
Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

215-898-2538

W911NF-07-1-0216

52555-MA-MUR.19

Final Report

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

While highly constrained language can be used for robot control, robots that can operate as fully autonomous
subordinate agents communicating via rich language remain an open challenge. Toward this end, the central goal of
the SUBTLE MURI project was to develop an autonomous system that supports natural, continuous interaction
with the operator through language before, during, and after mission execution. The operator communicates
instructions to the system through natural language and is given feedback on how each instruction was understood
as the system constructs a logical representation of its orders using linear temporal logic. While the plan is

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

06-01-2016 1-May-2007 31-Aug-2014

Approved for Public Release; Distribution Unlimited

Final Report: SUBTLE: Situation Understanding Bot through
Language and Environment

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

robotics, natural language, autonomous robots, automatic controller synthesis, formal methods

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Mitchell Marcus

Mitchell Marcus, Hadas Kress-Gazit, Holly Yanco, Daniel Brooks,
Constantine Lignos, Cameron Finucane, Kenton Lee, Mikhail
Medvedev, Ian Perera, Vasumathi Raman

611103

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Pennsylvania
Office of Research Services
3451 Walnut Street, Suite P-221
Philadelphia, PA 19104 -6205

31-Aug-2014

ABSTRACT

Final Report: SUBTLE: Situation Understanding Bot through Language and Environment

Report Title

While highly constrained language can be used for robot control, robots that can operate as fully autonomous subordinate agents
communicating via rich language remain an open challenge. Toward this end, the central goal of the SUBTLE MURI project was to develop
an autonomous system that supports natural, continuous interaction with the operator through language before, during, and after mission
execution. The operator communicates instructions to the system through natural language and is given feedback on how each instruction
was understood as the system constructs a logical representation of its orders using linear temporal logic. While the plan is executed, the
operator is updated on relevant progress via language and images and can change the robot’s orders. Unlike many other integrated systems
of this type, the language interface is built using robust, general purpose parsing and semantics systems that do not rely on domain-specific
grammars. The natural language system uses domain-general components that can easily be adapted to cover the vocabulary of new
applications. We demonstrate the robustness of the natural language understanding system through a user study where participants interacted
with a simulated robot in a search and rescue scenario.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of
the project to the date of this printing. List the papers, including journal references, in the
following categories:

10.00

12.00

14.00

01/04/2013

01/04/2013

01/04/2013

01/04/2016

01/04/2016

Received Paper

9.00

8.00

João V Graça, Kuzman Ganchev, Luísa Coheur, Fernando Pereira, Ben Taskar. Controlling Complexity in
Part-of-Speech Induction,
Journal of Artificial Intelligence Research, (07 2011): 527. doi:

Funda Durupinar, Nuria Pelechano, Jan Allbeck, Ugur Gudukbay, Norman I. Badler. The Impact of the
OCEAN Personality Model on the Perception of Crowds,
IEEE Computer Graphics and Applications, (05 2011): 22. doi: 10.1109/MCG.2009.105

 Jennifer Gillenwater, Kuzman Ganchev, João Graça, Fernando Pereira, Ben Taskar. Posterior Sparsity in
Unsupervised Dependency Parsing,
Journal of Artificial Intelligence Research, (01 2011): 455. doi:

Nir Piterman, Vasumathi Raman, Cameron Finucane, Hadas Kress-Gazit. Timing Semantics for
Abstraction and Execution of Synthesized High-Level Robot Control,
IEEE Transactions on Robotics, (6 2015): 0. doi: 10.1109/TRO.2015.2414134

Vasumathi Raman, Cameron Finucane, Mitchell Marcus, Hadas Kress-Gazit, Constantine Lignos.
Provably correct reactive control from natural language,
Autonomous Robots, (11 2014): 0. doi: 10.1007/s10514-014-9418-8

TOTAL: 5

Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

0.00

(b) Papers published in non-peer-reviewed journals (N/A for none)

(c) Presentations

Number of Presentations:

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

01/04/2013

01/04/2013

01/04/2013

01/04/2013

01/04/2013

01/04/2013

01/04/2016

01/04/2016

01/04/2016

01/04/2016

01/04/2016

15.00

18.00

17.00

16.00

13.00

Received Paper

1.00

7.00

6.00

2.00

3.00

4.00

Daniel Brooks, Abraham Shultz, , Munjal Desai,, Philip Kovac, Holly A. Yanco. Towards State
Summarization for Autonomous Robots,
Proceedings of the AAAI Fall Symposium on Dialog with Robots, November 2010. 01-NOV-10, . : ,

Vasumathi Raman, Hadas Kress-Gazit. Analyzing Unsynthesizable Specifications for High-LevelRobot
Behavior Using LTLMoP,
Proceedings of Computer Aided Verification 2011. 14-JUL-11, . : ,

Weizi Li, Jan M. Allbeck. Populations with Purpose,
Proceedings of Motion in Games. 13-NOV-11, . : ,

A. Djalali, D. Clausen, S. Lauer, K. Schultz, C. Potts. Modeling expert effects and common ground using
Questions Under Discussion.,
Proceedings of the AAAI Workshop on Building Representations of Common Ground with Intelligent
Agents. 06-NOV-11, . : ,

Cameron Finucane, Gangyuan Jing, Hadas Kress-Gazit. LTLMop: Experimenting with Language,
Temporal Logic and Robot Control,
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 12-OCT-10, . : ,

Benjamin Johnson, Hadas Kress-Gazit. Probabilistic Analysis of Correctness of High-Level Robot
Behavior with Sensor Error,
Robotics: Science and Systems . 10-JUN-11, . : ,

Vasumathi Raman, �Vasumathi Raman, Constantine Lignos, Cameron Finucane, Kenton C.T. Lee, Mitch
Marcus, Hadas Kress-Gazit. Sorry Dave, I'm afraid I can't do that: Explaining unachievable robot tasks
using natural language,
Robotics: Science and Systems IX. 24-JUN-13, . : ,

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan Jurafsky, Jure Leskovec, Christopher Potts. A
computational approach to politeness with application to social factors,
Annual Meeting of the Association for Computational Linguistics 2013. 04-AUG-13, . : ,

Christopher Potts. Goal-driven answers in the Cards dialogue corpus.,
30th West Coast Conference on Formal Linguistics. 13-APR-12, . : ,

Daniel J. Brooks, Constantine Lignos, Cameron Finucane, Mikhail S. Medvedev, Ian Perera, Vasumathi
Raman, Hadas Kress-Gazit, Mitch Marcus, Holly A. Yanco. Make it So: Continuous, Flexible Natural
Language Interaction with an Autonomous Robot,
Grounding Language for Physical Systems Workshop at the Twenty-Sixth AAAI Conference on Artificial
Intelligence. 22-JUL-12, . : ,

Vasumathi Raman, Hadas Kress-Gazit. Automated feedback for unachievable high-level robot behaviors,
2012 IEEE International Conference on Robotics and Automation (ICRA). 14-MAY-12, St Paul, MN, USA.
: ,

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Books

Number of Manuscripts:

(d) Manuscripts

05/02/2013 5.00 Daniel Lee, Mark McClelland, Joseph Schneider, Tsung-Lin Yang, Dan Gallagher, John Wang, Danelle
Shah, Nisar Ahmed, Pete Moran, Brandon Jones, Tung-Sing Leung, Aaron Nathan, Hadas Kress-Gazit,
Mark Campbell . Distributed, Collaborative Human-Robotic Networks for Outdoor Experiments in Search,
Identify and Track,
SPIE Europe Conference on Unmanned/Unattended Sensors and Sensor Networks. 25-OCT-10, . : ,

TOTAL: 12

Received Paper

TOTAL:

Received Book

TOTAL:

Received Book Chapter

TOTAL:

Patents Submitted

Patents Awarded

Awards

Graduate Students

Names of Post Doctorates

Names of Faculty Supported

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Constantine Lignos 1.00
Vasumathi Raman 0.50
Cameron Finucane 1.00
Dan Brooks 1.00
Eric Doty 0.10

3.60

5

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

National Academy Member
Mitchell Marcus 0.16
Hadas Kress-Gazit 0.08
Holly Yanco 0.08
Christopher Potts 0.08
Jan Allbeck 0.04
Norman Badler 0.04

0.48

6

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Discipline
Kenton Lee 0.10 Computer Science
Israel Geselowitz 0.05 Computer Science

0.15

2

Names of Personnel receiving masters degrees

Names of personnel receiving PHDs

Names of other research staff

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):
Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:
The number of undergraduates funded by your agreement who graduated during this period and intend to work

for the Department of Defense
The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period:

2.00

1.00

1.00

0.00

0.00

1.00

2.00

The number of undergraduates funded by this agreement who graduated during this period with a degree in
science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue
to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:......

......

......

......

......

NAME

Total Number:

NAME

Total Number:

Constantine Lignos
Vasumathi Raman
Munjal Desai

3

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

......

......

Sub Contractors (DD882)

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

University of Massachusetts - Lowell 600 Suffolk Street, Suite 226

Lowell MA 018543643

5/1/07 12:00AM

6/30/16 12:00AM

University of Massachusetts - Lowell 450 Aiken Street

Lowell MA 018543602

5/1/07 12:00AM

6/30/16 12:00AM

University of Massachusetts - Amherst 70 Butterfield Terrace

Amherst MA 010039242

5/1/07 12:00AM

6/30/15 12:00AM

University of Massachusetts - Amherst Research Administration Building

70 Butterfield Terrace

Amherst MA 010039242

5/1/07 12:00AM

6/30/15 12:00AM

1 a.

1 a.

1 a.

1 a.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Stanford University Office of Sponsored Research

3160 Porter Drive, Suite 100

Palo Alto CA 943048445

9/1/09 12:00AM

6/30/16 12:00AM

Stanford University 3160 Porter Drive

Suite 100

Palo Alto CA 943058445

9/1/09 12:00AM

6/30/16 12:00AM

Cornell University 171 Kimball Hall

Ithaca NY 14853

9/1/09 12:00AM

6/30/13 12:00AM

Cornell University 171 Kimball Hall

Ithaca NY 14853

9/1/09 12:00AM

6/30/13 12:00AM

1 a.

1 a.

1 a.

1 a.

Inventions (DD882)

Scientific Progress

See attachment

Technology Transfer

On Wednesday, December 11, 2013, Hadas Kress-Gazit of Cornell, and Mitch Marcus and Constantine Lignos of University of
Pennsylvania, conducted a 6 hour workshop at ARL Adelphi for CISD researchers in natural language processing and small
robots as a next step towards transitioning the SUBTLE MURI technology to them. About 10 ARL researchers attended. The
focus of the workshop was how to extend the SUBTLE natural language lexicon, which contains formula to translate verb
semantics to Linear Temporal Logic.

This followed a 4 day “hackathon” by Stuart Young’s small robots group which successfully ported the SUBTLE MURI NLP
robot interface to the Packbot platform they were then using – all without our help. The Adelphi group started with the
codebase which was transitioned to ARL Aberdeen the previous summer and which we adapted to their software environment.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

Sub Contractor Numbers (c):

Patent Clause Number (d-1):

Patent Date (d-2):

Work Description (e):

Sub Contract Award Date (f-1):

Sub Contract Est Completion Date(f-2):

1 b.

George Washington University 2121 I Street NW

Rice Hall Suite 601

Washington DC 200520086

9/1/09 12:00AM

6/30/12 12:00AM

George Washington University 2121 I Street NW, Suite 601

Washington DC 200520001

9/1/09 12:00AM

6/30/12 12:00AM

1 a.

1 a.

Situation Understanding Bot using Language and Environment
Final Report

Grant W911NF-07-1-0216

Daniel J. Brooks, Constantine Lignos, Cameron Finucane, Kenton Lee, Mikhail S.
Medvedev, Ian Perera, Vasumathi Raman, Hadas Kress-Gazit, Mitch Marcus, Holly

A. Yanco

Foreword

While highly constrained language can be used for robot

control, robots that can operate as fully autonomous

subordinate agents communicating via rich language

remain an open challenge. Toward this end, the central goal

of the SUBTLE MURI project was to develop an

autonomous system that supports natural, continuous

interaction with the operator through language before,

during, and after mission execution. The operator

communicates instructions to the system through natural

language and is given feedback on how each instruction

was understood as the system constructs a logical

representation of its orders using linear temporal logic.

While the plan is executed, the operator is updated on

relevant progress via language and images and can change

the robot’s orders. Unlike many other integrated systems of

this type, the language interface is built using robust,

general purpose parsing and semantics systems that do not

rely on domain-specific grammars. The natural language

system uses domain-general components that can easily

be adapted to cover the vocabulary of new applications.

We demonstrate the robustness of the natural language

understanding system through a user study where

participants interacted with a simulated robot in a search

and rescue scenario. Language-enabled autonomous

systems of this type represent important progress toward

the goal of integrating robots as effective members of

human teams.

Keywords Natural language · Formal methods · High-level

control · Synthesis

1 Introduction

Robots have the ability to play a unique role in a team of
humans in scenarios such as search and rescue where safety
is a concern. Traditionally the overhead of interacting with
such systems has been high, making integration of robots
into human teams difficult. Improvements in natural lan-
guage technology may, however, allow for this overhead to

be reduced if a system can understand natural language input
well enough to carry out the required scenario and maintain
contact with human team members. In this report we present
a system that makes progress towards the use of robots as
capable members of a human team by providing continu-
ous, flexible, and grounded natural language communication
with the robot throughout execution.

The challenge of programming robots to perform these

tasks has until recently been the domain of experts, re-

quiring hard-coded high-level implementations and ad-hoc

use of low-level techniques such as path-planning during

execution. Recent advances in the application of formal

methods for robot control have enabled automated synthe-

sis of correct-by-construction hybrid controllers for com-

plex high-level tasks (e.g., Kloetzer and Belta 2008; Kara-

man and Frazzoli 2009; Bhatia et al 2010; Bobadilla et al

2011; Kress-Gazit et al 2009; Wongpiromsarn et al 2010).

However, most current approaches require the user to pro-

vide task specifications in logic or a similarly structured

specification language. This forces users to formally reason

about system requirements rather than state an intuitive de-

scription of the desired outcome. Furthermore, the outcome

of verifying such specifications is traditionally simply a re-

sponse of success or failure; detecting which portions of the

specification are at fault is a non-trivial task (e.g., Raman

and Kress-Gazit 2013a), as is explaining the problem to the

user.

The system presented in this paper combines the power

of formal methods with the accessibility of natural language,

providing correct-by-construction controllers for specifica-

tions that can be implemented and easy-to-understand feed-

back for those that cannot. The system is open-source, can

be extended to cover new scenarios, and allows for both

specification and execution of natural language specifica-

tions. The system enables users to specify high-level behav-

iors via natural language, parsing commands using seman-

tic analysis to create a linear temporal logic (LTL) specifica-

tion. This parsing is deterministic and predictable, providing

feedback to the user to help guide them if their input could

not be completely parsed. The LTL specification is used to

synthesize a hybrid controller when possible. If no imple-

mentation exists, the user is provided with an explanation

2

PicoSAT

User

Feedback

Parsing

Analysis

unrealizable

Core-finding

Interactive Game

Semantic

Interpretation

LTL Generation

unsynthesizable

Synthesis Execution

synthesizable

SLURP LTLMoP

Robot

Fig. 1: System overview

and the portions of the specification that cause failure. The

explanation is enabled by a data structure called a genera-

tion tree, which records the transformation of natural lan-

guage into formal logic and is able to map backwards from

problematic logical propositions to the explicit or implicit

input from the user that caused the problem.

The system allows for execution of the controller either

in simulation or using a physical robot. Natural language

features are also available during execution; the generation

tree allows the robot to explain what goal it is trying to

achieve through its current action. The same language pro-

cessing and semantic extraction components that enable the

creation of logical propositions from natural language spec-

ifications enable feedback from the robot during execution.

 The application domain for this system is an urban
search and rescue scenario where an autonomous mobile
robot acts as part of a team of humans working to
explore the area and react to the environment as required.
The robot acts as the commander’s subordinate, receiving
orders and carrying them out. The robot’s primary purpose
is reconnaissance, entering areas that may be unsafe ahead
of human team members. It is assumed that the
commander and robot will rarely be colocated.
Interaction with the system is implemented through a
multimodal tablet interface that acts as a conduit for
both sending instructions to the robot and displaying
information about the remote situation and environment.

In the sample interaction shown in Figure 2, the system
is asked to report when it encounters hostages, instructed
to defuse any bombs it finds, and given a set of rooms to
search. The system analyzes commands as they are given to
it, and when it is told to begin carrying out orders it forms
a plan from those commands and begins execution. The
robot maintains contact with the operator during execution,
informing the operator about anything it was explicitly
asked to mention in addition to anything related to the goals
it was given.

Commander: Tell me if you see any hostages.
Robot: I’ll let you know if I see a hostage.
C: Defuse all the bombs you see.
R: Got it. I’ll defuse all bombs.
C: Search the library, classroom, and lab.
R: Got it. I’ll search the library, search the classroom, and search
the lab.
C: Make it so.
R: Understood. I’m carrying out your orders now.
R: I see a hostage.
R: I’m now going to defuse in the library.
R: I’m done, and I’m in the classroom.

Figure 2: Sample interaction with the system.

Fig. 1 shows the system’s main components and the con-

nections between them. The Situated Language Understand-

ing Robot Platform (SLURP) consists of parsing, semantic

interpretation, LTL generation, and feedback components.

This module is the natural language connection between the

user and the logical representations used within the Linear

Temporal Logic MissiOn Planning (LTLMoP) toolkit (Fin-

ucane et al, 2010). LTLMoP, which also interfaces with the

SAT solver PicoSAT (Biere, 2008), provides an environment

for creating, analyzing, and executing specifications.

This organization of this paper follows the flow of user

input into the system. Sect. 2 discusses previous work in

this area. Sect. 3 describes the language understanding and

LTL generation mechanisms and presents an evaluation of

the performance of the system when processing commands

from users. Sects. 4–5 describe controller synthesis and

specification feedback mechanisms and present an example

of applying the system in a hospital setting. Discussion of

the system and future work follows in Sect. 6.

 3

2 Related work

There are many previous approaches that use natural lan-

guage for controlling robots, differing in the type of infor-

mation they seek to extract from natural language, the type

of dialog desired, and the role of learning. To produce formal

goal descriptions and action scripts for tasks like navigation

and manipulation, Dzifcak et al (2009) use a combinatorial

categorial grammar (CCG) parser with a pre-specified map-

ping between words or phrases and the matching branch-

ing temporal logic and dynamic logic propositions. Another

area of focus is language grounding scenarios where lan-

guage must be mapped to objects or locations (e.g., Ma-

tuszek et al, 2012; Tellex et al, 2011), learning the relation-

ship between the words used and the referents in the world.

Recent work has focused on the automatic learning of the

relationship between language and semantic structures,

both in general semantic parsing (e.g., Berant and Liang,

2014; Poon and Domingos, 2009) and robotics-specific ap-

plications (e.g., Chen and Mooney, 2011; Matuszek et al,

2010, 2012, 2013). While the learning strategies used may

be generalized to broader applications, these systems are

typically trained and evaluated in a single command do-

main (e.g., navigation, manipulation) and typically

verifyunderstanding at the per-utterance level or a single

action sequence such as sequential navigation commands.

In contrast to learning-focused work, the system pre-

sented here focuses on the construction of a complete,

formally-verified specification from natural language, but

assumes the grounding between language and the robot’s

capabilities can be specified in advance. In doing so, we

explore the broader relationships between natural language

and logical form and the challenges involved in creating rich

specifications from natural language that can include any

number of action types. To be applied to the kinds of high-

demand scenarios where natural language control may be of

greatest benefit, it is essential that the design of the system

be centered around “failing fast” by reporting any errors be-

fore execution.

This work aims to generate controllers for autonomous

robots that achieve desired high-level behaviors, including

reacting to external events and repeated patrol-type behav-

iors. Examples of such high-level tasks include search and

rescue missions and the control of autonomous vehicles fol-

lowing traffic rules in a complex environment, such as in the

DARPA Urban Challenge. With the usual approach of hard-

coding the high-level aspects and using path-planning and

other low-level techniques during execution, it is often not

known a priori whether the proposed implementation actu-

ally captures the high-level requirements. This motivates the

application of formal frameworks to guarantee that the im-

plemented plans will produce the desired behavior.

A number of frameworks have recently been proposed,

some of which use model checking (Clarke et al, 1999) to

synthesize control laws (e.g., Kloetzer and Belta 2008; Bha-

tia et al 2010) on a discrete abstraction of the underlying

 system. Other approaches, such as those proposed by Kress-

Gazit et al (2009) and Wongpiromsarn et al (2010), ap-

ply efficient synthesis techniques to automatically generate

provably-correct, closed-loop, low-level robot controllers

that satisfy high-level reactive behaviors specified as LTL

formulas. Specifications describe the robot’s goals and as-

sumptions regarding the environment it operates in, using a

discrete abstraction. The hybrid robot controllers generated

represent a rich set of infinite behaviors, and the closed loop

system they form is guaranteed to satisfy the desired speci-

fication in any admissible environment, one that satisfies the

modeled assumptions.

Previous work using LTL synthesis for robot control has

also used highly structured or domain-specific languages to

allow non-technical users to write robot specifications, even

if they are unfamiliar with the underlying logic. For exam-

ple, LTLMoP includes a parser that automatically translates

sentences belonging to a defined grammar into LTL formu-

las (Kress-Gazit et al, 2008; Finucane et al, 2010); the gram-

mar includes conditionals, goals, safety sentences and non-

projective locative prepositions such as between and near.

Structured English circumvents the ambiguity and compu-

tational challenges associated with natural language, while

still providing a more intuitive medium of interaction than

LTL. However, users still need to understand many details

of the logical representation and the synthesis process to

successfully write specifications in structured English. The

work presented in this paper replaces LTLMoP’s structured

English input with a natural language interface to enable

users to describe high-level tasks in more natural language.

This paper extends work presented by Raman et al

(2013) by analyzing the performance of the natural language

understanding system through a user study and adding ad-

ditional LTL generation features, support for feedback for

all types of unsynthesizable specifications, and further dis-

cussion regarding the design of the integrated system. We

provide a more complete approach to generating LTL from

natural language input (Section 3), addressing the issues of

non-compositionality when considering negation over nat-

ural language and providing results from a user study that

demonstrates the system’s robustness when used by inexpe-

rienced users.

4

3 Transforming natural language into logic with

SLURP

To convert the user’s commands into a formal specification,

the system must identify the underlying linguistic structure

of the commands and convert it into a logical representation,

filling in appropriate implicit assumptions about the desired

behavior. This section describes the process of this con-

version and its implementation as The Situated Language

Understanding Robot Platform (SLURP). SLURP enables

the conversion of natural language specifications into LTL

formulas, communication with the user regarding problems

with specifications, and feedback to the user during execu-

tion. Sects. 3.2–3.3 discuss the process of generating LTL

formulas from natural language input. Sect. 3.4 describes a

user study used to evaluate the performance of the system

described.

3.1 Overview

In using the term natural language, we refer to language

that a user of the system would produce without specific

knowledge of what the system is capable of understanding.

In other words, language that is not restricted to a known

set of vocabulary items or grammatical structures specific

to the system. Users are able to give commands without

any knowledge of how the language understanding system

works, as if they were giving simple, clear instructions to

another person. While the user may be able to give com-

mands to the system that it cannot understand, the system

gives feedback based on what it understood and what it did

not. For example, it may report that it does not understand

how to carry out the verb used in a command, or may re-

port that it does know how to perform that verb but has not

received sufficient information, for example being told to

move but not told where to do so.

The user’s instructions are processed through a pipeline

of natural language components similar to that used by

Brooks et al (2012) which identify the syntactic structure

of the sentences, extract semantic information from them,

and create logical formulas to be used in controller syn-

thesis. While many previous natural language systems for

robot control have relied on per-scenario grammars that

combine semantic and syntactic information (e.g., Dzifcak

et al 2009), this work uses a combination of robust, general-

purpose components for tagging and parsing the input. An

advantage of this approach compared to per-scenario gram-

mars is that the core language models need not be modi-

fied across scenarios; to adapt to new scenarios all that is

required is that the LTL generation be extended to support

additional types of commands. This reduces the role of the

fragile process of grammar engineering and minimizes the

cost of adapting the system to handle commands in new do-

mains.

3.2 Identifying linguistic structure

Before a sentence may be converted into logical formulas,

the linguistic structure of the sentence must be identified.

Following traditional practices in natural language process-

ing, this process is divided into modules: first, the syntactic

structure of the input is extracted; second, the meaning of

the sentence is recovered by identifying verbs and their ar-

guments. These steps are explained in detail in Sects. 3.2.1

and 3.2.2.

3.2.1 Parsing and null element restoration

Parsing is the process of assigning a hierarchical struc-

ture to a sentence. While simple natural language under-

standing can be performed with shallower processing tech-

niques, parsing allows for recovery of the hierarchical struc-

ture of the sentence, allowing for proper handling of nat-

ural language phenomena such as negation (e.g., Never go

to the lounge) and coordination (e.g., Go to the lounge

and kitchen), which are crucial to understanding commands.

SLURP uses a pipeline of domain-general natural language

processing components. The input is tagged using the Stan-

ford Log-linear Part-Of-Speech Tagger (Toutanova et al,

2003) and parsed using the Bikel parser (Bikel, 2004); these

parses are then post-processed using the null element (un-

derstood subject) restoration system of Gabbard et al (2006).

The models used by these systems require no in-domain

training. An example output of these modules is given in

Fig. 2a, b.

The use of null element restoration, a step typically ig-

nored in NLP systems, allows for correct parsing of im-

peratives and questions, critical structures for natural lan-

guage control and dialog systems. For example, in Fig. 2a

the original parse contains no subject at all as there is no

overt subject in the input sentence. Fig. 2b shows that null

element restoration has added an understood subject marked

by *. This allows the structure of imperatives to be straight-

forwardly matched by the semantic interpretation module,

which will look for verbs by identifying subtrees that are

rooted by S, and contain a subject (NP-SBJ) and a verb

phrase (VP). After null element restoration, an imperative

has the same underlying structure as a statement with an ex-

plicit subject (e.g., A patient is in r1), allowing a general-

purpose semantic interpretation system to process all input

without using ad hoc techniques to accommodate impera-

tives.

 5

S

VP .

VB PP-CLR .

3.2.2 Semantic interpretation

The semantic interpretation module uses the parse tree to ex-

tract verbs and their arguments. For example, in the sentence

Carry meals from the kitchen to all patient rooms, the de-

sired structure is a carry command with an object of meals,

a source of kitchen, and a destination of all patient rooms.

Objects identified may be further processed, for example all

go TO NP-A will be identified as a quantifier and handled as described in

Sect. 3.3.2.

to DT

the

NN

hallway

To identify verbs and their arguments in parse trees,

SLURP uses VerbNet (Schuler, 2005), a large database of

verbs and the types of arguments they can take. The Verb-

Net database identifies verbs as members of senses: groups

(a) Tagging and parsing

S

of verbs which in similar contexts have similar meanings.

For example, the verbs carry, lug, and haul belong to the

sense CARRY, because in many contexts they are equiva-

lent in meaning. For each sense, VerbNet provides a set of

NP-SBJ-A

-NONE-

VP .

VB PP-CLR .

frames, which indicates the possible arguments to the sense.

In the preceding example sentence, the verb carry is

mapped to the sense CARRY. An example of a frame for

this sense is (Agent, Verb, Theme, Source, Destination), thus

the expected use of the verb is that there is someone per-

* go TO NP-A forming it (Agent), someone or something it is being per-

formed on (Theme), and path to perform it on (Source and

to DT

the

NN

hallway

Destination). Each role in the frame, subject to its associ-

ated syntactic constraints, is mapped to a part of the parse

tree. VerbNet only provides information about the verb ar-

guments; SLURP matches these argument types by mapping

(b) Null element restoration

Agent: * (understood subject)

Verb: go Preposition:

to Location: the

hallway

(c) VerbNet frame matching

Initially, the hallway has not been visited:

¬s.mem visit hallway

Define a persistent memory of going to the hallway:

 (s.mem visit hallway ⇔
(s.mem visit hallway ∨ s.hallway))

Always eventually have a memory of visiting the hallway:

them to part-of-speech (e.g., VB for base verb) and phrasal

(e.g., NP for noun phrase) tags and identifying each argu-

ment using its tag and syntactic position. For the above ex-

ample, SLURP creates the following mapping:

Agent: the robot (understood subject)

Verb: carry Theme:

meals Source: the

kitchen

Destination: all patient rooms

(s.mem visit hallway)

(d) LTL formula generation

Among the frames that match the parse tree, SLURP

chooses the frame that expresses the most semantic roles.

For example, the CARRY sense also contains a frame (Agent,

Verb, Theme, Destination), which may be used in cases

Fig. 2: Conversion of the sentence Go to the hallway

into LTL formulas through tagging, parsing, null element

restoration, semantic interpretation, and LTL generation

where the source is already understood, for example if the

user previously stated The meals are in the kitchen. How-

ever, this frame will not be selected in the above example

because the more specific frame that contains a source—

and thus expresses more semantic roles—also matches. The

chosen match is then used to fill in the appropriate fields in

the command.

Matching of frames is not limited to entire sentences.

In a sentence such as If you see an intruder, activate your

6

camera, frames are matched for both the conditional clause

and the main clause, allowing for the condition (Agent: the

robot, Verb: see, Theme: an intruder) to be applied to the ac-

tion (Agent: the robot, Verb: activate, Theme: your camera)

when generating the logical representation.

3.3 Linear temporal logic generation

The information provided by VerbNet allows the identifica-

tion of verbs and their arguments; these verbs can then be

used to generate logical formulas defining robot tasks.

3.3.1 Linear temporal logic

The underlying logical formalism used in this work is linear

temporal logic (LTL), a modal logic that includes temporal

operators, allowing formulas to specify the truth values of

atomic propositions over time. Let AP = X ∪ Y , where X is

the set of “input” propositions, those controlled by the en-

vironment, and Y is the set of “output” propositions, those

controlled by the robot. LTL formulas are constructed from

atomic propositions π ∈ AP according to the following re-

cursive grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ ,

where ¬ is negation, ∨ is disjunction, is “next”, and U is

a strong “until.” Conjunction (∧), implication (⇒), equiva-

is limited. Examples of semantic behaviors currently imple-

mented include:

1. Actions that need to be completed once, for example go-

ing to rooms (Go to the hallway.)

2. Actions that need to be continuously performed, for ex-

ample patrolling multiple areas (Patrol the hallway and

office.)

3. Completing a long-running action that can be inter-

rupted, for example searching a room and reacting to any

items found (Search the hallway.)

4. Following (Follow me.)

5. Enabling/disabling actuators (Activate your camera.)

6. Carrying items (Carry meals from the kitchen to all pa-

tient rooms.)

Each command is mapped to a set of senses in VerbNet

so that a varied set of individual verbs may be used to sig-

nify each command. As a result, SLURP is only limited in

its vocabulary coverage by the contents of VerbNet—which

is easily expanded to support additional verbs if needed—

and by what actions can be transformed into LTL. While the

number of syntactic structures identifiable by the system is

unbounded, the set of frames that SLURP can recognize and

transform into logical form is constrained by the mapping of

frames to robot actions.

Each command may be freely combined with condi-

tional structures (If you hear an alarm...), negation (Don’t go

lence (⇔), “eventually” () and “always” () are derived to the lounge), coordination (Go to the hallway and lounge),

from these operators. Informally, the formula ϕ expresses

that ϕ is true in the next time step. Similarly, a sequence

of states satisfies ϕ if ϕ is true in every position of the

and quantification (Go to all patient rooms). The use of

quantification requires that, in constructing the scenario, in-

formation about quantifiable sets is specified; for example,

sequence, and ϕ if ϕ is true at some position of the se- the command “go to all patient rooms” can be unrolled to

quence. Therefore, the formula ϕ is satisfied if ϕ is apply to all rooms that have been tagged with the keyword

true infinitely often. For a formal definition of the LTL se-

mantics, see Clarke et al (1999).

Task specifications in this work are expressed as LTL

formulas from the fragment known as generalized reactivity

of rank 1 (GR(1)), and have the form ϕ = ϕe ⇒ ϕs with ϕp =

patient.

3.3.3 Generation

ϕ i t g
i t g For each supported command, LTL is generated by macros

p ∧ ϕp ∧ ϕp , where ϕp , ϕp and ϕp for p ∈ {e, s} represent
the initial conditions, safeties and goals, respectively, for the

environment (e) and the robot (s). The restriction to GR(1) is

for computational reasons, as described in Kress-Gazit et al

(2009).

3.3.2 Types of commands

For each supported command, LTL is generated by macros

which create the appropriate assumptions, restrictions, and

goals. In the example given in Fig. 2, the resulting LTL for-

mulas define a memory of having visited the hallway, and

the goal of setting that memory.1

Formulas are generated by mapping each command to

combinations of macros. These macros include:

1. Goals: goal(x) generates (x)
There are two primary types of properties allowed: safety

properties, which guarantee that “something bad never hap-

pens,” and liveness conditions, which state that “something

good (eventually) happens.” These correspond naturally to

2. Persistent memories: memory(x) generates

 (s.mem x ⇔ (s.mem x ∨ s.x)))

3. Complete at least once (ALO): alo(x) generates

(goal(s.mem x) ∧ memory(x))
LTL formulas with operators and . While the domain

of actions expressible in natural language is effectively infi-

nite, the set of actions that a robot can perform in practice

1 This arguably unintuitive translation is due to specifications in

LTLMoP being restricted to the GR(1) fragment of LTL.

 7

Go to the lounge.

Command: go; Location: lounge

Initially, “lounge” has not been visited. Visit “lounge.”

¬s.mem visit lounge (s.mem visit lounge ⇔ (s.mem visit lounge ∨ s.lounge)) (s.mem visit lounge)

Fig. 3: Generation tree for Go to the lounge

Among the simplest commands to generate are those that

are directly mapped to goals; i.e., ones that are performed

infinitely often. For example, patrolling a room maps to

goal(room); if multiple rooms are to be patrolled, execution

will satisfy each goal in turn, moving the robot from room

to room indefinitely.

Commands for which there is a distinct notion of

completion—in linguistic terminology, commands which

contain a verb of perfective aspect—typically generate

persistent memories. For example, Go to the hallway is

interpreted as visit—go to at least once—the hallway:

alo(hallway). In this case, the robot’s goal is to have a

“memory” of having been in the hallway; this memory

proposition is set by entering the hallway, after which the

memory persists indefinitely and the goal is trivially satis-

fied from then on.

A challenge in creating a correct mapping is that the

negation of a command does not necessarily imply its logi-

cal negation. For example, Don’t go to the hallway is most

concisely expressed as the safety ¬s.hallway (literally, Al-

ways, do not be in the hallway), as opposed to specifying

that the robot should infinitely often achieve a goal of not

having a memory of being in the hallway. In this case, the

negation of a goal yields a safety. In general, negation of a

sentence in natural language does not always transparently

propagate to a negation of the logical statement that the pos-

itive form of the sentence would have generated.

However, for commands that create safeties, negation is

much simpler. For example, If you see an intruder, activate

your camera becomes (e.int ruder ⇒ s.camera), and

the negated form If you see an intruder, do not activate your

camera becomes (e.int ruder ⇒ ¬s.camera). Nega-

tive commands are always expressed as safeties, while the

positive version of the same command may not be, as in

the previous example of Go to the hallway. More complex

examples of generation involving combinations of these

macros are given in Sect. 5.

Support for new commands can be added by first verify-

ing the presence of the verb and the intended argument struc-

ture in VerbNet, adding the verb and information about the

arguments it takes if needed by editing an XML database.

For example, a bomb-defusing robot will need to under-

stand the verb defuse, which is not contained in VerbNet.

Many new commands to be added can easily be expressed

using the macros for goal or alo or mapping directly to an

actuator on the robot. These commands can trivially be sup-

ported by the system by marking that sense as a simple ac-

tion in the LTL generation subsystem and giving the macro

it is mapped to. For example, for the user study reported in

Sect. 3.4, we added a defuse sense to VerbNet and mapped

it to a simulated actuator of the same name.

3.3.4 Generation tree

A novel aspect of the LTL generation process is that the

transformations undertaken are automatically recorded in a

generation tree to allow for a more interpretable analysis of

the specification generated. As shown in Fig. 3, the gener-

ation tree allows for a hierarchical explanation of how LTL

formulas are generated from natural language. There is a tree

corresponding to each natural language statement, rooted at

the natural language statement and with LTL formulas as

leaves. The intermediate nodes are automatically created by

the LTL generation process to explain how the statement

was subdivided and why each LTL formula was generated.

In addition to allowing the user to inspect the generated

LTL, the generation tree enables mapping between LTL for-

mulas and natural language for specification analysis. As is

shown in the following sections, this allows for natural lan-

guage explanations of problems detected in the specifica-

tion. During execution of the generated controller (either in

simulation or with a real robot), it also allows the system

to answer the question What are you doing? by respond-

ing with language from the generation tree. For example, in

Fig. 3, if the current goal being pursued during execution is

s.mem visit lounge, the system responds: I’m currently

trying to ‘visit lounge’. In cases where the original instruc-

tion involves quantification, identification of the sub-goal is

particularly useful. If the user enters Go to all patient rooms,

the generation tree will contain a sub-tree for each patient

room, allowing for clear identification of which room is rel-

evant to any problems with the specification.

8

3.3.5 Controller synthesis and execution

Given an LTL formula representing a task specification and

a description of the workspace topology, the efficient syn-

thesis algorithm introduced by Piterman et al (2006) is used

to construct an implementing automaton (if one exists). In

combination with lower-level continuous controllers, this

automaton is then used to form a hybrid controller that can

be deployed on physical robots or in simulation. To ob-

tain this hybrid controller, a transition between two discrete

states is achieved by the activation of one or more low-level

continuous controllers (Kress-Gazit et al, 2009; Finucane

et al, 2010).

3.4 Evaluation

3.4.1 Design

To evaluate the performance of this system when used by

inexperienced users, we embedded SLURP as a robot agent

in a first-person-perspective 3D video game, simulating a

search and rescue scenario. The participant played the role

of an operator instructing a robot through natural language

commands. A screenshot of the game during an interaction

with the robot is given in Fig. 4.

To succeed in the scenario, the operator was required

to work with the robot to search fourteen rooms on a floor,

using the robot to defuse any bombs discovered while the

operator rescued hostages. To increase the difficulty of the

task and force greater reliance on the robot for searching, the

operator needed to neutralize hostage takers who are trying

to escape from the floor while it is searched. The scenario

was considered a failure if the operator ever entered a room

with an active (not yet defused) bomb or if too many of the

hostage takers escaped. To succeed, the participant needed

to command the robot to perform two tasks: navigate all

rooms, and defuse all bombs found.

The user study was designed to elicit natural language

commands from users without giving any explicit sugges-

tions regarding what they should say to the robot and what

commands it understood. After providing informed consent,

participants were instructed that the simulated robot (“Ju-

nior”) was capable of understanding natural commands and

advised to communicate with it naturally (“Talk to Junior

like you might talk to someone who needs instructions from

you”), giving direct commands but not doing anything un-

natural such as removing prepositions and articles or using

“Tarzan-speak.” The experimenter was permitted to answer

questions about the instructions, game controls, and inter-

face during the training scenarios, but not during the testing

scenario. The experimenter did not give any suggestions re-

garding what the user should say to the robot or intervene in

the experiment other than restarting the experiment in case

of software failure.

Users participated in four training scenarios of increas-
ng difficulty before attempting the full scenario described

above. The purpose of the training scenarios was to in-

troduce them to the game dynamics as well as give them

simple tasks to perform with natural language before try-

ing to complete more complex ones. The training

scenariosused smaller maps and gradually introduced the

actions that would need to be performed in the main

scenario: neutraliz- ing hostage takers, and commanding

the robot to move be- tween rooms and defuse bombs. The

layout used in the final scenario contained fourteen rooms

connected by hallways in a ring configuration, a layout not

used in any of the train- ing exercises that made

neutralizing the escaping hostage takers significantly more

difficult. The locations of bombs, hostages, and hostage

takers were randomly generated for each user and could be

discovered by navigating to the room they were located in.

3.4.2 Results

All fourteen participants successfully completed the training

and testing scenarios. They were able to successfully com-

mand the robot navigate to and defuse all bombs present in

the map.

We analyzed transcripts of interactions between users

and the simulated robot across the four training scenarios

and the final testing scenario. The transcripts consisted of

628 commands given to the simulated robot. 69 commands

(11.0 %) were excluded from analysis for the following rea-

sons: typographical errors, humorous commands unrelated

to the scenario (e.g., ordering the robot to dance), non-

commands (e.g., telling the robot “good job”), commands

the robot cannot perform in the scenario (e.g., instructing it

to move to locations not on the map), unnecessary repeti-

tion of previously not-understood commands, or if software

limitations of the simulation, not the language understand-

ing system, caused the command to not be processed. The

remaining 559 commands were automatically labeled for

whether they were successfully understood by the system

based on its response.

526 commands (94.1 %) were understood and resulted in

the successful synthesis and execution of an automaton (Ta-

ble 1). The 33 commands (5.9 %) that were not understood

were manually annotated and investigated to determine the

cause of the failure (Table 2). The largest single cause of er-

rors was the tagger failing to identify imperatives as verbs

because they are rarely present in the training data for stan-

dard natural language processing components. For example,

both Rescue the hostage and Free the hostage were not rec-

ognized as imperatives due to tagging errors.2

The verbs the system failed to recognize were come,

destroy, find, get, and walk. The failure to recognize come

(come here) and get (get up) was caused by VerbNet not

including the specific imperative uses of these verbs. The

i 2 Even though it was the role of the operator, not the robot, to rescue

hostages, we label these examples as tagging errors because a com-

mand was given to the system and it was not properly understood. The

desired response in this situation is to understand the requested action

but report that the robot cannot perform it.

 9

Fig. 4: Screenshot of simulation environment

Table 1: User study performance

Overall Performance

Result Count % of commands

Understood 526 94.1
Error 33 5.9

Table 2: User study error analysis

Error Type

Count

% of commands
Causes of Errors

Example

Tagging 10 1.8 Rescue tagged as a noun in Rescue the hostages
Syntactic parsing 1 0.2 Null element not restored in Go to north rooms, then go to east rooms
Semantic parsing 2 0.4 Around not recognized as an argument in Turn around
Verb not understood 9 1.6 VerbNet sense for walk not mapped to movement action
Use of shorthand 7 1.3 One-word commands such as defuse and bedroom
Other 4 0.7 It not understood in If you see a bomb, defuse it

system was able to semantically parse sentences containing

destroy and walk, but the VerbNet senses for these verbs had

not been mapped to the defuse and go actions that users ex-

pected. This can be addressed by simply adding these map-

pings. In these cases, the user was informed that the system

recognized the verb in their command but did not know what

to do with it (Sorry, but I don’t know how to walk), and the

user discovered an alternate way to make their request (go,

move), that was understood.

All but one instance of the errors due to use of short-

hand consisted of saying only defuse to instruct the system

to defuse bombs. Successful commands for defusing bombs

produced by users included Defuse the bomb, Defuse bomb,

and compound commands such as Defuse the bomb and

go to the lab. Two of the errors classified as “Other” were

caused by the inability of the semantic parsing system to re-

solve pronouns within a command: If there is a bomb, defuse

it.

3.4.3 Discussion

The evaluation presented here demonstrates that inexperi-

enced users can successfully give commands understood by

SLURP without any specific knowledge of what the sys-

tem is capable of understanding or the underlying lexical

database or parsing system. While users did produce com-

mands the system did not understand, they were also able to

identify alternative forms that worked and complete the sce-

10

Figure 4: The operator interface shows the current dialog

state in the lower left along with the robot position and an

icon for a bomb the robot has identified

.

Figure 3.The end-to-end system architecture

narios. This was aided by the rich feedback the system pro-

vides. For example, when a user stated If there is a bomb,

defuse it, the system’s response was Sorry, I don’t under-

stand what you mean by ’it’. This response allows the user

to identify the issue with their command and revise it. Sys-

tems that rely on a formal grammar for parsing (e.g., Dzif-

cak et al, 2009) report a parsing failure in this instance, not

giving the user any information regarding what the issue is.

The majority of errors encountered were due to a com-

mon problem in natural language processing: differences in

the type of content in the data that the tagger and parser

were trained to perform well on and the actual data used in

testing. The tagger and parser used are primarily trained on

newswire, which contains a very small number of impera-

tives. This is in contrast to the data set evaluated here, where

every sentence is an imperative. The data collected in this

user study can be used to allow training on more relevant

in-domain data, allowing for a reduction in the number of

tagger and parser errors.

4 Architecture and Physical Robot Implementation

The system described above can be used with simulated
robots, with graphical systems and with real robots. What
differs is primarily the particulars of the low level
controllers used by the resulting control automaton. For
purposes of real-world experiments, we implemented a
system using an iRobot ATRV Jr. The operator interacts
with the system using a tablet com- puter, currently an
Apple iPad. The system is comprised of modular software
subsystems which were assembled into a single system
using ROS (Quigley et al. 2009).

Our system’s overall architecture, shown in Figure 3 is
analogous in design to a three layer architecture (Gat 1998).
The natural language components of the system make up

the highest layer, which transforms natural language into
logical statements, synthesizes a finite state automaton to
carry out the requested plan, and communicates status back
to the commander. The middle layer is formed by a hybrid
controller, which maintains the current discrete state of the
automaton given input from the environment, and the job
scheduler and state manager on the robot. These modules
work together to transform the logical propositions into a
controller for the robot’s actions. Finally, low-level contin-
uous behaviors which primarily interact with the dynamics
of the changing world are implemented on the robot to carry
out the requested actions.

4.1 Operator Interface

The operator commands the system through the use of a
tablet computer. Natural language utterances are the primary
form of communication between the operator and robot and
are entered into the system using an interface similar in de-
sign to an instant messaging or text messaging program.
Information about the environment is reported by the robot
using visual notifications on the display in addition to
language notifications for important events, as shown in
Figure 4. The interface also contains a map mode, which dis-
plays information about the layout of the world and the lo-
cation of key objects within the world, including the robot’s
position. The map layout may be known in advance or pro-
duced by the robot as it explores. Map mode is considered to
be a secondary form of communication which serves to aug-
ment the natural language interaction. It provides a source
of common understanding to ground the conversation be-
tween the commander and robot by showing the objects or
places relevant to the robot’s operation. The map interface
also displays camera imagery from the robot, allowing the
commander to see various objects of interest such as bombs
and hostages as they are identified by the robot.

 11

Figure 5: The robot generates a map of the environment in a
fronter-based exploration scenario.

4.2 Robot Controller

The controller generated from the language deploys
different low-level robot behaviors based on the goals and
the state of the robot and the environment. This controller
automatically reacts to different environment events, as
perceived by the robot’s sensors.

State and Sensor Management. One of the responsibil-
ities of the robot is presenting information about the
world as perceived by its sensors to the generated
controller. The granularity of the raw sensor data is too
fine for the controller, thus the data is abstracted into
discrete events. Sensor output is filtered and fused with
other data to create a more concise description of the
world. This is done by taking pieces of raw data and
interpreting them into various types of information such
as abstract location, for example which room the robot is
in, and what agents and objects are present in the current
room. The interpreted sensor data, along with information
about the location of the robot and the current behaviors
being executed, form the system’s state, which is reported
to the controller.

Low Level Implementation. The robot is currently ca-
pable of six behaviors, including driving to a location, ex-
ploring (map building), performing a generic search of an
area, following a person, retrieving (asking for) objects,
and (simulated) disarming explosives. A behavior is
composed of a set of rules for starting, stopping, and
suspending execution, along with logic that controls the
execution of one or more actions. An action is an activity,
atomic at the planner’s level, that the robot can perform.

There are currently four actions implemented: drive, area
sweep, explore, and follow. Actions react dynamically to
the environment, can keep state, and even perform some
lower level planning. However, they do not take into
account the state of the over- all system or what other
actions are currently running. Ac- tions often make use of
shared resources such as drive train motors and can also be
used by multiple behaviors.

Mapping, Region Discovery, and Exploration. An im-
portant aspect of being able to effectively communicate with
the system is the ability for both the operator and robot to ac-
curately refer to places in the world using names. This sys-
tem supports this feature through the use of either static or
dynamically generated maps. In some cases, the map of the
area in which the robot is operating is known in advance,
through the existence of building plans or previous experi-
ence. These maps can be preloaded into the system before
deployment, which gives the operator the advantage of be-
ing able to refer to places in their instructions. However, in
many cases the layout of the world is not known ahead of
time, and a map must be generated. This can be achieved
through the use of a strategy for frontier-based exploration
(Yamauchi 1997) and simultaneous localization and map-
ping (Grisetti, Stachniss, and Burgard 2007). We analyze the
structure of the world by drawing polygon outlines on the
map to denote regions, which are assigned names. In ad-
dition, we map which polygons can be reached from other
polygons using a connected graph. The polygon definitions,
names, and connected graph is stored as a topological
graphwhich can be used by the system for planning. We
created an automated system to identify regions using an
algorithm (Fabrizi and Saffiotti 2000) which uses a process
of dilation and erosion of walls to determine distinct places
within the world, and a process called water-shedding to
determine their connectivity to each other. An example of
such regions being identified as the robot explores is shown
in Figure 5.

5 Examples of System Usage

We now demonstrate the system in a scenario where a per-
son acting as the commander used a real robot to simulate a
search and rescue scenario. Before retrieving the hostages,
the commander needed to search the building for bombs.
Hostages, bombs, and users were represented as boxes with
fiducial markers in the scenario to provide a simple simula-
tion of perception.

5.1 Known Map

The interaction shown in Figure 6 demonstrates how the
commander specified a plan to the robot and received feed-
back as the robot understood each command, with corre-
sponding line numbers. The commander first issued a stand-
ing order for the robot to notify the commander when any
hostages were seen (line 01). When the robot was told to
look for a particular human collaborator, the robot inter-
preted the commands as requiring a search of all rooms in
which the user could be present. The request to get the de-
fuser from the user and bring it back here shows how the

12

system can give information about how it resolved com-
mands to the commander. When the commander says “here,”
the robot resolved it to its current location, the hall. This in
ference is made explicit so the commander has the ability to
correct any misunderstandings. When the commander
completed giving orders (line 07), the robot formed a plan
and began to execute it. The robot did not inform the
commander of every action taken, in- stead only notifying
when it was explicitly asked to (i.e., hostages), if it acted
on a standing order, or when it completed its mission.
When the robot identified the user and requested the
defuser, the commander was notified. After completing the
mission, the robot informed the commander that it was idle.

 Not every interaction results in successful understand-
ing. Once the robot had the bomb defuser, the commander
needed to instruct the robot to use it to defuse bombs. In
cases where the system was able to extract nothing of use
from the utterance, in this case because VerbNet did not con-
tain an appropriate form of disarm, the system reported that
it did not understand the utterance at all (line 12). Another
possible failure mode is that the system extracted the seman-
tic structure but it did not understand how to carry out the
command. In the case of the second command tried, defuse
the dynamite, the system recognized that the verb was defuse
and the object was the dynamite but it did not understand that
dynamite is the same thing as a bomb. The responses the
system gives help to make it apparent when the comman-
der’s word choice is at fault; the system is able to express
that it understood the syntax but does not know the object in
this example. With such feedback, the operator may adjust
its vocabulary when repeating the command (line 15).

The robot’s standing orders remain in effect across plans
so that the commander does not need to specify them
again for each set of commands. The standing order of
informing the commander when a hostage is seen was still
valid and was carried over into a new plan, as shown by the
notification upon seeing a hostage (line 21). In addition, a
new standing order to defuse bombs was given now that the
robot has the bomb defuser. As the robot searched the lab
and recognized the hostage, it notified the commander and
then waited for new orders after its search was complete.
The commander provided new orders to send it to the
office (line 23), where it performed a search, pausing to
defuse a bomb, and then completed its search of the room.
The ability to remain reactive to the environment while
performing actions is an important feature of the planner
in a system that operates in dangerous environments where
immediate reaction is critical.

In Figure 7, we give examples of how the commander

was able to interrupt plans currently being executed and

change the robot’s plan. The robot can be told to stop in

mid-plan execution (line 05), in which case the plan is

discarded. If orders have been given but the commander

changes his or her mind before telling the robot to execute

the commands, the commander may clear the list of orders

by giving a command such as nevermind (line 09)

.

01 Commander: Tell me if you see any hostages.
02 Robot: I’ll let you know if I see a hostage.
03 C: Look for User 2 in the library and the classroom.
04 R: Got it. I’ll search the library and search the classroom.
05 C: Get the defuser from User 2 and come back here.
06 R: Got it. I’ll retrieve the defuser from user 2 and go to the
hall.
07 C: Make it so.
08 R:Understood. I’m carrying out your orders now.
The robot searches the classroom and does not find the user. It
then searches the library, identifies the user, and begins to get the
defuser.
09 R: I’m now going to get the defuser in the library.
In addition to the language notification, an icon showing the lo-
cation of the user is shown on the operator interface along with
a picture of the user captured by the robot. After getting the de-
fuser, the robot returns to the hall.
10 R: I’m done, and I’m in the hall.
11 C: Disarm the dynamite.
12 R: I’m sorry, I didn’t understand that at all.
13 C: Defuse the dynamite.
14 R: Sorry, I don’t know anything about dynamite.
15 C: Defuse the bombs.
16 R: Got it. I’ll defuse all bombs.
17 C: Search the lab.
18 R: Got it. I’ll search the lab.
19 C: Make it so.
20 R: Understood. I’m carrying out your orders now.
The robot drives to the lab and searches it, finding a hostage but
no bombs. The robot displays a picture of the hostage on the op-
erator’s interface.
21 R: I see a hostage.
22 R: I’m done, and I’m in the lab.
23 C: Search the office.
The robot drives to the office and searches it, finding a bomb dur-
ing the search. It displays a picture of the bomb on the operator’s
interface.
24 R: I’m now going to defuse in the office.
The robot defuses the bomb and then completes its search of the
room.
25 R: I’m done, and I’m in the office.

Figure 6: Interaction with the robot before and during plan
execution.

01 Commander: Go to the classroom.
02 Robot: Got it. I’ll go to the classroom.
03 C: Make it so.
04 R: Understood. I’m carrying out your orders now.
The robot begins driving to the lab.
05 C: Stop.
06 R: Aye sir, full stop. I’m in the hall.
The robot stops immediately.
07 C: Go to the lab.
08 R: Got it. I’ll go to the lab.
09 C: Nevermind
10 R: Okay, I’ll belay those orders.
The robot clears the “go to the lab” command from its orders.
11 C: Go to the lounge.
12 R: Got it. I’ll go to the lounge.
13 C: Make it so.
14 R: Understood. I’m carrying out your orders now.
The robot begins driving to the lounge.

Figure 7: Controlling the robot’s plan execution.

 13

6 Conclusion

This report presents an integrated system that allows non-

expert users to control robots performing high-level, reactive

tasks using a natural language interface. The depth of inte-

gration between the natural language components and the

synthesis, unsynthesizable core-finding, and execution mod-

ules allows for natural language specifications, feedback on

specification errors, and explanation of current goals during

execution.

The described user study demonstrates that the approach

taken for natural language understanding, combining stan-

dard parsing and tagging modules with a deterministic se-

mantic parsing system, is capable of understanding non-

expert user commands with high accuracy. As shown in the

error analysis, the greatest improvements to the performance

of the system would come from training the tagger on more

data containing imperatives and expanding the vocabulary

coverage of the system to cover more of the verbs used by

users. The design of the system makes adding support for

additional verbs straightforward as there is no grammar to

update, only a vocabulary list to amend.

While the use of domain-general language processing

tools allows for an extensible system, some constructs com-

mon in the robotics domain may not be understood cor-

rectly. For example, a user might want to use the phrase turn

on your camera instead of activate your camera as in the

examples in this paper. Unfortunately, particles such as on

are often assigned incorrect part-of-speech tags, resulting in

failure to understand commands such as turn on and turn

off. The collection of a corpus of robot control interactions

for use in training broad-domain language models for robot

control would result in higher performance from the natural

language processing and semantic extraction components.

There are significant challenges in designing a robust

mapping from natural language semantics to LTL formu-

las. While simple motion commands and actuations can be

straightforwardly mapped into logical form, more complex

actions like the delivery of objects can be more difficult to

translate. However, the benefit of the proposed system is that

the effort is invested just once in the design of the mapping,

not repeatedly for each specification as it would be for users

 writing specifications in LTL or structured language. The

system presented is easily applied to scenarios where the

specification is largely centered around motion and simple

actuations, but can be extended by users proficient in LTL

to more complex scenarios by adding support for additional

behaviors. Future work might explore the automatic learn-

ing of mappings between semantic structures and LTL rep-

resentations. Learning a mapping that allows for complex

specifications to be reliably synthesized would require the

system to learn many of the subtleties of LTL specification

authoring, such as maintaining consistent tense across the

mapping for each type of action.

A number of issues in the LTL generation process merit

further consideration. While this paper discusses some of

the challenges regarding the application of negation, fur-

ther work should address more formal paradigms for map-

ping actions to LTL formulas. The production of an on-

tology of common actions and the type of formulas that

they produce—for example, safety conditions, adding goals,

constraining the initial state—in their negated and positive

forms would be a step toward a more general solution to

the problem of mapping natural language to LTL. Previous

work has relied heavily on grammar formalisms to ease se-

mantic extraction. While those formalisms provide a struc-

ture for easy extraction of semantic roles, they are not robust

to natural input and do not address the more urgent problem

of robust logical representations over large sets of possible

actions which remain appropriately synthesizable in compli-

cated specifications. The examples presented here have

focused on the execution of a single specification. However it

is possible that over the course of a mission requirements

may change and new commands may be given. While the

underlying execution environment supports resynthesis and

transitioning execution to a new automaton during

execution, this introduces a number of challenges in the

communication between system and user. Future work

should explore means for maintaining the level of natural

language integration presented in this paper across more

complex execution paradigms, handling events such as

changes in the workspace topology, as would occur when

operating in environments that are only partially known.

.

14

References

Berant J, Liang P (2014) Semantic parsing via paraphrasing.

In: Proceedings of the 52nd Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long

Papers), pp 1415–1425

Bhatia A, Kavraki LE, Vardi MY (2010) Sampling-based

motion planning with temporal goals. In: IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

IEEE, pp 2689–2696

Biere A (2008) PicoSAT essentials. Journal on Satisfiability,

Boolean Modeling and Computation (JSAT) 4:75–97

Bikel DM (2004) Intricacies of Collins’ parsing model.

Computational Linguistics 30(4):479–511

Bobadilla L, Sanchez O, Czarnowski J, Gossman K, LaValle

S (2011) Controlling wild bodies using linear temporal

logic. In: Robotics: Science and Systems (RSS)

Brooks D, Lignos C, Finucane C, Medvedev M, Perera I,

Raman V, Kress-Gazit H, Marcus M, Yanco H (2012)

Make it so: Continuous, flexible natural language inter-

action with an autonomous robot. In: Proceedings of the

Grounding Language for Physical Systems Workshop at

the Twenty-Sixth AAAI Conference on Artificial Intelli-

gence

Chen DL, Mooney RJ (2011) Learning to interpret natural

language navigation instructions from observations. In:

Proceedings of the Twenty-Fifth AAAI Conference on

Artifical Intelligence, pp 859–865

Cizelj I, Belta C (2013) Negotiating the probabilistic sat-

isfaction of temporal logic motion specifications. In:

IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp 4320–4325

Clarke EM, Grumberg O, Peled DA (1999) Model Check-

ing. MIT Press

Dzifcak J, Scheutz M, Baral C, Schermerhorn P (2009)

What to do and how to do it: Translating natural lan-

guage directives into temporal and dynamic logic repre-

sentation for goal management and action execution. In:

IEEE International Conference on Robotics and Automa-

tion (ICRA), pp 4163–4168

Fabrizi, E., and Saffiotti, A. 2000. Extracting topology-

based maps from gridmaps. Robotics and Automation,

2000. Proceedings. ICRA’00. IEEE International

Conference on 3:2972–2978 vol. 3.

Fainekos GE (2011) Revising temporal logic specifications

for motion planning. In: IEEE International Conference

on Robotics and Automation (ICRA), pp 40–45

Finucane C, Jing G, Kress-Gazit H (2010) LTLMoP: Ex-

perimenting with language, temporal logic and robot con-

trol. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp 1988–1993

Gabbard R, Marcus M, Kulick S (2006) Fully parsing the

Penn Treebank. In: Human Language Technology Con-

ference of the North American Chapter of the Association

of Computational Linguistics (NAACL HLT), pp 184–

191

Gat, E. 1998. Three-Layered Architectures. AI-based Mo-

bile Robots: Case Studies of Successful Robot Systems

195–210. Chapter 8.

Grisetti, G.; Stachniss, C.; and Burgard, W. 2007. Improved

techniques for grid mapping with rao-blackwellized

particle filters. Robotics, IEEE Transactions on

23(1):34–46.

Karaman, Frazzoli (2009) Sampling-based motion planning

with deterministic µ -calculus specifications. In: IEEE

Conference on Decision and Control (CDC), pp 2222–

2229

Kim K, Fainekos GE, Sankaranarayanan S (2012) On the

revision problem of specification automata. In: IEEE

International Conference on Robotics and Automation

(ICRA), pp 5171–5176

Kloetzer M, Belta C (2008) A fully automated frame-

work for control of linear systems from temporal logic

specifications. IEEE Transactions on Automatic Control

53(1):287–297

Kress-Gazit H, Fainekos GE, Pappas GJ (2008) Trans-

lating structured english to robot controllers. Advanced

Robotics 22(12):1343–1359

Kress-Gazit H, Fainekos GE, Pappas GJ (2009) Temporal-

logic-based reactive mission and motion planning. IEEE

Transactions on Robotics 25(6):1370–1381

Matuszek C, Fox D, Koscher K (2010) Following directions

using statistical machine translation. In: Human-Robot

Interaction (HRI), pp 251–258

Matuszek C, FitzGerald N, Zettlemoyer L, Bo L, Fox D

(2012) A joint model of language and perception for

grounded attribute learning. In: Proceedings of the 29th

International Conference on Machine Learning (ICML),

pp 1671–1678

Matuszek C, Herbst E, Zettlemoyer L, Fox D (2013) Learn-

ing to parse natural language commands to a robot control

system. Experimental Robotics 88:403–415

Piterman N, Pnueli A, Sa’ar Y (2006) Synthesis of reac-

tive(1) designs. In: Verification, Model Checking, and

Abstract Interpretation (VMCAI), pp 364–380

Poon H, Domingos P (2009) Unsupervised semantic pars-

ing. In: Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pp

1–10

 15

Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.;

Leibs, J.; Berger, E.; Wheeler, R.; and Ng, A. 2009.

ROS: an open-source Robot Operating System. ICRA

Workshop on Open Source Software.

Raman V, Kress-Gazit H (2011) Analyzing unsynthesizable

specifications for high-level robot behavior using LTL-

MoP. In: Computer Aided Verification (CAV), pp 663–

668

Raman V, Kress-Gazit H (2013a) Explaining impossi-

ble high-level robot behaviors. IEEE Transactions on

Robotics 29:94–104

Raman V, Kress-Gazit H (2013b) Towards minimal expla-

nations of unsynthesizability for high-level robot behav-

iors. In: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pp 757–762

Raman V, Kress-Gazit H (2014) Unsynthesizable cores—

Minimal explanations for unsynthesizable high-level

robot behaviors. arXiv:1409.1455

Raman V, Lignos C, Finucane C, Lee KCT, Marcus M,

Kress-Gazit H (2013) Sorry Dave, I’m afraid I can’t do

that: Explaining unachievable robot tasks using natural

language. In: Robotics: Science and Systems (RSS)

Schuler K (2005) Verbnet: A broad-coverage, comprehen-

sive verb lexicon. PhD thesis, University of Pennsylvania

Tellex S, Kollar T, Dickerson S, Walter MR, Banerjee AG,

Teller SJ, Roy N (2011) Understanding natural language

commands for robotic navigation and mobile manipula-

tion. In: Proceedings of the Twenty-Fifth AAAI Confer-

ence on Artifical Intelligence, pp 1507–1514

Toutanova K, Klein D, Manning CD, Singer Y (2003)

Feature-rich part-of-speech tagging with a cyclic depen-

dency network. In: Proceedings of the 2003 Conference

of the North American Chapter of the Association for

Computational Linguistics on Human Language

Technol- ogy (NAACL HLT) - Volume 1, pp 173–180

Wongpiromsarn T, Topcu U, Murray RM (2010) Receding

horizon control for temporal logic specifications. In: Hy-

brid Systems: Computation and Control (HSCC), pp

101–110

Yamauchi, B. 1997. A frontier-based approach for

autonomous exploration. Computational Intelligence

in Robotics and Automation, 1997. CIRA’97.,

Proceedings., 1997 IEEE International Symposium on

146–151.

