical functionals, such as the co-
herent measures of risk of Artzner et al. (1999), has become a widely accepted practice in stochastic
optimization and decision making under uncertainty (Shapiro et al., 2009; Krokhmal et al., 2011; Urya-
sev and Rockafellar, 2013). Many of such risk measures admit effective utilization in “scenario-based”
formulations of stochastic programming models, i.e., the stochastic optimization problems where the
random parameters are assumed to have a known distribution over a finite support that is commonly
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called the scenario set. A typical instance of such a problem can be written as

min
x2C

�.X.x; !//; (1)

where � is the risk measure, X.x; !/ represents a stochastic loss or cost function dependent on the
decision vector x 2 C � Rn and a random event ! from the finite set � D f!1; : : : ; !N g. In many
practical applications accurate approximations of uncertainties may, however, require very large scenario
sets (N � 1), thus potentially leading to substantial computational difficulties.

In this work, we propose an efficient algorithm for solving large-scale stochastic optimization problems
involving a class of “downside”, or “tail” risk measures that are constructed via certainty equivalents,
a well known concept in the utility theory. The presented scenario decomposition algorithm exploits
the special structure of the feasible set induced by the respective risk measures as well as the properties
common to the considered class of risk functionals. As an illustrative example of the general approach,
we consider stochastic optimization problems with higher-moment coherent risk measures (HMCR),
which quantify risk via higher moments of cost or loss distributions (Krokhmal, 2007), making them
advantageous in the presence of “heavy-tailed” uncertainty. We also apply the proposed method to
problems with log-exponential convex risk (LogExpCR) measures (Vinel and Krokhmal, 2015).

Perhaps, the most frequently implemented risk measure in problems of type (1) is the well known Con-
ditional Value-at-Risk (CVaR) (Rockafellar and Uryasev, 2000, 2002). When X is piecewise linear in
x and set C is polyhedral, formulation (1) with CVaR objective or constraints reduces to a linear pro-
gramming (LP) problem. Several recent studies addressed the solution efficiency of LPs with CVaR
objectives or constraints for cases when the number of scenarios is large. Lim, Sherali, and Uryasev
(2010) noted that (1) in this case may be viewed as a nondifferentiable optimization problem and im-
plemented a two-phase solution approach to solve large-scale instances. In the first phase, they exploit
descent-based optimization techniques to circumvent nondifferentiable points by perturbing the solution
to differentiable solutions within their “relative neighborhood”. The second phase employs a deflecting
subgradient search direction with a step size established by an adequate target value. They further ex-
tended this approach with a third phase that resorts to the simplex algorithm after achieving convergence
by employing an advanced crash-basis dependent on solutions obtained from the first two phases.

Künzi-Bay and Mayer (2006) developed a solution technique for problem (1), with measure � chosen
as the CVaR, that utilized a specialized L-shaped method after reformulating it as a two-stage stochastic
programming problem. However, Subramanian and Huang (2008) noted that the problem structure does
not naturally conform to the characteristics of a two-stage stochastic program and introduced a polyhedral
reformulation of the CVaR constraint with a statistics based CVaR estimator to solve a closely related
version of the problem. In a followup study (Subramanian and Huang, 2009), they retained Value-at-Risk
(VaR) and CVaR as unknown variables in the CVaR constraints, enabling a more efficient decomposition
algorithm, as opposed to Klein Haneveld and van der Vlerk (2006), where the problem was solved as a
canonical integrated chance constraint problem with preceding estimates of VaR. Espinoza and Moreno
(2012) proposed a solution method for problems (1) with CVaR measures that entailed generation of
aggregated scenario constraints to form smaller relaxation problems whose optimal outcomes were then
used to directly evaluate the respective upper bound on the objective of the original problem.

In what follows, we develop a general scenario decomposition solution framework for solving stochas-
tic optimization problems with certainty equivalent-based risk measures by utilizing principles related
to those in Espinoza and Moreno (2012). The rest of the paper is organized as follows: A class of
certainty equivalent-based risk measures that are in the focus of this study and their implementation in
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mathematical programming problems are discussed in Section 2. In Section 3 we propose the scenario
decomposition algorithm for stochastic programming problems with structure that is induced by the risk
measures described in Section 2. Lastly, experimental studies on portfolio optimization problems with
large-scale data sets that demonstrate the effectiveness of the developed technique are presented in Sec-
tion 4 .

2 A Class of Downside Risk Measures Based on Certainty Equivalents

In this section we describe a class of risk measures that encompasses some popular instances in risk
management literature. A general solution algorithm that utilizes special properties of this class of mea-
sures will be presented in the sequel. Specifically, this algorithm applies to the so-called coherent and
convex measures of risk that can be represented as an infimal convolution of certainty equivalent of some
utility function. Below we recall the definitions of coherent and convex risk measures and describe the
representation that motivated the present development.

In general, a risk measure �.X/ over a random outcome (specifically, a cost or a loss)X from probability
space .�;F ;P/ is defined as a lower semi-continuous (l.s.c.) mapping � W X 7! R, with X being the
space of bounded F-measurable functions X W � 7! R. In order to avoid an excessively technical dis-
cussion, we will implicitly assume that X is endowed with the properties necessary in the given context
(e.g., integrability, and so on). Additional properties of � are introduced to make the corresponding risk
measure well-suited for a specific application area.

Artzner et al. (1999) and Delbaen (2002) proposed the following four axioms as the desirable character-
istics that a “good”, or coherent measure of risk should possess:

(A1) monotonicity: �.X/ � �.Y / for all X; Y 2 X such that X � Y ;

(A2) convexity: �.�X C .1 � �/Y / � ��.X/C .1 � �/�.Y / for all X; Y 2 X and 0 � � � 1;

(A3) positive homogeneity: �.�X/ D ��.X/ for all X 2 X and � > 0;

(A4) translation invariance: �.X C a/ D �.X/C a for all X 2 X and a 2 R.

The following interpretations may be given to the above axioms: Axiom (A1) ensures that smaller losses
lead to lower risk. From the risk management point of view, the convexity axiom (A2) promotes risk re-
duction via diversification; it is also of fundamental importance in the optimization context. The positive
homogeneity property (A3) postulates that scaling losses by a positive factor scales risk correspondingly.
Axiom (A4) allows for eliminating risk of an uncertain cost/loss profile X by adding a deterministic
hedge, �.X � �.X// D 0.

Since being proposed in Artzner et al. (1999) and Delbaen (2002), the axiomatic approach to defining risk
measures has been widely adopted in literature, and a number of risk functionals tailored to particular
preferences emerged thereafter (see, e.g., Krokhmal et al., 2011; Uryasev and Rockafellar, 2013). In
particular, it has been argued that the positive homogeneity property (A3) may be omitted in many
situations; the corresponding risk measures that satisfy axioms (A1), (A2), and (A4) are called convex
measures of risk (Ruszczyński and Shapiro, 2006).

Our interest in these two classes of risk measures stems from the following infimal convolution represen-
tation that facilitates their use in mathematical programming problems.

3
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Theorem 1 (Krokhmal, 2007; Vinel and Krokhmal, 2014a) Function �.X/ is a proper coherent
(resp., convex) measure of risk if and only if it can be represented by the following infimal convolu-
tion of a l.s.c. function � W X 7! R such that �.0/ D 0, �.�/ > � for all real � ¤ 0, and which satisfies
(A1)–(A3) (resp., (A1)–(A2)):

�.X/ D inf
�
�C �.X � �/: (2)

Moreover, the infimum in (2) is attained for all X, so inf� may be replaced by min�2R.

Representation (2) can be used for construction of coherent (convex) risk measures through an appropri-
ate choice of function �. The present work concerns risk measures of type (2) that can directly incorpo-
rate decision maker’s risk preferences as given by the utility theory of von Neumann and Morgenstern
(1944). This is desirable in view of the well-known fact (see, e.g., Schied and Follmer, 2002) that risk
preferences expressed by coherent/convex measures of risk are generally not compatible with rational
risk-averse preferences (i.e., those defined by a non-decreasing concave utility function u).

Given that we operate with stochastic cost/loss variables, let v.t/ D �u.�t / be the utility function
adapted to loss variable X , or deutility function that quantifies dissatisfaction with cost or loss X . Then,
CE.X/ D v�1

�
Ev.X/

�
represents the certainty equivalent (CE) of loss X , i.e., such a deterministic

loss that a rational decision maker with deutility function v would be indifferent between CE.X/ and
stochastic loss profile X . The following argument can be used to construct risk measures of the form (2)
that employ rational utility maximizer’s preferences via certainty equivalents (Vinel and Krokhmal, 2015,
see also Ben-Tal and Teboulle, 2007). Consider a decision maker who faces an uncertain future loss X ,
but who can allocate an amount � of resources now to cover the future loss. It will cost v�1Ev.X � �/C
to cover the remaining losses .X � �/C, where tC D maxf0; tg and an operator-like notation is used for
v, i.e., v�1Ev.X ��/C D v�1.Ev..X ��/C//. The total cost can then be optimized with an appropriate
choice of �, such that the risk �.X/ of a future loss X reduces to

�.X/ D min
�

�C
1

1 � ˛
v�1Ev.X � �/C; ˛ 2 .0; 1/; (3)

where .1 � ˛/�1 > 1 is a penalty factor (a detailed discussion of representation (3) and related aspects
is presented in Vinel and Krokhmal, 2014a).

Notably, expressing �.X/ in (2) via certainty equivalents necessarily requires that .�/C appears in (3) in
order for �.X/ to conform to the conditions of Theorem 1 (Vinel and Krokhmal, 2014a). The conditions
on v that guarantee convexity of CE.X/ D v�1Ev.X/, and, correspondingly, of �.X/, can be found,
for example, in Ben-Tal and Teboulle (2007): v should be three times continuously differentiable, and
v0.t/=v00.t/ be convex. In what follows, we implicitly assume that �.X/ D .1 � ˛/�1v�1Ev.XC/ is
convex and satisfies the conditions of Theorem 1:

(U1) Function v.t/ is continuously differentiable, increasing, convex, and, moreover, such that v.0/ D 0
and the certainty equivalent v�1Ev.X/ is convex in X .

A key property of risk measures (3) is isotonicity with respect to second order stochastic dominance
(SSD), provided that deutility function v is convex and nondecreasing:

(A5) SSD isotonicity: �.X/ � �.Y / for all X; Y 2 X such that .�X/ �SSD .�Y /.

Recall that payoff profile Y1 dominates Y2 with respect to SSD, Y1 �SSD Y2, if and only if Eu.Y1/ �
Eu.Y2/ holds for all non-decreasing concave utility functions u, or, in other words, if every rational risk-
averse decision maker prefers Y1 over Y2. In this regard, (A5) implies that risk measures (3) “inherit” the
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risk preferences given by the utility u (equivalently, v). It is important to note that coherent and convex
measures of risk are generally not SSD-isotonic (Krokhmal et al., 2011).

Another common property of risk measures (3) is that they are “tail” risk measures in the sense that the
tail fX W X � ��˛.X/g of the loss distribution is used to quantify risk, where the location of the “tail
cutoff” point ��˛.X/, which is a minimizer in (3), can be adjusted according to risk preferences via the
parameter ˛ (see Krokhmal, 2007; Vinel and Krokhmal, 2014a).

Several practical and interesting risk measure families can be obtained from (3) by selecting a specific
deutility function v. If v.t/ D t , then (3) defines the well-known Conditional Value-at-Risk measure
(Rockafellar and Uryasev, 2002, 2000):

CVaR˛.X/ D min
�

�C .1 � ˛/�1E.X � �/C; ˛ 2 .0; 1/: (4)

If v.t/ D tp for t � 0 and p > 1, then representation (3) yields a two-parametric family of higher-
moment coherent risk measures (HMCR) (Krokhmal, 2007):

HMCRp;˛.X/ D min
�

�C .1 � ˛/�1k.X � �/Ckp; ˛ 2 .0; 1/; p � 1; (5)

where kXkp D
�
EjX jp

�1=p. If v.t/ D �t � 1, � > 1, then one obtains the family of log-exponential
convex measures of risk (Vinel and Krokhmal, 2015):

LogExpCR�;˛.X/ D min
�

�C .1 � ˛/�1 log� E�.X��/C ; ˛ 2 .0; 1/; � > 1: (6)

Unlike the CVaR and HMCR measures that are coherent, the LogExpCR measure is convex but not
coherent as it does not satisfy the positive homogeneity axiom (A3).

Perhaps one of the most widely used coherent measures of risk is defined by (4), which represents,
roughly speaking, the conditional expectation of losses that may occur in the .1�˛/ �100% of worst real-
izations of X . Clearly, CVaR measure is a special case of (5) when p D 1, HMCR1;˛.X/ D CVaR˛.X/.
When p > 1, HMCR measures quantify risk via higher tail moments k.X � �/Ckp, and have been
shown to be better suited for applications that involve heavy tailed loss distributions (Krokhmal, 2007).
Likewise, the LogExpCR family (6) is designed for dealing with heavy-tailed distributions; moreover, in
addition to being SSD-isotonic, LogExpCR measures are isotonic with respect to stochastic dominance
of arbitrary order (kSD), see Vinel and Krokhmal (2015).

Next we discuss the implementation of the risk measures discussed above in mathematical programming
problems.

2.1 Implementation in Stochastic Programming

Assume that loss X is a function of the decision variable x, X D X.x; !/, where ! 2 �. Then, for
a compact and convex feasible set C � Rn, consider a stochastic programming problem with a risk
constraint in the form

min
˚
g.x/ W �

�
X.x; !/

�
� h.x/; x 2 C

	
: (7)

Theorem 2 Consider problem (7) where set C � Rn is compact and convex, and functions g.x/ and
h.x/ are convex and concave on C , respectively. If, further, the cost or loss function X.x; !/ is convex in

5

DISTRIBUTION A: Distribution approved for public release



x, and � is a coherent or convex measure of risk with representation (2), then problem (7) is equivalent
to

min
˚
g.x/ W �C �

�
X.x; !/ � �

�
� h.x/; .x; �/ 2 C �R

	
; (8)

in the sense that (7) and (8) achieve minima at the same values of the decision variable x and their
optimal objective values coincide. Further, if the risk constraint in (7) is binding at optimality, .x�; ��/
achieves the minimum of (8) if and only if x� is an optimal solution of (7) and

�� 2 arg min� �C �
�
X.x�; !/ � �

�
:

Proof: See Krokhmal (2007). �

Remark 1 Note that the risk minimization problem

min
˚
�
�
X.x; !/

�
W x 2 C

	
(9)

is obtained from (7) by introduction of a dummy variable xnC1 and letting g.x/ D h.x/ D xnC1.

Let function � in (8) have the form �.X/ D .1 � ˛/�1v�1Ev.XC/. Given a discrete set of scenarios
f!1; : : : ; !N g D � that induce cost or loss outcomes X.x; !1/; : : : ; X.x; !N / for any given decision
vector x, it is easy to see that the risk constraint in (8) can be represented by the following set of inequal-
ities:

�C .1 � ˛/�1w0 � h.x/; (10a)

w0 � v
�1

�X
j2N

�j v.wj /

�
; (10b)

wj � X.x; !j / � �; j 2 N ; (10c)

wj � 0; j 2 N ; (10d)

where N denotes the set of scenario indices, N D f1; : : : ; N g, and �j D P.!j / > 0 represent the
corresponding scenario probabilities that satisfy �1 C � � � C �N D 1.

In the above discussion it was shown that several types of risk measures emerge from different choices
of the deutility function v. Here we note that the corresponding representations of constraint (10b) in
the context of HMCR and LogExpCR measures lead to sufficiently “nice”, i.e., convex, mathematical
programming models. For HMCR measures inequality (10b) becomes

w0 �
�X

j2N
�jw

p
j

�1=p
; (11)

which is equivalent to a standard p-order cone under affine scaling. Noteworthy instances of (11) for
which readily available mathematical programming solution methods exist include p D 1; 2. In the
particular case of p D 1, which corresponds to CVaR, the problem reduces to a linear programming
(LP) model. For instances when p D 2, a second-order cone programming (SOCP) model that is
efficiently solvable using long-step self-dual interior point methods transpires. However, no similarly
efficient solution methods exist for solving p-order conic constrained problems when p 2 .1; 2/[.2;1/
due to the fact that the p-cone is not self-dual in this case. Additional discussion and computational
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considerations for such instances are given in Section 4.1. Lastly, the following exponential inequality
corresponds to constraint (10b) when � is a LogExpCR measure:

w0 � ln
X

j2N
�j e

wj ; (12)

which is also convex and allows for the resulting optimization problem to be solved using appropriate
(e.g., interior point) methods.

3 Scenario Decomposition Algorithm

Large-scale stochastic optimization models with CVaR measure (4) and the corresponding solution al-
gorithms have received considerable attention in the literature. In this section we propose an efficient
scenario decomposition algorithm for solving large-scale mathematical programming problems that use
certainty equivalent-based risk measures (3), which contain CVaR as a special case.

The algorithm relies on solving a series of relaxation problems containing linear combinations of
scenario-based constraints that are systematically decomposed until an optimal solution of the origi-
nal problem is found or the problem is proven to be infeasible. Naturally, the core assumption behind
such a scheme is that sequential solutions of smaller relaxation problems can be achieved within shorter
computation times. By virtue of Section 2, when the distribution of loss functionX.x; !/ has a finite sup-
port (scenario set) � D f!1; : : : ; !N g with probabilities P.!j / D �j > 0, the stochastic programming
problem with risk constraint (8) admits the form

min g.x/ (13a)

s. t. x 2 C; (13b)

�C .1 � ˛/�1w0 � h.x/; (13c)

w0 � v
�1

�X
j2N

�j v.wj /

�
; (13d)

wj � X.x; !j / � �; j 2 N ; (13e)

wj � 0; j 2 N ; (13f)

where N D f1; : : : ; N g. If we assume that function g.x/ and feasible set C are “nice” in the sense
that problem minfg.x/ W x 2 C g admits efficient solution methods, then formulation (13) may present
challenges that are two-fold. First, constraint (13d) may need a specialized solution approach, especially
in the case of large N . Similarly, when N is large, computational difficulties may be associated with
handling the large number of constraints (13e)–(13f). In this work we present an iterative procedure for
dealing with a large number of scenario-based inequalities (13e)–(13f).

Since the original problem (13) with many constraints of the form (13e)–(13f) may be hard solve, a
relaxation of (13) can be constructed by aggregating some of the scenario constraints. Let fSk W k 2 Kg
denote a partition of the set N of scenario indices (which we will simply call scenario set), i.e.,[

k2K

Sk D N ; Si \ Sj D ; for all i; j 2 K; i ¤ j:

7
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The aggregation of scenario constraints by adding inequalities (13e) within sets Sk produces the follow-
ing master problem:

min g.x/ (14a)

s. t. x 2 C; (14b)

�C .1 � ˛/�1w0 � h.x/; (14c)

w0 � v
�1

�X
j2N

�j v.wj /

�
; (14d)

X
j2Sk

wj �
X
j2Sk

X.x; !j / � jSkj�; k 2 K; (14e)

wj � 0; j 2 N : (14f)

Clearly, any feasible solution of (13) is also feasible for (14), and the optimal value of (14) represents a
lower bound for that of (13). Since the relaxed problem contains fewer scenario-based constraints (14e),
it is potentially easier to solve. It would then be of interest to determine the conditions under which an
optimal solution of (14) is also optimal for the original problem (13). Assuming that x� is an optimal
solution of (14), consider the problem

min �C .1 � ˛/�1w0 (15a)

s. t. w0 � v
�1

�X
j2N

�j v.wj /

�
; (15b)

wj � X.x�; !j / � �; j 2 N ; (15c)

wj � 0; j 2 N : (15d)

Proposition 1 Consider problem (13) and its relaxation (14) obtained by aggregating scenario con-
straints (13e) over sets Sk , k 2 K, that form a partition of N D f1; : : : ; N g. Assuming that (13) is
feasible, consider problem (15) where x� is an optimal solution of relaxation (14). Let .���;w��/ be an
optimal solution of (15). If the optimal value of (15) satisfies condition

��� C .1 � ˛/�1w��0 � h.x
�/; (16)

then .x�; ���;w��/ is an optimal solution of the original problem (13).

Proof: Let xı be an optimal solution of (13). Obviously, one has g.x�/ � g.xı/: The statement
of the proposition then follows immediately by observing that inequality (16) guarantees the triple
.x�; ���;w��/ to be feasible for problem (13). �

The statement of Proposition 1 allows one to solve the original problem (13) by constructing an appro-
priate partition of N and solving the corresponding master problem (14). Below we outline an iterative
procedure that accomplishes this goal.

Step 0: The algorithm is initialized by including all scenarios in a single partition, K D f0g, S0 D
f1; : : : ; N g.

Step 1: For a current partition fSk W k 2 Kg, solve the master problem (14). If (14) is infeasible, then the
original problem (13) is infeasible as well, and the algorithm terminates. Otherwise, let x� be an optimal
solution of the master (14).
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Step 2: Given a solution x� of the master, solve problem (15), and let .���;w��/ denote the correspond-
ing optimal solution. If condition (16) is satisfied, the algorithm terminates with .x�; ���;w��/ being an
optimal solution of (13) due to Proposition 1. If, however, condition (16) is violated,

��� C .1 � ˛/�1w��0 > h.x�/;

then the algorithm proceeds to Step 3 to update the partition.

Step 3: Determine the set of scenario-based constraints in (15) that, for a given solution of the master x�,
are binding at optimality:

J D fj 2 N W w��j D X.x
�; !j / � �

�� > 0g (17)

Then, the elements of J are removed from the existing sets Sk:

Sk D Sk n J ; k 2 K;

and added to the partition as single-element sets:˚
S0; : : : ;SK

	
[
˚
SKC1; : : : ;SKCjJ j

	
; where SKCi D fjig for each ji 2 J ; i D 1; : : : ; jJ j;

and the algorithm proceeds to Step 1.

Theorem 3 Assume that in problem (13) functions g.x/ and X.x; !/ are convex in x, h.x/ is concave
in x, v satisfies assumption (U1), and the set C is convex and compact. Then, the described scenario
decomposition algorithm either finds an optimal solution of problem (13) or declares its infeasibility
after at most N iterations.

Proof: Let us show that during an iteration of the algorithm the size of the partition of the set N of
scenarios increases by at least one.

Let fSk W k 2 Kg be the current partition of N , .x�; ��;w�/ be the corresponding optimal solution of
(14), and .���;w��/ be an optimal solution of (15) for the given x�, such that the stopping condition
(16) is not satisfied,

��� C .1 � ˛/�1w��0 > h.x�/: (18)

Let NS� denote the set of constraints (15c) that are binding at optimality,

NS� D
˚
j W w��j D X.x

�; !j / � �
�� > 0; j 2 N

	
:

Next, consider a problem obtained from (15) with a given x� by aggregating the constraints (15c) that
are non-binding at optimality:

min �C .1 � ˛/�1w0 (19a)

s. t. w0 � v
�1

� X
j2S0

�j v.wj /

�
; (19b)

wj � X.x�; !j / � �; j 2 NS�; (19c)X
j2S�

wj �
X
j2S�

X.x�; !j / � jS�j�; (19d)

wj � 0; j 2 N ; (19e)
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where S� D N n NS�. Obviously, an optimal solution .���;w��/ of (15) will also be optimal for (19).

Next, observe that at any stage of the algorithm, the partition fSk W k 2 Kg is such that there exists at
most one set with jSkj > 1, namely set S0, and the rest of the sets in the partition satisfy jSkj D 1,
k ¤ 0. Let us denote

NS0 D N n S0 D
[

k2Knf0g

Sk :

Assume that NS� � NS0. By rewriting the master problem (14) as

min g.x/ (20a)

s. t. x 2 C; (20b)

�C .1 � ˛/�1w0 � h.x/; (20c)

w0 � v
�1

�X
j2N

�j v.wj /

�
; (20d)

wj � X.x; !j / � �; j 2 NS0; (20e)X
j2S0

wj �
X
j2S0

X.x; !j / � jS0j�; (20f)

wj � 0; j 2 N ; (20g)

we observe that the components ��;w� of its optimal solution are feasible for (19). Indeed, from (20e)
one has that

w�j � X.x
�; !j / � �

�; j 2 NS�;

which satisfies (19c), and also

w�j � X.x
�; !j / � �

�; j 2 NS0 n NS� D S� n S0:

Adding the last inequalities yieldsX
j2S�nS0

w�j �
X

j2S�nS0

X.x�; !j / � jS� n S0j ��;

which can then be aggregated with (20f) to produceX
j2S�

w�j �
X
j2S�

X.x�; !j / � jS�j��;

verifying the feasibility of .��;w�/ for (19). Since (20c) has to hold for .x�; ��;w�/, we obtain that

��� C .1 � ˛/�1w�� � �� C .1 � ˛/�1w� � h.x�/;

which furnishes a contradiction with (18). Therefore, one has to have NS0 � NS� for (18) to hold, meaning
that at least one additional scenario from NS� will be added to the partition during Step 3 of the algorithm.
It is easy to see that the number of iterations cannot exceed the number N of scenarios. �
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Remark 2 The fact that the proposed scenario decomposition method terminates within at most N it-
erations represents an important advantage over several existing cutting-plane methods that were devel-
oped in the literature for problems involving Conditional Value-at-Risk measure (Künzi-Bay and Mayer,
2006), integrated chance constraints (Klein Haneveld and van der Vlerk, 2006), and SSD constraints
(Roman et al., 2006). In the mentioned works, the cutting-plane algorithms utilized supporting hy-
perplane representations for scenario constraints, which were themselves exponential in the size N of
scenario sets. Although finite convergence of the cutting plane techniques was guaranteed by the poly-
hedral structure of the scenario constraints (in the case when X.x; !/ is linear in x), no estimate for the
sufficient number of iterations was provided. A level-type regularization of cutting plane method for
problems with SSD constraints, which allows for an estimate of the number of cuts due to Lemaréchal
et al. (1995), is discussed in Fábián et al. (2011).

3.1 An Efficient Solution Method for Sub-Problem (15)

Although formulation (15) may be solved using appropriate mathematical programming techniques, an
efficient alternative solution method can be employed by noting that (15) is equivalent to

min �C
1

1 � ˛
v�1

 X
j2N

�j v
�
X.x�; !j / � �

�
C

!
; (21)

which is a mathematical programming implementation of representation (3) under a finite scenario model
where realizations X.x�; !j / represent scenario losses corresponding to an optimal decision x� in the
master problem (14). An optimal value of � in (15) and (21) can be computed directly using its properties
dictated by representation (3).

Namely, let Xj D X.x�; !j / represent the optimal loss in scenario j for problem (14), and let X.m/ be
the m-th smallest outcome among X1; : : : ; XN , such that

X.1/ � X.2/ � : : : � X.N/:

The following proposition enables evaluation of ��� as a “cutoff” point within the tail of the loss distri-
bution.

Proposition 2 Given a function v.�/ that satisfies (U1) and an ˛ 2 .0; 1/, a sufficient condition for ���

to be an optimal solution in problems (21) and (15) has the formP
j WXj>���

�j v
0.Xj � �

��/

v0.v�1.
P
j2N �j v.X � �

��/C//
C ˛ � 1 D 0; (22)

where v0 denotes the derivative of v.

Proof: The underlying assumption (U1) on v entails that �.X/ D .1 � ˛/�1v�1Ev.X/ is convex,
whence the objective function of (21)

ˆX .�/ D �C �.X � �/ D �C
1

1 � ˛
v�1

�X
j2N

�j v.Xj � �/C

�
(23)

11

DISTRIBUTION A: Distribution approved for public release



is convex on R. Moreover, the condition �.�/ > � for � ¤ 0 of Theorem 1 guarantees that the set of
minimizers ofˆX .�/ is compact and convex in R. Indeed, it is easy to see thatˆX .�/ D � for � � X.N/
and ˆX .�/ � �

˛�
1�˛

for �� �1.

Now, consider the left derivative of ˆX .�/ at a given point � D ���:

� .1 � ˛/C .1 � ˛/
d�

d�
ˆX .�/

ˇ̌̌̌
�D���

D
d�

d�

�
v�1

�X
j2N

�j v.Xj � �/C

��ˇ̌̌̌
�D���

D lim
�!0C

1

��

�
v�1

� X
j WXj����

�j v.Xj � �
��
C �/

�
� v�1

� X
j WXj����

�j v.Xj � �
��/

��

D
d�

d�

�
v�1

� X
j WXj����

�j v.Xj � �/

��ˇ̌̌̌
�D���

D
d

d�

�
v�1

� X
j WXj����

�j v.Xj � �/

��ˇ̌̌̌
�D���

;

where the last equality follows from the continuous differentiability of function
v�1

�P
j WXj����

�j v.Xj � �
��/
�

at the point ��� due to the assumed properties of v. Analogously, the
right derivative of ˆX .�/ at � D ��� equals to

dC

d�
ˆX .�/

ˇ̌̌̌
�D���

D 1C
1

1 � ˛

d

d�

�
v�1

� X
j WXj>���

�j v.Xj � �/

��ˇ̌̌̌
�D���

;

where the strict inequality in summation is due to fact that v.Xj � ��� � �/C D 0 for all � > 0 if
��� � Xj .

Observe thatˆX .�/may only be non-differentiable at points � D Xj . Indeed, for any ��� ¤ Xj , j 2 N ,
the obtained expressions for left and right derivatives become equivalent, and equation (22) is obtained
from the first order optimality conditions by computing the derivatives of the functions in braces and
noting that

P
j WXj����

�j v.Xj � �
��/ D

P
j WXj>���

�j v.Xj � �
��/ D

P
j2N �j v.Xj � �

��/C. �

Recall that the presented above scenario decomposition algorithm uses the subproblem (15) for deter-
mining an optimal value of ���, as well as for identifying (during Step 3) the set J of scenarios that are
binding at optimality, i.e., for which X.x�; !j / � ��� > 0. This can be accomplished with the help of
the derived optimality condition (22) as follows.

Step (i) Compute values Xj D X.x�; !j /, where x� is an optimal solution of (14), and sort them in
ascending order: X.1/ � : : : � X.N/.

Step (ii) For m D N;N � 1; : : : ; 1, compute values Tm as

TN D 1 � ˛;

Tm D 1 � ˛ �

PN
jDmC1 �j v

0
�
X.j / �X.m/

�
v0
�
v�1

�PN
jDmC1 �j v

�
X.j / �X.m/

��� ; m D N � 1; : : : ; 1;
(24)

until m� is found such that

Tm� � 0; Tm�C1 > 0: (25)

Step (iii) If Tm� D 0, then the solution ��� of (15), (21) is equal to X.m�/. Otherwise, ��� satisfies

��� 2
�
X.m�/; X.m�C1/

�
;

12

DISTRIBUTION A: Distribution approved for public release



and its value can be found by using an appropriate numerical procedure, such as Newton’s method. The
set J in (17) is then obtained as

J D fj W Xj D X.k/; k D m� C 1; : : : ; N g:

Proposition 3 Given an optimal solution x� of the master problem (14), the algorithm described in steps
(i)–(iii) yields an optimal value ��� in (15), (21) and the set J to be used during steps 2 and 3 of the
scenario decomposition algorithm.

Proof: First, observe that an optimal solution ��� of (15) and (21) satisfies ��� � X.N/. Indeed, assume
to the contrary that ��� D X.N/ C � for some � > 0. The optimal value of (15) and (3) is then equal to
X.N/ C �, and can be improved by selecting, e.g., � D �=2.

Next, observe that quantities Tm are equal, up to a factor 1�˛, to the right derivatives of functionˆX .�/
(23) at � D X.m/, i.e., Tm D .1 � ˛/d

C

d�
ˆX .�/

ˇ̌
�DX.m/

. The value of TN D 1 � ˛ follows directly
from the fact that ˆX .�/ D � for � � X.N/. Then, if strict inequalities in (25) hold, two cases are
possible. Namely, an optimal ��� is located inside the interval

�
X.m�/; X.m�C1/

�
if d

�

d�
ˆX .X.m�C1// >

0. Alternatively, ��� D X.m�C1/ if d
�

d�
ˆX .X.m�C1// � 0. Thus, we have the second statement of step

(iii).

If Tm� D 0 in (25), observe that necessarily d�

d�
ˆX .Xm�/ � 0 since the left derivative of ˆX at X.m/

differs from the expression (24) by an extra summand �mv0.0/ in the numerator. If v0.0/ D 0 then
d�

d�
ˆX .Xm�/ D

dC

d�
ˆX .Xm�/ D 0 and ��� D X.m�/ is a minimum due to Proposition 2. If v0.0/ > 0

then d�

d�
ˆX .Xm�/ < 0 and ��� D X.m�/ is again either a unique minimizer, or represents the left

endpoint of the set of minimizers. This validates the first claim of step (iii).

Once the value of ��� is obtained during step (iii), the set J in (17) is constructed as the set of scenario
indices corresponding to X.m�C1/; X.m�C2/; : : : ; X.N/.

Note that it is not necessary to prove that there always exists m� 2 f1; : : : ; N � 1g such that Tm� � 0
and Tm�C1 > 0. If indeed it were to happen that Tm > 0 for allm D 1; : : : ; N , this would imply that set
J must contain all scenarios, i.e., J D N , making the exact value of ��� irrelevant in this case, since
the original problem (13) would have to be solved at the next iteration of the scenario decomposition
algorithm. �

Remark 3 We conclude this section by noting that the presented scenario decomposition approach is
applicable, with appropriate modifications, to more general forms of downside risk measures �.X/ D
min�f� C �..X � �/C/g. The focus of our discussion on the case when function � has the form of a
certainty equivalent, �.X/ D v�1Ev.XC/, is dictated mainly by the fact that the resulting constraint
(13d) encompasses a number of interesting and practically relevant special cases, such as second-order
cone, p-order cone, and log-exponential constraints.

4 Computational Experiments: Portfolio Optimization with HMCR and
LogExpCR Measures

Portfolio optimization problems are commonly used as an experimental platform in risk management
and stochastic optimization. In this section we illustrate the computational performance of the proposed
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scenario decomposition algorithm on a portfolio optimization problem, where the investment risk is
quantified using HMCR or LogExpCR measures.

A standard formulation of portfolio optimization problem entails determining the vector of portfolio
weights x D .x1; : : : ; xn/

> of n assets so as to minimize the risk while maintaining a prescribed level
of expected return. We adopt the traditional definition of portfolio losses X as negative portfolio returns,
X.x; !/ D �r.!/>x, where r.!/ D .r1.!/; : : : ; rn.!//

> are random returns of the assets. Then, the
portfolio selection model takes the general form

min �
�
� r.!/>x

�
(26a)

s. t. 1>x D 1; (26b)

E
�
r.!/>x

�
� Nr; (26c)

x � 0; (26d)

where 1 D .1; : : : ; 1/>, equality (26b) represents the budget constraint, (26b) ensures a minimum ex-
pected portfolio return level, Nr , and (26d) corresponds to no-short-selling constraints.

The distribution of the random vector r.!/ of assets’ returns is given by a finite set of N equiprobable
scenarios rj D r.!j / D .r1j ; : : : ; rnj />,

�j D P
˚
r D .r1j ; : : : ; rnj />

	
D 1=N; j 2 N � f1; : : : ; N g: (27)

4.1 Portfolio Optimization with Higher Moment Coherent Risk Measures

In the case when risk measure � in (26) is selected as a higher moment coherent risk measure, �.X/ D
HMCRp;˛.X/, the portfolio optimization problem (26) can be written in a stochastic programming form
that is consistent with the general formulation (13) as

min �C .1 � ˛/�1w0 (28a)

s. t. w0 � k.w1; : : : ; wN /kp; (28b)

�
�1=p
j wj � �r>j x � �; j 2 N ; (28c)

x 2 C; w � 0; (28d)

where C represents a polyhedral set comprising the expected return, budget, and no-short-selling con-
straints on the vector of portfolio weights x:

C D
n
x 2 Rn W

X
j2N

�j r>j x � Nr; 1>x D 1; x � 0
o
: (29)

Due to the presence of p-order cone constraint (28b), formulation (28) constitutes a p-order cone pro-
gramming problem (pOCP).

Solution methods for problem (28) are dictated by the specific value of parameter p in (28b). As has
been mentioned, in the case of p D 1 formulation (28) reduces to a LP problem that corresponds to a
choice of risk measure as the CVaR, a case that has received a considerable attention in the literature. In
view of this, of particular interest are nonlinear instances of problem (28), which correspond to values of
the parameter p 2 .1;C1/.

14
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Below we consider instances of (28) with p D 2 and p D 3. In the case of p D 2, problem (28)
can be solved using SOCP self-dual interior point methods. In the case of p D 3 and, generally, p 2
.1; 2/ [ .2;1/, the p-cone (28b) is not self-dual, and we employ two techniques for solving (28) and
the corresponding master problem (14): (i) a SOCP-based approach that relies on the fact that for a
rational p, a p-order cone can be equivalently represented via a sequence of second order cones, and
(ii) an LP-based approach that allows for obtaining exact solutions of pOCP problems via cutting-plane
methods.

Detailed discussions of the respective formulations of problems (28) are provided below. Throughout this
section, we use abbreviations in brackets to denote the different formulations of the “complete” versions
of (28) (i.e., with complete set of scenario constraints (28c)). For each “complete” formulation, we
also consider the corresponding scenario decomposition approach, indicated by suffix “SD”. Within the
scenario decomposition approach, we present formulations of the master problem (denoted by subscript
“MP”); the respective subproblems are then constructed accordingly. For example, the SOCP version of
the complete problem (28) with p D 2 is denoted [SOCP], while the same problem solved by scenario
decomposition is referred to as [SOCP-SD], with the master problem being denoted as [SOCP-SD]MP
(see below).

4.1.1 SOCP Formulation in p D 2 Case.

In case when p D 2, formulation (28) constitutes a standard SOCP problem that can be solved using a
number of available SOCP solvers, such as CPLEX, MOSEK, GUROBI, etc. In order to solve it using
the scenario decomposition algorithm presented in Section 3, the master problem (14) is formulated with
respect to the original problem (28) with p D 2 as follows:

min �C .1 � ˛/�1w0

s. t. w0 � k.w1; : : : ; wN /k2;X
j2Sk

�
1=2
j

�.k/
wj �

0@X
j2Sk

�j

�.k/
r>j

1A x � �; k 2 K;

w � 0; x 2 C:

[SOCP-SD]MP

Note that in the case of HMCR2;˛ measure, the function v.t/ D t2 is positive homogeneous of degree
two, which allows for eliminating the scenario probabilities �j from constraint (14d) and representing the
latter in the form of a second order cone in the full formulation (28) and in the master problem [SOCP-
SD]MP. This affects constraints (14d), which then can be written in the form of the second constraint in
[SOCP-SD]MP. The subproblem (15) is reformulated accordingly.

4.1.2 SOCP Reformulation of p-Order Cone Program.

One of the possible approaches for solving the pOCP problem (28) with p D 3 involves reformulating the
p-cone constraint (28b) via a set of quadratic cone constraints. Such an exact reformulation is possible
when the parameter p has a rational value, p D q=s. Then, a .q=s/-order cone constraint in the positive
orthant RNC1

C ˚
w � 0 W w0 � .w

q=s
1 C : : :C w

q=s
N /s=q

	
(30)
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may equivalently be represented as the following set in RNC1
C

�RN
C

:˚
w;u � 0 W w0 � kuk1; w

q
j � u

s
jw

q�s
0 ; j 2 N

	
: (31)

Each of theN nonlinear inequalities in (31) can in turn be represented as a sequence of three-dimensional
rotated second-order cones of the form �20 � �1�2, resulting in a SOCP reformulation of the rational-order
cone (30) (Nesterov and Nemirovski, 1994; Alizadeh and Goldfarb, 2003; Krokhmal and Soberanis,
2010). Such a representation, however, is not unique and in general may comprise a varying number of
rotated second order cones for a given p D q=s. In this case study we use the technique of Morenko
et al. (2013), which allows for representing rational order p-cones with p D q=s in �NC1 viaN dlog2 qe
second order cones. Namely, in the case of p D 3, when q D 3, s D 1, the 3-order cone (30) can
equivalently be replaced with dlog2 3eN D 2N quadratic cones˚

w;u; v � 0 W w0 � kuk1; w2j � w0vj ; v
2
j � wjuj ; j 2 N

	
: (32)

In accordance with the above, a p-order cone inequality in RNC1 can be represented by a set of 3D
second order cone constraints and a linear inequality when p is a positive rational number. Thus, the
[SpOCP] problem (28) takes the following form:

min �C .1 � ˛/�1w0

s. t. w0 � kuk1;

w2j � w0vj ; v
2
j � wjuj ; j 2 N ;

�
�1=p
j wj � �r>j x � �; j 2 N ;

x 2 C; w; v;u � 0:

[SpOCP]

The corresponding master problem sub-problem [SpOCP-SD]MP in the scenario decomposition-based
method is constructed by replacing constraints of the form (28c) in the last problem as follows:

min �C .1 � ˛/�1w0

s. t. w0 � kuk1;

w2j � w0vj ; v
2
j � wjuj ; j 2 N ;

X
j2Sk

�
1�1=p
j

�.k/
wj �

0@X
j2Sk

�j

�.k/
r>j

1A x � �; k 2 K;

x 2 C; w; v;u � 0:

[SpOCP-SD]MP

4.1.3 An Exact Solution Method for pOCP Programs Based on Polyhedral Approximations.

Computational methods for solving p-order cone programming problems that are based on polyhedral
approximations (Krokhmal and Soberanis, 2010; Vinel and Krokhmal, 2014b) represent an alternative to
interior-point approaches, and can be beneficial in situations when a pOCP problem needs to be solved
repeatedly, with small variations in problem data or problem structure.

Thus, in addition to the SOCP-based approaches for solving the pOCP problem (28) discussed above, we
also employ an exact polyhedral-based approach with O."�1/ iteration complexity that was proposed in
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Vinel and Krokhmal (2014b). It consists in reformulating the p-order cone w0 � k.w1; : : : ; wN /kp via
a set of three-dimensional p-cones

w0 D w2N�1; wNCj � k.w2j�1; w2j /kp; j D 1; : : : ; N � 1; (33)

and then iteratively building outer polyhedral approximations of the 3D p-cones until the solution of
desired accuracy " > 0 is obtained,

k.w1; : : : ; wN /kp � .1C "/w0:

In the context of the lifted representation (33), the above "-relaxation of p-cone inequality translates into
N � 1 corresponding approximation inequalities for 3D p-cones:

k.w�2j�1; w
�
2j /kp � .1C �/w

�
NCj ; j D 1; : : : ; N � 1; (34)

where � D .1C "/1=dlog2N e � 1. Then, for a given " > 0, an "-approximate solution of pOCP portfolio
optimization problem (28) is obtained by iteratively solving the linear programming problem

min �C .1 � ˛/�1w0

s. t. w0 D w2N�1;

wNCj � p̨.�kj
/w2j�1 C p̌.�kj

/w2j ; �kj
2 ‚j ; j D 1; : : : ; N � 1;

�
�1=p
j wj � �r>j x � �; j 2 N ;

x 2 C; w � 0;

[LpOCP]

where coefficients p̨ and p̌ are defined as

p̨.�/ D
cosp�1 �

.cosp � C sinp �/1�
1
p

; p̌.�/ D
sinp�1 �

.cosp � C sinp �/1�
1
p

:

If, for a given solution w� D .w�0 ; : : : ; w
�
2N�1/ of [LpOCP], the approximation condition (34) is not

satisfied for some j D 1; : : : ; N � 1,

k.w�2j�1; w
�
2j /kp > .1C �/w

�
NCj ; (35)

then a cut of the form

wNCj � p̨.�
�
j /w2j�1 C p̌.�

�
j /w2j ; ��j D arctan

w�2j

w�2j�1
; (36)

is added to [LpOCP]. The process is initialized with ‚j D f�1g, �1 D �=4, j D 1; : : : ; N � 1, and con-
tinues until no violations of condition (35) are found. In Vinel and Krokhmal (2014b) it was shown that
this cutting-plane procedure generates an "-approximate solution to pOCP problem (28) within O."�1/
iterations.

The described cutting plane scheme can be employed to solve the master problem corresponding to
the pOCP problem (28). Namely, the cutting-plane formulation of this master problem is obtained by
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replacing the p-cone constraint (28b) with cutting planes similarly to [LpOCP], and the set ofN scenario
constraints (28c) with the aggregated constraints (compare to [SpOCP-SD]MP):

min �C .1 � ˛/�1t

s. t. w0 D w2N�1;

wNCj � p̨.�kj
/w2j�1 C p̌.�kj

/w2j ; �kj
2 ‚j ; j D 1; : : : ; N � 1;

X
j2Sk

�
1�1=p
j

�.k/
wj �

0@X
j2Sk

�j

�.k/
r>j

1A x � �; k 2 K;

x 2 C; w � 0:

[LpOCP-SD]LB

4.2 Portfolio Optimization with Log Exponential Convex Risk Measures

In order to demonstrate the applicability of the proposed method when solving problems with measures
of risk other than the HMCR class, we examine an analogous experimental framework for instances
when �.X/ D LogExpCRe;˛.X/. The portfolio optimization problem (26) may then be written as

min �C .1 � ˛/�1w0

s. t. w0 � ln
X
j2N

�j e
wj ;

wj � �r>j x � �; j 2 N ;
x 2 C; w � 0:

[LogExpCP]

Note that in contrast to pOCP and SOCP problems discussed in the preceding subsections, the above
formulation is not a conic program. Since it involves a convex log-exponential constraint, we call this
problem a log-exponential convex programming problem (LogExpCP) that can be solved with interior
point methods.

The corresponding master problem for the scenario decomposition algorithm is obtained from [LogEx-
pCP] by aggregating the scenario constraints in accordance to (14):

min �C .1 � ˛/�1w0

s. t. w0 � ln
X
j2N

�j e
wj ;

X
j2Sk

wj � �
X
j2Sk

r>j x � jSkj�; k 2 K;

x 2 C; w � 0:

[LogExpCP-SD]MP

In the next section we examine the computational performances within each implementation class of
problem (28).

4.3 Computational Results

The portfolio optimization problems described in Section 4.1 and 4.2 were implemented in C++ using
callable libraries of three solvers, CPLEX 12.5, GUROBI 5.02, and MOSEK 6. Computations ran on
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a six-core 2.30GHz PC with 128GB RAM in 64-bit Windows environment. In the context of bench-
marking, each adopted formulation was tested against its scenario decomposition-based implementation.
Moreover, it was of particular interest to examine the performance of the scenario decomposition algo-
rithm using various risk measure configurations, thus, the following problem settings were solved: prob-
lems [SOCP]-[SOCP-SD] with risk measure as defined by (5) for p D 2; problems [SpOCP]-[SpOCP-
SD] and [LpOCP]-[LpOCP-SD] with measure (5) for p D 3; and problems [LogExpCP]-[LogExpCP-
SD] with risk measure (6). The value of parameter ˛ in the employed risk measures was fixed at ˛ D 0:9
throughout.

The scenario data in our numerical experiments was generated as follows. First, a set of n stocks (n D 50,
100, 200) was selected at random from the S&P500 index. Then, a covariance matrix of daily returns as
well as the expected returns were estimated for the specific set of n stocks using historical prices from
January 1, 2006 to January 1, 2012. Finally, the desired number N of scenarios, ranging from 1,000 to
100,000, have been generated as N independent and identically distributed samples from a multivariate
normal distribution with the obtained mean and covariance matrix.

On account of precision arithmetic errors associated with the numerical solvers, we introduced a toler-
ance level � > 0 to specify the permissible gap in the stopping criterion (16):

��� C .1 � ˛/�1w��0 � h.x
�/C �: (37)

Specifically, the value � D 10�5 was was chosen to match the reduced cost of the simplex method in
CPLEX and GUROBI. In a similar manner, we adjust (24) around m� for precision errors as

Tm�C1 .p/ � � < 0 and Tm� .p/C � > 0:

Empirical observations suggest the accumulation of numerical errors is exacerbated by the use of frac-
tional values of scenarios in assets returns, rij . To alleviate the numerical accuracy issues, the data in
respective problem instances of the scenario decomposition algorithm were appropriately scaled.

The results of our numerical experiments are summarized in Tables 1 – 5. Unless stated otherwise, the
reported running time values are averaged over 20 instances. Table 1 presents the computational times
observed during solving the full formulation, [SOCP], of problem (28) with HMCR measure and p D 2,
and solving the same problem using the scenario decomposition algorithm, [SOCP-SD], with the three
solvers, CPLEX, GUROBI, and MOSEK. Observe that the scenario decomposition method performs
better for all instances and solvers, with the exception of the largest three scenario instances when using
GUROBI with n D 50 assets. However, this trend is tampered as the number of assets increases.

Table 2 reports the running times observed during solving of the second-order cone reformulation of
the pOCP version of problem (28) with p D 3, in the full formulation ([SpOCP]) and via the scenario
decomposition algorithm ([SpOCP-SD]). The obtained results indicate that, although the scenario de-
composition algorithm is slower on smaller problem instances, it outperforms direct solution methods as
the numbers of scenariosN and assets n in the problem increase. Due to observed numerical instabilities,
the CPLEX solver was not considered for this particular experiment.

Next, the same problem is solved using using the polyhedral approximation cutting-plane method de-
scribed in Section 4.1. Table 3 shows the running times achieved by all three solvers for problems
[LpOCP] and [LpOCP-SD] with p D 3. In this case, the scenario decomposition method resulted in
order-of-magnitude improvements, which can be attributed to the “warm-start” capabilities of CPLEX
and GUROBI’s simplex solvers. Consistent with these conclusions is also the fact that the simplex-
based solvers of CPLEX and GUROBI yield improved solution times on the full problem formulation
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CPLEX GUROBI MOSEK
n N [SOCP] [SOCP-SD] [SOCP] [SOCP-SD] [SOCP] [SOCP-SD]

50 1000 1.00 0.46 0.62 0.45 0.26 0.15
2500 3.03 0.51 1.88 1.07 0.60 0.36
5000 6.58 0.55 3.81 2.78 1.24 0.72
10000 13.72 1.35 9.56 7.89 2.56 1.61
25000 31.03 3.53 32.40 34.04 7.33 5.18
50000 60.62 9.05 101.09 117.24 17.64 12.43

100000 137.14 25.25 327.95 449.78 36.78 33.02

100 1000 2.46 0.86 1.73 0.42 0.61 0.18
2500 6.14 0.99 4.87 1.17 1.50 0.47
5000 13.69 1.10 11.13 3.55 3.25 1.15
10000 27.06 2.21 21.94 9.63 6.69 3.03
25000 72.95 8.85 71.34 37.48 20.41 6.88
50000 157.25 20.88 185.56 129.37 44.01 16.61

100000 319.90 58.29 464.12 467.35 79.75 41.58

200 1000 6.87 2.19 5.60 0.58 6.68 0.29
2500 17.48 2.10 15.36 1.37 4.49 0.73
5000 34.93 2.98 33.96 4.15 9.36 1.92
10000 76.13 5.03 63.67 16.50 19.54 5.51
25000 206.29 24.16 196.45 54.00 53.89 29.15
50000 447.85 55.93 438.40 152.76 112.47 28.85

100000 950.17 112.60 998.86 539.46 234.68 61.98

Table 1: Average computation times (in seconds) obtained by solving problems [SOCP] and [SOCP-SD] for p D 2
using CPLEX, GUROBI and MOSEK. All running times are averaged over 20 instances.

comparing to the SOCP-based reformulation [SpOCP], where barrier solvers were invoked. The discrep-
ancy between [LpOCP] and [LpOCP-SD] solution times is especially prominent for MOSEK, but in this
case it appears that MOSEK’s interior-point LP solver was much less effective at solving the [LpOCP]
formulation using the cutting plane method.

Finally, Table 4 displays the running times for the discussed implementation of problems [LogExpCR]
and [LogExpCP-SD]. Of the three solvers considered in this case study, only MOSEK was capable of
handling problems with constraints that involve sums of univariate exponential functions. Again, the
scenario decomposition-based solution method appears to be preferable in comparison to solving the full
formulation. Note, however, that computational times were not averaged over 20 instances in this case
due to numerical difficulties associated with the solver for many instances of [LogExpCP].

It is also of interest to comment on the number of scenarios that had to be generated during the scenario
decomposition procedure in order to yield an optimal solution. Table 5 lists the corresponding average
number of scenarios partitioned for each problem type over all instances. Although these numbers may
slightly differ among the three solvers, we only present results for MOSEK as it was the only solver used
to solve all the problem in Sections 4.1 and 4.2. Observe that far fewer scenarios are required relative
to the total set size N . In fact, as a percentage of the total number of scenarios, the number of scenarios
that were generated during the algorithm in order to achieve optimality was between 0.7% and 11% of
the total scenario set size.
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GUROBI MOSEK
n N [SpOCP] [SpCOP-SD] [SpOCP] [SpCOP-SD]

50 1000 2.58 2.73 0.18 0.63
2500 10.63 6.61 0.49 0.96
5000 32.01 19.27 1.06 1.70
10000 87.27 41.34 2.31 3.49
25000 198.56 92.39 7.14 6.70
50000 455.63 540.09 16.36 13.70

100000 1217.96 2080.34 35.33 30.29

100 1000 7.16 3.14 0.30 0.75
2500 29.47 8.44 0.85 1.37
5000 90.25 19.74 1.88 2.32
10000 277.72 44.31 4.52 3.91
25000 642.63 92.11 12.66 8.66
50000 1365.37 1716.37 28.64 15.10

100000 — — 65.48 28.29

200 1000 17.86 3.87 0.69 1.01
2500 78.28 8.65 1.90 1.56
5000 276.89 22.40 4.41 2.47
10000 799.65 49.02 9.88 4.84
25000 2118.11 107.14 29.99 9.60
50000 — — 64.52 17.41

100000 — — 139.87 34.99

Table 2: Average computation times (in seconds) obtained by solving problems [SpCOP] and [SpCOP-SD] for
p D 3 using GUROBI and MOSEK. All running times are averaged over 20 instances and symbol “—” indicates
that the time limit of 3600 seconds was exceeded.

5 Conclusions

In this work, we propose an efficient algorithm for solving large-scale convex stochastic programming
problems that involve a class of risk functionals in the form of infimal convolutions of certainty equiv-
alents. We exploit the property induced by such risk functionals that a significant portion of scenarios
is not required to obtain an optimal solution. The developed scenario decomposition technique is con-
tingent on the identification and separation of “non-redundant” scenarios by solving a series of smaller
relaxation problems. It is shown that the number of iterations of the algorithm is bounded by the number
of scenarios in the problem. Numerical experiments with portfolio optimization problems based on sim-
ulated return data following the covariance structure of randomly chosen S&P500 stocks demonstrate
that significant reductions in solution times may be achieved by employing the proposed algorithm. Par-
ticularly, performance improvements were observed for the large-scale instances when using HMCR
measures with p D 2; 3, and LogExpCR measures.
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CPLEX GUROBI MOSEK
n N [LpOCP] [LpOCP-SD] [LpOCP] [LpOCP-SD] [LpOCP] [LpOCP-SD]

50 1000 0.27 0.12 0.22 0.59 0.82 0.46
2500 1.65 0.24 0.74 0.83 4.26 0.66
5000 6.81 0.46 2.31 1.54 15.08 1.46
10000 19.20 1.42 7.73 3.86 60.66 3.75
25000 31.93 3.93 56.52 13.74 381.67 11.34
50000 179.49 16.07 117.72 36.51 1412.81 25.47

100000 903.36 62.79 474.68 112.72 — 54.45

100 1000 0.37 0.13 0.23 0.61 2.94 0.65
2500 2.22 0.28 0.86 0.98 7.11 1.06
5000 8.58 0.79 2.82 1.76 32.20 1.95
10000 28.71 2.18 9.28 4.13 122.75 4.99
25000 45.37 4.99 35.11 13.13 1138.99 15.34
50000 200.12 18.80 122.21 39.78 2753.54 34.17

100000 3336.26 82.79 1316.29 138.74 — 80.15

200 1000 0.61 0.20 0.33 0.89 15.68 1.06
2500 3.13 0.44 1.30 1.17 20.64 1.37
5000 13.25 1.01 3.72 2.11 70.49 2.97
10000 47.97 3.31 13.20 4.72 322.36 8.12
25000 195.28 6.98 94.45 14.77 2418.52 26.91
50000 936.60 27.20 665.61 45.43 — 53.62

100000 — 114.08 3301.44 160.92 — 123.89

Table 3: Average computation times (in seconds) obtained by solving problems [LpOCP] and [LpOCP-SD] for
p D 3 using CPLEX, GUROBI and MOSEK. All running times are averaged over 20 instances and symbol “—”
indicates that the time limit of 3600 seconds was exceeded.
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Abstract A new two-stage stochastic partial differential
equation (PDE)-constrained optimization methodology is
developed for the active vibration control of structures in the
presence of uncertainties in mechanical loads. The method-
ology relies on the two-stage stochastic optimization for-
mulation with an embedded first-order black-box PDE-
constrained optimization procedure. The PDE-constrained
optimization procedure utilizes a first-order active-set algo-
rithm with a conjugate gradient method. The objective func-
tion is determined through solution of the governing PDEs
and its gradient is computed using automatic differentia-
tion with hyper-dual numbers. The developed optimization
methodology is applied to the problem of post-impact vibra-
tion control (via applied electromagnetic field) of an elec-
trically conductive carbon fiber reinforced composite plate
subjected to an uncertain, or stochastic, impact load. The
corresponding governing PDEs consist of a nonlinear cou-
pled system of equations of motion and Maxwell’s equa-
tions. The conducted computational study shows that the
obtained two-stage optimization solution allows for a sig-
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nificant suppression of vibrations caused by the randomized
impact load in all impact load scenarios. Also, the effective-
ness of the developed methodology is illustrated in the case
of a deterministic impact load, where the two-stage strategy
enables one to practically eliminate post-impact vibrations.

Keywords PDE-constrained optimization · two-stage
stochastic optimization · electro-magneto-mechanical
coupling · composite materials

1 Introduction

In electrically conductive solids, mechanical and electro-
magnetic fields interact through the Lorentz ponderomotive
force that is exerted by the electromagnetic field. Analy-
sis of this field interaction requires simultaneous solution
of Maxwell’s equations for electromagnetic field (Maugin,
1988) and equations of motion of continuous media that in-
volve the Lorentz force as a body force, whereby the system
of governing equations becomes coupled and nonlinear. This
field coupling leads to many interesting effects observed in
the mechanical behavior of the electrically conductive solids
subjected to electromagnetic load, including changes in the
stress state (Moon, 1984; Zhupanska and Sierakowski, 2007,
2011; Higuchi et al, 2007), vibration behavior (Barakati
and Zhupanska, 2012a; Rudnicki, 2002), and unusual sta-
bility behavior (Hasanyan and Piliposyan, 2001; Hasanyan
et al, 2006; Eringen, 1989). Electro-magneto-mechanical
coupling can potentially lead to the development of struc-
tures amenable to active control by the electromagnetic field.
Interactions between mechanical, electromagnetic, and ther-
mal fields provide a basis for the multifunctional materials
and structures.

Composite materials are often considered to be materi-
als of choice for multifunctional applications (Gibson, 2010)
due to their multiphase nature and inherent tailorability.
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As a result, the recent years witnessed a growing interest
in electro-magneto-mechanical interactions in composites.
Most of the studies have been focused on the mechanics,
while less attention was paid to the optimization of mul-
tifunctional composites and structures. The present work
makes contribution to the latter subject.

The present work is closely related to the recent stud-
ies on the electro-magneto-mechanical coupling in elec-
trically conductive anisotropic composites (Zhupanska and
Sierakowski, 2007, 2011; Barakati and Zhupanska, 2012a,b,
2013, 2014), where the effects of the steady, slowly vary-
ing, and pulsed electromagnetic fields on the mechanical re-
sponse of single-layer and laminated anisotropic compos-
ite plates were examined. The interacting effects of the ap-
plied electric current, external magnetic field, and mechani-
cal load were studied. It has been shown that the characteris-
tics of the electromagnetic field (waveform, duration of ap-
plication, intensity) can significantly reduce the stressed and
deformed states of the electrically conductive plate and de-
crease the amplitude of vibrations. In particular, to achieve
the maximum reduction in the plate deflection and stress,
the application of the mechanical load must be coordinated
with application of the electric current and its waveform.
Moreover, an increase in the magnetic induction tends to re-
duce the amplitude of vibrations of the plate with a trend
towards a more rapid decay at the stronger magnetic fields.
An increase in the electric current density tends to decrease
the amplitude of the plate vibrations. Furthermore, the effect
of the electric current density becomes more pronounced as
the magnetic field intensity increases. It has been concluded
that concurrent application of a pulsed electromagnetic load
could effectively mitigate the effects of the impact load and
post-impact vibrations.

1.1 Active vibration control of a composite plate via an
electromagnetic field: A conceptual application

The results of the previously discussed studies provided mo-
tivation for the present work on a stochastic partial dif-
ferential equation (PDE)-constrained optimization approach
to active control of the mechanical response of the elec-
trically conductive composites, using an electromagnetic
field. As a specific application, we consider the problem
of vibration control – via application of an electromagnetic
field – in an electrically conductive carbon fiber reinforced
polymer (CFRP) composite plate subjected to a mechani-
cal impact load with uncertain parameters (magnitude, dura-
tion, etc). We hypothesize that electromagnetically activated
CFRP structural elements could provide additional protec-
tion against certain types of foreign object impacts, assum-
ing that an appropriate sensor technology can be employed
for applying an electromagnetic field to the composite struc-

ture at the moment of impact so as to increase the impact
resistance and dampen post-impact vibrations.

The practical viability of this hypothetical scenario de-
pends on a number of factors, among which are the avail-
ability of (i) composite materials with necessary mechanical
and electromagnetic properties, (ii) adequate sensors to trig-
ger application of an electromagnetic field, and (iii) ability
to adjust and control characteristics of the applied electro-
magnetic field (i.e., waveform, duration of application, in-
tensity) depending on the target composite material char-
acteristics and applied impact load. Physics-based models
of electro-magneto-mechanical coupling in electrically con-
ductive composites can provide theoretical underpinnings
for the development of the electromagnetically activated im-
pact resistant structural elements, while PDE-constrained
stochastic optimization can provide a path to the active con-
trol of these structural elements in the presence of uncertain-
ties.

In Section 2 we outline the physical model of the field
coupling phenomenon that is exploited in this work. Since
the general model is prohibitively complex, a high-fidelity
approximation of the governing equations in the case of thin
composite plates is discussed. In Section 2.2 we introduce
the actual boundary-value problem corresponding to the im-
pact of a thin CFRP composite plate in a deterministic set-
ting, i.e. when the impact load is known with certainty. This
problem forms the basis for the stochastic PDE-constrained
optimization problem that is introduced in Section 3. Nu-
merical solution and optimization procedures are discussed
in Section 4, and in Section 5 we present the results of com-
putational studies.

2 Mechanics of electro-magneto-mechanical
interactions in electrically conductive anisotropic
composite plates

In this section we first outline the governing equations for
anisotropic electrically conductive solids subjected to me-
chanical and electromagnetic loads. Then, we discuss a
2D plate approximation, as well as the resulting 2D non-
linear hyperbolic-parabolic system of PDEs that constitute
the mathematical framework for solving problems of the
dynamic mechanical response of the anisotropic electri-
cally conductive plates subjected to mechanical and elec-
tromagnetic loads. See Zhupanska and Sierakowski (2007);
Barakati and Zhupanska (2012a) for details.

2.1 Governing equations

The behavior and interaction of the mechanical and elec-
tromagnetic fields in electrically conductive solids can be
determined from simultaneously solving the equations of
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PDE-constrained stochastic optimization for vibration control of a composite plate subject to mechanical and electromagnetic loads 3

motion that include the Lorentz ponderomotive force and
Maxwell’s equations:

∇ ·T+ρ(F+FL) = ρ
∂ 2u
∂ t2 , (1)

divD = ρe, divB = 0,

rotE =−∂B
∂ t

, rotH = j+
∂D
∂ t

.
(2)

Here T is the stress tensor, u is the displacement vector,
ρ is density, F is the body force per unit mass, FL is the
Lorentz force per unit mass, and ∇ is the gradient operator.
In Maxwell’s equations (2), D represents the electric dis-
placement vector, B is the magnetic induction, E is the elec-
tric field, H is the magnetic field, j is the current density
vector, ρe is the electric charge density (which vanishes in
electric conductors), and t is time.

Interaction between mechanical and electromagnetic
fields in the electrically conductive materials is due to the
Lorentz force, FL, that enters equations of motion (1) as
a body force. It has been shown in Zhupanska and Sier-
akowski (2007) that the Lorentz force in the electrically con-
ductive anisotropic solids takes the form:

ρFL = ρe

(
E+

∂u
∂ t
×B
)
+

(
σ

(
E+

∂u
∂ t
×B
))
×B

+
((

(ε− ε0I)E
)
×B
)

α

∇

(
∂u
∂ t

)
α

+J∗×B,
(3)

where σ is the electrical conductivity tensor, ε is the electri-
cal permittivity tensor, ε0 is the electrical permittivity in the
vacuum, ∇ is the gradient operator, and Einstein’s summa-
tion convention is adopted with respect to index α . There-
fore, the system of equations (1)–(2) is the system of nonlin-
ear hyperbolic PDEs that represent the governing equations
of electro-magneto-mechanical coupling in electrically con-
ductive solids. The nonlinearity is due to the presence of the
Lorentz force, which contains nonlinear terms with respect
to the components of the mechanical and electromagnetic
fields. In the most general dynamic case, the problem of
solving the system of governing equations (1)–(2) for solids
of even the simplest 3D geometries is insurmountable. In
many situations, however, solution of equations (1)–(2) can
be facilitated through appropriate physics-based hypothe-
ses, or simplifications that allow one to reduce mathemat-
ical complexity of the model while preserving its physical
fidelity by exploiting particular features of problem’s geom-
etry, etc.

With respect to the present work, a 2D approximation
for the thin electrically conductive plates subjected to me-
chanical and electromagnetic loads is used. This approxima-
tion was developed in Zhupanska and Sierakowski (2007)
and utilizes Kirchhoff hypothesis of non-deformable nor-
mals and electromagnetic hypotheses.

Next, we briefly outline the procedure to derive 2D ap-
proximation of the governing equations. More details can
be found in Zhupanska and Sierakowski (2007); Barakati
and Zhupanska (2012a). As for the mechanical part of the
governing equations (1), the linear plate theory formula-
tion based on the so-called Kirchhoff hypothesis of non-
deformable normals is used. Equations of motion with re-
spect to stress and moment resultants are obtained by inte-
gration of (1) across the thickness of the plate. In contrast
to the problems with purely mechanical load, application of
the Kirchhoff hypothesis and integration of the 3D equations
of motion through the thickness of the plate does not pro-
duce 2D equations of motion. This is due to the presence of
the terms with the Lorentz force components, which remain
three-dimensional. Therefore, to obtain a 2D approximation
to the equations of motion, one needs to derive a 2D ap-
proximation for the electromagnetic field and the Lorentz
force for the case of thin plates. This is achieved by intro-
ducing additional hypotheses regarding the behavior of the
electromagnetic field components, which imply that tangen-
tial components of the electric field vector and the normal
component of the magnetic field vector do not change across
the thickness of the plate and the variation of the tangential
components of the magnetic field across the thickness of the
plate is linear. A 2D approximation of Maxwell’s equations
(2) is obtained by representing functions H, E, and J via se-
ries expansions with respect to the coordinate z, integrating
Maxwell’s 3D equations across the thickness of the plate and
invoking a quasistatic approximation for Maxwell’s equa-
tions. The 2D expression for the Lorentz force is obtained
(3) using the Kirchhoff hypothesis for the plate displace-
ments and the set of the discussed electromagnetic hypothe-
ses. The 2D equations of motion are then obtained by inte-
grating the terms with the Lorentz force across the thickness
of the plate in the equations of motion with respect to the
stress and moment resultants.

Finally, 2D equations of motion and 2D Maxwell’s equa-
tions constitute the system of governing equations for a me-
chanically and electrically conductive plate subjected to me-
chanical and electromagnetic loads and correspond to the
linear plate theory. This system of equations is a nonlinear
mixed system of parabolic and hyperbolic PDEs.

2.2 Impact problem: A deterministic formulation

In this section we present the boundary-value problem for
a thin anisotropic composite plate subject to a determinis-
tic mechanical impact load and electromagnetic field within
the mathematical framework presented in the previous sub-
section. Such a deterministic formulation was considered in
Barakati and Zhupanska (2012a) and forms the basis for the
stochastic model with uncertain impact loads and the corre-

DISTRIBUTION A: Distribution approved for public release



4 D. Chernikov et al.

sponding stochastic optimization formulations will be intro-
duced in Section 3.

Consider a thin unidirectional fiber-reinforced (x-
direction is the fiber direction) electrically conductive com-
posite plate of width a and thickness h subjected to the trans-
verse impact load:

p(x,y, t) =
[
0,0, pz(x,y, t)

]
, (4)

time-dependent electric current of density:

J(t) =
[
Jx(t),0,0

]
, (5)

and immersed in the constant magnetic field with the induc-
tion:

B∗ =
[
0,B∗y ,0

]
. (6)

It is assumed that the intensity of the current is such that the
associated thermal effects are negligible.

The plate is transversely isotropic, where y–z is the plane
of isotropy and the x–y plane coincides with the middle
plane of the plate. The plate is assumed to be long in the fiber
direction, which is also the direction of the applied current
(x-direction), simply supported along the long sides, arbi-
trarily supported along the short sides (see Figure 1), and
initially is at rest.

Fig. 1 Composite plate subjected to impact and electromagnetic loads

The corresponding mechanical and electromagnetic
boundary conditions are:

τzz
∣∣
z= h

2
=−pz(y, t), (7a)

uy
∣∣
y=± a

2
= uz

∣∣
y=± a

2
= Myy

∣∣
y=± a

2
= 0, (7b)(

Ex−
∂w
∂ t

B∗y +
∂v
∂ t

Bz

)∣∣∣
y=− a

2

= 0, Ex

∣∣∣
y= a

2

= 0. (7c)

The applied transverse impact load (4) causes vibrations
in the plate, which can potentially be mitigated by appli-
cation of the external electromagnetic field consisting of
the electric current of density (5) and magnetic induction
(6). We are interested in the optimal characteristics of the
electromagnetic field to maximally reduce mechanical vi-
brations caused by the impact load.

The formulated problem (4)-(7) for a long transversely
isotropic plate admits the assumption of independence of the

components of mechanical and electromagnetic fields of the
coordinate x, which using the procedure described in Sec-
tion 2 reduces the governing equations (1) and (2) to the
form:

1
h

∂Nyy

∂y
= ρ

∂ 2v
∂ t2 +σxB2

z
∂v
∂ t
−σxB∗yBz

∂w
∂ t

+
εx− ε0

B22
ExBz

×
∂Nyy

∂ t
− (εx− ε0)ExB∗y

∂W
∂ t

+BzJx(t)+σxExBz,

1
h

∂Nyz

∂y
= ρ

∂ 2w
∂ t2 +

pz(y, t)
h
−σxB∗yBz

∂v
∂ t

+σx
(
B∗y
)2 ∂w

∂ t

− (εx− ε0)ExBz
∂W
∂ t
−B∗yJx(t)−σxExB∗y ,

∂Myy

∂y
=−ρh3

12
∂ 2W
∂ t2 +Nyz−

1
12

σxh3B2
z

∂W
∂ t

+
εx− ε0

B22
ExBz

∂Myy

∂ t
,

∂v
∂y

=
1

hB22
Nyy,

∂ 2w
∂y2 =− 12

h3B22
Myy,

∂w
∂y

=W,

∂Bz

∂y
= σxµ

(
Ex +

∂v
∂ t

Bz−
∂w
∂ t

B∗y

)
,

∂Ex

∂y
=

∂Bz

∂ t
.

(8)

Here v and w are the middle plane displacement components
in y- and z-directions, respectively; Nyy =

∫ h/2
−h/2 τyydz and

Nyz =
∫ h/2
−h/2 τyzdz are the stress resultants; Myy =

∫ h/2
−h/2 τyyzdz

is the moment resultant; Ex is the x-component of the electric
field; Bz is the z-component of the magnetic induction; σx
and εx are the electrical conductivity and permittivity in x-
direction, respectively; µ is the magnetic permeability; and
B22 = E2/(1−ν12ν21), where E2 is Young’s modulus along
the y-direction, ν12, and ν21 are the corresponding Poisson
ratios.

The system of the nonlinear PDEs (8) represents the
governing equations in the context of this work. The formu-
lated deterministic boundary-value problem (7)–(8) for low-
velocity impact of a thin composite plate in the presence of
an electromagnetic field forms the basis for the stochastic
PDE-constrained optimization model of optimal vibration
mitigation that is presented in Section 3.

3 A two-stage stochastic PDE-constrained optimization
framework

In this section we first introduce a deterministic PDE-
constrained optimization problem for vibration reduction in
composite plates using an electromagnetic field, which is
followed by the more general two-stage stochastic PDE-
constrained optimization framework for control of compos-
ite structures in the presence of uncertainties in mechanical
loads.
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3.1 A PDE-constrained optimization formulation

The existence of field coupling effects between mechanical
and electromagnetic fields in electrically conductive solids
presents an opportunity for controlling and/or optimizing the
mechanical response of the corresponding structures via ap-
plication of an electromagnetic field. Assuming that the de-
sign or performance criterion of the structural element can
be expressed through some function F to be minimized, the
problem of optimization or control of the mechanical field
via electromagnetic field generally reduces to a (nonlinear)
PDE-constrained optimization problem of the form:

min
θ

F[0,T ](g,θ,ξ) (9a)

s. t.
∂g
∂y

=Φ

(
g,

∂g
∂ t

,
∂ 2g
∂ t2 ,θ,ξ

)
, t ∈ [0,T ], (9b)

G
(

g,
∂g
∂ t

)∣∣∣∣
y=± a

2

= 0, t ∈ [0,T ], (9c)

θ ≤ θ ≤ θ, (9d)

where vector g represents the components of the mechan-
ical field, i.e., displacements and stress and moment resul-
tants in the governing equations (8), vector θ contains the
parameters of the electromagnetic field, vector ξ denotes the
parameters of the mechanical load, F[0,T ](g,θ,ξ) is the de-
sign/performance fitness function of the structure that is ob-
served during time interval [0,T ], constraints (9b) and (9c)
represent the system of governing PDEs (8) with boundary
conditions (7), respectively, and θ and θ are the lower and
upper bounds for the vector of control variables θ. Note that
for the sake of simplicity, we omit the explicit dependency
of g on the time variable t.

As the purpose of our optimization problem is to min-
imize the post-impact vibrations of the plate, the optimiza-
tion criterion F in (9) is defined as the average squared mid-
dle plane displacement of the plate:

F[0,T ](g,θ,ξ) =
1
T

∫ T

0

(
wc(θ,ξ, t)

)2dt, (10)

where wc = w|y=0 is the middle plane displacement at the
center of the plate.

3.2 A two-stage stochastic programming formulation

It can be readily seen that the optimal parameters of the elec-
tromagnetic field as a solution of problem (9) depend heav-
ily on the parameters of the applied impact load. Since the
impact load can rarely be predicted or estimated with suf-
ficient accuracy, in this subsection we discuss a stochastic
extension of the general problem (9) under the assumption
that the impact load is uncertain, or random.

To deal with the uncertainty in the parameters of the im-
pact load, we resort to the two-stage stochastic optimization
framework. In general, the discipline of stochastic optimiza-
tion is concerned with determining optimal decision poli-
cies in situations when the decision making process is in-
fluenced by uncertainties in problem data (Prékopa, 1995;
Birge and Louveaux, 1997; Kall and Mayer, 2005; Shapiro
et al, 2009). One of the main assumptions within this frame-
work is that the uncertain parameters can be described
probabilistically as random variables from some probabil-
ity space (Ω ,F ,P), where Ω is the set of random events,
F is the sigma-algebra, and P is the probability measure.
In other words, while the values of the uncertain parameters
cannot be predicted with high degree of certainty, their prob-
ability distributions are believed to be known. The second
assumption that is prevalent in most of stochastic optimiza-
tion literature is that the probability distributions in question
are finite (|Ω | < ∞), and uncertainty in any given param-
eter ξ can be described by a finite set of possible realiza-
tions ξ (ω1), . . . ,ξ (ωN), or “scenarios”, with each realiza-
tion (scenario) ωi ∈ Ω having a prescribed non-zero proba-
bility P(ωi)> 0.

The two-stage stochastic optimization framework mod-
els the situation when the decision-making process under
uncertainty involves two decisions, or actions: the initial, or
first stage decision/action, and a subsequent corrective, or
recourse, or second stage decision/action. Namely, the first-
stage action is selected under uncertainty, i.e., before the
actual realizations of the uncertain factors can be observed.
After the first-stage decision has been made, it is assumed
that one can observe the actual realized values of the prob-
lem’s uncertain parameters as well as their effect on the out-
come of that decision (e.g., a person must place a bet in a
horse race before its start; then the outcome of the race and
the bet determine the winnings, if any).

Clearly, in most cases the first-stage action will not be
optimally suited for any given realization of uncertainty. The
second-stage, or recourse decision/action is made after the
particular realization of uncertainties was observed, and its
purpose is to correct the consequences of the first-stage ac-
tion with respect to the actual observed outcome of uncer-
tainty. It is important to emphasize that the second-stage
decision is dependent on the observed realization of uncer-
tainties and the first-stage decision; in turn, the first-stage
decision must take into account the probability distribution
of uncertainties and the corresponding second-stage actions
(for example, a poorly chosen first-stage action may not al-
low for any feasible corrective actions).
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6 D. Chernikov et al.

Mathematically, a two-stage stochastic optimization
problem can be written in the form:

min Eω

(
f1(x,ω)+ f2(x,y(ω),ω)

)
s. t. h1(x,ω)≤ 0, ∀ω ∈Ω ,

h2(x,y(ω),ω)≤ 0, ∀ω ∈Ω .

(11)

Here, x denotes the vector of first-stage decisions and
y = y(ω) denotes second-stage decision; note that we ex-
plicitly indicate its dependence on the random element ω

from the set Ω of all possible random events. Function
f1(x,ω) denotes the first-stage design/decision criterion,
and f2(x,y(ω),ω) denotes the corresponding criterion for
the second-stage action. Similarly, h1(x,ω) ≤ 0 represents
the first-stage constraints to be satisfied by the first-stage de-
cision x, and the next constraint stipulates that the second-
stage constraints to be satisfied by the second-stage decision
y(ω) may depend explicitly on first-stage decision x and the
observed realization of ω . An optimal solution of (11) deliv-
ers the best, on average, value of the first- and second-stage
design criteria.

With respect to the problem of impact of a composite
plate that was discussed in Section 2.2, we consider that the
vector ξ of parameters that describe the mechanical impact
load pz(t) = pz(t;ξ) is random, ξ= ξ(ω), with a known dis-
tribution. Probability space Ω is finite and describes a finite
number of scenarios, Ω = {ω1, . . . ,ωN}, where each sce-
nario ωi corresponds to a specific vector of parameters ξ(ωi)

of the impact load, and the probabilities P(ωi) of random el-
ements ωi ∈ Ω are known. The discrete scenarios may rep-
resent, for example, different types of foreign objects that
may strike the composite plate.

It is assumed that the actual realization of the parame-
ters of impact load, ξ̂ = ξ(ωk) for some ωk ∈ Ω , becomes
known (observable) after a certain time T0 (for example, an
appropriate sensor technology can be employed to estimate
the impact load during the impact event). The decision on
the choice of control parameters θ must be made at or prior
to t = 0, before the actual realization ξ̂ of the mechanical
load can be observed. After time T0, we have an opportunity
for a corrective (recourse) action, which consists in adjust-
ing the electromagnetic field so as to address the mismatch
between the first-stage decision and the actual observation
of uncertain parameters in the best way possible.

Specifically, during the first stage one applies an elec-
tromagnetic field with pre-computed parameters θ so as to
minimize the expected vibrations during the time period
t ∈ [0,T0]. It is assumed that during this time interval the pro-
file of the mechanical load can be observed and identified,
which allows for a subsequent correction θ′ = θ′(ω) of the
original selection θ, where we again explicitly indicate that
the second-stage action θ′ depends on the observed realiza-
tion ω ∈Ω . Then, the two-stage stochastic PDE-constrained

optimization problem that minimizes the plate’s expected
deflections can be formulated as:

min
θ,θ′

Eω

(
F[0,T0]

(
g(ω),θ,ξ(ω)

)
(12)

+F[T0,T1]

(
g′(ω),θ′(ω),ξ(ω)

))
s. t.

∂g(ω)

∂y
=Φ

(
g,

∂g
∂ t

,
∂ 2g
∂ t2 ,θ,ξ(ω)

)
, t ∈ [0,T0], ∀ω ∈Ω ,

G
(

g(ω),
∂g(ω)

∂ t

)∣∣∣∣
y=± a

2

= 0, t ∈ [0,T0], ∀ω ∈Ω ,

∂g′(ω)

∂y
=Φ

(
g′,

∂g′

∂ t
,

∂ 2g′

∂ t2 ,θ′(ω),ξ(ω)

)
,

t ∈ [T0,T1], ∀ω ∈Ω ,

G
(

g′(ω),
∂g′(ω)

∂ t

)∣∣∣∣
y=± a

2

= 0, t ∈ [T0,T1], ∀ω ∈Ω ,

g
∣∣
t=T0

= g′
∣∣
t=T0

,
∂g
∂ t

∣∣∣∣
t=T0

=
∂g′

∂ t

∣∣∣∣
t=T0

, ∀ω ∈Ω ,

θ ≤ θ,θ′(ω)≤ θ, ∀ω ∈Ω .

Note the explicit dependence of vectors g(ω), g′(ω), θ′(ω),
and ξ(ω) on the random element ω ∈ Ω . The first term
in the objective function of problem (12) corresponds to
the first stage, when the parameters of the problem ξ(ω)

are uncertain with a known discrete distribution. During
this stage, an electromagnetic field characterized by vector
of parameters θ is applied to minimize the expected value
of F[0,T0]

(
g(ω),θ,ξ(ω)

)
, the average squared middle plane

displacement at the center of the plate during time interval
[0,T0]. The first two constraints in (12) stipulate that the gov-
erning PDEs (8) and boundary conditions (7) must hold at
t ∈ [0,T0] for any of the possible impact load scenarios.

The second term in the objective of (12) represents the
average squared middle plane displacement at the center of
the plate during the second stage, from t = T0 to t = T1,
which depends explicitly on the second-stage action θ′(ω)
and implicitly on the preceding first stage action θ, by means
of the continuity conditions that are given as the fifth line
of constraints in (12). The values of vector g during time
interval [T0,T1] are denoted as g′, and the third and fourth
constraints of (12) require that the governing equations and
boundary conditions hold during [T0,T1] for all scenarios
ω ∈Ω . The fifth line of constraints (12) represents the conti-
nuity conditions at t = T0 for the first-and second-stage me-
chanical fields g and g′.

The two-stage stochastic PDE-constrained optimization
problem (12) formalizes the proposed approach to control of
mechanical structures under uncertainties with respect to the
considered problem of impact of a composite plate. Clearly,
the proposed framework allows for obvious generalizations.
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In the remainder of the paper we discuss the numerical solu-
tion procedures for problem (12) as well as physical viability
of its solutions.

4 Numerical solution and optimization methods

In this section we discuss the basic steps of solution proce-
dure for the two-stage stochastic PDE-constrained problem
(12) in the case of an impacted composite plate as presented
in Section 2.2.

4.1 Numerical solution of the governing system of PDEs

Presence of a system of nonlinear PDEs as constraints in
problem (12) necessitates effective solution methods for the
respective PDEs in order to solve (12). With respect to the
specific boundary value problem for the plate subjected to
impact and electromagnetic loads, we employ the methods
proposed in Zhupanska and Sierakowski (2007); Barakati
and Zhupanska (2012a). For the sake of completeness of the
exposition, we outline the key points of the corresponding
solution procedure below.

The system of nonlinear governing PDEs (8) that enters
the two-stage PDE-constrained problem (12) can be rewrit-
ten in the form:

∂g
∂y

=Φ

(
g,

∂g
∂ t

,
∂ 2g
∂ t2 ,y, t,θ,ξ

)
, (13)

where g = g(x,y, t,θ) is a vector of variables g =
[v,w,W,Nyy,Nyz,Myy,Ex,Bz], Φ is a nonlinear function from
(8), and θ is the optimization variable, i.e., the vector con-
taining the parameters of the electromagnetic field (to be de-
fined in Section 5).

A numerical solution procedure for this systems consists
of a sequential application of a finite difference time integra-
tion, quasilinearization of the resulting system of the nonlin-
ear ordinary differential equations (ODEs), and a finite dif-
ference spatial integration of the obtained two-point bound-
ary value problem. The first step is to discretize (13) with
respect to time t by applying Newmark finite difference time
integration scheme (Newmark, 1959). This reduces (13) to
the nonlinear two-point boundary problem for the system of
ODEs:

dg
dy

=Φ1(g,y,θ,ξ), (14)

This system is solved at discrete moments of time with
timestep ∆ t by using a quasilinearization method of Bell-
man and Kalaba (1965). This method allows for substituting

the solution of (14) with a sequential solution of a linearized
system with linearized boundary conditions:

d
dy

gk+1 =Φ1
(
gk,y,θ,ξ

)
+A

(
gk,y,θ,ξ

)(
gk+1−gk),

{
Ai j
(
gk,y,θ,ξ

)}
=

{
∂Φ1i

(
gk,y,θ,ξ

)
∂g j

}
,

D1
(
gk)gk+1(y0

)
= d1

(
gk),

D2
(
gk)gk+1(yN

)
= d2

(
gk),

(15)

where gk+1 and gk are the solutions on the current and previ-
ous iteration steps. A good choice for the initial guess g0 is a
solution from the previous time step. Points y0 and yN corre-
spond to the edges of the plate, matrices Di

(
gk
)

and vectors
di
(
gk
)
, i = 1,2, are derived from the boundary conditions

at y = y0 and y = yN . The sequence
{

gk+1
}

of the solutions
of the system (15) quickly converges to the solution of the
nonlinear system and the stopping criterion for the iterative
procedure is:

max
i

∣∣∣gk+1
i /gk

i −1
∣∣∣≤ δ , (16)

where δ > 0 is the prescribed accuracy.
To solve the system of linear ODEs in (15) we employ

the superposition method (Atkinson et al, 2009). If M is the
dimensionality of the system and there are M/2 boundary
conditions on both the left (y = y0) and right (y = yN) ends,
then we may represent the solution of the system of the lin-
ear ODEs by a linear combination of M/2 linearly indepen-
dent general solutions of the homogeneous system and one
particular solution of the inhomogeneous system:

gk+1(y) =
M/2

∑
j=1

c jG j(y)+G
M
2 +1(y), (17)

where c j are the linear coefficients. The values of G j, j =
1, . . . , M

2 + 1 are obtained on the left end from the bound-
ary conditions and then are propagated to the right end with
the aid of the fourth-order Runge-Kutta method. At the right
end the linear coefficients c j can be found from the bound-
ary conditions by solving a system of linear algebraic equa-
tions. In order to guarantee that vectors G j are independent,
and therefore coefficients c j are uniquely determined at the
right end, an orthonormalization procedure is employed af-
ter each iteration of the Runge-Kutta method. The corre-
sponding transformation matrices are then used to restore
the coefficients c j.

4.2 PDE-constrained optimization framework

The existing approaches to PDE-constrained optimization
problems can generally be categorized into two groups (Her-
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zog and Kunisch, 2010). The first group of methods fits un-
der the umbrella of “black box” optimization. This frame-
work implies that one is able to obtain certain informa-
tion about the objective function, which usually includes the
value of the function for any given feasible point, its gra-
dient and, perhaps, its higher order derivatives (depending
on which optimization algorithm is employed) at that point.
This information is then used to further direct the search for
an optimal solution. It must be emphasized, however, that
PDE constraints are embedded in the computation of the
objective and its gradient and thus need to be satisfied at
every step of the algorithm, which potentially makes this
approach computationally expensive. For example, in the
present work the value of the objective function is obtained
by numerically solving a system of nonlinear PDEs using
the procedure described in Section 4.1.

An alternative “discretize-then-optimize” approach con-
sists in, first, discretizing the system of PDEs and replac-
ing the PDE constraints in the problem with the resulting
discretizations, often in the form of linear constraints. This
generally leads to improved computational efficiency, as the
system of governing PDEs is not required to be solved at
every step. On the other hand, this method is not applicable
to every type of PDE-constrained problem; for example, in
our case the governing system of nonlinear PDEs cannot be
solved by straightforward discretization.

The specifics of our particular problem dictates the use
of black-box first-order optimization procedure, which can
be summarized as follows: (i) compute the objective func-
tion by solving the governing system of PDEs numerically;
(ii) compute first-order information, i.e., the gradient of the
objective function at the current feasible point; (iii) apply a
first-order optimization algorithm.

The value of objective function in (12) depends on the
solution of a system of PDEs, which makes analytical com-
putation of its gradient impractical. To this end, numerical
differentiation techniques, such as complex differentiation
(Squire and Trapp, 1998) or some version of automatic dif-
ferentiation (Rall, 1986) can be employed.

4.3 Numerical differentiation

The proposed solution approach for two-stage stochas-
tic PDE-constrained optimization problem (12) is based
on first-order methods and requires computation of the
gradient of the objective function at a given feasible
point. Specifically, we are interested in the full deriva-
tives of F[0,T ]

(
g(ω),θ,ξ(ω)

)
with respect to θ and

F[T0,T1]

(
g′(ω),θ′(ω),ξ(ω)

)
with respect to

[
θ, θ′(ω)

]
. The

function F itself has a quite simple structure, however, g and
g′ are implicitly dependent on parameters θ and/or θ′(ω), as
they are coupled through the system of governing equations
(8). Next in this subsection we will not distinguish between

θ and θ′(ω) and refer to them as a single vector of param-
eters θ that is used as an input to the system of governing
equations.

There exists a number of methods for numerically com-
puting a derivative of a function, among which are finite-
difference method, adjoint method, complex differentiation,
automatic (algorithmic) differentiation. In our work, we use
the method which is closely related to both complex and au-
tomatic differentiation.

Complex differentiation method (Squire and Trapp,
1998; Martins et al, 2003, 2001) is applicable in case of an
analytic function of a real variable. Instead of taking a small
step in the direction of the real axis, as is customary in finite
difference methods, a small increment is considered in the
direction of the imaginary axis:

f (x+ is) = f (x)+ is f ′(x)− s2

2!
f ′′(x)− i

s3

3!
f ′′′(x)+O(s4).

If s is small enough, by computing f (x+ is) one can obtain
approximations to the values of f (x) and f ′(x):

f (x) = Re f (x+ is)+O(s2), f ′(x) =
Im f (x+ is)

s
+O(s2).

As it can be readily seen, the complex differentiation method
offers a significant improvement in accuracy comparing to
the traditional finite-difference approach at a relatively low
computational overhead, as there is no a subtraction cance-
lation error. In practice, it allows for fast and stable compu-
tation of derivatives at almost machine precision. However,
in the multivariate case, f = f (x), x ∈ Rm, one would have
to evaluate f (x+ isek), where ek is the k-th orthant in Rm,
for each k = 1, . . . ,m, in order to compute the gradient of
f at the point x. This obviously increases significantly the
computational effort for evaluation of the gradient of f (x).
Alternative methods for numerical differentiation of multi-
variate functions that are based on the the same principle
employ various generalizations of complex numbers.

Existing generalizations of complex numbers rely on
different definitions of the imaginary unit. One of such gen-
eralizations is represented by dual numbers (Kantor and
Solodovnikov, 1989; Piponi, 2004) of the form a + ηb,
where η is the dual unit, η 6= 0, η2 = 0. Similarly, hyper-
dual numbers have the form a= a0+η1a1+ · · ·+ηmam with
m imaginary dual parts ηi such that ηiη j = 0 for all i, j. The
arithmetic operations with hyper-dual numbers are defined
as follows:

a+b = a0 +b0 +η1(a1 +b1)+ · · ·+ηm(am +bm),

ab = a0b0 +η1(a1b0 +a0b1)+ · · ·+ηm(a0bm +amb0),

a/b =
(
a0b0 +η1(a1b0−a0b1)+ . . . (18)

+ηm(amb0−a0bm)
)
/b2

0.
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PDE-constrained stochastic optimization for vibration control of a composite plate subject to mechanical and electromagnetic loads 9

Then, given a multivariate function f (x1, . . . ,xm), each
of its m arguments can be represented as a hyper-dual num-
ber with m imaginary parts. More precisely, let variable xi
at a given point x0

i be represented by a hyper-dual num-
ber whose real part is equal to x0

i and all imaginary parts
are set to zero, with the exception of the i-th imaginary part
which is set to 1. It can be shown that upon application of
the above hyper-dual arithmetic rules (18) for computation
of the (hyper-dual) value of f , one obtains that the real part
of the result is equal to f (x0

1, . . . ,x
0
m), and the i-th imaginary

part is equal to (∂ f/∂xi)
∣∣
x=x0 . As an illustration, consider

f (x1,x2) =
(x1 + x2)x1

x2
.

To find ∂

∂x1
f
(
x0

1,x
0
2
)

and ∂

∂x2
f (x0

1,x
0
2), let x1 = x0

1 +η11+
η20, x2 = x0

2 +η10+η21. Then

f (x1,y1) =
x0

1
(
x0

1 + x0
2
)

x0
2

+η1
2x0

1 + x0
2

x0
2
−η2

(
x0

1

x0
2

)2

= f (x0
1,x

0
2)+η1

∂

∂x1
f (x0

1,x
0
2)+η2

∂

∂x2
f (x0

1,x
0
2).

The described technique is, in fact, a forward mode of
automatic differentiation (Rall, 1986), when derivative in-
formation is propagated forward with the computations ac-
cording the the differentiation chain rule. There are different
variations of this framework; more discussion of automatic
differentiation with hyper-dual numbers can be found in Rall
(1986); Piponi (2004); Fike and Alonso (2011).

In our case we need the full derivative of
F[0,T0]

(
g(θ),θ,ξ

)
with respect to θ. The structure of F

itself is quite simple and ∂F/∂θ can be found analytically.
The biggest difficulty is to find the derivative of g with
respect to θ. To do this, the governing system of equations
(8) is solved numerically using hyper-dual numbers. The
imaginary dual parts of all the input parameters except θ
are set to zero, while the i-th component of vector θ has the
form θi = θ 0

i +ηi, where θ 0
i is the corresponding numerical

value of the input parameter. The imaginary dual parts of
the resulting hyper-dual values of the components of vector
g then represent the sought partial derivatives of g.

4.4 Optimization methods

Having computed the value and gradient of the objective
function, we are now in a position to apply a first-order
optimization scheme. In this study, we employed the active
set method due to Hager and Zhang (2006). The algorithm
consists of the nonmonotone gradient projection scheme
and regular unconstrained conjugate gradient method and
switches between them under certain conditions. We will
outline the ideas of both of these methods and how they are

connected. More details on the active set algorithm includ-
ing convergence analysis can be found in Hager and Zhang
(2006, 2005).

Nonmonotone gradient projection algorithm (NGPA)
can be applied to the so-called “box-constrained” optimiza-
tion problems of the form:

min
x
{ f (x) : l≤ x≤ u}.

Let us denote the feasible set of this problem as Θ = {x ∈
Rn : l≤ x≤ u}, and define P(x) as the projection of a point
in Rn on Θ :

P(x) = argmin
y∈Θ

‖x−y‖.

If xk ∈Θ is the current iterate, we compute x′k = xk−αkqk,
where qk is the gradient of the objective function f at xk
and αk is the corresponding step length. The point x′k can be
infeasible, so its projection P(x′k) on the feasible set is com-
puted. By using a nonmonotone line search in the direction
of the vector dk = P(x′k)−xk, a new iterate xk+1 is found.

For unconstrained optimization problems, a conjugate
gradient method can be used. Its main principle is that ev-
ery step is made in the direction of steepest descent which is
corrected by previous direction multiplied by some β :

xk+1 = xk +δkdk, dk+1 =−qk+1 + β̄
N
k dk, d0 =−q0,

where δi is the step length chosen by inexact line search. In
our work, the following conjugate gradient method by Hager
and Zhang (2005) is used:

β̄
N
k = max{β N

k ,ηk}, β
N
k =

1
d>k xk

(
xk−2dk

‖xk‖2

d>k xk

)>
gk+1,

ηk =
−1

‖dk‖min {η ,‖qk‖}
.

The nonmonotone gradient projection algorithm is glob-
ally convergent and in theory can deal with box-constrained
optimization quite well. However, in practice its speed of
convergence can be slow near a local minimizer. At the same
time, the conjugate gradient method often has superlinear
convergence for unconstrained optimization problems. The
active set algorithm takes advantage of both these methods
by using NGPA to determine active constraints (faces of the
feasible set Θ , containing current iterate xk). Then, the con-
jugate gradient method is used to optimize over that face.

4.5 Solution procedure

Now, knowing all the main components of the solution pro-
cedure, we can assemble them together to show how the
problem is solved. Since the system of governing equations
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10 D. Chernikov et al.

is solved numerically by discretization, we modify appropri-
ately expression (10) of the optimization criterion. Namely,
assuming that the discretization time step ∆ t is sufficiently
small, the integral in (10) can be approximated by:

F[0,T ](g,θ,ξ)'
1

T/∆ t

T/∆ t

∑
k=1

(
wc(θ,ξ, tk)

)2
, (19)

where the values of wc are taken at time instants tk = k∆ t.
Note also that the constant factor ∆ t in the above summa-
tion can be disregarded in the optimization problem since
it is present as a constant scaling factor in the objectives of
optimization problems (9) and (12).

The system of governing equations is solved using
hyper-dual arithmetic to obtain the derivative of wc with re-
spect to θ for each time step tk. Knowing all the derivatives
∂wc
∂θi

, an approximation of the derivatives ∂

∂θi
F[0,T ](g,θ,ξ)

can be found using the standard chain rule in (19). Given that
the distribution of stochastic factors ξ = ξ(ω) in the two-
stage stochastic PDE-constrained optimization problem (12)
is assumed to be discrete with a finite support, and therefore
can be modeled by a finite scenario set Ω = {ω1, . . . ,ωN},
where P(ωi) > 0 and ∑

N
i=1P(ωi) = 1, problem (12) can be

presented in the following form

min
θ,θ′(ωi)

N

∑
i=1

P(ωi)

(
F[0,T0]

(
g(ωi),θ,ξ(ωi)

)
(20a)

+F[T0,T1]

(
g′(ωi),θ

′(ωi),ξ(ωi)
))

s. t.

∂g(ωi)

∂y
=Φ

(
g(ωi),

∂g
∂ t

,
∂ 2g
∂ t2 ,θ

(1),ξ(ωi)

)
,

t ∈ [0,T0], ∀i ∈ {1, . . . ,N}, (20b)

G
(

g(ωi),
∂g(ωi)

∂ t

)∣∣∣∣
y=± a

2

= 0,

t ∈ [0,T0], ∀i ∈ {1, . . . ,N}, (20c)

∂g′(ωi)

∂y
=Φ

(
g′(ωi),

∂g′

∂ t
,

∂ 2g′

∂ t2 ,θ(2)(ωi),ξ(ωi)

)
,

t ∈ [T0,T1], ∀i ∈ {1, . . . ,N}, (20d)

G
(

g′(ωi),
∂g′(ωi)

∂ t

)∣∣∣∣
y=± a

2

= 0,

t ∈ [T0,T1], ∀i ∈ {1, . . . ,N}, (20e)

g(ωi)
∣∣
t=T0

= g′(ωi)
∣∣
t=T0

,
∂g(ωi)

∂ t

∣∣∣∣
t=T0

=
∂g′(ωi)

∂ t

∣∣∣∣
t=T0

,

∀i ∈ {1, . . . ,N}, (20f)

θ ≤ θ, θ′(ωi) ≤ θ̄, ∀i ∈ {1, . . . ,N}.

To find the first group of summands of the objec-
tive (20a), F[0,T0]

(
g(ωi),θ,ξ(ωi)

)
, and their partial deriva-

tives w.r.t. θ, the boundary-value problem (20b)–(20c) is

solved numerically for each ωi ∈ Ω using hyper-dual num-
bers. For the second group of components of the ob-
jective, F[T0,T1]

(
g′(ωi),θ

′(ωi),ξ(ωi)
)
, the boundary-value

problem (20d)–(20e) must be solved and the continuity
conditions (20f) must be satisfied. Note that g′ implic-
itly depends on θ, and thus in the gradient of g′ there
are twice as many components as in the gradient of g.
In practice, to take into account this implicit dependence
and continuity conditions in computing the value and gra-
dient of F[T0,T1]

(
g′(ωi),θ

′ (ωi) ,ξ(ωi)
)

, system (20b)–(20e)
is solved for t ∈ [0,T1], using hyper-dual numbers for each
ωi ∈ Ω , with control parameters being switched from θ to
θ′(ωi) at time T0. Then, the value of F and its derivatives,
are computed according to (19) with first T0/∆ t terms being
ignored.

In order to perform optimization step of the active set
algorithm, two systems of PDEs (20b, 20d) with boundary
conditions (20c, 20e) in the constraints are solved in hyper-
dual numbers for each ωi ∈Ω per above. This enables one to
compute the value and gradient of objective function (20a).
The outlined computational procedure was implemented in
C++ programming language.

5 Numerical results

In this section we report optimization results for a single-
layer, transversely isotropic (x-axis is the axis of material
symmetry and y-z is the plane of isotropy) carbon fiber rein-
forced composite plate of width a = 0.1524 m and thickness
h = 0.0021 m. Elastic properties of the composite plate are
as follows: Young’s modulus in the fiber direction is E1 =
102.97 GPa, Young’s modulus in the transverse direction is
E2 = 7.55 GPa, Poisson’s ratios are ν21 = ν13 = 0.3, density
of the composite is ρ = 1594 kg/m3, electrical conductivity
in the fiber direction is σ1 = 39000 S/m and electrical per-
mittivity in the fiber direction is ε1 = 2.5015× 10−10 F/m.
The plate is subjected to a transverse impact load (4) at the
initial time moment, t = 0. Simultaneously, an electromag-
netic load is applied and consists of the time-dependent elec-
tric current applied in the fiber direction (5) and constant
in-plane magnetic field applied in the direction perpendicu-
lar to the electric current (6) (see Figure 1). Application of
the electromagnetic load is expected to mitigate the effects
of the mechanical impact by maximally reducing the post-
impact vibrations of the plate.

The (randomized) applied impact load p (4) has the fol-
lowing profile, where the maximum impact pressure p0 and
the impact duration τp are uncertain parameters, which is
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Scenario, ω Probability, P(ω) p0(ω), MPa τp(ω), ms
ω1 1/3 7.5 8.0
ω2 1/3 10.0 10.0
ω3 1/3 20.0 12.0

Table 1 Scenario realizations of the maximum impact pressure p0 and
impact duration τp of the mechanical impact load (21).

indicated by their dependence on a random event ω ∈Ω :

px(y, t) = 0, py(y, t) = 0, (21)

pz(y, t) =


−p0(ω)

√
1−
( y

b

)2
sin

πt
τp(ω)

,

|y| ≤ b, 0≤ t ≤ τp(ω),

0, b < |y| ≤ a
2
, t > τp(ω).

Here b = 0.01h is the width of the impact zone.
In such a way, the vector ξ(ω) of uncertain parame-

ters in the two-stage stochastic PDE-constrained optimiza-
tion problem (12) contains p0 and τp:

ξ(ω) =
[
p0(ω),τp(ω)

]
.

It is assumed that the set Ω of random events contains
three equiprobable elements, or scenarios:

Ω = {ω1,ω2,ω3}, where P(ωi) = 1/3, i = 1,2,3.

In the context of the conceptual application described in
Section 1.1, this corresponds to the composite plate being
hit at random by, e.g., three possible types of foreign ob-
jects or projectiles. Table 1 presents the numerical values of
the possible realizations of the maximum impact pressure
and impact duration of the impact load (21). The small size
of the scenario set is chosen specifically for the illustrative
purposes of our computational experiments; in practice, re-
alistic descriptions of uncertainties require larger scenario
sets.

The duration T0 of the first stage was set at T0 = 10 ms,
which is equal to the average duration of impact in the con-
sidered scenarios. This reflects our assumptions that an ap-
propriate sensory technology will allow for estimating the
parameters of impact load during the impact event (see Sec-
tions 1.1 and 3.2). The total duration of computational time
was set at T1 = 50 ms. According to the two-stage stochas-
tic framework described in Section 3.2, the electromagnetic
field in the configuration prescribed by the first-stage so-
lution is applied at t = 0. At t = T0, the parameters of the
electromagnetic field are changed as dictated by the second-
stage solution; in such a way, the durations of the first and
second stages are 10 ms and 40 ms, respectively.

The parameters of the magnetic field (6) applied to the
plate are as follows:

Bx = 0, By = B∗y = 1.0 T, Bz = 0, (22)

and the density J(t) of the time-dependent electric current
(5) applied in the fiber direction is

Jx(t) = J0e−t/τe sin
πt
τs
, Jy(t) = Jz(t) = 0, (23)

where J0, τe, and τs are the parameters determining the elec-
tric current waveform, i.e., the maximum current density,
fall and rise times. The quantities J0, τe, and τs constitute
the vector θ of decision variables, or control parameters:

θ = [J0,τe,τs].

It is worth noting that the magnitude of magnetic field By
is not formally included in the vector θ, and is fixed at the
given value of 1 T in accordance to (22). This is due to our
observation that when By was allowed to vary within a pre-
scribed bounds (the so-called “box constraints”) 0≤ By ≤ B,
at optimality the decision variable By always assumed the
maximum possible value, By = B. Hence, for simplicity the
value of By was fixed as in (22). The rest of the decision
variables were box-constrained as follows:

|J0| ≤ 108 A/m2, 10−5 s≤ τs,τe ≤ 109 s, (24)

where the prescribed range of allowable current density val-
ues was chosen so as to eliminate Joule heating considera-
tions (more precisely, to ensure that the thermal effects as-
sociated with application of electric current are negligible,
see Barakati and Zhupanska (2012b) for an in-depth discus-
sion of this issue). The box constraints on the fall and rise
times τe and τs are selected in order to ensure realistic cur-
rent profiles (as in the case of the lower bound) as well as
to avoid numerical difficulties with convergence of the de-
scribed above optimization procedures (as in the case of the
upper bound).

During the optimization procedure, the initial values for
both first and second stage solution vectors θ(0) and θ(1)(ω),
ω ∈ Ω , were chosen as follows: J0 = 1.0×106 A/m2, τs =
4.8 ms, τe = 4.8 ms.

The optimal solution of the two-stage stochastic PDE-
constrained optimization problem (12) (or (20)) obtained
during the described above solution process is presented in
Table 2, which contains the parameters (J0,τs,τe) of the
waveform (23) of electric current as the components of
the first-stage solution vector θ(0) and second-stage vectors
θ(1)(ωi), i = 1,2,3. The corresponding optimal waveform
profiles of the electric current (23) are shown in Figure 2.
Again, we emphasize the structure of the obtained two-stage
stochastic solution: during the time interval [0,T0], i.e., from
t = 0 until t = 10 ms, the optimal first-stage electric current
(J0 = 1.81× 106 A/m2, τs = 10.7 ms, τe = 36.2 ms) is ap-
plied in order to minimize the expected plate deflection due
to an uncertain impact load. According to the assumptions
of our model, the parameters of the actual realization of the
randomized impact load (i.e., the actual observed scenario)
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Table 2 Optimal parameters of the electric current (23) obtained after
solving the two-stage stochastic PDE-constrained optimization prob-
lem (12).

Parameter First stage Second stage, scenario
ω1 ω2 ω3

J0, 106×A/m2 1.81 100.0 0.93 100.0
τs, ms 10.7 4.9 7.4 2.2
τe, ms 36.2 2.5 0.01 4.1

become known by time t = T0 = 10 ms, and, depending on
the observed scenario, the parameters of the electric current
are “switched” at t = T0 to the corresponding second-stage
solution values so as to minimize post-impact vibrations of
the plate. For example, if it is determined that the impact
was “light”, i.e., an impact load corresponding to scenario
ω1 was observed during [0,T0], then at t = T0 the parame-
ters of the electric current are changed to J0 = 108 A/m2,
τs = 4.9 ms, τe = 2.5 ms.

The resulting vibrations of the plate during the time in-
terval [0,T1] (i.e., from 0 to 50 ms) are displayed for each
scenario, along with the corresponding current profile, in
Figure 3. Note that in all three subfigures of Figure 3, the
profile of the electric current between t = 0 and t = 10 ms
is the same and represents the first-stage solution (due to
the differences in the maximum impact pressure across the
scenarios, the subfigures use different scales on the vertical
axes). It is also of interest to note that in scenarios ω1 and
ω2 the electromagnetic load applied during the first stage is
such that it causes the plate to deflect in the direction op-
posite to the direction of impact. This observation is also in
accord with the formulated model: the first stage solution
minimizes the plate deflection “on average”; in addition, the
magnitude of maximum impact presure in scenario ω3 is two
to almost three times higher than those in scenarios ω1 and
ω2.

Figure 4 presents, for each of the three scenarios, the
comparisons of the plate’s transverse deflection with and
without application of the (optimal) electromagnetic field. It
is clear that the constructed two-stage stochastic optimiza-
tion solution allows for significant suppression of vibrations
caused by uncertain impact load in all three scenarios. It can
be seen from Figure 4 that, while the developed two-stage
model and the corresponding optimal parameters of the elec-
tromagnetic field result in substantial dampening of post-
impact vibrations, the vibrations are not suppressed com-
pletely. This is a natural consequence of the fact that the
impact load is uncertain, and therefore it is impossible to
provide the “best” response to each of the possible scenar-
ios.

Next we illustrate the effectiveness of the developed
framework in the situation when the impact load is known
beforehand, i.e., when it can be regarded deterministic. One
can expect that in this case the parameters of the electromag-

Fig. 2 Optimal electric current waveforms as specified in Table 2.

(a) Scenario ω1

(b) Scenario ω2

(c) Scenario ω3

Fig. 3 Transverse deflection of the plate and optimal electric current
waveforms corresponding to different impact load scenarios.
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(a) Scenario ω1

(b) Scenario ω2

(c) Scenario ω3

Fig. 4 Transverse deflection in the center of the plate vs. time for dif-
ferent scenarios.

netic field can be tuned to achieve a much better mitigation
of post-impact effects comparing to the stochastic case.

In particular, we assume that the deterministic impact
load has the same parameters as the load of scenario ω2, in
accordance to expression (21) and Table 1. It is then conve-
nient to consider that the stochastic problem is solved under
the assumption that all scenarios, except ω2, are impossible,
i.e.,

P(ω1) = 0, P(ω2) = 1, P(ω3) = 0.

This implies that in the scenario-based formulation (20)
of the two-stage stochastic PDE-constrained optimization
problem (12) the terms in the objective function that cor-
respond to scenarios ω1 and ω3 are eliminated, and, in ad-

Table 3 Optimal parameters of the electric current in the deterministic
case when impact load has the same parameters as in scenario ω2 of
the stochastic case.

Parameter First stage Second stage, ω2

J0, 106×A/m2 1.46412 0.924654
τs, ms 10.0972 7.18217
τe, ms 124.662 0.01

Fig. 5 Transverse deflection of the plate in the deterministic case that
is based on scenario ω2.

dition, the constraints that enforce satisfaction of the PDE
equations and boundary conditions in scenarios ω1, ω3 are
also disregarded.

Note, however, that the two-stage structure of the solu-
tion of (20) is still preserved, which means that at t = T0
the parameters of the applied electric current are allowed
to change. In other words, electric currents of two differ-
ent waveforms determined by θ(1) and θ(2)(ω2) are applied
during time intervals [0,T0] and [T0,T1], respectively. Dur-
ing the time interval [0,T0], electric current with parameters
given by the first stage solution θ(1) is used to optimally
mitigate the impact itself, while during [T0,T1] the electric
current with parameters θ(2)(ω2) then suppresses the post-
impact effects.

With exception of modifications just described, the rest
of the parameters of the problem are the same as before. The
obtained solution of this deterministic problem is given in
Table 3. Figure 5 shows the transverse middle plane deflec-
tion, wc, at the center of the plate, y= 0, as a function of time
for the cases when only the mechanical load is present, and
when the optimal electromagnetic field is applied as well.
It is easy to see that in a deterministic setting the proposed
framework is capable of practically eliminating the vibra-
tions.

6 Conclusions

In this work, a two-stage stochastic PDE-constrained opti-
mization methodology is developed for the active vibration
control of structures in the presence of uncertainties in me-
chanical loads. The solution methodology includes a black-
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box first-order optimization procedure embedded in the two-
stage stochastic optimization formulation. The black-box
first-order optimization procedure consists of solving a sys-
tem of governing PDEs and automatic differentiation with
hyper-dual numbers for computing the objective function
and its gradient, respectively; and applying a first-order
active-set algorithm with a conjugate gradient method for
solving the optimization problem.

The developed optimization methodology is applied to
the problem of post-impact vibration control (via applied
electromagnetic filed) of an electrically conductive carbon
fiber reinforced composite plate subjected to an uncertain,
or stochastic, impact load. The system of governing PDEs
describing such problem consists of nonlinear equations of
motion and Maxwell’s equations. The randomized impact
load applied to the plate is comprised of three equiproba-
ble scenarios with different parameters of maximum impact
pressure and impact duration. Simultaneously, according to
the two-stage stochastic optimization framework, an elec-
tromagnetic load in the configuration prescribed by the first-
stage optimization solution is applied at the initial moment
of time and is changed at the end of the first stage as dictated
by the second-stage optimization solution. The electromag-
netic load is comprised of a time-dependent electric current
applied in the fiber direction and a constant in-plane mag-
netic field applied in the direction perpendicular to the elec-
tric current. Electric current waveform characteristics (i.e.,
the maximum current density, fall and rise times) consti-
tute the vector of optimization variables, or control parame-
ters. The optimal solution of the two-stage stochastic PDE-
constrained optimization problem represents a sequence of
actions, where the first-stage electric current waveform is
applied at the moment of impact without knowing the actual
impact load parameters; the second-stage electric current
waveform represents a corrective action, which is applied
when the parameters of the actual impact load have been
observed/identified. The results show that the constructed
two-stage optimization solution allows for a significant sup-
pression of vibrations caused by the randomized impact load
in all impact load scenarios. Lastly, the effectiveness of the
developed methodology is illustrated in the case of a deter-
ministic impact load, where the two-stage strategy enables
one to practically eliminate post-impact vibrations.
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On polyhedral approximations in p-order cone programming
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Abstract

This paper discusses the use of polyhedral approximations in solving of p-order cone programming (pOCP)
problems, or linear problems with p-order cone constraints, and their mixed-integer extensions. In particular, it is
shown that the cutting-plane technique proposed in Krokhmal and Soberanis (2010) for a special type of polyhe-
dral approximations of pOCP problems, which allows for generation of cuts in a constant time not dependent on
the accuracy of approximation, is applicable to a larger family of polyhedral approximations. We also show that
it can further be extended to form an exact solution method for pOCP problems with O."�1/ iteration complex-
ity. Moreover, it is demonstrated that an analogous constant-time cut generating algorithm exists for recursively
constructed lifted polyhedral approximations of second-order cones due to Ben-Tal and Nemirovski (2001). It is
also shown that the developed polyhedral approximations and the corresponding cutting plane solution methods
can be efficiently used for obtaining exact solutions of mixed-integer pOCP problems.

Keywords: p-order cone programming, second-order cone programming, polyhedral approximation, cutting
plane methods, mixed-integer p-order cone programming, stochastic programming, portfolio optimization.

1 Introduction

In this paper we consider solving linear programming problems with p-order cone constraints

min cTx (1a)
s. t. Ax � b; (1b)C.k/xC e.k/


pk
� h.k/TxC f .k/; k D 1; : : : ; K; (1c)

x 2 Rn;

where k � kp denotes the p-norm in RN :

kakp D

( �
ja1j

p C � � � C jaN j
p
�1=p

; p 2 Œ1;1/;

max
˚
ja1j; : : : ; jaN j

	
; p D1:

(2)

We call formulation (1) a p-order cone programming problem (pOCP) by analogy with second-order cone pro-
gramming (SOCP), which constitutes a special case of (1) when pk D 2 for all k D 1; : : : ; K.

Our motivation for considering problems of the form (1) stems from risk-averse optimization under uncertainty
and stochastic programming, where use of certain classes of risk measures leads to problems with p-order cone
constraints; see Section 4.1 for details.
�Corresponding author. E-mail: krokhmal@engineering.uiowa.edu
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The available literature on solving problem (1) with “general” values of pk 2 .1;1/, i.e., not restricted to well-
studied special cases of pk D 1, 2, or1, is relatively limited. Interior-point approaches to p-order cone program-
ming have been considered by Xue and Ye [25] with respect to minimization of sum of p-norms; a self-concordant
barrier for p-cone has also been introduced by Nesterov [19]. Glineur and Terlaky [12] proposed an interior-point
algorithm along with the corresponding barrier functions for a related problem of lp-norm optimization (see also
[21]). A polyhedral approximation approach to pOCP problems was considered by Krokhmal and Soberanis [15].
In the case when p is a rational number, the existing primal-dual methods of second-order cone programming can
be employed for solving p-order cone optimization problems using a reduction of p-order cone constraints to a
system of linear and second-order cone constraints proposed by Nesterov and Nemirovski [20] and Ben-Tal and
Nemirovski [8], see also Morenko et al. [18].

This paper represents a continuation of the work of Krokhmal and Soberanis [15] on polyhedral approximation
approaches to solving pOCP problems. The contribution of this work to the literature consists of the following:
it is shown that the cutting plane method developed in [15] for solving a special type of polyhedral approxima-
tions of pOCP problems, which allows for generation of cuts in a constant time not dependent on the accuracy of
approximation, is applicable to a larger family of polyhedral approximations. Further, it is demonstrated that this
constant-time cut generation procedure can be modified so as constitute an exact solution method with O."�1/
iteration complexity. Next, we present a constant-time cut generation scheme for lifted polyhedral approximations
of SOCP problems due to Ben-Tal and Nemirovski [9]. The noteworthy aspect of this result is that Ben-Tal and
Nemirovski’s lifted polyhedral approximation is constructed recursively, with the length of recursion controlling
the accuracy of approximation, yet the cuts can be generated in a constant time that does not depend on the ac-
curacy/recursion length. Finally, we illustrate that the polyhedral approximation approach and the corresponding
cutting plane solution methods can be efficiently employed for obtaining exact solutions of mixed-integer exten-
sions of pOCP problems (see below).

The paper is organized as follows: in Section 2 we discuss the general properties of polyhedral approximations
of p-cones, Section 3.1 summarizes the general cutting plane method for polyhedral approximations of pOCP
problems. In Sections 3.2 and 3.3 we explore fast constant-time cut generating techniques for gradient-based and
lifted polyhedral approximations of pOCP and SOCP problems, respectively. The developed solution techniques
are then illustrated on pOCP and SOCP problems of type (1), and are also employed for solving mixed-integer
p-order cone programming (MIpOCP) problems

min cTxC dTz (3a)
s. t. AxC Bz � b; (3b)C.k/xC D.k/zC e.k/


pk
� h.k/TxC g.k/TzC f .k/; k D 1; : : : ; K; (3c)

x 2 Rn; z 2 Zm; (3d)

which arise in the context of portfolio optimization with certain risk measures. The corresponding discussion is
presented in Section 4.

2 Polyhedral approximations of p-order cones

In contrast to the Euclidean (p D 2) norm, which admits a representation via scalar product, kak2 D
�
aTa

�1=2,
the general p ¤ 2 norm k � kp explicitly requires the absolute value operator j � j in (2). Thus, in what follows it
suffices to consider p-cones in the positive orthant of RNC1,

K.NC1/p D
˚
Ÿ 2 RNC1C

ˇ̌
�0 � k.�1; : : : ; �N /kp

	
; (4)

since in the context of problems (1) and (3) the absolute values of p-norm operands can be expressed using linear
constraints. Then, by a polyhedral approximation of K.NC1/p we understand a polyhedral cone in RNC1C�mC , where

2
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�m � 0 may be generally non-zero,

H.NC1/
p;m D

��
Ÿ

u

�
2 RNC1C�mC

ˇ̌̌̌
H.NC1/
p;m

�
Ÿ

u

�
� 0

�
; (5)

having the properties that:

(H1) any .�0; : : : ; �N /T 2 K.NC1/p can be extended to some .�0; : : : ; �N ; u1; : : : ; u�m/
T 2 H.NC1/

p;m ;

(H2) for some prescribed " D ".m/ > 0, any .�0; : : : ; u�m/
T 2 H.NC1/

p;m satisfies k.�1; : : : ; �N /kp � .1C "/�0:

Here m is the parameter of the construction that controls the approximation accuracy ". Replacing each of the
p-order cone constraints in problem (1) by their polyhedral approximations of the form (5), we obtain a linear
programming approximation of the pOCP problem (1):

min

8<:cTx

ˇ̌̌̌
ˇ Ax � b; H.NkC1/

pk ;mk

0@h.k/TxC f .k/
C.k/xC e.k/

u.k/

1A � 0; u.k/ � 0; k D 1; : : : ; K

9=; : (6)

Observe that the projection of the feasible region of (6) on the space of variables x lies in between the feasible set
of pOCP (1) and that of its “"-relaxation”,

min
n

cTx
ˇ̌̌

Ax � b;
C.k/xC e.k/


pk
� .1C "/

�
h.k/TxC f .k/

�
; k D 1; : : : ; K

o
: (7)

Thus, problem (6) represents an "-approximation of pOCP (1), given that the feasible regions of problems (1) and
(7) are “close”. Conditions under which the feasible sets of (1) and (7) are indeed O."/-close have been given by
Ben-Tal and Nemirovski [9, Proposition 4.1] for the case of p D 2, and their argumentation carries over to the case
of p ¤ 2 practically without modifications. Specifically, if we denote by (pOCP) and (pOCP") the initial problem
(1) and its "-relaxation (7), respectively, the following holds.

Proposition 1 (Ben-Tal and Nemirovski [9]) Assume that .pOCP/ is: (i) strictly feasible, i.e., there exist Nx and
r > 0 such that

ANx � b;
C.k/ NxC e.k/


pk
� h.k/T NxC f .k/ � r; k D 1; : : : ; K; (8a)

and (ii) “semibounded”, i.e., there exists R > 0 such that

Ax � b;
C.k/xC e.k/


pk
� h.k/TxC f .k/; k D 1; : : : ; K ) h.k/TxC f .k/ � R; k D 1; : : : ; K: (8b)

Then for every " > 0 such that ."/ D R"=r < 1, one has

."/NxC .1 � ."//Feas .pOCP"/ � Feas .pOCP/ � Feas .pOCP"/; (8c)

where Feas .P/ denotes the feasible set of a problem .P/.

Remark 1 As noted in [9], the second inclusion in (8c) holds trivially, whereas the first inclusion rules out (under
the stated conditions) the situations in which, for example, the pOCP problem is infeasible but every its "-relaxation
is feasible.

In constructing polyhedral approximations (5) of p-order cones we follow the “lift-and-approximate” approach
of Ben-Tal and Nemirovski [9], who developed efficient, in terms of dimensionality, polyhedral approximations
for quadratic cones. The first step in the construction procedure consists in a lifted representation, dubbed by the
authors “tower of variables”, of a p-cone in RNC1C , as a nested sequence of N � 1 three-dimensional p-cones.

3
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The original construction relied on the assumption that N D 2d for some integer d � 1, which was by no means
restrictive, but allowed for a simple structure of the lifted set, which could be visualized as a symmetric binary tree
of three-dimensional cone inequalities that are partitioned into d D log2N “levels”, with 2d�l inequalities at a
level l . Below we present a slightly different notation/representation of the “tower-of-variables” lifting technique
that does not explicitly use the binary tree structure, and which simplifies its practical implementation in the case
of general N ¤ 2d . Namely, given the .N C 1/-dimensional p-cone, consider the set defined by intersection of
N � 1 three-dimensional p-cones in RNC1C �RN�1C :

�0 D �2N�1; �NCj � k.�2j�1; �2j /kp; j D 1; : : : ; N � 1: (9)

Proposition 2 Projection of set (9) onto the space of variables .�0; : : : ; �N / coincides with the set (4). In other
words, any Ÿ 2 RNC1C that satisfies (4) can be extended to Ÿ 2 RNC1C �RN�1C that satisfies (9), and any Ÿ 2 R2NC
satisfying (9) is such that its first N C 1 components satisfy (4).

Proof: Follows immediately by expanding the recursion in (9). �

Remark 2 The chain inequalities (9) can similarly be organized into a binary tree, where the variable on the left-
hand side of p-cone inequality represents a parent node, and the two variables on the right-hand side are its child
nodes. Such a binary tree, however, will have a rather non-symmetric structure. If, for example, N D 5, then
�9 D �0 is the root, or level 3 D dlog2 5e node, �8, �7 are level-2 nodes, �3; : : : ; �6 are level-1 nodes, and �1; �2 are
level-0 nodes. If, on the other hand, N D 2d , then the binary tree becomes symmetric and coincides with that in
[9], where level 0 contains the nodes �1; : : : ; �N .

The second step of the procedure is to construct a polyhedral approximation

H.3/
p;m D

��
Ÿ

u

�
2 R3C�mC

ˇ̌̌̌
H.3/
p;m

�
Ÿ

u

�
� 0

�
(10)

for each of the three-dimensional p-cones in (9). Observe that if approximation (10) of each of the three-
dimensional p-cones (9) contains O.�/ facets, � D �.m/, the total number of facets in the approximation of
the original .N C1/-dimensional p-cone isO.�N/, i.e., it is linear in the dimensionalityN of the original p-cone.

Proposition 3 Consider cone (4) and its lifted representation (9). If each of the three-dimensional cones in (9)
is approximated by (10) with an accuracy � > 0, the resulting approximation accuracy " of the original cone (4)
satisfies

" � .1C �/dlog2N e � 1:

Proof: The vector Ÿ 2 R2NC must satisfy �0 D �2N�1, .1 C �/�NCj � k.�2j�1; �2j /kp , j D 1; : : : ; N � 1.
Expanding the recursion, we obtain

�
p
0 D �

p
2N�1 �

�
p
2N�3

.1C �/p
C

�
p
2N�2

.1C �/p
�

�
p
2N�7

.1C �/2p
C

�
p
2N�6

.1C �/2p
C

�
p
2N�5

.1C �/2p
C

�
p
2N�4

.1C �/2p
� : : :

�
�
p
1

.1C �/pk1
C : : :C

�
p
N

.1C �/pkN
;

where ki is the number of “levels” in the “tower of variables” on the way from �2N�1 to �i . It is straightforward to
check that ki 2 fdlog2N e � 1; dlog2N eg, whence .1C �/dlog2N e�0 � k.�1; : : : ; �N /kp: �

When p D 1 or p D 1, the cone K.3/p is already polyhedral; in the case of p D 2, the problem of constructing a
polyhedral approximation of the second-order cone K.3/2 was also addressed by Ben-Tal and Nemirovski [9], who

4
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proposed the following lifted polyhedral approximation of K.3/2 ,

u0 � �1; (11a)

v0 � �2; (11b)

ui D cos
�
�

2iC1

�
ui�1 C sin

�
�

2iC1

�
vi�1; i D 1; : : : ; m; (11c)

vi �
ˇ̌
� sin

�
�

2iC1

�
ui�1 C cos

�
�

2iC1

�
vi�1

ˇ̌
; i D 1; : : : ; m; (11d)

um � �0; vm � tan
�

�
2mC1

�
um; (11e)

0 � ui ; vi ; i D 0; : : : ; m: (11f)

Remarkably, the accuracy of the polyhedral approximation (11) is exponentially small inm: �.m/ D O
�
4�m

�
: The

construction is based on an elegant geometric argument that utilizes a well-known elementary fact that rotation of
a vector in R2 is an affine transformation that preserves the Euclidean norm (2-norm) and that the parameters of
this affine transform depend only on the angle of rotation. An approach to constructing a framework of polyhedral
relations that generalizes inductive constructions of extended formulations via projections, such as the polyhedral
approximation (11) has been introduced by Kaibel and Pashkovich [13].

Unfortunately, the lifted polyhedral approximation (11) of the second-order cone K.3/2 does not seem to be ex-
tandable to general p-order cones K.3/p with p 2 .1; 2/ [ .2;1/. Therefore, we employ a “gradient” approx-
imation of K.3/p using circumscribed planes. Given the parameter of construction m 2 N, let us call function
'm W Œ0;m� 7! Œ0; �=2� an approximation function if it is continuous and strictly increasing on Œ0;m�, and, more-
over, satisfies

�'m D max
iD0;:::;m�1

f'm.i C 1/ � 'm.i/g ! 0; m!1:

Then, for the following parametrization of the p-cone surface in R3C

�1 D �0
cos �

.cosp � C sinp �/1=p
; �2 D �0

sin �
.cosp � C sinp �/1=p

; �0 � 0; � 2 Œ0;
�
2
�; (12)

where � is the polar angle, any given approximation function 'm generates a gradient approximation of K.3/p

H.3/
p;m.'m/ D

˚
Ÿ 2 R3C

ˇ̌
�0 � p̨;i Œ'm� �1 C p̌;i Œ'm� �2; i D 0; : : : ; m

	
; (13a)

where  
p̨;i Œ'm�

p̌;i Œ'm�

!
D
�

cosp 'm.i/C sinp 'm.i/
�1=p�1  cosp�1 'm.i/

sinp�1 'm.i/

!
; i D 0; : : : ; m: (13b)

The values 'm.i/ in (13) represent the polar angles at which the planes �0 D p̨;i�1 C p̌;i�2 are tangent to the
p-cone K.3/p . In such a way, the properties of the polyhedral approximation (13) of the p-cone K.3/p are determined
by the values of 'm at integer values f0; : : : ; mg of its argument; nevertheless, the computability properties of
'm.t/ for arbitrary values t 2 Œ0;m� are also of major importance, as will be shown in the next section. The
following proposition establishes the quality of the gradient polyhedral approximation (13), and is a generalization
of a similar result established for a special choice of 'm in [15].

Proposition 4 For large enough values of m 2 N, the polyhedral set H.3/
p;m.'m/ defined by the gradient approx-

imation (13) with approximation function 'm satisfies properties (H1)–(H2). Specifically, if the approximation
function is such that for some r > 0

�'m D O.m
�r /; m� 1;

then for any Ÿ 2 K.3/p one has Ÿ 2 H.3/
p;m, and any Ÿ 2 H.3/

p;m satisfies k.�1; �2/kp � .1 C �.m//�0, where the
approximation accuracy �.m/ is polynomially small in m:

�.m/ D O
�
m�r minfp;2g�; m� 1:

5
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Remark 3 One possible choice of 'm is 'm.t/ D �
2m
t; which yields a “uniform” gradient approximation of the

p-cone, i.e., a gradient approximation (13) where the circumscribed planes are spaced “uniformly” with respect
to the polar angle � , and are tangent to the p-cone at the polar angles �i D �i

2m
. If p D 2, the uniform

approximation can be seen as “optimal”, since it has the same accuracy at each sector Œ �i
2m
; �.iC1/

2m
�, and thus

requires the smallest number of facets to achieve a given approximation accuracy. In the case of p ¤ 2, however,
the accuracy of the uniform gradient approximation varies from sector to sector. Thus, it may be of interest to
construct an approximation function 'm that results in a constant accuracy at each sector Œ'm.i/; 'm.i C 1/� of
p-cone, thereby minimizing the number of facets needed to achieve the desired accuracy. On the other hand, if
the structure of the problem is such that an optimal solution is known to be located in a certain part of the cone,
it might be beneficial to construct an approximation that is more accurate within this particular region and less
accurate outside of it. These considerations provide an intuition on how a careful choice of 'm may reduce the size
of the problem in question. In this work, however, we do not discuss the question of constructing an “optimal”
approximation, instead focusing on the issues related to solving the polyhedral approximations of pOCP problems.

For p D 2 and a given approximation accuracy, the lifted polyhedral approximation (11) due to Ben-Tal and
Nemirovski [9] is superior to the gradient polyhedral approximation (13) in terms of dimensionality. However,
computational studies [11, 15] indicated that solving polyhedral approximations, either lifted or gradient, of SOCP
problems was computationally inefficient comparing to “native” SOCP solution techniques, such as self-dual
interior-point methods.

At the same time, the computational efficiency of the polyhedral approximation approach can be substantially im-
proved by employing decomposition methods that exploit the specific structure of polyhedral approximations in
(13), whereby the polyhedral approximation approach becomes competitive with SOCP-based solution methods
for pOCP problems with p ¤ 2. This was demonstrated for a special case of the uniform gradient polyhedral ap-
proximation [15]. In the next section we show that analogous computational efficiencies can be achieved for more
general gradient polyhedral approximations of pOCP problems, as well as for the lifted polyhedral approximation
of SOCP problems.

3 Cutting plane methods for polyhedral approximations of SOCP and
pOCP problems

Computationally efficient methods for solving polyhedral approximations (5) of SOCP and pOCP problems can
be constructed by taking advantage of (i) the special structure of the problem induced by the “tower-of-variables”
representation of high-dimensional cones as an intersection of three-dimensional ones in a lifted space, and (ii) the
special structures of polyhedral approximations of three-dimensional quadratic or p-order cones.

With respect to (i), a cutting plane method that, given a polyhedral approximation for 3D cones, utilizes the struc-
ture of the “tower-of-variables” reformulation in the approximating problems (5), was proposed in [15]. This
method is briefly described in Section 3.1 below, since it is necessary in the context of (ii), namely, for exploiting
the special properties of gradient and lifted polyhedral approximations of 3D cones for fast cut generation. In
particular, the discussion that follows in Sections 3.2 and 3.3 demonstrates that, despite the differences in con-
struction and properties, the lifted Ben-Tal-Nemirovski’s approximation (11) of quadratic cones and the gradient
approximation (13) of p-cones offer the same computational efficiency for cut generation.

3.1 A cutting plane procedure for polyhedral approximations of pOCP problems

The cutting plane algorithm described here is applicable to reformulations of pOCP problems obtained using the
“tower-of-variables” lifting technique (9). Assuming for simplicity that problem (1) contains only one p-cone
constraint .K D 1/ of dimension N C 1, the corresponding reformulation of (1) is obtained by lifting the p-cone
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constraint using the “tower-of-variables” method as

min cTx (14a)
s. t. Ax � b (14b)

wNCj � k.w2j�1; w2j /kp; j D 1; : : : ; N � 1; (14c)
wj � j.CxC e/j j; j D 1; : : : ; N; (14d)

w2N�1 D hTxC f; (14e)

where w 2 R2N�1. Each of the three-dimensional p-order cones (14c) is subsequently replaced by its polyhedral
approximation (10), which yields the following polyhedral approximation of pOCP (1):

min cTx (15a)

s. t. H.3/
p;m

�
wj
uj

�
� 0; j D 1; : : : ; N � 1; (15b)

uj 2 R�mC ; (15c)
(14b), (14d), (14e); (15d)

where the vectors wj stand for the triplets wj D .wNCj ; w2j�1; w2j /
T. Constructed in such a way polyhedral

approximation of the pOCP problem (1) possesses a special structure that can be exploited for solving the LP
problem (15) efficiently. In particular, the following cutting plane representation for (15) was presented [15]:

min cTx (16a)
s. t. wNCj � .0; : : : ; 0; w2j�1; w2j / O i ; i 2 Pp;m; j D 1; : : : ; N � 1; (16b)

(14b), (14d), (14e); (16c)

where Pp;m is the set of vertices O i of the polyhedron�
  � 0

ˇ̌̌̌
HT
p;m  �

�
1

0

��
; (17)

and the matrix Hp;m is obtained by augmenting the approximation matrix H.3/
p;m with two extra rows .0; 1; 0 � � � 0/,

.0; 0; 1; 0 � � � 0/, where 1’s correspond to the variables w2j�1 and w2j :

Hp;m D

0@ H.3/
p;m

0 1 0 � � � 0

0 0 1 � � � 0

1A :
Constraints (16b) are then generated via an iterative procedure. Assuming that problem (16) is bounded, consider
the master problem in the form

min cTx (18a)
s. t. wNCj � &j;i w2j�1 C �j;i w2j ; i D 1; : : : ; Cj ; j D 1; : : : ; N � 1; (18b)

(14b), (14d), (14e); (18c)

where &j;i and �j;i stand for the components O���1 and O�� of the vector O  2 R� , and Cj is the number of constraints
generated during preceding iterations. Let .x�; w�/ 2 RnC2N�1 be an optimal solution of the master (note that if
(18) is infeasible, then (16) is infeasible too, and the procedure stops). For each j D 1; : : : ; N � 1, the following
LP problem is solved:

��j WD max
� �
0; : : : ; 0; w�2j�1; w

�
2j

�
 

ˇ̌̌̌
HT
p;m  �

�
1

0

�
;   � 0

�
; (19)
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and it is checked whether the condition

w�NCj � �
�
j D w

�
2j�1�

�.j /
��1 C w

�
2j�
�.j /
� (20)

holds, where  �.j / is an optimal solution of (19). If it does not, a new constraint (18b) is added for the variable
wNCj by incrementing the corresponding counter of constraints in (18b): Cj WD Cj C1, and setting &j;i 0 D �

�.j /
��1 ,

�j;i 0 D �
�.j /
� for i 0 D Cj . Upon checking condition (20) for all variables wNCj , j D 1; : : : ; N � 1, in (18), the

master problem (18) is augmented with new constraints and is solved again. If (20) holds for all variables wNCj ,
and thus no new cuts are generated during an iteration, the current solution x�;w� of the master problem is optimal
for the original LP approximation problem (16). In such a way, the described cutting plane procedure obtains an
optimal solution, if it exists, of the original LP approximation problem (16) after a finite number of iterations, with,
perhaps, some anticycling scheme employed.

3.2 Fast cut generation for gradient approximations of p-order cones

The cutting-plane scheme of Section 3.1 exploits the properties of the “tower-of-variables” representation (9) of
high-dimensional p-cones as a nested sequence of 3D p-cones to facilitate solving (large-scale) polyhedral approx-
imations (5). In this section we show that if the gradient polyhedral approximation (13) is used for approximating
three-dimensional p-cones in (15), the structure of this approximation can be utilized to achieve significant com-
putational savings, provided that the approximation function 'm of the gradient polyhedral approximation satisfies
a certain computability condition.

Proposition 5 Consider a polyhedral approximation (6) of pOCP problem (1), obtained by reformulating each
of the K p-cones in (1) using the “tower-of-variables” representation (9) and then applying the gradient poly-
hedral approximation (13) with parameter of construction m and approximation function 'm. Then, if '�1m is
computable inO.1/ time, during an iteration of the cutting plane scheme of Section 3.1 new cuts can be generated
in O

�P
k Nk

�
time that is independent of m, where Nk C 1 is the dimension of kth p-cone in (1).

Similarly to Proposition 4, this result strengthens the statement in [15]. We still provide its proof here, since it is
necessary for formalizing a subsequent observation in Proposition 6.

Proof of Proposition 5: When the gradient polyhedral approximation (13) is used, the cut-generating problem
(19) can be formulated as

max
�

mP
iD0

. p̨;i�
�
1 C p̌;i�

�
2 / �i �

2P
iD1

��i si

ˇ̌̌̌
mP
iD0

�i � 1; �0; : : : ; �m � 0; s1; s2 � 0

�
; (21)

where the constants ��1 and ��2 stand for the corresponding elements of the current optimal solution w� of the
master problem: ��1 D w�2j�1, ��2 D w�2j . Disregarding the trivial case of ��1 D ��2 D 0, we assume that at least
one of these parameters is positive: ��1 C �

�
2 > 0. It is clear that solving (21) amounts to finding a maximum

element of the set f p̨;i��1 C p̌;i�
�
2 giD0;:::;m. Namely, if one has

i� 2 arg maxiD0;:::;m
˚
p̨;i �

�
1 C p̌;i �

�
2

	
; (22a)

then an optimal solution  � of (21) is given by

��i D 0; i 2 f0; : : : ; mg n i
�
I ��i� D 1I s1 D p̨;i� I s2 D p̌;i� : (22b)

For fixed ��1 ; �
�
2 � 0 and p > 1, consider the function

g.t/ D ��1
cosp�1 t

.cosp t C sinp t /1�1=p
C ��2

sinp�1 t
.cosp t C sinp t /1�1=p

; t 2 Œ0; �
2
�;
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with the derivative

g0.t/ D .p � 1/
sinp�1 t cosp�1 t

.cosp t C sinp t /2�1=p

�
���1
cos t

C
��2

sin t

�
:

Obviously, for t 2 Œ0; �
2
� function g.t/ is either strictly monotone (when one of ��1 ; �

�
2 is zero) or has a unique

global maximum at t� D arctan.��2 =�
�
1 /. Then, for a continuous and strictly increasing approximating function

'm W Œ0;m� 7! Œ0; �
2
�, the function g.'m.�// is also either monotone on Œ0;m� or has a unique maximum at

'�1m .arctan.��2 =�
�
1 //. Consequently, if the inverse '�1m of the approximating function is computable in O.1/ time,

the index i� of a maximum element of the sequence

g.'m.i// D �
�
1 p̨;i C �

�
2 p̌;i ; i D 0; : : : ; m;

which defines an optimal solution (22) of cut-generating problem (21), can be determined in O.1/ time as

i� 2 arg max
˚
'�1m .0/; b'�1m .t�/c; b'�1m .t�/c C 1; '�1m .�

2
/
	
; where t� D arctan.��2 =�

�
1 /: (23)

Given that each p-cone constraint of order pk and dimensionality Nk C 1 requires Nk � 1 such operations,
generation of new cuts in problem (18) that employs a gradient polyhedral approximation requires O

�P
k Nk

�
time. �

Remark 4 An example of the approximation function 'm whose inverse '�1m .t/ is not computable in a constant
time for any given t 2 Œ0; �

2
� can be furnished as O'm.´/ D . O�iC1� O�i /.´� i/C O�i for i � ´ � iC1, i D 0; : : : ; m,

where 0 � O�0 < O�1 < : : : < O�m �
�
2

. In other words, it is a piecewise linear function corresponding to
some arbitrarily prescribed polar angles O�i , i D 0; : : : ; m, that determine locations of the facets of the polyhedral
approximation. It is easy to see that evaluation of O'�1m .t 0/ for any given t 0 requires determining k such that
t 0 2 Œ O�k ; O�kC1�, which cannot be generally done in a constant time that is independent of m.

In the case when ��1 ; �
�
2 > 0, the index i� of the cut that may have to be added to the master is given by b'�1m .t�/c

or b'�1m .t�/c C 1. Note that as m increases (and the quality of approximation becomes finer), for any fixed
��1 ; �

�
2 > 0 the facets corresponding to b'�1m .t�/c, b'�1m .t�/c C 1 converge to a plane tangent to the cone at the

point determined by the polar angle �� D arctan.��2 =�
�
1 /, so that the corresponding cut takes the form

wNCj � w2j�1
cosp�1 ��

.cosp �� C sinp ��/1�1=p
C w2j

sinp�1 ��

.cosp �� C sinp ��/1�1=p
; �� D arctan

w�2j

w�2j�1
: (24)

In this case, one does not need to solve the cut-generating LP (19) and check condition (20) in order to add the
corresponding cut. Namely, for a current solution w� of the master, cut (24) is added to the master if the condition�w�2j�1; w�2j �p � .1C �/w�NCj (25)

is not satisfied for the respective j D 1; : : : ; N � 1. The following proposition formalizes this procedure.

Proposition 6 Given an instance of pOCP problem (1) that satisfies the conditions of Proposition 1, consider a
cutting plane scheme for constructing an approximate solution of its lifted reformulation (14), where the master
problem has the form (18), and for a given solution x�;w� of the master, cuts of the form (24) are added if condition
(25) is not satisfied for a specific j . Assuming that (18) is bounded, this cutting plane procedure terminates after a
finite number of iterations for any given " > 0, with, perhaps, some anti-cycling scheme applied. In particular, the
algorithm is guaranteed to generate at mostO."�1/ cutting planes, and in the special case of p D 2 the described
cutting plane algorithm is guaranteed to stop after at most O."�0:5/ iterations.

Proof: Given " > 0, let � be the corresponding approximation accuracy of 3D p-cones in (14) due to Proposi-
tion 3:

� D .1C "/1=dlog2N e � 1 D dlog2N e
�1"CO

�
"2
�
; (26)
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and w�NCj , w�2j�1, and w�2j be the elements of the current solution of the master. We will show that there exists
some ı� such that if ��j is located at an angular distance closer than ı� from an existing cut, then (24) implies (25),
i.e., no new cut can be added within ı� from an existing one. By (24), for any existing cut at polar angle �k the
solution of the master should satisfy

w�NCj � w
�
2j�1

cosp�1 �k

.cosp �k C sinp �k/
1� 1p

C w�2j
sinp�1 �k

.cosp �k C sinp �k/
1� 1p

D
.w�2j�1; w�2j /p

�

 
cos ��j

.cosp ��j C sinp ��j /
1
p

cosp�1 �k

.cosp �k C sinp �k/
1� 1p

C
sin ��j

.cosp ��j C sinp ��j /
1
p

sinp�1 �k

.cosp �k C sinp �k/
1� 1p

!
;

where ��j D arctan
w�2j

w�2j�1
. Let ��j D �k C ı, in which case

w�NCj �
.w�2j�1; w�2j /p cos ı .cosp �k C sinp �k/C sin ı .sinp�1 �k cos �k � cosp�1 �k sin �k/

.cosp.�k C ı/C sinp.�k C ı//
1
p .cosp �k C sinp �k/

1� 1p

D
.w�2j�1; w�2j /p�A.�k ; ı/ cos ı C B.�k ; ı/ sin ı

�
;

(27)

where we denote

A.�k ; ı/ D
.cosp �k C sinp �k/

1
p

.cosp.�k C ı/C sinp.�k C ı//
1
p

;

B.�k ; ı/ D
sinp�1 �k cos �k � cosp�1 �k sin �k

.cosp.�k C ı/C sinp.�k C ı//
1
p .cosp �k C sinp �k/

1� 1p

:

As jıj approaches zero, the right-hand side in (27) converges uniformly to
.w�2j�1; w�2j /p . Namely, let K0 D

min� k.cos �; sin �/kp D const > 0, thenˇ̌
A.�k ; ı/ cos ı C B.�k ; ı/ sin ı � 1

ˇ̌
� jB.�k ; ı/j sin jıj C A.�k ; ı/.1 � cos ı/C jA.�k ; ı/ � 1j

�
2

K
p
0

sin jıj C
1

K0
.1 � cos ı/C

1

K0

ˇ̌̌�
cosp �k C sinp �k

� 1
p �

�
cosp.�k C ı/C sinp.�k C ı/

� 1
p

ˇ̌̌
�

2

K
p
0

sin jıj C
1

K0
.1 � cos ı/C

2

K
p
0

jıj

�
2�

K
p
0

ˇ̌̌̌
ı

�=2

ˇ̌̌̌
C

�2

4K0

ˇ̌̌̌
ı

�=2

ˇ̌̌̌2
�

�
2�

K
p
0

C
�2

4K0

�ˇ̌̌̌
ı

�=2

ˇ̌̌̌
DW K1jıj;

where Lagrange’s mean value theorem for the function f .t/ D k.sin t; cos t /kp was utilized, along with the well
known facts that sin jt j � jt j and 1 � cos t � t2.

Then, for any � > 0 there exists ı� D 1
K1

�
1C�

such that for any �k and any jıj � ı� condition (24) implies (25) by
w�NCj � .1 �K1jıj/k.w

�
2j�1; w

�
2j /kp �

1
1C�
k.w�2j�1; w

�
2j /kp . Hence, no two cuts can be located closer than at

an angular distance of ı� , whereby no more than
˙
�
2ı�

�
C 1 D O

�
��1

�
cuts can be generated. A stronger result

holds for p D 2, indeed, observe that in this case (27) can be rewritten as

w�NCj � w
�
2j�1 cos �k C w�2j sin �k

D
�w�2j�1; w�2j�1�2.cos ��j cos �k C sin ��j sin �k/ D

�w�2j�1; w�2j�1�2 cos ı:
(28)

Again, in order for (28) to imply (25), one has to require that cos ı � 1
1C�

, or cos ı� D 1
1C�

, which implies
ı� D O.�

0:5/. The statement of the proposition then follows immediately from (26). �
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Remark 5 The cutting plane procedure outlined in Proposition 6 represents an exact solution algorithm for the
lifted pOCP problem (14), and, correspondingly, the original pOCP problem (1), in the sense that it does not
rely on any particular form of polyhedral approximation once an approximate solution x"1 is obtained with a given
accuracy " D "1, an (improved) solution x"2 can subsequently be constructed by setting new accuracy " D "2 < "1
and resuming the cutting plane algorithm (i.e., the algorithm does not have to be restarted). In contrast, the cutting
plane method of Section 3.1 in this case would require updating the algorithm itself, namely changing the LP
problem (19) that is used to generate new cuts. The O."�1/ iteration complexity of the described method in the
case of general p ¤ 2 is comparable to O."�1/ iteration complexity of first-order methods for SOCP ([6, 16], see
also [5, 17]), while in the p D 2 case it improves to O."�0:5/. Of course, the computational cost per iteration
increases, and in the worst case the last iterations would require solving LPs with O."�1/ (respectively, O."�0:5/)
constraints. In practice, however, the described method terminates within a relatively small number of iterations
(see Section 4.2).

3.3 Fast cut generation for lifted polyhedral approximation of second-order cones

In this section we demonstrate that a result analogous to Proposition 5 can be formulated in the case of the lifted
approximation (11) due to Ben-Tal and Nemirovski [9], i.e., such an approximation also allows for efficient appli-
cation of the cut-generation technique.

In accordance with the cutting plane method of Section 3.1, consider the master problem (18) that corresponds to
a polyhedral approximation of the SOCP (p D 2) version of problem (14), where Ben-Tal and Nemirovski’s lifted
polyhedral approximation (11) of three-dimensional quadratic cones in the “tower-of-variables” is used. In this
case, the coefficients &j;i , �j;i in (18b) are found as the simplex multipliers of the first two constraints of the LP
problem

´�j D min ´ (29a)

s. t. u0 � w
�
2j�1; (29b)

v0 � w
�
2j ; (29c)

ui D cos
� �

2iC1

�
ui�1 C sin

� �

2iC1

�
vi�1; i D 1; : : : ; m; (29d)

vi �
ˇ̌̌
� sin

� �

2iC1

�
ui�1 C cos

� �

2iC1

�
vi�1

ˇ̌̌
; i D 1; : : : ; m; (29e)

um � ´; (29f)

vm � tan
� �

2mC1

�
um; (29g)

u; v; ´ � 0;

where w�2j�1; w
�
2j are the components of the optimal solution of the master problem obtained during the most

recent iteration. If the optimal value of (29) satisfies w�NCj < ´
�
j , then a new cut of the form (18b) is added to the

master.

It is important to note that, unlike the gradient polyhedral approximation (13) of p-cones, the lifted approxima-
tion (11) of quadratic cones due to Ben-Tal and Nemirovski is constructed recursively, where the parameter m
represents the recursion counter and controls approximation accuracy. Intuitively, the process of constructing this
lifted approximation of a 3D quadratic cone can be visualized as a sequence of “rotations” and “reflections” in
R2. Given a vector .u0; v0/ in the positive quadrant of the plane, during the first iteration of the recursion it is
rotated clockwise by �=4 around the origin and, if the rotation puts it into the lower half-plane, it is reflected
symmetrically about the horizontal axis, resulting in vector .u1; v1/ that is again in the positive quadrant. During
the second iteration, vector .u1; v1/ is rotated clockwise by �=8 and reflected symmetrically about the horizontal
axis if it falls into the lower half-plane due to the rotation. The resulting vector is designated .u2; v2/, and so on.

In view of this, as the first step of constructing a O.1/ solution algorithm for the dual of (29), we formally show
that an optimal solution of (29) can be obtained in O.m/ time by applying the above recursion procedure to vector
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.w�2j�1; w
�
2j /.

To this end, let us denote by (ri ; ˛i ) the polar coordinates of the pair (ui ; vi ) in (29):

ri D ri .ui ; vi / D k.ui ; vi /k2; ˛i D ˛i .ui ; vi / D arg.ui ; vi / D arctan.vi=ui /:

In what follows, we will use notations .ui ; vi / and .ri ; ˛i / interchangeably. Since one can always put ´ D um
in (29), the discussion of feasibility and optimality in (29) reduces to that for the pair of vectors .u; v/ D
.u0; : : : ; umI v0; : : : ; vm/. First, let us make two observations.

Observation 1 If .u; v/ is feasible for (29), then ˛i �
�

2iC1
for i D 0; : : : ; m.

Proof: Indeed, if for some i0 one has ˛i0 >
�

2i0C1
, then by (29d)–(29e) ˛i0C1 >

�

2i0C2
, which, by continuation,

yields a contradiction with (29g) that requires ˛m �
�

2mC1
. �

Observation 2 Given a feasible .u; v/ and i0 2 f1; : : : ; mg, a feasible . Qu; Qv/ can be constructed that satisfies
.ui ; vi / D . Qui ; Qvi / for i � i0 � 1 and . Qri ; Q̨ i / D

�
Qri�1;

ˇ̌
Q̨ i�1 �

�

2iC1

ˇ̌�
for i � i0.

Proof: For this, we only need to verify that (29g) is satisfied for ( Qu; Qv). Due to Observation 1, one has ˛i0�1 �
�

2i0
.

Thus, by construction Q̨ i0 �
�

2i0C1
, Q̨ i0C1 �

�

2i0C2
, . . . , Q̨m �

�

2mC1
, which is equivalent to (29g). �

With this in mind we can construct an optimal solution to the problem under consideration.

Lemma 1 An optimal solution for the problem (29) can be obtained by setting constraints (29b)–(29f) to equal-
ities, or, in other words, r�0 D k.w

�
2j�1; w

�
2j /k, ˛

�
0 D arg.u0; v0/, and r�i D r�i�1, ˛�i D

ˇ̌
˛�i�1 �

�

2iC1

ˇ̌
for

i D 1; : : : ; m.

Proof: For a feasible .u; v/, let k be the largest of those i 2 f1; : : : ; mg for which (29e) is a strict inequality i.e., k
is such that constraint (29e) is non-binding for i D k and binding for i D k C 1; : : : ; m. Following Observation 2
with i0 D k, define a feasible ( Qu; Qv) which satisfies

. Qui ; Qvi / D .ui ; vi /; i D 0; : : : ; k � 1;

. Qrk ; Q̨k/ D
�
rk�1;

ˇ̌̌
˛k�1 �

�

2kC1

ˇ̌̌�
;

. Qri ; Q̨ i / D
�
Qri�1;

ˇ̌̌
˛i�1 �

�

2iC1

ˇ̌̌�
; i D k C 1; : : : ; m:

(30)

From the definition of k and (30) it follows that ˛k D Q̨k C �, where � > 0 due to (29e). By construction, one
has

rk D rk�1
cos Q̨k

cos. Q̨k C�/
> Qrk : (31)

Now let us demonstrate that ( Qu; Qv) yields at least as good objective value as (u; v), or in other words, Qum � um.
Note that the definition of k and (30) immediately imply that

um D rm cos˛m D rk cos˛m; Qum D Qrm cos Q̨m D Qrk cos Q̨m; (32)

and
Q̨m D

ˇ̌̌ �

2mC1
�

ˇ̌̌ �
2m
� : : : �

ˇ̌̌ �

2kC2
� Q̨k

ˇ̌̌
: : :
ˇ̌̌
;

˛m D
ˇ̌̌ �

2mC1
�

ˇ̌̌ �
2m
� : : : �

ˇ̌̌ �

2kC2
� ˛k

ˇ̌̌
: : :
ˇ̌̌
:

(33)

Let us consider three cases:
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(a) Assume that ˛k D Q̨k C� �
�

2mC1
. In this case equalities (33) yield the following expressions for ˛m and

Q̨m:
Q̨m D

�

2mC1
� Q̨k ; ˛m D

�

2mC1
� . Q̨k C�/ < Q̨m;

which upon substitution in (32) provide that um � Qum.

(b) Now consider the case of Q̨k > Q̨m. Successive application of the inequality jjaj � jbjj � ja � bj to the
expressions in (33) yields that j˛m � Q̨mj � �, and consequently ˛m � Q̨m C�. Thus, from (32) one has
um D rk cos˛m � rk cos. Q̨m C �/. Upon substituting expression (31) for rk into the last inequality, we
obtain

um � rk�1
cos Q̨k

cos. Q̨k C�/
cos. Q̨m C�/ DW f .�/:

Noting that f 0.�/ D rk�1 cos. Q̨k/
sin. Q̨k � Q̨m/
cos2. Q̨m C�/

> 0 for Q̨k > Q̨m and f .0/ D Qum, we can conclude that

um � f .�/ � f .0/ D Qum.

(c) Finally, suppose that both conditions of (a) and (b) are not satisfied i.e., Q̨k � Q̨m and Q̨k C � >
�

2mC1
.

Consider, the ratio of um and Qum as given by (32), where expressions (31) and (30) are used for rk and Qrk ,
respectively:

um

Qum
D

cos Q̨k cos˛m
cos Q̨m cos. Q̨k C�/

:

The above assumption and Observation 1 imply that Q̨k � Q̨m and ˛m �
�

2mC1
< Q̨k C�, whence the last

equality readily yields um= Qum � 1.

In (a)–(c) we have shown that for feasible (u; v) such that constraint (29e) is binding for i D kC 1; : : : ; m, we can
construct a feasible solution with at least as good objective and constraint (29e) binding for i D k; : : : ; m. Using
this claim inductively, we can conclude that for any feasible (u; v) one can construct a feasible solution for which
all constraints in (29e) are satisfied as equalities and which has objective at least as good as (u; v).

Finally, note that a similar argument can be constructed if (29b) or (29c) are not active. Indeed, the case when
v0 > w

�
2j is completely analogous to the case when (29e) is not active. Similarly, if u0 > w�2j�1, which essentially

increases the value of r0 and reduces the value of ˛0 by some ı, let us denote as r 00, ˛0m and u0m the new values of r0,

˛m, and um corresponding to this case. Then we can observe that u0m D r
0
0 cos˛0m > r 00

sin˛0
sin.˛0 � ı/

cos.˛m � ı/.

Hence,
um

u0m
D

cos˛m sin.˛0 � ı/
cos.˛m � ı/ sin˛0

D
cos ı � cot˛0 sin ı
cos ı C tan˛m sin ı

< 1.

Thus, we can observe that the solution, constructed by setting constraints (29b)–(29f) to equalities yields at least
as good objective value as any other feasible solution. �

By virtue of Lemma 1, the problem of finding optimal of (29) is reduced to the following: given ˛0 2 Œ0; �2 � and
m � 1, determine ˛m from the recurrent relations

˛i D
ˇ̌̌
˛i�1 �

�

2iC1

ˇ̌̌
; i D 1; : : : ; m: (34)

Clearly, this can be done in O.m/ time. Below we show that determining ˛m from recursion (34) requires O.1/
time.

For now, let us assume that ˛0 ¤
i�

2mC1
. For k D 1; : : : ; 2m, define set A.m/

k
D

�
.k � 1/�

2mC1
;
k�

2mC1

�
. Note that by

Observation 1, ˛m 2 A
.m/
1 for any ˛0.
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Lemma 2 If ˛0 2 A
.m/

k
and ˛m is given by (34), then

˛m D

8̂<̂
:
˛0 �

.k � 1/�

2mC1
; if k is even

k�

2mC1
� ˛0; if k is odd:

(35)

Proof: First, note that, by construction, the recursive relation (34) corresponds to the process of rotations and
reflections i.e., if we treat ˛i as a polar angle, then ˛iC1 is obtained by rotating ˛i clockwise by

�

2iC1
and then, if

the result is in the lower half-plane, reflecting with respect to the horizontal axis. In accordance to (34), a reflection
is performed whenever ˛i�1�

�

2iC1
< 0, therefore for a given ˛0 we can define the number of reflections �.m/.˛0/

as
�.m/.˛0/ D

ˇ̌̌n
i W ˛i�1 �

�

2iC1
< 0

oˇ̌̌
:

Next, note that if ˛0; ˇ0 2 A
.m/

k
, then �.m/.˛0/ D �.m/.ˇ0/ and, moreover, for any i there exists ki such that

˛i ; ˇi 2 A
.m/

ki
. Indeed, by the definition of set A.m/

k
we have that sign

�
˛0 �

�
4

�
D sign

�
ˇ0 �

�
4

�
and thus

˛1; ˇ1 2 A
.m/

k1
, where k1 D k � 2m�1 if k � 2m�1 C 1 (no reflection) or k1 D 2m�1 � k C 1 if k � 2m�1 (one

reflection). Successively repeating this argument we observe that it holds for any i .

Hence, we can define �.m/
k

as the number of reflections due to (34) for ˛0 2 A
.m/

k
, or �.m/

k
D �.m/.˛0/ for any

˛0 2 A
.m/

k
. Let us show that if ˛0 2 A

.m/

k
, then

˛m D

8̂<̂
:
˛0 �

.k � 1/�

2mC1
; if �.m/

k
is even;

k�

2mC1
� ˛0; if �.m/

k
is odd:

Using the identity jaj D a sign a, the recursive representation (34) can be written as

˛m D ım

�
� � �

�
ı2

�
ı1

�
˛0 �

�

4

�
�
�

8

�
� � � �

�

2mC1

�
D ˛0

mY
iD1

ıi � ı; (36)

where

ıi D sign
�
˛i�1 �

�

2iC1

�
and ı D

mX
jD1

�

2jC1

mY
iDj

ıi :

According to the arguments given above,
Qm
iD1 ıi and ı should be the same for all ˛0 2 A

.m/

k
. Also note thatQm

iD1 ıi D ˙1, and for all ˛0 we should have ˛m 2
h
0;

�

2mC1

i
. Suppose that

Qm
iD1 ıi D 1, i.e., ˛m D ˛0 �

ı, which is a linear translation of the interval
h .k � 1/�
2mC1

;
k�

2mC1

i
. Since the result of the translation should be

contained in
h
0;

�

2mC1

i
, we have that ı D

.k � 1/�

2mC1
. Similarly, one can conclude that

ı D

8̂̂<̂
:̂
.k � 1/�

2mC1
; if

mQ
iD1

ıi D 1;

�
k�

2mC1
; if

mQ
iD1

ıi D �1:

(37)

Now, let us show that ˇ̌
�
.m/
j � �

.m/
j�1

ˇ̌
D 1; (38)

or, in other words, parity of �.m/j alternates with j . In order to see this, consider the following inductive argument.
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i. Observe that �.1/1 D 1; �
.1/
2 D 0, i.e., the claim holds for m D 1. Indeed, the claim immediately follows from

the fact that ˛1 D
ˇ̌̌
˛0 �

�

4

ˇ̌̌
for m D 1.

ii. Let m � 2 and k � 2m�1, then

�
.m/

k
D �

.m/

2m�kC1
C 1: (39)

Indeed, ˛0 2 A
.m/

k
with k � 2m�1 implies that ˛0 <

k�

2mC1
�
�

4
, and hence ˛1 D

�

4
� ˛0, or, equivalently,

˛1 2 A
.m/

2m�1�kC1
with one reflection performed. Similarly, for ˛0 2 A

.m/

2m�kC1
with k � 2m�1 we have

that ˛0 >
.2m � k/�

2mC1
�
�

4
, whence ˛1 D ˛0 �

�

4
i.e., ˛1 2 A

.m/

2m�kC1�2m�1
D A

.m/

2m�1�kC1
, requiring no

reflections. Note that both cases ˛0 2 A
.m/

2m�kC1
and ˛0 2 A

.m/

k
result in ˛1 2 A

.m/

2m�1�kC1
with the latter

requiring one reflection, which means that �.m/
k
D �

.m/

2m�kC1
C 1.

iii. Let m � 2 and k � 2m�1 C 1, then

�
.m/

k
D �

.m�1/

k�2m�1
: (40)

Similarly to the above, for k � 2m�1 C 1 and ˛0 2 A
.m/

k
it holds that ˛0 >

.k � 1/�

2mC1
�
�

4
, meaning that

˛1 D ˛0 �
�

4
2 A

.m/

k�2m�1
with no reflections. Rewriting (34) as 2˛iC1 D

ˇ̌̌
2˛i �

�

2iC1

ˇ̌̌
, let ˇi D 2˛iC1,

whence ˇ0 D 2˛1 and ˇi D
ˇ̌̌
ˇi�1 �

�

2iC1

ˇ̌̌
, i D 1; : : : ; m � 1. Then, observing that ˇ0 2 A

.m�1/

k�2m�1
, it

is easy to see that for k � 2m�1 C 1, the problem of finding ˇm�1 given ˇ0 2 A
.m�1/

k�2m�1
is equivalent to the

problem of determining ˛m from ˛0 2 A
.m/

k
and, therefore, �.m/

k
D �

.m�1/

k�2m�1
.

iv. Now, assume that (38) holds for somem � 1 and let us show that it also holds formC1. To this end, consider
the value of

ˇ̌
�
.mC1/
j ��

.mC1/
j�1

ˇ̌
: if j > 2mC1 (i.e., (iii) can be used for both j and j�1), then from (40) we have

that
ˇ̌
�
.mC1/
j � �

.mC1/
j�1

ˇ̌
D
ˇ̌
�
.m/
j�2m � �

.m/
j�1�2m

ˇ̌
D 1. If j � 2m (i.e., (ii) can be used for both j and j � 1), then

from (39) it follows that
ˇ̌
�
.mC1/
j � �

.mC1/
j�1

ˇ̌
D
ˇ̌
�
.mC1/

2mC1�jC1
� �

.mC1/

2mC1�jC2

ˇ̌
. By substituting j 0 D 2mC1�j C2

we have that
ˇ̌
�
.mC1/
j � �

.mC1/
j�1

ˇ̌
D
ˇ̌
�
.mC1/
j 0 � �

.mC1/
j 0�1

ˇ̌
, where j 0 > 2mC1, which reduces to the previous case.

Otherwise, if j D 2m C 1, then from (39) one has
ˇ̌
�
.mC1/
j � �

.mC1/
j�1

ˇ̌
D
ˇ̌
�
.mC1/
j � .�

.mC1/
j C 1/

ˇ̌
D 1. Thus,

inductively we observe that (38) holds for any m.

Finally, from (i) and (40) we observe that �.m/2m D 0 for all m, thus (38) entails that �.m/
k

is even iff k is even. �

Lemma 3 If ˛0 D
k�

2mC1
, then the recursive relations (34) yield

˛m D

8<:
0; if k is odd
�

2mC1
; if k is even:

(41)

Proof: It is straightforward to see that for ˛0 D
�

2
recursion (34) yields ˛m D

�

2mC1
. Also observe that

˛m defined by the recursion (34) is continuous with respect to ˛0. Let ˛0 D
k�

2mC1
, k < 2m and consider a

strictly monotone sequence ˛C0 .n/ # ˛0 with the corresponding sequence ˛Cm.n/ obtained by the recursion (34).
For sufficiently large n we have that ˛C0 .n/ 2 A

.m/

kC1
. If k is odd, then by Lemma 2 we have that ˛Cm.n/ D

15
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˛C0 .n/ �
k�

2mC1
! 0, i.e., by continuity of ˛m with respect to ˛0, such ˛0 yields ˛m D 0. And if k is even, then

˛Cm.n/ D
.k C 1/�

2mC1
� ˛C0 .n/!

�

2mC1
, i.e., ˛m D

�

2mC1
. �

Based on Lemmas 1 – 3 the following corollary can be formulated.

Corollary 1 An optimal solution of problem (29) can be constructed in a constantO.1/ time that does not depend
on the accuracy of approximation induced by m. Particularly, if ˛0 D arg.w1; w2/ and r0 D k.w1; w2/k2, then
optimal value of um can be found as um D r0 cos˛m, where

˛m D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

˛0 �
.k � 1/�

2mC1
; ˛0 2

�
.k � 1/�

2mC1
;
k�

2mC1

�
and k is even;

k�

2mC1
� ˛0; ˛0 2

�
.k � 1/�

2mC1
;
k�

2mC1

�
and k is odd;

�

2mC1
; ˛0 D 0:

(42)

Now, let us consider the simplex multipliers of (29) that yield new cuts. By Lemma 1 we can equivalently rewrite
the problem as

min um; (43a)
s. t. u0 D w

�
2j�1; (43b)

v0 D w
�
2j ; (43c)

ui D cos
� �

2iC1

�
ui�1 C sin

� �

2iC1

�
vi�1; i D 1; : : : ; m; (43d)

vi D ıi

�
� sin

� �

2iC1

�
ui�1 C cos

� �

2iC1

�
vi�1

�
; i D 1; : : : ; m; (43e)

u; v � 0;

where

ıi D sign
�
� sin

�
�

2iC1

�
ui�1 C cos

�
�

2iC1

�
vi�1

�
:

Note that for given w1; w2 these ıi are constants and coincide with ıi defined in (36). It is easy to see that, by
construction, (43) has only one feasible point, which is an optimal solution for the initial problem (29). Again, we
assume that ıi ¤ 0.

Denote by yi the simplex multipliers for constraints (43b) and (43d), and by ti the simplex multipliers for con-
straints (43c) and (43e), the dual problem can be formulated as

max w�2j�1y0 C w
�
2j t0 (44a)

s. t. yi�1 � cos
� �

2iC1

�
yi C ıi sin

� �

2iC1

�
ti � 0; i D 1; : : : ; m; (44b)

ti�1 � sin
� �

2iC1

�
yi � ıi cos

� �

2iC1

�
ti � 0; i D 1; : : : ; m; (44c)

ym � 1; (44d)
tm � 0: (44e)

Lemma 4 An optimal solution of (44) can be found by setting all the constraints to equalities, in which case

ym D 1; tm D 0;

yi�1 D cos
�
�

2iC1
C ıi

�
�

2iC2
C : : :C ım�1

�

2mC1

�
: : :

�
; i D 1; : : : ; m;

ti�1 D sin
�
�

2iC1
C ıi

�
�

2iC2
C : : :C ım�1

�

2mC1

�
: : :

�
; i D 1; : : : ; m:

(45)
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Proof: Indeed, let ym D 1, tm D 0 and let us set all the constraints to equalities. Then ym�1 D cos
�

2mC1
,

tm�1 D sin
�

2mC1
: Further, from the elementary trigonometry we obtain that

ym�2 D ym�1 cos
�

2m
� ım�1tm�1 sin

�

2m
D cos

� �
2m
C ım�1

�

2mC1

�
;

tm�2 D ym�1 sin
�

2m
C ım�1tm�1 cos

�

2m
D sin

� �
2m
C ım�1

�

2mC1

�
:

Inductively we can see that in this case (45) holds. Finally, by comparing primal (43) and dual (44) we observe
that by complementary slackness, (45) gives an optimal solution for the dual. �

Recall that in order to construct a new cut we need the values of simplex multipliers for constraints (29b) and (29c)
i.e., y0 and t0. By Lemma 4, one has y0 D cos  and t0 D sin  , where

 D
�

4
C ı1

�
�

8
C ı2

�
�

16
C : : :C ım�1

�

2mC1

�
: : :

�
:

Also note that by duality, w�2j�1y0Cw
�
2j t0 D ´

�, hence j�˛0j D arccos
´��w�2j�1; w�2j �2 : Now, by comparing

this with Lemma 4 and Corollary 1 it follows that

 D

8̂̂̂<̂
ˆ̂:
˛0 � arccos

´��w�2j�1; w�2j �2 ; ˛0 2

�
.k � 1/�

2mC1
;
k�

2mC1

�
and k is even,

˛0 C arccos
´��w�2j�1; w�2j �2 ; ˛0 2

�
.k � 1/�

2mC1
;
k�

2mC1

�
and k is odd:

(46)

Finally, observe that if ıi D 0 for some i , then both expressions in (46) can be converted into a part of a feasible so-
lution of the dual (44) and since they yield the same optimal objective value, any can be taken for cut construction.
In such a way, we have shown that the following proposition holds.

Proposition 7 Consider the SOCP version of problem (1) with K second-order (pk D 2) cone constraints of di-
mensionNkC1, and its polyhedral approximation (6) obtained by reformulating each second-order cone constraint
using the “tower-of-variables” representation (9) and applying Ben-Tal-Nemirovski’s lifted polyhedral approxima-
tion (11) with parameter of approximationm to the resulting Nk � 1 three-dimensional second-order cones. Then,
during an iteration of the cutting plane scheme of Section 3.1, new cuts can be generated in a constantO

�P
k Nk

�
time that does not depend on m.

Remark 6 While the statement of Proposition 7 parallels that of Proposition 5 for gradient polyhedral approx-
imations of p-cones, its significance with respect to Ben-Tal-Nemirovski’s lifted polyhedral approximation of
quadratic cones is substantially different, due to the fact that Ben-Tal-Nemirovski’s approximation is essentially
recursive in construction. In this sense, Proposition 7 and Lemma 2 provide a “shortcut” method for computing
this recursion in a constant time that does not depend on the recursion’s depth.

Remark 7 It is well documented [11, 15] that methods based on polyhedral approximations do not generally
outperform self-dual interior-point SOCP methods. As such, the new approximate solution method for SOCP
problems introduced by Proposition 7 is not expected to be generally superior to interior-point or first-order solu-
tion approaches for SOCP [5, 6, 16, 17]. Nevertheless, the proposed cutting-plane procedure for lifted polyhedral
approximations of SOCP problems can provide computational advantages in situations that require repetitive solv-
ing of a SOCP instance with slight variations in data. In this context, the resulting approximating problem is an
LP of a moderate size, and an extensive body of literature on solving such problems can be utilized, including
warm-start procedures. As an illustration of this, in the next section we study mixed-integer pOCP (MIpOCP)
problems (3). The branch-and-bound framework discussed there relies on repetitive solution of the polyhedral
approximation of a continuous relaxation of MIpOCP problem instead of its exact nonlinear formulation, and can
benefit significantly from warm start capabilities of the solvers.

17

DISTRIBUTION A: Distribution approved for public release



4 Numerical experiments

Our interest in solving optimization problems with p-order cone constraints stems from recent developments in
risk averse decision making under uncertainty and stochastic optimization. Namely, mathematical programming
problems with p-order cone constraints arise naturally in the context of stochastic optimization models whose
objective or constraints involve so-called coherent risk measures [2] of a special kind. In this case study we focus
on stochastic programming models of portfolio optimization with a certain class of coherent risk measures.

4.1 Portfolio optimization with higher moment coherent risk measures

Higher moment coherent risk measures Given a probability space .�;F ;P/, let a random outcome X , which
represents a cost or a loss, be an element of the linear space Lp.�;F ;P/ of F-measurable functions X W � 7! R,
where p � 1. Then, a risk measure �.X/ can be defined as a mapping � W Lp 7! R. In particular, the higher
moment coherent risk (HMCR) measures [14], which we focus on in this study, have been defined as optimal
values of the following (convex) stochastic programming problem

HMCRp;˛.X/ D min
�2R

�C .1 � ˛/�1
ŒX � ��Cp; ˛ 2 .0; 1/; p � 1; (47)

where ŒX�C D maxf0;Xg and kXkp D .EjX jp/1=p . By definition, HMCR measures quantify risk in terms of
higher tail moments of loss distribution, which are commonly associated with “risk”. HMCR measures possess a
number of notable properties, including coherence [2], and isotonicity with respect to the second-order stochastic
dominance (SSD), which allows for consistence with the utility theory of von Neumann and Morgenstern [24]. Risk
measures (47) are also amenable to efficient incorporation in stochastic programming problems, where outcome
X is regarded as a function on the decision vector x and random event ! 2 �: X D X.x; !/. Namely, if,
traditionally to stochastic programming, it is assumed that the set � is discrete and consists of N scenarios, � D
f!1; : : : ; !N g, with the corresponding probabilities $1; : : : ;$N , then expressions involving HMCR measures,
e.g., HMCRp;˛.X.x; !// � u, can be implemented via .N C 1/-dimensional p-order cone constraints. For a
detailed discussion of the properties of HMCR measures, see [14].

pOCP portfolio optimization model In the context of portfolio optimization problems, it is customary to define
the cost/loss outcome X as the negative rate of return of the portfolio, X.x; !/ D �r.!/Tx, where x stands for the
vector of portfolio weights, and r D r.!/ is the uncertain vector of assets’ returns. Then, one may formulate the
problem of minimizing the portfolio risk as given by the HMCR measure, subject to the expected return constraint
and the budget constraint as follows:

min
x2Rn
C

n
HMCR˛;p.�rTx/

ˇ̌̌
E.rTx/ � Nr; 1Tx � 1

o
; (48)

where Nr is the prescribed level of expected return, x 2 RnC denotes the no-short-selling requirement, and 1 D
.1; : : : ; 1/T. If r.!/ is discretely distributed, Pfr.!/ D rj g D $j , j D 1; : : : ; N , then (48) reduces to pOCP
problem with a single p-order cone constraint:

min �C .1 � ˛/�1t

s. t. t � kwkp;

Diag
�
$
�1=p
1 ; : : : ;$

�1=p
N

�
wC .r1; : : : ; rN /TxC 1� � 0;

xT.$1r1 C : : :C$N rN / � Nr;

1Tx � 1;
x � 0; w � 0;

(49)

where Diag.a1; : : : ; ak/ denotes the square k � k matrix whose diagonal elements are equal to a1; : : : ; ak and
off-diagonal elements are zero.
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MIpOCP portfolio optimization models In addition to the convex portfolio optimization model (48), we con-
sider two mixed-integer extensions of (48). One of them is a cardinality-constrained portfolio optimization prob-
lem, which allows for no more than M assets in the portfolio, where M is a given constant:

min
x2Rn
C
; z2f0;1gn

n
HMCR˛;p.�rTx/

ˇ̌̌
E.rTx/ � Nr; 1Tx � 1; x � z; 1Tz �M

o
; (50)

Similarly to (48), formulation (50) represents a 0–1 MIpOCP problem with a single conic constraint. In addition,
we consider portfolio optimization with lot-buying constraints, which reflect a common real-life trading policy that
assets can only be bought in lots of shares (for instance, in multiples of 1,000 shares). In this case, the portfolio
allocation problem can be formulated as MIpOCP with a p-order cone constraint,

min
x2Rn
C
; z2Zn

C

�
HMCR˛;p.�rTx/

ˇ̌̌̌
E.rTx/ � Nr; 1Tx � 1; x D

L

C
Diag.p/ z

�
; (51)

where L is the size of the lot, C is the investment capital (in dollars), and vector p 2 Rn represents the prices of
assets.

The following proposition ensures that the introduced portfolio optimization problems with HMCR measures (48)–
(51) are amenable to the polyhedral approximation solution approach discussed in the previous sections.

Proposition 8 If pOCP problem (49) is feasible, then it satisfies the approximation conditions (8) of Proposition 1.
Moreover, the same applies to continuous relaxations of MIpOCP problems (50) and (51).

Proof: Evidently, the strict feasibility condition (8a) can always be satisfied by selecting sufficiently large t and �
in (49). To see that (49) is “semibounded” in the sense (8b), note that the only unrestricted variable in the problem
is �, but due to the properties of the optimal solution of (47) (see [14]) it can be bounded as j�j � maxj;xfjrT

j xjg �
maxj krj k1. The same arguments apply to relaxations of (50) and (51). �

Implementation and Scenario Data We used the LP and Barrier MIP solvers of IBM ILOG CPLEX 12.2 to
obtain solutions to the formulated portfolio optimization problems. All problems were coded in C++ and compu-
tations ran on a 3GHz PC with 4GB RAM in Windows XP 32bit environment. The additional details of numerical
experiments are discussed in the corresponding subsections below.

In both continuous and discrete portfolio optimization problems, we used historical data for n stocks chosen at
random from the S&P500 index. Namely, returns over N consequent 10-day periods starting at a (common)
randomized date were used to construct the set of N equiprobable scenarios ($j D N�1, j D 1; : : : ; N ) for the
stochastic vector r. The values of parameters L;C;K; ˛, and Nr were set as follows: L D 100, C D 100;000,
M D 5, ˛ D 0:9, Nr D 0:005.

4.2 Cutting plane techniques for the lifted and gradient approximations of SOCP prob-
lems

The pOCP formulation (49) of portfolio selection model (48) was used to evaluate the performance of polyhe-
dral approximation-based solution methods discussed in Section 3. Particularly, we were interested in comparing
the cutting plane methods for solving gradient .p D 2/ and lifted polyhedral approximations of SOCP prob-
lems that were presented in Sections 3.2 and 3.3, respectively. Recall that the gradient polyhedral approximation,
while being applicable to cones of arbitrary order p 2 .1;1/, in the case of p D 2 is inferior to Ben-Tal and
Nemirovski’s lifted polyhedral approximation of second-order cones. At the same time, the results of Sections
3.2 and 3.3 demonstrate that, in the context of the cutting plane scheme of Section 3.1, both types of polyhedral
approximations are amenable to generation of cutting planes in a constant time that does not depend on the ac-
curacy of approximation. Thus, it was of interest to compare the cutting plane techniques for gradient and lifted
approximations of the SOCP (p D 2) version of portfolio optimization problem (49).
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In particular, four types of solution methods were studied. First, the complete LP formulation of Ben-Tal-
Nemirovski’s lifted polyhedral approximation of problem (49) with p D 2 was solved using CPLEX 12.2 LP
solver (referred to as “LP-lifted” below). Second, this polyhedral approximation LP was solved using the cut-
ting plane method of Section 3.1 combined with the fast cut generation technique of Section 3.3 (referred to as
“CG-lifted”).

Third, the SOCP version of (49) was solved using the “exact” cutting plane method of Proposition 6 (recall that
this cutting plane method derives from the corresponding scheme for gradient polyhedral approximation, but does
not require a polyhedral approximation problem to be formulated). This method is referred to as “CG-exact”.

Lastly, we solved a gradient polyhedral approximation of the SOCP version of (49) using the cutting plane method
of Section 3.1 with the fast cut-generation scheme of Section 3.2. The gradient polyhedral approximation was,
however, “optimized” in this case to reduce the number of approximating facets as described below, and is referred
to as “CG-grad-opt”.

Recall that Proposition 3 furnishes an expression for the approximation accuracy " of .N C1/-dimensional p-cone
provided that each of the three-dimensional p-cones is approximated with the same accuracy �. It can be shown
(see [11]) that in the case of the lifted approximation technique [9] applied to second-order cones, the size of
polyhedral approximation can be reduced without sacrificing its accuracy " by properly selecting the accuracies �i
of 3D cone approximations at each level i of the “tower-of-variables”. This approach can also be utilized in the
case of lifting procedure (9) for p-cones,

�0 D �2N�1; �NCj � k.�2j�1; �2j /kp; j D 1; : : : ; N � 1:

Particularly, by introducing approximation accuracies for 3D p-cones at each “level” as �1; �2; :::; �`, where ` D
dlog2N e, one can observe that

�
p
0 D �

p
2N�1 �

�
p
2N�3

.1C �1/p
C

�
p
2N�2

.1C �1/p
�

�
p
2N�7

.1C �1/p.1C �2/p
C

�
p
2N�6

.1C �1/p.1C �2/p

C
�
p
2N�5

.1C �1/p.1C �2/p
C

�
p
2N�4

.1C �1/p.1C �2/p
� : : : �

�
p
1Qk1

iD1.1C �i /
p
C : : :C

�
p
NQkN

iD1.1C �i /
p
;

where once again ki 2 fdlog2N e � 1; dlog2N eg is the number of “levels” in the “tower of variables” on the
way from �2N�1 to �i . Then, the total number of approximation facets can be reduced by solving the following
problem:

min
mi2NC

�X̀
iD1

qimi

ˇ̌̌̌
1C " �

Ỳ
iD1

�
1C �i .mi /

��
; (52)

where, for a given i , mi is the number of facets in polyhedral approximation of a 3D p-cone at “level” i ,
�i D �i .mi / is the main term of the corresponding approximation accuracy, and qi is the number of 3D p-
cones thusly approximated. The objective of (52) represents the total number of approximation facets, while the
constraint ensures that the desired approximation accuracy " of the multidimensional p-cone is achieved. A fea-
sible solution to (52) can be obtained analytically by solving its continuous relaxation with relaxed constraintP`
iD1 �i .mi / � ln.1 C "/, and then taking mi D dm�i e, where m�i is the solution of the relaxed problem. This

procedure resulted in, on average, a 30% reduction in the number of approximating facets for the uniform gradient
polyhedral approximation.

The results are summarized in Table 1, where for each combination of the number of assets n, number of scenarios
N , and approximation accuracy ", the running times are averaged over 20 instances. It has been noted that for
the linear programming problems resulting from the lifted approximation, CPLEX Dual Simplex solver performed
better on smaller problem instances, while CPLEX Barrier solver was superior on larger instances. Thus, we used
the Barrier solver for all instances except for the two smaller problem sizes (the first six rows in Table 1). At the
same time, for the cut-generation approaches we used CPLEX Dual Simplex solver (selected by default).
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n;N " LP-lifted CG-lifted CG-exact CG-grad-opt

50, 500 10�2 0.43 0.12 0.11 0.10
10�4 0.63 0.18 0.17 0.14
10�8 2.77 0.31 0.32 0.32

150, 1500 10�2 1.83 0.96 0.98 0.89
10�4 3.85 1.24 1.18 1.09
10�8 16.29 1.67 1.65 1.64

150, 3000 10�2 37.24 1.66 1.29 1.98
10�4 96.39 5.80 5.03 5.52
10�8 296.20 15.11 15.63 15.55

200, 5000 10�2 151.91 9.31 10.20 7.46
10�4 230.21 23.49 22.76 22.87
10�8 791.41 48.30 47.48 47.08

200, 10000 10�2 320.80 17.93 18.52 17.26
10�4 624.63 45.96 46.56 45.09
10�8 �� 97.13 96.23 96.97

200, 20000 10�2 677.14 31.56 31.15 30.21
10�4 898.74 85.95 86.43 84.12
10�8 � � � 195.99 196.20 195.36

Table 1: Average running time (in seconds) for solving portfolio optimization problem (48)–(49) with p D 2, where n, N ,
and " denote the number of assets, the number of scenarios (dimension of the cone), and the approximation accuracy of the
cone constraint, respectively. “LP-lifted” corresponds to solving the full LP resulting from the lifted polyhedral approximation
due to [9], “CG-lifted” – solving this LP using cut generation technique of Section 3.3, “CG-exact” – solving SOCP problem
using the “exact” cutting plane method of Proposition 6, and “CG-grad-opt” – solving LP resulting from gradient polyhedral
approximation with reduced number of facets due to (52) using cut generation of Section 3.2. All running times are averaged
over 20 instances. Symbol “��” indicates cases when computations exceeded 1 hour time limit, while “� � �” indicates cases
for which the solver returned “Out of memory” error.

It follows from Table 1 that the cutting plane technique of Sections 3.1 and 3.3 for solving Ben-Tal-Nemirovski’s
lifted approximations of SOCP problems (“CG-lifted”) provides significant computational improvements over
solving the “complete” LP formulation of such approximations (“LP-lifted”). This is consistent with the cor-
responding findings reported in [15] for uniform gradient polyhedral approximations of pOCP problems. It is
also worth noting that the performance of the cutting plane method of Section 3.1 in combination with fast cut
generation of Section 3.3 (“CG-lifted”) is on par with that of the “exact” cutting plane method of Proposition 6
(“CG-exact”). However, the cutting plane method of Section 3.1 and Section 3.3 for gradient polyhedral approxi-
mations with reduced number of facets (“CG-grad-opt”) generally works slightly faster than the other two cutting
plane methods, though the observed improvement is insignificant. Finally, we note that relatively few iterations
of the cutting plane methods were required to reach optimality in the corresponding problems; for instance, in
the case of the exact solution method (“CG-exact”), an "-optimal solution was obtained after an average of 11 to
12 iterations, for " D 10�8. Interestingly, the number of iterations has exhibited rather little dependence on the
problem size: for example, instances withN D 5;000, N D 10;000, andN D 20;000 required an average of 11.2,
11.4, and 11.5 iterations, respectively, to be solved within a 10�8 accuracy.

4.3 Polyhedral approximations and cutting plane techniques for rational-order mixed-
integer pOCP problems

The approaches to constructing and solving polyhedral approximations of pOCP problems (1) described above, can
also be efficiently applied to mixed-integer extensions of pOCP (MIpOCP) (3); in particular, we are considering
rational-order MIpOCP problems, i.e., instances (3) where all pk are rational: pk D rk=sk .
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The existing literature on mixed-integer programming problems with conic constraints is relatively limited, with the
majority of research in this area being focused on solving mixed-integer problems with self-dual cone constraints,
particularly second-order cone and semidefinite cone constraints. Mixed-integer second order conic programming
problems of type (3) with p D 2 have recently been studied in [3, 4, 10, 22] and some others. Particularly,
Çezik and Iyengar [10] discuss application of Chvátal-Gomory and disjunctive cuts for 0-1 conic programming.
Vielma et al. [22] proposed a branch-and-bound algorithm for mixed-integer second-order cone programming
(MISOCP) problems that allows for significant computational savings by employing Ben-Tal–Nemirovski’s lifted
polyhedral approximation of the SOCP relaxation at each node of the branch-and-bound tree instead of solving
the nonlinear SOCP relaxation itself, which is only invoked when an integer-valued solution of the polyhedral
approximation is found, and is used to declare incumbent or branch further. Atamtürk and Narayanan [3, 4]
developed mixed-integer rounding cuts for MISOCP problems, as well as lifted cuts for general mixed-integer
cone programming problems, which were then applied to derive lifted cuts for 0-1 MISOCP problems. These
techniques were extended to the case of general MIpOCP problems with p ¤ 2 in [23]. In another recent work by
Belotti et al. [7], nonlinear disjunctive conic cuts for MISOCP problems were proposed.

In this study of MIpOCP problems (3), we follow the approach of Vielma et al. [22], i.e., instead of solving a
nonlinear pOCP relaxation of (3) at each node i of the branch-and-bound tree,

min cTxC dTz
s. t. AxC Bz � b;C.k/xC D.k/zC e.k/


pk
� h.k/TxC g.k/TzC f .k/; k D 1; : : : ; K;

x 2 Rn; z.i/ � z � z.i/;

(53)

we solve its polyhedral approximation

min cTxC dTz
s. t. AxC Bz � b;

H.NkC1/
pk ;mk

0@ C.k/xC D.k/zC e.k/
h.k/TxC g.k/TzC f .k/

w.k/

1A � 0; k D 1; : : : ; K;

x 2 Rn; z.i/ � z � z.i/;

(54)

where z.i/, z.i/ are the lower and upper bounds on the relaxed values of variables z, and the approximation matrix
H.NkC1/
pk ;mk is constructed using lifting procedure (9) and applying gradient polyhedral approximation (13) to the

resulting 3D p-cones. In particular, we employ the fast cutting plane scheme for polyhedral gradient approximation
presented in Section 3.2 to solve the LP problem (54) at each node of the tree.

Only when an integer-valued solution of (54) is found, in order to check its feasibility with respect to the exact
nonlinear formulation (3) and declare incumbent or branch further, the exact pOCP relaxation (53) of MIpOCP
must be solved with bounds on the relaxed values of variables z determined by the integer-valued solution in
question (see [22] for details). To solve the pOCP relaxation (53) exactly, we reformulate (53) in the SOCP form
by representing p-order cone constraints via a set of second-order cones. Such a representation is available for
rational-order cones (see, e.g., [1, 8, 20]), but it is generally non-unique and requiresO.N log r/ three-dimensional
rotated quadratic cones to represent .N C 1/-dimensional p-cone with p D r=s [15]. We use the “economical”
SOCP representation of rational-order cones due to Morenko et al. [18], which allows for replacing an .r=s/-cone
in RNC1 with exactly dlog2 reN quadratic cones; in application to (53) with pk D rk=sk it yields a SOCP problem
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of the form
min cTxC dTz
s. t. AxC Bz � b;0@ C.k/xC D.k/zC e.k/

h.k/TxC g.k/TzC f .k/
w.k/

1A 2 SNk
rk=sk

; k D 1; : : : ; K;

x 2 Rn; z � z � z;

(55)

where SNk
rk=sk

is a set of Nkdlog2 rke “rotated” quadratic three-dimensional cones of the form �20 � �1�2 that is
equivalent to the original .Nk C 1/-dimensional pk-cone.

In summary, the proposed branch-and-bound method for MIpOCP problems relies primarily on a polyhedral ap-
proximation (54) of the problem’s continuous relaxation that is solved using the fast cutting plane generation
technique. Additionally, a SOCP solver is called to obtain an exact solution of the SOCP reformulation (55) of
the MIpOCP relaxation when a new incumbent solution is found. Alternatively, the exact cutting-plane algorithm
described in Proposition 6 can be used to solve the MIpOCP relaxation (53) for each new incumbent solution. In
our computational experiments, the choice of one or the other exact solution method did not have a noticeable
effect on the overall performance, since the bulk of the computational time is spent at the non-integer nodes of the
branch-and-bound tree, and calls to an exact solver were made only occasionally.

The described polyhedral approximation-based approach to solving MIpOCP problems was coded in C++ using
CPLEX Concert Technology. In particular, the cutting plane scheme for solving the polyhedral approximation (54)
of the relaxation (53) of the MIpOCP problem was implemented using CPLEX’s callback functionality, and the
SOCP reformulation (55) of (53) was solved using CPLEX Barrier solver.

The computational performance of this algorithm (referred to as BnB/CP below) was compared to that of the
standard CPLEX 12.2 MIP Barrier solver, which was employed to solve MIpOCP problems in the SOCP reformu-
lation:

min cTxC dTz
s. t. AxC Bz � b;0@ C.k/xC D.k/zC e.k/

h.k/TxC g.k/TzC f .k/
w.k/

1A 2 SNk
rk=sk

; k D 1; : : : ; K;

x 2 Rn; z 2 Rm;

where, as before, SNk
rk=sk

denotes the set of second-order cones equivalent to a .Nk C 1/-dimensional .rk=sk/-cone
constructed in accordance with [18].

Namely, the BnB/CP algorithm and CPLEX MIP Barrier solver were applied to MIpOCP problems with p D 3:0
in the form of portfolio optimization with cardinality constraints (50) and lot-buying constraints (51) of various
sizes (number of integer variables n D 50; 100; 200, dimensionality of p-cone N D 250; : : : ; 1500). The results
are summarized in Tables 2 and 3, respectively, where the running times are averaged over 20 instances. Observe
that in the case of cardinality-constrained portfolio optimization problems, the proposed BnB/CP method is inferior
to the standard CPLEX MIP Barrier solver on smaller instances, and outperforms it on larger instances. This trend
is confirmed by the numerical experiments on portfolio optimization problems with lot-buying constraints, which
are generally harder to solve than the cardinality-constrained problems. In this latter case, the BnB/CP method
dominates the standard CPLEX MIP Barrier solver on all problem instances. Moreover, it is important to point
out that CPLEX 12.2 employs its own polyhedral approximations of second-order cones for solving MISOCP
problems, and the results presented in Tables 2 and 3 demonstrate the contribution of the proposed fast cutting
plane techniques for solving the polyhedral approximations of conic programming problems.

Note that the chosen value of the parameter p D 3:0 in (50) and (51) provided for conditions in which the
SOCP reformulation approach would be most competitive with the proposed BnB method. In accordance with the
above, the value of p D 3 allows for the smallest number, dlog2 3eN D 2N , of quadratic cones in the SOCP
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reformulation when p D r=s ¤ 2. Larger number of quadratic cones in MISOCP reformulations of rational-order
MIpOCP generally lead to longer solution times, while the size of polyhedral approximations used in the proposed
BnB method does not depend on p, resulting in relatively constant solution times.

n D 50 n D 100 n D 200

N Barrier MIP BnB/CP Barrier MIP BnB/CP Barrier MIP BnB/CP

250 8.43 11.96 13.12 14.56 21.45 32.90
500 11.67 15.43 37.68 36.79 60.11 65.87
1000 12.77 19.58 38.18 35.40 89.36 75.81
1500 33.80 47.01 107.27 92.63 284.44 190.46

Table 2: Average running times (in seconds) for BnB/CP implementation of portfolio optimization problem with cardinality
constraint (50) and p D 3:0, benchmarked against IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP reformulation
of (50). Better running times are highlighted in bold.

n D 50 n D 100 n D 200

N Barrier MIP BnB/CP Barrier MIP BnB/CP Barrier MIP BnB/CP

250 38.46 27.91 114.77 82.92 1020.84 743.22
500 99.41 55.17 339.63 254.41 2163.89 1196.76
1000 586.51 506.10 2666.62 2395.59 1.99% 1.18%

Table 3: Average running times (in seconds) for BnB/CP implementation of portfolio optimization problem with lot-buying
constraints (51) and p D 3:0, benchmarked against IBM ILOG CPLEX 12.2 MIP Barrier solver applied to SOCP reformulation
of (51). Better running times are highlighted in bold, and XX% denotes the integrality gap after 1 hour.

5 Conclusions

In this paper we discussed the use of polyhedral approximations in the context of solving linear and mixed-integer
programming problems with p-order cone constraints. In particular, we showed that the fast cutting-plane method
for solving pOCP problems originally proposed by Krokhmal and Soberanis [15] for a special case of gradient
approximation of p-cones, which allows for cut generation in a constant time independent of the approximation
accuracy, can be extended to a broader class of polyhedral approximations. Moreover, a variation of this approach
is proposed that constitutes an exact pOCP solution method with O."�1/ iteration complexity. In addition, we
show that generation of cutting planes in a time that is independent of the approximation accuracy is available
for the lifted polyhedral approximation of second-order cones due to Ben-Tal and Nemirovski [9], which is itself
recursively constructed, with the number of recursion steps being dependent on the desired accuracy. Finally, it
is demonstrated that the developed cutting plane techniques can be effectively applied to obtain exact solutions of
mixed-integer p-order cone programming problems.
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Belgium, 2000.

[12] F. Glineur and T. Terlaky, Conic formulation for lp-norm optimization, J. Optim. Theory Appl. 122 (2004),
pp. 285–307, Available at http://dx.doi.org/10.1023/B:JOTA.0000042522.65261.51.

[13] V. Kaibel and K. Pashkovich, Constructing extended formulations from reflection relations, in Integer pro-
gramming and combinatorial optimization, Lecture Notes in Comput. Sci., Vol. 6655, Springer, Heidelberg,
2011, pp. 287–300, Available at http://dx.doi.org/10.1007/978-3-642-20807-2_23.

[14] P.A. Krokhmal, Higher moment coherent risk measures, Quant. Finance 7 (2007), pp. 373–387, Available at
http://dx.doi.org/10.1080/14697680701458307.

[15] P.A. Krokhmal and P. Soberanis, Risk optimization with p-order conic constraints: A linear programming
approach, European J. Oper. Res. 201 (2010), pp. 653–671, Available at http://dx.doi.org/10.
1016/j.ejor.2009.03.053.

[16] G. Lan, Z. Lu, and R.D.C. Monteiro, Primal-dual first-order methods with O.1=�/ iteration-complexity
for cone programming, Math. Program. 126 (2011), pp. 1–29, Available at http://dx.doi.org/10.
1007/s10107-008-0261-6.

[17] G. Lan and R.D.C. Monteiro, Iteration-complexity of first-order penalty methods for convex program-
ming, Math. Program. 138 (2013), pp. 115–139, Available at http://dx.doi.org/10.1007/
s10107-012-0588-x.

[18] Y. Morenko, A. Vinel, Z. Yu, and P. Krokhmal, On p-norm linear discrimination, European J. Oper. Res. 231
(2013), pp. 784–789.

[19] Y. Nesterov, Towards non-symmetric conic optimization, Optim. Methods Softw. 27 (2012), pp. 893–917.

25

DISTRIBUTION A: Distribution approved for public release



[20] Y.E. Nesterov and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, Studies in
Applied Mathematics, Vol. 13, SIAM, Philadelphia, PA, 1994.

[21] T. Terlaky, On lp programming, European J. Oper. Res. 22 (1985), pp. 70–100, Available at http://dx.
doi.org/10.1016/0377-2217(85)90116-X.

[22] J.P. Vielma, S. Ahmed, and G.L. Nemhauser, A lifted linear programming branch-and-bound algorithm for
mixed-integer conic quadratic programs, INFORMS J. Comput. 20 (2008), pp. 438–450, Available at http:
//dx.doi.org/10.1287/ijoc.1070.0256.

[23] A. Vinel and P. Krokhmal, On valid inequalities for mixed integer p-order cone programming, Jour-
nal of Optimization Theory and Applications (2013), Available at http://dx.doi.org/10.1007/
s10957-013-0315-7.

[24] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 1953rd ed., Princeton
University Press, Princeton, NJ, 1944.

[25] G. Xue and Y. Ye, An efficient algorithm for minimizing a sum of p-norms, SIAM J. Optim. 10 (2000), pp.
551–579, Available at http://dx.doi.org/10.1137/S1052623497327088.

26

DISTRIBUTION A: Distribution approved for public release



On risk-averse maximum weighted subgraph problems
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Abstract

In this work, we consider a class of risk-averse maximum weighted subgraph problems (R-
MWSP). Namely, assuming that each vertex of the graph is associated with a stochastic weight,
such that the joint distribution is known, the goal is to obtain a subgraph of minimum risk satisfying
a given hereditary property. We employ a stochastic programming framework that is based on the
formalism of modern theory of risk measures in order to find minimum-risk hereditary structures in
graphs with stochastic vertex weights. The introduced form of risk function for measuring the risk
of subgraphs ensures that optimal solutions of R-MWS problems represent maximal subgraphs. A
graph-based branch-and-bound algorithm for solving the proposed problems is developed and illus-
trated on a special case of risk-averse maximum weighted clique problem. Numerical experiments
on randomly generated Erdös-Rényi graphs demonstrate the computational performance of the de-
veloped branch-and-bound algorithm.

Keywords: Risk-averse maximum weighted subgraph problem, risk-averse maximum clique prob-
lem, maximum weight clique problem, stochastic weights, coherent risk measures

1 Introduction and motivation

For decades, network problems with topologically exogenous information have occupied a prominent
place in the graph theory and network science literature. A popular class of problems of this type involves
finding a subset of minimum or maximum weight and conforming to a prescribed structural property in
a graph whose vertices are characterized by deterministic weights [4, 5, 14, 22, 25]. Several influential
studies have established a foundation for exact combinatorial solution algorithms for such problems
[6, 11, 26]. Most notably, Carraghan and Pardalos [11] developed a backtracking branch-and-bound
method for efficiently solving the maximum clique problem by exploiting the hereditary property [30]
of complete subgraphs. Many extensions of their work improved upon the process of reducing the
search space by using vertex coloring schemes for branching and for obtaining upper bounds on the
maximum achievable subgraph order (see, e.g., [10, 17, 29]). Analogous weight-based procedures have
also been used when seeking a maximum weight subgraph in the presence of deterministic vertex weights
[4, 21, 25].

Significant emphasis has also been placed on network problems with uncertain exogenous information
evidenced in various forms that influences the overall topology, flow distribution and costs, etc. Partic-
ularly common are considerations of stochastic factors in context of network flow and vehicle routing
problems where uncertainties are attributed to arc capacities or node demands [3, 9, 15, 16]. Also, a
number of studies examined the effects of probabilistic arc failures in networks [1, 31] and introduced
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risk-based approaches to minimize the corresponding flow losses [8, 28]. The problem of finding a
subset of vertices of maximum cardinality that form a clique with a specified probability, given that
edges in the graph can fail with some probabilities, is studied in [23]; a similar approach in application
to certain clique relaxations is pursued in [34]. Although uncertainties in most of the aforementioned
cases influence decisions related to directed network flows, far less emphasis has been placed on exam-
ining decision making regarding optimal subgraph topologies and resource allocation in settings where
uncertainties are induced by stochastic factors associated with network vertices.

In this work, we employ a stochastic programming framework that is based on formalism of risk measures
[18], and in particular, coherent risk measures [2, 12], in order to find minimum-risk structures in graphs
with stochastic vertex weights. Namely, we consider a class of risk-averse maximum weighted1 subgraph
problems (R-MWSP) that represent a stochastic extension of the so-called maximum weight subgraph
problems considered in the literature in the context of hereditary graph-theoretical properties. We pro-
pose a graph-based branch-and-bound algorithm for solving problems in the R-MWSP class, which is
generally applicable to maximum weight subgraph problems where a subgraph’s weight is given by a
super-additive function whose evaluation requires solving an optimization problem. As an illustrative
example of the proposed concepts, we consider a risk-averse maximum weighted clique problem.

The remainder of the paper is organized as follows. In Section 2 we introduce the general formulation
of R-MWS problems and discuss their properties. Section 3 presents solution methods for R-MWSP, in-
cluding a mathematical programming formulation and a graph-based (combinatorial) branch-and-bound
method. Finally, Section 4 considers a numerical case study on solving risk-averse maximum weighted
clique problems, where risk is quantified using a class of nonlinear coherent risk measures, in randomly
generated graphs with various densities.

2 Risk-averse stochastic maximum vertex problem

Let G D .V;E/ be an undirected graph where each vertex i 2 V has a positive weight wi > 0. For any
subset S of its vertices, let GŒS� denote the subgraph of G induced by S , i.e., a graph such that any of its
vertices i; j are connected by an edge if and only if .i; j / is an edge in G.

Property … is said to be hereditary with respect to induced subgraphs (hereditary for short) if for any
graph satisfying … the removal of a vertex preserves … in the resulting induced subgraph. Examples of
hereditary properties include “complete”; “independent”, or “stable”; “degree constrained”; “planar”,
etc. Given a hereditary property …, it may be of interest to find a subgraph of G that satisfies … and has
the largest additive weight, which is known as the maximum weight subgraph problem, or the maximum
weight … problem:

max
S�V

nX
i2S

wi W GŒS� satisfies …
o
: (1)

A subgraph of G that satisfies … and whose order cannot be further increased without violating …
is known as a maximal …-subgraph; the largest such subgraph represents the maximum …-subgraph.
Obviously, an optimal solution of the maximum weight … problem (1) is necessarily a maximal …-
subgraph, but may not be its maximum …-subgraph.

1The rationale for the chosen terminology is explained in Remark 1.
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Finding subgraphs of maximum weight with hereditary properties represents a large and important class
of graph theoretical problems. A seminal result regarding maximum subgraph problems with hereditary
properties was established by Yannakakis [33]. Particularly, property … is called nontrivial if it is sat-
isfied by a single-vertex graph and not satisfied by every graph, and is called interesting if the order of
graphs satisfying … is unbounded. Then, the following holds:

Theorem 1 (Yannakakis [33]) If property … is hereditary with respect to induced subgraphs, nontriv-
ial, and interesting, then the maximum … problem

max
S�V

˚
jS j W GŒS� satisfies …

	
is NP-complete.

It is straightforward that the statement of this theorem extends to the version of the maximum weight …
problem (1). Some of the most well known instances of (1) include the maximum weight clique problem
(MWCP) and maximum weight independent set problem.

Now we pose the question that served as motivation for the present endeavor: What if the vertex weights
wi are uncertain? In this case, extending the deterministic formulation (1) into the stochastic domain is
not straightforward and requires additional considerations. Indeed, minimization of the random quantity
that is represented by the sum of random weights in (1) is ill-posed in the context of decision making
under uncertainty that requires a deterministic optimal solution. Therefore, the sum of stochastic weights
in the objective has to be replaced with a statistical functional that utilizes the distributional information
about the weights’ uncertainties. The traditional stochastic optimization approach, for example, involves
seeking the best “expected outcome”, which in this setting would translate into maximizing the expected
weight of an induced subgraph GŒS�. It is easy to see, however, that maximization of the expected
subgraph weight trivially reduces to the deterministic maximum weight … formulation with expected
vertex weights: E

�P
i2S wi

�
D
P
i2S Ewi .

In this work, we pursue a risk-averse approach and consider the problem of finding the subgraph of G
that satisfies property … and has the lowest risk. Namely, let Xi denote a stochastic variable that is
associated with vertex i 2 V and assume that the joint distribution of vector XG D .X1; : : : ; XjV j/ is
known. Assuming that the random quantities Xi , i 2 V , represent costs or losses, consider the problem
of finding the minimum-risk subgraph in G with property …, or the risk-averse maximum weighted …
problem:

min
S�V

˚
R.S IXG/ W GŒS� satisfies …

	
: (2)

In formulation (2), the functional R.S IXG/ quantifies the risk of the induced subgraph GŒS� given the
distributional information XG , and is undefined as yet.

In order to formally define the risk R.S IXG/ of a subgraph GŒS� in (2), we invoke the concept of risk
measure that is well known in stochastic optimization literature [18]. Namely, given a probability space
.�;F ;P /, where � is the set of random events, F is the � -algebra, and P is the probability measure, a
risk measure is defined as a mapping � W X 7! R, where X is a linear space of F-measurable functions
X W � 7! R. This basic definition is typically augmented by additional properties, such as convexity,
monotonicity, etc. (see below) that are dictated by applications.
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Then, given a risk measure � that we additionally assume to be lower semi-continuous (l.s.c.), the risk
R.S IXG/ of a subgraph of G induced on a set of vertices S � V.G/ with uncertain vertex weights Xi
can be defined as an optimal value of the following stochastic programming problem:

R.S IXG/ D min
�
�

�X
i2S

uiXi

�
W

X
i2S

ui D 1; ui � 0; i 2 S

�
: (3)

Recall that function f W X 7! R is l.s.c. if and only if the sets fX 2 X W f .X/ � ag are closed for all
a 2 R. Obviously, lower semi-continuity of risk measure � is necessary for the minimization problem in
(3) to be well-posed. In the sequel, it will be implicitly assumed that the risk measure � in (3) is l.s.c.

The rationale behind definition (3) of subgraph risk function R.�/ is that, similarly to many “nice” risk
measures, such as those discussed below, it allows for risk reduction through diversification:

Proposition 1 Given a graph G D .V;E/ with stochastic weights Xi , i 2 V , and a l.s.c. risk measure
�, the subgraph risk function R defined by (3) satisfies

R.S2IXG/ � R.S1IXG/ for all S1 � S2: (4)

Proof: For S1 � S2, denote

u.k/ 2 arg min
�
�

� X
i2Sk

uiXi

�
W

X
i2Sk

ui D 1I ui � 0; i 2 Sk

�
; k D 1; 2:

Then, one immediately has

R.S2IXG/ D �
� X
i2S2

u
.2/
i Xi

�
� �

� X
i2S1

u
.1/
i Xi C

X
j2S2nS1

0 �Xj

�
D R.S1IXG/;

due to lower semicontinuity of risk measure �. �

Note that the power of definition (3) via solution of a stochastic programming problem is evidenced in
the fact that the property (4) of risk reduction via diversification property holds for any l.s.c. risk measure
� W X 7! R. Secondly, property (4) implies the following important observation regarding the optimal
solution of the risk-averse maximum weighted … problem (2):

Corollary 1 There exists an optimal solution of the risk-averse maximum weighted … problem (2) with
R.S IXG/ defined by (3) that is a maximal …-subgraph in G.

Remark 1 The introduced problem (2) of finding minimum-risk subgraphs with risk defined by (3)
is strongly related to the class of maximum-weight subgraph problems (1), in the sense that both are
concerned with weighted graphs, and their optimal solutions can be represented by maximal subgraphs;
however, in contrast to (1), an optimal solution of (2)–(3) is not a subgraph of maximum “weight”. To
emphasize the similarities and differences with (1), we call the risk-minimization problem (2) a “risk-
averse maximum weighted subgraph problem”.
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In this respect, it is worth mentioning that the presented framework differs from other recent studies
that also utilized formally defined risk measures for quantifying the risk in graphs, but relied on explicit
maximization of the subgraph’s cardinality or weight while requiring that its risk be bounded (see, e.g.,
[23, 34]):

min
S�V

˚
jS j W Risk.S/ � c0; GŒS� satisfies …

	
:

Indeed, the proposed definition (3) of risk function R in the R-MWS problem (2) implies that maximiza-
tion of a solution’s cardinality is a consequence of risk minimization via diversification.

Further properties of R.S IXG/ depend on those of the risk measure � in (3). In this work we assume �
to belong to a family of coherent measures of risk. According to [2], risk measure � is called coherent if
it satisfies the following four properties (axioms):

(A1) monotonicity: �.X/ � �.Y / for all X; Y 2 X such that X � Y ;

(A2) subadditivity: �.X C Y / � �.X/C �.Y / for all X; Y 2 X ;

(A3) positive homogeneity: �.�X/ D ��.X/ for all X 2 X and � > 0;

(A4) transitional invariance: �.X C a/ D �.X/C a for all X 2 X and a 2 R.

An intuitive interpretation of the above axioms is as follows. Axiom (A1) guarantees that lower losses
yield lower risk. The sub-additivity axiom (A2) is important in the context of risk reduction via diversi-
fication. It is also of fundamental significance from the optimization viewpoint, since it yields, together
with the positive homogeneity axiom (A3), the all-important convexity property:

�.�X C .1 � �/Y / � ��.X/C .1 � �/�.Y / for all X; Y 2 X ; � 2 Œ0; 1�:

The positive homogeneity property (A3) postulates that losses and risk scale correspondingly. Axiom
(A4) ensures that a constant change in X will translate equivalently in risk �.X/.

The next proposition states that when the risk measure � in (3) is coherent, or at least possesses properties
(A1), (A3), (A4), then the corresponding subgraph risk function R.S IXG/ satisfies properties analogous
to (A1), (A3), (A4) with respect to the stochastic weights vector XG .

Proposition 2 Let G D .V;E/ be an undirected graph, and XG D .X1; : : : ; XjV j/, and YG D
.Y1; : : : ; YjV j/ be vectors of stochastic weights whose components are defined on the same linear space
X . If the risk measure � in (3) is l.s.c. and satisfies axioms (A1), (A3), and (A4) of coherency, then for any
induced subgraph GŒS� the subgraph risk function R defined in (3) satisfies the following properties:

(G1) R.S IXG/ � R.S IYG/ for all XG � YG;

(G2) R.S I�XG/ D �R.S IXG/ for all XG and � > 0;

(G3) R.S IXG C a1/ D R.S IXG/C a for all a 2 R;

where 1 is the vector of ones, and the vector inequality XG � YG is interpreted component-wise.
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Proof: Consider, for example, property (G1). Denoting, as before,

uZ 2 arg min
�
�

�X
i2S

uiZi

�
W

X
i2S

ui D 1I ui � 0; i 2 S

�
;

we have

R.S IXG/ D �
�X
i2S

uXi Xi

�
� �

�X
i2S

uYi Xi

�
:

On the other hand, from Xi � Yi it follows thatX
i2S

uYi Xi �
X
i2S

uYi Yi ;

whence

�

�X
i2S

uYi Xi

�
� �

�X
i2S

uYi Yi

�
D R.S IYG/:

Properties (G2) and (G3) are verified similarly. �

Observe that R.S IXG/ does not obey the sub-additivity with respect to the stochastic weights, i.e., in
general

R.S IXG C YG/ — R.S IXG/CR.S IYG/:

With respect to the traditional risk measures � W X 7! R, the failure to satisfy the sub-additivity require-
ment (or, if positive homogeneity also does not hold, the convexity requirement) implies that such a risk
measure is ill fitting for risk reduction via diversification. In other words, it is possible that diversification
can result in an increased risk exposure, as measured by a non-subadditive (correspondingly, nonconvex)
risk measure �.

In the context of proposed risk function R for subgraphs, risk reduction via diversification is already
ascertained by (4), which, with respect to the problem of finding a …-subgraph with the smallest risk,
ensures that adding new vertices to the existing feasible solution that satisfies a hereditary property …
is always beneficial, provided that … is not violated by the addition of new vertices. Yet, under an
additional assumption that the stochastic vertex weights have non-negative support, i.e., XG � 0, the
subgraph risk function R.S IXG/ can be shown to be “set-subadditive”. Namely, one has

Proposition 3 Let the stochastic vertex weights Xi , i 2 V; of graph G D .V;E/ satisfy Xi � 0, i 2 V .
Then, for any S1; S2 � V the subgraph risk function R.S IXG/ defined by (3) satisfies

R.S1 [ S2IXG/ � R.S1IXG/CR.S2IXG/; (5)

provided that the risk measure � in (3) is l.s.c. and satisfies (A1) and (A2).

Proof: If � satisfies axioms (A1) and (A2), then �.X/ � 0 for any X � 0. Immediately, one has
R.S1 [ S2IXG/ � R.S1IXG/ � R.S1IXG/CR.S2IXG/. �

Naturally, in the context of risk-averse maximum weighted … problems where … is hereditary, one
should also require that S1, S2, and S1 [ S2 satisfy ….

Note that the assumption of nonnegative support for vertex weights Xi is analogous to the standard
assumption of positive vertex weights in hereditary maximum weight subgraph problems such as the
maximum clique and independent set problems [5, 27].
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3 Solution approaches for risk-averse maximum weighted subgraph
problems

In this section we consider a mathematical programming formulation for the R-MWS … problem (2),
where the risk R.S/ of induced subgraph GŒS� is defined as in (3), and propose a graph-based, or
combinatorial branch-and-bound algorithm that represents an extension of the well-known branch-and-
bound schemes for the maximum clique problem [11, 25, 26].

3.1 A mathematical programming formulation

Given a graph-theoretic property…, let binary decision variables xi indicate whether node i 2 V belongs
to a subset S , such that the induced subgraph GŒS� satisfies …:

xi D

(
1; i 2 S such that GŒS� satisfies …
0; otherwise:

Further, let ……G.x/ � 0 denote the structural constraints such that for any Qx 2 f0; 1gjV j, ……G.Qx/ � 0 if
and only if GŒ QS� satisfies …, where QS D fi 2 V W Qxi D 1g. Then, the following proposition, which we
give without proof, formalizes a mathematical programming representation for the risk-averse maximum
weighted … problem (2) with risk R.S IXG/ defined by (3) if the property … is hereditary on induced
subgraphs:

Proposition 4 Let G D .V;E/ be an undirected graph with stochastic vertex weights Xi , i 2 V , and
… be a property hereditary on induced subgraphs. Then, the R-MWS … problem (2) with risk defined by
(3) can equivalently be represented as a mixed 0–1 programming problem

min �
�
u>XG

�
s: t: u>1 D 1

u � x
……G.x/ � 0

x 2 f0; 1gjV j; u 2 RjV j
C
:

(6)

When the property … in (6) denotes graph completeness, one can choose, for example, the well-known
edge formulation of the maximum clique problem (see, e.g., [27]) to represent the structural constraints
in (6) as ˚

x 2 f0; 1gjV j W ……G.x/ � 0
	
D
˚
x 2 f0; 1gjV j W xi C xj � 1 for all .i; j / 2 E

	
;
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where E represents the complement edges of graph G, whereby the mathematical programming formu-
lation of the R-MWS clique problem (2)–(3) takes the form

min �
�X
i2V

ui Xi

�
s. t.

X
i2V

ui D 1

ui � xi ; i 2 V

xi C xj � 1; .i; j / 2 E

xi 2 f0; 1g; ui � 0; i 2 V:

(7)

Formulations (6)-(7) allow for handling risk measures � whose representations come in the form of
mathematical programming problems, and can be solved with appropriate (nonlinear) mixed integer
programming solvers.

A combinatorial branch-and-bound algorithm that allows for exploiting the structure of problems (6)-(7)
imposed by the underlying graph G is described next.

3.2 A graph-based branch-and-bound algorithm

The combinatorial branch-and-bound (BnB) algorithm works by navigating between “levels” of the BnB
tree until a subgraph of G that satisfies property … and is guaranteed to be of lowest risk as measured
by (3) is found. The algorithm starts at level ` D 0 with a partial solution Q WD ;, incumbent solution
Q� WD ;, and a global upper bound L� WD C1 on risk of Q�. Throughout the algorithm, the partial
solution Q contains the vertices in V such that GŒQ� has property …, and set Q� induces, per Corollary
1, a maximal …-subgraph whose risk equals L� in G hitherto.

Within the current branch of the BnB tree, “level” ` is associated with the candidate set C` of vertices
such that any single vertex of C` can be added to the current partial solutionQ without violating property
…. Branching is performed by removing a branching vertex q fromC` and adding it to the partial solution
Q. The algorithm is initialized with C0 WD V , and, as soon as the partial solution Q is updated after
branching at level `, the corresponding candidate set at level `C1 is constructed by removing all vertices
from C` whose inclusion in Q would break the property …, i.e.,

C`C1 WD fi 2 C` W GŒi [Q� satisfies …g: (8)

As a result, immediately after branching at level ` the cardinality of partial solution set Q is equal to
jQj D `C 1.

The bounding step of the BnB algorithm involves evaluating the quality of the solution that can be
obtained by exploring further the subgraph induced by vertices in Q [ C`C1. Observe that an exact
approach of directly finding the …-subgraph with the lowest possible risk that is contained in GŒQ [
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C`C1� entails solving the following restriction of problem (6):

R.Q [ C`C1IXG/ D min �
�
u>XG

�
s: t: u>1 D 1

u � x;
……G.x/ � 0;

x 2 f0; 1gjV j; u 2 RjV j
C
;

xi D 0; i 2 V n .Q [ C`C1/:

(9)

As (9) is a (nonlinear) mixed 0–1 problem, solving it at every node of the BnB tree is impractical. Instead,
a lower bound on the value of R.Q [ C`C1IXG/ given by (9) can be computed. However, in contrast
to the traditional mixed integer programming approach of constructing a lower bound by relaxing the
integrality constraints, we formulate a lower bound problem by completely eliminating the 0-1 variables
xi along with the structural constraints:

R.Q [ C`C1IXG/ � L.Q [ C`C1/ WD min �
�X
i2V

ui Xi

�
s. t.

X
i2V

ui D 1

ui D 0; i 2 V n .Q [ C`C1/

ui � 0; i 2 Q [ C`C1:

(10)

Observe that the structural constraints ……G.x/ � 0 in problem (9) are satisfied by variables fxi W i 2 Qg
(since GŒQ� satisfies…), as well as by variables fxi W i 2 Q[ j0g for each j0 2 C`C1 (since GŒQ[ j0�
for each vertex j0 in C`C1 also satisfies …, per definition (8) of the candidate set C`C1). Hence, the
corresponding structural constraints are redundant in (9). On the other hand, the structural constraints
are not necessarily satisfied by variables fxi W i 2 C`C1g and fxi W i 2 Q [ C`C1g, since GŒC`C1�
and GŒQ [ C`C1� do not necessarily satisfy …. Thus, (10) is a relaxation of (9), and, by virtue of
Proposition 1, the solution to (10) provides a lower bound on the minimum risk achievable in any …-
subgraph induced on the union of Q with any subset of C`C1, i.e.,

L.Q [ C`C1/ � R.Q [ C`C1IXG/ � R.Q [ S IXG/ for any S � C`C1:

Observe that if `0 D `C 1 represents the next level in the BnB tree, and Q0 is the corresponding partial
solution, then due to the definition (8) of candidate set one has

.Q0 [ C`0C1/ � .Q [ C`C1/;

whence the risk R.Q [ C`C1IXG/ does not decrease as ` increases (or, in other words, as new vertices
are added to the partial solution Q and the algorithm proceeds to deeper levels ` of the BnB tree). We
next show that this observation is an effective bounding criterion to obtain a …-subgraph of lowest risk
in G.

Depending on the computed value of L.Q[C`C1/, the algorithm branches further or prunes/backtracks
as follows. If L.Q[C`C1/ � L�, then the vertex q is removed fromQ and the corresponding branch of
the BnB tree is fathomed due to the fact that there exists no possibility of achieving a reduction in risk by
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sequential branching/refinement. Further, if C` ¤ ;, another branching vertex is selected and removed
from C` and added to Q. Otherwise, if C` D ;, the algorithm backtracks to level ` � 1.

In the case of L.Q [ C`C1/ < L� and C`C1 ¤ ;, the algorithm proceeds to select a branching vertex q
at the next level `C1. If L.Q[C`C1/ < L� and C`C1 D ;, the subgraph induced by the partial solution
Q represents a maximal …-subgraph in G and is declared as the new incumbent solution, Q� WD Q, the
global upper bound on risk is updated L� WD L.Q[C`C1/, and the algorithm backtracks to level `� 1.

With regard to the branching rule, the observed computational performance suggests that branching on
a vertex q with the smallest value of �.Xq/ or EXq is most effective. To this end, vertices in the set
C0 D V are pre-sorted during the initialization phase of the algorithm in descending order with respect
to their risks �.Xi / or expected values EXi , and then the last vertex in C` is selected for branching.

The outlined branch-and-bound procedure for R-MWS problems is formalized as Algorithm 1.

Algorithm 1: Graph-based branch-and-bound method for R-MWSP

1 Initialize: ` WD 0; C0 WD V IQ WD ;I Q� WD ;I L� WD 1;
2 while .not STOP/ do
3 if C` ¤ ; then
4 select a vertex q 2 C`;
5 C` WD C` n q;
6 Q WD Q [ q;
7 C`C1 WD fi 2 C` W i [Q satisfies …g;
8 solve L.Q [ C`C1/;
9 if L.Q [ C`C1/ < L� then

10 if C`C1 ¤ ; then
11 ` WD `C 1I

12 else
13 Q� WD Q;
14 L� WD L.Q [ C`C1/;
15 Q WD Q n q;

16 else
17 Q WD Q n q;
18 if ` D 0 then
19 STOP

20 else
21 ` WD ` � 1;
22 if ` D �1 then
23 STOP

24 Q WD Q n q;

25 return Q�;

Depending on the particular form of risk measure �, evaluation of the lower bound by solving the relaxed
problem (10) can be relatively expensive and be a major contributor to the overall computational cost of
the proposed algorithm. Then, certain efficiencies in computing the lower bound value via (10) can be
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implemented by taking into account the properties of the subgraph risk function R. Specifically, if at any
point .Q[C`C1/ � .Q0[C 0/, whereQ0 and C 0 are a partial solution and a candidate set for which the
lower bound value L.Q0 [ C 0/ is known to exceed the current global upper bound, L.Q0 [ C 0/ � L�,
then L.Q [ C`C1/ � L.Q0 [ C 0/ � L� due to Proposition 1. The vertex q under consideration is
then removed from Q and the corresponding subproblem is fathomed. In practice, however, retaining
the list of sets .Q0 [ C 0/ with L.Q0 [ C 0/ � L� and checking whether the current Q [ C`C1 is a
subset of some Q0 [ C 0 has proven computationally expensive for even moderately sized problems, and
is most notably exacerbated in graph topologies that contain a large number of maximal …-subgraphs
(for example, when the graph density increases in the context of risk averse maximum weighted clique
problem). Therefore, a more modest approach is considered where only the vertices from incumbent
solutions Q� are retained and tested against unfathomed sets .Q [ C`C1/.

4 Case study: Risk-averse stochastic maximum weighted clique problem
with higher moment coherent risk measures

In this section we discuss the computational framework and conduct numerical experiments demonstrat-
ing the computational performance of the proposed BnB algorithm when solving the risk-averse maxi-
mum weighted clique problem (7). We use a family of higher-moment coherent risk (HMCR) measures
that were introduced in [19] as optimal values to the stochastic programming problem of the form

HMCR˛;p.X/ D min
�2R

�C .1 � ˛/�1
.X � �/C

p
; ˛ 2 .0; 1/; p � 1; (11)

where XC D maxf0;Xg and kXkp D
�
EjX jp

�1=p. The HMCR measures are nonlinear measures of
risk that quantify the risk of loss distribution X via its tail moments, and are particularly suitable for
measuring risk in heavy-tailed data. HMCR measures possess a number of important properties, such as
coherence, isotonicity with respect to the second-order stochastic dominance, which implies consistency
with the expected utility theory, and so on. A popular case of (11), also known as the Conditional
Value-at-Risk (CVaR) or Expected Shortfall risk measure, arises when p D 1:

CVaR˛.X/ D min
�2R

�C .1 � ˛/�1E.X � �/C; ˛ 2 .0; 1/: (12)

Mathematical programming models containing HMCR measures in the objective or constraints can be
formulated using p-order cone constraints. Traditionally to stochastic programming, the set of random
events� is considered to be discrete,� D f!1; : : : ; !N g, with the corresponding probabilities P .!k/ D
�k > 0, such that �1 C � � � C �N D 1. Then, the mathematical programming formulation (7) with risk
measure �.X/ selected as HMCRp;˛.X/ takes the form of a mixed integer p-order cone programming
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(MIpOCP) problem:

min �C .1 � ˛/�1t

s. t. t � k.y1; : : : ; yN /kp

�
�1=p

k
yk �

X
i2V

uiXik � �; k D 1; : : : ; NX
i2V

ui D 1

ui � xi ; i 2 V

xi C xj � 1; .i; j / 2 E

xi 2 f0; 1g; ui � 0; i 2 V I yk � 0; k D 1; : : : ; N;

(13)

whereXik is the realization of the stochastic weight of vertex i 2 V under scenario k, k D 1; : : : ; N , and
the scenario probabilities P .X1 D X1k; : : : ; XN D XNk/ D �k . Similarly, the lower bound problem
(10) for the combinatorial branch-and-bound algorithm described in the previous section takes the form

L.Q [ C`C1/ D min �C .1 � ˛/�1t

s. t. t � ky1; : : : ; yN kp

�
�1=p

k
yk �

X
i2V

uiXik � �; k D 1; : : : ; NX
i2V

ui D 1

ui � 0; i 2 Q [ C`C1

ui D 0; i 2 V n .Q [ C`C1/

yk � 0; k D 1; : : : ; N:

(14)

In cases when p D 1 or 2, problems (13) and (14) reduce to linear programming (LP) and second order
cone programming (SOCP) models, respectively. Both represent well established subjects in optimiza-
tion, for which a range of efficient solvers exist. However, no efficient long-step self-dual interior point
methods exist for solving p-order conic constrained problems when p 2 .1; 2/ [ .2;1/ due to the fact
that the p-cone is not self-dual in this case. Below we discuss solution methods based on polyhedral
approximations of p-order cones and representation of rational-order p-cones via second order cones.

Both these approaches rely on “lifting” a p-order cone into a higher dimensional space by representing
it as an intersection of a (large) number of three-dimensional (3D) cones.

In order to construct a polyhedral approximation of p-cone t � k.y1; : : : ; yN /kp, it first can be equiva-
lently represented as a chain of 3D p-cone inequalities of the form [7, 32]:

t D y2N�1; yNCj � k.y2j�1; y2j /kp; j D 1; : : : ; N � 1: (15)

Then, each 3D p-cone in (15) is replaced with its (outer) gradient polyhedral approximation in the form
of mC 1 circumscribed planes:

yNCj � y2j�1
cosp�1��

.cosp�� C sinp��/
1� 1

p

C y2j
sinp�1��

.cosp�� C sinp��/
1� 1

p

; �� D
��

2m
; � D 0; : : : ; m:

(16)
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The resulting approximating LP problem can be solved by an efficient cutting plane algorithm that admits
generation of cutting planes in a constant time that does not depend on the accuracy of approximation
[20, 32].

Alternatively, an exact solution of a p-order cone programming problem can be obtained by means of
reformulating it as a SOCP problem in the case when the parameter p is a rational number. For example,
in the case of p D 3, the p-order cone t � k.y1; : : : ; yN /k3 can be represented via 2N rotated 3D
quadratic cones [24]:

t D ´1 C : : :C ´N ; y2j � tvj ; v2j � j́ vj ; j D 1; : : : ; N: (17)

Both the described polyhedral approximation approach and SOCP reformulation approach have been
employed in our implementation of the combinatorial branch-and-bound algorithm of Section 3.2 in the
cases when the lower bound problem (14) is nonlinear, i.e., when p > 1.

Specifically, a polyhedral approximation of the lower bound problem (14) was solved at each node of the
BnB tree instead of the exact the nonlinear problem (14) itself. This allows for a significant reduction in
the computational cost of the BnB method, since the warm-start capabilities of LP simplex solvers can
be utilized during repeated solving of the approximating LP problem.

The exact solution method that is based on the SOCP reformulation is employed for solving (14) once
an incumbent solution is found, and the corresponding optimal value is used to update the global upper
bound L�. Due to the fact that the described polyhedral approximation is an outer approximation, one
has

LLP.Q [ C`C1/ � L.Q [ C`C1/; (18)

where LLP.Q [ C`C1/ is the optimal value given by the polyhedral (LP) approximation of the lower
bound problem. This implies that for anyQ[C`0C1 containing an incumbent solutionQ�, the following
holds

LLP.Q [ C`0C1/ � LLP.Q
�/ � L.Q�/ D L�;

which guarantees the correctness of the BnB algorithm relying on polyhedral approximations. Note,
however, that inequality (18) also implies that the use of polyhedral approximations instead of the exact
nonlinear formulation of the lower bound problem (14) allows for delayed pruning of “non-promising”
branches of the BnB tree in situations when

LLP.Q [ C`C1/ < L
�
� L.Q [ C`C1/:

Still, in our experience, the computational savings due to the use of polyhedral approximations during
the BnB procedure greatly outweigh the costs of possible delayed pruning.

Note also that in the special case of p D 1, when �.X/ D CVaR˛.X/, the lower bound problem (14) is
an LP problem and thus requires no polyhedral approximation or SOCP reformulation.

4.1 Setup of the numerical experiments and results

The numerical studies of the risk-averse maximum weighted clique problem were conducted on ran-
domly generated Erdös-Rényi graphs [13] of orders jV j D 50; 100; 150; 200 and average densities d D
0:2; 0:5, and 0:8. The stochastic weights of graphs’ vertices were generated as i.i.d. samples from the
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uniform U Œ0; 1� distribution. In particular, we generated scenario sets with N D 50; 100; 200; 500; 1000
scenarios for each combination of graph order and density. The risk measure � has been selected as an
HMCR measure (11) with p D 1; 2; 3 and ˛ D 0:9.

The combinatorial branch-and-bound algorithm of Section 3.1 with the additional specializations de-
scribed above has been coded in C++, and we used the CPLEX Simplex and Barrier solvers for solving
the polyhedral approximations and SOCP reformulations of the p-order cone programming lower bound
problem (14), respectively. In the case of p D 1, the CPLEX Simplex solver was used to solve the lower
bound problem directly.

The performance of the developed BnB method was compared with that of the mathematical program-
ming formulation (13) of the risk-averse maximum weighted clique problem. The MIpOCP problem
(13) was solved with CPLEX MIP solver in the case of p D 1, and CPLEX MIP Barrier solver was
applied to the SOCP version of (13) in the case of p D 2 or SOCP reformulation of (13) in the case of
p D 3.

The computations were ran on an Intel Xeon 3.30GHz PC with 128GB RAM, and version 12.5 of the
CPLEX solver in Windows 7 64-bit environment was used.

Table 1 summarizes the computational times, averaged over five instances, corresponding to the afore-
mentioned problem configurations with a fixed number of scenarios of N D 100. Observe that the BnB
algorithm provides one to two orders of magnitude advantage in running time over the CPLEX MIP
solver for all configurations, except that of p D 1 and d D 0:8. For the consecutive set of experiments,
Table 2 demonstrates the effect of variations in the scenario size N for different graph orders and values
of p while maintaining a constant average graph density of d D 0:5. The specified edge probability
was chosen due to the fact that the size of the mathematical programming (13) formulation is density
dependent. Mainly, the number of structural constraints xi C xj � 1; .i; j / 2 E in (13) increases as
d decreases. The opposite relationship holds true for the BnB algorithm, as the search space expands
with the number of edges. Thus, a “fair” comparison between the two solution methods can be made on
graphs with density d D 0:5.

It follows from Tables 1 and 2 that the computational advantages of the combinatorial BnB algorithm
over the direct solution approach become more pronounced (up to two orders of magnitude) with increase
in p, i.e., as full formulation (13) and the lower bound problem (14) become more difficult. Also of
interest is the fact that the BnB method often yields better solution times for problems with p D 3 than
p D 2. This is a consequence of a known property of the employed cutting-plane algorithm for solving
polyhedral approximations of p-order cone programming problems, which becomes more effective as p
increases [20].

5 Conclusions

In this study, we have considered a class R-MWS problems which entail finding a network subgraph
of minimum risk satisfying some hereditary structural property. We employ the HMCR measures as a
rigorous framework for quantifying the distributional information of the stochastic vertex weights. By
means of diversification properties of the introduced optimization-based risk function for measuring risk
of subgraphs, it was shown that the inclusion of additional vertices in a partial solution promotes the min-
imization of risk; hence, optimal solutions to R-MWS problems are maximal subgraphs. A combinatorial
branch-and-bound algorithm utilizing the risk- and graph-related aspects of the problem structure was de-
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d D 0:2 d D 0:5 d D 0:8

p jV j BnB CPLEX BnB CPLEX BnB CPLEX

1 50 0.08 1.10 0.37 1.31 3.04 1.90
100 0.24 6.43 4.02 28.06 206.46 121.27
150 0.74 38.37 26.86 220.17 4065.16 2434.66
200 1.67 118.13 73.73 1074.93 — —

2 50 0.40 18.54 1.66 45.67 14.50 156.26
100 1.38 110.67 19.37 412.90 956.93 2555.77
150 3.37 629.38 124.99 2293.96 6154.76 —
200 3.68 2822.38 166.44 — — —

3 50 1.35 54.58 2.38 91.98 14.15 273.10
100 2.43 215.97 17.66 625.52 716.22 4644.90
150 4.41 927.03 102.28 3560.27 — —
200 7.24 3031.77 412.74 — — —

Table 1: Average computation times� (in seconds) obtained by solving problem (13) using the proposed BnB algorithm and
CPLEX with risk measure (11) and scenarios N D 100. All running times are averaged over 5 instances and symbol “—”
indicates that the time limit of 7200 seconds was exceeded.

jV j D 50 jV j D 100 jV j D 150 jV j D 200

p N BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX

1 50 0.19 1.15 1.40 11.88 4.43 43.49 13.09 130.45
100 0.37 1.31 4.02 28.06 26.86 220.17 73.73 1074.93
200 0.87 3.01 14.64 71.93 84.83 443.74 329.76 2550.12
500 4.70 10.40 72.90 219.40 429.80 1794.60 2118.60 —

1000 14.87 28.82 259.48 702.97 1909.48 6094.66 — —

2 50 0.80 22.96 4.10 167.30 12.89 961.32 37.67 3668.54
100 1.66 45.67 19.37 412.90 124.99 2293.96 166.44 —
200 6.57 109.72 131.44 907.95 797.04 5961.69 900.50 —
500 61.10 552.80 970.10 — 3221.70 — — —

1000 194.59 965.69 3669.37 — — — — —

3 50 1.22 34.85 3.96 245.79 11.99 1040.01 34.30 3847.40
100 2.38 91.98 17.66 625.52 102.28 3560.27 412.74 —
200 5.21 261.83 60.59 2388.44 333.61 — 1424.27 —
500 20.10 1299.60 248.70 — 1751.90 — — —

1000 58.00 3277.93 768.53 — 5634.04 — — —

Table 2: Average computation times (in seconds) obtained by solving problem (13) using the proposed BnB algorithm and
CPLEX with risk measure (11) and edge density d D 0:5. All running times are averaged over 5 instances and symbol “—”
indicates that the time limit of 7200 seconds was exceeded.

veloped and tested on a special case of the risk-averse maximal clique problem. Numerical experiments
on randomly generated Erdös-Rényi graphs demonstrate that the proposed algorithm may significantly
reduce solution times relative to an equivalent mathematical programming counterpart. Notably, im-
provements were observed for all the tested graph configurations when using the HMCR measures with
p D 2; 3, and for graphs with edge probabilities of less than 0.8 when using an HMCR measure with
p D 1.

15

DISTRIBUTION A: Distribution approved for public release



6 Acknowledgements

This work was supported in part by the U.S. Dept. of Air Force grant FA8651-12-2-0010, AFOSR grant
FA9550-12-1-0142, and NSF grant EPS1101284. The authors are grateful for the support from the AFRL
Mathematical Modeling and Optimization Institute.

References

[1] Y. P. Aneja, R. Chandrasekaran, and K. P. K. Nair. Maximizing residual flow under an arc destruc-
tion. Networks, 38(4):194–198, 2001.

[2] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance,
9(3):203–228, 1999.

[3] A. Atamtrk and M. Zhang. Two-stage robust network flow and design under demand uncertainty.
Operations Research, 55(4):662–673, 2007.

[4] L. Babel. A fast algorithm for the maximum weight clique problem. Computing, 52(1):31–38,
1994.

[5] E. Balas and J. Xue. Minimum weighted coloring of triangulated graphs, with application to max-
imum weight vertex packing and clique finding in arbitrary graphs. SIAM J. Comput., 20(2):209–
221, Mar. 1991.

[6] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM J. Comput.,
15(4):1054–1068, Nov. 1986.

[7] A. Ben-Tal and A. Nemirovski. On polyhedral approximations of the second-order cone. dim, 50:1,
1999.

[8] V. L. Boginski, C. W. Commander, and T. Turko. Polynomial-time identification of robust network
flows under uncertain arc failures. Optimization Letters, 3(3):461–473, 2009.

[9] A. M. Campbell and B. W. Thomas. Probabilistic traveling salesman problem with deadlines.
Transportation Science, 42(1):1–21, 2008.

[10] R. Carmo and A. Zge. Branch and bound algorithms for the maximum clique problem under a
unified framework. Journal of the Brazilian Computer Society, 18(2):137–151, 2012.

[11] R. Carraghan and P. M. Pardalos. An exact algorithm for the maximum clique problem. Operations
Research Letters, 9(6):375 – 382, 1990.

[12] F. Delbaen. Coherent risk measures on general probability spaces. In K. Sandmann and P. Schn-
bucher, editors, Advances in Finance and Stochastics, pages 1–37. Springer Berlin Heidelberg,
2002.
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Abstract We discuss two families of valid inequalities for linear mixed integer program-
ming problems with cone constraints of arbitrary order, which arise in the context of stochas-
tic optimization with downside risk measures. In particular, we extend the results of Atamtürk
and Narayanan (Math. Program., 2010, 2011), who developed mixed integer rounding cuts
and lifted cuts for mixed integer programming problems with second order cone constraints.
Numerical experiments conducted on randomly generated problems and portfolio optimiza-
tion problems with historical data demonstrate the effectiveness of the proposed methods.
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1 Introduction

In this work we consider mixed integer programming problems with linear objective and
p-order cone constraints, which represent an extension of mixed integer second order cone
programming (MISOCP) problems and subsequently are referred to as mixed integer p-
order cone programmig (MIpOCP) problems. Specifically, we focus on a class of MIpOCP
instances that arise in stochastic optimization problems with risk-based objective functions
or constraints.

There exists a substantial literature on solution approaches for mixed integer conic pro-
gramming problems. In many cases, the proposed methods attempt to extend some of the
techniques developed for mixed integer linear programming. One of such research directions
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2 Alexander Vinel, Pavlo Krokhmal

concerns construction of branch-and-bound schemes based on outer polyhedral approxima-
tions of cones. This potentially allows for computational savings in traversing the branch-
and-bound tree due to the “warm start” capabilities of linear programming solvers. In par-
ticular, Vielma et al. [1] proposed a branch-and-bound method for MISOCP that employed
lifted polyhedral approximations of second order cones due to Ben-Tal and Nemirovski
[2]. Vinel and Krokhmal [3] discuss further development of this approach in the case of
MIpOCP. Drewes [4] presented subgradient-based linear outer approximations for the sec-
ond order cone constraints in mixed integer programs. With respect to mixed integer nonlin-
ear programming, a similar idea has been exploited by Bonami et al. [5] and Tawarmalani
and Sahinidis [6].

Two approaches to generation of valid inequalities for MISOCP problems have been
proposed by Atamtürk and Narayanan [7,8]. In the first paper the authors introduced a re-
formulation of a second order cone constraint using a set of two-dimensional second order
cones and then derived valid inequalities for the resulting mixed integer sets. The obtained
cuts were termed by the authors conic mixed integer rounding cuts. In [8], a general lifting
procedure for deriving nonlinear conic valid inequalities was proposed and applied to 0-1
MISOCP problems.

In a recent work of Belotti et al. [9], disjunctive conic cuts for MISOCP problems are
introduced. For the case of general convex sets, the authors are able to describe the convex
hull of the intersection of a convex set and a linear disjunction. And in the particular case of
the feasible set of the continuous relaxation of a MISOCP problem they derive a closed-form
expression for such a convex hull, thus obtaining a new nonlinear conic cut.

Among other approaches to solving mixed integer cone programming problems one
can mention the split closure of a strictly convex body [10], lift-and-project algorithm [11],
Chvátal-Gomory and disjunctive cuts for 0-1 conic programming [12].

It is worth noting that the vast majority of the existing literature on mixed integer cone
programming problems addresses the case of self-dual cones, and particularly second order
cones, with relatively little attention paid to problems involving cones that are not self-dual,
as in the case of MIpOCP with p ∈]1,2[∪]2,∞[. In this work, we consider derivation of
valid inequalities for mixed integer problems with p-order cone constraints following the
techniques [7,8] proposed for MISOCP. We derive closed form expressions for two families
of valid inequalities for MIpOCP problems: mixed integer rounding conic cuts and lifted
conic cuts. We also propose to use outer polyhedral approximations as a practical way of
employing nonlinear lifted cuts within branch-and-cut framework. With such an approach,
we are able to obtain promising computational results on a number of portfolio optimization
problems with real-life data.

The paper is organized as follows. In Section 2 we present mixed integer rounding cuts
for p-cone constrained mixed integer sets. Section 3 discusses (nonlinear) lifted cuts for
0-1 and mixed integer p-order cone programming problems. Computational studies of the
developed techniques on randomly generated MIpOCP problems as well as portfolio opti-
mization problems with real-life data are discussed in Section 4, followed by concluding
remarks in Section 5.

2 Conic Mixed Integer Rounding Cuts for p-Order Cones

In this section we present a class of mixed integer rounding cuts for MIpOCP problems
arising in the context of risk-averse stochastic optimization. A mixed integer p-order cone
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programming problem has the form

min (c>x x+ c>y y)

s. t. Dxx+Dyy≤ d

‖A jx+G jy−b j‖p j ≤ e>j x+ f>j y−h j, j = 1, . . . ,k

x ∈ Zn
+, y ∈ Rq

+,

(1)

where p j ∈]1,∞[, and ‖ · ‖p is the usual p-norm in the Euclidean space of an appropriate
dimension: ‖r‖p = (|r1|p + . . .+ |rN |p)1/p.

MIpOCP problems (1) can be obtained from stochastic programming models that in-
volve specific families of risk measures in objectives or constraints. Namely, given a prob-
ability space (Ω ,F ,µ), let the cost or loss function Y be an element of the linear space
Lp(Ω ,F ,µ) of F -measurable functions Y : Ω 7→ R, where p ≥ 1. Then, the higher-
moment coherent risk measures HMCRp,α(Y ) are defined as the optimal values of the fol-
lowing convex stochastic optimization problem [13]

HMCRp,α(Y ) = min
η∈R

{
η +(1−α)−1∥∥[Y −η ]+

∥∥
p

}
, α ∈]0,1[, p≥ 1, (2)

where [Y ]+ = max{0,Y} and ‖Y‖p = (E|Y |p)1/p. A related family of semi-moment coherent
risk measures, or risk measures of semi-Lp type [14], is given as

SMCRp,β (Y ) = EY +β
∥∥[Y −EY ]+

∥∥
p, β ∈ [0,1], p≥ 1. (3)

In the case when the set Ω is finite, Ω = {ω1, . . . ,ωm}, and the cost function Y = Y (u,ω)
is a piecewise linear convex function of the decision vector u, terms with HMCR or SMCR
measures in the objective function and/or constraints can be implemented via linear inequal-
ities involving Y (u,ωi) and p-order cone constraints t ≥ ‖(w1, . . . ,wm)‖p, thus leading to
MIpOCP problem of the form

min (c>x x+ c>y y)

s. t. Dxx+Dyy≤ d

‖[A jx+G jy−b j]+‖p j ≤ e>j x+ f>j y−h j, j = 1, . . . ,k

x ∈ Zn
+, y ∈ Rq

+,

(4)

Formulation (4) differs from (1) by the presence of operator [ · ]+, which explicitly accounts
for the problem structure induced by downside risk measures such as (2)–(3). For simplicity,
we consider the case of a single p-cone constraint in (4), k = 1. Following the approach of
[7] for constructing mixed integer rounding cuts for problems of type (1) with p = 2, we
rewrite the p-cone constraint in (4) as

t0 ≤ e>x+ f>y−h

ti ≥ [a>i x+g>i y−bi]+, i = 1, . . . ,m

t0 ≥ ‖(t1, . . . , tm)‖p,

where ai and gi denote the i-th rows of matrices A and G, respectively. Then, the task of
deriving valid inequalities for the original p-cone mixed integer set in (4) can be reduced to
obtaining valid inequalities for the polyhedral mixed integer set

T =
{

x ∈ Zn
+, y ∈ Rp

+, t ∈ R : [a>x+g>y−b]+ ≤ t
}
,
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4 Alexander Vinel, Pavlo Krokhmal

or, without loss of generality, the set

T̃ =
{
(y+,y−, t,x) ∈ R3

+×Zn
+ : [a>x+ y+− y−−b]+ ≤ t

}
. (5)

The following two propositions provide an expression for a family of such inequalities.

Proposition 2.1 For α 6= 0, the inequality
n

∑
j=1

φ f|α|

(
a j

|α|

)
x j−φ f|α|

(
b
|α|

)
≤ t + y−

|α|
, (6)

where fα = b
|α| −

⌊
b
|α|

⌋
and

φ f (a) =
{
(1− f )n, n≤ a < n+ f
(1− f )n+(a−n)− f , n+ f ≤ a < n+1

is valid for T̃ .

Proposition 2.2 Inequalities (6) with α = a j, j = 1, . . . ,n, are sufficient to cut off all frac-
tional extreme points of the relaxation of T̃ .

Proofs of Propositions 2.1 and 2.2 are furnished in the Appendix. It is worth noting,
however, that since (5) is a polyhedral mixed integer set, the derived valid inequalities can
also be obtained using the general theory of mixed integer rounding (MIR) inequalities; see,
for example, [15]. An advantage of the direct derivation is that it provides a natural way
of dealing with continuous variables y+,y−, t. Propositions 2.1 and 2.2 justify the usage of
inequalities of type (6) as cuts in a branch-and-cut procedure; following [7], we refer to
these inequalities as conic MIR cuts. The results of numerical experiments on utilization of
conic MIR cuts (6) in MIpOCP problems are presented in Section 4.

3 Lifted Conic Cuts for p-Order Cones

3.1 General Framework

Lifting for conic mixed integer programming was studied in [8], where a general approach
for constructing valid nonlinear conic inequalities for mixed inter conic programming prob-
lems was proposed. Namely, consider a general mixed integer conic set

Sn(b) =
{
(x0, . . . ,xn) ∈ X0×·· ·×Xn : b−

n

∑
i=0

Aixi ∈ C

}
, (7)

where Ai ∈ Rm×ni , b ∈ Rm, C is a proper cone (a closed, convex, pointed cone with a
nonempty interior), and each X i ⊂ Rni is a mixed integer set. Similarly, S0(b), . . . ,Sn−1(b)
are restrictions of the set Sn(b). Further, it is assumed that the following conic inequality

h−F0x0 ∈K ,

where K is a proper cone, is known to be valid for the restriction S0(b). The approach
proposed in [8] is to iteratively find a sequence F1, . . . ,Fn, such that

h−
i

∑
j=0

F jx j ∈K (8)
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On Valid Inequalities for Mixed Integer p-Order Cone Programming 5

is valid for the respective restriction Si(b) for all i. Such a procedure is called lifting and
the resulting inequality that is valid for the initial mixed integer set Sn(b) is called lifted
inequality. In order to determine the values of F1, . . . ,Fn, the lifting set is introduced for
v ∈ Rm as

Φi(v) =
{

d ∈ Rs : h−
i

∑
j=0

F jx j−d ∈K for all (x0, . . . ,xi)> ∈ Si(b−v)
}
.

Then, a necessary and sufficient condition for (8) to be valid can be formulated, which
essentially provides a description of the set of valid inequalities.

Proposition 3.1 [8] Inequality (8) is valid for Si(b) if and only if Fit ∈ Φi(Ait) for all
t ∈ X i and i = 0, . . . ,n.

The condition established by Proposition 3.1 is still too general to be used for derivation
of conic cuts. For example, it can be seen that in this way the resulting inequalities are
sequence-dependent, i.e., a change in the order in which variables xi are introduced will
change the sets Φi(v). The following theorem provides a “sequence-independent” approach
to construction of lifting procedure.

Theorem 3.1 [8] If ϒ (v)⊆Φ0(v) for all v∈Rm and ϒ is superadditive, then (8) is a lifted
valid inequality for Sn(b) whenever Fit ∈ϒ (Ait) for all t ∈ X i and i = 0, . . . ,n.

Then, the following procedure can be formulated for derivation of lifted conic inequalities:

Step 1. Compute Φ0(v).
Step 2. If Φ0(v) is not superadditive, find a superadditive ϒ (v)⊂Φ0(v).
Step 3. For each i find Fi such that Fit ∈ϒ (Ait) is satisfied for all t ∈ X i.

In [8] this process was employed to obtain nonlinear lifted conic cuts for 0-1 MISOCP
problems; however, no computational results were reported. Below we apply this procedure
to derive nonlinear lifted conic cuts for 0-1 and mixed integer p-order cone programming
problems with risk-based constraints, and also discuss polyhedral approximations of these
cuts that are used in numerical implementation.

3.2 Lifting Procedure for 0-1 p-Order Cone Programming Problems

In the case of 0-1 p-order cone programming problem, consider the following conic set

Sn
p(b) =

{
(x,η+,η−,y, t) ∈ {0,1}n×R4

+ :
[ n

∑
i=1

aixi +η+−η−−b
]p

+
+ yp ≤ t p

}
,

where p ∈]1,∞[. The set Sn
p(b) represents a relaxation of a high dimensional 0-1 mixed

integer p-order conic set: all but one dimensions of the p-cone are aggregated into the term
yp. By complementing the binary variables, if necessary, we can assume that all ai ≥ 0. The
restriction S0

p of this set can be taken as

S0
p(b) =

{
(x,y, t) ∈ {0,1}×R2

+ : [x−b]p++ yp ≤ t p}.
Notice that S0

p(b) has one extreme point (b,0,0), which is fractional when b∈]0,1[. Thus, in
the only interesting case we have bbc= 0. Using the results of the previous section, the initial
valid inequality can be selected as

∣∣(1− f )(x−bbc)
∣∣p+yp ≤ t p, where f = b−bbc (the fact
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6 Alexander Vinel, Pavlo Krokhmal

that this inequality is valid can be verified directly by examining the possible values of x,y, t).
Now, by definition, in order to compute Φ0(v) we need to find such d that inequality∣∣(1− f )(x−bbc)+d

∣∣p + yp ≤ t p (9)

is satisfied for all x,y, t such that [x−b+ v]p++ yp ≤ t p.
Recalling that bbc = 0 and, therefore, f = b, we obtain that (9) can be rewritten as

|(1−b)x+d|p + yp ≤ t p for all x,y, t such that [x−b+ v]p++ yp ≤ t p. Given that x ∈ {0,1},
for x = 0 we have |d| ≤ [v− b]+, and for x = 1 we have |1− b+ d| ≤ [1− b+ v]+. Thus,
if v ≥ b then |d| ≤ v− b, and if v < b then d = 0, meaning that |d| ≤ [v− b]+, whereby
Φ0(v) = {d : |d| ≤ [v−b]+}, which is superaddive. Finally, the following proposition holds.

Proposition 3.2 Conic inequality

∣∣∣(1− f )(x−bbc)+
n

∑
i=1

αixi

∣∣∣p + yp ≤ t p (10)

with αi = [ai−b]+ is valid for the set Sn
p(b).

Proof Since Φ0(v) is superadditive, by Theorem 3.1 we only need to verify that the chosen
values of αi satisfy αix ∈Φ0(aix) for x ∈ {0,1}, which follows readily from the expression
for Φ0(v). ut

3.3 Lifting Procedure for MIpOCP Problems

Similarly, in the case of MIpOCP problem we consider the set

Ŝn
p(b) =

{
(x,η+,η−,y, t) ∈ Zn

+×R4
+ :

[ n

∑
i=1

aixi +η+−η−−b
]p

+
+ yp ≤ t p

}
,

where p ∈]1,∞[. Once again, the set Ŝn
p(b) represents a relaxation of a high dimensional

mixed integer p-order cone constraint. Let us also assume that values xi are bounded, e.g.,
xi ∈ {0, . . . ,M} for all i. Again, let us assume without loss of generality that ai > 0. The
restriction of Ŝn

p(b) can be selected as

Ŝ0
p(b) =

{
(x,y, t) ∈ Z+×R2

+ : [x−b]p++ yp ≤ t p}, (11)

but in this case let us choose a weaker initial valid inequality,
[
(1− f )(x−bbc)

]p
+
+yp ≤ t p.

The problem of computing Φ0(v) is then reduced to the problem of finding values of d such
that [

(1− f )x−bbc(1− f )+d
]
+
≤
[
x−b+ v

]
+
. (12)

Recall that we are only interested in a superadditive subset ϒ (v) of such set. One of the
possible choices is ϒ (v) =

{
d ≥ 0 : d ≤ [v− b + bbc(1− f )]+

}
. Indeed, 0 ∈ ϒ (v) by

definition, and (12) is a consequence of inequality (1− f )x−bbc(1− f )+ d ≤ x− b+ v,
which yields the above expression for ϒ (v). Lastly, the following proposition holds.
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Proposition 3.3 Conic inequality[
(1− f )(x−bbc)+

n

∑
i=1

αixi

]p

+
+ yp ≤ t p (13)

with αi =
[ai−b+ bbc(1− f )

M

]
+

is valid for Ŝn
p(b).

Proof Indeed, in accordance to Section 3.1 it suffices to show that for such a choice of αi
we have αix ∈ϒ (aix) for all x. For x 6= 0 we have

ϒ (aix) =
{

d ≥ 0 : d ≤ [aix−b+ bbc(1− f )]+
}
,

and

αix =
[

ai−b+ bbc(1− f )
M

]
+

x≤ [ai−b+ bbc(1− f )]+ ≤ [aix−b+ bbc(1− f )]+.

On the other hand, for x = 0 it is clear that 0 ∈ϒ (0). ut

3.4 Polyhedral Approximations of p-Order Cones

Observe that lifted cuts (10) and (13) for, respectively, 0-1 and mixed integer p-order cone
programming problems have the form of p-order cones themselves. Thus, one may expect
that while addition of such cuts can reduce the number of nodes explored in the branch-
and-bound tree, the computational cost of solving the relaxed problem with extra p-cone
constraints at the nodes may increase. In view of this, we propose to replace the nonlinear
p-order cone cuts (10) and (13) with their polyhedral approximations during the branch-and-
cut procedure. A detailed discussion of polyhedral approximations of p-order cones can be
found in [3].

Since in our case the lifted cuts have the form of 3-dimensional p-cones, we use a simple
gradient polyhedral approximation. Particularly, a gradient polyhedral approximation for the
conic set K

(3)
p = {ξ ∈ R3

+ : ξ3 ≥ ‖(ξ1,ξ2)‖p}, p ∈]1,∞[, can be constructed as

H
(3)

p,` =
{
ξ ∈ R3

+ : ξ3 ≥ α
(p)
i ξ1 +β

(p)
i ξ2, i = 0, . . . , `

}
, (14)

where [
α
(p)
i

β
(p)
i

]
= (cosp

θi + sinp
θi)

1−p
p

[
cosp−1 θi

sinp−1
θi

]
, θi =

πi
2`

, i = 0, . . . , `.

Here H
(3)

p,` is an approximation of K
(3)

p in the sense that ξ ∈K
(3)

p implies ξ ∈H
(3)

p,` , and

ξ∈H
(3)

p,` implies (1+ε)ξ3 ≥‖(ξ1,ξ2)‖p, where ε = ε(`) is the accuracy of approximation.
In the case of polyhedral approximation (14), the latter can be estimated as [16]

ε(`)≈


1
p

(
1− 1

p

)p(
π

2`

)p
, p ∈]1,2[,

1
8 (p−1)

(
π

2`

)2
, p ∈ [2,∞[.

For example, for p = 4.0 it suffices to have `= 25 facets in the approximation to ensure an
accuracy of 10−3.
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8 Alexander Vinel, Pavlo Krokhmal

4 Computational Results

In this section we report the results of numerical experiments on applying the derived MIR
and lifted conic cuts to MIpOCP problem instances. In our case study, three types of problem
instances were considered: the first type represents the “generic” MIpOCP instances with
randomly generated data, and the second and third types of instances represent portfolio
optimization problems with cardinality constraints and lot-buying constraints, respectively.
Historical financial data were used for both types of portfolio optimization problems. A
detailed description of each problem type is given below.

Computations were ran on a 3GHz PC with 4GB RAM, and CPLEX 12.2 solver was
used. Since CPLEX cannot natively handle p-cone constraints with p 6= 2, a second-order
cone reformulation [17–19] was applied to p-order cone constraints with rational p > 2.
The derived cuts were added at the root node of the branch-and-bound tree using CPLEX
callback routines. In addition, each instance was solved using the default mixed integer
CPLEX solver with built-in cuts. In both cases, default solver configuration was used, with
the exceptions that the number of threads was limited to one and QCP relaxations of the
model were used at each node.

4.1 Problem Formulations

Randomly generated MIpOCP problems The first set of problem instances consisted of ran-
domly generated mixed integer p-order cone programming problems of the general form.
Specifically, the following formulation was used:

min (c>x+ y++ y−)

s. t.
∥∥[Ax+ y+1− y−1−b]+

∥∥
p ≤ e>x+ f y+−gy−−h

x ∈ Zn
+, y+,y− ∈ R+,

(15)

where A ∈ Rn×m, c,b,e ∈ Rn, f ,g,h ∈ R, and 1 = (1, . . . ,1)>. Each of the parameters
A,b,c,e, f ,g,h in (15) was selected from the uniform U(1,1000) distribution.

Portfolio optimization with cardinality constraints. The second set of problem instances
consisted of portfolio optimization problems with cardinality constraints. Specifically, port-
folio risk as given by HMCR measure was minimized while requiring that the portfolio’s
expected return was not below some prescribed level r0. No short sales were allowed, and
the cardinality constraint ensured that the portfolio was comprised of no more than K assets:

min
y∈Rn

+, x∈{0,1}n

{
HMCRα,p(−r>y) : E(r>y)≥ r0, 1>y≤ 1, y≤ x, 1>x≤ K

}
, (16)

where vectors y and r = r(ω) represented the weights of assets in the portfolio and the as-
sets’ uncertain returns, respectively. Using definition (2) of HMCR measures and assuming
that the stochastic vector r(ω) is discretely distributed with m scenarios r(ωi), i = 1, . . . ,m,
the portfolio optimization problem (16) can be formulated as a 0-1 MIpOCP problem with
(m+ 1)-dimensional p-cone constraint. In our computations we set K = 5 and α = 0.9 in
(16).
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Portfolio optimization with lot-buying constraints. The last type of problems considered in
this case study represents portfolio optimization problems with lot-buying constraints. The
lot-buying constraints reflect the real-life trading policies of many financial markets (see,
e.g., [20–22] and references therein), where the investors are allowed to buy or sell shares of
financial instruments only in lots of standard size L, e.g., in multiples of L = 1,000 shares.
Following the same setup as above, a risk-minimizing portfolio allocation problem with
lot-buying constraints is formulated as

min
y∈Rn

+, x∈Zn
+

{
HMCRα,p(−r>y) : E(r>y)≥ r0, 1>y≤ 1, y =

L
C

Diag(p)x
}
. (17)

Here L∈N is the given lot size, C > 0 is the available capital (in dollars), vector p∈Rn
+ rep-

resents the current (observable) asset prices per share, and Diag(a) denotes a matrix whose
diagonal elements are equal to the corresponding elements of vector a, and off-diagonal ele-
ments are zero. Similarly to the above, portfolio problem (17) reduces to a MIpOCP problem
with (m+1)-dimensional p-cone constraint, where m is the number of scenarios in stochas-
tic representation of the vector of assets’ returns r. The values of parameters L and C in our
experiments were set at L = 1,000 and C = $100,000.

For portfolio optimization problems, we used historical data for n stocks chosen at ran-
dom from the S&P500 index, and returns over m consequent 10-day periods starting at a
(common) randomized date were used to construct the set of m scenarios for the stochastic
vector r in (16), (17).

4.2 Discussion of Results: Conic MIR Cuts

Randomly generated MIpOCP problems For each pair of parameters (n,m) that determine
the number of integer variables and the dimensionality of p-cone, 50 randomly generated
instances of problem (15) were solved. The results are summarized in Table 1, where the av-
erage computational time (in seconds), the average number of nodes explored in the search
tree, and the average number of cuts added during the solution procedure are reported. In
addition, we report the percentage of cases in which addition of conic MIR cuts improves
the computational time and the number of nodes explored, respectively, as compared to
the default CPLEX routines. It has also been noted that randomly generated problems are
relatively easy to solve; in fact, many instances were solved at the root node. Therefore,
in addition to the results averaged over all instances of a given problem size (n,m), Ta-
ble 1 presents the results averaged over “difficult” instances, i.e., instances that could not
be solved at the root node by CPLEX solver with default parameter settings. As one can
see, in most cases utilization of conic MIR cuts reduces the average solution time and the
number of nodes explored in the solution tree, with the improvement being more noticeable
for “difficult” instances and larger sizes of the problem. It is also worth noting that while
solution times vary for different values of the parameter p, the observed improvement due
to implementation of conic MIR cuts stays approximately the same.

Portfolio optimization with cardinality constraints. For each problem size we generated
30 problem instances. The obtained results are summarized in Table 2. We can again con-
clude that for the majority of the instances, introduction of conic MIR cuts leads to an
improved performance in comparison to the default CPLEX solution procedures, although
the improvement is considerably smaller comparing to that observed on randomly generated
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Table 1 Performance of conic MIR cuts for randomly generated MIpOCP problems. The “% better” column
represents the percentage of problem instances for which conic MIR cuts approach outperformed CPLEX
with default parameters in terms of solution time and number of nodes, respectively. “Difficult” instances
represent problem instances that cannot be solved at the root node.

p = 2.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 26.88 22.88 29.41% 58.22 43.77 61.11%
200 nodes 2.0 0.75 100.00% 5.67 2.11 100.0%

cuts 16.74 48.65 – 16.06 50.94 –
time 218.0 224.72 52.83% 356.27 369.85 67.86%

600 nodes 3.34 3.17 92.45% 6.32 6.0 85.71%
cuts 73.45 53.90 – 19.08 55.82 –
time 1117.45 856.59 45.61% 2045.46 1418.66 65.22%

1000 nodes 1.68 0.60 96.49% 4.17 1.48 91.30%
cuts 102.54 63.40 – 76.00 50.87 –

p = 3.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 12.60 11.10 37.25% 24.11 20.68 76.92%
200 nodes 0.88 0.31 100.00% 1.23 3.46 100.0%

cuts 11.71 49.65 – 11.38 50.94 –
time 189.76 71.90 51.92% 421.64 133.0 87.50%

600 nodes 6.92 2.13 100.00% 22.94 7.06 100.00%
cuts 18.92 54.58 – 15.37 48.26 –
time 910.04 560.12 66.67% 1741.93 974.53 61.90%

1000 nodes 1.53 0.35 98.25% 4.14 0.95 95.24%
cuts 32.81 63.40 – 22.0 50.87 –

p = 4.0
all instances “difficult” instances

n m default CPLEX conic MIR % better default CPLEX conic MIR % better

500

time 31.92 26.54 35.29% 62.04 48.06 52.17%
200 nodes 2.29 0.98 98.04% 5.09 2.17 95.65%

cuts 26.16 48.65 – 29.17 63.83 –
time 582.88 324.86 43.40% 875.88 471.92 55.88%

600 nodes 9.25 8.0 88.84% 14.41 12.47 82.36%
cuts 76.75 53.91 – 37.87 60.01 –

problems. Note also that a significantly smaller number of cuts were generated in problem
instances of this type; moreover, in many cases the default CPLEX optimizer did not add
any cuts to the problem.

Portfolio optimization with lot-buying constraints. The results averaged over 30 instances
for each problem size are summarized in Table 3. Note that in many instances of problems
of this type, no user cuts of the proposed structure have been found. It can also be noted that
regardless of the number of cuts found, solution times are rather comparable to those of the
default CPLEX optimizer, which may indicate that conic MIR cuts do not make a significant
difference in problems of this type.

4.3 Discussion of Results: Lifted Conic Cuts

Portfolio Optimization. For evaluation of the performance of lifted cuts derived in Section
3, we used both types of portfolio optimization problems, with parameters set up as de-
scribed above. As it has been already noted, each lifted nonlinear cut was replaced by its
outer gradient polyhedral approximation. Specifically, the approximation accuracy was set
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Table 2 Performance of conic MIR and lifted cuts in cardinality constrained portfolio optimization problems.
Entries in bold correspond to the minimum solution time for each row. Results are averaged over 30 instances
for each problem size.

p = 2.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
100 600 360.97 31.31 0.10 315.98 31.90 3.00 281.34 30.59 2.00

1000 787.16 31.15 0.00 772.44 77.90 3.00 595.66 30.77 2.00
1400 916.18 37.58 0.00 766.14 55.50 3.00 664.73 25.8 2.00

150 600 446.11 41.80 0.00 400.02 41.20 3.00 377.87 40.20 2.00
1000 1566.79 53.44 0.00 1436.57 53.20 3.00 1326.74 52.33 2.00
1400 2601.84 40.69 0.00 2343.03 38.83 3.00 2196.61 39.92 2.00

p = 3.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
100 600 813.62 47.93 0.00 537.14 45.63 3.00 610.98 45.35 2.00

1000 1449.75 49.78 0.00 1216.24 49.90 3.00 1213.02 49.67 2.00
1400 1671.64 36.38 0.00 1518.44 59.87 3.00 1428.81 40.2 2.00

150 600 488.07 41.40 0.20 415.92 40.67 3.00 354.40 39.80 2.00
1000 2877.30 80.81 0.05 2661.90 83.87 3.00 2514.82 86.71 2.00
1400 4307.80 70.72 0.11 4006.54 70.43 3.00 3739.91 69.89 2.00

p = 4.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
100 600 1234.58 47.08 0.10 1186.99 45.83 3.00 1062.46 45.58 2.00

1000 2368.82 45.05 0.00 2204.83 48.20 3.00 2062.06 47.87 2.00
1400 3243.04 33.49 0.00 2630.18 34.40 3.00 2552.70 31.48 2.00

150 600 435.52 34.50 0.17 371.95 58.65 3.00 340.62 33.33 2.00
1000 5913.61 94.71 0.00 5451.90 47.95 3.00 5168.28 97.57 2.00
1400 6442.82 62.50 0.05 6087.91 31.30 3.00 5286.47 62.85 2.00

at 10−3. Since in this case each cut results in multiple additional linear constraints, we re-
stricted the number of lifted cuts to be added at the root node to two. The results obtained
for portfolio optimization problems with cardinality constraints (16) and lot-buying con-
straints (17), each averaged over 30 problem instances, are summarized in Tables 2 and 3,
respectively. We observed similar improvements in computational time for both types of
problems. Also, it has been observed that utilization of lifted cuts in portfolio optimization
with lot-buying constraints does not generally lead to a reduction in the number of nodes
explored in the solution tree. Thus, based on this observation and results of the experiments
of the previous section, we can suggest that the observed improvement is probably partially
due to considerably less time spent while looking for cuts. In contrast, in portfolio problems
with cardinality constraints we observe reductions in both the number of nodes and solution
times due to utilization of lifted cuts.

5 Concluding Remarks

The recent progress in solving mixed integer programming problems can partially be at-
tributed to the advances in utilization of valid inequalities for integer and mixed integer sets.
Mixed integer cuts allow for tightening of the bounds given by the continuous relaxation of
the problem during the branch-and-cut procedure and, as a result, can lead to reductions in
the number of nodes explored in the branch-and-bound tree and in the overall computational
time. Typically, valid inequalities exploit specific structure of the feasible set of the problem.

This paper presents two families of valid inequalities for mixed integer p-order program-
ming problems that arise in risk-averse stochastic optimization with downside risk measures.
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Table 3 Performance of conic MIR and lifted cuts in portfolio optimization problems with lot-buying con-
straints. Entries in bold correspond to the minimum solution time for each row. Results are averaged over 30
instances for each problem size.

p = 2.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 9.09 4.13 1.50 9.59 5.10 0.00 8.03 5.31 2.00

600 45.53 4.67 2.61 40.08 5.57 0.13 32.98 6.17 2.00
1000 117.78 11.47 2.37 111.44 13.97 0.33 102.81 14.74 2.00

20 200 42.49 20.79 3.64 37.17 23.13 0.40 32.00 25.36 2.00
600 103.28 12.80 5.00 101.67 16.93 0.13 94.96 20.16 2.00
1000 188.04 13.63 3.19 177.53 13.83 1.10 168.88 13.63 2.00

50 200 54.50 42.94 4.38 51.21 45.40 0.50 46.55 47.44 2.00
600 307.66 33.19 6.19 286.28 41.27 1.50 268.13 46.75 2.00
1000 640.82 49.71 3.71 635.54 62.03 0.00 664.29 69.35 2.00

p = 3.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 18.56 4.79 3.57 17.33 7.73 0.03 15.50 9.50 2.00

600 49.60 8.33 2.22 42.32 9.73 0.03 34.46 10.39 2.00
1000 96.15 10.19 2.38 94.93 12.97 0.03 90.25 15.38 2.00

20 200 34.05 9.06 3.11 27.11 10.97 1.10 21.23 12.00 2.00
600 96.98 9.51 4.22 79.78 12.00 1.10 66.74 13.84 2.00
1000 130.59 4.53 4.35 134.93 4.67 1.23 141.49 4.53 2.00

50 200 78.29 30.55 5.10 70.07 35.93 0.03 57.25 39.95 2.00
600 316.89 37.39 5.33 275.04 38.17 0.03 210.81 37.67 2.00
1000 540.25 22.58 5.37 500.46 36.87 1.00 459.55 47.74 2.00

p = 4.0
default CPLEX conic MIR cuts lifted conic cuts

n m time nodes cuts time nodes cuts time nodes cuts
10 200 23.29 6.29 2.29 17.93 6.13 2.00 13.58 5.71 2.00

600 44.50 3.57 2.21 41.56 3.93 7.03 37.73 4.21 2.00
1000 122.08 8.00 2.29 123.10 10.13 25.03 125.04 12.71 2.00

20 200 49.11 7.93 4.07 43.88 16.07 0.13 40.19 20.40 2.00
600 110.42 16.47 3.31 101.32 18.00 12.50 89.95 18.24 2.00
1000 315.87 10.89 4.94 279.44 11.10 34.23 256.45 10.89 2.00

50 200 127.20 43.78 5.17 118.54 46.67 0.46 112.06 48.06 2.00
600 416.48 36.76 4.68 344.87 33.93 21.40 294.47 29.32 2.00
1000 993.53 44.50 5.71 825.43 46.20 33.17 682.21 56.59 2.00

Particularly, we developed mixed integer rounding cuts and nonlinear lifted cuts for mixed
integer p-order conic sets, extending the corresponding results for mixed integer second or-
der programming problems [7,8]. Computational studies on randomly generated problems
as well as discrete portfolio optimization problems with historical data demonstrate that both
conic MIR cuts and lifted conic cuts lead to improved solution times.

In general, nonlinear cuts are not yet as prevalent as linear ones, partly due to the fact
that additional nonlinear inequalities in the bounding (relaxed) problem tend to have deterio-
rating effect on the computational time of branch-and-bound procedure. In order to improve
the computational tractability of the derived nonlinear lifted cuts within the branch-and-cut
framework, we proposed replacing them with their polyhedral approximations; since the
nonlinear lifted cuts constitute low-dimensional p-cones, the corresponding polyhedral ap-
proximations are relatively inexpensive. In this respect, our computational results are among
the first successful applications of nonlinear cuts in nonlinear mixed integer programming
problems.
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A A Direct Derivation of Conic Mixed Integer Rounding Cuts for Mixed Integer
p-Order Cone Programming Problems

Following [7], let us first consider a simple case of the following set

T =
{
(y,w, t,x) ∈ R3

+×Z : [x+ y−w−b]+ ≤ t
}
.

Let us denote by relax(T ) the continuous relaxation of T and by conv(T ) its convex hull. It can be seen that the
extreme rays of relax(T ) are as follows: (1,0,0,1), (−1,0,0,0), (1,0,1,0), (−1,1,0,0), and its only extreme
point is (b,0,0,0). Let us also denote f = b−bbc. Clearly, the case of f = 0 is not interesting, hence it can be
assumed that f > 0, whereby conv(T ) has four extreme points: (bbc,0,0,0), (bbc, f ,0,0), (dbe,0,1− f ,0),
(dbe,0,0,1− f ). With these observations in mind we can formulate the following proposition.

Proposition A.1 Inequality
(1− f )(x−bbc)≤ t +w (18)

is valid for T and cuts off all points in relax(T )\ conv(T ).

Proof First, let us show the validity of (18). The base inequality for T is

[x+ y−w−b]+ ≤ t. (19)

Now, let x = bbc − α and α ≥ 0. In this case, (19) turns into t ≥ [y− w− f − α]+ and (18) becomes
t ≥−(1− f )α−w. Observing that [y−w− f−α]+−(−(1− f )α−w)=max{y− f−α f ,(1− f )α+w}≥ 0,
one obtains that (19) implies (18) for x≤ bbc.

On the other hand, if x = dbe+α with α ≥ 0, then (19) becomes t ≥ [y−w+(1− f )+α]+ and (18)
turns into t ≥ (1− f )(1+α)−w. Similarly to above,

[y−w+(1− f )+α]+− ((1− f )(1+α)−w)

= max{y−w+(1− f )+α− (1− f )−α(1− f )+w,w− (1− f )(1+α)}
= max{y+α f ,w− (1− f )(1+α)} ≥ 0,

which means that (19) implies (18) for x≥ dbe. Hence, (18) is valid for T .
To prove the remaining part of the proposition, consider the polyhedron T́ defined by the inequalities

x+ y−w−b≤ t, (20)

0≤ t, (21)

0≤ y, (22)

0≤ w, (23)

(1− f )(x−bbc)≤ t +w. (24)

Since T́ has four variables, the basic solutions of T́ are defined by four of these inegualities at equality. They
are:

– Inequalities (20), (21), (22), (23): (x,y,w, t) = (b,0,0,0) is infeasible if f 6= 0.
– Inequalities (20), (21), (22), (24): (x,y,w, t) = (dbe,0,1− f ,0).
– Inequalities (20), (21), (23), (24): (x,y,w, t) = (bbc, f ,0,0).
– Inequalities (20), (22), (22), (24): (x,y,w, t) = (dbe,0,0,1− f ).
– Inequalities (21), (23), (22), (24): (x,y,w, t) = (bbc,0,0,0).

Hence, conv(T ) has exactly the same extreme points as T́ , which completes the proof. ut

In the general case, let

T̂ =
{
(y+,y−, t,x) ∈ R3

+×Zn
+ : [a>x+ y+− y−−b]+ ≤ t

}
, (25)

and consider the following function

φ f (a) =
{
(1− f )n, n≤ a < n+ f
(1− f )n+(a−n)− f , n+ f ≤ a < n+1.
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Proposition A.2 For α 6= 0 the following inequality

n

∑
j=1

φ f|α|

( a j

|α|

)
x j−φ f|α|

( b
|α|

)
≤ t + y−

|α|
, (26)

where f|α| =
b
|α| −b

b
|α| c, is valid for T̂ .

Proof First consider the case α = 1. We can rewrite the base inequality for (25) as[(
∑

f j≤ f
ba jcx j + ∑

f j> f
da jex j

)
+
(

∑
f j≤ f

f jx j + y+
)
−
(

∑
f j> f

(1− f j)x j + y−
)
−b
]
+
≤ t,

where f j = a j−ba jc. Observe that

x́ = ∑
f j≤ f
ba jcx j + ∑

f j> f
da jex j ∈ Z, ý = ∑

f j≤ f
f jx j + y+ ≥ 0, ẃ = ∑

f j> f
(1− f j)x j + y− ≥ 0.

Hence, we can apply simple conic MIR inequality (18) with variables (x́, ý, ẃ, t):

(1− f )
(

∑
f j≤ f
ba jcx j + ∑

f j> f
da jex j−bbc

)
≤ t + ∑

f j> f
(1− f j)x j + y−.

Rewriting it with the help of function φ f (a), we obtain that

n

∑
j=1

φ f (a j)x j−φ f (b)≤ t + y−.

So, by Proposition A.1 inequality (26) is valid for α = 1. In order to see that the result holds for all α 6= 0 we
only need to scale the base inequality:

[ 1
|α|

(a>x+ y+− y−−b)
]
+
≤ t
|α|

.

ut

Proposition A.3 Inequalities (26) with α = a j , j = 1, . . . ,n are sufficient to cut off all fractional extreme
points of relax(T̂ ).

Proof The set relax(T̂ ) is defined by n+3 variables and n+4 constraints. Therefore, if x j > 0 in an extreme
point, then the remaining n+ 3 constraints must be active. Thus, the continuous relaxation has at most n
fractional extreme points (x j,0,0,0) of the form x j

j =
b
a j

> 0, and x j
i = 0, for i 6= j. Such points are infeasible

if b
a j

/∈ Z. Now, let a j > 0. For such a fractional extreme point inequality (26) reduces to

φ fa j
(1)x j−φ fa j

( b
a j

)
≤ t + y−

a j
, or (1− fa j )x j− (1− fa j )

⌊ b
a j

⌋
≤ t + y−

a j
,

which by Proposition A.1 cuts off fractional extreme point with x j
j =

b
a j

.

Now, let us consider a j < 0. In this case we observe that the inequality (26) reduces to

φ f|a j |
(−1)x j−φ f|a j |

( b
|a j|

)
≤ t + y−

|a j|
, or − (1− f|a j |)x j− (1− f|a j |)

⌊ b
|a j|

⌋
≤ t + y−

|a j|
,

which again, cuts off fractional extreme point with x j
j =

b
a j

. ut
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On risk-averse weighted k-club problems
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Abstract. In this work, we consider a risk-averse maximum weighted k-club prob-
lems. It is assumed that vertices of the graph have stochastic weights whose joint
distribution is known. The goal is to find the k-club of minimum risk contained in
the graph. A stochastic programming framework that is based on the formalism of
coherent risk measures is used to find the corresponding subgraphs. The selected
representation of risk of a subgraph ensures that the optimal solutions are maximal
k-clubs. A combinatorial branch-and-bound solution algorithm is proposed and so-
lution performances are compared with an equivalent mathematical programming
counterpart problem for instances with k = 2.

Keywords. k-club, clique relaxation, risk-averse subgraph problem, stochastic
weights, coherent risk measures.

1. Introduction

A principal class of graph theoretical problems involves the identification of embodied
subgraphs corresponding to some structural property. One particular setting of funda-
mental importance entails finding the largest “perfectly” cohesive group within a net-
work such that the confined members are all interconnected, i.e., the largest clique (com-
plete subgraph). Several prominent studies founded the basis for exact combinatorial so-
lution algorithms for the maximum clique problem [1, 2, 3]. In particular, Carraghan and
Pardalos [2] introduced a recursive branch-and-bound method for efficient finding maxi-
mum cliques by exploiting the heredity property [4] of complete subgraphs. Subsequent
extensions of their work enhanced the process of eliminating solution space via vertex
coloring schemes for branching and upper-bounds estimation on the maximal achievable
subgraph sizes during the algorithmic processing (e.g. [5, 6, 7]). In many practical ap-
plications, the requirement that the desired subgraph must be complete may, however,
impose excessive restrictions, and warrant some structural relaxation in terms of member
connectivity. As a consequence, several clique relaxation models have been proposed in
graph theory literature. A comprehensive review on clique relaxation models is provided

1Corresponding Author, E-mail: krokhmal@engineering.uiowa.edu.
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in [4]. In this work we focus on a specific model, the k-club [8], where subgraph members
may also be indirectly connected via at most k intermediary members.

A popular extension of the described above class of problems involves the impo-
sition topologically exogenous information in the form of deterministic vertex weights,
and correspondingly finding a subset of maximum weight that conforms to a defined
structural property. Similar exact weight-based branch-and-bound solution techniques
have been developed for determining the maximum-weight subgraphs [9, 10, 11].

Particular circumstances may further justify the imposition of uncertain exogenous
information over the graph’s edges that influences network flow distribution, robustness,
and costs [12, 13, 14, 15, 16, 17]. However, far fewer endeavors concern decision mak-
ing regarding optimal resource allocation over defined subgraph topologies when uncer-
tainties are induced by stochastic factors associated with network vertices. In this study,
we adopt this setting and extend the techniques introduced in [18] to address problems
seeking subgraphs of minimum risk that represent a k-club. A statistical framework uti-
lizing the distributional information of stochastic vertex weights by means of coherent
risk measures [19, 20] is employed to define a risk-averse maximum weighted k-club (R-
MWK) problem as finding the lowest risk k-club in a network. As an illustrative example,
we focus on instances when k = 2 and utilize a mathematical programming formulation
for the maximum 2-club problem introduced in [21]. A branch-and-bound method for
finding maximum k-clubs [22] is modified to accommodate the conditions of R-MWK
problems by bounding solutions in a coherent risk measure context. We compare the
solution performance of the proposed algorithm relative to an equivalent mathematical
programming counterpart problem for R-MWK problems when k = 2.

The remainder of the paper is organized as follows. In Section 2 we examine the
general representation of R-MWK problems and consider their properties. Section 3
presents a mathematical programming formulation and a combinatorial branch-and-
bound method for R-MWK problems with k = 2. Finally, Section 4 furnishes numeri-
cal studies demonstrating the computational performance of the developed branch-and-
bound method on problems where risk is quantified using higher-moment coherent risk
measures [23].

2. Risk-averse stochastic maximum k-club problem

Given an undirected graph G = (V,E) and any subset of its vertices S ⊆ V , let G[S]
represent the subgraph of G induced by S such that any pair of vertices (i, j) share an
edge in S only if (i, j) is an edge in G. To ease notation, define Q as a desired property
which the induced graph G[S] must satisfy. The present work considers the case when Q
represents a certain relaxation of the completeness property, such that a subgraph with
property Q represents a clique relaxation.

Depending on the characteristic of a complete graph that is relaxed, the clique relax-
ations can be categorized into density-based, degree-based, and diameter-based relax-
ations. The density of a graph G = (V,E) is defined as a ratio D(G) = |E|/

(|V |
2

)
, where

the denominator represents the number of edges in a complete graph with |V | vertices.
Evidently, a complete graph (clique) has a density of 1. Then, for a fixed γ ∈ (0,1), graph
G is called a γ-quasi-clique [24], if its density is at least γ:
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D(G)≥ γ, or, equivalently, |E| ≥ γ

(
|V |
2

)
.

The γ-quasi-clique is, therefore, a density-based relaxation of the clique concept, and as
such is different from the k-clique, which is one of the diameter-based clique relaxations.
Namely, let dG(i, j) be the distance between nodes i, j ∈ V , measured as the number of
edges in the shortest path between i and j in G. Then, the subgraph G[S] induced by a
subset of nodes S⊂V of the graph G is called a k-clique if

max
i, j∈S

dG(i, j) = k.

Note that the definition of the k-clique does not require that the shortest path between
i, j ∈ S belong to G[S]. If one requires that the shortest path between any two vertices i, j
in S belong to the induced subgraph G[S], then the subset S such that

max
i, j∈S

dG[S](i, j) = k, (1)

is called a k-club. Note that a k-club is also a k-clique, while the inverse is not true in
general. The shortest path connecting two vertices in a clique is 1, thus 1-clique and 1-
club are cliques. For a vertex i∈V , its degree degG(i) is defined as the number of adjacent
vertices: degG(i) = |{ j ∈ V : (i, j) ∈ E}|. A degree-based clique relaxation, known as
k-plex, is defined as a subset S of V such that the degree of each vertex in the induced
subgraph G[S] is at least |S|− k [25]:

degG[S](i)≥ |S|− k for all i ∈ S,

(observe that the degree of each vertex in a clique of size n is equal to n−1).
The present work considers the case when Q represents a distance-based relaxation

of the clique model in the sense of k-club definition (1) when k ≥ 2. Throughout the
remainder of this study we let property QG[S] define a k-club as

QG[S] = {S⊆V | ∀i, j ∈ S : dG[S](i, j)≤ k}. (2)

A popular instance of graph-theoretic problems arises when seeking a subgraph S
with the maximum additive vertex weights, wi > 0, that satisfies property QG[S]. When
QG[S] is defined by (2) a maximum weight k-club problem can take the form

max
S⊆V

{
∑
i∈S

wi : G[S] satisfies QG[S]

}
. (3)

Clearly, the optimal subgraph G[S] in problem (3) will be maximal, but not necessarily
the maximum (of the largest order) subgraph with property QG[S].

In this work, we consider an extension of problem (3) that assumes stochastic vertex
weights. In this case, a direct translation into a stochastic framework is not trivial due
to the fact that the maximization of random weights would be ill-posed in context of
stochastic programming resulting from the absence of a deterministic optimal solution.
Likewise, maximization of the expected weight of the sought subgraph is not interesting
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in the sense that it reduces to the deterministic version of the problem presented above. A
more suitable approach, thus, involves computing the subgraph’s weight via a statistical
functional that utilizes the distributional information about the weights’ uncertainties,
rather than as a simple sum of its (random) weights. To this end, we pursue a risk-averse
approach so as to find the subgraph of G that has the lowest risk and satisfies the property
Q. Let Xi denote random variables that represent costs of losses associated with vertices
i∈V , such that the joint distribution of vector XG = (X1, . . . ,X|V |) is known. The problem
of finding the minimum-risk subgraph in G with property Q, or the risk-averse maximum
weighted Q problem take the form:

min
S⊆V

{
R(S;XG) : G[S] satisfies Q

}
, (4)

where R(S;XG) is the risk of the induced subgraph G[S] given the distributional infor-
mation XG.

A formal representation of risk R(S;XG) is invoked via the well-known concept of
risk measure in stochastic optimization literature [26]. Namely, given a probability space
(Ω,F ,P), where Ω is the set of random events, F is the σ -algebra, and P is a probability
measure, a risk measure is defined as a mapping ρ : X 7→ R, where X is a linear space
of F -measurable functions X : Ω 7→ R. Further, assuming that risk measure ρ is lower
semi-continuous (l.s.c.), the risk R(S;XG) of subgraph of G[S] with uncertain vertex
weights Xi can be defined as an optimal value of the following stochastic programming
problem:

R(S;XG) = min
{

ρ

(
∑
i∈S

uiXi

)
: ∑

i∈S
ui = 1, ui ≥ 0, i ∈ S

}
. (5)

Notice that this definition of the subgraph risk function R(·) admits risk reduction
through diversification as illustrated by the following proposition:

Proposition 1 ([18]) Given a graph G = (V,E) with stochastic weights Xi, i ∈V , and a
l.s.c. risk measure ρ , the subgraph risk function R defined by (5) satisfies

R(S2;XG)≤R(S1;XG) for all S1 ⊆ S2. (6)

The following observation regarding the optimal solution of the risk-averse maxi-
mum weighted Q problem (4) stems directly from property (6):

Corollary 1 There exists an optimal solution of the risk-averse maximum weighted Q
problem (4) with R(S;XG) defined by (5) that is a maximal Q-subgraph in G.

Additional properties of R(S;XG) ensue from the assumption that risk measure ρ

belongs to the family of coherent measures of risk. Namely, the definition of ρ is aug-
mented with the properties of monotonicity, subadditivity, transitional invariance, and
positive homogeneity (see [19]). Assuming that risk measure ρ in (5) is coherent, or sat-
isfies the first three properties and is l.s.c, then the corresponding subgraph risk func-
tion R(S;XG) satisfies analogous properties with respect to the stochastic weights vector
XG,
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(G1) monotonicity: R(S;XG)≤R(S;YG) for all XG ≤ YG;
(G2) positive homogeneity: R(S;λXG) = λR(S;XG) for all XG and λ > 0;
(G3) transitional invariance: R(S;XG +a1) = R(S;XG)+a for all a ∈ R;

where 1 is the vector of ones, and the vector inequality XG ≤ YG is interpreted
component-wise.

Observe that R(S;XG) violates the sub-additivity requirements with respect to the
stochastic weights. However, risk reduction via diversification is guaranteed by (6),
which ensures that the inclusion of additional vertices to the existing feasible solution
is always beneficial. Further, under an assumption of non-negative stochastic vertex
weights, XG ≥ 0, the subgraph risk R(S;XG) can be shown to be subadditive in relative
to induced subgraphs in G,

R(S1∪S2;XG)≤R(S1;XG)+R(S2;XG), S1,S2 ⊆V. (7)

Clearly, it is required that S1, S2, and S1 ∪ S2 satisfy property Q in conformance to the
context of risk-averse maximum weighted Q problems.

3. Solution approaches for risk-averse maximum weighted 2-club problems

In this section we consider a mathematical programming formulation for the R-MWK
problem when k = 2, and where the risk R(S) of induced subgraph G[S] is defined by
(5). Also, we propose a combinatorial branch-and-bound algorithm utilizing the solu-
tion space processing principals for finding maximum k-clubs introduced by Pajouh and
Balasundaram [22].

3.1. A mathematical programming formulation

Let binary decision variables xi indicate whether node i ∈V belongs to a subset S:

xi =

{
1, i ∈ S such that G[S] satisfies Q

0, otherwise.

When the property Q denotes a 2-club, one can choose the edge formulation of the max-
imum 2-club problem proposed by Balasundaram et al. [21], whereby the mathematical
programming formulation of the R-MWK problem with k = 2 takes the form

min ρ

(
∑
i∈V

ui Xi

)
s. t. ∑

i∈V
ui = 1,

ui ≤ xi, i ∈V,

xi + x j− ∑
l∈N ∩(i, j)

xl ≤ 1, (i, j) ∈ E,

xi ∈ {0,1}, ui ≥ 0, i ∈V,

(8)
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where E represents the complement edges of graph G, and N ∩(i, j) denotes the vertices
that are both adjacent to vertex i and vertex j. Appropriate (nonlinear) mixed integer
programming solvers can be used to solve formulation (8) with risk measures ρ whose
representations admits some form of mathematical programming problems. A combina-
torial branch-and-bound algorithm for solving R-MWK problems is described next.

3.2. A combinatorial branch-and-bound algorithm

The following branch-and-bound (BnB) algorithm for solving R-MWK problems entails
efficient processing of solution space by traversing “levels” of the BnB tree until a sub-
graph G[S] that represents a maximal 2-club of minimum risk in G as measured by (5)
is found. The algorithm begins at level ` = 0 with a partial solution Q := /0, incumbent
solution Q∗ := /0, and an upper bound on risk L∗ := +∞ (risk induced by Q∗), where
Q consists of the vertices of the induced subgraph with property Q, and Q∗ contains
vertices corresponding to a maximal Q-subgraph whose risk equals L∗ in G. A set of
“candidate” vertices C` is maintained at each level `, from which a certain branching
vertex q is selected and added to the partial solution Q, or simply deleted from set C`

without being added to Q. In order to ensure that the proper vertices are removed from Q
when the algorithm backtracks between levels of the BnB tree, we introduce set F := /0
to account for the levels at which nodes were created to delete a vertex q from C`.

Due to the distance-based properties of k-clubs, considerations are warranted upon
transferring or deleting a vertex q from candidate set C`, as the structural integrity of
corresponding to the graph induced by Q and the candidate set at the subsequent level
∪C`+1 may be affected. Thus, the removal of q from C` to add to Q, and the deletion of q
from C` without adding it to Q are considered independently via the construction of two
BnB tree nodes for any given current node at level `. The first node is created to include
q in Q, while the other to delete q from C`. The necessary structural properties of Q and
C`+1 at each node are described next.

Consider a k-clique in graph G as a subset S that satisfies

{S⊆V | ∀i, j ∈ S : dG(i, j)≤ k},

and observe that any k-club in G also satisfies the properties of a k-clique, while a k-
clique is not necessarily a k-club for k ≥ 2. Further, both reduces to a complete graph
in the case of k = 1. By this notion, an incumbent solution Q∗ defines a k-club if the
following conditions are maintained for all graphs G[Q∪C`+1]:

(C1) Q is a k-clique in G[Q∪C`+1]
(C2) dG[Q∪C`+1](i, j)≤ k, ∀i ∈ Q, ∀ j ∈C`+1

The algorithm is then initialized with C0 :=V . Whenever a vertex q is selected from
C` and added to Q, the candidate set at level `+ 1 must be accordingly constructed by
removing all vertices from C` whose distances to vertex in q are larger than k,

C`+1 := { j ∈C` : dG[Q∪C`](q, j)≤ k}.

In situations when the deleted vertices serve as intermediaries, their removal from C`

may, however, impose pairwise distance violations among the vertices in Q∪q with re-
spect to condition (C2). In other words, after removing vertex q from C`, the distance
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between a pair of vertices (i, j) ∈Q follows dG[Q∪C`+1](i, j)> k. In such cases, the corre-
sponding node of the BnB tree is fathomed and the algorithm backtracks to level `. If a
BnB tree node is created to delete vertex q, the candidate set C`+1 is likewise constructed
by eliminating vertices that violate (C2). If the removal of vertices from the candidate
sets in either of the above cases results in a violation of (C1), then the corresponding
BnB node is fathomed.

The subsequent step entails evaluating the quality of the solution that can be obtained
from the subgraph induced by vertices in Q∪C`+1. An exact approach of directly finding
the 2-club with the lowest possible risk that is contained in G[Q∪C`+1] would involve
solving problems (8) where xi = 0, i ∈ V \ (Q∪C`+1). However, solving a mixed 0–
1 problem at every node of the BnB tree is impractical, and a lower bound problem is
obtained by eliminating variables xi, i ∈V , and the graph structural constraints,

R(Q∪C`+1;XG)≥L (Q∪C`+1) := min ρ

(
∑
i∈V

ui Xi

)
s. t. ∑

i∈V
ui = 1

ui = 0, i ∈V \ (Q∪C`+1)

ui ≥ 0, i ∈ Q∪C`+1.

(9)

This notion admits the assumption that G[Q∪C`+1] is a 2-club, under which all the
mentioned graph structural constraints would be satisfies and thus vanish. Therefore, by
virtue of Proposition 1, the solution to (9) provides a lower bound on the risk achievable
by any 2-club contained in the graph induced via the union of vertices in Q and any
subset of vertices in C`+1. As a result, the risk at any subsequent level `′ along the current
branch of the BnB tree cannot deteriorate as the set Q∪C`′+1 is refined.

The computed values of L (Q∪C`+n) determine whether the algorithm branches
further or prunes/backtracks. If L (Q∪C`+n)≥ L∗, then the corresponding branch of the
BnB tree is fathomed due to the fact that sequential refinement can not achieve a further
reduction in risk. If C` 6= /0, another branching vertex is selected and either removed from
C` and added to Q, or deleted from C`. Alternatively, if C` = /0, the algorithm backtracks
to level `−1.

In the case when L (Q∪C`+1) < L∗ and C`+1 6= /0, the a branching vertex q is
selected at the next level `+1. In the case of L (Q∪C`+1)< L∗ and C`+1 = /0, the G[Q]

represents a maximal 2-club in G and is assigned as the new incumbent solution, Q∗ :=Q,
and the global upper bound on risk is updated L∗ := L (Q∪C`+1). The algorithm then
backtracks to level `−1.

Empirical experimental observations suggest that branching on a vertex q with the
smallest value of ρ(Xq) or EXq can significantly enhance computational performance. To
this end, the vertices in any candidate set C` are ordered in descending order with respect
to their risks ρ(Xi) or expected values EXi, and the last vertex in C` is always selected
for branching.

The described branch-and-bound algorithm procedure for R-MWK problems is for-
malized in Algorithm 1. Notice that it is applicable to any positive integer value k.
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Algorithm 1 Graph-based branch-and-bound method for problem (8)

1. Initialize: ` := 0; C0 :=V ;Q := /0; Q∗ := /0; L∗ := ∞;F := /0;
2. While (not STOP) do
3. if C` 6= /0 then
4. select a vertex q ∈C`;
5. C` :=C` \q;
6. Q := Q∪q;
7. C`+1 := {i ∈C` : dG[Q∪C`]

(q, i)≤ k ∀i ∈C`};
8. if Q is a k-clique in G[Q∪C`+1] then
9. solve L (Q∪C`+1);
10. if L (Q∪C`+1)< L∗ then
11. if C`+1 6= /0 then
12. ` := `+1;
13. else
14. Q∗ := Q;
15. L∗ := L (Q∪C`+1);
16. Q := Q\q;
17. if ` /∈ F then
18. Q := Q\q
19. C`+1 := { j ∈C` : dG[Q∪C`]

(i, j)≤ k, ∀i ∈ Q,};
20. if C`+1 6= /0 then
21. if Q is a k-clique in G[Q∪C`+1] then
22. F := F ∪ `;
23. go to step 9;
24. else
25. go to step 3;
26. else
27. F := F \ `;
28. else
29. if ` /∈ F then
30. Q := Q\q;
31. else
32. F := F \ `;
33. else
34. Q := Q\q;
35. C`+1 := { j ∈C` : dG[Q∪C`]

(i, j)≤ k, ∀i ∈ Q,};
36. if Q is a k-clique in G[Q∪C`+1] then
37. F := F ∪ l;
38. go to step 9;
39. else
40. go to step 3;
41. else
42. ` := `−1;
43. if `=−1 then
44. STOP
45. if ` /∈ F then
46. Q := Q\q;
47. else
48. F := F \ l;
49. return Q∗

4. Case study: Risk-averse maximum weighted 2-club problem with higher
moment coherent risk measures

In this section we present a computational framework for problem (8) and conduct nu-
merical experiments demonstrating the computational performance enhancements as-
sociated with the proposed BnB algorithm. We adopt higher-moment coherent risk
(HMCR) measure class that was introduced in [23] as optimal values to the following
stochastic programming problem:

HMCRα,p(X) = min
η∈R

η +(1−α)−1∥∥(X−η)+
∥∥

p, α ∈ (0,1), p≥ 1, (10)
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where X+ = max{0,X} and ‖X‖p =
(
E|X |p

)1/p. Mathematical programming problems
that contain HMCR measures can be formulated using p-order cone constraints. Typi-
cally, in stochastic programming models, the set of random events Ω is assumed to be
discrete, Ω= {ω1, . . . ,ωN}, with the probabilities P(ωk) = πk > 0, and π1+ · · ·+πN = 1.
The corresponding mathematical programming model (8) with ρ(X) = HMCRp,α(X)
takes the following mixed integer p-order cone programming form:

min η +(1−α)−1t

s. t. t ≥ ‖(y1, . . . ,yN)‖p,

π
−1/p
k yk ≥ ∑

i∈V
uiXik−η , k = 1, . . . ,N,

∑
i∈V

ui = 1,

ui ≤ xi, i ∈V,

xi + x j− ∑
l∈N ∩(i, j)

xl ≤ 1, (i, j) ∈ E,

xi ∈ {0,1}, ui ≥ 0, i ∈V ; yk ≥ 0, k = 1, . . . ,N,

(11)

where Xik represents the realization of the stochastic weight of vertex i∈V under scenario
k ∈N . Analogously, the lower bound problem (9) takes the form

L (Q∪C`+1) = min η +(1−α)−1t

s. t. t ≥ ‖y1, . . . ,yN‖p,

π
−1/p
k yk ≥ ∑

i∈V
uiXik−η , k = 1, . . . ,N,

∑
i∈V

ui = 1,

ui ≥ 0, i ∈ Q∪C`+1,

ui = 0, i ∈V \ (Q∪C`+1),

yk ≥ 0, k = 1, . . . ,N.

(12)

For instances when p= 1 or 2, problems (11) and (12) reduce to linear programming (LP)
and second order cone programming (SOCP) models, respectively. However, in cases
when when p∈ (1,2)∪(2,∞) the p-cone is not self-dual and there exist no efficient long-
step self-dual interior point solution methods. Consequently, we employ the methods
for representing p-order cones into a higher dimensional space [27] that are based on
polyhedral approximations of p-order cones and representation of rational-order p-cones
via second order cones.

4.1. Setup of the numerical experiments and results

Numerical experiments of the risk-averse maximum weighted 2-club problem were con-
ducted on randomly generated Erdös-Rényi graphs of orders |V | = 25,50,100 with av-
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erage densities d = 0.0125,0.025,0.05,0.1,0.15. The specified edge probabilities were
chosen due to empirical observations indicating that a graph of order |V | ≥ 50 commonly
reduces to a 2-club when the density is in the range [0.15,0.25]. The stochastic weights
of graphs’ vertices were generated as i.i.d. samples from the uniform U(0,1) distribu-
tion. Scenario sets with N = 100 were generated for each combination of graph order
and density. The HMCR risk measure (10) with p = 1,2,3, and α = 0.9 was used.

The BnB algorithm has been coded in C++, and we used the CPLEX Simplex and
Barrier solvers for the polyhedral approximations and SOCP reformulations of the p-
order cone programming lower bound problem (12), respectively (see [27]). For in-
stances when p = 1, the CPLEX Simplex solver was utilized to solve problem (12) di-
rectly. The computations were conducted on an Intel Xeon 3.30GHz PC with 128GB
RAM, and the CPLEX 12.5 solver in Windows 7 64-bit environment was used.

The computational performance of the mathematical programming model (11) was
compared with that of developed BnB algorithm. In the case of p = 1, problem (11) was
solved with CPLEX MIP solver. The CPLEX MIP Barrier solver was used for the SOCP
version in the case of p = 2, and using the SOCP reformulation in the case of p = 3.

Table 1 presents the computational times, averaged over five instances. Observe that
the BnB algorithm outperforms the CPLEX MIP solver over all the listed graph config-
urations, and one to two orders of magnitude in performance improvements were wit-
nesses for the majority of instances. Further, the relative differences in performance also
become more pronounced with an increase in p. Also noteworthy is improvement in rel-
ative performance of the BnB method for problems with p = 3 in comparison to p = 2.
This results from properties of the cutting-plane algorithm for solving polyhedral ap-
proximations of p-order cone programming problems, which becomes more effective as
p increases [27].

d = 0.0125 d = 0.025 d = 0.05 d = 0.1 d = 0.15
p |V | CPLEX BnB CPLEX BnB CPLEX BnB CPLEX BnB CPLEX BnB

1 25 0.47 0.06 0.54 0.04 0.46 0.04 0.31 0.04 0.32 0.08
50 1.32 0.13 0.74 0.14 0.79 0.18 1.29 0.33 2.47 1.91
100 1.99 0.07 3.25 0.38 6.00 2.19 57.62 40.90 — —

2 25 11.00 0.56 9.63 0.72 6.24 0.33 6.38 0.37 10.57 0.43
50 16.20 0.69 14.89 0.52 19.01 0.46 46.19 1.10 167.51 4.91
100 38.25 0.61 119.15 1.15 253.27 2.91 973.18 70.45 — —

3 25 40.48 0.90 25.65 0.81 15.53 0.42 15.26 0.66 27.25 0.86
50 35.89 1.11 31.80 1.21 42.39 1.09 90.74 1.55 232.49 5.36
100 70.47 1.08 188.71 1.54 316.38 3.13 1455.73 62.73 — —

Table 1. Average computation times (in seconds) obtained by solving problem (8) using the proposed BnB
algorithm and CPLEX with risk measure (10) and scenarios N = 100. All running times are averaged over 5
instances and symbol “—” indicates that the time limit of 7200 seconds was exceeded.

5. Conclusions

We have considered a R-MWK problems which entail finding a k-club of minimum risk
in a graph. HMCR risk measures were utilized for quantifying the distributional infor-
mation of the stochastic factors associated with vertex weights. It was shown that the
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optimal solutions to R-MWK problems are maximal k-clubs. A combinatorial BnB so-
lution algorithm was developed and tested on a special case of the R-MWK problem
when k = 2. Numerical experiments on randomly generated graphs of various configu-
rations suggest that the proposed BnB algorithm significantly reduces solution times in
comparison with the mathematical programming model solved using the CPLEX MIP
solver.
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On p-norm linear discrimination

Yana Morenko� Alexander Vinel� Zhaohan Yu� Pavlo Krokhmal�;�

Abstract
We consider a p-norm linear discrimination model that generalizes the model of Bennett and Man-

gasarian (1992) and reduces to a linear programming problem with p-order cone constraints. The proposed
approach for handling linear programming problems with p-order cone constraints is based on reformula-
tion of p-order cone optimization problems as second order cone programming (SOCP) problems when p
is rational. Since such reformulations typically lead to SOCP problems with large numbers of second order
cones, an “economical” representation that minimizes the number of second order cones is proposed. A
case study illustrating the developed model on several popular data sets is conducted.

1 Introduction
Consider two discrete sets A;B � Rn containing k and m points, respectively: A D fa1; : : : ; akg, B D
fb1; : : : ;bmg. One of the principal tasks arising in machine learning and data mining is that of discrimination
of such sets, namely, constructing a surface f .x/ D 0 such that f .x/ < 0 for any x 2 A and f .x/ > 0 for all
x 2 B. Of particular interest is the linear separating surface (hyperplane): f .x/ D w>x �  D 0. From the
simple fact that any two points y1; y2 2 Rn satisfying the inequalities w>y1 �  > 0; w>y2 �  < 0 for
some w and  are located on the opposite sides of the hyperplane w>x� D 0, it follows that the discrete sets
A, B � Rn are considered linearly separable if and only if there exist w 2 Rn such that w>ai >  > w>bj
for all i D 1; : : : ; k, j D 1; : : : ; m, with an appropriately chosen  , or, equivalently,

min
ai 2A

a>i w > max
bj 2B

b>j w: (1)

Clearly, existence of such a separating hyperplane is not guaranteed (namely, a separating hyperplane exists
if the convex hulls of sets A and B are disjoint); thus, in general, a separating hyperplane that minimizes
some sort of misclassification error is desired.

In the next section we introduce a new linear separation model that is based on p-order cone program-
ming, and discuss its key properties. The proposed solution approach, based on a reformulation of p-cone
programming problems as second order cone programming (SOCP) problems when p is rational, is pre-
sented in Section 3. Section 4 contains a case study on several popular data sets that illustrates the developed
discrimination model.

2 p-Norm linear separation: A stochastic optimization analogy
Since definition (1) involves strict inequalities, it is not well suited for mathematical programming models of
selecting the “best” linear separator. However, the fact that the separating hyperplane can be scaled by any
non-negative factor allows one to formulate the following observation:

Proposition 1 ([4]) Discrete sets A, B � Rn represented by matrices A D .a1; : : : ; ak/> 2 Rk�n and
B D .b1; : : : ;bm/> 2 Rm�n, respectively, are linearly separable if and only if

Aw � e C e; Bw � e � e for some w 2 Rn;  2 R; (2)

�Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242, USA
�Corresponding author. E-mail: krokhmal@engineering.uiowa.edu

1

DISTRIBUTION A: Distribution approved for public release



where e is the vector of ones of an appropriate dimension, e D .1; : : : ; 1/>.

Given the linear separability condition (2), the (non-negative) vectors xA D .�Aw C e C e/C, xB D
.Bw � e C e/C, where tC D maxf0; tg, represent misclassification errors: xA and/or xB > 0 if sets A

and B are not linearly separable. If one considers that points of sets A and B represent realizations of
(discretely distributed) random vectors a, b 2 Rn, respectively, the corresponding elements of vectors xA,
xB may be regarded as realizations of random variables XA.aIw; / D .�a>wC  C 1/C, XB.bIw; / D
.b>w�C1/C, respectively, that depend parametrically on the decision variables w and  . Then, a plausible
strategy for selecting w and  is one that minimizes, for example, the expected misclassification errors, and
which can be formulated as the following stochastic programming problem:

min
.w;/2RnC1

n
ı1E

�
.�a>wC  C 1/C

�
C ı2E

�
.b>w �  C 1/C

�o
;

where ı1;2 serve as “importance” weights of the misclassification errors for points of sets A and B, respec-
tively. Further, instead of minimizing the expected misclassification error, one may select the parameters w
and  so as to minimize the risk of misclassification. As it is well known in stochastic optimization and risk
analysis, the “risk” associated with random outcome of a decision under uncertainty is often attributed to
the “heavy” tails of the corresponding probability distribution. The risk-inducing “heavy” tails of probability
distributions, are, in turn, characterized by the distribution’s higher moments. Thus, if the misclassifications
introduced by a separating hyperplane can be viewed as “random”, the misclassification risk may be con-
trolled better if one minimizes not the average, or expected misclassification errors, but their moments of
order p > 1. This gives rise to the following formulation for linear discrimination of sets A and B:

min
.w;/2RnC1

ı1
.�a>wC  C 1/C


p
C ı2

.b>w �  C 1/C

p
; p 2 Œ1;C1�; (3)

where k � kp is the usual Lp norm: kY kp D
�
EjY jp

�1=p if p 2 Œ1;1/, and kY k1 D ess sup jY j. If a and b
are uniformly distributed with support sets A and B, respectively:

P.a D ai / D 1=k; P.b D bj / D 1=m for all ai 2 A; bj 2 B; (4)

the p-norm linear discrimination problem takes the form

min
.w;/2RnC1

ı1

k1=p

.�AwC e C e/C

p
C

ı2

m1=p

.Bw � e C e/C

p
; (5)

where k � kp is a norm in Euclidean space of an appropriate dimension: kukp D .ju1j
p C : : : C jul j

p/1=p ,
p 2 Œ1;1/ and kuk1 D maxiD1;:::;lfuig (in the sequel, it shall be clear from the context whether the Lp or
Euclidean p-norm is used). Further, (5) can be formulated as a p-order cone programming problem (pOCP)

min ı1k
�1=p � C ı2m

�1=p � (6a)
s. t. � � kykp; (6b)

� � kzkp; (6c)
y � �AwC e C e; (6d)
z � Bw � e C e; (6e)
z; y � 0: (6f)

Note that the special case of p D 1 and ı1 D ı2 corresponds to the linear discrimination model of Bennett
and Mangasarian [4]. The p-cone programming linear separation model (3)–(6) shares many key properties
with the LP separation model [4], including the guarantee that an optimal solution of (6) is non-zero in w for
linearly separable sets.

Proposition 2 When sets A and B, represented by matrices A and B, are linearly separable, the separating
hyperplane w�>x D � given by an optimal solution of (5)–(6) satisfies w� ¤ 0.

2
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Proof: Zero optimal value of (6a) entails that �Aw� C e� C e � 0, Bw� � e� C e � 0 at optimality,
which requires that � � �1 and � � 1 simultaneously for w� D 0 to hold. �

Secondly, the p-norm separation model (6) can produce a solution with w D 0 only in a rather special
case that is identified by Theorem 1 below.

Theorem 1 Consider the p-order cone programming problem (6)–(5), where it is assumed without loss of
generality that 0 < ı1 � ı2. Then, for any p 2 .1;1/ the p-order cone programming problem (6) has an
optimal solution with w� D 0 if and only if

e>

k
A D v>B; where e>v D 1; v � 0; kvkq �

ı2

ı1m1=p
; (7a)

where q satisfies p�1 C q�1 D 1. In other words, the arithmetic mean of the points in A must be equal to
some convex combination of points in B. In the case of ı1 D ı2 condition (7a) reduces to

e>

k
A D

e>

m
B; (7b)

i.e., the arithmetic means of the points of sets A and B must coincide.

Proof: First, let us consider the case when the p-cone discrimination model (6) has an optimal solution with
w� D 0 and demonstrate that (7) must then hold. From the formulation (5) of problem (6) it follows that in
the case when w D 0 at optimality, the corresponding optimal value of the objective (6a) is determined as

min
2R

(
ı1

k1=p

�
kP
iD1

.1C /
p
C

�1=p
C

ı2

m1=p

�
mP
jD1

.1 � /
p
C

�1=p)
D 2ı1;

due to the assumption 0 < ı1 � ı2. Next, consider the dual of the p-cone programming problem (6):

max e>uC e>v

s. t. � A>uC B>v D 0;

e>u � e>v D 0;
0 � u � �s;
0 � v � �t;

kskq � ı1k�1=p;

ktkq � ı2m�1=p;

(8)

where q is such that 1=pC 1=q D 1. Note that (6) is strictly feasible and bounded from below, since for any
w0, 0 and " > 0 one can select y0 D "eC .�Aw0 C e0 C e/C > 0, z0 D "eC .Bw0 � e0 C e/C > 0,
�0 D .1C "/ky0kp > ky0kp > 0, and �0 D .1C "/kz0kp > kz0kp > 0 that are feasible to (6). Thus, the
duality gap for the primal-dual pair of p-order cone programming problems (6) and (8) is zero [12]. Then,
from the first two constraints of (8) we have A>u� D B>v� as well as e>u� D e>v�, which, given that the
optimal objective value of (8) is 2ı1, implies that an optimal u� must satisfy

e>u� D ı1: (9a)

Also, from (8) it follows that

ku�kq � ı1k�1=p: (9b)

Then, it is easy to see that the unique solution of system (9) is

u� D
ı1

k
e D

�
ı1

k
; : : : ;

ı1

k

�>
;

3
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which corresponds to the point where the surface .uq1C : : :Cu
q

k
/1=q D ı1k

�1=p is tangent to the hyperplane
u1 C : : :C uk D ı1 in the positive of Rk .

Likewise, an optimal v� must satisfy e>v� D ı1 and kv�kq � ı2m�1=p , but such v� is not unique in the
case ı2=ı1 > 1. By substituting the obtained characterizations for u� and v� in the constraint A>u� D B>v�

of the dual, we obtain (7a). When ı1 D ı2, the optimal v� is unique: v� D
ı1

m
e, and yields (7b).

To prove the statement of the Theorem in the opposite direction, assume that, for instance, (7a) holds
for certain u and v. Selecting u� D .ı1=k/ e, v� D ı1v, and s� D �u�, t� D �v�, it is easy to see that
.u�; v�; s�; t�/ represents a feasible solution of the dual problem (8) with the dual cost of 2ı1. Similarly, the
tuple .w�; �; y�; z�; ��; ��/, where w� D 0; � D 1; y� D .e� C e/C D 2e, z� D .�e� C e/C D 0;
�� D ky�kp D 2k1=p , �� D kz�kp D 0, represents a feasible solution of the primal problem (6) with the
corresponding objective value of 2ı1. Noting the zero duality gap for the constructed pair of feasible solutions
of (6) and (8), and recalling that the primal problem is bounded and strictly feasible, we immediately obtain
that this pair of primal-dual solutions is optimal [12]. Hence, from (7a) it follows that an optimal solution of
(6) exists with w� D 0. �

Observe that Theorem 1 implies that in the case of ı1 D ı2, the p-norm discrimination model (6) produces
a null separating hyperplane only when the “geometric centers” of the sets A and B coincide. In practice, this
means that such sets cannot be efficiently separated, at least by a hyperplane, thus an occurrence of a w� D 0
solution in (6) may be regarded not as a shortfall of formulation (6), but rather as the general unsuitability
of such sets A and B to linear discrimination. In the case of ı1 < ı2, occurrence of a w� D 0 solution
in (6) does not necessarily signify that sets A and B are hardly amenable to linear separation. In this case
Theorem 1 only claims that the “geometric center” of A must lie within the convex hull of set B, so that
linear discrimination can still be a feasible approach, albeit at a cost of significant misclassification errors.

In order for a w� D 0 solution to occur only under the stricter condition (7b) when misclassification
preferences for sets A and B are different, the p-norm linear discrimination model can be extended by
applying norms of different orders to misclassifications of points in A and B:

min
.w;/2RnC1

k�1=p1
.�AwC e C e/C


p1
Cm�1=p2

.Bw � e C e/C

p2
; p1;2 2 .1;1/: (10)

Intuitively, a norm of higher order places more “weight” on the outliers. For example, use of p D 1 norm
entails minimization of the average of misclassifications; in contrast, application of the p D1 norm implies
minimization of the largest misclassification for a set. Thus, by selecting appropriately the orders p1 and
p2 in (10) one may introduce tolerance preferences on misclassifications of points of sets A and B. At the
same time, it can be shown that the occurrence of w� D 0 solution in (10) would signal the presence of the
aforementioned singularity about the sets A and B. Namely, we have

Theorem 2 The p-order cone programming problem (10), where p1; p2 2 .1;1/, has an optimal solution
with w� D 0 if and only if (7b) holds.

We conclude this section by pointing out a connection between the p-norm separation model and the
classical Support Vector Machine (SVM) model. SVM models are widely used in classification problems
(see some recent works in, e.g., [5, 9, 14]). The linear SVM for non-separable sets can be written as a
quadratic programming problem of the form

min 1
2
kwk2 C C1e>©1 C C2e>©2 (11a)

s. t. Aw � e � e � ©1 (11b)
�BwC e � e � ©2 (11c)

©1;2 � 0 (11d)

where ©1 and ©2 are misclassification vectors for sets A and B, respectively, and C1; C2 > 0.

Proposition 3 If the misclassification weight coefficients in the p-norm separation model (6) and the SVM
model (11) coincide, C1 D ı1=k1 and C2 D ı2=k2, the optimal value V �SVM of SVM problem (11) can be
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bounded as

V �p � V
�

SVM � V
�
p C

1
2
kw�k2;

where V �p is the optimal value of p-norm problem (6) and w� is an optimal solution of (6).

Proof: By renaming variables ©1 D y, ©2 D z, problem (11) can be rewritten as

min
n
1
2
kwk2 C C1� C C2�

ˇ̌̌
� � kyk1; � � kzk1; (6d); (6e); (6f)

o
: (12)

Setting C1 D ı1=k, C2 D ı2=m and taking into account that kxkp � kxkq for 1 � p < q, it is easy to see
that

1
2
kw�k2 C C1�� C C2�� � 1

2
kw��k2 C C1��� C C2���

� C1�
��
C C2�

��
� C1 �

�
.1/ C C2 �

�
.1/ � C1�

�
C C2�

�;

where w��; ���; ��� are the optimal values of the variables in the SVM problem (12), w�; ��; �� are optimal
solutions of the p-norm separation model (6), and ��

.1/
; ��
.1/

are optimal solutions of (6) with p D 1. �

In the next section we discuss the details of practical implementation of the p-norm linear discrimination
model (6).

3 A second order cone programming approach to p-order cone pro-
gramming problems

The p-order cone constraints (6b)–(6c) are central to practical implementation of the p-norm separation
method (6). In the special cases of p D 1 or p D 1, p-order cone constraints reduce to linear inequalities;
specifically, the p D 1 version of model (6) has been studied in [4]. In general, the amenability of 1-
norm to implementation via linear constraints has been exploited in a variety approaches and applications,
too numerous to cite here. Another prominent special case of is that of p D 2, when (6b)–(6c) represent
second order, or quadratic cones. The second order cone programming (SOCP) constitutes a well-developed
subject of convex optimization, and a number of efficient self-dual “long-step” interior point (IP) SOCP
algorithms have been developed in the literature and implemented in software [1, 2, 13]. The “general”
case of p 2 .1; 2/ [ .2;1/, when the p-cone is not self-dual, has received relatively limited attention in the
literature. IP approaches to p-order cone programming have been considered in, e.g., [6, 11, 15]; a polyhedral
approximation approach was proposed in [10].

In this work, we pursue an approach to solving p-cone programming problems that is based on the
possibility to represent a p-order cone via a sequence of second order cones when p is rational [1, 12].
Reformulation of a rational-order p-cone programming problem as a SOCP problem allows for employing
the efficient self-dual SOCP methods, albeit at a cost of a large number of second order cones required for
such a reformulation. Moreover, since such a reformulation is not unique, in Section 3.2 we introduce a
constructive “economical” representation of rational-order p-cones via second order cones.

3.1 Representation of rational-order p-cones with second order cones
Without loss of generality, consider a p-cone in the positive orthant of RnC1

t � .w
p
1 C : : :C w

p
n /
1=p; .t; w1; : : : ; wn/

>
� 0: (13)

In the case when the parameter p is a positive rational number, p D r=s, where r; s 2 N, then, for instance,
the following “lifted” representation of the p-cone set (13) can be constructed in R2nC1C [1, 10]:

t � u1 C : : :C un; uj � 0; j D 1; : : : ; n; (14a)

wRj � u
s
j t
r�swR�r ; j D 1; : : : ; n; (14b)

5
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where R D 2�, � D dlog2 re. Then, each nonlinear inequality (14b) can equivalently be replaced by a
sequence of three-dimensional (3D) rotated quadratic cones ´2 � xy; such a representation, however, is not
unique. Observe that each side of inequalities (14b) contains 2� factors; this allows one to construct a lifted
representation for (14b) via 2� � 1 3D rotated quadratic cones using the “tower of variables” technique [3]:

w2 � v��1;1v��1;2 (15a)

v2l;i � vl�1;2i�1 vl�1;2i ; i D 1; : : : ; 2��l ; l D 2; : : : ; � � 1; (15b)

v21;i � u
2; i D 1; : : : ; bs=2c; (15c)

v21;i � ut; i D bs=2c C 1; : : : ; ds=2e; (15d)

v21;i � t
2; i D ds=2e C 1; : : : ; br=2c; (15e)

v21;i � tw; i D br=2c C 1; : : : ; dr=2e; (15f)

v21;i � w
2; i D dr=2e C 1; : : : ; bR=2c; (15g)

w; vl;i ; u; t � 0;

where subscripts j are suppressed for brevity. The set of inequalities (15) can be visualized as a binary tree
whose nodes represent the variables in (15). Each inequality in (15) can then be viewed as a subgraph with
two arcs that connect the “parent” node (the variable at the left-hand side of the inequality) to the two “child”
nodes (the variables at the right-hand side of the same inequality). Given this binary structure, the set of
second order cones in (15) can be regarded as partitioned into � levels indexed by l , where the variable w
in (15a) constitutes the root node of the tree, and belongs to �-level, while variables u; t; w in (15d)–(15g)
represent the leaf nodes, or 0-level nodes of the tree.

In [10] it has been shown that among the 2� � 1 inequalities (15) there are only O.�/ D O.log2 r/ non-
degenerate second order cones, while the rest reduce to linear inequalities that can be omitted. The following
bounds on the number of non-degenerate quadratic cones in (15) follow directly from the arguments in [10]:

Proposition 4 ([10]) When p is a positive rational number, p D r=s, such that r > s and the greatest
common divisor of r and s is 1, a p-order cone in the positive orthant of RnC1 can equivalently be represented
by Cp three-dimensional quadratic cones, where Cp satisfies

n� � Cp � n.2� � 1/; � D dlog2 re: (16)

It it easy to see that the order in which the variables u, t , and w are assigned to the leaf nodes in the
binary tree (15) can significantly affect the number of non-degenerate quadratic cones needed to represent a
rational-order p-cone in RnC1. As an illustration, consider the case p D 3; direct application of (15) yields
� D 2, R D 4, and a representation of p D 3 cone (13) that involves 3n 3D rotated quadratic cones:

t � u1 C : : :C unI w2j � v1j v2j ; v21j � uj t; v22j � twj ; j D 1; : : : ; n: (17)

On the other hand, it is easy to verify that reordering the leaf nodes inequalities (15c)–(15g) allows for
reducing the number of 3D quadratic cones necessary to represent a p D 3 cone in RnC1C to 2n:

t � u1 C : : :C unI w2j � tvj ; v2j � ujwj ; j D 1; : : : ; n: (18)

Observe that the number of second order cones in representations (17) and (18) correspond to the upper and
lower bounds in (16), respectively.

Since a reduction in the number of second order cone inequalities in (15) leads to a reduction in the
number of quadratic cones representing a rational-order p-cone (13) by the order of dimensionality n of the
p-cone, it is of interest to devise an “economical” second order cone representation of rational-order cones.

3.2 An “economical” representation of rational-order p-cone via second order cones
Below we demonstrate that the lower bound on Cp in (16) is achievable for any rational p � 1. To this end,
consider the following convex pointed cone in R4C:

P D
n

y 2 R4C

ˇ̌̌
y
k0

0 � y
k1

1 y
k2

2 y
k3

3 � 0
o
; (19)
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that satisfies the next four properties:
(P1) k0; k1; k2; k3 2 ZC;
(P2) k0 D k1 C k2 C k3;
(P3) k1 C k2 C k3 D 2

q for some integer q � 1;
(P4) exactly two numbers among k1; k2, and k3 are odd.

Proposition 5 Cone P (19) that satisfies (P1)–(P4) can be represented as an intersection of at most q three-
dimensional cones of the form

˚
x 2 R3C

ˇ̌
x23 � x1x2

	
.

Proof: The process of building such a representation of P is based on successive lifting of P into spaces of
dimensions greater than previous by 1, in such a way that the degree of the polynomial in (19) is reduced in
half each time. First, assume that k1; k3; k3 > 0 are all different, and q � 2. Without loss of generality, let
k1; k2 be odd and such that k2 > k1, and consider the following set in R5C:

P� D
˚

y 2 R5C
ˇ̌
y
�0

0 � y
�4

4 y
�2

2 y
�3

3 � 0; y
2
4 � y1y2

	
;

where �0 D k0=2; �2 D .k2 � k1/=2; �4 D k1; �3 D k3=2:
(20)

It is easy to see that any .y0; : : : ; y3/ 2 P can be extended to .y0; : : : ; y4/ 2 P�, and any .y0; : : : ; y4/ 2 P�

is such that .y0; : : : ; y3/ 2 P. As k1 and k2 are odd and positive integers by assumption, due to (P4) k3
is even, whence �3 is a positive integer. The above assumption also implies that k2 � k1 is even, meaning
that �2 is a positive integer. Similarly, �0 is integer and �0 D 2q�1. Also, observe that �1 C �2 C �3 D
.k1 C k2 C k3/=2 D k0=2 D �0. So, the first cone in (20) satisfies properties (P1)–(P3). Next, observe that
�4 D k1 is odd, thus out of two integers �2; �3 exactly one should be odd for �2 C �3 C �4 D 2q�1 to hold.
Thus, condition (P4) holds as well.

Note that if in our assumption k1 D k2, then �2 D 0 in (20), but all conditions still hold. Consider the
case when q � 2 and one of k1; k2; k3 is zero, assume it is k3. Then k1; k2 should be odd by (P4). Performing
the same transformation, we obtain

P�� D
˚

y 2 R5C
ˇ̌
y
�0

0 � y
�4

4 y
�2

2 � 0; y
2
4 � y1y2

	
; �0 D k0=2; �2 D .k2 � k1/=2; �4 D k1: (21)

The first cone of P�� still has properties (P1)–(P4), and .y0; : : : ; y3/ 2 P can be extended to .y0; : : : ; y4/ 2
P��, and any .y0; : : : ; y4/ 2 P�� is such that .y0; : : : ; y3/ 2 P.

If q D 1, then one of k1; k2; k3 is zero, and two others are necessarily equal to 1. In this case P is already
a quadratic cone. Thus, the above lifting transformation can be carried out no more than q � 1 times, and the
conic set P (19) can be represented by at most q quadratic cones using at most q � 1 new variables. �

With the help of Proposition 5 we can now establish the following result on second order cone represen-
tation of rational-order p-cones:

Theorem 3 Let p > 1 be a positive rational number, p D r=s, where the greatest common divisor of r and
s is 1. Then a p-order cone in the positive orthant of RnC1 can equivalently be represented by ndlog2 re
three-dimensional rotated quadratic cones.

Proof: In accordance to (13)–(14b), the problem of representing a .r=s/-cone in RnC1C via second order
cones can be reduced to finding a second order cone representation of n sets of the form

Q D
n

y 2 R3C

ˇ̌̌
yR3 � y

s
1y
r�s
2 yR�r3 � 0

o
; (22)

whereR D 2�, � D dlog2 re. Observe that cone Q is equivalent to intersection of cone P (19), where k1 D s,
k2 D r � s, k3 D R � r , with a hyperplane y0 D y3. Indeed, properties (P1)–(P3) are obvious, and (P4)
holds since if r and s do not have common divisor greater than 1, neither do r � s and s, whereby r � s and
s cannot be both even.

Note that an iteration of the lifting procedure described in Proposition 5 corresponds to a specific order
in which the variables at some level of the binary tree are arranged. For example, the first iteration of lifting
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corresponds to arranging the 0-level variables fw; t; ug D fy1; y2; y3g in pairs corresponding to second order
cone constraints, such that y1 and y2 make k1 pairs, or y24 � y1y2 non-degenerate cones; the remaining
k2 � k1 variables y2 form .k2 � k1/=2 pairs, or degenerate cones y04

2
� y22 , and k3 variables y3 form k3=2

pairs, or degenerate cones y004
2
� y33 , assuming that k1 < k2 are odd. Obviously, the degenerate cones can

simply be disregarded.
Hence, by Proposition 5, Q admits representation by at most � D dlog2 re second order cones; combining

this with Proposition 4, one obtains that each of n sets of the form Q admits representation using exactly
� D dlog2 re second order cones. �

It is well known that second order cone sets admit an equivalent semidefinite representation in the form
of linear matrix inequalities (LMIs). In general, p-order cones are not LMI-representable in the space of
original variables (see an example for p D 4 cone in [7, 8]), but admit lifted LMI representations.

Corollary 1 Conic set Q (22) admits a lifted representation in the form of LMI

Q� D

�
y 2 R�C2C

ˇ̌̌̌
�C2P
iD1

Aiyi � 0
�
;

where Ai 2 R2��2� are symmetric matrices, in the sense that the projection of Q� onto the space of variables
.y1; y2; y3/ coincides with Q.

4 Computational study
In this section we report computational results on using the p-norm discrimination model (5)–(6) for linear
separation of sets. In particular, we employ the presented above “economical” SOCP reformulation approach
to solving pOCP problem (6) in the case when p is rational, and compare it with the polyhedral approximation
technique of [10].

In our computational experiments we used three data sets from UCI Machine Learning Repository. The
first data set is Wisconsin Breast Cancer data set with a total of 683 instances and 9 attributes. It contains 444
instances with benign diagnosis and 239 instances with malignant diagnosis. The second data set, Cleveland
Heart Disease data set, contains 281 instances with 13 attributes, of them 125 instances correspond to positive
diagnosis and 156 instances correspond to negative diagnosis. Finally, the Pima Indians Diabetes data set
reports 768 instances with 8 attributes, including 266 instances of positive diagnosis and 502 instances of
negative diagnosis. Both the Wisconsin Breast Cancer and Cleveland Heart Disease data sets (in their then-
up-to-date versions) were used in [4].

For each data set, training and testing was performed by randomly selecting 100 training sets with equal
number of points of both types, and testing the obtained separator on the data not included in the training
set. For computational purposes, the data in training data sets was normalized and scaled by a factor of
104; the same transformation was then applied to testing data. After the training and testing procedures
were performed, the average misclassification error on testing set was computed. It is important to comment
on selection of parameter p in (6): as a general rule that follows from our numerical experiments and is
consistent with the motivation presented in Section 2, smaller values of p (around p D 2) are beneficial
for well-separable data sets with smaller misclassification errors, whereas larger values of p � 3 allow for
reducing large misclassification errors in linear separation. With this in mind, a particular value of p can be
selected during the training procedure.

Table 1 reports the average out-of-sample misclassification error for each data set, together with the
respective “best” value of p at which this error was obtained. It also includes results for the cases of p D 1,
which corresponds to minimization of the average of misclassifications due to [4], p D 1, corresponding
to minimization of the largest misclassification errors, and SVM model (11). Figures 1, 2, and 3 illustrate
the behavior of the misclassification error in the described data sets with respect to the value of parameter
p in (5)–(6), which was varied in the range of 1.0 to 4.0 with a 0.1 step. As it follows from Table 1 and
Figures 1–3, the p-norm separation model (5)–(6) with p > 1 allows for an improved classification accuracy
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as compared to the cases of p D 1 proposed in [4], the SVM model (11), and the worst-error approach of
p D1.

In addition to classification capabilities of the p-norm linear separation model (5)–(6), its computational
properties were investigated. In particular, for all the data sets described above we compared the running
times of the cutting plane procedure for polyhedral approximations of problem (6) due to [10], denoted as
LP/CP, and the “economical” SOCP reformulation of (6), along with the corresponding results for SVM
model (11) and p D 1 case. All models were coded in C++ and CPLEX 12.2 solver was used to solve the
resulting LP, SOCP, and QP problems. A dual-core 3GHz CPU computer with 2GB of RAM was used to run
the computations. Figure 4 illustrates corresponding running times on the example of the Wisconsin Breast
Cancer data set, along with the values of the parameter � D dlog2 re, where p D r=s, which is propor-
tional to the number of second order cones in the SOCP reformulation of rational-order p-cone programming
problem (6). From Figure 4 it follows that the solution times for SOCP reformulation of a rational-order p-
cone programming model (6) are highly correlated to the number of second order cones in the reformulated
problem. On the other hand, solution times of a polyhedral approximation of (6) solved with a cutting plane
method (LP/CP) exhibit relatively little dependence on the value of the parameter p, and are competitive with
the running times of the SVM model. Computational performance of the considered models on other data
sets is very similar to that presented in Figure 4.

Table 1: Classification results for different data sets: the lowest average misclassification error, the corre-
sponding value of p, and misclassification error for the cases of p D 1, p D1, and SVM model (11).

Dataset Error Best p p D 1 SVM p D1

Wisconsin Breast Cancer Dataset 3.95% 1.8 4.11% 4.03% 4.21%
Cleveland Heart Disease Dataset 18.7% 3.8 19.5% 18.98% 19.11%
Pima Indians Diabetes Dataset 31.82% 3.4 35.29% 34.02% 33.51%
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Abstract

In this paper, a branch-and-bound algorithm for finding all cliques of size k in a k-
partite graph is proposed that improves upon the method of Grunert et al (2002). The
new algorithm uses bit-vectors, or bitsets, as the main data structure in bit-parallel
operations. Bitsets enable a new form of data representation that improves branching
and backtracking of the branch-and-bound procedure. Numerical studies on randomly
generated instances of k-partite graphs demonstrate competitiveness of the developed
method.

Keywords: maximum clique enumeration problem, k-partite graph, k-clique, bit
parallelism

1 Introduction

Given an (undirected) graph G = (V,E), where V is set of nodes and E is the set of arcs,
a clique in G is defined as a complete subset of G, i.e., a set of nodes in V that are pairwise
adjacent. A clique of size k is called k-clique;1 the largest clique in a graph is called the
maximum clique and its size is denoted by ω(G). Note that G may contain several cliques
of size ω(G). Closely related to the concept of a clique is that of an independent set of G,
defined as an induced subgraph of V whose nodes are pairwise disjoint.

The Maximum Clique Problem (MCP) consists in finding the largest clique in a graph,
and is of fundamental importance in discrete mathematics, computer science, operations

∗Corresponding author.
1It is worth noting that the term k-clique is used in several different contexts in the literature; for

instance, one of its alternative interpretations is that of a subgraph where any two nodes are connected by
a path of length at least k [10]. In this work, we use the definition of k-clique as given above.
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research, and related fields [1]. In many applications it is of interest to identify all max-
imum cliques in a graph. This problem is known as the Maximum Clique Enumeration
Problem (MCEP). In the present work, we consider a special case of the MCEP, concerned
with finding all k-cliques in a k-partite graph. A graph G = (V,E) is called k-partite if
the set of nodes V can be partitioned into k independent sets, or partites Vr, r = 1, . . . , k:

V =
k⋃
r=1

Vr, Vr ∩ Vs = ∅, r 6= s, such that for all i, j ∈ Vr : (i, j) /∈ E. (1)

Clearly, one has that ω(G) ≤ k in a k-partite graph G, since the maximum clique cannot
contain more than one node from each independent set Vr. Note also that the problem
of finding all k-cliques in a k-partite graph is not equivalent to MCEP since it does not
account for maximum cliques with ω(G) < k.

The problem of finding k-cliques in k-partite graphs has applications in many areas
of science and engineering, including textile industry [3], where the braiding problem can
be reduced to the problem of finding k-cliques in the path compatibility graph that rep-
resents a k-partite graph; data mining, particularly for clustering of categorical attributes
over k-domains [12]; identification of protein structures [9], where protein interaction net-
work is represented by a k-partite graph that is mined for k-cliques. Recently, it has
been shown that the problem of finding k-cliques in k-partite graphs can be used to find
high-quality solutions of large-scale randomized instances of multidimensional assignment
problem (MAP) [6, 7, 11].

Grunert et al [3] proposed branch-and-bound algorithm FINDCLIQUE for the problem
of finding all k-cliques in k-partite graphs, which takes as an input a graph G = (V,E),
where V satisfies (1), and produces the set Q of k-cliques contained in G as an output.
FINDCLIQUE is a recursive method, such that level t of recursion corresponds to the
level t of branch-and-bound tree, which in turn, is associated with the t-th partite that
is branched on in V . Starting at the root (t = 0) of the branch-and-bound tree with a
partial solution S = ∅, at each step of branch-and-bound procedure a node is added to or
removed from S until S amounts to a k-clique in G, i.e., |S| = k, or it is verified that G
contains no k-cliques, ω(G) < k.

Let B = {1, . . . , k} be the index set of partites in G, V =
⋃
b∈B Vb, and BS denote

the set of partites that have a node in S:

BS = {b ∈ B | Vb ∩ S 6= ∅}.

Given a partial solution S, a node is called compatible if it is adjacent to all the nodes in
S; the set of compatible nodes w.r.t. S is denoted by CS :

CS = {i ∈ V | (i, j) ∈ E ∀ j ∈ S}.
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The set CS is further partitioned into subsets containing nodes from the same partite:

CS =
⋃
b∈BS

CS,b,

where BS = B \BS , and CS,b ⊆ Vb is given by

CS,b =
⋃
s∈S

(Vb ∩N(s)),

with N(s) being the set of nodes adjacent to node s.

At the root node of the branch-and-bound tree (t = 0), one has S = ∅, B = BS =
{1, . . . , k}, BS = ∅, and CS,b = Vb for all b ∈ B. At a level t of the branch-and-bound
tree, bt ∈ BS is selected as the partition to branch on. In order to achieve the greatest
reduction in the size of the branch-and-bound tree when pruning, bt is selected as the
partition with the smallest number of nodes:

bt ∈ arg min
b
{|CS,b| | b ∈ BS}. (2)

As long as there is a node nt ∈ CS,bt that is not traversed, the search process is restarted
from this point with S := S ∪ {nt} as the new partial solution. To this end, the set CS of
compatible nodes is updated with respect to S ∪ {nt}:

CS,b := CS,b ∩N(nt) for all b ∈ BS . (3)

Maintaining the sets CS,b of nodes compatible with the current partial solution S is a key
aspect of the algorithm, thus for backtracking purposes the nodes that are removed from
CS,b during (3) are added to the set C =

⋃k
t=1Ct, which is similarly partitioned into k

levels Ct, each level corresponding to level t of the branch-and-bound tree. In other words,
Ct contains the nodes in CS,b that are not adjacent to node nt:

Ct = {i ∈ CS,b | (i, nt) /∈ E, b ∈ BS}.

Obviously, after this step, CS,bt = ∅. A subproblem with a partial solution S is promising
if all of the partitions in CS that do not share a node in the partial solution are nonempty:

|CS,b| > 0 for all b ∈ BS , b 6= bt. (4)

Let P be the number of partitions CS,b ⊆ CS that contain at least one node; then, an upper
bound on the size of the largest clique containing S is given by |S| + P . If |S| + P = k,
the current subproblem is feasible, meaning S may be part of a k-clique. For a feasible
subproblem, the algorithm traverses deeper into the branch-and-bound tree, t := t + 1,
and a new subproblem is created.
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Accordingly, a subproblem with partial solution S is pruned if

|S|+ P < k, (5)

i.e., there exists no clique of size k that contains S. For a nonpromising subproblem, set
CS,bt is restored by moving the nodes in Ct back to CS , CS := CS ∪Ct. The last operation
implicitly requires that the nodes from Ct are put back into the partitions of CS that they
were removed from:

CS,π(v) := CS,π(v) ∪ v for all v ∈ Ct, (6)

where π(i) is the index of the partite that node i belongs to: i ∈ Vπ(i); moreover, the
relative orders of nodes in the partites Vb should be preserved in CS,b, given that the
nodes in G are assumed to be ordered/numbered.

The search process is then restarted, provided that there exists a node in partition
CS,bt that is not traversed. If there is no such node, FINDCLIQUE returns to the previous
level t− 1 of the branch-and-bound tree.

2 A bitwise algorithm for finding k-cliques in a k-partite
graph

In this section, we present an algorithm, referred to as BitCLQ, for the k-clique enumer-
ation problem in a k-partite graph, which improves upon the FINDCLIQUE algorithm
of Grunert et al [3] by introducing bitset data structures and utilizing bit parallelism for
updating the set of compatible nodes and improving backtracking.

2.1 Bitsets

Bitsets are essentially binary vectors, or sequences of bits, and as such can be utilized
efficiently in computer codes. Particularly, bitsets are useful for storing adjacency matrices
of graphs, or specific subsets of ordered sets. For example, in a graph on six nodes
{v1, . . . , v6} = V , a clique with nodes v1, v2, v3, v5 can be represented by a bitset {111010},
where each bit corresponds uniquely to a node in the graph, with the significant bits
(i.e., bits equal to 1) indicating the nodes in the clique. Bit parallelism is a form of
parallel computing that achieves computational improvements by representing the problem
data in bitsets of size R, where R is the machine word size (e.g., 32 or 64), such that
they can be processed together within a single processor instruction. Bit parallelism has
been successfully used in many computational algorithms, particularly for string matching
[2, 4, 5]. Recently, bit parallelism has been employed for solving hard combinatorial
problems, such as SAT [14] and the Maximum Clique Problem [13].

In the present work, bit parallelism is used to improve the computational procedure for
updating the set of compatible nodes in (3), and, moreover, to achieve faster backtracking
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by eliminating the need for set C. In addition, use of bitsets allows for improvements in
memory storage efficiency for problem data structures, such as the set of compatible nodes
and the adjacency matrix of the graph.

Of particular significance in the context of the present work is the operation of indexing
the first significant bit in a bitset, also known as the forward bit scanning. One of the
techniques for this purpose relies on use of the De Bruijn sequence with a perfect hash
table [8]. The value to be looked up in the hash table is given by HR below:

HR := (x ∧ −x)D � (R− log2R), (7)

where x is the bitset for which the first significant bit has to be indexed, D is an instance
of De Bruijn sequence, R is the machine word size, and � stands for the binary shift
right operator. HR is effective for bitsets of maximum size equal to R. For larger bitsets,
special containers need to be devised. The hash table required to look up the value of HR

is created based on the particular De Bruijn sequence used in (7).

Note that in (7) multiplication is performed modulo R and only the last log2R bits
of the result will be retained. More details on forward bit scanning and the specification
of the De Bruijn sequence used in (7) can be found in [8].

2.2 BitCLQ

Below we present a modification of FINDCLIQUE, which we refer to as BitCLQ, that uses
bitset data structures and bit parallelism for keeping track of the nodes in G that are com-
patible to the current partial solution S, while simultaneously reducing the computational
cost of backtracking.

To this end, we introduce a set Z consisting of k levels, Z1, . . . , Zk. Each of these
k levels will be used to represent the compatible nodes to the partial solution S at the
t-th level of the branch-and-bound tree, where 1 ≤ t ≤ k. Every level in Z is further
partitioned into k sets, each corresponding to a partite Vb in G:

Zt =
⋃
b∈B

Zt,b, t = 1, . . . , k.

The sets Zt,b are represented by bitsets of size |Vb|. Let Zt,b,i be the i-th bit in Zt,b
corresponding to the i-th node in Vb, such that Zt,b,i = 1 if the i-th node in Vb is compatible
with all the nodes in the partial solution S at the t-th level of the branch-and-bound tree
in BitCLQ:

Zt,b,i =

{
1, if (i, j) ∈ E for all j ∈ St;
0, otherwise.

Clearly, each level Zt of Z is an ordered set of combination of bitsets with the total size
|V |. Further, the adjacency matrix M of graph G is stored in the bitset form, with the
convention that the i-th row (column) corresponds to the i-th bit in Zt, t = 1, . . . , k.

5
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BitCLQ is initialized by setting t := 0, S := ∅, B = BS := {1, . . . , k}, and Q := ∅,
where Q is the set of all k-cliques in G. Note that since at the beginning all the nodes in
G can be added to S to extend its size, all the bits in Z1 are significant:

Z1,b,i = 1 for all b ∈ B(St), i ∈ Vb.

At level t of the branch-and-bound tree, the partition bt to branch on is selected as

bt ∈ arg min
b
{|Zt,b| | b ∈ BS}, (8)

where |Zt,b| is defined as the number of significant bits in the bitset Zt,b. The forward
bit scanning method discussed in Section 2.1 is used to identify node nt ∈ Vbt that has
not been traversed and thus can be added to the partial solution. As long as such a node
exists in Vbt , the search process is restarted with S := S∪{nt} as the partial solution, and
the corresponding bit in Zt,bt is set to 0.

Utilizing bitsets also facilitates the process of updating the compatible nodes: when nt
is added to partial solution, Zt+1 is created by performing a logical AND operation with
Zt and the row M(nt) of the adjacency matrix corresponding to the node nt as operands:

Zt+1 = Zt ∧M(nt). (9)

Similarly to FINDCLIQUE, let P denote the number of partitions Zt,b with |Zt,b| > 0 at
level the t of the branch-and-bound tree. If |S| + P = k, the current partial solution is
promising, so that a new subproblem is created, and BitCLQ proceeds one level deeper
into the branch-and-bound tree, t := t + 1. If the partial solution is not promising, the
method presented in Section 2.1 is used to select nodes in Vbt that have not been traversed.
If such a node is found, the search process is restarted, otherwise backtracking is performed
by simply updating t := t− 1. Note that due to the special structure of Z, BitCLQ does
not need to restore the set of compatible nodes during backtracking, in contrast to the
update procedure (6) for the set CS that is performed in FINDCLIQUE.

2.3 Example

As an illustration, consider the 3-partite graph that is shown along with its adjacency
matrix M in Figure 1, where the partite 1 consists of nodes {1, 2, 3}, partite 2 contains
nodes {4, 5, 6}, and partite 3 contains nodes {7, 8, 9}. BitCLQ is initialized by setting
S := ∅, BS := {1, 2, 3} and Z1 := {111|111|111}. Since all the partites are of the same
size, i.e. |Z1,b| = 3 for all b ∈ BS , the one to branch on is chosen arbitrarily; assume that
the first partite Z1,1 is chosen for branching. The search process from this point restarts
3 times, each time adding one of the three nodes in Z1,1. The first node to add to S is
node 1, Z1,1,1 is then set to 0, and Z2 is subsequently created by performing logical AND
operation with Z1 and the corresponding row of the adjacency matrix M as operands:
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Algorithm 1 BitCLQ(t)

1: bt ∈ arg minb {|Zt,b| | b ∈ BS}
2: i := the first significant bit in Zt,bt
3: repeat
4: nt := the i-th node in bt
5: Zt,b,i := 0
6: S := S ∪ {nt}
7: if |S| = k then
8: Q := Q ∪ S
9: S := S \ {nt}

10: else
11: Zt+1,b := Zt,b ∧M(nt) for all b ∈ BS

12: BS := BS ∪ {bt}; BS := BS \ {bt}
13: P := number of partitions Zt,b with |Zt,b| > 0, b ∈ BS

14: if |S|+ P = k then
15: BitCLQ(t+ 1)
16: S := S \ {nt}
17: BS := BS \ {bt}; BS := BS ∪ {bt}
18: else
19: S := S \ {nt}
20: BS := BS \ {bt}; BS := BS ∪ {bt}
21: end if
22: end if
23: i := the first significant bit in Zt,bt
24: until i ≤ |Vbt |
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M =



1 2 3 4 5 6 7 8 9

1 0 0 0 1 1 1 0 1 1
2 0 0 0 0 0 1 0 1 1
3 0 0 0 0 0 0 0 1 1
4 1 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 1 0 1
6 1 1 0 0 0 0 1 1 0
7 0 0 0 1 1 1 0 0 0
8 1 1 1 0 0 1 0 0 0
9 1 1 1 0 1 0 0 0 0


Figure 1: A 3-partite graph and its adjacency matrix.

t := 1,
S := {1},
Z2 := Z1 ∧M(1) = {011|111|111} ∧ {000|111|011} = {000|111|011},
BS := {2, 3}.

As a result, the set Z2 of nodes compatible with the partial solution S = {1} contains
nodes {4, 5, 6, 8, 9}. Since none of the partites in BS is empty, the partial solution S is
promising and a new subproblem is created. The objective in the new subproblem is to
find a |BS |-clique in Z2. A node from Z2,3 will be added to S (since |Z2,3| < |Z2,2|). The
first node in Z2,3 to add to the partial solution is node 8. The bit corresponding to node
8 is set Z2,3,2 := 0, and we have

t := 2,
S := {1, 8},
Z3 := Z2 ∧M(8) = {000|111|001} ∧ {111|001|000} = {000|001|000},
BS := {2}.

Again, the partites in BS contain at least 1 node (node 6) in Z3. So the partial solution
is promising, and a new subproblem is created. In the next step, node 5 is added to S:

t := 3,
S := {1, 8, 6}.

At this point, since |S| = k = 3, i.e., a k-clique is found. To continue the search for other
k-cliques, the last node in S is removed. BitCLQ searches Z3,2 for another node that can
be added to S. Since such a node does not exist, the algorithm backtracks: t := 2, node
8 is removed from S, and BitCLQ restarts with S = {1, 9} as the partial solution.

8

DISTRIBUTION A: Distribution approved for public release



Table 1: Average computational time (in seconds) to find all the k-cliques (#CLQ) con-
tained in randomly generated k-partite graphs.

k m |V | p #CLQ FINDCLIQUE BitCLQ

3 100 300 0.1 1004 0.005 0.002
4 100 400 0.15 1124 0.008 0.002
5 100 500 0.2 1047 0.015 0.003
6 100 600 0.25 939 0.031 0.006
7 50 350 0.35 192 0.009 0.004
8 50 400 0.4 299 0.021 0.007
9 50 450 0.45 683 0.055 0.021
10 50 500 0.5 2672 0.176 0.071

3 Numerical Results

In order to illustrate the performance of the proposed method, the k-clique enumeration
problem for k-partite graphs has been solved by BitCLQ and FINDCLIQUE for randomly
generated graph instances of several types. Both algorithms were implemented in C++
and ran on a 64-bit Windows machine with 3GHz dual-core processor and 4GB of RAM. It
is worth noting that the original implementation of FINDCLIQUE algorithm by Grunert
et al [3] relies on the use of vectors and links data types from the C++ standard
template library (STL). In our experiments, we observed that by replacing the original data
structure of vectors of lists with arrays, up to 300% improvement in FINDCLIQUE running
time is achieved on the data sets used in our case study. The numerical results reported
for the FINDCLIQUE algorithm are obtained using this “improved” implementation.

Our numerical experiments involve randomly generated instances of k-partite graphs
of two types. The first set of instances consists of two groups: small-size instances and
large-size instances. In the small-size instances, k-partite graphs are randomly generated
with the number of partites in the range k ∈ [3, 10]. For each value of k, the reported
running times and the number of k-cliques in the graph are averaged over 10 instances.
Table 1 shows the summary of the experimental results for this first group. The columns of
the table show the number k of partites in the k-partite graph, the number m of nodes in
each partite of the graph, the total number |V | of nodes in the graph, the graph’s density
p, and the total number of k-cliques in the graph (#CLQ). The density parameter p is
used for generation of the graphs, and is equal to the probability of an edge connecting
two nodes from different partites: Pr {(vi, vj) ∈ E} = p.

The second group include instances of larger size with the values of k ∈ {25, 50, 75, 100}.
For each value of k in this group, 10 random instances of the k-partite graph have been
generated and solved by FINDCLIQUE and BitCLQ. Table 2 summarizes the results of
the experiments for this group. Since the graphs used in this set of experiments are rather
large and the list of all k-cliques contained in them may not be found in a reasonable time,
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Table 2: Average number of k-cliques found in randomly generated instances of k-partite
graphs after 200 seconds.

k m |V | p time FINDCLIQUE BitCLQ

25 40 1000 0.8 200 13,556,733 23,516,581
50 30 1500 0.9 200 800,369 1,032,111
75 30 2250 0.95 200 557,042,389 735,722,241
100 30 3000 0.95 200 348,416 365,799

Table 3: Average computational time (in seconds) needed to find the first n-clique in an n-
partite graph corresponding to a randomized instance of the Multidimensional Assignment
Problem with d dimensions and n elements per dimension.

n d m |V | p BitCLQ FINDCLIQUE

10 3 10 100 0.74 0.00 0.00
20 3 12 240 0.86 0.00 0.00
30 3 13 390 0.91 0.02 0.00
40 3 13 520 0.93 0.76 1.38
50 3 14 700 0.94 0.42 0.42
60 3 14 840 0.95 55.28 86.87
70 3 14 980 0.96 251.78 395.34

10 4 22 220 0.65 0.00 0.00
20 4 28 480 0.82 0.08 0.20
30 4 31 930 0.87 8.18 22.41

10 5 48 480 0.59 0.00 0.01
20 5 68 1360 0.77 13.29 28.23

the solution process has been terminated after 200 seconds and the number of k-cliques
found by each method was recorded. BitCLQ outperformed FINDCLIQUE in all cases.

The third set of experiments was conducted to compare the performance of BitCLQ
with FINDCLIQUE on randomly generated instances of Multidimensional Assignment
Problem (MAP). As was mentioned before, high-quality solutions for randomized MAPs
can be obtained as n-cliques in an n-partite subgraph of the underlying graph representing
the MAP instance. graphs that are constructed in a special way from the problem’s data
(in this case, m denotes the number of elements per dimension in a d-dimensional MAP).
For MAPs with random iid costs, the resulting n-partite graph can be viewed as randomly
generated with a certain density. The corresponding results are reported in Table 3, where
n denotes the number of partitions in the graphs, and d is the number of dimensions in
the MAP. For each value of n, 10 instances are solved, and the computational time to find
the first n-clique is recorded. Algorithms are terminated after finding the first n-clique.
The average computational time over 10 runs is reported for each n for each algorithm.
In all cases but one, BitCLQ performs better or equally well compared to FINDCLIQUE.
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4 Conclusions

In this paper, bitset-based data structures are proposed for the algorithm presented by
Grunert et al [3] for the problem of enumerating all k-cliques in a k-partite graph. Utiliza-
tion of bitsets and the associated bit parallelism enables one to reduce the computational
cost of branching and backtracking in the branch-and-bound procedure. Numerical ex-
periments on small- and large-scale randomly generated k-partite graphs show that the
proposed approach allows for achieving substantial computational improvements over the
original method of [3].
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