REPORT DOCUMENTATION PAGE			Form Approved OMB NO. 0704-0188				
searching exist regarding this Headquarters Respondents s of information if	ing data sources, g burden estimate o Services, Directora	gathering and main or any other aspect te for Information t notwithstanding a a currently valid ON	taining the data needed, ct of this collection of i Operations and Repor ny other provision of law /B control number.	, and comp nformation, ts, 1215 J	leting and rev including su lefferson Davi	sponse, including the time for reviewing instructions riewing the collection of information. Send comment ggesstions for reducing this burden, to Washington is Highway, Suite 1204, Arlington VA, 22202-4302 ect to any oenalty for failing to comply with a collection	
1. REPORT	DATE (DD-MM-	-YYYY)	2. REPORT TYPE			3. DATES COVERED (From - To)	
16-11-201:		,	Final Report			15-Jun-2009 - 14-Jun-2014	
4. TITLE A	ND SUBTITLE				5a. CONT	TRACT NUMBER	
Final Report: Synthetic Biological Engineering of Photosynthesis			W911NF-09-1-0226				
					5b. GRAN	VT NUMBER	
					5c. PROG	RAM ELEMENT NUMBER	
					611102		
6. AUTHOR	RS				5d. PROJI	ECT NUMBER	
Pamela A. S	Silver						
					5e. TASK	5e. TASK NUMBER	
					5f. WORK UNIT NUMBER		
7. PERFOR	MING ORGANI	ZATION NAME	ES AND ADDRESSES	S	8.	PERFORMING ORGANIZATION REPORT	
Harvard Me 25 Shattuck	edical School Street				N	UMBER	
Boston, MA	A	0211	5 -6027				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES)				. SPONSOR/MONITOR'S ACRONYM(S) ARO			
U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211			11. SPONSOR/MONITOR'S REPORT NUMBER(S) 55323-LS.16				
12. DISTRIE	BUTION AVAIL	IBILITY STATE	MENT				
Approved for	r Public Release;	Distribution Unl	imited				
The views, o		ndings contained	in this report are those s so designated by oth			should not contrued as an official Department	
local level construct a photosynth artificial m 15. SUBJEC Synthetic bio 16. SECURI	l goal of the gi to generate bu photosyntheti etic machinery etabolic pathw CT TERMS ology, photosynth	lk amounts of c cynaobacter y; and 2) produ yays. During th transite list hesis, solar energ	chemical commod ium that: 1) produc uces short alkyl ch ne course of the gra	OF 15	he specific ogen by di channeling eriod, we a	on solar energy that can be used on a aims of the original proposal are to rected electron flow from the electrons from photosynthesis into also made significant progress on eaching to photosynthesis and obtained	
a. REPORT UU	b. ABSTRACT UU		UU		TIOLO	19b. TELEPHONE NUMBER	
00	00	UU				617-432-6401	
	•	-				Standard Form 298 (Rev 8/98)	

Report Title

Final Report: Synthetic Biological Engineering of Photosynthesis

ABSTRACT

The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local level to generate bulk amounts of chemical commodities. The specific aims of the original proposal are to construct a photosynthetic cynaobacterium that: 1) produces hydrogen by directed electron flow from the photosynthetic machinery; and 2) produces short alkyl chains by channeling electrons from photosynthesis into artificial metabolic pathways. During the course of the granting period, we also made significant progress on understanding the compartmentalization of carbon fixation and flux in relationship to photosynthesis and obtained increases in photosynthetic activity that have broad implications for production of commodities on demand.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received		Paper
01/17/2012	8.00	Daniel_Ducat, Patrick_Boyle, Edwin_Wintermute, Jeffrey_Way, Christina_Agapakis, Pamela_Silver. Insulation of a synthetic hydrogen metabolism circuit in bacteria, Journal of Biological Engineering, (02 2010): 0. doi:
01/17/2012	9.00	Walter_Bonacci, Poh_Teng, Bruno_Afonso, Henrike_Niederholtmeyer, Patricia_Grob, Silver_Pamela, David_Savage. Modularity of a carbon-fixing protein organelle, PNAS, (01 2012): 0. doi:
08/16/2011	1.00	H. Niederholtmeyer, B. T. Wolfstadter, D. F. Savage, P. A. Silver, J. C. Way. Engineering Cyanobacteria To Synthesize and Export Hydrophilic Products, Applied and Environmental Microbiology, (04 2010): 0. doi: 10.1128/AEM.00202-10
08/16/2011	6.00	DC. Ducat , JC. Way , PA. Silver . Engineering cyanobacteria to generate high-value products, Trends in Biotechnology, (02 2011): 95. doi:
08/16/2011	5.00	CJ. Delebecque , AB. Lindner , PA. Silver , FA. Aldaye . Organization of intracellular reactions with rationally designed RNA assemblies., Science, (06 2011): 470. doi:
08/16/2011	3.00	Buz Barstow, Christina M Agapakis, Patrick M Boyle, Gerald Grandl, Pamela A Silver, Edwin H Wintermute. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism, Journal of Biological Engineering, (05 2011): 5. doi: 10.1186/1754-1611-5-7
08/21/2012	12.00	G. Sachdeva, P. A. Silver, D. C. Ducat. Rewiring hydrogenase-dependent redox circuits in cyanobacteria, Proceedings of the National Academy of Sciences, (02 2011): 0. doi: 10.1073/pnas.1016026108
08/21/2012	2.00	Christina M. Agapakis, Pamela A. Silver. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway, Bioengineered Bugs, (12 2010): 413. doi: 10.4161/bbug.1.6.12462
08/21/2012	7.00	David_Savage, Bruno_Afonso, Anna_Chen, Pamela_Silver. Spatially Ordered Dynamics of the Bacterial Carbon Fixation Machinery, Science, (03 2010): 1258. doi:
08/21/2012	10.00	Daniel C. Ducat, J. Abraham Avelar-Rivas, Jeffrey C. Way, Pamela A. Silvera. Rerouting Carbon Flux To Enhance Photosynthetic Productivity, Applied and Environmental Microbiology, (03 2012): 2660. doi:
08/21/2012	11.00	Pamela A Silver, Daniel C Ducat. Improving carbon fixation pathways, Current Opinion in Chemical Biology, (08 2012): 0. doi: 10.1016/j.cbpa.2012.05.002
10/19/2015	15.00	Anna H. Chen, Avi Robinson-Mosher , David F. Savage , Pamela A. Silver , Jessica K. Polka. The bacterial carbon-fixing organelle is formed by shell envelopment of preassembled cargo, PLoS ONE, (09 2013): 76127. doi:
TOTAL:		12

(b) Papers published in non-peer-reviewed journals (N/A for none)				
Received	Paper			
TOTAL:				
Number of Paper	Number of Papers published in non peer-reviewed journals:			
(c) Presentations				
Number of Prese	Number of Presentations: 0.00			
	Non Peer-Reviewed Conference Proceeding publications (other than abstracts):			
Received	<u>Paper</u>			
TOTAL:				
Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):				
	Peer-Reviewed Conference Proceeding publications (other than abstracts):			
Received	Paper			

TOTAL:

(d) Manuscripts

Received	Paper				
08/26/2013 14.00	4.00 Anna H. Chen, Avi Robinson-Mosher, David F. Savage, Pamela A. Silver, Jessica K. Polka. The Bacterial Carbon-Fixing Organelle is Formed by Shell Envelopment of Preassembled Cargo, Molecular Biology of the Cell (08 2013)				
TOTAL:	1				
Number of Manus	cripts:				
	Books				
Received	Book				
TOTAL:					
<u>Received</u>	Book Chapter				
TOTAL:					
	Patents Submitted				
	Patents Awarded				

Awards

2010-2013 Algae Biofuels Technical Advisory Committee, ExxonMobil Research

2010 IEE Award for most accessed paper in JBE

2010 Director, ARPA-E (DOE) grant in alternative electrofuels

2011 Nominee, ENI Award

2011-12 Fellow of the Radcliffe Institute for Advanced Study

2011- Elliot T. and Onie H. Adams Professorship of Biochemistry and Systems Biology, Harvard University

2012 The Tay Hayashi Lectureship, MBL

2013 Groundbreaking Science Speeches

2013 Top 20 Global Synthetic Biology Influencers

Graduate Students

NAME

PERCENT_SUPPORTED

FTE Equivalent: Total Number:

Names of Post Doctorates

NAME

PERCENT_SUPPORTED

FTE Equivalent: Total Number:

Names of Faculty Supported

NAME	PERCENT_SUPPORTED	National Academy Member
Pamela A. Silver	0.01	
FTE Equivalent:	0.01	
Total Number:	1	

Names of Under Graduate students supported

 NAME
 PERCENT_SUPPORTED

 FTE Equivalent:
 Total Number:

 Student Metrics
 Student Metrics

 This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 0.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields:..... 0.00

The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:..... 0.00

- Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):..... 0.00
- Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for
 - Education, Research and Engineering:..... 0.00
- The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense 0.00 The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: 0.00

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

<u>NAME</u>

Total Number:

Names of other research staff

<u>NAME</u> Kathy Buhl	PERCENT_SUPPORTED 0.01	
FTE Equivalent:	0.01	
Total Number:	1	

Sub Contractors (DD882)

Inventions (DD882)

Statement of Problem Studied

The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local level to generate bulk amounts of chemical commodities.

Summary of most important results

Hydrogenases catalyze the reversible reaction 2H(+) + 2e(-); H(2) with an equilibrium constant that is dependent on the reducing potential of electrons carried by their redox partner. To examine the possibility of increasing the photobiological production of hydrogen within cyanobacterial cultures, we expressed the [FeFe] hydrogenase, HydA, from Clostridium acetobutylicum in the non-nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. We demonstrate that the heterologously expressed hydrogenase is functional in vitro and in vivo, and that the in vivo hydrogenase activity is connected to the light-dependent reactions of the electron transport chain. Under anoxic conditions, HydA activity is capable of supporting light-dependent hydrogen evolution at a rate > 500-fold greater than that supported by the endogenous [NiFe] hydrogenase. Furthermore, HydA can support limited growth solely using H(2) and light as the source of reducing equivalents under conditions where Photosystem II is inactivated. Finally, we demonstrate that the addition of exogenous ferredoxins can modulate redox flux in the hydrogen gas. These results proved our ability to connect electron flow from photosynthesis to hydrogen production. This accomplished Aim 1 and has broad significance for diverting electron flux in general.

One of our overarching goals was to engineer photosynthetic bacteria to produce commodities. We had a number of successes with regard to fatty acids. However, our biggest accomplishment was to engineer cyanobacteria to secrete sugar. This allows them to be used directly in bioreactors to feed cells producing more complex commodities. In addition, we made significant findings regarding how to increase the photosynthetic capacity that will have broad implications.

We have further characterized a strain of cyanobacteria that efficiently secretes sucrose at rates exceeding sugar production from terrestrial plants, providing a potential alternative feedstock source which does not compete with food crops for arable lands. The strain utilizes a sucrose symporter (cscB) in a fashion where the proton gradient across the cytoplasmic membrane is reversed, allowing secretion of sucrose produced autotrophically from solar energy and CO2. A substantial fraction of the carbon dioxide fixed by cscB-expressing S. elongatus can be exported as sucrose (50-85%), representing a highly efficient rediversion of cellular resources. Sucrose is produced continuously and occurs at levels exceeding those previously reported for targeted production of metabolites in cyanobacteria and algae.

Furthermore, we described an unexpected improvement in photosynthetic productivity in sucrose-secreting cyanobacteria; results that have broad scientific implications for photosynthesis-driven production of a variety of valuable metabolites. We hypothesize that the export of this sugar feedstock acts to expand the cellular 'metabolic sink', allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a 25-30% enhancement in photosynthetic activity relative to wild-type strains.

Finally, we demonstrated that the sucrose produced by this cyanobacterial strain can be utilized by industrially-relevant heterotrophic microbes (e.g. E. coli and S. cerevisiae) without further refinement or purification. We extended this research through the co-culture of cyanobacteria and a variety of heterotrophic microbes in order to evaluate the feasibility of indirect production of biofuels and other economically valuable bioindustrial compounds from solar energy.

Technology Transfer

Honors and Awards

2010-2013 Algae Biofuels Technical Advisory Committee, ExxonMobil Research 2010 IEE Award for most accessed paper in JBE 2010 Director, ARPA-E (DOE) grant in alternative electrofuels 2011 Nominee, ENI Award 2011-12 Fellow of the Radcliffe Institute for Advanced Study 2011-Elliot T. and Onie H. Adams Professorship of Biochemistry and Systems Biology, Harvard University 2012 The Tay Hayashi Lectureship, MBL **Groundbreaking Science Speeches** 2013 2013 Top 20 Global Synthetic Biology Influencers

Scientific Progress and Accomplishments

Statement of Problem Studied

The overall goal of the grant is to create a synthetic biology platform based on solar energy that can be used on a local level to generate bulk amounts of chemical commodities.

Summary of most important results

Hydrogenases catalyze the reversible reaction $2H(+) + 2e(-) \leftrightarrow H(2)$ with an equilibrium constant that is dependent on the reducing potential of electrons carried by their redox partner. To examine the possibility of increasing the photobiological production of hydrogen within cyanobacterial cultures, we expressed the [FeFe] hydrogenase, HydA, from Clostridium acetobutylicum in the non-nitrogen-fixing cyanobacterium Synechococcus elongatus sp. 7942. We demonstrate that the heterologously expressed hydrogenase is functional in vitro and in vivo, and that the in vivo hydrogenase activity is connected to the light-dependent reactions of the electron transport chain. Under anoxic conditions, HydA activity is capable of supporting light-dependent hydrogen evolution at a rate > 500-fold greater than that supported by the endogenous [NiFe] hydrogenase. Furthermore, HydA can support limited growth solely using H(2) and light as the source of reducing equivalents under conditions where Photosystem II is inactivated. Finally, we demonstrate that the addition of exogenous ferredoxins can modulate redox flux in the hydrogenase-expressing strain, allowing for greater hydrogen yields and for dark fermentation of internal energy stores into hydrogen gas. These results proved our ability to connect electron flow from photosynthesis to hydrogen production. This accomplished Aim 1 and has broad significance for diverting electron flux in general.

One of our overarching goals was to engineer photosynthetic bacteria to produce commodities. We had a number of successes with regard to fatty acids. However, our biggest accomplishment was to engineer cyanobacteria to secrete sugar. This allows them to be used directly in bioreactors to feed cells producing more complex commodities. In addition, we made significant findings regarding how to increase the photosynthetic capacity that will have broad implications.

We have further characterized a strain of cyanobacteria that efficiently secretes sucrose at rates exceeding sugar production from terrestrial plants, providing a potential alternative feedstock source which does not compete with food crops for arable lands. The strain utilizes a sucrose

symporter (cscB) in a fashion where the proton gradient across the cytoplasmic membrane is reversed, allowing secretion of sucrose produced autotrophically from solar energy and CO₂. A substantial fraction of the carbon dioxide fixed by cscB-expressing *S. elongatus* can be exported as sucrose (50-85%), representing a highly efficient re-diversion of cellular resources. Sucrose is produced continuously and occurs at levels exceeding those previously reported for targeted production of metabolites in cyanobacteria and algae.

Furthermore, we described an unexpected improvement in photosynthetic productivity in sucrose-secreting cyanobacteria; results that have broad scientific implications for photosynthesis-driven production of a variety of valuable metabolites. We hypothesize that the export of this sugar feedstock acts to expand the cellular 'metabolic sink', allowing a greater utilization of solar energy under conditions of excess light. The engineered microalgae exhibit a 25-30% enhancement in photosynthetic activity relative to wild-type strains.

Finally, we demonstrated that the sucrose produced by this cyanobacterial strain can be utilized by industrially-relevant heterotrophic microbes (e.g. *E. coli* and *S. cerevisiae*) without further refinement or purification. We extended this research through the co-culture of cyanobacteria and a variety of heterotrophic microbes in order to evaluate the feasibility of indirect production of biofuels and other economically valuable bioindustrial compounds from solar energy.