Computational Divided Differencing
and Divided-Difference Arithmetics

Thomas W. Reps* (reps@cs.wisc.edu)
Comp. Sci. Dept., Univ. of Wisconsin, 1210 W. Dayton St., Madison, WI 53706

Louis B. Rall (rall@math.wisc.edu)
Dept. of Mathematics, Univ. of Wisconsin, 480 Lincoln Dr., Madison, WI 53706

Abstract. Tools for computational differentiation transform a program that com-

putes a numerical function F(z) into a related program that computes F'(z) (the
derivative of F'). This paper describes how techniques similar to those used in
computational-differentiation tools can be used to implement other program transformations—
in particular, a variety of transformations for computational divided differencing. The

specific technical contributions of the paper are as follows:

— It presents a program transformation that, given a numerical function F(x)
defined by a program, creates a program that computes F[zo,z1], the first
divided difference of F(x), where

’ %F(z),evaluated at z =z if xo =1

— It shows how computational first divided differencing generalizes computa-
tional differentiation.

— It presents a second program transformation that permits the creation of
higher-order divided differences of a numerical function defined by a program.

— It shows how to extend these techniques to handle functions of several variables.

The paper also discusses how computational divided-differencing techniques could
lead to faster and/or more robust programs in scientific and graphics applications.

Finally, the paper describes how computational divided differencing relates to
the numerical-finite-differencing techniques that motivated Robert Paige’s work on
finite differencing of set-valued expressions in SETL programs.

Keywords: divided differences, computational differentiation, interpolation, multi-

variate interpolation, program transformation, round-off error

Dedicated to the memory of Robert Paige, 1947-1999.

* Supported in part by the National Science Foundation under grants CCR-
9625667, CCR-~9619219, and CCR-9986308, by the United States-Israel Binational
Science Foundation under grant 96-00337, by the Office of Naval Research under
contract N00014-00-1-0607, by the Alexander von Humboldt Foundation, and by
the John Simon Guggenheim Memorial Foundation.

';:‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 27/03/2001; 10:42; p.1

2 T.W. Reps and L.B. Rall

1. Introduction

A variety of studies in the field of programming languages have led to
useful, high-level transformations that manipulate programs in seman-
tically meaningful ways. In very general terms, these tools transform
a program that performs a computation F(z) into a program that
performs a related computation F¥(z), for a variety of F¥’s of interest.!
(In some cases, an appropriate preprocessing operation h needs to be
applied to the input; in such cases, the transformed program F* is used
to perform a computation of the form F*(h(z)).) Examples of such
tools include partial evaluators and program slicers:

— A partial evaluator creates a specialized version of a program
when only part of the program’s input has been supplied (Fu-
tamura, 1971; Futamura, 1999; Bjgrner et al., 1988; Jones et al.,
1993). A partial evaluator transforms a program that performs
a computation F'((s,d)), where F' operates on a pair of inputs
(s,d); when s is known, partial evaluation of the program with
respect to s results in a program that computes the function F'*(d)
(= F*(second((s,d)))), such that

F*(d) = F((s,d))- (1)

(The mnemonic is that s and d stand for the “static” and “dy-
namic” parts of the input, respectively.)

Partial evaluation is useful for removing interpretive overhead, and
can also speed up programs that have two arguments that change
value at different rates (such as ray tracing (Mogensen, 1986)).

— The slice of a program with respect to a set of program elements .S
is a projection of the program that includes only program elements
that might affect (either directly or transitively) the values of the
variables used at members of S (Weiser, 1984; Ottenstein and
Ottenstein, 1984; Horwitz et al., 1990). Given a program that com-
putes a function F', one version of the slicing problem focuses on
creating the slice by symbolically composing the original program
with an appropriate projection function w, where 7 characterizes
what part of F’s output should be discarded and what part should

! In this paper, we do not generally make a distinction between programs and
procedures. We use “program” both to refer to the program as a whole, as well as to
refer to individual subroutines in a generic sense. We use “procedure” only in places
where we wish to emphasize that the focus of interest is an individual subroutine
per se.

paper.tex; 27/03/2001; 10:42; p.2

Computational Divided Differencing 3

be retained (Reps and Turnidge, 1996). Program slicing creates a
program that computes F™, where

F™(2) = (r o F)(a). 2)

Program-slicing tools allow one to find semantically meaningful
decompositions of programs, where the decompositions consist of
elements that are not textually contiguous. Slicing, and subse-
quent manipulation of slices, has applications in many software-
engineering tools, including ones for program understanding, main-
tenance (Gallagher and Lyle, 1991), debugging (Lyle and Weiser,
1986), testing (Binkley, 1992; Bates and Horwitz, 1993), differenc-
ing (Horwitz et al., 1989; Horwitz, 1990), specialization (Reps and
Turnidge, 1996), reuse (Ning et al., 1994), and merging (Horwitz
et al., 1989).

Less well known in the programming-languages community is the
work that has been done by numerical analysts on tools for com-
putational differentiation (also known as automatic differentiation or
algorithmic differentiation) (Wengert, 1964; Rall, 1981; Griewank and
Corliss, 1992; Berz et al., 1996; Griewank, 2000):

— Given a program that computes a numerical function F(z), a
computational-differentiation tool creates a related program that
computes F'(z) (the derivative of F).

— Applications of computational differentiation include optimization,
solving differential equations, curve fitting, and sensitivity analy-
sis.

Although in each of the cases mentioned above, the appropriate restruc-
turing of the program could be carried out by hand, hand transforma-
tion of a program is an error-prone process. The automated assistance
that the aforementioned tools provide prevents errors from being intro-
duced when these transformations are applied. The work described in
this paper expands the set of tools that programmers have at their dis-
posal for performing such high-level, semantically meaningful program
manipulations.

Because so much scientific, engineering, and graphical software tries
to predict and render modeled situations, such software often performs
extrapolation and/or interpolation. These operations inevitably involve
the computation of divided differences, which can suffer badly from
round-off error. In some cases, which motivate this paper, numerically
unstable algorithms can be stabilized by computing divided differences
in a non-standard way. Because it can be a tedious task to restructure

paper.tex; 27/03/2001; 10:42; p.3

4 T.W. Reps and L.B. Rall

a program to perform computations in this way, it is worthwhile de-
veloping an automated approach. The paper describes how techniques
similar to those that have been developed for computational differen-
tiation can be used to transform programs that compute numerical
functions into ones that compute divided differences.

The specific technical contributions of the paper are as follows:

— We present a program transformation that, given a numerical func-
tion F'(z) defined by a program, creates a program that computes
F[zg,z1], the first divided difference of F(z), where

F(zo)—F(z1) .
Flog,a]] o-m if 2o # 21
%F(z),evaluated at z =xg ifzog =11

— We show how computational first divided differencing generalizes
computational differentiation.

— We present a second program transformation that permits the
creation of higher-order divided differences of a numerical function
defined by a program.

— We present a third program transformation that permits higher-
order divided differences to be computed more efficiently. This
transformation does not apply to all programs; however, we show
that there is at least one important situation where this optimiza-
tion is of use.

— We show how to extend these techniques to handle functions of
several variables.

— Finally, we describe how our work on computational differenc-
ing relates to the numerical-finite-differencing techniques that mo-
tivated Robert Paige’s work on finite differencing of set-valued
expressions in SETL programs (Paige, 1981; Paige and Koenig,
1982).

These ideas are illustrated by means of numerous examples.

Such program transformations can be implemented either as a source-
to-source translation, or by means of overloaded operators and reinter-
preted operands (in which case the source code is changed very little).
The examples in the paper primarily illustrate the latter approach;
the paper presents sketches of implementations of the various trans-
formations in the form of C++ class definitions (“divided-difference
arithmetics”).

The benefits gained from the techniques described in the paper
include the following;:

paper.tex; 27/03/2001; 10:42; p.4

Computational Divided Differencing 5

— Because divided differences are the basis for a wide variety of nu-
merical techniques, including polynomial interpolation, numerical
integration, and solving differential equations (Conte and de Boor,
1972), this work could lead to more robust programs in scientific
and graphics applications, when the function of interest is one that
is defined by a program.

— Finite differences on an evenly spaced grid can be used to quickly
generate a function’s values at any number of points that ex-
tend the grid (see (Goldstine, 1977) and (Paige and Koenig, 1982,
pp. 403—404)). Because finite differences on an evenly spaced grid
can be obtained from divided differences on an evenly spaced grid,
our techniques may be useful in graphics applications for quickly
plotting a function, while retaining reasonable accuracy.

— Because the divided-differencing problems that we address can
be viewed as generalizations of problems such as differentiation,
computation of Taylor coefficients, etc., some of our techniques—in
particular, the divided-difference arithmetic presented in Sect. 7—
represent new approaches that, with appropriate simplification,
can also be applied in computational-differentiation tools.

Empirical results presented in Sects. 5 and 8 provide two concrete
demonstrations of some of the benefits that can be gained via our
methods.

The remainder of the paper is organized into eight sections: To make
the paper self-contained, Sect. 2 provides a succinct review of the ba-
sic principles of computational differentiation that are relevant to our
work, and of so-called “differentiation arithmetics” (Rall, 1986; Rall,
1990; Rall, 1992). Sect. 3 discusses the basic principle behind compu-
tational divided differencing. Sect. 4 shows how computational divided
differencing generalizes computational differentiation. Sect. 5 extends
the ideas introduced in Sect. 3 to higher-order computational divided
differencing. Sect. 6 discusses techniques that apply to a useful special
case. Sect. 7 extends the ideas from Sects. 3, 5, and 6 to functions
of several variables. Sect. 8 describes how these ideas relate to the
numerical-finite-differencing techniques that motivated Robert Paige’s
work on finite differencing of set-valued expressions in SETL programs.
Sect. 9 discusses other related work.

paper.tex; 27/03/2001; 10:42; p.5

6 T.W. Reps and L.B. Rall

2. Background on Computational Differentiation

One bright spot during the last thirty years with respect to the control
of round-off error has been the emergence of tools for computational
differentiation, which transform a program that computes a numerical
function F(z) into a related program that computes the derivative
F'(z).? These tools address the following issue: Suppose that you have
a program F(x) that computes a numerical function F(z).? It is a very
bad idea to try to compute F'(z), the value of the derivative of F at o,
by picking a small value delta x and invoking the following program
with the argument xq:*

float deltax = ...(some small value) ...;
float F/ naive(float x){
return (F(x + deltax) - F(x))/deltax;

(2)

}

For a small enough value of delta_x, the values of F (xo+delta x) and
F(x0) will usually be very close. Round-off errors in the computation of
F(xp+delta x) and F(xg) are magnified by the subtraction of the two
quantities, and further amplified by the division by the small quantity
delta_x, which may cause the overall result to be useless. Computa-
tional differentiation sidesteps this problem by computing derivatives
in another fashion.

Computational differentiation can be illustrated by means of the
following example:

EXAMPLE 2.1. (Zippel, 1996). Suppose that we have been given a
collection of programs f; for the functions f;, 1 < ¢ < k, together

2 Another bright spot has been the application of interval arithmetic to the
verification of the accuracy of computed results, for many basic numerical com-
putations (Hammer et al., 1993; Hammer et al., 1995).

3 Throughout the remainder of the paper, Courier Font is used to denote func-
tions defined by programs, whereas Italic Font is used to denote mathematical
functions. That is, F'(x) denotes a function (evaluated over real numbers), whereas
F(x) denotes a program (evaluated over floating-point numbers). We adhere to this
convention both in concrete examples that involve C++ code, as well as in more
abstract discussions in order to distinguish between a mathematical function and a
program that implements the function.

4 The example programs in the paper are all written in C++; however, the
ideas described apply to other programming languages—including functional pro-
gramming languages (cf. (Karczmarczuk, 1999))—as well as to other imperative
languages.

To emphasize the links between mathematical concepts and their implementa-
tions in C++, we take the liberty of sometimes using ' and/or subscripts on C++
identifiers.

paper.tex; 27/03/2001; 10:42; p.6

Computational Divided Differencing 7

with the program Prod shown below, which computes the function
Prod(z) = [I% fi(z). In addition, suppose that we have also been
given programs f; for the functions f/, 1 < ¢ < k. Finally, suppose
that we wish to obtain a program Prod’ that computes the function
Prod'(z). Column two of the table given below shows mathematical
expressions for Prod(z) and Prod'(z). Column three shows two C++
procedures: Procedure Prod computes Prod(z); procedure Prod’ is the
procedure that a computational-differentiation system would create to
compute Prod'(z).

‘ Mathematical Notation ‘ Programming Notation

float Prod(float x){
float ans = 1.0;

k
Function Prod(z) = Hfl(x) ans = ans * f;(x);
i=1

}

return ans;

}

for (int i = 1; i <= k; i++){

float Prod'(float x){
float ans’ = 0.0;
float ans = 1.0;

& for (int i = 1; i <= k; i++){
DerivativelProd' (z) = Zf{(a:)*HfJ(m) ans’ = ans’ * fi(x) + ans * f{(x);
i=1 J#i ans = ans * f;(x);
}

return ans’;

}

Notice that program Prod’ resembles program Prod, as opposed to
F/ naive (see box (2)). Prod’ preserves accuracy in its computation of
the derivative because, as illustrated below in Example 2.2, it is based
on the rules for the exact computation of derivatives, rather than on
the kind of computation performed by F/ _naive. [

The transformation illustrated above is merely one instance of a gen-
eral transformation that can be applied to any program: Given a pro-
gram G as input, the transformation produces a derivative-computing
program G'. The method for constructing G’ is as follows:

— For each variable v of type float used in G, another float variable
v’ is introduced.

paper.tex; 27/03/2001; 10:42; p.7

8 T.W. Reps and L.B. Rall

— Each statement in G of the form “v = exp;”, where exp is an
arithmetic expression, is transformed into “v/ = exp’; v = exp;”,
where exp’ is the expression for the derivative of exp. If exp involves
calls to a function g, then exp’ may involve calls to both g and g'.

— Each return statement in G of the form “return v;” is transformed
/.

into “return v';”.
In general, this transformation can be justified by appealing to the
chain rule of differential calculus (see below).

EXAMPLE 2.2. For Example 2.1, we can demonstrate the correct-
ness of the transformation by symbolically executing Prod’ for a few
iterations, comparing the values of ans’ and ans (as functions of x) at
the start of each iteration of the for-loop:

Iteration | Value of ans’ (as a function of x) Value of ans
(as a function of x)
o	0.0	1.0
£ (x)	£1(x)	
2	@ rfa®) @) rf(x)	f1(x)xfa(x)
£1(x) x £2(x) * £3(x
3 + fl(x) % fé(X) % f3(x fl(X) % fQ(X) % f3(X)
+ f1(x) * £2(x) * £5(x)
k k
k D i)« [[£5() [I£:®
=1 JjFi =1

The loop maintains the invariant that, at the start of each iteration,
ans’(x) = Lans(x).° O

For the computational-differentiation approach, we did not really
need to make the assumption that we were given programs f for
5 The value of ans’ on the 3"¢ iteration would actually be computed with
the terms grouped as follows: (£ (x)*£2(x)+£4 (x)*£5(x))*£3(x)+(£1(x)*£2(x))*£5(x).
Terms have been expanded in the table given above to clarify how ans’ builds up
a value that is equivalent—from the standpoint of evaluation in real arithmetic—to

k
Prod'(x) = » £i(x) * [[£:(®).

J#

paper.tex; 27/03/2001; 10:42; p.8

Computational Divided Differencing 9

the functions f/, 1 < ¢ < k; instead, the programs £} can be gener-
ated from the programs f; by applying the same statement-doubling
transformation that was applied to Prod.

In languages that support operator overloading, such as C++, Ada,
and Pascal-XSC, computational differentiation can be carried out by
defining a new data type that has fields for both the value and the
derivative, and overloading the arithmetic operators to carry out ap-
propriate manipulations of both fields (Rall, 1983; Rall, 1984), along the
lines of the definition of the C++ class FloatD, shown in Fig. 1. A class
such as FloatD is called a differentiation arithmetic (Rall, 1986; Rall,
1990; Rall, 1992).

The transformation then amounts to changing the types of each pro-
cedure’s formal parameters, local variables, and return value (including
those of the f;).0

EXAMPLE 2.3. Using class FloatD, the Prod program of Example 2.1
can be handled as follows:

float fi(float x){...} = FloatD f;(const FloatD &x){...}
float fy(float x){...} = FloatD fy(const FloatD &x){...}
float Prod(float x){ FloatD Prod(const FloatD &x){
float ans = 1.0; FloatD ans(CONST,1.0); // ans = 1.0
for (int i = 1; i <= k; i++){ for (int i = 1; i <= k; i++){
ans = ans * f;(x); = ans = ans * f;(x);
} }
return ans; return ans;
} }

float Prod’(float x){
FloatD xD(VAR,x);

return Prod(xD).val’;

}

By changing the types of the formal parameters, local variables, and
the return values of Prod and the f; (and making a slight change

6 We have referred to both computational differentiation and computational di-
vided differencing as “program transformations”, which may conjure up the image
of tools that perform source-to-source rewriting fully automatically. Although this is
one possible embodiment, in this paper the term “transformation” will also include
the use of C++ classes in which the arithmetic operators have been overloaded.
With the latter approach, rewriting might be carried out by a preprocessor, but
might also be performed by hand, since usually only light rewriting of the program
source text is required.

paper.tex; 27/03/2001; 10:42; p.9

10 T.W. Reps and L.B. Rall

enum ArgDesc { CONST, VAR };
class FloatD {
public:
float val’;
float val;
FloatD(ArgDesc,float);
}s
// Constructor to convert a constant
// or a value for the independent
// variable to a FloatD
FloatD: :FloatD(ArgDesc a, float v){
switch (a) {

case CONST:
val’ = 0.0;
val = v;

break;

case VAR:
val’ = 1.0;
val = v;

break;

}

FloatD operator+(FloatD a, FloatD b){
FloatD ans;
ans.val’ = a.val’ + b.val’;
ans.val = a.val + b.val;
return ans;
}
FloatD operator*(FloatD a, FloatD b){
FloatD ans;
ans.val’ = a.val * b.val’ + a.val’ * b.val;
ans.val = a.val * b.val;

return ans;

Figure 1. A differentiation-arithmetic class.

paper.tex; 27/03/2001; 10:42; p.10

Computational Divided Differencing 11

to the initialization of ans in Prod), the program now carries around
derivative values (in the val’ field) in addition to performing all of the
work performed by the original program. Because of the C++ overload-
resolution mechanism, the f; procedures invoked in the fourth line of
the transformed version of Prod are the transformed versions of the £;
(i.e., the £; of type FloatD — FloatD).

The value of Prod’s derivative at v is obtained by calling Prod'(v).
O

In a differentiation arithmetic, each procedure in the user’s program,
such as Prod and the f; in Example 2.3, can be viewed as a box that
maps two inputs to two outputs, as depicted below:

V— F —F(Vv)

Computational
Differentation

]

IDi fferentiating
lversion of F

V— — F(V)

— F (Vv)*w

In particular, in each differentiating version of a user-defined or library
procedure F, the lower-right-hand output produces the value F' (v) *w.
An input value v for the formal parameter is treated as a pair
(v,1.0). Boxes like the one shown above “snap together”: when F
is composed with G (and the input is v), the output value on the
lower-right-hand side is F/(G(v))*G/(v), which agrees with the usual
expression for the chain rule for the first-derivative operator:

V —— G —— G(V) — F —— F(G(V))
Computational Computational
Differentation Differentation

i i

— V) ——

v > Differentiating = F(XV))

= G (V) »|version of F = F (QV))*G (V)

Differentiating
version of G

1.0 —»

The computational-differentiation technique summarized above is
what is known as forward-mode differentiation. A different computational-
differentiation technique, reverse mode (Linnainmaa, 1976; Speelpen-
ning, 1980; Iri, 1984; Griewank, 1989; Griewank, 1991), is generally

paper.tex; 27/03/2001; 10:42; p.11

12 T.W. Reps and L.B. Rall

preferable when the number of independent variables is much greater
than the number of dependent variables. However, although it is pos-
sible to develop a reverse-mode version of computational divided dif-
ferencing, it does not appear to offer the same potential savings in
operations performed that reverse mode achieves for computational dif-
ferentiation. Because the remainder of the paper concerns the general-
ization of forward-mode computational differentiation to forward-mode
computational divided differencing, reverse mode is not summarized
here.

The availability of overloading makes it possible to implement (forward-
mode) computational differentiation conveniently, by packaging it as a
differentiation-arithmetic class, as illustrated above. The alternative to
the use of overloading is to build a special-purpose preprocessor to
carry out the statement-doubling transformation that was illustrated
in Examples 2.1 and 2.2. Examples of systems that use the latter ap-
proach include ADIFOR (Bischof et al., 1992; Bischof et al., 1996) and
ADIC (Bischof et al., 1997).

2.1. LIMITATIONS OF COMPUTATIONAL DIFFERENTIATION

This section discusses certain limitations of the computational-differentiation
transformation. First, it is worthwhile mentioning that the presence of
aliasing (e.g., due to pointers or reference parameters) is not a limi-
tation of computational differentiation (nor of computational divided
differencing): The transformations presented above (as well as later in
Sects. 3, 5, 6, and 7) work properly in the presence of aliasing (and are

said to be alias-safe (Griewank, 2000).

One limitation of computational differentiation comes from the fact
that a program F'(x) that results from computational differentiation
can perform additions and subtractions for which there are no ana-
logues in the original program F(x). For instance, in program Prod’, an
addition is performed in the statement

ans’ = ans’ * f;(x) + ans * f\(x);
whereas no addition is performed in the statement
ans = ans * f;(x);

Consequently, the result of evaluating F'(x) can be degraded by round-
off error even when F(x) is computed accurately. However, the accuracy
of the result from evaluating F/(x) can be verified by performing the
same computation in interval arithmetic (Rall, 1983; Rall, 1992).
Another problem that arises is that the manner in which a func-
tion is programmed influences whether the results obtained from the

paper.tex; 27/03/2001; 10:42; p.12

Computational Divided Differencing 13

derivative program are correct. For instance, for programs that use a
conditional expression or conditional statement in which the condition
depends on the independent variable—i.e., where the function is defined
in a piecewise manner—the derivative program may not produce the
correct answer.

EXAMPLE 2.4. (Fischer, 1992). Suppose that the function F(z) = z?
is programmed using a conditional statement, as shown below on the
left:

float F/'(float x){

float ans’;
float F(float x){

float ans;
if(x == 1.0){

ans = 1.0;

float ans;
if(x == 1.0){
ans’ = 0.0;

ans = 1.0;

} -
else{
else{
ans = x*x; ane’ = xix:
)
} ans = x*x;
return ans; }
} return ans’;

}

Computational differentiation would produce the program shown above
on the right. With this program, F'(1.0) returns 0.0, rather than the
correct value of 2.0 (i.e., correct with respect to the meaning of the
program as the mathematical function F(z) = z?2). O

The phenomenon illustrated in Example 2.4 has been called the
branch problem or the if problem for computational differentiation. A
more important example of the branch problem occurs in Gaussian
elimination code, where pivoting introduces branches into the pro-
gram (Fischer, 1992; Beck and Fischer, 1994; Griewank, 2000). Some
additional problems that can arise with computational differentiation
are identified in (Fischer, 1992). A number of different approaches to
these problems have been discussed in the literature (Fischer, 1992;
Beck and Fischer, 1994; Shamseddine and Berz, 1996; Kearfott, 1996;
Griewank, 2000).

Computational divided differencing has some similar (or even worse)
problems. All of these issues are outside the scope of the present paper;

paper.tex; 27/03/2001; 10:42; p.13

14 T.W. Reps and L.B. Rall

the problem of finding appropriate ways to generalize the aforemen-
tioned techniques to handle the problems that arise with computational
divided differencing is left for future work.

3. Computational Divided Differencing

In this paper, we exploit the principle on which computational differ-
entiation is based—namely, that it is possible to differentiate entire
programs, not just erpressions—to develop a variety of new computa-
tional divided-differencing transformations. We develop several trans-
formations that can be applied to numerical programs. One of these
corresponds to the first-divided-difference operator, denoted by -z, z1]
and defined as follows:

7F(w0)—F(w1) if Iy 75 I

Flzo,z1] & T0—T1
o { d%F(Z)aeValuated at z=x¢ if zg = 1

(3)

As with the differentiation operator, the problem that we face is that
because division by a small value and subtraction are both operations
that amplify accumulated round-off error, direct use of Eqn. (3) may
lead to highly inaccurate results. In contrast, given a program that com-
putes a numerical function F(x), our technique for computational first
divided differencing creates a related program that computes F[zg, z1],
but without directly evaluating the right-hand side of Eqn. (3).

As we show below, the program transformation that achieves this
goal is quite similar to the transformation used in computational-differentiation
tools. The transformed program sidesteps the explicit subtraction and
division operations that appear in Eqn. (3), while producing answers
that are equivalent (from the standpoint of evaluation in real arith-
metic). The program that results thereby avoids many operations that
could potentially amplify round-off error, and hence retains accuracy
when evaluated in floating-point arithmetic.

To understand the basis of the idea, consider the case in which
F(z) = z? and z¢ # 1:

F(z9) — F(z1) _ x — a7

Flzg,z1] = = =z + 1. (4)
Ty — I o — 1

That is, the first divided difference can be obtained by evaluating zo +
z1. In general, for monomials we have:

‘ Flzo, 1] ‘ 0 ‘ 1 ‘ To + 1 ‘ T3 + ToT1 + T3 ‘ ‘

paper.tex; 27/03/2001; 10:42; p.14

Computational Divided Differencing 15

Turning to programs, suppose that we are given the following pro-
gram for squaring a number:

float Square(float x){

return x * X;

The above discussion implies that to compute the first divided-difference
of Square, we have our choice between the programs Square_1DD_naive
and Square_1DD:

float Square_1DD naive(float x0,float x1){
return (Square(x0) - Square(x1))/(x0 - x1);

}

float Square_1DD(float x0,float x1){

return x0 + x1;

However, the round-off-error characteristics of Square_1DD are much
better than those of Square_1DD naive.

The basis for creating expressions and programs that compute ac-
curate divided differences is to be found in the basic properties of
the first-divided-difference operator (Krawczyk and Neumaier, 1985),
which closely resemble those of the first-derivative operator, as shown
in Table I:

The program transformation for performing computational divided
differencing can be explained by means of an example.

EXAMPLE 3.1. Suppose that we have a C++ class Poly that repre-
sents polynomials, and a member function Poly: :Eval that evaluates a
polynomial via Horner’s rule; i.e., it accumulates the answer by repeat-
edly multiplying by x and adding in the current coefficient, iterating
down from the high-order coefficient:”

" As a running example, the paper uses the evaluation of a polynomial in x via
Horner’s rule. It is well-known that Horner’s rule can return inaccurate results when
it is used to evaluate a polynomial in floating-point arithmetic (Hammer et al.,
1995, pp. 65—67). Our examples are not meant to illustrate a way to circumvent
this shortcoming. Horner’s rule is used as the basis of our examples solely because
of one virtue: it is a very simple procedure, which allows the various different
computational-divided-differencing transformations to be illustrated in a succinct
manner.

paper.tex; 27/03/2001; 10:42; p.15

16 T.W. Reps and L.B. Rall

Table I. Basic properties of the first-derivative and first-divided-difference operators.

‘ First Derivative ‘ First Divided Difference (Krawczyk and Neumaier, 1985) ‘
‘ ¢ =00 ‘ c[zo, 1] = 0.0 ‘
‘ ' =10 ‘ z[zo,z1] = 1.0 ‘
| (c+ F)'(z) = F'(x) | (c+ F)[zo, 1] = Flzo, 7] |
(cxF)(z) =cx F'(z) (cx F)[zg,x1] = ¢ Flzo, x1] ‘

|

|
(F+G)(z)=F'(2)+G'(z) |(
_ F'(z) * G(x)
$_4—H@*@@)

(F + G)[zo, z1] = Flzo,z1] + G[z0, 21]

Flzo,z1] * G(21)

(F x G)[zo,71] = + F(x0) * G[zwo,71]

B s e [e R e |

class Pol
v o // Evaluation via Hormer’s rule

public:
float Poly::Eval(float x){
float Eval(float);
. float ans = 0.0;
private:

. for (int i = degree; i >= 0; i--){
int degree; .
ans = ans *x x + coeff[i];
// Array coeff[0..degree]

float *coeff;

}s

} return ans;

}

A new member function, Poly: :Eval _1DD, to compute the first divided
difference can be created by transforming Poly: :Eval as shown below:

class Poly { float Poly::Eval 1DD(float x0,float x1){
public: float ans_1DD = 0.0;
float Eval(float); float ans = 0.0;
float Eval_1DD(float,float); for (int i = degree; i >= 0; i--){
private: ans_1DD = ans_1DD * x1 + ans;
int degree; ans = ans * x0 + coeff[i];
// Array coeff[0..degreel }
float *coeff; return ans_1DD;
b }
O

paper.tex; 27/03/2001; 10:42; p.16

Computational Divided Differencing 17

The transformation used to obtain Eval 1DD from (the text of)
Eval is similar to the computational-differentiation transformation that
would be used to create a derivative-computing program Eval’ (Eval’
appears in Fig. 2):

— Eval_1DD is supplied with an additional formal parameter (and the
two parameters are renamed x0 and x1).

— For each local variable v of type float used in Eval, an additional
float variable v_1DD is introduced in Eval_1DD.

— Each statement of the form “v = exp;” in Eval is transformed into
“v_1DD = ezp[x0,x1]; v = exp,;”, where exp[x0,x1] is the ex-
pression for the divided difference of exp, and exp, is exp with x0
substituted for all occurrences of x.

— FEach statement of the form “return v” in Eval is transformed
into “return v_1DD”.

One caveat concerning the transformation presented above should be
noted: the transformation applies only to procedures that have a certain
special syntactic structure—namely, the only multiplication operations
that depend on the independent variable x must be multiplications on
the right by x. Procedure Eval is an example of a procedure that has
this property.

A different, but similar, transformation can be used if all of the
multiplication operations that depend on the independent variable x
are multiplications on the left by x. (This point is discussed further in
Example 6.1.) It is also possible to give a fully general first-divided-
difference transformation; however, this transformation can be viewed
as a special case of the material presented in Sect. 5. Consequently, we
will not pause to present the general first-divided-difference transfor-
mation here.

Alternatively, as with computational differentiation, for languages
that support operator overloading, computational divided differencing
can be carried out with the aid of a new class, say Float1DD, for which
the arithmetic operators are appropriately redefined. (We will call such
a class a divided-difference arithmetic.) Computational divided differ-
encing is then carried out by making appropriate changes to the types of
each procedure’s formal parameters, local variables, and return value.

Again, definitions of first-divided-difference arithmetic classes—both
for the case of general first divided differences, as well as for the special
case that covers programs like Eval—can be viewed as special cases
of the divided-difference arithmetic classes FloatDD and FloatDDR1

paper.tex; 27/03/2001; 10:42; p.17

18 T.W. Reps and L.B. Rall

discussed in Sects. 5 and 6, respectively. For this reason, we post-
pone giving a concrete example of a divided-difference arithmetic until
Sects. 5 and 6.

4. Computational Divided Differencing as a Generalization
of Computational Differentiation

In this section, we explain in what sense computational divided differ-
encing can be said to generalize computational differentiation. First,
observe that over real numbers, we have

lim Fleg,a] = lim Floo) = F@1) _ prgey, (5)

I1—>T I1—>TQ ro — T1

However, although Eqn. (5) holds over reals, it does not hold over
floating-point numbers: as x; approaches xg, because of accumulated
F(xo)=F(x1) 765 not, in general, a h

Xo—%1 , 1 g , approac
F/(x0). (Note the use of Courier Font here; this is a statement about
quantities computed by programs.) This is why derivatives cannot be
computed accurately by procedure F_naive (see box (2)).

In contrast, for the programs F[xo,x1] and F/'(x,), we do have the

property that

round-off error, the quantity

x11i—I)I>lco F[Xo, X1] == F,(Xo). (6)
More precisely, the property that holds is that we have equality when
X1 equals xq:

F[Xo, Xo] = F’(Xo). (7)

EXAMPLE 4.1. To illustrate Eqn. (7), consider applying the two trans-
formations to member function Poly: :Eval of Example 3.1; the result
is shown in Fig. 2. When formal parameters x0, x1, and x all have the
same value—say v—then ezactly the same operations are performed by
Eval_1DD(v,v) and Eval’(v). O

Because computations are carried out over floating-point numbers,
the programs F[xq,x;] and F/(xo) are only approximations to the func-
tions that we actually desire. That is, F[xo, x1] approximates the func-
tion F[zg, 1], and F'(x¢) approximates F'(z). The relationships among
these functions and programs are depicted below:

paper.tex; 27/03/2001; 10:42; p.18

Computational Divided Differencing

Figure 2. The result of applying the computational-differentiation
first-divided-difference transformations to member function Poly::Eval

Example 3.1.

class Poly {

public:
float Eval(float);
float Eval_1DD(float,float);
float Eval’(float);

private:
int degree;
// Array coeff[0..degree]
float *coeff;

}s

float Poly::Eval 1DD(float x0,float x1){
float ans_1DD = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i--){
ans_1DD = ans_1DD * x1 + ans;
ans = ans * x0 + coeff[i];

}

return ans_1DD;

float Poly::Eval'(float x){
float ans’ = 0.0;
float ans = 0.0;
for (int i = degree; i >= 0; i--){
ans’ = ans’ * x + ans;
ans = ans * x + coeff[i];

}

return ans’;

19

and
of

paper.tex; 27/03/2001; 10:42; p.19

20 T.W. Reps and L.B. Rall

Mathematical Functions FOo) = R(xo) ... Programs and
and Operators | --------- Program Transformations

F(xg) - F(xy) d Computational Computational St_ér_]dard _ _
Xo—X1 dx Differentation Divided Differencing D|V|deq Differencing
‘ H ; F(X1)
Xo) — HF(X
F[s] =>F, X) = F’ X B ——————— F Xo, X —0 1 zzzzzzzzzoc
X0 %4 X1 - X 0 (O) X1 — Xp [0]] Xo— X1 Xl—’XO>®

As the discussion above has noted, the interesting feature of this dia-
gram is the relationship between F[xg,x1] and F/'(x,), on the side of
the diagram labeled “Programs and Program Transformations”. In
particular, as x; approaches xq, F[xo,%1] approaches F'(x¢). Conse-
quently, a program produced by a system for computational divided
differencing can be used to compute values of derivatives (in addition
to divided differences) by feeding it duplicate actual parameters (e.g.,
Eval 1DD(v,v)). In contrast, a program created by means of compu-
tational differentiation can only produce derivatives (and not divided
differences). In this sense, computational divided differencing can be
said to generalize computational differentiation.

Computational divided differencing suffers from one of the same
problems that arises with computational differentiation—namely that
the program F[xq, x1| that results from the transformation can perform
additions and subtractions that have no analogues in the original pro-
gram F(x) (see the discussion in Sect. 2.1). Consequently, the result of
evaluating F[xo, x1] can be degraded by round-off error even when F(x)
is computed accurately. However, computational divided differencing is
no worse in this regard than computational differentiation. Moreover,
because of the fact that F[xq,x;] converges to F/(xq) as x; approaches
Xo, if F/(xg) returns a result of sufficient accuracy, then F[xo,x;] will
return a result of sufficient accuracy when |xo — x4| is small. (In future
work, we plan to investigate the use of interval arithmetic for providing
interval bounds for computational divided differencing.)

5. Higher-Order Computational Divided Differencing

In this section, we show that the idea that was introduced in Sect. 3
can be generalized to define a transformation for higher-order computa-
tional divided differencing. To do so, we will define a divided-difference
arithmetic that manipulates divided-difference tables.

paper.tex; 27/03/2001; 10:42; p.20

Computational Divided Differencing 21

Higher-order divided differences are divided differences of divided
differences, defined recursively as follows:

Flz;] ¥ F(z;) (8)
Flzo,z1,...,n—1]|-F[z1,....0n—1,Z4] if 7& x
F RN I zo” o AL
w0, 1, Tn1, Tn] { %F[z,x1,...,xn—1]|zzw0 if;cOan(

In our context, a divided-difference table for a function F' is an upper-
triangular matrix whose entries are divided differences of different or-
ders, as indicated below:®

F(.’L'()) F[‘/EO,‘/E:L] F[wﬂawla'TZ] F[.T(),.’L']_,.’L'Q,.’L'g]
0 F(21) Flz1,79] Flz1, 2, 73]
0 0 (2) F[.’L'Q, 3]
0 0 0 F(z3)

Higher-order divided differences have numerous applications in inter-
polation and approximation of functions (Conte and de Boor, 1972).

We occasionally use [z; ;] as an abbreviation for [z;, ..., z;]. However,
the reader should note that

Flzo2] = Flzo,z1,22]
F[iUo,ﬂUﬂ - F[»’L“hﬂﬂz]

?

o — T2

which is not the same as F'[zg, z2]:

F(zo) — F(z2)

Flzo, 2] = Zo — 7o

We use - zo2nl t6 denote the operator that yields the divided-
difference table for a function with respect to points zg,...,z,. (We
use - if the points g, ..., T, are clear from the context.)

A method for creating accurate divided-difference tables for rational
expressions is found in Opitz (Opitz, 1964). This method is based on
the properties of - \[#0»++%n] given in the right-hand column of Table II:
A few items in Table IT require explanation:

— The symbol I denotes the identity matrix.

8 Other arrangements of F’s higher-order divided differences into matrix form
are possible. For example, one could have a lower triangular matrix with the F(z;)
running down the first column. However, the use of the arrangement shown above
is key to being able to use simple notation—i.e., ordinary matrix operations—to
describe our methods (Opitz, 1964).

paper.tex; 27/03/2001; 10:42; p.21

22 T.W. Reps and L.B. Rall

Table II. Basic properties of two divided-difference operators.

| First Divided Difference (Krawczyk and Neumaier, 1985) | Divided-Difference Table (Opitz, 1964)

| c[zo,z1] = 0.0 cNeosmtn]l — ¢y [

| z[zo,z1] = 1.0 Nz, zn] — Al

Z05---» Tn]

| (c+ F)[z0,21] = Flzo, x1] (c+ F)T@osznl — ¢y [4 Fl20,--s2n]

| (F +G)lzo,21] = Flzo,a1] + Glao, z1] (F + G)Yeoroon] = pileosenl 4 GYle0swnzn

Flzo,z1] * G(z1)

) | |
| |
| = |
| |
| (c* F)[zo,21] = ¢ * Flzo,21] | (cx F)Tmormen] = ¢y pleo,on] |
| 2
| |
| (|

= [20,--@n] — pN[20,.-s2n] N[zg,-->%n]
‘ (F* Glzo, 1] + F(xo) * Gzo, 1] (F«G) =F *G
Flzg,z1]xG —F *G[zg, V[:c | N[zq,.-., zn]
‘ (&) lwo,21] = o] G((it))*c((x)) — (&)™ = Zwﬁ ----- =n]
— The symbol A, . ., denotes the matrix
o 1 0 --- 0
0Oz, 1 --- O
(10)
0 -+ .ozpyq 1
0 oo v 0 =y

— In the entry for (F * G)w[mo"“’m”], the multiplication operation in
FN@0ss@n] 4 GZ0:2n] i matrix multiplication.

Fzg,--2n]

Gw[:co,...,:cn]

N[z0s++1sTn] e . .
) , the division operation in

— In the entry for (g

is matrix division (i.e., Q =PxQ1).

The two columns of Table IT can be read as recursive definitions for
the operations [z, 1] and - [0---%n] respectively. These have straight-
forward implementations as recursive programs that walk over an ex-
pression tree.

The reader should be aware that the -[zg,z1] operation defined in
the first column of Table IT creates an expression that computes only
the first divided difference of the original expression e(z), whereas the
operation defined in the second column of Table II creates a (matrix)
expression that computes all of the first, second, ..., n* divided dif-
ferences with respect to the points xg, z1, ..., Tn, as well as n + 1
values of e(z). In particular, in the matrix that results from evaluating
the transformed expression, the values of e(z) evaluated at the points

paper.tex; 27/03/2001; 10:42; p.22

Computational Divided Differencing 23

zg, 1, --., Ty are found on the diagonal. For instance, in the case
of an expression that multiplies two subexpressions F'(z) and G(z),
the elements on the diagonal are F(zg) * G(zo), F(z1) * G(z1), ...,

It is easy to verify (by means of induction) that the first and second
columns of Table II are consistent with each other: in each case, the
quantity e[z, z1] represents the (0,1) entry of the matrix e [%0:-%nl,

The second column of Table II has an even more straightforward
interpretation:

OBSERVATION 5.1. [Reinterpretation Principle]. The divided-difference
table of an arithmetic expression e(x) with respect to the n+ 1 points
xo, - - -, Zn can be obtained by reinterpreting e(x) as a matrix expression,
where the matriz A, .. 5,) i used at each occurrence of the variable x,
and ¢ x I is used at each occurrence of a constant c. O

That is, the expression tree for e(z) is unchanged—except at its
leaves, where Af; . 1is used in place of z, and cxI is used in place of
c—but the operators at all internal nodes are reinterpreted as denoting
matrix operations. This observation is due to Opitz (Opitz, 1964).

With only a slight abuse of notation, we can express this as

eﬂ[wo,---@n} = e(A[xoy...,-Z'n])'

Using this notation, we can show that the chain rule for the divided-
difference operator - [20>-+2n] hag the following particularly simple form:

(F o G)w[zo,...,xn] = (F o G)(A[wo,...,wn}) (11)
= F(G(A[:co,,wn]))
— F(Gw[wOa'"awn])_

Opitz’s idea can be extended to the creation of accurate divided-
difference tables for functions defined by programs by overloading the
arithmetic operators used in the program to be matrix operators—i.e.,
by defining a divided-difference arithmetic that manipulates divided-
difference tables:

OBSERVATION 5.2. [Computational Divided-Differencing Principle].
Rather than computing o divided-difference table with respect to the
points xg, T1, ..., T, by invoking the program n + 1 times and then
applying Eqns. (8) and (9), we may instead evaluate the program (once)
using a divided-difference arithmetic that overloads arithmetic opera-
tions as matriz operations, substituting Ajg, . z.] for each occurrence

of the formal parameter x, and c x I for each occurrence of a constant
c. O

paper.tex; 27/03/2001; 10:42; p.23

24 T.W. Reps and L.B. Rall

The reader should understand that the single invocation of the
program using the divided-difference arithmetic will actually be more
expensive than the n + 1 ordinary invocations of the program. The
advantage of using divided-difference arithmetic is not that execution
is speeded up because the program is only invoked once (in fact, ex-
ecution is slower); the advantage is that the result computed using
divided-difference arithmetic is much more accurate.

Because higher-order divided differences are defined recursively in
terms of divided differences of lower order (cf. Eqns. (8) and (9)), it
would be possible to define an algorithm for higher-order computational-
divided-differencing using repeated applications of lower-order computational-
divided-differencing transformations. However, with each application
of the transformation for computational first divided differencing, the
program that results performs (roughly) three times the number of
operations that are performed by the program the transformation starts
with. Consequently, this approach has a significant drawback: the final
program that would be created for computing k** divided differences
could be O(3*) times slower than the original program. In contrast, the
slow-down factor with the approach based on Observation 5.2 is O(k?).

We now sketch how a version of higher-order computational divided
differencing based on Observation 5.2 can be implemented in C++.
Below, we present highlights of a divided-difference arithmetic class,
named FloatDD. We actually make use of two classes: (i) class FloatDD,
the divided-difference arithmetic proper, and (ii) class FloatV, vectors
of x; values. These classes are defined as follows:

class FloatDD {

public:
int numPts; // Size is numPts-by-numPts
float **divDiffTable; // Two-dimensional upper-triangular array
FloatDD(ArgDesc ad, int N, float v); // N-by-N constant or variable: value v
FloatDD(const FloatV &); // Construct a FloatDD from a FloatV
FloatDD(int N); // Construct a zero-valued FloatDD of size N-by-N
FloatDD& operator+ (const FloatDD &) comnst; // binary addition
FloatDD& operator- (const FloatDD &) const; // binary subtraction
FloatDD& operator* (const FloatDD &) comst; // binary multiplication
FloatDD& operator/ (const FloatDD &) const; // binary division

paper.tex; 27/03/2001; 10:42; p.24

Computational Divided Differencing 25

class FloatV {

public:
int numPts;
float *val; // An array of values: vall[0]..val[numPts-1]
FloatV(int N, ...); // N points

FloatV(float start, int N, float incr); // N equally spaced points

The constructor FloatDD(const FloatV &); plays the role of gener-
ating a matrix Ay, .. from a vector [zo,...,7,] of values for the
independent variable. It is defined as follows:

// Construct a FloatDD from a FloatV
FloatDD: :FloatDD(const FloatV &fv)
numPts (fv.numPts),
divDiffTable(callocut (numPts)) // allocate upper-triangular matrix of zeros
{
for (int i = 0; i < numPts; i++) {
divDiffTable[i][i] = fv.val[il;
if (i < numPts-1) divDiffTable[i][i+1] = 1.0;

The constructor FloatDD(ArgDesc ad, int N, float v); gener-
ates either the matrix Ap, . of size N-by-N or the matrix v * I of size
N-by-N, depending on the value of parameter ad. It is defined as follows:

paper.tex; 27/03/2001; 10:42; p.25

26 T.W. Reps and L.B. Rall

FloatDD: :FloatDD(ArgDesc ad, int N, float v)
numPts(N),
divDiffTable(calloc_ut (numPts))

int i;
switch (ad) {
case CONST:
for (i = 0; i < numPts; i++) {
divDiffTable[i]l[i] = v;
}
break;
case VAR:
for (i = 0; i < numPts; i++) {
divDiffTable[i]l[i] = v;
if (i < numPts - 1)
divDiffTable[i] [i+1] = 1.0;

}

break;

The multiplication operator of class F1oatDD simply performs matrix
multiplication:

FloatDD& FloatDD: :operator* (const FloatDD &fdd) const{
assert (numPts == fdd.numPts);
FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {
for (int ¢ = r; ¢ < numPts; c++) {
float temp = 0.0;
for (int k = r; k <= c¢; k++) {
temp += divDiffTable[r][k] * fdd.divDiffTablel[k] [c];
}
ans->divDiffTable[r] [c] = temp;
}
}

return *ans;

paper.tex; 27/03/2001; 10:42; p.26

Computational Divided Differencing 27

The division operator of class FloatDD is implemented using back sub-
stitution. That is, suppose we wish to find the value of A/B (call this
value X). X can be found by solving the system X * B = A. Because the
divided-difference tables A and B are both upper-triangular matrices,
this can be done using back substitution, as follows:

// Use back substitution
FloatDD& FloatDD::operator/ (const FloatDD &fdd) const{
assert (numPts == fdd.numPts);
assert (NonZeroDiagonal (£fdd)) ;
FloatDD *ans = new FloatDD(numPts);
for (int r = 0; r < numPts; r++) {
for (int ¢ = r; c < numPts; c++) {
float temp = 0.0;
for (int k = r; k < c; k++) {
temp += ans->divDiffTable[r][k] * fdd.divDiffTable[k][c];
}
ans->divDiffTable[r] [c] =
(divDiffTable[r][c] - temp) / fdd.divDiffTablelc][c];

}
}

return *ans;

EXAMPLE 5.3. To illustrate these definitions, consider again the func-
tion Poly: :Eval that evaluates a polynomial via Horner’s rule. Com-
putational divided differencing is carried out by changing the types of
Eval’s formal parameters, local variables, and return value from float
to FloatDD:

paper.tex; 27/03/2001; 10:42; p.27

28 T.W. Reps and L.B. Rall

// Evaluation via Horner’s rule
float Poly::Eval(float x){
float ans = 0.0;
for (int i = degree; i >= 0; i--){
ans = ans * x + coeff[il;

}

return ans;
}
// Evaluation via Horner’s rule
FloatDD Poly: :Eval(const FloatDD &x){
FloatDD ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i--){
ans = ans * x + coeff[il;

}

return ans;

The transformed procedure can be used to generate the divided-difference
table for the polynomial

P(z)=21x2® —14x2?— 6%z +1.1

with respect to the (unevenly spaced) points 3.0, 3.01, 3.02, 3.05 by
performing the following operations:

Poly *P = new Poly(4,2.1,-1.4,-0.6,1.1);
FloatV x(4,3.0,3.01,3.02,3.05);

FloatDD A(x); // Corresponds to A .. 44
FloatDD fdd = P->Eval(A);

(5.3)

We now present some empirical results that illustrate the advantages
of the computational-divided-differencing method. In this experiment,
we worked with the polynomial

P(z) =21x2®—14x2%— 6%z + 1.1,

and performed computations using single-precision floating-point arith-
metic on a Sun SPARCstation 20/61 running SunOS 5.6. Programs
were compiled with the egcs-2.91.66 version of g++ (egcs-1.1.2 release).
The experiment compared the standard method for generating divided-
difference tables—namely, the recursive definition given by Eqn. (8) and
the first line of Eqn. (9)—against the overloaded version of function

paper.tex; 27/03/2001; 10:42; p.28

Computational Divided Differencing 29

Poly::Eval from Example 5.3 (which was invoked using code like the
fragment shown in box (5.3)).

In each of the four examples shown below, the values used for the
(unevenly spaced) points zg, 1, 2, and z3 are shown on the left.
Note how the standard method for generating divided-difference tables
degrades as the points move closer together. (Places where the results
from the two methods differ are indicated in boldface.) In particular,
because P is a cubic polynomial whose high-order coefficient is 2.1,
the proper value of P[zg,z1,z2,z3]—the third divided difference of
P—is 2.1, not 117,520! (Compare the entries that appear in the upper-
right-hand corners of the fourth pair of divided-difference tables shown
below.)

Computational Divided Differencing Standard Divided Differencing
ro: 3.0 434 673 238 21 43.4 67.3 23.8 2.09999
Ty : 4.0 110.7 1149 32.2 110.7 114.9 32.2
z2: 5.0 225.6 211.5 225.6 211.5
z3: 7.0 648.6 648.6
zo: 3.0 43.4 47.8752 17.563 2.1 43.4 47.8749 17.5858 1.59073
z1: 3.01 43.8787 48.2265 17.668 43.8787 48.2266 17.6653
T2 3.02 44.361 48.9332 44.361 48.9332
z3: 3.05 45.829 45.829
To : 3.0 43.4 47.7175 17.5063 2.1 43.4 47.7177 15.2886 754.685
z1 @ 3.001 43.477 47.7525 17.5168 43.4477 47.7483 19.0621
z2 @ 3.002 43.4955 47.8226 43.4955 47.8245
z3: 3.005 43.6389 43.6389
o : 3.0 43.4 47.7017 17.5006 21 43.4 47.6945 3.62336 117520
z1 : 3.0001 43.4048 47.7052 17.5017 43.4048 47.6952 62.379
z2 @ 3.0002 43.4095 47.7122 43.4095 47.7202
z3 : 3.0005 43.4238 43.4238

Finally, when we set all of the input values to 3.0, we obtain

Computational Divided Differencing Standard Divided Differencing

zo: 3.0 43.4 47.7 175 2.1 43.4 NaN NaN NaN
z1: 3.0 43.4 47.7 17.5 43.4 NaN NaN
T2 : 3.0 43.4 47.7 43.4 NalN
z3: 3.0 43.4 43.4

With the standard divided-differencing method, division by 0 occurs
and yields the exceptional value NaN. In contrast, computational di-
vided differencing produces values for P’s first, second, and third deriva-
tives. More precisely, each k" divided-difference entry in the computational-
divided-differencing table equals

1 d*P(z)

] k
K!' dz 2=3.0

(12)

paper.tex; 27/03/2001; 10:42; p.29

30 T.W. Reps and L.B. Rall

The k = 1 case was already discussed in Sect. 4, where we observed
that computational first divided differencing could be used to compute
first derivatives. [J

EXAMPLE 5.4. (Kahan, 2000). Suppose that we wish to compute the
future value of n monthly payments, each of 1 unit, paid at the end of
each month into a savings account that compounds interest at the rate
of a per month (where « is a small positive value and n is a positive
integer). This answers the question “How many dollars are accumulated
after n months, when you deposit $1 per month for n months, into a
savings account that pays annual interest at the rate of (12 x ax100)%,
compounded monthly?” Future value can be computed by the function
aet (1+)" 1)

Future Value(a,n) = — (13)

However, this can also be written as

(1+0)" — 17
(14+a)—1 "~

Future Value(a,n) =

and thus is equal to the following first-divided difference of the power
function:
Future Value(a,n) = (z")[1 + a, 1]. (14)

The latter quantity can be computed to nearly full accuracy using
computational divided differencing by computing (z")w[H‘a’l], and then
extracting the (0,1) entry. For instance, we can start with the follow-
ing procedure power, which computes x" via repeated squaring and
multiplication by x, according to the bits of argument n:

const unsigned int num bits = sizeof (unsigned int)*8;

float power(float x, unsigned int n) {

unsigned int mask = 1 << (num bits - 1);
float ans = 1.0;
for (unsigned int i = 0; i < num bits; i++) {

ans = ans * ans;

if (mask & n)

ans = ans * X;
mask >>= 1;

}

return ans;

}

paper.tex; 27/03/2001; 10:42; p.30

Computational Divided Differencing 31

By changing the types of power’s formal parameters, local variables,
and return value, we create a version that computes a divided-difference
table:

FloatDD power (FloatV &x, unsigned int n) {
unsigned int mask = 1 << (num bits - 1);
FloatDD ans(CONST, 2, 1.0); // ans = 1.0
for (unsigned int i = 0; i < numbits; i++) {

ans = ans * ans;

if (mask & n)
ans = ans * Xx;

mask >>= 1;

}

return ans;

The transformed procedure can be used to compute the desired com-
putation to nearly full accuracy by calling the procedure FutureValue
that is defined below:

float FutureValue(float alpha, unsigned int n) {
float w[2] = { 1+alpha, 1 };
FloatV v(2, w);
return power (v,n).divDiffTable[0] [1];

}

We now present some empirical results that illustrate the advan-
tages of this approach. In this experiment, we performed computations
using single-precision floating-point arithmetic on a Sony VAIO PCG-
Z505JSK (650 MHz Intel Pentium III processor) running Windows
2000. Programs were compiled with Microsoft Visual C++ 6.0. The
table given below shows the future values of $1 deposits made for 360
months, as computed via Eqn. (13) versus procedure FutureValue,
for a variety of interest rates. (Places where the results from the two
methods differ are indicated in boldface.)

paper.tex; 27/03/2001; 10:42; p.31

32

T.W. Reps and L.B. Rall

Interest Rate ‘

Eqn. (13) ‘ Procedure FutureValue

10% 2260.5 2260.49
8% 1490.36 1490.36
6% 1004.52 1004.52
4% 694.045 694.048
2% 492.713 492.722
1% 419.656 419.632
0.8% 406.692 406.718
0.6% 394.282 394.323
0.4% 382.4 382.422
0.2% 370.934 370.986
0.1% 365.354 365.438
0.08% 364.142 364.34
0.06% 362.873 | 363.247
0.04% 362.595 362.165
0.02% 361.505 361.08
0.01% 360.961 360.54
0.008% 360.882 360.432
0.006% 360.751 360.324
0.004% 360.668 360.216
0.002% 360.56 360.108
0.001% 360.489 360.054
0.0008% 386.238 | 360.046
0.0006% 343.323 | 360.031
0.0004% 386.238 | 360.023
0.0002% 257.492 | 360.008
0.0001% 514.984 | 360.008
0.00008% 643.73 360.008
0.00006% 0 360
0.00004% 0 360
0.00002% 0 360

paper.tex; 27/03/2001; 10:42; p.32

Computational Divided Differencing 33

6. A Special Case

A divided-difference table for a function F' can be thought of as a
(redundant) representation of an interpolating polynomial for F. For
instance, if you have a divided-difference table T (and also know the
appropriate vector of values xg, 1, . .., Z,), you can explicitly construct
the Newton form of the interpolating polynomial for F' according to the
following definition (Conte and de Boor, 1972, pp. 197):

n i—1
pn(x) = ZF[.’E(), ey T % H(:v —zj) (15)
i=0 §=0

Note that to be able to create the Newton form of the interpolating
polynomial for F' via Eqn. (15), only the first row of divided-difference
table T is required to be at hand—i.e., the values F|[xy,...,z;], for
0 < i < n—together with the values of zg, z1, ..., ,. This observa-
tion suggests that we should develop an alternative divided-difference
arithmetic that builds up and manipulates only first rows of divided-
difference tables. We call this divided-difference arithmetic FloatDDR1
(for Divided-Difference Row 1). The motivation for this approach is
that FloatDDR1 operations will be much faster than FloatDD ones, be-
cause FloatDD operations must manipulate upper-triangular matrices,
whereas FloatDDR1 operations involve only simple vectors.
To achieve this, we define class FloatDDR1 as follows:

paper.tex; 27/03/2001; 10:42; p.33

34

T.W. Reps and L.B.

Rall

friend
friend
friend
friend
friend
friend
friend
friend
friend
friend

friend

class FloatDDR1 {

FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&
FloatDDR1&

operator+
operator+
operator+
operator+
operator-
operator-
operator-
operator-
operator*
operator*

operator*

(const
(const
(const
(const
(const
(const
(const
(const
(const
(const

(const

FloatDDR1 &, const float);
FloatDDR1 &, const FloatV &);
float, const FloatDDR1 &);
FloatV &, const FloatDDR1 &);
FloatDDR1 &, const float);
FloatDDR1 &, const FloatV &);
float, const FloatDDR1 &);
FloatV &, const FloatDDR1 &) ;
FloatDDR1 &, const float);
FloatDDR1 &, const FloatV &);
float, const FloatDDR1 &);

FloatDDR1&
FloatDDR1&
FloatDDR1&

friend FloatV &, const FloatDDR1 &);
FloatDDR1 &, const float);

FloatDDR1 &, const FloatV &);

operator* (const

friend operator/ (const

friend operator/ (const
public:
int numPts;
float *divDiffTable; // One-dimensional array of divided differences
FloatDDR1(int N) // Construct a zero-valued FloatDDR1 of length N

: numPts(N), divDiffTable(new float[numPts])

{1}

FloatDDR1& operator+ (const FloatDDR1 &) const; // binary addition
FloatDDR1& operator- (const FloatDDR1 &) const; // binary subtraction

Compared with class FloatDD, class FloatDDR1 is somewhat impover-
ished: we can add or subtract two arbitrary FloatDDR1’s; however,
because we do not have full divided-difference tables available, we
cannot multiply two arbitrary FloatDDR1’s; nor do we have the full
Alg,,....r,] matrices that are used at each occurrence of the independent
variable. We finesse these difficulties by limiting the other operations
of class FloatDDR1 to those defined by the friend functions indicated
in the class definition given above: (i) addition, subtraction, and mul-
tiplication on either side by a float or a FloatV; (ii) division on the
right by a float or a FloatV.

The operations that involve a float argument ¢ have their “obvi-
ous” meanings, if one bears in mind that a float value c serves as a
stand-in for a full matrix c*I. For the addition (subtraction) operations,
c is only added to (subtracted from) the divDiffTable [0] entry of the

paper.tex; 27/03/2001; 10:42; p.34

Computational Divided Differencing 35

FloatDDR1 argument. For the multiplication (division) operations, all
of the divDiffTable entries are multiplied by (divided by) c.

In the operations that involve a FloatV argument, the FloatV value
serves as a stand-in for a full A, . | matrix. For instance, the op-
erator for multiplication on the right by a FloatV can be thought
of as performing a form of matrix multiplication—but specialized to
produce only the first row of the output divided-difference table (and
to use only values that are available in the given FloatDDR1 and FloatV
arguments):

FloatDDR1& operator* (const FloatDDR1 &fddrl, const FloatV &fv){
FloatDDR1 *ans = new FloatDDR1(fddrl.numPts);
ans->divDiffTable[0] = fddrl.divDiffTable[0] * fv.val[0];
for (int ¢ = 1; ¢ < fddrl.numPts; c++) {
ans->divDiffTable[c] =
fddrl.divDiffTable[c-1] + fddrl.divDiffTablel[c] * fv.vallc];

}

return *ans;

It might be thought that the operator for multiplication on the left
by a FloatV does not have the proper values available in the given
FloatV and FloatDDR1 arguments to produce the first row of the
product divided-difference table as output. (In particular, the second
argument, which is of type FloatDDR1, is a row vector, yet we want to
produce a row vector as the result.) However, it is easy to show that
divided-difference matrices are commutative:

FY«+G V= (F+G) = (G+F) =G« F". (16)

Consequently, the operator for multiplication on the left by a FloatV
can be treated as if the FloatV were on the right:

FloatDDR1& operator* (const FloatV &fv, const FloatDDR1 &fddril){

return fddrl * fv;

}

As with class FloatDD, the division operator is implemented using a
form of back substitution—specialized here to compute just what is
needed for the first row of the divided-difference table:

paper.tex; 27/03/2001; 10:42; p.35

36 T.W. Reps and L.B. Rall

FloatDDR1& operator/ (const FloatDDR1 &fddrl, const FloatV &fv){
FloatDDR1 *ans = new FloatDDR1(fddrl.numPts);
ans->divDiffTable[0] = fddrl.divDiffTable[0] / fv.vall0];
for (int ¢ = 1; c < fddrl.numPts; c++) {
ans->divDiffTable[c] =
(fddrl.divDiffTable[c] - ans->divDiffTable[c-1]) / fv.vallc];

}

return *ans;

Because only a limited set of arithmetic operations are available
for objects of class FloatDDR1, this divided-difference arithmetic can
only be applied to procedures that have a certain special syntactic
structure, namely ones that are “accumulative” in the independent
variable (with only “right-accumulative” quotients). In other words,
the procedure must never perform arithmetic operations (other than
addition or subtraction) on two local variables that both depend on
the independent variable.

EXAMPLE 6.1. The procedure Poly: :Eval for evaluating a polyno-
mial via Horner’s rule is an example of a procedure of the right form.
Consequently, an overloaded version of the function Poly: :Eval using
FloatDDR1 arithmetic can be written as shown below on the right:

// Evaluation via Horner’s rule
float Poly::Eval(float x){
float ans = 0.0;
for (int i = degree; i >= 0; i--){
ans = ans * x + coeff[i];

}

return ans;
}
// Evaluation via Hormer’s rule
FloatDDR1 Poly::Eval(const FloatV &x){
FloatDDR1 ans(x.numPts); // ans = 0.0
for (int i = degree; i >= 0; i--){
ans = ans * x + coeff[i];

}

return ans;

paper.tex; 27/03/2001; 10:42; p.36

Computational Divided Differencing 37

In Sect. 3, Example 3.1 discussed the procedure Poly: :Eval 1DD, a
transformed version of Poly: :Eval that computes the value of the first
divided difference of a polynomial with respect to two values, xo and
x1. With the way that the overloaded operations are defined for class
FloatDDR1, when the actual parameter supplied for x is a FloatV of
length two consisting of xo and x4, the procedure

FloatDDR1 Poly::Eval(const FloatV &x)

performs essentially the same steps as Poly: :Eval 1DD.

One slight difference is that, in addition to returning the value of the
first divided difference, the FloatDDR1 version also returns the result
of evaluating the polynomial on x.

Another difference is that with class FloatDDR1, because of our trick
for handling multiplication by a FloatV on the left (cf. Eqn. 16 and
the discussion that follows), FloatDDR1 arithmetic can be used with
programs that contain multiplications by the independent variable x on
the left as well as on the right. (The transformation used in Example 3.1
could also be enhanced in this fashion.) O

Some empirical results that illustrate the advantages of FloatDDR1
arithmetic in a useful application are presented at the end of Sect. 8.

As with the methods discussed in Sects. 3 and 5, FloatDDR1 arith-
metic can be used to produce values of interest for computational
differentiation. For instance, suppose we have transformed procedure
F:

float F(float x); = FloatDDR1 F(const FloatV &x);

When all of the x; values in the actual parameter supplied for FloatV
x are the same value, say X, then the FloatDDR1 value returned as the
output holds the Taylor coefficients for the expansion of F at x (cf. For-
mula (12)). Thus, the FloatV divided-difference arithmetic generalizes
previously known techniques for producing accurate Taylor coefficients
for functions defined by programs (Rall, 1983; Rall, 1984).

If we attempt to use FloatDDR1 arithmetic in a procedure that
is not “accumulative” in the independent variable, with only “right-
accumulative” quotients, the overload-resolution mechanism of the C++
compiler will detect and report a problem. This is illustrated by the
following example:

EXAMPLE 6.2. Returning to the future-value calculation of Exam-
ple 5.4, because the desired quantity in Eqn. (14) is merely a first
divided difference, we might attempt to carry out the computation by

paper.tex; 27/03/2001; 10:42; p.37

38 T.W. Reps and L.B. Rall

means of FloatDDR1 arithmetic—hoping to save the cost of computing
and storing the (1,1) entry of the divided-difference table—using the
following overloaded version of procedure power:

FloatDDR1 power (FloatV &x, unsigned int n) {

unsigned int mask = 1 << (num bits - 1);

FloatDDR1 ans(CONST, 2, 1.0); // ans = 1.0

for (unsigned int i = 0; i < numbits; i++) {
ans = ans * ans; // overload-resolution fails here
if (mask & n)

ans = ans * Xx;

mask >>= 1;

}

return ans;

However, at the statement
ans = ans * ans;

procedure power multiplies two local variables that both depend on the
independent variable x. Consequently, the FloatDDR1 version of power
is not accumulative in the independent variable.® In the case of the
Microsoft Visual C++ compiler, the following error message is issued:

binary ’*’ : no operator defined which takes a left-hand operand
of type ’class FloatDDR1’

O

7. Multi-Dimensional Computational Divided Differencing

In this section, we explain how to define a third divided-differencing
arithmetic that extends our techniques to handle multi-dimensional
computational divided differencing (i.e., computational divided differ-
encing of functions of several variables).

® Because the (1,1) entry of ans is always 1.0 in the invocation of power from
FutureValue, a version of power specialized to this context would be able to save the
cost of computing and storing the (1,1) entry. This example illustrates a limitation
of an approach based solely on overloading; however, in principle, this limitation
could be overcome using sufficiently powerful partial-evaluation methods.

paper.tex; 27/03/2001; 10:42; p.38

Computational Divided Differencing 39
7.1. BACKGROUND DISCUSSION

As background to the material that will be discussed in Sect. 7.2,
let us reiterate a few points concerning the divided-difference tables
that result from computational divided differencing of functions of a
single variable. In the following discussion, we assume that the divided-
difference table in question has been constructed with respect to some
known collection of values zg, Z1, - .., Zn-

As mentioned at the beginning of Sect. 6, a divided-difference table
can be thought of as a (redundant) representation of an interpolating
polynomial. For instance, if you have a divided-difference table T (and
know the appropriate vector of values zg, z1, ..., Tn, as well), you can
explicitly construct the interpolating polynomial in Newton form by
using the values in the first row of 7' in accordance with Eqn. (15).
One of the consequences of this point is so central to what follows in
Sect. 7.2 that it is worthwhile to state it explicitly and to introduce
some helpful notation:

OBSERVATION 7.1. [Representation Principle]. A divided-difference
table T is a finite representation of a function Func[T] defined by
Eqn. (15). (Note that if F = Func[T], then T = F*.)

Given two divided-difference tables, T1 and 15, that are defined with
respect to the same set of points xg, x1, - .., Tn, the operations of matriz
addition, subtraction, multiplication, and division applied to T7 and
Ty yield representations of the sum, difference, product, and quotient,
respectively, of Func[T1] and Func[Ty]. O

In other words, the operations of class FloatDD provide ways to
(i) instantiate representations of functions of one variable (by evaluat-
ing programs in which floats have been replaced by FloatDDs), and
(ii) perform operations on function representations (i.e., by addition,
multiplication, etc. of FloatDD values).

It is also worthwhile restating the Computational Divided-Differencing
Principle (Observation 5.2), adding the additional remark given in the
second paragraph:

OBSERVATION 7.2. [Computational Divided-Differencing Principle
Redux]. Rather than computing a divided-difference table with respect
to the points gy, T1, ..., T, by invoking the program n + 1 times and
then applying Eqns. (8) and (9), we may instead evaluate the program
(once) using a divided-difference arithmetic that overloads arithmetic
operations as matriz operations, substituting A, .. ., for each occur-
rence of the formal parameter x, and c * I for each occurrence of a
constant c.

paper.tex; 27/03/2001; 10:42; p.39

40 T.W. Reps and L.B. Rall

Furthermore, this principle can be applied to divided-difference tables
for functions on any field (because addition, subtraction, multiplica-
tion, and division operations are required, together with additive and
multiplicative identity elements). O

7.2. COMPUTATIONAL DIVIDED DIFFERENCING OF FUNCTIONS OF
SEVERAL VARIABLES

We now consider the problem of defining an appropriate notion of di-
vided differencing for a function F' of several variables. Observation 7.1
provides some guidance, as it suggests that the generalized divided-
difference table for F' that we are trying to create should also be thought
of as a representation of a function of several variables that interpolates
F'. Such a generalized computational divided-differencing technique will
be based on the combination of Observations 7.1 and 7.2.

Because we have already used the term higher-order to refer gener-
ically to second, third, ..., n'* divided differences, we use the term
higher-kind to refer to the generalized divided-difference tables that
arise with functions of several variables. In the remainder of this sec-
tion, we make use of an alternative notation for the divided-difference
operator - [#0;-%n];

DD}, . 1F] % P,

U 7%

We use DD![F] when the z; are understood, and abbreviate ranges
of variables in the usual way, e.g., DD/ [F] = DD} [F] =

[zo,3 [zo,x1,02,53
F[zo,71,22,23] The notation DD'[-] refers to divided-difference tables
of kind 1 (the kind we are already familiar with from Sect. 5, namely
FloatDD values). Below, we use DD?[.] to refer to divided-difference
tables of kind 2; in general, we use DD*[.] to refer to divided-difference
tables of kind k.

To understand the basic principle that underlies our approach, con-
sider the problem of creating a surface that interpolates a two-variable
function F(z,y) with respect to a grid formed by three coordinate
values zg, 1, Z2 in the z-dimension, and four coordinate values g, y1,
Y2, y3 in the y-dimension. The clearest way to explain the technique in
common programming-language terminology involves currying F'. That
is, instead of working with F' : float X float — float, we work with
F : float — float — float. We can create (a representation of) an
interpolating surface for F' (i.e., a divided-difference table of kind 2,
denoted by DD? Livo.s) [F']) by building a divided-difference table of

[zo,2

paper.tex; 27/03/2001; 10:42; p.40

Computational Divided Differencing 41

kind 1 using the functions F(zy), F(z1), and F(z2), each of which is
of type float — float, as the “interpolation points”.°

Note that this process requires that we be capable of performing ad-
dition, subtraction, multiplication, and division of functions. However,
each of the functions F'(z), F(x1), and F(z2) is itself a one-argument

function for which we can create a representation namely by build-

ing the divided-difference tables DD o.s) [F (z0)], DD [vo.] |[F (z1)], and
DDlyO o] [F(z2)] (with respect to the coordlnate values yg, y1, Y2, and
y3). By Observation 7.2, the arithmetic operations on functions F'(zy),

F(z1), and F(z2) needed to create DD[zo 2], [90.3] |[F] can be carried
out by performing matrix operations on the matrices DD [vo.s] [[F(xo)]],
DDy, 1[F(z1)], and DD |[F (22)]. For instance,

y03 [%0,3]

DD y03 |[F[CCO"Tl]]] = DD[lyog]HM

]

rg — T1
_ DDy, [F(@0)] - DDy, [F (1)1 an
g — T1

In what follows, it is convenient to express functions using lambda
notation (i.e., in Az.exp, z is the name of the formal parameter, and exp
is the function body). For instance, Az.\y.x denotes the curried two-
argument function (of type float — float — float) that merely returns
its first argument. For our purposes, the advantage of lambda notation
is that it provides a way to express the anonymous one-argument func-
tion that is returned when a curried two-argument function is supplied
a value for its first argument (e.g., (Az.Ay.x)(xo) returns A\y.zo).

In short, the idea is that a divided-difference table of kind 2 for
function F' is a matrix of matrices:

DD? [F] = DDy, [A=.DDj, [F(2)]]

[z0,2],[y0,3] [zo,2]

?103

DD1 lF(@2)]

= the matrix shown in Fig. 3

DD[lyo 3] [F(z0)] DD vo, 3]|IF[$0’$1]]] DD [yo, 3][[F 20, €1, 22]]
DD1 JIF(z1)] DD [[z, z2]]

(

It is instructive to consider some concrete instances of DD[CEO 2], [vo.s] [F]

for various F’s:

10 This idea is a specific instance of the very general approach to surface approx-
imation via the tensor-product construction given in (de Boor, 1978, Chap. XVII).

paper.tex; 27/03/2001; 10:42; p.41

18

)

)

*(81) ‘b sojordurod yeyy xrryew oYy, g 94nbig

F(z0)(yo) F(xo)lyo,1] F(zo)lyo,2] F(z0)[yo,3] Flzo,11(y0) Flzo,1llyo,1] Flzo,1llyo,2] Flzo,1][¥v0,3] Flzo,2](y0) Flzo,2lly0,1] Flzo,2]ly0,2] Flzo,2][yo,3]
F(z0)(y1) F(zo)ly1,2] F(xo)ly1,3] Flzo,1]1(y1) Flzo,1lly1,2] Flzo,1]ly1,3] Flzo,2](y1) Flzo,21ly1,2] Flzo,2]ly1,3]
F(z0)(y2) F(zo0)ly2,3] Flzo,1](y2) Flzo,1]ly2,3] Flzo,2](y2) Flzo,2]ly2,3]

F(z0)(y3) Flzo0,1](y3) Flzo,2](y3)

F(z1)(yo) F(z1)[yo,1] F(z1)[yo,2] F(z1)[yo,3] Flz1,2](y0) Flz1,2][y0,1] Flz1,2]ly0,2] Flz1,2][yo,3]

F(z1)(y1) F(z1)[y1,2] F(z1)[y1,3] Flz1,2](y1) Flz1,2]ly1,2] Flz1,2]ly1,3]

F(z1)(y2) F(z1)ly2,s] Flz1,2](y2) Flz1,2]ly2,3]

F(z1)(ys) Flz1,2](y3)

F(z2)(yo) F(z2)lyo,1] F(z2)[yo,2] F(z2)[yo,3]

F(z2)(y1) F(z2)ly1,2] F(zx2)[y1,3]

F(z2)(y2) F(z2)[y2,s]

F(x2)(ys)

fxoq - xoded

The divided-difference table of kind 2 for function F.

zv'd ‘gv:0T f100T/€0/LT

4%

ey "g-1 pue sdoy "M T,

Computational Divided Differencing 43

EXAMPLE 7.3. Consider the function Az.Ay.z. For 0 < i < 2, we
have

z; 0 0 O

DD}, [(Az.))] =DD}, . [y.z] = w0
[yo,sJﬂ(z.Xy.x)(zi)] = [yo,s}[[yai] = z; 0

Z;

and, for 0 <14 <1, we have

Az y.x)(x;) — Az Ay.z)(Tit1)
Ti— Ti+1
AY.Z; — AY-Zit1

DD[lyo,s}[[(Ax')\f‘/-x)[xi,$i+1]]] = DD} [

]

= DD/
[yo,s}ﬂ Ti — Tit
_ 1
1000
_ 100
o 10
1
Consequently,
o 0 0 O 1000 0000
o 0 O 100 000
o O 10 00
xo 1 0
zz 0 0 O 1 000
2 _ T 0 0 100
DD[$0,2],[y0,3][[/\$'/\y'$]] = ((1 o 0 (10
T 1
2 0 0 O
zo 0 O
xz2 0
x2
(19)
O

EXAMPLE 7.4. Consider the function Az.Ay.y. For 0 < 7 < 2, we
have

yo 1 0 0

10

DD}, [0y 9)(@)] = DDy, Dl = | 7
Y3

and, for 0 < i <1, we have

Az y.y)(z;) — Az y.y) (z;
DD[lyo,s}[[()‘m-)‘y-y)[%a$z'+1]]] = DD[IyO,B}[[()(;2 _iiﬂ)(z+1)]]

paper.tex; 27/03/2001; 10:42; p.43

44 T.W. Reps and L.B. Rall

T — Tl
= DDy, [2y.0]
0000
_ 000
- 00
0

Consequently, we have

O OO OoOoQo

DD2],[yo,a] [[)\.’E)\yy]] =

[zo,2

(20)
O

Moreover, Observation 7.2 tells us that divided-difference tables for
functions of two variables can be built up by means of a divided-
difference arithmetic that operates on matrices of matrices. That is,
we can build up divided-difference tables of kind 2 for more complex
functions of = and y by using operations on matrices of matrices, sub-
stituting DD?[Az.\y.z] for each occurrence of the formal parameter z
in the function, and DD?[Az.\y.y] for each occurrence of the formal
parameter y.

EXAMPLE 7.5. For the function Az.\y.(z x y), DD?*[Az.Ay.(z x y)]

[e=)

o

HFOOOoOOoOoOOocoOoOoOo0

<
w

can be created by multiplying the matrices DD?*[Az.\y.z] and DD?[\z.\y.y]

from Eqns. (19) and (20), respectively:

DD?[\z.\y.(z x)] = DD?[(Az.Ay.z) x (Az.My.y)] (21)
= DD?[\z.)\y.z] x DD?[Az.\y.y]

ToYo zo 0 0) 1 0 O 00 0O
zoy1 o 0 yip 1 0 000

zoy2 z0 y2 1 00

Toy3 Y3 0

1Yo x1 0 0) 1 0o o0

— z1Y1 z1 0 y1 1 0
T1Y2 1 y2 1

z1Y3 Y3

T2Y0 T 0 0

z2Y1 T2 0

T2Y2 z0

paper.tex; 27/03/2001; 10:42; p.44

Computational Divided Differencing 45

Note, for example, that the (0,1) entry in the above matrix, namely

Yo 1 00
yi 10

yo 1

Y3

was obtained via the calculation

2 0 0 0 0000
2 0 0 000
2o 0 00
i) 0
1000 w 1 00
100 w10
n Lo | b 1 (22)
1 Y3
0000 0000
000 000
T 00 |~ 00
0 0

and not by the use of Eqn. (17), which involves a matrix subtraction,
a scalar subtraction, and a scalar division:

DD, [My.(z0 x y)] = DDy, ,[Ay.(z1 X y)]

DD, [(AzMy.(z x y))[zo,21]] =

rog — IT1

ToYo To 0 0 1Yo T1 0 0
Toyir o 0] Tiy1 o1 0
ZoY2 Zo Z1Y2 Z

ZoY3 T1Y3

= p— (23)
Expressions (22) and (23) are equivalent over real numbers, but not
over floating-point numbers. By sidestepping the explicit subtraction
and division operations in expression (23), expression (22) avoids the
potentially disasterous magnification of round-off error that can occur
with floating-point arithmetic. O

The principle illustrated in Example 7.5 gives us the machinery
that we need to perform computational divided differencing for bivari-
ate functions defined by programs. As usual, computational divided
differencing is performed by changing the types of formal parame-
ters, local variables, and return values to the type of an appropriate
divided-difference arithmetic.

paper.tex; 27/03/2001; 10:42; p.45

46 T.W. Reps and L.B. Rall

Furthermore, these ideas can be applied to a function F' with an
arbitrary number of variables: when F has k variables, DD¥[F], F’s
divided-difference table of kind k, is a matrix of matrices of ... of
matrices nested to depth k. Currying with respect to the first parameter
of F “peels off” one dimension; DD¥[F] is a matrix whose entries
are divided-difference tables of kind k£ — 1 (i.e., matrices of matrices
of ... of matrices nested to depth £ — 1). For instance, the diagonal
entries are the divided-difference tables of kind & — 1 for the (k —
1)-parameter functions F(zq), F(z1), ..., F(z,) (i.e., DDF1[F(z)],
DD* [F(z,)], ..., DD* [F(z,)]).

To implement this approach in C++, we define two classes and one
class template:

— Class template template <int k> class DivDiffArith can be
instantiated with a value k > 0 to represent divided-difference
tables of kind k. Each object of class DivDiffArith<k> has links
to sub-objects of class DivDiffArith<k-1>.

— Class DivDiffArith<0> represents the base case; DivDiffArith<0>
objects simply hold a single float.

— Class IntVector, a vector of int’s, is used to describe the number
of points in each dimension of the grid of coordinate points.

Excerpts from the definitions of these classes are shown below:

template <int k> class DivDiffArith {

public:
int numPts;
DivDiffArith<k-1> **divDiffTable; // Two-dimensional upper-triangular array
DivDiffArith(const FloatV &v, const IntVector &grid, int d);
DivDiffArith(float, const IntVector &grid); // constant; shape conforms to grid
DivDiffArith(float, const DivDiffArith<k-1> &dda); // constant; shape conforms to dda
DivDiffArith<k>& operator+ (const DivDiffArith<k> &) const; // binary addition
DivDiffArith<k>& operator- (const DivDiffArith<k> &) const; // binary subtraction
DivDiffArith<k>& operator* (const DivDiffArith<k> &) const; // binary multiplication
DivDiffArith<k>& operator/ (const DivDiffArith<k> &) const; // binary division

paper.tex; 27/03/2001; 10:42; p.46

Computational Divided Differencing 47

class DivDiffArith<0> {

public:
float value;
DivDiffArith(float v = 0.0); // Default constructor
DivDiffArith(const FloatV &v, const IntVector &grid, int d);
DivDiffArith<0>& operator+ (const DivDiffArith<0> &) const; // binary addition
DivDiffArith<0>& operator- (const DivDiffArith<0> &) const; // binary subtraction
DivDiffArith<0>& operator* (const DivDiffArith<0> &) const; // binary multiplication
DivDiffArith<0>& operator/ (const DivDiffArith<0> &) const; // binary division

class IntVector {
public:
int numPts;
int *val; // An array of values: val[O]..val[numPts-1]
IntVector();
IntVector(int N, ...); // Construct IntVector given N values

IntVector& operator<< (comnst int i); // left shift

I¥

The operations of class DivDiffArith<k> are overloaded in a fashion
similar to those of class FloatDD. (Class FloatDD is essentially identi-
cal to DivDiffArith<1>.) For instance, the overloaded multiplication
operator performs matrix multiplication:

template <int k>
DivDiffArith<k>& DivDiffArith<k>::operator* (const DivDiffArith<k> &dda) const{
assert(numPts == dda.numPts);
DivDiffArith<k> *ans = new DivDiffArith<k>(numPts);
for (int r = 0; r < numPts; r++) {
for (int ¢ = r; ¢ < numPts; c++) {
DivDiffArith<k-1> temp((float)0.0, divDiffTablel[rl[cl); // temp = 0.0
for (int j = r; j <= ¢; j++) {
temp += divDiffTable[r][j] * dda.divDiffTable[j][c];
}
ans->divDiffTable[r] [c] = temp;
}
}

return *ans;

Class DivDiffArith<k> has two constructors for creating a DivDiffArith<k>
object from a float constant. They differ only in their second argu-
ments (an IntVector versus a DivDiffArith<k>), which are used to

paper.tex; 27/03/2001; 10:42; p.47

48 T.W. Reps and L.B. Rall

determine the appropriate dimensions to use at each level in the nesting
of matrices.

Suppose that in the function on which computational divided dif-
ferencing is to be carried out, variable z is the independent variable
associated with argument position d+1. To generate an appropriate
DivDiffArith<k> object for z for a given set of grid values zo, ..., 2y,
a FloatV with the values zg, ..., zy is created, and then passed to the
following DivDiffArith<k> constructor:

template <int k>
DivDiffArith<k>::DivDiffArith(const FloatV &v, const IntVector &grid, int d) :
numPts(grid.val[0]),
divDiffTable(calloc_ut< k >(numPts))
{
assert(grid.val[d] == v.numPts);
IntVector tail = grid << 1;
for (int r = 0; r < numPts; r++) {
for (int ¢ = r; ¢ < numPts; c++) {
divDiffTable[r] [c] = DivDiffArith<k-1>((float)0.0,tail);
}
}
if(d == 0) {
DivDiffArith<k-1> one((float)1.0, tail);
for (int i = 0; i < numPts; i++) {
divDiffTable[i] [i] = DivDiffArith<k-1>(v.vall[i],tail);
if(i < numPts - 1) {
divDiffTable[i] [i+1] = ome;

}
}
}
else {
for (int i = 0; i < numPts; i++) {
divDiffTable[i][i] = DivDiffArith<k-1>(v,tail,d-1);
}
}
}

EXAMPLE 7.6. The following code fragment generates two DivDiffArith<2>

values, x and y, which correspond to the matrices shown in Eqns. (19)
and (20), respectively:

IntVector grid(2,3,4);

FloatV fv x(3,xg,X1,X2);

DivDiffArith<2> x(fvx,grid,0); // argument position 1
FloatV fv_y(4,¥0,¥1,¥2,¥3);

DivDiffArith<2> y(fv_y,grid,1); // argument position 2

paper.tex; 27/03/2001; 10:42; p.48

Computational Divided Differencing 49

EXAMPLE 7.7. Consider a C++ class BivariatePoly that represents
bivariate polynomials, and a member function BivariatePoly: :Eval
that evaluates a polynomial via a bivariate version of Horner’s rule:

class BivariatePoly {
public:
float Eval(float,float);
private:
int degreel,degree2;
// Array coeff[0..degreel] [0..degree2]
float **coeff;

I¥

// Evaluation via bivariate Horner’s rule
float BivariatePoly::Eval(float x,float y){
float ans = 0.0;
for (int i = degreel; i >= 0; i--){
float temp = 0.0;
for (int j = degree2; j >= 0; j--){
temp = temp * y + coeff[i][j];
}

ans = ans * X + temp;

}

return ans;

Similar to what has been done in Examples 3.1, 4.1, 5.3, and 6.1, com-
putational divided differencing is carried out on this version of Eval by
changing the types of its formal parameters, local variables, and return
value from float to DivDiffArith<2>.

paper.tex; 27/03/2001; 10:42; p.49

50 T.W. Reps and L.B. Rall

// Evaluation via bivariate Horner’s rule
DivDiffArith<2> BivariatePoly: :Eval(const DivDiffArith<2> &x,
const DivDiffArith<2> &y)

{
DivDiffArith<2> ans(0.0,x); // ans = 0.0
for (int i = degreel; i >= 0; i--){
DivDiffArith<2> temp(0.0,y); // temp = 0.0
for (int j = degree2; j >= 0; j—-){
temp = temp * y + coeff[i][j];
}
ans = ans * X + temp;
}
return ans;
}

To use this procedure to create a divided-difference table of kind 2 for
a given variable P of type BivariatePoly*, with respect to the 3-by-
4 grid {xo,x1,x2} X {y0,¥1,y2,¥3}, we would generate the IntVector
grid and DivDiffArith<2> values x and y as shown in Example 7.6,
and then invoke

P->Eval(x,y);

One final point concerning this approach: it is worthwhile noting
that by generalizing the grid descriptors slightly, it is possible to devise
an even more general divided-differencing arithmetic that is hetero-
geneous in shape with respect to different argument positions. By
“heterogeneous”, we mean that full two-dimensional (upper-triangular)
divided-difference tables could be provided for some argument posi-
tions, while other argument positions could just provide a single row
of divided differences (i.e., one-dimensional, FloatDDR1-like tables). By
this means, when a procedure body is “accumulative” in certain of its
formal parameters but not others, it would be possible to tailor the
divided-differencing version of the procedure to improve its efficiency.
(In the case of procedure

DivDiffArith<2> BivariatePoly: :Eval,

it would be possible to specify that both argument positions provide
FloatDDR1-like tables.)

paper.tex; 27/03/2001; 10:42; p.50

Computational Divided Differencing 51

8. Paige’s Work on Finite Differencing of Computable
Expressions

In earlier sections, and also in Sect. 9, we have attempted to place
the ideas that are developed in this paper in their proper context
by describing how they relate to previous work on computational-
differentiation (Wengert, 1964; Rall, 1981; Griewank and Corliss, 1992;
Berz et al., 1996; Griewank, 2000) and to previous work on the creation
of accurate divided-difference tables for expressions (Opitz, 1964; Mc-
Curdy, 1980). In the present section, we discuss some additional in-
tellectual forbearers of our work, focusing particularly on how our
ideas relate to Robert Paige’s work on finite differencing of set-valued
expressions in SETL programs.

Starting in the mid-70s, Paige studied how finite-differencing trans-
formations of applicative set-former expressions could be exploited to
optimize loops in very-high-level languages, such as SETL. References (Paige,
1981; Paige and Koenig, 1982) are just two of many works that Paige
wrote about this subject, and these ideas were implemented in his
RAPTS system (Paige and Koenig, 1982; Paige, 1983). Some of the
techniques that Paige explored have their roots in earlier work by
Earley (Earley, 1974; Earley, 1976). Independently of and contempora-
neously with Paige, similar loop-optimization methods targeted toward
very-high-level set-theoretic languages were investigated by Fong and
Ullman (Fong and Ullman, 1976; Fong, 1977; Fong, 1979). More re-
cently, Liu and Stoller have used some extensions of these ideas to
optimize array computations (Liu and Stoller, 1998) and recursive pro-
grams (Liu and Stoller, 2000). Liu et al. have also shown how such
transformations can be applied to derive algorithms for incremental-
computation problems (i.e., problems in which the goal is to main-
tain the value of some function F(z) as the input z undergoes small
changes) (Liu, 1995; Liu and Teitelbaum, 1995a; Liu and Teitelbaum,
1995b; Liu et al., 1996; Liu and Stoller, 1999).

Both Paige (Paige, 1981) and Paige and Koenig (Paige and Koenig,
1982) provide lengthy discussions of the roots of the ideas that are
developed in those papers. The basic idea for optimizing SETL loops is
described as a generalization of strength reduction, an idea attributed
to John Cocke from the 60s, whereby a loop is transformed so that
a multiplication operation in the loop is eliminated in favor of an
addition, as shown below:

paper.tex; 27/03/2001; 10:42; p.51

52 T.W. Reps and L.B. Rall

i

T
i=...;

while (...) {
.dixc ... =

i =1 + delta;

-

ixc; // T depends on i
deltaT = deltax*c;

while (...) {
. T ...; // T replaces ix*c

i + delta; // change to i
= T + deltaT // update of T

This transformation improves the running time of the loop if the cost of
the additions performed by the transformed loop are less than the cost
of the multiplications performed in the original loop. In (Cocke and
Schwartz, 1970), Cocke and Schwartz presented a variety of strength-
reduction transformations for use in optimizing compilers.

Paige’s work on loop optimization in SETL was based on the ob-
servation that a similar transformation could be applied to loops that
involve set-former expressions. In this transformation, an expensive set-
former expression in a loop is replaced by a set-initialization statement
(placed before the loop) together with a set-update operation (placed

inside the loop):

A= ...;
while (...) {

d=...;
A =AU d;

o {xenrlxf2==01} ...;

A
T

-

={x€eA| x%2==01}; // T depends on A

while (...) {

=

}

. T ...; // T replaces the set former

d e
A =AUd; // change to A
if (d%2 ==0) T=T U d; // update of T

In the transformed program shown above on the right, the expression
{ x € A | x%2 == 0 } in the loop is replaced by a use of T. Because

the statement

A=AUd;

may alter the value of variable A, just after this statement a new

statement is introduced:

if (%2 ==0) T=T U d;

paper.tex; 27/03/2001; 10:42; p.52

Computational Divided Differencing 53

The latter statement updates the value of variable T to have the same
value that the expression { x € A | x%2 == 0 } has when evaluated
with the new value of variable A.!

Of more direct relevance to the topic of the present paper is the
discussion in Paige’s papers in which he points out affinities between
his work, on the one hand, and differentiation and finite differencing
of numerical functions, on the other hand.'? For instance, Paige and
Koenig describe the relationship between their SETL finite-differencing
methods and numerical finite-difference methods as follows (Paige and
Koenig, 1982, pp. 403-404):

It is interesting to note that the origins of our method may be
traced back to the finite difference techniques introduced by the
English mathematician Henry Briggs in the sixteenth century. His
method, which can be used to generate a sequence of polynomial
values p(xo), p(xzo + h), p(zo + 2h), ..., hinges on the following
idea. For a given polynomial p(z) of degree n and an increment h,
the first difference polynomial

pi(z) = p(z + h) — p(z)

is of degree n — 1 or less, the second difference polynomial

p2(z) = pi(z + h) — p1(z)

is of degree n—2 or less, ..., and, finally, p,,(z) must be a constant.
Thus, to tabulate successive values of p(z) starting with z = x,
we can perform these two steps:

1. Calculate initial values for p(zg), p1(xo), - .., Pn(zo) and store
them in ¢(1), £(2), ..., t(n + 1).

2. Generate the desired polynomial table by iterating over the
following code block:

1 The code fragment if (d%2 == 0) T = T U d; is called a post-derivative of
T={x €A | x42 == 0 }; with respect to the change A = A U d;. Similarly, a
code fragment for updating variable T that is placed before the change A = A U d;
is called a pre-derivative.

12 The (forward) finite difference of a function F with respect to h is defined as

follows:

AnF(z) € F(z + h) — F(x).

paper.tex; 27/03/2001; 10:42; p.53

54

T.W. Reps and L.B. Rall

print z, t(1); $ print z and p(z)

t(1) := (1) + t(2); $ place new values for
£(2) == £(2) + t(3); $ p(z), p1(2), .., Pn-1(2)
: $ into

t(n) :==t(n) +t(n+1); $),t?2),...tn).

z=z+h $

Note that Briggs’s method requires only n additions in step 2
to compute each new polynomial value, while Horner’s rule to
compute a fresh polynomial value costs n additions and n mul-
tiplications.

They relate Briggs’s method to strength reduction in the following

passage (Paige and Koenig, 1982, pp. 404-405):

Although Cocke’s technique does not treat polynomials as special
objects, strength reduction is sufficiently powerful to transform a
program involving repeated calculations of a polynomial accord-
ing to Horner’s rule into an equivalent program that essentially
uses the more efficient finite difference method of Briggs. Indeed,
this is a surprising and important result that demonstrates that
the success of polynomial evaluation by differencing results from
properties of the elementary operations used to form polynomials
rather than from properties exclusive to polynomials. In other
words, Cocke’s method works because the following distributive
and associative laws hold for sums and products:

(i £delta) *x ¢ = i * ¢ £ delta * c;

(1 £ delta) + ¢ = (i + ¢) £ delta.

n (Cocke and Schwartz, 1970) Cocke and Schwartz extend
this idea to show how reduction in strength (which we call finite
differencing) applies to a wide range of arithmetic operations that
exhibit appropriate distributive properties.

Later in the paper, after Paige and Koenig have introduced their

rules for finite differencing of set-former expressions with respect to
changes in argument values (an operation that they sometimes call “dif-
ferentiation”), they return to the discussion of Briggs’s method (Paige
and Koenig, 1982, pp. 421):

Profitable differentiation of an expression f can sometimes be
supported by differentiating f together with a chain of auxiliary
expressions (as in Briggs’s first, second, . . ., difference polynomials

.). Thus, the prederivative V™ E{z 4:= delta;) of the n'" degree
polynomial E = P(z) is

E 4= P1 (:II)

paper.tex; 27/03/2001; 10:42; p.54

Computational Divided Differencing 55

where Pj(z) is the first difference polynomial. However, for the
prederivative code above to be inexpensive, we must also differenti-
ate the second, third, ..., n** difference polynomials, denoted E; =
Pi(z), i = 2..n. To realize Briggs’s efficient technique, we consider
the extended prederivative (of expressions ordered carefully into a
“differentiable chain”) V™ E,_1,..., E1, E{(x +:= delta;) that ex-
pands into

E +:=Ey;
E, +:= Ey;

E, 1 +=Eg;

Essentially all of the material that Paige and Koenig present in their
paper to relate their work to Briggs’s method has been quoted above.
However, a few details about the derivation of Briggs’s method were
not spelled out in their treatment, which we now attempt to rectify.
We will show below that computational divided differencing supplies a
clean way to handle an important step in the derivation for which what
Paige and Koenig say is ambiguous.

The initial program for tabulating a polynomial at a collection of
equally spaced points can be written in C++ as follows:!3

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
for (int i = 1; i <= numPoints; i++) { // Tabulation loop
y = Eval(x);
cout << x << ": " << y << endl;
x += h;
}
}

In the program shown above, Eval is the member function of class Poly
that evaluates a polynomial via Horner’s rule (see Sect. 3), of type

float Poly::Eval(float x);

13 1t should be pointed out that in practice it is better to code the statement in
the loop that changes the value of x as “x = start + i * h;”, rather than as “x +=
h;”, so that small errors in h do not accumulate in x due to repeated addition. We
have chosen to use the latter form to emphasize the similarities between Tabulate
and the two earlier strength-reduction examples.

paper.tex; 27/03/2001; 10:42; p.55

56 T.W. Reps and L.B. Rall

The intention of Paige and Koenig is to transform procedure Poly: : Tabulate
into something like the following version:

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
float E = Eval(start); // Call on Eval hoisted out of the loop

float E; = 777; // Unspecified initialization

float E, 1 = 777;
float E, = 777;

for (int i = 1; i <= numPoints; i++) { // Tabulation loop

vy =E;
cout << x << ": " << y << endl;
E += E;; // Extended pre-derivative w.r.t. x += h;
Ey += Ep;
En—1 += Ep;
X += h;
}

}

However, as indicated by the question marks in the above code, Paige
and Koenig do not state explicitly how they plan to arrive at the proper
initialization code that is to be placed just before the loop in the
transformed program. It is unclear whether they intend to generate
the values Ei, Eg, ..., Ep_1, E; by evaluating polynomial P at start,
start+h, ..., start+(n-1)*h, start+n*h and then create the E; via
subtraction operations, or whether they intend to generate the finite-
difference polynomials Py, Py, ..., P,_4, P, symbolically and then apply
each of them to start. The former method can lead to very inaccurate
results (see below), whereas the latter method requires that a substan-
tial amount of symbolic manipulation be performed to generate the
P;.

However, the divided-difference arithmetic FloatDDR1 gives us an
easy way to create suitable initialization code that produces accurate
values for the E;. This initialization code consists of three steps:

— Create a FloatV of equally spaced points, starting at start and
separated by h, where the number of points is one more than the
degree of the polynomial.

paper.tex; 27/03/2001; 10:42; p.56

Computational Divided Differencing 57
— Introduce a single call on the member function
FloatDDR1 Poly::Eval(const FloatV &x);

to create the first row of the divided-difference table for the poly-
nomial with respect to the given FloatV.

— Convert the resulting FloatDDR1 (which holds divided-difference
values) into the first row of a finite-difference table for the poly-
nomial by multiplying each entry by an appropriate adjustment
factor (see (Conte and de Boor, 1972, Lemma 4.1)).

This initialization method is used in the version of Tabulate shown
below. (In this version of Tabulate, the E; are renamed diffTable[i].)

void Poly::Tabulate(float start, int numPoints, float h){
float x = start;
float y;
// Create accurate divided-difference table
FloatV fv(x, degree+1, h);
FloatDDR1 fddrl = Eval(fv); // Calls FloatDDR1 Poly::Eval(const FloatV &);
// Convert divided-difference entries to finite-difference entries
float *diffTable(new float[degree+1]);
float adjustment = 1.0;
for (int i = 0; i <= degree; i++) {
diffTable[i] = fddrl.divDiffTable[i] * adjustment;
adjustment *= (h x (i+1));
}
for (int i = 1; i <= numPoints; i++) { // Tabulation loop
y = diffTable[0];
cout << x << ": " << y << endl;
for (int j = 0; j < degree; j++) { // Pre-derivative w.r.t. x += h;
diffTable[j] += diffTable[j+1];

}

X += h;

paper.tex; 27/03/2001; 10:42; p.57

58 T.W. Reps and L.B. Rall

EMPIRICAL RESULTS: TABULATION OF A POLYNOMIAL VIA
Bricas’s METHOD

We now present some empirical results that illustrate the advantages of
the final version of Poly: :Tabulate presented above. Again, we work
with the polynomial P(z) = 2.1%2® —1.4* 2% — .6 xz+ 1.1, and perform
computations using single-precision floating-point arithmetic on a Sun
SPARGCstation 20/61 running SunOS 5.6. Programs were compiled with
the egcs-2.91.66 version of g++ (egcs-1.1.2 release) with optimization at
the -01 level.

The final version of Poly::Tabulate uses the divided-difference
arithmetic FloatDDR1 in the initialization step that creates the ini-
tial finite-difference vector diffTable. An alternative way to gener-
ate diffTable is to evaluate polynomial P at start, start+h, ...,
start+(n-1)*h, start+n*h and then create diffTable via subtraction
operations, according to the standard definition (Conte and de Boor,
1972, pp. 214). However, the latter way of generating diffTable in-
volves subtraction operations, and hence may magnify any round-off
errors in the n 4+ 1 values computed for P. In contrast, the method
using computational divided differencing yields a way to create a more
accurate initial finite-difference table.

To give a concrete illustration of the benefits, the following table
shows what happens when P(z) is evaluated at the 10,001 points in
the interval [0.0,1.0] with a grid spacing of .0001. (Places where the
results from the three methods differ are indicated in boldface.)

Evaluate | Comp. Div. Diff. | Standard Finite Diff.
via Horner + Briggs + Briggs
b P(x) P(x) P(x)
0.0000 1.10000 1.10000 1.10000
0.0001 1.09994 1.09994 1.09994
0.0002 1.09988 1.09988 1.09988
0.9998 1.19942 1.19941 19844.3
0.9999 1.19971 1.19970 19850.3
1.0000 1.20000 1.19999 19856.2
Time 7.64 5.62 5.49
(milliseconds)

The numbers that appear in the rightmost column for P(.9998), P(.9999),
and P(1.0000) are not typographical errors. What happens is that

paper.tex; 27/03/2001; 10:42; p.58

Computational Divided Differencing 59

round-off errors in the computation of the initial values for P are magni-
fied by the standard method for computing the initial finite-difference
table, and after 10,000 iterations of the Briggs calculation, the accu-
mulated effect has caused the values produced to diverge widely from
the correct answers.

Overall, the method based on computational divided differencing is
far more accurate than the one in which the vector needed for Briggs’s
method is obtained by subtraction operations (and only 2% slower).
Furthermore, the results from the method based on computational
divided differencing are nearly as accurate as those obtained by reeval-
uating the polynomial at each point, but the reevaluation method is
36% slower.

9. Other Related Work

Sect. 8 described how our ideas relate to Robert Paige’s work on finite
differencing of set-valued expressions in SETL programs. This section
concerns other related work, which falls into four categories:

COMPUTATIONAL DIFFERENTIATION

Computational differentiation is a well-established area of numerical
analysis, with its own substantial literature (Wengert, 1964; Rall, 1981;
Griewank and Corliss, 1992; Berz et al., 1996; Griewank, 2000). The
importance of the subject is underscored by the fact that the 1995
Wilkinson Prize for outstanding contributions to the field of numerical
software was awarded to Chris Bischof (then at Argonne) and Alan
Carle (Rice) for the development of the FORTRAN computational-
differentiation system ADIFOR 2 (Bischof et al., 1996). As discussed
in Sect. 4, computational divided differencing is a generalization of
computational differentiation: a program resulting from computational
divided differencing can be used to obtain derivatives (as well as divided
differences), whereas a program resulting from computational differen-
tiation can only produce derivatives (and not divided differences).

OTHER WORK ON ACCURATE DIVIDED DIFFERENCING

The program-transformation techniques for creating accurate divided
differences described in this paper are based on a 1964 result of Opitz’s (Opitz,
1964), which was later rediscovered in 1980 by McCurdy (McCurdy,
1980) and again in 1998 by one of us (Reps). However, Opitz and
McCurdy both discuss how to create accurate divided differences only

paper.tex; 27/03/2001; 10:42; p.59

60 T.W. Reps and L.B. Rall

for expressions. In this paper, the idea has been applied to the creation
of accurate divided differences for functions defined by programs.

As already mentioned in Sect. 2, the computational-differentiation
technique that was summarized there is what is known as forward-mode
differentiation. A different computational-differentiation technique, re-
verse mode (Linnainmaa, 1976; Speelpenning, 1980; Iri, 1984; Griewank,
1989; Griewank, 1991), is generally preferable when the number of
independent variables is much greater than the number of dependent
variables. However, although it is possible to develop a reverse-mode
version of computational divided differencing, it does not appear to
offer the same potential savings in operations performed that reverse
mode achieves for computational differentiation.

McCurdy, and later Kahan and Fateman (Kahan and Fateman,
1985) and Rall and Reps (Rall and Reps, 2000), have looked at ways
to compute accurate divided differences for library functions (i.e., sin,
cos, exp, etc.).

Kahan and Fateman have also investigated how similar techniques
can be used to avoid unsatisfactory numerical answers when evalu-
ating formulas returned by symbolic-algebra systems. In particular,
their work was motivated by the observation that naive evaluation of a
definite integral [; f(z)dz can sometimes produce meaningless answers:
When a symbolic-algebra system produces a closed-form solution for
the indefinite integral [f(z)dz, say G(x), the result of the computation
G(b) — G(a) may have no significant digits. Kahan and Fateman show
that divided differences can be used to develop accurate numerical
formulas that sidestep this problem.

One of the techniques developed by McCurdy for computing accu-
rate divided-difference tables involved first computing just the first row
of the table and then generating the rest of the entries by a backfill-
ing algorithm. He studied the conditions under which this technique
maintained sufficient accuracy. However, his algorithm for accurately
computing the first row of the divided-difference table was based on
a series expansion of the function, rather than a divided-difference
arithmetic, such as the FloatDDR1 arithmetic developed in Sect. 6.

Divided-difference arithmetic for first divided differences has also
been called slope arithmetic, and an interval version of it has been
investigated previously as a way to obtain an interval enclosure for
the range of a function evaluated over an interval (Krawczyk and Neu-
maier, 1985; Zuhe and Wolfe, 1990; Ratz, 1996). It has been shown
that interval slope arithmetic can yield tighter enclosures than methods
based on derivatives (Krawczyk and Neumaier, 1985; Zuhe and Wolfe,
1990; Ratz, 1996). Zuhe and Wolfe have also shown that a form of
interval divided-difference arithmetic involving second divided differ-

paper.tex; 27/03/2001; 10:42; p.60

Computational Divided Differencing 61

ences can provide even tighter interval enclosures (Zuhe and Wolfe,
1990). In the present paper, we have confined ourselves to point (non-
interval) divided-difference arithmetics, but have explored the use of a
divided-difference arithmetic for divided differences of arbitrary order
(originally due to Opitz (Opitz, 1964)). We have shown how to extend
the latter divided-difference arithmetic to the case of multi-variate
functions involving a fixed, but arbitrary, number of variables, and
have also proposed various specializations of it, which would improve
run-time efficiency in certain situations.

OTHER WORK ON CONTROLLING ROUND-OFF ERROR IN
NUMERICAL COMPUTATIONS

Computational differentiation and computational divided differencing
are methods for controlling round-off error that can arise in two types
of numerical computations. An extensive collection of methods for con-
trolling round-off error for a wide variety of numerical computations has
been developed by Kulisch’s group at the University of Karlsruhe (Ham-
mer et al., 1993; Hammer et al., 1995).

In future work, we plan to investigate the use of such techniques
to achieve greater accuracy (and to validate results) in steps of the
computational-divided-differencing transformations where operations
are implemented by solving systems of linear equations, such as division
operations (cf. box (5)).

OTHER WORK THAT EXPLOITS OPERATOR OVERLOADING

The operator-overloading feature of C++ provides a convenient mech-
anism for implementing the divided-difference arithmetics that are de-
scribed in this paper. Compared to other methods of providing poly-
morphism in programming languages, such as parametric polymorphism (Mil-
ner, 1978) and inheritance polymorphism (Cardelli, 1984), operator
overloading has always been something of a poor cousin. In the programming-
languages community, operator overloading is sometimes referred to

as “ad hoc polymorphism” (Strachey, 2000), a term that has pejo-
rative overtones. Nevertheless, in addition to its application in com-
putational differentiation and computational divided differencing, op-
erator overloading provides a convenient implementation mechanism

for a wide variety of other interesting applications, including partial
evaluation (Andersen, 1994), safe pointers (Austin et al., 1994), and
expression templates (Veldhuizen, 1995).

paper.tex; 27/03/2001; 10:42; p.61

62 T.W. Reps and L.B. Rall

Acknowledgements

We are grateful for discussions with C. Bischof, C. de Boor, J. O’Brien,
W. Kahan, and R. Zippel about various aspects of the work described in
the paper. Example 2.1 is due to R. Zippel (Zippel, 1996); Example 5.4
was suggested by W. Kahan (Kahan, 2000).

References

Andersen, L. O.: 1994, ‘Program Analysis and Specialization for the C Programming
Language’. Ph.D. thesis, DIKU, Univ. of Copenhagen. (DIKU report 94/19).
Austin, T., S. Breach, and G. Sohi: 1994, ‘Efficient Detection of all Pointer and
Array Access Errors’. In: SIGPLAN Conference on Programming Languages

Design and Implementation. New York, NY, pp. 290-301, ACM Press.

Bates, S. and S. Horwitz: 1993, ‘Incremental Program Testing Using Program
Dependence Graphs’. In: Symp. on Princ. of Prog. Lang. pp. 384-396.

Beck, T. and H. Fischer: 1994, ‘The If-Problem in Automatic Differentiation’. J.
Comp. and Appl. Math. 50, 119-131.

Berz, M., C. Bischof, G. Corliss, and A. Griewank (eds.): 1996, Computational
Differentiation: Techniques, Applications, and Tools. Philadelphia, PA: Soc. for
Indust. and Appl. Math.

Binkley, D.: 1992, ‘Using Semantic Differencing to Reduce the Cost of Regression
Testing’. In: Proceedings of the 1992 Conference on Software Maintenance
(Orlando, FL, November 9-12, 1992). pp. 41-50.

Bischof, C., A. Carle, G. Corliss, and A. Griewank: 1992, ‘ADIFOR: Automatic
Differentiation in a Source Translator Environment’. In: Proc. of ISSAC 1992:
Int. Symp. on Symb. and Alg. Comp. New York, NY, pp. 294-302, ACM Press.

Bischof, C., A. Carle, P. Khademi, and A. Mauer: 1996, ‘ADIFOR 2.0: Automatic
Differentiation of Fortran 77 Programs’. IEEE Comp. Sci. and Eng. 3, 18-32.

Bischof, C., L. Roh, and A. Mauer: 1997, ‘ADIC: An Extensible Automatic Differen-
tiation Tool for ANSI-C’. Tech. Rep. ANL/MCS-P626-1196, Math. and Comp.
Sci. Div., Argonne Nat. Lab., Argonne, IL.

Bjgrner, D.,; A. Ershov, and N. Jones (eds.): 1988, ‘Partial Evaluation and Mixed
Computation: Proc. of the IFIP TC2 Workshop on Partial Evaluation and Mixed
Computation’. New York, NY: North-Holland.

Cardelli, L.: 1984, ‘A Semantics of Multiple Inheritance’. In: G. Kahn, D. MacQueen,
and G. Plotkin (eds.): Semantics of Data Types: Proc. of the Int. Symp., Vol.
17310f Lecture Notes in Computer Science. New York, NY, pp. 51-67, Springer-
Verlag.

Cocke, J. and J. Schwartz: 1970, Programming Languages and Their Compilers:
Preliminary Notes, 2nd Rev. Version. New York, NY: Courant Inst. of Math.
Sci., New York Univ.

Conte, S. and C. de Boor: 1972, Elementary Numerical Analysis: An Algorithmic
Approach, 2nd. Ed. New York, NY: McGraw-Hill.

de Boor, C.: 1978, A Practical Guide to Splines, Vol. 27 of Appl. Math. Sciences.
New York, NY: Springer-Verlag.

Earley, J.: 1974, ‘High-Level Operations in Automatic Programming’. In: Proc. of
the ACM SIGPLAN Symp. on Very High Level Languages. New York, NY, ACM
Press.

Earley, J.: 1976, ‘High-Level Iterators and a Method for Automatically Designing
Data Structure Representation’. J. Comp. Lang. 1(4), 321-342.

Fischer, H.: 1992, ‘Special Problems in Automatic Differentiation’. In (Griewank
and Corliss, 1992), pp. 43-50.

Fong, A.: 1977, ‘Elimination of Common Subexpressions in Very High Level Lan-
guages’. In: ACM Symposium on Principles of Programming Languages. New
York, NY, pp. 48-57, ACM Press.

Fong, A.: 1979, ‘Inductively Computable Constructs in Very High Level Languages’.
In: ACM Symposium on Principles of Programming Languages. New York, NY,
pp. 21-28, ACM Press.

paper.tex; 27/03/2001; 10:42; p.62

Computational Divided Differencing 63

Fong, A. and J. Ullman: 1976, ‘Induction Variables in Very High Level Languages’.
In: ACM Symposium on Principles of Programming Languages. New York, NY,
pp- 104-112, ACM Press.

Futamura, Y.: 1971, ‘Partial Evaluation of Computation Process — An Approach to
a Compiler-Compiler’. Systems - Computers - Controls 2(5).

Futamura, Y.: 1999, ‘Partial Evaluation of Computation Process — An Approach to a
Compiler-Compiler’. Higher-Order and Symbolic Computation 12(4). Reprinted
from Systems - Computers - Controls 2(5), 1971.

Gallagher, K. and J. Lyle: 1991, ‘Using Program Slicing in Software Maintenance’.
IEEE Transactions on Software Engineering SE-17(8), 751-761.

Goldstilne, H.: 1977, A History of Numerical Analysis. New York, NY: Springer-
Verlag.

Griewank, A.: 1989, ‘On Automatic Differentiation’. In: M. Iri and K. Tanabe (eds.):
Mathematical Programming: Recent Developments and Applications. Boston,
MA: Kluwer Academic Publishers, pp. 83—-108.

Griewank, A.: 1991, ‘The Chain Rule Revisited in Scientific Computing’. SIAM
News 24.

Griewank, A.: 2000, Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation, Vol. 19 of Frontiers in Applied Mathematics. Philadelphia,
PA: Soc. for Indust. and Appl. Math.

Griewank, A. and G. Corliss (eds.): 1992, Automatic Differentiation of Algorithms:
Theory, Implementation, and Application. Philadelphia, PA: Soc. for Indust. and
Appl. Math.

Hammer, R., M. Hocks, U. Kulisch, and D. Ratz: 1993, Numerical Toolboz for
Verified Computing I: Basic Numerical Problems, Vol. 21 of Springer Ser. in
Comp. Math. New York, NY: Springer-Verlag.

Hammer, R., M. Hocks, U. Kulisch, and D. Ratz: 1995, C++ Toolbox for Verified
Computing I: Basic Numerical Problems. New York, NY: Springer-Verlag.

Horwitz, S.: 1990, ‘Identifying the Semantic and Textual Differences Between Two
Versions of a Program’. In: SIGPLAN Conf. on Prog. Lang. Design and Impl.
pPp. 234-245.

Horwitz, S., J. Prins, and T. Reps: 1989, ‘Integrating Non-Interfering Versions of
Programs’. Trans. on Prog. Lang. and Syst. 11(3), 345-387.

Horwitz, S., T. Reps, and D. Binkley: 1990, ‘Interprocedural Slicing Using Depen-
dence Graphs’. Trans. on Prog. Lang. and Syst. 12(1), 26-60.

Iri, M.: 1984, ‘Simultaneous Computation of Functions, Partial Derivatives and
Estimates of Rounding Errors: Complexity and Practicality’. Japan J. Appl.
Math. 1(2), 223-252.

Jones, N., C. Gomard, and P. Sestoft: 1993, Partial Evaluation and Automatic
Program Generation. Prentice-Hall International.

Kahan, W.: 2000, ‘Personal Communication to Thomas Reps and Louis Rall’.

Kahan, W. and R. Fateman: 1985, ‘Symbolic Computation of Divided Dif-
ferences’. Technical report, Dept. of Elec. Eng. and Comp. Sci.,
Univ. of Calif.—Berkeley, Berkeley, CA. Unpublished report; available at
http://www.cs.berkeley.edu/ fateman f{papers /divdiff.pdf.

Karczmarczuk, J.: 1999, ‘Functional Differentiation of Computer Programs’. In:
Proc of the ACM SIGPLAN Int. Conf. on Func. Prog. (ICFP ’98). New York,
NY, pp. 195-203, ACM Press.

Kearfott, R.: 1996, ‘Automatic Differentiation of Conditional Branches in an
Operator Overloading Context’. In (Berz et al., 1996), pp. 75-81.

Krawczyk, R. and A. Neumaier: 1985, ‘Interval Slopes for Rational Functions and
Associated Centered Forms’. SIAM J. Numer. Anal. 22(5), 604-616.

Linnainmaa, S.: 1976, ‘Taylor Expansion of the Accumulated Rounding Error’. BIT
16(1), 146-160.

Liu, Y.: 1995, ‘Incremental Computation: A Semantics-Based Systematic Transfor-
mation Approach’. Ph.D. diss. and Tech. Rep. TR95-1551, Dept. of Comp. Sci.,
Cornell Univ., Ithaca, NY.

Liu, Y. and S. Stoller: 1998, ‘Loop Optimization for Aggregate Array Computations’.
In: Proc. of the IEEE 1998 Int. Conf. on Comp. Lang. New York, NY, ACM
Press.

Liu, Y. and S. Stoller: 1999, ‘Dynamic Programming via Static Incrementalization’.
In: S. Swierstra (ed.): Proc. of ESOP ’99: European Symp. on Programming,

paper.tex; 27/03/2001; 10:42; p.63

64 T.W. Reps and L.B. Rall

Vol. 1576 of Lecture Notes in Computer Science. New York, NY, pp. 288-305,
Springer-Verlag.

Liu, Y. and S. Stoller: 2000, ‘From Recursion to Iteration: What are the Optimiza-
tions?’. In: Proc. of the 2000 ACM SIGPLAN Workshop on Part. Eval. and
Sem.-Based Prog. Manip. New York, NY, pp. 73-82, ACM Press.

Liu, Y., S. Stoller, and T. Teitelbaum: 1996, ‘Discovering Auxiliary Information for
Incremental Computation’. In: ACM Symposium on Principles of Programming
Languages. New York, NY, pp. 157-170, ACM Press.

Liu, Y. and T. Teitelbaum: 1995a, ‘Caching Intermediate Results for Program
Improvement’. In: Proc. of the ACM SIGPLAN Symp. on Part. Eval. and
Sem.-Based Prog. Manip. New York, NY, ACM Press.

Liu, Y. and T. Teitelbaum: 1995b, ‘Systematic Derivation of Incremental Programs’.
Science of Computer Programming 24, 1-39.

Lyle, J. and M. Weiser: 1986, ‘Experiments on Slicing-Based Debugging Tools’. In:
Proceedings of the First Conference on Empirical Studies of Programming.

McCurdy, A.: 1980, ‘Accurate Computation of Divided Differences’. Ph.D. diss. and
Tech. Rep. UCB/ERL M80/28, Univ. of Calif.—Berkeley, Berkeley, CA.

Milner, R.: 1978, ‘A Theory of Type Polymorphism in Programming’. J. Comp.
Syst. Sci. 17, 348-375.

Mogensen, T.: 1986, ‘The Application of Partial Evaluation to Ray-Tracing’. Mas-
ter’s thesis, Datalogisk Institut, Univ. of Copenhagen, Copenhagen, Denmark.

Ning, J., A. Engberts, and W. Kozaczynski: 1994, ‘Automated Support for Legacy
Code Understanding’. Commun. ACM 37(5), 50-57.

Opitz, G.: 1964, ‘Steigungsmatrizen’. Zeitschrift fir Angewandte Mathematik
und Mechanik 44, T52-T54. In German. English translation available at
http://www.cs.wisc.edu/wpis/papers/opitz.zamm64.ps.

Ottenstein, K. and L. Ottenstein: 1984, ‘The Program Dependence Graph in
a Software Development Environment’. In: Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments. New York, NY, pp. 177-184, ACM Press.

Paige, R.: 1981, Formal Differentiation — A Program Synthesis Technique. Ann
Arbor, MI: UMI Research Press.

Paige, R.: 1983, ‘Transformational Programming — Applications to Algorithms and
Systems’. In: ACM Symposium on Principles of Programming Languages. New
York, NY, pp. 73-87, ACM Press.

Paige, R. and S. Koenig: 1982, ‘Finite Differencing of Computable Expressions’.
ACM Transactions on Programming Languages and Systems 4(3), 402-454.
Rall, L.: 1981, Automatic Differentiation: Techniques and Applications, Lecture

Notes in Computer Science, Vol. 120. Springer-Verlag.

Rall, L.: 1983, ‘Differentiation and Generation of Taylor Coefficients in Pascal-
SC’. In: U. Kulisch and W. Miranker (eds.): A New Approach to Scientific
Computation. New York, NY: Academic Press, pp. 291-309.

Rall, L.: 1984, ‘Differentiation in Pascal-SC: Type GRADIENT’. ACM Trans. Math.
Softw. 10, 161-184.

Rall, L.: 1986, ‘The Arithmetic of Differentiation’. Mathematics Magazine 59, 275—
282.

Rall, L.: 1990, ‘Differentiation Arithmetics’. In: C. Ullrich (ed.): Computer Arith-
metic and Self-Validating Numerical Methods. New York, NY: Academic Press,
pp- 73-90.

Rall, L.: 1992, ‘Point and Interval Differentiation Arithmetics’. In (Griewank and
Corliss, 1992), pp. 17-24.

Rall, L. and T. Reps: 2000, ‘Algorithmic Differencing’. In: SCAN 2000: 9th GAMM-
IMACS Int. Symp. on Sci. Comput., Comp. Arith., and Validated Numerics.
Ratz, D.: 1996, ‘An Optimized Interval Slope Arithmetic and its Application’.
Bericht 4/1996, Institut fiir Angewandte Mathematik, Universitit Karlsruhe,

Karlsruhe, Germany.

Reps, T. and T. Turnidge: 1996, ‘Program Specialization Via Program Slicing’. In:
O. Danvy, R. Gliick, and P. Thiemann (eds.): Proc. of the Dagstuhl Seminar
on Partial Evaluation, Vol. 1110 of Lec. Notes in Comp. Sci. Schloss Dagstuhl,
Wadern, Germany, pp. 409-429, Springer-Verlag.

Shamseddine, K. and M. Berz: 1996, ‘Exception Handling in Derivative Computation
with Nonarchimedean Calculus’. In (Berz et al., 1996), pp. 37-51.

paper.tex; 27/03/2001; 10:42; p.64

Computational Divided Differencing 65

Speelpenning, B.: 1980, ‘Compiling Fast Partial Derivatives of Functions Given by
Algorithms’.

Strachey, C.: 2000, ‘Fundamental Concepts in Programming Languages’. Higher-
Order and Symbolic Computation 13(1/2), 1-49.

Veldhuizen, T.: 1995, ‘Expression Templates’. C++ Report 7(5), 26-31.

Weiser, M.: 1984, ‘Program Slicing’. IEEE Transactions on Software Engineering
SE-10(4), 352-357.

Wengert, R.: 1964, ‘A Simple Automatic Derivative Evaluation Program’. Commun.
ACM 7(8), 463-464.

Zippel, R.: 1996, ‘Personal Communication to Thomas Reps’.

Zuhe, S. and M. Wolfe: 1990, ‘On Interval Enclosures Using Slope Arithmetic’.
Applied Mathematics and Computation 39(1), 89-105.

paper.tex; 27/03/2001; 10:42; p.65

paper.tex; 27/03/2001; 10:42; p.66

