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Introduction 

It is well known that fractional differential equations both ordinary and fractional partial differential 

have played an important role in applications in theoretical modeling of scientific and engineering problems. 

The qualitative studies such as existence, uniqueness and computation of such dynamical models are useful in 

applications. Some approximate methods like the radial functions method and other methods are used in [3, 4, 

7, 16] to compute exact or approximate solutions.  

In solving nonlinear problems, the monotone method combined with the method of upper and lower 

solutions is a popular choice, because the existence of solutions by the monotone method is both theoretical and 

computational. The monotone method for various nonlinear problems has been developed in reference [8]. The 

monotone method (monotone  iterative technique) combined with the method of lower and upper solutions 

yields monotone sequences, which converges to minimal and maximal solutions of  the nonlinear differential 

equation. In many nonlinear problems (nonlinear dynamic systems), the nonlinear term is the sum of increasing 

and decreasing functions. The monotone method extended to such systems is called the generalized monotone 

method. Here the generalized monotone method has been extended to the Caputo fractional differential equation 

of order q (where 0 < 𝑞 < 1) with an initial condition as well as the existence of coupled minimal and maximal 

solutions for such an equation and a numerical example is provided as an application of the theoretical results. 

 

The linear sub hyperbolic fractional partial differential equation in one dimensional space, that is the qth 

time order derivative is such that 1 < q < 2, and the linear super hyperbolic fractional partial differential 

equation in one dimensional space, that is the qth time order derivative is such that 2 < q < 3 are considered . In 



the special case when q = 1, it is the parabolic equation and when q = 2, it is the hyperbolic equation. The 

eigenfunction expansion method is used to obtain representation forms for the solution of the linear sub and the 

linear super hyperbolic fractional partial differential equations in terms of the nonhomogeneous terms, initial 

and boundary conditions. See [9,10, 11, 12, 14] and the references therein for qualitative study, applications and 

numerical study of fractional differential equations. The representation forms obtained are useful in computing  

numerical solutions to the sub and super hyperbolic partial differential equations. 

 

 

Preliminaries 

In this section, we recall some known definitions and known results, which are useful to develop our main 

results. Initially, we recall some definitions: 

 

Definition 2.1. Caputo derivative of order 𝑞, when 𝑁 −  1 <  𝑞 <  𝑁 𝑓𝑜𝑟 𝑡 ∈   [0, 𝑇], 
is defined as  

𝐷
0+
𝑞𝑐 𝑢(𝑡) =

1

Γ(𝑁−𝑞)
(∫ (𝑡 − 𝑠)𝑁−𝑞−1𝑢𝑁(𝑠)𝑑𝑠

𝑡

0
). 

In the special case when N = 1, 

Definition 2.2. Caputo fractional integral of order 𝑞, when 0 <  𝑞 <  1, is defined as 

𝐷
0+
𝑞𝑐 𝑢(𝑡) =

1

Γ(1−𝑞)
(∫ (𝑡 − 𝑠)−𝑞𝑢′(𝑠)𝑑𝑠

𝑡

0
). 

 

Definition 2.3. Riemann Liouville fractional derivative of order 𝑞, when 0 <  𝑞 < 1 𝑓𝑜𝑟 𝑡 ∈   [0, 𝑇], 
is defined as  

𝐷
𝑞

𝑢(𝑡) =
1

Γ(1−𝑞)

𝑑

𝑑𝑡
∫ (𝑡 − 𝑠)−𝑞𝑢(𝑠)𝑑𝑠

𝑡

0
. 

Definition 2.4. Riemann Liouville right-fractional integral of order 𝑞, when 0 <  𝑞 < 1 𝑓𝑜𝑟 𝑡 ∈   [0, 𝑇], 
is defined as  

𝐷
−𝑞

𝑡0
𝑢(𝑡) =

1

Γ(𝑞)

𝑑

𝑑𝑡
∫ (𝑡 − 𝑠)−𝑞𝑢(𝑠)𝑑𝑠

𝑡

0
. 

Definition 2.5. The two parameter Mittag-Leffler function is defined as 

𝐸𝛼,𝛽(𝜆𝑡𝛼)  = ∑
(𝑡𝛼)𝑘

Γ(𝛼𝑘 + 𝛽)

∞

𝑘=0

 

and the single parameter Mittag-Leffler function is defined as 𝐸𝛼(𝜆𝑡𝛼)  =  𝐸𝛼,1(𝜆𝑡𝛼). 

 

 

 

 

Definition 2.6. let  0 < 𝑞 < 1, 𝑝 = 1 − 𝑞 a function 𝜙 ∈ 𝐶(𝐽, 𝑅)is a  𝐶𝑝 continuous function if 

  (𝑡 − 𝑡0)1−𝑞𝜙(𝑡) ∈ 𝐶(𝐽0, 𝑅). The set of  𝐶𝑝 functions is denoted by 𝐶𝑝(𝐽, 𝑅). Furthermore, given a function 

𝜙(𝑡) ∈ 𝐶(𝐽0, 𝑅), the function  (𝑡 − 𝑡0)1−𝑞𝜙(𝑡) is called the continuous extension of 𝜙(𝑡). 

 



 

Consider the linear Caputo fractional differential equation of order q when 𝑁 − 1 <  𝑞 <  𝑁 with initial 

conditions of the form 

 

( 𝐷
𝑞𝑐 𝑢)(𝑡) −  𝜆𝑢(𝑡)  =  𝑓(𝑡), 𝑢(𝑘)(0)  =  𝑏𝑘   (2.1) 

where 𝑏𝑘 ∈ ℝ for 𝑘 =  0, 1, 2, . . . 𝑁 −  1 and 𝑓 ∈  𝐶[𝐽, ℝ] and 𝐽 =  [0, 𝑇]. Also, 𝑢(𝑘)(0) denotes the kth 

derivative of 𝑢 with respect to 𝑡 at 𝑡 =  0. If 𝑓(𝑡) in (2.1) is in the space of 𝐶𝑘−1[0, 𝑇]. The problem (2.1) is 

equivalent to the Volterra integral equation 

𝑢(𝑡) = ∑
𝑏𝑗

𝑗!
𝑡𝑗 +

𝜆

Γ(𝑞)
∫

𝑢(𝑠)𝑑𝑠

(𝑡−𝑠)1−𝑞 +
1

Γ(𝑞)

𝑡

0
𝑁−1
𝑗=0 ∫

𝑓(𝑠)𝑑𝑠

(𝑡−𝑠)1−𝑞

𝑡

0
. 

The solution obtained is in the space of 𝐶𝑁[0, 𝑇], see [7] for details. 

 

Consider the equation  

(2.5) ( 𝐷𝑞𝑢𝑐 )(t) = f(𝑡, 𝑢(𝑡) ) + 𝑔(𝑡, 𝑢(𝑡) ),   𝑢(0) = 𝑢0, where 0 < 𝑞 < 1, 
𝑓(𝑡, 𝑢(𝑡) ), 𝑔(𝑡, 𝑢(𝑡) ) ∈ 𝐶[𝐽 × 𝑅, 𝑅], 𝑓(𝑡, 𝑢)is increasing in 𝑢 on 𝐽 and 𝑔(𝑡, 𝑢) is decreasing in 𝑢 on 𝐽. 
 

Definition. Let 𝑣0, 𝑤0 ∈ 𝐶1[𝐽, 𝑅]. 𝑣0, 𝑤0 are said to be coupled lower and upper solutions of type I of (2.5) if 

( 𝐷
𝑞𝑐 𝑣)(𝑡)  ≤  𝑓(𝑡, 𝑣(𝑡))  +  𝑔(𝑡, 𝑤(𝑡)),    𝑣(0)  ≤ 𝑢0, and 

( 𝐷
𝑞𝑐 𝑤)(𝑡)  ≥ 𝑓(𝑡, 𝑤(𝑡))  +  𝑔(𝑡, 𝑣(𝑡)),   𝑤(0)  ≥ 𝑢0. 

 

 
Generalized Monotone Method for Caputo Fractional Differential 

Equation with an Initial Condition 

The qualitative study of fractional differential equations has gained significant importance due to its 

applications in various branches of Science, Engineering and medicine, see [1,3,13,14,16,18]. In [14] it has 

been demonstrated that half order fractional differential equations give considerably better results for certain 

electro chemical problems than the classical approach. In addition [1,13,18] have studied linear fractional 

reaction diffusion equations which are applicable in random walks and nanotechnology.  

Consider the equation  

(3.1) ( 𝐷𝑞𝑢𝑐 )(t) = f(𝑡, 𝑢(𝑡) ) + 𝑔(𝑡, 𝑢(𝑡) ),   𝑢(0) = 𝑢0,  

where 0 < 𝑞 < 1, 𝑓(𝑡, 𝑢(𝑡) ), 𝑔(𝑡, 𝑢(𝑡) ) ∈ 𝐶[𝐽 × 𝑅, 𝑅], 𝑓(𝑡, 𝑢)is increasing in 𝑢 on 𝐽 and 𝑔(𝑡, 𝑢) is decreasing 

in 𝑢 on 𝐽. 
 

Theorem 3.1  Assume that 

 

I.  𝑣0, 𝑤0 ∈ 𝐶1[𝐽, 𝑅].  𝑣0, 𝑤0are coupled lower and upper solutions of type I, with 

 𝑣0 ≤ 𝑤0on J. 

 

II. 𝑓(𝑡, 𝑢(𝑡)), 𝑔(𝑡, 𝑢(𝑡)) ∈ 𝐶[𝐽 × 𝑅, 𝑅]], where 𝑓(𝑡, 𝑢)is increasing in 𝑢 on 𝐽 and 𝑔(𝑡, 𝑢) is decreasing in 𝑢 

on 𝐽. 
Then there exist monotone sequences, 𝑣𝑛(𝑡)and 𝑤𝑛(𝑡), such that 𝑣𝑛(𝑡) → 𝜌(𝑡) and 𝑤𝑛(𝑡) → 𝑟(𝑡) uniformly 

and monotonically, where 𝜌(𝑡)and 𝑟(𝑡) are coupled minimal and maximal solutions of equation (3.1) on J. That 

is, for any solution, 𝑢(𝑡), of (3.1) with 𝑣0(𝑡) ≤ 𝑢0(𝑡) ≤ 𝑤0(𝑡)on J, we get natural sequences, {𝑣𝑛} and {𝑤𝑛}, 

satisfying the following, 

𝑣0(𝑡) ≤ 𝑣1(𝑡)  ≤ 𝑣2(𝑡)  ≤· · · ≤ 𝑣𝑛(𝑡)  ≤ 𝑢(𝑡)  ≤  𝑤𝑛(𝑡)  ≤ · · · ≤ 𝑤2(𝑡)  ≤  𝑤1(𝑡)  ≤ 𝑤0(𝑡), 



for each 𝑛 ≤  1 on J. Also𝜌(𝑡)  ≤ 𝑢(𝑡) ≤  𝑟(𝑡) on 𝐽. 

 

 

The next result uses intertwined sequences.  

 

Theorem 3.2. Assume hypotheses, I. and II, of the above theorem hold. Then for any solution, 𝑢(𝑡), of 

equation (3.1) with 𝑣0(𝑡) ≤ 𝑢0(𝑡) ≤ 𝑤0(𝑡)on J, the alternating sequences, 

{𝑣2𝑛, 𝑤2𝑛+1} and {𝑣2𝑛+1, 𝑤2𝑛}, satisfying intertwined sequences, 

 

(3.7)𝑣0(𝑡) ≤  𝑤1(𝑡) ≤· · · ≤ 𝑣2𝑛(𝑡) ≤ 𝑤2𝑛+1(𝑡) ≤ 𝑢(𝑡) ≤ 𝑣2𝑛+1(𝑡) ≤ 𝑤2𝑛(𝑡) ≤ ⋯ 𝑣1(𝑡) ≤ 𝑤0(𝑡), 
for each 𝑛 ≥  1 on 𝐽. This requires using type (iii) iterative schemes, 

 

( 𝐷
𝑞𝑐 𝑣𝑛+1)(𝑡)  =  𝑓(𝑡, 𝑤𝑛(𝑡))  +  𝑔(𝑡, 𝑣𝑛(𝑡)), 𝑣𝑛+1(0)  =  𝑢0 and 

( 𝐷
𝑞𝑐 𝑤𝑛+1)(𝑡)  =  𝑓(𝑡, 𝑣𝑛(𝑡))  +  𝑔(𝑡, 𝑤𝑛(𝑡)), 𝑤𝑛+1(0)  = 𝑢0. 

 

Further, monotone sequences, {𝑣2𝑛, 𝑤2𝑛+1} and {𝑤2𝑛, 𝑣2𝑛+1}, converge to 𝜌(𝑡) and 𝑟(𝑡), respectively, on 𝐽 . 

𝜌(𝑡) and 𝑟(𝑡) are coupled minimal and maximal solutions of (3.1), respectively. Also, 𝜌(𝑡) ≤ 𝑢(𝑡)  ≤ 𝑟(𝑡) on 

𝐽. 

 

Theorem 3.4. If in addition to hypotheses I and II, suppose 𝑓(𝑡, 𝑢) satisfies left-hand-side Lipschitz condition, 

𝑓(𝑡, 𝑢2)  −  𝑓(𝑡, 𝑢1) ≤  𝐿1(𝑢2  − 𝑢1), 𝑢2 ≥ 𝑢1, and g(t, u) satisfies right-hand-side Lipschitz condition, 

𝑔(𝑡, 𝑢2) −  𝑔(𝑡, 𝑢1) ≥ −𝐿2(𝑢2  −  𝑢1), 𝑢2 ≥ 𝑢1, where 𝑣0  ≤  𝑢 1 ≤  𝑢2  ≤ 𝑤0 implies that 𝜌 =  𝑟 =  𝑢, the 

unique solution of (3.1). 

 

 

GENERALIZED MONOTONE METHOD FOR FRACTIONAL 

REACTION DIFFUSION EQUATIONS 

Consider the fractional reaction diffusion equation of the form 

𝜕𝑡
𝑞𝑐 𝑢 − 𝑘

𝜕2𝑢

𝜕𝑥2
= 𝑓(𝑡, 𝑥, 𝑢) + 𝑔(𝑡, 𝑥, 𝑢) ,     (𝑡, 𝑥) ∈ 𝑄𝑇

𝑢(𝑡, 0) = 𝐴(𝑡),      𝑢(𝑡, 𝐿) = 𝐵(𝑡)   (𝑡, 𝑥) ∈ Γ𝑇

𝑢(0, 𝑥) = ℎ(𝑥)     𝑥 ∈ Ω̅ = Ω,

              (4.1) 

where  Ω =  [0, 𝐿], 𝐽 =  (0, 𝑇], 𝑄 𝑇 =  𝐽 × Ω , 𝑘 >  0 and  Γ𝑇 = (0, 𝑇) × 𝜕Ω. 
Here 𝜕𝑡

𝑞𝑐 𝑢 is the Caputo Partial Derivative with respect to t of order 𝑞, 0 <  𝑞 <  1, which is defined as 

 

𝜕𝑡
𝑞𝑐 𝑢 =

1

Γ(1−𝑞)
(∫ (𝑡 − 𝑠)−𝑞𝑡

0

𝜕𝑢(𝑠,𝑥)

𝜕𝑠
𝑑𝑠). 

 

Assume that𝑓, 𝑔 ∈ 𝐶1,2[𝑄𝑇 × 𝑅, 𝑅], such that 𝑓(𝑡, 𝑥, 𝑢) is non-decreasing in 𝑢 and 𝑔(𝑡, 𝑥, 𝑢) is non-increasing 

in 𝑢, 𝐴(𝑡), 𝐵(𝑡)  ∈  𝐶1[𝐽, 𝑅] and ℎ(𝑥)  ∈  𝐶2+𝛼[Ω, 𝑅], where 0 <  𝛼 <  1. 

 

In this section we develop the generalized monotone method for (4.1) combined with coupled lower and upper 

solutions of type I. The generalized monotone method yields monotone sequences which converge uniformly 

and monotonically to coupled minimal and maximal solutions of (4.1). Furthermore, assuming a uniqueness 

condition, we prove the existence of the unique solution of (4.1). 



Theorem 4.1: Let (𝑣0, 𝑤0) be coupled lower and upper solutions of (2.1) such that 𝑣0 ≤ 𝑤0 on 𝑄𝑇. 

Furthermore, suppose 𝑓(𝑡, 𝑥, 𝑢)  is nondecreasing in u on 𝑄𝑇 and 𝑔(𝑡, 𝑥, 𝑢)is nonincreasing in 𝑄𝑇 and  

𝑓(𝑡, 𝑥, 𝑢) − 𝑓(𝑡, 𝑥, �̅�)   ≤   𝐿1(𝑢 − �̅�)

𝑔(𝑡, 𝑥, 𝑢) − 𝑔(𝑡, 𝑥, �̅�) ≥ − 𝐿2(𝑢 − �̅�),
 

whenever 𝑢 ≥ �̅�  on  𝑄𝑇. Then there exists monotone sequences {𝑣𝑛(𝑡, 𝑥)} and {𝑤𝑛(𝑡, 𝑥)} defined such that 

𝑣𝑛(𝑡, 𝑥) and 𝑤𝑛(𝑡, 𝑥) are solutions to  

𝜕𝑡
𝑞𝑐 𝑣𝑛(𝑡, 𝑥) − 𝑘

𝜕2𝑣𝑛(𝑡, 𝑥)

𝜕𝑥2
= 𝑓(𝑡, 𝑥, 𝑣𝑛−1) + 𝑔(𝑡, 𝑥, 𝑤𝑛−1) ,     (𝑡, 𝑥) ∈ 𝑄𝑇

𝑣𝑛(𝑡, 0) = 𝐴(𝑡),      𝑣𝑛(𝑡, 𝐿) = 𝐵(𝑡)   (𝑡, 𝑥) ∈ Γ𝑇

𝑣𝑛(0, 𝑥) = ℎ(𝑥)     𝑥 ∈ Ω̅ = Ω.

      (4.2) 

and              

𝜕𝑡
𝑞𝑐 𝑤𝑛(𝑡, 𝑥) − 𝑘

𝜕2𝑤𝑛(𝑡, 𝑥)

𝜕𝑥2
= 𝑓(𝑡, 𝑥, 𝑤𝑛−1) + 𝑔(𝑡, 𝑥, 𝑣𝑛−1) ,     (𝑡, 𝑥) ∈ 𝑄𝑇

𝑤𝑛(𝑡, 0) = 𝐴(𝑡),      𝑤𝑛(𝑡, 𝐿) = 𝐵(𝑡)   (𝑡, 𝑥) ∈ Γ𝑇

𝑤𝑛(0, 𝑥) = ℎ(𝑥)     𝑥 ∈ Ω̅ = Ω.

      (4.3) 

respectively. Also, these sequences converge uniformly and monotonically to 𝜌(𝑡, 𝑥) and 𝑟(𝑡, 𝑥) such that 

(𝜌(𝑡, 𝑥), 𝑟(𝑡, 𝑥)) are coupled minimal and maximal solutions of the nonlinear initial value problem (4.1), 

provided 𝑣0(𝑡, 𝑥) ≤ 𝑢(𝑡, 𝑥) ≤ 𝑤0(𝑡, 𝑥), where 𝑢(𝑡, 𝑥) is any solution of (2.1). Furthermore, 𝜌(𝑡, 𝑥) = 𝑟(𝑡, 𝑥) =

𝑢(𝑡, 𝑥), the unique solution of (2.1), on �̅�𝑇. 

 

A Representative Formula for the Linear Caputo Fractional Wave 

Equation 

It is well known that fractional Brownian motion has been modeled as parabolic stochastic differential equation. 

Here a representation form for the solution of the deterministic one dimensional fractional wave equation with 

Caputo fractional derivative of order 𝑞, for 1 <  𝑞 <  2 has been developed.  For 𝑞 =  1 and 𝑞 =  2, it 

reduces to the one dimensional parabolic equation and one dimensional wave equation, respectively. 

 
Consider the linear Caputo fractional wave differential equation 

 

𝝏𝒕
𝒒𝒄 𝒖 − 𝒄𝟐

𝝏𝟐𝒖

𝝏𝒙𝟐
= 𝑹(𝒕, 𝒙) ,     (𝒕, 𝒙) ∈ 𝑸𝑻

𝒖(𝒕, 𝟎) = 𝑨(𝒕),      𝒖(𝒕, 𝑳) = 𝑩(𝒕)   (𝒕, 𝒙) ∈ 𝚪𝑻

𝒖(𝟎, 𝒙) = 𝒉(𝒙), 𝒖𝒕(𝟎, 𝒙) = 𝒈(𝒙)     𝒙 ∈ �̅�,

                   (𝟓. 𝟏) 

Where 𝛀 =  [𝟎, 𝑳], 𝑱 =  (𝟎, 𝑻], 𝑸 𝑻 =  𝑱 × 𝛀 , 𝒄𝟐 >  𝟎 and  𝚪𝑻 = (𝟎, 𝑻) × 𝝏𝛀. 

In order to obtain a representation formula we need to consider the corresponding homogeneous equation with 

homogeneous boundary condition. Using separation of variables method we can and the eigenfunctions 

corresponding to the eigenvalues 𝜆𝑛. The eigenfunctions and the eigen- values vary depending on the type of 



boundary conditions. In order to get a suitable final form of the solution we normalize the eigenfunctions. For 

the above type of boundary conditions, we get 𝜆𝑛 = (
𝑛𝜋

𝐿
)

2
and the eigen- functions are 𝜙𝑛(𝑥) = 𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
. 

 

𝑢(𝑡, 𝑥) = ∫ [∑ ℎ(𝑥0)𝜙𝑛(𝑥0)𝑑𝑥0𝐸𝑞,1(−𝑐2𝜆𝑛𝑡𝑞) + ∫ [∑ 𝑔(𝑥0)𝜙𝑛(𝑥0)𝑑𝑥0𝑡𝑞𝐸𝑞,2(−𝑐2𝜆𝑛𝑡𝑞)

∞

𝑛=1

𝐿

0

∞

𝑛=1

𝐿

0

 

+∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞𝑞(−𝑐2𝜆(𝑡 − 𝑠)𝑞) ∫ 𝑄(𝑠, 𝑥)
𝐿

0
𝑑𝑠

𝑡

0
+

𝑐2𝑛𝜋

𝐿
∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞𝑞(−𝑐2𝜆(𝑡 − 𝑠)𝑞)𝐴(𝑠)𝑑𝑠

𝑡

0
 

+(−1)𝑛+1 𝑐2𝑛𝜋

𝐿
∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞𝑞(−𝑐2𝜆(𝑡 − 𝑠)𝑞)𝐵(𝑠)𝑑𝑠

𝑡

0
]]. 

 

Sub Hyperbolic Linear Partial Fractional Differential 

Equation in One Dimensional Space with Numerical Results  
 

In this section a representation form for the sub hyperbolic linear fractional partial differential equation in one 

dimensional space is obtained. It is called sub hyperbolic if the time derivative is of order q when 1 < q < 2. It 

is easy to observe that, if q = 2, it is a second order linear hyperbolic equation in one dimensional space. 

Consider the following linear Caputo fractional wave differential equation: 

𝜕𝑡
𝑞

𝑢 − 𝑐2
𝜕2𝑢

𝜕𝑥2
𝑐 = 𝐹(𝑥, 𝑡) 𝑜𝑛 𝑄𝑇,

𝑢(0, 𝑡) = 𝐴(𝑡),    𝑢(𝐿, 𝑡) = 𝐵(𝑡)      𝑜𝑛 Γ𝑇,

𝑢(0, 𝑥) = ℎ0(𝑥), 𝑢𝑡(0, 𝑥) =  ℎ1(𝑥)   𝑜𝑛 Ω̅ ,

                  (6.1) 

where 𝛺 =  [0, 𝐿], 𝐽 =  (0, 𝑇], 𝑄𝑇 =  𝐽 × Ω, 𝑐2 >  0 and Γ𝑇 =  (0, 𝑇) × 𝜕Ω. 

We develop a representation form for (6.1) which is useful in computing the solution of linear Caputo 

fractional partial differential equations of order 𝑞 𝑤ℎ𝑒𝑛 1 <  𝑞 <  2, using the eigenfunction expansion 

method with eigenvalues 𝜆𝑛 = (
𝑛𝜋

𝐿
)

2
  and eigenfunctions 𝜙𝑛(𝑥)  =  𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
). This will be useful in the 

development of the generalized monotone method to be developed in future work. We also assume that the 

initial boundary condition satisfy the compatability condition. Hence, we set 

𝑢(𝑡, 𝑥) = ∑ 𝑏𝑛(𝑡)𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
∞
𝑛=1 .    (6.2) 

We must then find 𝑏𝑛(𝑡) for each 𝑛 ≥ 1. Taking the Caputo derivative of each side, Green’s formula and the 

boundary conditions yields the following fractional equation to be solved: 

𝐷𝑞𝑏𝑛(𝑡) + 𝑐2 (
𝑛𝜋

𝐿
)

2
𝑏𝑛(𝑡) =

2

𝐿

𝐶 [
𝑛𝜋𝑐2

𝐿
{𝐴(𝑡) + (−1)𝑛𝐵(𝑡)} + ∫ 𝐹(𝑡, 𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0
]      (6.3) 

With initial conditions 

𝑏𝑛(0) =
2

𝐿
∫ ℎ0(𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥 ,

𝐿

0

             𝑏𝑛
′(0) =

2

𝐿
∫ ℎ1(𝑥)𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥.

𝐿

0

 

Using Equation (2.1) to solve (6.3) substituting in for 𝑏𝑛(𝑡) in equation (6.2) and interchanging the order of 

integration and summation, we obtain the representation form: 

 

 

 

𝑢(𝑡, 𝑥) = 



∫ [∑ ℎ(𝑥0)𝜑𝑛

∞

𝑛=1

(𝑥0)𝑑𝑥0𝐸𝑞,1(−𝑐2 𝜆𝑛𝑡𝑞)]

𝐿

0

                                                           

+ ∫ [∑ ℎ1(𝑥0)𝜑𝑛

∞

𝑛=1

(𝑥0)𝜑𝑛(𝑥)𝑑𝑥0 𝑡𝐸𝑞,2(−𝑐2 𝜆𝑛𝑡𝑞)]

𝐿

0

                                                    

+ 
2

𝐿
∫ ∫ ∑ (𝑡 − 𝑠)(𝑞−1)

∞

𝑛=1

𝐿

0

𝑡

0

𝐸𝑞,𝑞(−𝑐2 𝜆𝑛(𝑡 − 𝑠)𝑞)[𝐹(𝑠, 𝑥0)𝜑𝑛(𝑥0)𝜑𝑛(𝑥)𝑑𝑥0]𝑑𝑠 

+ ∫
2𝑐2𝑛𝜋

𝐿2
(𝑡 − 𝑠)(𝑞−1)𝐸𝑞,𝑞(−𝑐2𝜆𝑛(𝑡 − 𝑠)𝑞)𝐴(𝑠)𝜑𝑛(𝑥)𝑑𝑠                                       

𝑡

0

 

+ (−1)𝑛+1 ∫
2𝑐2𝑛𝜋

𝐿2
(𝑡 − 𝑠)(𝑞−1)𝐸𝑞,𝑞(−𝑐2𝜆𝑛(𝑡 − 𝑠)𝑞)𝐵(𝑠)𝜑𝑛(𝑥)𝑑𝑠.

𝑡

0

                     

 

Super Hyperbolic Linear Partial Fractional Differential 

Equation in One Dimensional Space with Numerical Results  

 
Using the method of successive approximation by setting 𝑢0(𝑡) = ∑

𝑏𝑗

𝑗!
𝑡𝑗𝑁−1

𝑗=0  and taking the limit of 

𝑢𝑚(𝑡) 𝑎𝑠  𝑚 → ∞, the solution of (2.1) is given by 

𝑢(𝑡) = ∑ 𝑏𝑗𝑡𝑗𝐸𝑞,𝑗+1(𝜆𝑡𝑞) + ∫ (𝑡 − 𝑠)𝑞−1𝐸𝑞,𝑞(𝜆(𝑡 − 𝑠)𝑞)𝑓(𝑠)𝑑𝑠
𝑡

0
𝑁−1
𝑗=0 . 

Next we consider an eigenvalue problem on one dimensional space. For that purpose consider the eigenvalue 

problem 

𝑢” +  𝜆𝑢 =  0  
with mixed homogeneous boundary conditions of the form: 

𝐵𝑢(𝑎)  =  𝛼𝑖𝑢(𝑖)  +  (−1)(𝑖+1)𝛽𝑖𝑢′(𝑖)  =  0, 𝑓𝑜𝑟 𝑖 =  0, 1. 

The value of λ for which the nontrivial solution for the boundary value problem exists is called the eigenvalue 

denoted as 𝜆𝑛 and the corresponding nontrivial solution is called the eigenfunction denoted as 𝜑𝑛(𝑥) . The main 

result is developed using the eigenvalue problem with Direchlet boundary conditions, 

u(0) = u(L) = 0.  

In this section a representation form for the super hyperbolic linear fractional partial differential equation in one 

dimensional space is obtained. It is called super hyperbolic if the time derivative is of order q when 2 < q < 3. It 

is easy to observe that, if q = 2, it is a second order linear hyperbolic equation in one dimensional space. 

Consider the following linear Caputo fractional wave differential equation: 

𝜕𝑡
𝑞

𝑢 − 𝑐2
𝜕2𝑢

𝜕𝑥2
𝑐 = 𝐹(𝑥, 𝑡) 𝑜𝑛 𝑄𝑇,

𝑢(0, 𝑡) = 𝐴(𝑡),    𝑢(𝐿, 𝑡) = 𝐵(𝑡)      𝑜𝑛 Γ𝑇,

𝑢(0, 𝑥) = ℎ0(𝑥), 𝑢𝑡(0, 𝑥) =  ℎ1(𝑥), 𝑢𝑡𝑡(0, 𝑥) =  ℎ2(𝑥)    𝑜𝑛 Ω̅ ,

                  (7.1) 

where 𝛺 =  [0, 𝐿], 𝐽 =  (0, 𝑇], 𝑄𝑇 =  𝐽 × Ω, 𝑐2 >  0 and Γ𝑇 =  (0, 𝑇) × 𝜕Ω. We also assume that 

𝐴(𝑡), 𝐵(𝑡) ∈ 𝐶3[𝐽, 𝑅], and 𝐹(𝑡, 𝑥) ∈ 𝐶3,2[𝑄𝑇, 𝑅]. 

Assume the following compatability conditions relative to the initial and boundary conditions: 

ℎ0(0) = 𝐴(0) = 0, ℎ0(𝐿) = 𝐵(0) = 0 



ℎ1(0) = 𝐴′(0) = 0,         ℎ1(𝐿) = 𝐵′′(0) = 0 

ℎ2(0) = 𝐴′′(0) = 0,         ℎ2(𝐿) = 𝐵′′(0) = 0. 

This is needed when differentiating the integral representation of the terms related to the boundary 

conditions and when the problem is reduced to homogeneous boundary conditions. As in section 3, we set 

𝑢(𝑡, 𝑥) = ∑ 𝑏𝑛(𝑡)𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
∞
𝑛=1 .  As before, the expression for 𝑏𝑛(𝑡) is found for each 𝑛 ≥ 1 by using Lagrange’s 

identity along with Green’s formula and the boundary conditions and substitute back into the expression for  

𝑢(𝑡, 𝑥). Changing the order of integration and summation, we obtain the solution : 

𝑢(𝑡, 𝑥) = 

∫ [∑ ∑ ℎ𝑗(𝑥0)

2

𝑗=0

𝜑𝑛

∞

𝑛=1

(𝑥0)𝑑𝑥0𝑡𝑗𝐸𝑞,𝑗+1(−𝑐2 𝜆𝑛𝑡𝑞)]

𝐿

0

                                        

                                            

+ 
2

𝐿
∫ ∫ ∑ (𝑡 − 𝑠)(𝑞−1)

∞

𝑛=1

𝐿

0

𝑡

0

𝐸𝑞,𝑞(−𝑐2 𝜆𝑛(𝑡 − 𝑠)𝑞)[𝐹(𝑠, 𝑥0)𝜑𝑛(𝑥0)𝜑𝑛(𝑥)𝑑𝑥0]𝑑𝑠   

+ ∫ ∑
2𝑐2𝑛𝜋

𝐿2
(𝑡 − 𝑠)(𝑞−1)𝐸𝑞,𝑞(−𝑐2𝜆𝑛(𝑡 − 𝑠)𝑞)𝐴(𝑠)𝜑𝑛(𝑥)𝑑𝑠

∞

𝑛=1

                                   

𝑡

0

 

+ (−1)𝑛+1 ∫
2𝑐2𝑛𝜋

𝐿2
(𝑡 − 𝑠)(𝑞−1)𝐸𝑞,𝑞(−𝑐2𝜆𝑛(𝑡 − 𝑠)𝑞)𝐵(𝑠)𝜑𝑛(𝑥)𝑑𝑠.                      

𝑡

0

 

This representation formula for the solution of (7.1) provides a methodology for computing the solution for 

different nonhomogeneous terms and different initial and boundary conditions. The convergence of the infinite 

series involves the Mittag-Leffler functions is yet to be established even when 𝟎 < 𝒒 < 𝟏. However, if the 

boundary conditions are homogeneous and the initial and nonhomogeneous terms are chosen such that there are 

a finite number of Mittag-Leffler functions, then the solution can be numerically computed using MAPLE. 

Riemann Liouville and Caputo Fractional Differential and 

Integral Inequalities 

In this section, results for coupled fractional and ordinary integral inequalities where the nonlinear function is 

the sum of an increasing and a decreasing function have been developed. Also, the corresponding coupled 

fractional and ordinary differential inequality results have been developed without requiring the increasing or 

decreasing nature of the nonlinear function. In fact, results have been developed for coupled differential and 

integral inequalities for both ordinary and fractional equations. These results are useful in the qualitative study 

of ordinary and fractional dynamic systems of both Riemann Liouville and Caputo forms. 

 

For the sake of simplicity, the obtained results will be on the interval 𝐽 = (𝑡0, 𝑇]. Furthermore, 𝐽0 = (𝑡0, 𝑇] = 𝐽.̅ 

 

Theorem 8.1. Let 𝑣, 𝑤 ∈  𝐶𝑝[𝐽, 𝑅], 𝑓, 𝑔, ∈  𝐶[𝐽0 ×  𝑅, 𝑅] and satisfy the following coupled integral inequalities 

(i) 𝑣(𝑡) ≤  
𝑣0(𝑡 – 𝑡0)

𝑞−1

𝛤(𝑞)
+

1

𝛤(𝑞)
∫ (𝑡 –  𝑠)

𝑞−1𝑡

𝑡0

(𝑓(𝑠, 𝑣(𝑠)) +  𝑔(𝑠, 𝑤(𝑠))) 𝑑𝑠, 



(ii) 𝑤(𝑡)  ≥
𝑤0(𝑡 – 𝑡0)

𝑞−1

𝛤(𝑞)
+

1

𝛤(𝑞)
∫ (𝑡 –  𝑠)

𝑞−1𝑡

𝑡0

 (𝑓(𝑠, 𝑤(𝑠)) + 𝑔(𝑠, 𝑣(𝑠)))𝑑𝑠, 
 

(iii) 𝑓(𝑡, 𝑢) is nondecreasing in 𝑢 for each 𝑡 ∈  𝐽0, and 𝑓(𝑡, 𝑢) satisfies the one sided Lipschitz condition of the 

form 

𝑓(𝑡, 𝑢1)  −  𝑓(𝑡, 𝑢2)  ≤  𝐿(𝑢1 −  𝑢2), 

for some 𝐿 >  0, whenever 𝑢1  ≥  𝑢2; 

 

(iv) 𝑔(𝑡, 𝑢) is non increasing in 𝑢 for each 𝑡 ∈  𝐽0  and 𝑔(𝑡, 𝑢) satisfies the one sided Lipschitz condition of 

the form 

𝑔(𝑡, 𝑢1)  −  𝑔(𝑡, 𝑢2)  ≥  −𝑀(𝑢1  −  𝑢2), 

for some M > 0, whenever 𝑢1  ≥  𝑢2. Then 𝑢0 ≤  𝑤0 implies 𝑣(𝑡)  ≤  𝑤(𝑡) on 𝐽. 

 

Consider the Riemann-Liouville fractional differential equation of the form: 

 

𝐷𝑞𝑢(𝑡)  =  𝑓(𝑡, 𝑢(𝑡))  +  𝑔(𝑡, 𝑢(𝑡)),    𝛤(𝑞)(𝑡 −  𝑡0)1−𝑞𝑢(𝑡)|𝑡=𝑡0
 =  𝑢0,   (8.1) 

 

where 𝑓, 𝑔 ∈  𝐶[𝐽0  × 𝑅, 𝑅].  

 

The next result is the differential inequality result relative to the Riemann-Liouville fractional differential 

equation (8.1). 

 

Theorem 8.2. Let 𝑣, 𝑤 ∈  𝐶𝑝[𝐽, 𝑅], 𝑓, 𝑔, ∈  𝐶[𝐽0 ×  𝑅, 𝑅] and satisfy the following coupled differential 

inequalities 

(i) 𝐷𝑞(𝑣(𝑡)) ≤ 𝑓(𝑡, 𝑣(𝑡)) + 𝑔(𝑡, 𝑤(𝑡)),            Γ(𝑞)(𝑡 − 𝑡0)1−𝑞𝑣(𝑡)|𝑡=𝑡0
≤ 𝑢0; 

(ii) 𝐷𝑞(𝑤(𝑡)) ≥ 𝑓(𝑡, 𝑤(𝑡)) + 𝑔(𝑡, 𝑣(𝑡)),            Γ(𝑞)(𝑡 − 𝑡0)1−𝑞𝑤(𝑡)|𝑡=𝑡0
≥ 𝑢0; 

(iii) 𝑓(𝑡, 𝑢) satisfies the one sided Lipschitz condition of the form 

𝑓(𝑡, 𝑢1)  −  𝑓(𝑡, 𝑢2)  ≤  𝐿(𝑢1 −  𝑢2), 

for some 𝐿 >  0, whenever 𝑢1  ≥  𝑢2; 

 

(iv) 𝑔(𝑡, 𝑢) satisfies the one sided Lipschitz condition of the form 

𝑔(𝑡, 𝑢1)  −  𝑔(𝑡, 𝑢2)  ≥  −𝑀(𝑢1  −  𝑢2), 

for some M > 0, whenever 𝑢1  ≥  𝑢2. Then 𝑣0 ≤  𝑤0 implies 𝑣(𝑡)  ≤  𝑤(𝑡) on 𝐽. 

 

Here the Caputo fractional differential and integral inequalities are developed. 

 

Consider the Caputo fractional differential equation of order 𝑞 where 0 < 𝑞 <  1, of the form : 

 

𝐷𝑞𝐶 𝑢(𝑡) = 𝜆 𝑢(𝑡) +  𝑓(𝑡),     𝑢(𝑡0)  =  𝑢0,    (8.2) 

 

where 𝑓, 𝑔 ∈  𝐶[𝐽0 ×  𝑅, 𝑅]. 
 

The integral representation of (8.2) is given by equation 

 

𝑢(𝑡) =  𝑢0 + 𝐸𝑞,1(𝜆(𝑡 − 𝑡0)𝑞) + ∫ (𝑡 −  𝑠)𝑞−1𝑡

𝑡0
 𝐸𝑞,𝑞(𝜆(𝑠 − 𝑡0)𝑞)𝑓(𝑠)𝑑𝑠,     (8.3) 

 

where 𝛤(𝑞) is the Gamma function. Note, the above holds true if in place of equality we have less than or equal. 

 

Now consider the Caputo fractional differential equation 

 



𝐷𝑞𝐶 𝑢(𝑡) = 𝑓(𝑡, 𝑢) +  𝑔(𝑡, 𝑢),     𝑢(𝑡0) = 𝑢0,  (8.4) 

 

Where 𝑓, 𝑔 ∈  𝐶[𝐽0 ×  𝑅, 𝑅]. 
 

Definition 8.1. The functions  𝑣, 𝑤 ∈  𝐶1([𝑡0, 𝑇], 𝑅) are called natural lower and upper solutions of (8.4) if : 

 

𝐷𝑞𝐶 𝑣(𝑡) ≤ 𝑓(𝑡, 𝑣) +  𝑔(𝑡, 𝑣),     𝑣(𝑡0)  ≤  𝑢0, 

and 

𝐷𝑞𝐶 𝑤(𝑡) ≥ 𝑓(𝑡, 𝑤) +  𝑔(𝑡, 𝑤),     𝑤(𝑡0)  ≥  𝑢0. 

 

Definition 8.2. The functions 𝑣, 𝑤 ∈  𝐶1([𝑡0, 𝑇], 𝑅) are called coupled lower and upper solutions of type I of 

(8.4) if : 

 

𝐷𝑞𝐶 𝑣(𝑡) ≤ 𝑓(𝑡, 𝑣) +  𝑔(𝑡, 𝑤),     𝑣(𝑡0)  ≤  𝑢0, 

and 

𝐷𝑞𝐶 𝑤(𝑡) ≥ 𝑓(𝑡, 𝑤) +  𝑔(𝑡, 𝑣),     𝑤(𝑡0)  ≥  𝑢0. 

 

One can easily prove the existence of the solution of (8.4) on the interval [𝑡0, 𝑇]when natural lower and upper 

solution for (8.4) are known for which v(t) ≤ w(t). Coupled minimal and maximal solutions of (8.4) on the 

interval [t0, T] can be computed without any extra assumptions using the generalized monotone method when  

coupled lower and upper solutions of type I of (8.4) are known with v(t) ≤ w(t). 

 

Next we have the differential inequality result for coupled lower and upper solutions of type I: 

 

Theorem 8.3. Let 𝑣, 𝑤 ∈  𝐶1(𝐽, 𝑅), Where 𝑓, 𝑔 ∈  𝐶[𝐽 ×  𝑅, 𝑅] are coupled lower and upper solutions of type 

I, such that 

(i) 𝑓(𝑡, 𝑢) satisfies the one sided Lipschitz condition of the form 

 

𝑓(𝑡, 𝑢1)  −  𝑓(𝑡, 𝑢2)  ≤  𝐿(𝑢1 −  𝑢2), 

 

for some 𝐿 >  0, whenever 𝑢1  ≥  𝑢2; 

 

(ii) 𝑔(𝑡, 𝑢) satisfies the one sided Lipschitz condition of the form 

 

𝑔(𝑡, 𝑢1)  −  𝑔(𝑡, 𝑢2)  ≥  −𝑀(𝑢1  −  𝑢2), 

 

for some M > 0, whenever 𝑢1  ≥  𝑢2. Then 𝑣(𝑡0)  ≤  𝑤(𝑡0) implies that  𝑣(𝑡)  ≤  𝑤(𝑡), on J. 

 

Remark 5.1.  Caputo integral inequalities results similar to Theorem 8.1 can also be developed. The integral 

inequality results need an extra assumption which is not required for the corresponding scalar differential 

inequality results. Thus, the differential inequality results are useful in iterative methods like the monotone 

quasilinearization methods. They are useful for proving uniqueness, continuous dependency on the initial 

condition and also in determining the order of convergence. 

 

Numerical Graphs 
Consider a special case of the Logistic model of the form 

(4.1) 𝐷
1

2
𝑢(𝑡) =𝑐 0.99u(t)  −  u2(t), u(0)  =  

1

2
.  

 

 



 
 

Conclusion 

We have developed generalized monotone method for nonlinear fractional differential systems  and fractional 

reaction diffusion equations via coupled lower and upper solutions of type 1. The advantage of the generalized 

monotone method is that each component of the iterates are scalar fractional differential equation whose 

solutions are easy to compute compared to computing the solution corresponding linear system.  

Also, This representation formulas provide a methodology for computing  solutions for different 

nonhomogeneous terms and different initial and boundary conditions. 
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