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Foreword 

 

While highly constrained language can be used for robot 

control, robots that can operate as fully autonomous 

subordinate agents communicating via rich language 

remain an open challenge. Toward this end, the central goal 

of the SUBTLE MURI project was to develop an 

autonomous system that supports natural, continuous 

interaction with the operator through language before, 

during, and after mission execution. The operator 

communicates instructions to the system through natural 

language and is given feedback on how each instruction 

was understood as the system constructs a logical 

representation of its orders using linear temporal logic. 

While the plan is executed, the operator is updated on 

relevant progress via language and images and can change 

the robot’s orders. Unlike many other integrated systems of 

this type, the language interface is built using robust, 

general purpose parsing and semantics systems that do not 

rely on domain-specific grammars. The natural language 

system uses domain-general components that can easily 

be adapted to cover the vocabulary of new applications. 

We demonstrate the robustness of the natural language 

understanding system through a user study where 

participants interacted with a simulated robot in a search 

and rescue scenario. Language-enabled autonomous 

systems of this type represent important progress toward 

the goal of integrating robots as effective members of 

human teams. 
 

Keywords  Natural language · Formal methods · High-level 

control · Synthesis 

 
1 Introduction 

 

Robots have the ability to play a unique role in a team of 
humans in scenarios such as search and rescue where safety 
is a concern. Traditionally the overhead of interacting with 
such systems has been high, making integration of robots 
into human teams difficult. Improvements in natural lan- 
guage technology may, however, allow for this overhead to

be reduced if a system can understand natural language input 
well enough to carry out the required scenario and maintain 
contact with human team members. In this report we present 
a system that makes progress towards the use of robots as 
capable members of a human team by providing continu- 
ous, flexible, and grounded natural language communication 
with the robot throughout execution. 

The challenge of programming robots to perform these 

tasks has until recently been the domain of experts, re- 

quiring hard-coded high-level implementations and ad-hoc 

use of low-level techniques such as path-planning during 

execution. Recent advances in the application of formal 

methods for robot control have enabled automated synthe- 

sis of correct-by-construction hybrid controllers for com- 

plex high-level tasks (e.g., Kloetzer and Belta 2008; Kara- 

man and Frazzoli 2009; Bhatia et al 2010; Bobadilla et al 

2011; Kress-Gazit et al 2009; Wongpiromsarn et al 2010). 

However, most current approaches require the user to pro- 

vide task specifications in logic or a similarly structured 

specification language. This forces users to formally reason 

about system requirements rather than state an intuitive de- 

scription of the desired outcome. Furthermore, the outcome 

of verifying such specifications is traditionally simply a re- 

sponse of success or failure; detecting which portions of the 

specification are at fault is a non-trivial task (e.g., Raman 

and Kress-Gazit 2013a), as is explaining the problem to the 

user. 

The system presented in this paper combines the power 

of formal methods with the accessibility of natural language, 

providing correct-by-construction controllers for specifica- 

tions that can be implemented and easy-to-understand feed- 

back for those that cannot. The system is open-source, can 

be extended to cover new scenarios, and allows for both 

specification and execution of natural language specifica- 

tions. The system enables users to specify high-level behav- 

iors via natural language, parsing commands using seman- 

tic analysis to create a linear temporal logic (LTL) specifica- 

tion. This parsing is deterministic and predictable, providing 

feedback to the user to help guide them if their input could 

not be completely parsed. The LTL specification is used to 

synthesize a hybrid controller when possible. If no imple- 

mentation exists, the user is provided with an explanation
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Fig. 1: System overview 

 
 

and the portions of the specification that cause failure. The 

explanation is enabled by a data structure called a genera- 

tion tree, which records the transformation of natural lan- 

guage into formal logic and is able to map backwards from 

problematic logical propositions to the explicit or implicit 

input from the user that caused the problem. 

The system allows for execution of the controller either 

in simulation or using a physical robot. Natural language 

features are also available during execution; the generation 

tree allows the robot to explain what goal it is trying to 

achieve through its current action. The same language pro- 

cessing and semantic extraction components that enable the 

creation of logical propositions from natural language spec- 

ifications enable feedback from the robot during execution. 

     The application domain for this system is an urban 
search and rescue scenario where an autonomous mobile 
robot acts as part of a team of humans working to 
explore the area and react to the environment as required. 
The robot acts as the commander’s subordinate, receiving 
orders and carrying them out. The robot’s primary purpose 
is reconnaissance, entering areas that may be unsafe ahead 
of human team members. It  is  assumed  that  the  
commander and  robot will  rarely  be  colocated. 
Interaction with  the  system  is implemented  through  a  
multimodal  tablet  interface  that acts as a conduit for 
both sending instructions to the robot and displaying 
information about the remote situation and environment. 

In the sample interaction shown in Figure 2, the system 
is asked to report when it encounters hostages, instructed 
to defuse any bombs it finds, and given a set of rooms to 
search. The system analyzes commands as they are given to 
it, and when it is told to begin carrying out orders it forms 
a plan from those commands and begins execution. The 
robot maintains contact with the operator during execution, 
informing the operator about anything it was explicitly 
asked to mention in addition to anything related to the goals 
it was given. 

 

 

Commander: Tell me if you see any hostages. 
Robot: I’ll let you know if I see a hostage. 
C: Defuse all the bombs you see. 
R: Got it. I’ll defuse all bombs. 
C: Search the library, classroom, and lab. 
R: Got it. I’ll search the library, search the classroom, and search 
the lab. 
C: Make it so. 
R: Understood. I’m carrying out your orders now. 
R: I see a hostage. 
R: I’m now going to defuse in the library. 
R: I’m done, and I’m in the classroom. 

 
Figure 2: Sample interaction with the system. 

 

 

Fig. 1 shows the system’s main components and the con- 

nections between them. The Situated Language Understand- 

ing Robot Platform (SLURP) consists of parsing, semantic 

interpretation, LTL generation, and feedback components. 

This module is the natural language connection between the 

user and the logical representations used within the Linear 

Temporal Logic MissiOn Planning (LTLMoP) toolkit (Fin- 

ucane et al, 2010). LTLMoP, which also interfaces with the 

SAT solver PicoSAT (Biere, 2008), provides an environment 

for creating, analyzing, and executing specifications. 

This organization of this paper follows the flow of user 

input into the system. Sect. 2 discusses previous work in 

this area. Sect. 3 describes the language understanding and 

LTL generation mechanisms and presents an evaluation of 

the performance of the system when processing commands 

from users. Sects. 4–5 describe controller synthesis and 

specification feedback mechanisms and present an example 

of applying the system in a hospital setting. Discussion of 

the system and future work follows in Sect. 6. 



 3 

 

2 Related work 

 
There are many previous approaches that use natural lan- 

guage for controlling robots, differing in the type of infor- 

mation they seek to extract from natural language, the type 

of dialog desired, and the role of learning. To produce formal 

goal descriptions and action scripts for tasks like navigation 

and manipulation, Dzifcak et al (2009) use a combinatorial 

categorial grammar (CCG) parser with a pre-specified map- 

ping between words or phrases and the matching branch- 

ing temporal logic and dynamic logic propositions. Another 

area of focus is language grounding scenarios where lan- 

guage must be mapped to objects or locations (e.g., Ma- 

tuszek et al, 2012; Tellex et al, 2011), learning the relation- 

ship between the words used and the referents in the world. 

Recent work has focused on the automatic learning of the 

relationship between language and semantic structures, 

both in general semantic parsing (e.g., Berant and Liang, 

2014; Poon and Domingos, 2009) and robotics-specific ap- 

plications (e.g., Chen and Mooney, 2011; Matuszek et al, 

2010, 2012, 2013). While the learning strategies used may 

be generalized to broader applications, these systems are 

typically trained and evaluated in a single command do- 

main (e.g., navigation, manipulation) and typically 

verifyunderstanding at the per-utterance level or a single 

action sequence such as sequential navigation commands. 

In contrast to learning-focused work, the system pre- 

sented  here  focuses  on  the  construction of  a  complete, 

formally-verified specification from natural language, but 

assumes the grounding between language and the robot’s 

capabilities can be specified in advance. In doing so, we 

explore the broader relationships between natural language 

and logical form and the challenges involved in creating rich 

specifications from natural language that can include any 

number of action types. To be applied to the kinds of high- 

demand scenarios where natural language control may be of 

greatest benefit, it is essential that the design of the system 

be centered around “failing fast” by reporting any errors be- 

fore execution. 

This work aims to generate controllers for autonomous 

robots that achieve desired high-level behaviors, including 

reacting to external events and repeated patrol-type behav- 

iors. Examples of such high-level tasks include search and 

rescue missions and the control of autonomous vehicles fol- 

lowing traffic rules in a complex environment, such as in the 

DARPA Urban Challenge. With the usual approach of hard- 

coding the high-level aspects and using path-planning and 

other low-level techniques during execution, it is often not 

known a priori whether the proposed implementation actu- 

ally captures the high-level requirements. This motivates the 

application of formal frameworks to guarantee that the im- 

plemented plans will produce the desired behavior. 

A number of frameworks have recently been proposed, 

some of which use model checking (Clarke et al, 1999) to 

synthesize control laws (e.g., Kloetzer and Belta 2008; Bha- 

tia et al 2010) on a discrete abstraction of the underlying

 system. Other approaches, such as those proposed by Kress- 

Gazit et al (2009) and Wongpiromsarn et al (2010), ap- 

ply efficient synthesis techniques to automatically generate 

provably-correct, closed-loop, low-level robot controllers 

that satisfy high-level reactive behaviors specified as LTL 

formulas. Specifications describe the robot’s goals and as- 

sumptions regarding the environment it operates in, using a 

discrete abstraction. The hybrid robot controllers generated 

represent a rich set of infinite behaviors, and the closed loop 

system they form is guaranteed to satisfy the desired speci- 

fication in any admissible environment, one that satisfies the 

modeled assumptions. 

Previous work using LTL synthesis for robot control has 

also used highly structured or domain-specific languages to 

allow non-technical users to write robot specifications, even 

if they are unfamiliar with the underlying logic. For exam- 

ple, LTLMoP includes a parser that automatically translates 

sentences belonging to a defined grammar into LTL formu- 

las (Kress-Gazit et al, 2008; Finucane et al, 2010); the gram- 

mar includes conditionals, goals, safety sentences and non- 

projective locative prepositions such as between and near. 

Structured English circumvents the ambiguity and compu- 

tational challenges associated with natural language, while 

still providing a more intuitive medium of interaction than 

LTL. However, users still need to understand many details 

of the logical representation and the synthesis process to 

successfully write specifications in structured English. The 

work presented in this paper replaces LTLMoP’s structured 

English input with a natural language interface to enable 

users to describe high-level tasks in more natural language. 
 
 

This  paper  extends work  presented by  Raman et  al 

(2013) by analyzing the performance of the natural language 

understanding system through a user study and adding ad- 

ditional LTL generation features, support for feedback for 

all types of unsynthesizable specifications, and further dis- 

cussion regarding the design of the integrated system. We 

provide a more complete approach to generating LTL from 

natural language input (Section 3), addressing the issues of 

non-compositionality when considering negation over nat- 

ural language and providing results from a user study that 

demonstrates the system’s robustness when used by inexpe- 

rienced users.  
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3 Transforming natural language into logic with 

SLURP 

 
To convert the user’s commands into a formal specification, 

the system must identify the underlying linguistic structure 

of the commands and convert it into a logical representation, 

filling in appropriate implicit assumptions about the desired 

behavior. This section describes the process of this con- 

version and its implementation as The Situated Language 

Understanding Robot Platform (SLURP). SLURP enables 

the conversion of natural language specifications into LTL 

formulas, communication with the user regarding problems 

with specifications, and feedback to the user during execu- 

tion. Sects. 3.2–3.3 discuss the process of generating LTL 

formulas from natural language input. Sect. 3.4 describes a 

user study used to evaluate the performance of the system 

described. 

 
 
 

3.1 Overview 

 
In using the term natural  language, we refer to language 

that a user of the system would produce without specific 

knowledge of what the system is capable of understanding. 

In other words, language that is not restricted to a known 

set of vocabulary items or grammatical structures specific 

to the system. Users are able to give commands without 

any knowledge of how the language understanding system 

works, as if they were giving simple, clear instructions to 

another person. While the user may be able to give com- 

mands to the system that it cannot understand, the system 

gives feedback based on what it understood and what it did 

not. For example, it may report that it does not understand 

how to carry out the verb used in a command, or may re- 

port that it does know how to perform that verb but has not 

received sufficient information, for example being told to 

move but not told where to do so. 

The user’s instructions are processed through a pipeline 

of natural language components similar to that used by 

Brooks et al (2012) which identify the syntactic structure 

of the sentences, extract semantic information from them, 

and create logical formulas to be used in controller syn- 

thesis. While many previous natural language systems for 

robot control have relied on per-scenario grammars that 

combine semantic and syntactic information (e.g., Dzifcak 

et al 2009), this work uses a combination of robust, general- 

purpose components for tagging and parsing the input. An 

advantage of this approach compared to per-scenario gram- 

mars is that the core language models need not be modi- 

fied across scenarios; to adapt to new scenarios all that is 

required is that the LTL generation be extended to support 

additional types of commands. This reduces the role of the 

fragile process of grammar engineering and minimizes the 

cost of adapting the system to handle commands in new do- 

mains. 
 

 
 
 
3.2 Identifying linguistic structure 

 
Before a sentence may be converted into logical formulas, 

the linguistic structure of the sentence must be identified. 

Following traditional practices in natural language process- 

ing, this process is divided into modules: first, the syntactic 

structure of the input is extracted; second, the meaning of 

the sentence is recovered by identifying verbs and their ar- 

guments. These steps are explained in detail in Sects. 3.2.1 

and 3.2.2. 
 

 
 
3.2.1 Parsing and null element restoration 

 
Parsing is the process of assigning a hierarchical struc- 

ture to a sentence. While simple natural language under- 

standing can be performed with shallower processing tech- 

niques, parsing allows for recovery of the hierarchical struc- 

ture of the sentence, allowing for proper handling of nat- 

ural language phenomena such as negation (e.g., Never go 

to the lounge) and coordination (e.g., Go to the lounge 

and kitchen), which are crucial to understanding commands. 

SLURP uses a pipeline of domain-general natural language 

processing components. The input is tagged using the Stan- 

ford Log-linear Part-Of-Speech Tagger (Toutanova et al, 

2003) and parsed using the Bikel parser (Bikel, 2004); these 

parses are then post-processed using the null element (un- 

derstood subject) restoration system of Gabbard et al (2006). 

The models used by these systems require no in-domain 

training. An example output of these modules is given in 

Fig. 2a, b. 

The use of null element restoration, a step typically ig- 

nored in NLP systems, allows for correct parsing of im- 

peratives and questions, critical structures for natural lan- 

guage control and dialog systems. For example, in Fig. 2a 

the original parse contains no subject at all as there is no 

overt subject in the input sentence. Fig. 2b shows that null 

element restoration has added an understood subject marked 

by *. This allows the structure of imperatives to be straight- 

forwardly matched by the semantic interpretation module, 

which will look for verbs by identifying subtrees that are 

rooted by S, and contain a subject (NP-SBJ) and a verb 

phrase (VP). After null element restoration, an imperative 

has the same underlying structure as a statement with an ex- 

plicit subject (e.g., A patient is in r1), allowing a general- 

purpose semantic interpretation system to process all input 

without using ad hoc techniques to accommodate impera- 

tives. 
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VP                             . 

VB      PP-CLR                . 

3.2.2 Semantic interpretation 

 
The semantic interpretation module uses the parse tree to ex- 

tract verbs and their arguments. For example, in the sentence 

Carry meals from the kitchen to all patient rooms, the de- 

sired structure is a carry command with an object of meals, 

a source of kitchen, and a destination of all patient rooms. 

Objects identified may be further processed, for example all

go    TO NP-A will be identified as a quantifier and handled as described in 

Sect. 3.3.2. 
 

to    DT 

 
 

the 

 

NN 

 
 
hallway 

To identify verbs and their arguments in parse trees, 

SLURP uses VerbNet (Schuler, 2005), a large database of 

verbs and the types of arguments they can take. The Verb- 

Net database identifies verbs as members of senses: groups

(a) Tagging and parsing 

 
S 

of verbs which in similar contexts have similar meanings. 

For example, the verbs carry, lug, and haul belong to the 

sense CARRY, because in many contexts they are equiva- 

lent in meaning. For each sense, VerbNet provides a set of

NP-SBJ-A 

 
 

-NONE- 

VP                             . 

VB      PP-CLR                . 

frames, which indicates the possible arguments to the sense. 

In the preceding example sentence, the verb carry  is 

mapped to the sense CARRY. An example of a frame for 

this sense is (Agent, Verb, Theme, Source, Destination), thus 

the expected use of the verb is that there is someone per- 

*           go    TO NP-A forming it (Agent), someone or something it is being per- 

formed on (Theme), and path to perform it on (Source and 
 

to    DT 

 
 

the 

 

NN 

 
 
hallway 

Destination). Each role in the frame, subject to its associ- 

ated syntactic constraints, is mapped to a part of the parse 

tree. VerbNet only provides information about the verb ar- 

guments; SLURP matches these argument types by mapping 

(b) Null element restoration 

 
Agent: * (understood subject) 

Verb: go Preposition: 

to Location:  the 

hallway 

(c) VerbNet frame matching 

 
Initially, the hallway has not been visited: 

¬s.mem visit hallway 

Define a persistent memory of going to the hallway: 

 (     s.mem visit hallway ⇔ 
(s.mem visit hallway ∨     s.hallway)) 

Always eventually have a memory of visiting the hallway: 

them to part-of-speech (e.g., VB for base verb) and phrasal 

(e.g., NP for noun phrase) tags and identifying each argu- 

ment using its tag and syntactic position. For the above ex- 

ample, SLURP creates the following mapping: 
 

Agent: the robot (understood subject) 

Verb: carry Theme: 

meals Source: the 

kitchen 

Destination: all patient rooms 

(s.mem visit hallway) 

(d) LTL formula generation 

Among the frames that match the parse tree, SLURP 

chooses the frame that expresses the most semantic roles. 

For example, the CARRY sense also contains a frame (Agent, 

Verb, Theme, Destination), which may be used in cases 

Fig.  2:  Conversion  of  the  sentence  Go  to  the  hallway 

into LTL formulas through tagging, parsing, null element 

restoration, semantic interpretation, and LTL generation 

where the source is already understood, for example if the 

user previously stated The meals are in the kitchen. How- 

ever, this frame will not be selected in the above example 

because the more specific frame that contains a source— 

and thus expresses more semantic roles—also matches. The 

chosen match is then used to fill in the appropriate fields in 

the command. 

Matching of frames is not limited to entire sentences. 

In a sentence such as If you see an intruder, activate your 
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camera, frames are matched for both the conditional clause 

and the main clause, allowing for the condition (Agent: the 

robot, Verb: see, Theme: an intruder) to be applied to the ac- 

tion (Agent: the robot, Verb: activate, Theme: your camera) 

when generating the logical representation. 

 
 

3.3 Linear temporal logic generation 

 
The information provided by VerbNet allows the identifica- 

tion of verbs and their arguments; these verbs can then be 

used to generate logical formulas defining robot tasks. 

 
3.3.1 Linear temporal logic 

 
The underlying logical formalism used in this work is linear 

temporal logic (LTL), a modal logic that includes temporal 

operators, allowing formulas to specify the truth values of 

atomic propositions over time. Let AP = X ∪ Y , where X  is 

the set of “input” propositions, those controlled by the en- 

vironment, and Y  is the set of “output” propositions, those 

controlled by the robot. LTL formulas are constructed from 

atomic propositions π ∈ AP according to the following re- 

cursive grammar: 

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ |     ϕ | ϕ U ϕ , 
 

where ¬ is negation, ∨ is disjunction,      is “next”, and U is 

a strong “until.” Conjunction (∧), implication (⇒), equiva- 

is limited. Examples of semantic behaviors currently imple- 

mented include: 
 

1. Actions that need to be completed once, for example go- 

ing to rooms (Go to the hallway.) 

2. Actions that need to be continuously performed, for ex- 

ample patrolling multiple areas (Patrol the hallway and 

office.) 

3. Completing a  long-running action that can be  inter- 

rupted, for example searching a room and reacting to any 

items found (Search the hallway.) 

4. Following (Follow me.) 

5. Enabling/disabling actuators (Activate your camera.) 

6. Carrying items (Carry meals from the kitchen to all pa- 

tient rooms.) 
 

Each command is mapped to a set of senses in VerbNet 

so that a varied set of individual verbs may be used to sig- 

nify each command. As a result, SLURP is only limited in 

its vocabulary coverage by the contents of VerbNet—which 

is easily expanded to support additional verbs if needed— 

and by what actions can be transformed into LTL. While the 

number of syntactic structures identifiable by the system is 

unbounded, the set of frames that SLURP can recognize and 

transform into logical form is constrained by the mapping of 

frames to robot actions. 

Each command may be freely combined with condi- 

tional structures (If you hear an alarm...), negation (Don’t go 

lence (⇔), “eventually” ( ) and “always” (   ) are derived to the lounge), coordination (Go to the hallway and lounge), 

from these operators. Informally, the formula     ϕ expresses 

that ϕ  is true in the next time step. Similarly, a sequence 

of states satisfies    ϕ  if ϕ  is true in every position of the 

and quantification (Go to all patient rooms). The use of 

quantification requires that, in constructing the scenario, in- 

formation about quantifiable sets is specified; for example, 

sequence, and ϕ if ϕ is true at some position of the se- the command “go to all patient rooms” can be unrolled to 

quence.  Therefore,  the  formula    ϕ  is satisfied if ϕ  is apply to all rooms that have been tagged with the keyword 

true infinitely often. For a formal definition of the LTL se- 

mantics, see Clarke et al (1999). 

Task specifications in this work are expressed as LTL 

formulas from the fragment known as generalized reactivity 

of rank 1 (GR(1)), and have the form ϕ = ϕe ⇒ ϕs with ϕp = 

patient. 
 

 
3.3.3 Generation 

ϕ i          t          g 
i       t                g For each supported command, LTL is generated by macros 

p ∧ ϕp ∧ ϕp , where ϕp , ϕp  and ϕp  for p ∈ {e, s} represent 
the initial conditions, safeties and goals, respectively, for the 

environment (e) and the robot (s). The restriction to GR(1) is 

for computational reasons, as described in Kress-Gazit et al 

(2009). 

 
3.3.2 Types of commands 

 

For each supported command, LTL is generated by macros 

which create the appropriate assumptions, restrictions, and 

goals. In the example given in Fig. 2, the resulting LTL for- 

mulas define a memory of having visited the hallway, and 

the goal of setting that memory.1 

Formulas are generated by mapping each command to 

combinations of macros. These macros include: 

1.  Goals: goal(x) generates   (x) 
There are two primary types of properties allowed: safety 

properties, which guarantee that “something bad never hap- 

pens,” and liveness conditions, which state that “something 

good (eventually) happens.” These correspond naturally to 

2. Persistent       memories:       memory(x)       generates 

 (     s.mem x ⇔ (s.mem x ∨     s.x))) 

3. Complete  at   least   once   (ALO):   alo(x)   generates 

(goal(s.mem x) ∧ memory(x)) 
LTL formulas with operators     and . While the domain          

of actions expressible in natural language is effectively infi- 

nite, the set of actions that a robot can perform in practice 

1   This arguably unintuitive translation is due to specifications in 

LTLMoP being restricted to the GR(1) fragment of LTL. 
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Go to the lounge. 

 
 

Command: go; Location:  lounge 
 

 
Initially, “lounge” has not been visited. Visit “lounge.” 

 

 
¬s.mem visit lounge  (     s.mem visit lounge ⇔ (s.mem visit lounge ∨     s.lounge)) (s.mem visit lounge) 

 

Fig. 3: Generation tree for Go to the lounge 
 
 

Among the simplest commands to generate are those that 

are directly mapped to goals; i.e., ones that are performed 

infinitely often. For example, patrolling a room maps to 

goal(room); if multiple rooms are to be patrolled, execution 

will satisfy each goal in turn, moving the robot from room 

to room indefinitely. 

Commands for which there is a distinct notion of 

completion—in linguistic terminology, commands which 

contain a verb of perfective aspect—typically generate 

persistent memories. For example, Go to the hallway is 

interpreted as visit—go to at least once—the hallway: 

alo(hallway).  In this case, the robot’s goal is to have a 

“memory” of having been in the hallway; this memory 

proposition is set by entering the hallway, after which the 

memory persists indefinitely and the goal is trivially satis- 

fied from then on. 

A challenge in creating a correct mapping is that the 

negation of a command does not necessarily imply its logi- 

cal negation. For example, Don’t go to the hallway is most 

concisely expressed as the safety    ¬s.hallway (literally, Al- 

ways, do not be in the hallway), as opposed to specifying 

that the robot should infinitely often achieve a goal of not 

having a memory of being in the hallway. In this case, the 

negation of a goal yields a safety. In general, negation of a 

sentence in natural language does not always transparently 

propagate to a negation of the logical statement that the pos- 

itive form of the sentence would have generated. 

However, for commands that create safeties, negation is 

much simpler. For example, If you see an intruder, activate 

your camera becomes   (     e.int ruder ⇒      s.camera), and 

the negated form If you see an intruder, do not activate your 

camera becomes    (     e.int ruder ⇒      ¬s.camera).  Nega- 

tive commands are always expressed as safeties, while the 

positive version of the same command may not be, as in 

the previous example of Go to the hallway. More complex 

examples of generation involving combinations of these 

macros are given in Sect. 5. 

Support for new commands can be added by first verify- 

ing the presence of the verb and the intended argument struc- 

ture in VerbNet, adding the verb and information about the 

arguments it takes if needed by editing an XML database. 

For example, a bomb-defusing robot will need to under- 

stand the verb defuse, which is not contained in VerbNet. 

Many new commands to be added can easily be expressed 

using the macros for goal or alo or mapping directly to an 

actuator on the robot. These commands can trivially be sup- 

ported by the system by marking that sense as a simple ac- 

tion in the LTL generation subsystem and giving the macro 

it is mapped to. For example, for the user study reported in 

Sect. 3.4, we added a defuse sense to VerbNet and mapped 

it to a simulated actuator of the same name. 

 
3.3.4 Generation tree 

 
A novel aspect of the LTL generation process is that the 

transformations undertaken are automatically recorded in a 

generation tree to allow for a more interpretable analysis of 

the specification generated. As shown in Fig. 3, the gener- 

ation tree allows for a hierarchical explanation of how LTL 

formulas are generated from natural language. There is a tree 

corresponding to each natural language statement, rooted at 

the natural language statement and with LTL formulas as 

leaves. The intermediate nodes are automatically created by 

the LTL generation process to explain how the statement 

was subdivided and why each LTL formula was generated. 

In addition to allowing the user to inspect the generated 

LTL, the generation tree enables mapping between LTL for- 

mulas and natural language for specification analysis. As is 

shown in the following sections, this allows for natural lan- 

guage explanations of problems detected in the specifica- 

tion. During execution of the generated controller (either in 

simulation or with a real robot), it also allows the system 

to answer the question What are you doing? by respond- 

ing with language from the generation tree. For example, in 

Fig. 3, if the current goal being pursued during execution is 

s.mem visit lounge, the system responds: I’m currently 

trying to ‘visit lounge’. In cases where the original instruc- 

tion involves quantification, identification of the sub-goal is 

particularly useful. If the user enters Go to all patient rooms, 

the generation tree will contain a sub-tree for each patient 

room, allowing for clear identification of which room is rel- 

evant to any problems with the specification. 
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3.3.5 Controller synthesis and execution 

 
Given an LTL formula representing a task specification and 

a description of the workspace topology, the efficient syn- 

thesis algorithm introduced by Piterman et al (2006) is used 

to construct an implementing automaton (if one exists). In 

combination with lower-level continuous controllers, this 

automaton is then used to form a hybrid controller that can 

be deployed on physical robots or in simulation. To ob- 

tain this hybrid controller, a transition between two discrete 

states is achieved by the activation of one or more low-level 

continuous controllers (Kress-Gazit et al, 2009; Finucane 

et al, 2010). 

 

 
3.4 Evaluation 

 
3.4.1 Design 

 
To evaluate the performance of this system when used by 

inexperienced users, we embedded SLURP as a robot agent 

in a first-person-perspective 3D video game, simulating a 

search and rescue scenario. The participant played the role 

of an operator instructing a robot through natural language 

commands. A screenshot of the game during an interaction 

with the robot is given in Fig. 4. 

To succeed in the scenario, the operator was required 

to work with the robot to search fourteen rooms on a floor, 

using the robot to defuse any bombs discovered while the 

operator rescued hostages. To increase the difficulty of the 

task and force greater reliance on the robot for searching, the 

operator needed to neutralize hostage takers who are trying 

to escape from the floor while it is searched. The scenario 

was considered a failure if the operator ever entered a room 

with an active (not yet defused) bomb or if too many of the 

hostage takers escaped. To succeed, the participant needed 

to command the robot to perform two tasks: navigate all 

rooms, and defuse all bombs found. 

The user study was designed to elicit natural language 

commands from users without giving any explicit sugges- 

tions regarding what they should say to the robot and what 

commands it understood. After providing informed consent, 

participants were instructed that the simulated robot (“Ju- 

nior”) was capable of understanding natural commands and 

advised to communicate with it naturally (“Talk to Junior 

like you might talk to someone who needs instructions from 

you”), giving direct commands but not doing anything un- 

natural such as removing prepositions and articles or using 

“Tarzan-speak.” The experimenter was permitted to answer 

questions about the instructions, game controls, and inter- 

face during the training scenarios, but not during the testing 

scenario. The experimenter did not give any suggestions re- 

garding what the user should say to the robot or intervene in 

the experiment other than restarting the experiment in case 

of software failure. 

Users participated in four training scenarios of increas- 
ng difficulty before attempting the full scenario described        

above. The purpose of the training scenarios was to in- 

troduce them to the game dynamics as well as give them 

simple tasks to perform with natural language before try- 

ing to complete more complex ones. The training 

scenariosused smaller maps and gradually introduced the 

actions that would need to be performed in the main 

scenario: neutraliz- ing hostage takers, and commanding 

the robot to move be- tween rooms and defuse bombs. The 

layout used in the final scenario contained fourteen rooms 

connected by hallways in a ring configuration, a layout not 

used in any of the train- ing exercises that made 

neutralizing the escaping hostage takers significantly more 

difficult. The locations of bombs, hostages, and hostage 

takers were randomly generated for each user and could be 

discovered by navigating to the room they were located in. 
 

 
3.4.2 Results 

 
All fourteen participants successfully completed the training 

and testing scenarios. They were able to successfully com- 

mand the robot navigate to and defuse all bombs present in 

the map. 

We analyzed transcripts of interactions between users 

and the simulated robot across the four training scenarios 

and the final testing scenario. The transcripts consisted of 

628 commands given to the simulated robot. 69 commands 

(11.0 %) were excluded from analysis for the following rea- 

sons: typographical errors, humorous commands unrelated 

to the scenario (e.g., ordering the robot to dance), non- 

commands (e.g., telling the robot “good job”), commands 

the robot cannot perform in the scenario (e.g., instructing it 

to move to locations not on the map), unnecessary repeti- 

tion of previously not-understood commands, or if software 

limitations of the simulation, not the language understand- 

ing system, caused the command to not be processed. The 

remaining 559 commands were automatically labeled for 

whether they were successfully understood by the system 

based on its response. 

526 commands (94.1 %) were understood and resulted in 

the successful synthesis and execution of an automaton (Ta- 

ble 1). The 33 commands (5.9 %) that were not understood 

were manually annotated and investigated to determine the 

cause of the failure (Table 2). The largest single cause of er- 

rors was the tagger failing to identify imperatives as verbs 

because they are rarely present in the training data for stan- 

dard natural language processing components. For example, 

both Rescue the hostage and Free the hostage were not rec- 

ognized as imperatives due to tagging errors.2 

The verbs the system failed to recognize were come, 

destroy, find, get, and walk. The failure to recognize come 

(come here) and get (get up) was caused by VerbNet not 

including the specific imperative uses of these verbs. The 

i 2   Even though it was the role of the operator, not the robot, to rescue 

hostages, we label these examples as tagging errors because a com- 

mand was given to the system and it was not properly understood. The 

desired response in this situation is to understand the requested action 

but report that the robot cannot perform it. 
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Fig. 4: Screenshot of simulation environment 

 
Table 1: User study performance 

 
Overall Performance 

Result Count % of commands 

Understood 526 94.1 
Error 33 5.9 

 

Table 2: User study error analysis 

 
 

Error Type 
 

Count 
 

% of commands 
Causes of Errors 

Example 

Tagging 10 1.8 Rescue tagged as a noun in Rescue the hostages 
Syntactic parsing 1 0.2 Null element not restored in Go to north rooms, then go to east rooms 
Semantic parsing 2 0.4 Around not recognized as an argument in Turn around 
Verb not understood 9 1.6 VerbNet sense for walk not mapped to movement action 
Use of shorthand 7 1.3 One-word commands such as defuse and bedroom 
Other 4 0.7 It not understood in If you see a bomb, defuse it 

 

 

system was able to semantically parse sentences containing 

destroy and walk, but the VerbNet senses for these verbs had 

not been mapped to the defuse and go actions that users ex- 

pected. This can be addressed by simply adding these map- 

pings. In these cases, the user was informed that the system 

recognized the verb in their command but did not know what 

to do with it (Sorry, but I don’t know how to walk), and the 

user discovered an alternate way to make their request (go, 

move), that was understood. 

All but one instance of the errors due to use of short- 

hand consisted of saying only defuse to instruct the system 

to defuse bombs. Successful commands for defusing bombs 

produced by users included Defuse the bomb, Defuse bomb, 

and compound commands such as Defuse the bomb and 

go to the lab. Two of the errors classified as “Other” were 

caused by the inability of the semantic parsing system to re- 

solve pronouns within a command: If there is a bomb, defuse 

it. 
 

 
3.4.3 Discussion 

 
The evaluation presented here demonstrates that inexperi- 

enced users can successfully give commands understood by 

SLURP without any specific knowledge of what the sys- 

tem is capable of understanding or the underlying lexical 

database or parsing system. While users did produce com- 

mands the system did not understand, they were also able to 

identify alternative forms that worked and complete the sce- 
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Figure 4: The operator interface shows the current dialog 

state in the lower left along with the robot position and an  

icon for a bomb the robot has identified 

.

Figure 3.The end-to-end system architecture  

 

narios. This was aided by the rich feedback the system pro- 

vides. For example, when a user stated If there is a bomb, 

defuse it, the system’s response was Sorry, I don’t under- 

stand what you mean by ’it’. This response allows the user 

to identify the issue with their command and revise it. Sys- 

tems that rely on a formal grammar for parsing (e.g., Dzif- 

cak et al, 2009) report a parsing failure in this instance, not 

giving the user any information regarding what the issue is. 

The majority of errors encountered were due to a com- 

mon problem in natural language processing: differences in 

the type of content in the data that the tagger and parser  

were trained to perform well on and the actual data used in 

testing. The tagger and parser used are primarily trained on 

newswire, which contains a very small number of impera- 

tives. This is in contrast to the data set evaluated here, where 

every sentence is an imperative. The data collected in this 

user study can be used to allow training on more relevant 

in-domain data, allowing for a reduction in the number of 

tagger and parser errors. 

 

 

4   Architecture and Physical Robot Implementation 
 
The system described above can be used with simulated 
robots, with graphical systems and with real robots.  What 
differs is primarily the particulars of the low level 
controllers used by the resulting control automaton.  For 
purposes of real-world experiments, we implemented a 
system using an iRobot ATRV Jr. The operator interacts 
with the system using a tablet com- puter, currently an 
Apple iPad. The system is comprised of modular software 
subsystems which were assembled into a  single system 
using ROS (Quigley et al. 2009).  

Our system’s overall architecture, shown in Figure 3 is 
analogous in design to a three layer architecture (Gat 1998). 
The natural language components of the system make up 

the highest layer, which transforms natural language into 
logical statements, synthesizes a finite state automaton to 
carry out the requested plan, and communicates status back 
to the commander. The middle layer is formed by a hybrid 
controller, which maintains the current discrete state of the 
automaton given input from the environment, and the job 
scheduler and state manager on the robot. These modules 
work together to transform the logical propositions into a 
controller for the robot’s actions. Finally, low-level contin- 
uous behaviors which primarily interact with the dynamics 
of the changing world are implemented on the robot to carry 
out the requested actions. 

 
4.1   Operator Interface 

 

The operator commands the system through the use of a 
tablet computer. Natural language utterances are the primary 
form of communication between the operator and robot and 
are entered into the system using an interface similar in de- 
sign to an instant messaging or text messaging program. 
Information about the environment is reported by the robot 
using visual notifications on the display in addition to 
language notifications for important events, as shown in 
Figure 4. The interface also contains a map mode, which dis- 
plays information about the layout of the world and the lo- 
cation of key objects within the world, including the robot’s 
position. The map layout may be known in advance or pro- 
duced by the robot as it explores. Map mode is considered to 
be a secondary form of communication which serves to aug- 
ment the natural language interaction. It provides a source 
of common understanding to ground the conversation be- 
tween the commander and robot by showing the objects or 
places relevant to the robot’s operation. The map interface 
also displays camera imagery from the robot, allowing the 
commander to see various objects of interest such as bombs 
and hostages as they are identified by the robot.
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Figure 5: The robot generates a map of the environment in a 
fronter-based exploration scenario. 

 

 

4.2   Robot Controller 

 

The controller generated from the language deploys 
different low-level robot behaviors based on the goals and 
the state of the robot and the environment. This controller 
automatically reacts to different environment events, as 
perceived by the robot’s sensors. 

 
State and Sensor Management.   One of the responsibil- 
ities of the robot is presenting information about the 
world as perceived by its sensors to the generated 
controller. The granularity of the raw sensor data is too 
fine for the controller, thus the data is abstracted into 
discrete events. Sensor output is filtered and fused with 
other data to create a more concise description of the 
world. This is done by taking pieces of raw data and 
interpreting them into various types of information such 
as abstract location, for example which room the robot is 
in, and what agents and objects are present in the current 
room. The interpreted sensor data, along with information 
about the location of the robot and the current behaviors 
being executed, form the system’s state, which is reported 
to the controller. 
 

Low Level Implementation.   The robot is currently ca- 
pable of six behaviors, including driving to a location, ex- 
ploring (map building), performing a generic search of an 
area, following a person, retrieving (asking for) objects, 
and (simulated) disarming explosives. A behavior is 
composed of a set of rules for starting, stopping, and 
suspending execution, along with logic that controls the 
execution of one or more actions. An action is an activity, 
atomic at the planner’s level, that the robot can perform. 

There are currently four actions implemented: drive, area 
sweep, explore, and follow. Actions react dynamically to 
the environment, can keep state, and even perform some 
lower level planning. However, they do not take into 
account the state of the over- all system or what other 
actions are currently running. Ac- tions often make use of 
shared resources such as drive train motors and can also be 
used by multiple behaviors. 
 
Mapping, Region Discovery, and  Exploration.   An im- 
portant aspect of being able to effectively communicate with 
the system is the ability for both the operator and robot to ac- 
curately refer to places in the world using names. This sys- 
tem supports this feature through the use of either static or 
dynamically generated maps. In some cases, the map of the 
area in which the robot is operating is known in advance, 
through the existence of building plans or previous experi- 
ence. These maps can be preloaded into the system before 
deployment, which gives the operator the advantage of be- 
ing able to refer to places in their instructions. However, in 
many cases the layout of the world is not known ahead of 
time, and a map must be generated. This can be achieved 
through the use of a strategy for frontier-based exploration 
(Yamauchi 1997) and simultaneous localization and map- 
ping (Grisetti, Stachniss, and Burgard 2007). We analyze the 
structure of the world by drawing polygon outlines on the 
map to denote regions, which are assigned names. In ad- 
dition, we map which polygons can be reached from other 
polygons using a connected graph. The polygon definitions, 
names, and connected graph is stored as a topological 
graphwhich can be used by the system for planning. We 
created an automated system to identify regions using an 
algorithm (Fabrizi and Saffiotti 2000) which uses a process 
of dilation and erosion of walls to determine distinct places 
within the world, and a process called water-shedding to 
determine their connectivity to each other. An example of 
such regions being identified as the robot explores is shown 
in Figure 5. 
 
 
5   Examples of System Usage 
 

We now demonstrate the system in a scenario where a per- 
son acting as the commander used a real robot to simulate a 
search and rescue scenario. Before retrieving the hostages, 
the commander needed to search the building for bombs. 
Hostages, bombs, and users were represented as boxes with 
fiducial markers in the scenario to provide a simple simula- 
tion of perception. 

 
5.1   Known Map 

 
The interaction shown in Figure 6 demonstrates how the 
commander specified a plan to the robot and received feed- 
back as the robot understood each command, with corre- 
sponding line numbers. The commander first issued a stand- 
ing order for the robot to notify the commander when any 
hostages were seen (line 01). When the robot was told to 
look for a particular human collaborator, the robot inter- 
preted the commands as requiring a search of all rooms in 
which the user could be present. The request to get the de- 
fuser from the user and bring it back here shows how the 
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system can give information about how it resolved com- 
mands to the commander. When the commander says “here,” 
the robot resolved it to its current location, the hall. This in 
ference is made explicit so the commander has the ability to 
correct any misunderstandings. When the commander 
completed giving orders (line 07), the robot formed a plan 
and began to execute it. The robot did not inform the 
commander of every action taken, in- stead only notifying 
when it was explicitly asked to (i.e., hostages), if it acted 
on a standing order, or when it completed its mission. 
When the robot identified the user and requested the 
defuser, the commander was notified. After completing the 
mission, the robot informed the commander that it was idle. 

     Not every interaction results in successful understand- 
ing. Once the robot had the bomb defuser, the commander 
needed to instruct the robot to use it to defuse bombs. In 
cases where the system was able to extract nothing of use 
from the utterance, in this case because VerbNet did not con- 
tain an appropriate form of disarm, the system reported that 
it did not understand the utterance at all (line 12). Another 
possible failure mode is that the system extracted the seman- 
tic structure but it did not understand how to carry out the 
command. In the case of the second command tried, defuse 
the dynamite, the system recognized that the verb was defuse 
and the object was the dynamite but it did not understand that 
dynamite is the same thing as a bomb. The responses the 
system gives help to make it apparent when the comman- 
der’s word choice is at fault; the system is able to express 
that it understood the syntax but does not know the object in 
this example. With such feedback, the operator may adjust 
its vocabulary when repeating the command (line 15). 

The robot’s standing orders remain in effect across plans 
so  that  the  commander  does  not  need  to  specify  them 
again for each set of commands. The standing order of 
informing the commander when a hostage is seen was still 
valid and was carried over into a new plan, as shown by the 
notification upon seeing a hostage (line 21). In addition, a 
new standing order to defuse bombs was given now that the 
robot has the bomb defuser. As the robot searched the lab 
and recognized the hostage, it notified the commander and 
then waited for new orders after its search was complete. 
The  commander provided new  orders  to  send  it  to  the 
office (line 23), where it performed a search, pausing to 
defuse a bomb, and then completed its search of the room. 
The ability to remain reactive to the environment while 
performing actions is an important feature of the planner 
in a system that operates in dangerous environments where 
immediate reaction is critical. 

In Figure 7, we give examples of how the commander 

was able to interrupt plans currently being executed and 

change the robot’s plan. The robot can be told to stop in 

mid-plan execution (line 05), in which case the plan is 

discarded. If orders have been given but the commander 

changes his or her mind before telling the robot to execute 

the commands, the commander may clear the list of orders 

by giving a command such as nevermind (line 09) 

.

01 Commander: Tell me if you see any hostages. 
02 Robot: I’ll let you know if I see a hostage. 
03 C: Look for User 2 in the library and the classroom. 
04 R: Got it. I’ll search the library and search the classroom. 
05 C: Get the defuser from User 2 and come back here. 
06 R: Got it. I’ll retrieve the defuser from user 2 and go to the 
hall. 
07 C: Make it so. 
08 R:Understood. I’m carrying out your orders now. 
The robot searches the classroom and does not find the user. It 
then searches the library, identifies the user, and begins to get the 
defuser. 
09 R: I’m now going to get the defuser in the library. 
In addition to the language notification, an icon showing the lo- 
cation of the user is shown on the operator interface along with 
a picture of the user captured by the robot. After getting the de- 
fuser, the robot returns to the hall. 
10 R: I’m done, and I’m in the hall. 
11 C: Disarm the dynamite. 
12 R: I’m sorry, I didn’t understand that at all. 
13 C: Defuse the dynamite. 
14 R: Sorry, I don’t know anything about dynamite. 
15 C: Defuse the bombs. 
16 R: Got it. I’ll defuse all bombs. 
17 C: Search the lab. 
18 R: Got it. I’ll search the lab. 
19 C: Make it so. 
20 R: Understood. I’m carrying out your orders now. 
The robot drives to the lab and searches it, finding a hostage but 
no bombs. The robot displays a picture of the hostage on the op- 
erator’s interface. 
21 R: I see a hostage. 
22 R: I’m done, and I’m in the lab. 
23 C: Search the office. 
The robot drives to the office and searches it, finding a bomb dur- 
ing the search. It displays a picture of the bomb on the operator’s 
interface. 
24 R: I’m now going to defuse in the office. 
The robot defuses the bomb and then completes its search of the 
room. 
25 R: I’m done, and I’m in the office. 

 
Figure 6: Interaction with the robot before and during plan 
execution. 

 

01 Commander: Go to the classroom. 
02 Robot: Got it. I’ll go to the classroom. 
03 C: Make it so. 
04 R: Understood. I’m carrying out your orders now. 
The robot begins driving to the lab. 
05 C: Stop. 
06 R: Aye sir, full stop. I’m in the hall. 
The robot stops immediately. 
07 C: Go to the lab. 
08 R: Got it. I’ll go to the lab. 
09 C: Nevermind 
10 R: Okay, I’ll belay those orders. 
The robot clears the “go to the lab” command from its orders. 
11 C: Go to the lounge. 
12 R: Got it. I’ll go to the lounge. 
13 C: Make it so. 
14 R: Understood. I’m carrying out your orders now. 
The robot begins driving to the lounge. 

 
Figure 7: Controlling the robot’s plan execution. 
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6 Conclusion 

 
This report presents an integrated system that allows non- 

expert users to control robots performing high-level, reactive 

tasks using a natural language interface. The depth of inte- 

gration between the natural language components and the 

synthesis, unsynthesizable core-finding, and execution mod- 

ules allows for natural language specifications, feedback on 

specification errors, and explanation of current goals during 

execution. 

The described user study demonstrates that the approach 

taken for natural language understanding, combining stan- 

dard parsing and tagging modules with a deterministic se- 

mantic parsing system, is capable of understanding non- 

expert user commands with high accuracy. As shown in the 

error analysis, the greatest improvements to the performance 

of the system would come from training the tagger on more 

data containing imperatives and expanding the vocabulary 

coverage of the system to cover more of the verbs used by 

users. The design of the system makes adding support for 

additional verbs straightforward as there is no grammar to 

update, only a vocabulary list to amend. 

While the use of domain-general language processing 

tools allows for an extensible system, some constructs com- 

mon in the robotics domain may not be understood cor- 

rectly. For example, a user might want to use the phrase turn 

on your camera instead of activate your camera as in the 

examples in this paper. Unfortunately, particles such as on 

are often assigned incorrect part-of-speech tags, resulting in 

failure to understand commands such as turn on and turn 

off. The collection of a corpus of robot control interactions 

for use in training broad-domain language models for robot 

control would result in higher performance from the natural 

language processing and semantic extraction components. 

There are significant challenges in designing a robust 

mapping from natural language semantics to LTL formu- 

las. While simple motion commands and actuations can be 

straightforwardly mapped into logical form, more complex 

actions like the delivery of objects can be more difficult to 

translate. However, the benefit of the proposed system is that 

the effort is invested just once in the design of the mapping, 

not repeatedly for each specification as it would be for users

 writing specifications in LTL or structured language. The 

system presented is easily applied to scenarios where the 

specification is largely centered around motion and simple 

actuations, but can be extended by users proficient in LTL 

to more complex scenarios by adding support for additional 

behaviors. Future work might explore the automatic learn- 

ing of mappings between semantic structures and LTL rep- 

resentations. Learning a mapping that allows for complex 

specifications to be reliably synthesized would require the 

system to learn many of the subtleties of LTL specification 

authoring, such as maintaining consistent tense across the 

mapping for each type of action. 

 
A number of issues in the LTL generation process merit 

further consideration. While this paper discusses some of 

the challenges regarding the application of negation, fur- 

ther work should address more formal paradigms for map- 

ping actions to LTL formulas. The production of an on- 

tology of common actions and the type of formulas that 

they produce—for example, safety conditions, adding goals, 

constraining the initial state—in their negated and positive 

forms would be a step toward a more general solution to 

the problem of mapping natural language to LTL. Previous 

work has relied heavily on grammar formalisms to ease se- 

mantic extraction. While those formalisms provide a struc- 

ture for easy extraction of semantic roles, they are not robust 

to natural input and do not address the more urgent problem 

of robust logical representations over large sets of possible 

actions which remain appropriately synthesizable in compli- 

cated specifications. The examples presented here have 

focused on the execution of a single specification. However it 

is possible that over the course of a mission requirements 

may change and new commands may be given. While the 

underlying execution environment supports resynthesis and 

transitioning execution to a new automaton during 

execution, this introduces a number of challenges in the 

communication between system and user. Future work 

should explore means for maintaining the level of natural 

language integration presented in this paper across more 

complex execution paradigms, handling events such as 

changes in the workspace topology, as would occur when 

operating in environments that are only partially known. 

. 
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