

VERIFICATION GAMES: CROWD-SOURCED FORMAL
VERIFICATION

UNIVERSITY OF WASHINGTON

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-096

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2016-096 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
DILIA E. RODRIGUEZ RICHARD MICHALAK
Work Unit Manager Acting Technical Advisor, Computing
 & Communication Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAR 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2012 – SEP 2015
4. TITLE AND SUBTITLE

VERIFICATION GAMES: CROWD-SOURCED FORMAL
VERIFICATION

5a. CONTRACT NUMBER
FA8750-12-C-0174

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Michael Ernst

5d. PROJECT NUMBER
EF00

5e. TASK NUMBER
78

5f. WORK UNIT NUMBER
80

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Washington
Office of Sponsored Programs
4333 Brooklyn Ave., N.E.
Seattle, WA 98195-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-096
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

Over the more than three years of the project Verification Games: Crowd-sourced Formal Verification the verification
tools developed by the Programming Languages and Software Engineering group were improved. A series of games
were developed by the Center for Game Science: Pipe Jam, Traffic Jam, Flow Jam and Paradox. Verification tools and
games were integrated to verify that the Hadoop-common program satisfies constraints that render it free of the following
vulnerabilities: injection attacks, incorrect use of format strings, violations of documented locking conventions.

15. SUBJECT TERMS
type theory, games, Java code vulnerabilities, crowd-sourced formal verification

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
DILIA E. RODRIGUEZ

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

21 N/A

i

Contents
List of Figures
1. SUMMARY .. 1
2. INTRODUCTION ... 2
3. METHODS, ASSUMPTIONS, AND PROCEDURES 2

3.1. Verification Approach ... 2
3.2. Game Design ... 3
3.3. Verification Tool Improvements .. 7

4. RESULTS AND DISCUSSION .. 9
4.1. Play Statistics ... 9
4.2. Proofs of Correctness .. 9
4.3. Free-to-play vs. Paid Players Analysis... 11

5. CONCLUSIONS .. 14
5.1. Recommendations .. 15

6. REFERENCES ... 15
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 16

ii

List of Figures
1. Pipe Jam ………………………………………………….....3
2. Traffic Jam …………………………………………….........4
3. Flow Jam ………………………………………………........4
4. Paradox …………………………………………………......5
5. MyClass ………………………………………………….....7
6. Results …………………………………………………......11
7. Time to Completion …………………………………….....12
8. Willingness to Enter Suboptimal Solution Space ….….......12
9. Player Solutions ……………………………………….......13

10. Free-to-play vs. Paid-Players Conclusions ……………......14

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
1

1 SUMMARY

Our increasing dependence on software makes it imperative to find more effective and efficient
mechanisms for improving software reliability. Formal verification is an important part of this effort,
since it is the only way to be certain that a given piece of software is free of (certain types of)
errors. To date, formal verification has been done manually by specially-trained engineers. Labor
costs have heretofore made formal verification too costly to apply beyond small, critical software
components. However, if we were able to transform ordinary computer users into ones capable
of performing verification tasks, we could achieve a dramatic reduction in the cost of producing
verified code. The goal of CSFV (Crowd-Sourced Formal Verification) was to make verification
more cost-effective by reducing the skill set required for program verification and increasing the
pool of people capable of performing program verification. Our approach was to transform the
verification task (a program and a goal property) into a visual puzzle task -- a game -- that is
solved by non-experts. The solution of the puzzle is then translated back into a proof of
correctness.

Over the course of the program, we developed and improved the code verification tools from the
University of Washington Computer Science and Engineering’s Programming Languages and
Software Engineering group (PLSE), and combined them with games designed and implemented
by the UW’s Center for Game Science (CGS). We designed a series of games successively titled
Pipe Jam, Traffic Jam, Flow Jam, and Paradox that present real verification problems as puzzles
to players with no technical background. A game level in these games can also be thought of as
a set of constraints that a player is trying to solve. Like many puzzle games, in order to complete
a game level in this family of games, the player must find consistent settings for all the game
elements. By the end of the program, over 7,000 unique players had played Flow Jam or Paradox
for a combined total of over 7,500 hours of play, resulting in over 50,000 level solution
submissions.

We made a number of concrete proofs on Hadoop, a large piece of a widespread and currently-
used program in support of developing and testing our approach:

• We proved that the Hadoop-common program (100K non-comment, non-blank lines of
Java code) has no operating system command injection attacks.

• We proved that Hadoop-common uses format strings correctly.
• We proved that Hadoop-common does not violate its documented locking conventions.
• We re-proved that the Hadoop-common program has no operating system command

injection attacks, this time using type inference, eliminating the need for human
intervention.

Finally, we performed an experiment to compare the cost of two techniques for verifying a
program's correctness. One technique was the traditional one in which a human verification expert
writes the specifications and then those specifications are automatically verified. The other
technique was our crowd-sourced workflow where the specifications are inferred via gameplay,
tweaked as needed by the verification expert, and then automatically verified. Our goal was to
reduce the overall cost rather than to completely eliminate the human expert's job, a goal we
believe is impractical at the current state of the art. Of the two conditions, unannotated code
required 45 minutes total time (7 minutes of type checking and 38 minutes of manual effort) versus
4 minutes total when starting with game results (3 minutes of type-checking and 1 minute of
manual effort). Not included in these timing were the annotation of APIs (determining the proof
goal, required in both cases), and gameplay (crowd time, machine time to generate levels).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
2

2 INTRODUCTION

Our increasing dependence on software makes it imperative to find more effective and efficient
mechanisms for improving software reliability. Formal verification is an important part of this effort,
since it is the only way to be certain that a given piece of software is free of (certain types of)
errors. To date, formal verification has been done manually by specially-trained engineers. Labor
costs have heretofore made formal verification too costly to apply beyond small, critical software
components. However, if we were able to transform ordinary computer users into ones capable
of performing verification tasks, we could achieve a dramatic reduction in the cost of producing
verified code. The goal of CSFV (Crowd-Sourced Formal Verification) was to make verification
more cost-effective by reducing the skill set required for program verification and increasing the
pool of people capable of performing program verification. Our approach was to transform the
verification task (a program and a goal property) into a visual puzzle task -- a game -- that is
solved by non-experts. The solution of the puzzle is then translated back into a proof of
correctness.

Over the course of the program, we developed and improved the code verification tools from the
University of Washington Computer Science and Engineering’s Programming Languages and
Software Engineering group (PLSE), and combined them with games designed and implemented
by the UW’s Center for Game Science (CGS). We designed a series of games successively titled
Pipe Jam, Traffic Jam, Flow Jam, and Paradox that present real verification problems as puzzles
to players with no technical background.

3 METHODS, ASSUMPTIONS, AND PROCEDURES
3.1 Verification Approach

Our verification approach is based on type theory. To verify a security property, the types in a
program must satisfy certain type constraints. As a simple example, if the program contains the
assignment statement “x = y”, then the type of x must be a supertype of the type of y. Therefore
a proof of correctness can be thought of as a set of constraints involving the statements of the
program.

We created a series of games, successively titled Pipe Jam, Traffic Jam, Flow Jam, and Paradox,
in order to present puzzles to players with no technical background. A game level in these games
can also be thought of as a set of constraints that a player is trying to solve. Like many puzzle
games, in order to complete a game level in this family of games, the player must find consistent
settings for all the game elements.

Because both the games and type-checking are based on constraints, it is possible to create a
game level that corresponds to a given piece of code. Specifically, our type analysis system takes
as input a Java program and a security property, and it generates as output a set of type
constraints that the games present to players as a puzzle to solve. When a player adjusts a game
element, this corresponds to selecting a different type for a variable. Because the actual type
system constraints are displayed as simple game mechanics, players can help perform
verification tasks without needing any prior knowledge of software verification.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
3

If the player is able to solve a given level, the player has also generated a proof that the input
piece of code is free from vulnerabilities for the given security property. If the level cannot be fully
solved, the constraint graph must contain certain inconsistencies that correspond to type-
checking errors for the program -- potential security vulnerabilities that can be examined by a
verification expert.

3.2 Game Design

This section introduces and discusses the design of the games Pipe Jam, Traffic Jam, Flow
Jam, and Paradox.

Iterative Game Design History. Pipe Jam was the first game we developed. In Pipe Jam,
network of pipes in the game are directly generated from the flow (similar to dataflow) properties
of a program. The pipes represent program variables, their widths represent types, and the balls
represent approximations to run-time values. Player settings for the pipes’ widths directly
correspond to type annotations in the program that can be mechanically checked and provide a
proof of partial correctness.

Figure 1. Pipe Jam. Although Pipe Jam successfully represented type information in a game
format, there were problems in its representation that stopped it from being fun. This was a
problem as we imagined players intrinsically motivated to play the game. Pipe Jam could be
confusing for several reasons: colored pipes were difficult to differentiate as the number of
colors grew, the pipes were linked across large maps, different uses of the same variable were
represented as new pipes.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
4

Figure 2. Traffic Jam. The next iteration of the game was called Traffic Jam. Traffic Jam
changed the visual metaphor from abstract pipes with rolling balls to continuously-flowing traffic.
This helped players trace pipes that were connected across worlds and gave players immediate
feedback when one change created a conflict. The traffic theme was intended to give Traffic
Jam further appeal by grounding its abstract gameplay in problems recognizable from the real
world.

Figure 3. Flow Jam. The next iteration of this approach was called Flow Jam. Flow Jam
attempted to address the problems of the previous two iterations by moving back to a simpler
abstract representation that could handle very large levels.

In Phase 2 of the CSFV program, we developed an entirely new game based on what we had
learned. This new game was called Paradox. Paradox addressed many of the problems that
were present in the “jam” games by representing levels with a clean and appealing visualization
that can be scaled to display levels of enormous complexity.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
5

Figure 4. Paradox. A Paradox level’s elements represent variables and constraints from the
underlying constraint problem. A variable node is either light blue or dark blue, representing type
qualifiers or their absence in the code being verified. A constraint node requires that at least one
of the connected variables has a certain value. If none of the variables for a given constraint are
the correct value, then the constraint is marked as a conflict. Edges are the connections
between a variable and a constraint when a constraint contains a given variable.

To the left is a Paradox level representing the formula:
¬x0 ∧ (¬x0∨ x1). The red circles represent conflicts are shown for the unsatisfied constraints
involving variables x0 and x1.

In Paradox, the player’s goal is to find a setting for the variables that minimizes the number of
conflicts. Currently, we represent the variables as boolean values and the constraints as
disjunctions over variables or their negations, making the problem the players are solving a
maximum satisfiability problem (MAX-SAT).

Maximizing Human Contribution. In order to maximize the contribution that untrained human
players of Paradox can make to the verification process, players should focus on the portion of
problem that is least solvable by automated methods. Up to a certain size, constraint graphs
can be solved rapidly by automated solvers and are not challenging for human players. Very
large constraint graphs, however -- corresponding to real-world programs such as Hadoop --
can be difficult to understand and present multiple problems for user interface design. Our
previous games required players to toggle variables (then called “widgets”) individually, which
did not scale well to larger levels where humans were most needed.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
6

To address this, Paradox provides a “paintbrush” mechanism that allows the player to select
arbitrary groups of variables. The player can change them all at once, or the computer can
automatically solve them (for groups up to a predetermined limit). Different paintbrushes can allow
the player to apply different automated algorithms to their selection. Thus, the main feature of
Paradox gameplay is the player guiding the automated methods: deciding which areas of the
graph to solve and in what order. Currently players have a-cess to four paintbrushes that have
the following effects on the selected variables: set to true, set to false, launch an exact DPLL
(Davis-Putnam-Logemann-Loveland) optimization or launch a heuristic GSAT (Greedy procedure for
solving SATisfiability problems) optimization. New optimization algorithms can be added to the
game as additional paintbrushes.

Additionally, in Paradox, human players are never given small optimization problems (for
example, toggling the values of 50 variables to get the optimal score) since automated methods
can solve that scale of problem. Instead, they are consistently provided with large and challenging
problems that are computationally intractable to solve in an automated manner.

Maintaining Player Interest. In a normal game, levels are created by a game designer with the
aim of creating a fun and engaging experience for players. In a formal verification game,
however, the levels that are most valuable for players to solve are those generated from the
code that is being verified. Since the code in question was most likely created for a very
different purpose than making an interesting game level, sometimes levels contain oddities such
as enormous sections that are not integral to the solution. Worse, some levels are very large but
consist only of repeating structures, resulting in puzzles that are not interesting or challenging
for human players.

To study player preferences, a comparable batch of levels was synthesized -- that is, generated
randomly and not based on real-world Java code. Using Flow Jam, real versus synthesized levels
were compared by surveying players to see which type of levels were found enjoyable.
Synthesized levels designed to maximize complexity were clearly preferred, with an average 65%
preference rating, over real levels, which averaged a 30% preference rating. Although not a
rigorous comparison, this indicates that there is room for improving levels generated from real
code. We do not yet know whether this preference for synthesized levels in Flow Jam carries over
to levels in Paradox.

To ensure that levels generated from real-world code are interesting enough to entice non-expert
human players to solve them, our system adjusts the constraint graphs before they are served to
players. For example, irrelevant parts are removed, and a level is broken down into independent
levels when possible. If a level can be automatically solved, then it is never given to human
players. Subparts of a level may be solved before the player ever sees it. We plan to perform a
study comparing levels directly from Java code to levels optimized for human engagement.

Solution Submission and Sharing. Game players on the Internet are not obligated to persist
in playing until a level is solved. We found that many players of Flow Jam would make some
amount of progress, but very few of them would follow through and submit or share their
results. Before changing our submission process, there were only about 3,300 submissions
compared to about 100,000 levels played (note that players could make multiple submissions
on an individual level if desired). Players would often quit midway through without returning to
their current state, or fail to notice the level submission/sharing functionality even though they
were making progress on the levels.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
7

To address this, Paradox automatically submits level configurations to a central server
whenever the player’s score increases. This takes the burden off of players to manually submit
their solutions for evaluation. By adding these submissions back into the system as new level
starting points, it also allows future players of a given level to begin with the progress that prior
players have made, without requiring them to proactively share solutions with each other.

Sense of Purpose. Another aspect of working with a human population of solvers is motivation.
Playtesting has shown that, if players do not understand what they are doing and why they are
doing it, they quickly lose interest in the task. In early versions of Paradox, players were given
the optimizer brush and tasked with painting around conflicts to solve them, leaving them with
no sense of what they were actually doing to solve the levels. To fix this, the tutorial now
includes a few levels where players must change variables manually. Playtest feedback
indicates a much better understanding of the underlying problem and a general sense of
purpose when players are required to adjust individual variables in tutorials before using
optimizer brushes.

3.3 Verification Tool Improvements
As part of the program we made many enhancements to our verification toolsuite. The most
significant of these is handling of Java generics (parametric polymorphism or type variables). This
is universally disparaged as the most confusing part of the Java language, and our problems were
exacerbated by our need to build upon the existing javac implementation, for tool compatibility.
We improved handling of generics for both type checking and type inference.

To handle generics for type inference, we needed to introduce a new type of
constraint. Ordinarily, if a type system has two qualifiers (say, @Nullable and @NonNull), then
every type in the program can be annotated as either @Nullable or @NonNull. In practice,
defaulting and intraprocedural type inference would eliminate the need for many of those
annotations, so the program would not be so cluttered; but the effect would be the same if every
annotation were explicitly written.

With type variables, this is no longer the case, because writing no annotation is different than
writing any specific annotation. Consider the following code:

 class MyClass<T> {
 @Nullable T field1;
 @NonNull T field2;
 T field3;
 }

MyClass can be instantiated as either of
 MyClass<@Nullable String> x;
 MyClass<@NonNull String> y;

Figure 5. MyClass

For both types of instantiation, field1's type is @Nullable String; that is, both x.field1 and y.field1
have type @Nullable String. Likewise, both x.field2 and y.field2 have type @NonNull String. But

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
8

the type of field3 depends on the instantiation: x.field3 has type @Nullable String, and y.field3
has type @NonNull String.

To accommodate this, we created a new type of constraint variable. An ordinary constraint
variable represents a location in the source code and its values are possible annotations. When
the constraints are solved, the value is inserted at the appropriate source code location. For a
type parameter, the value can be empty. When two variables interact, such as an assignment "x
= y;", then the type of the right-hand side must be a subtype of the type of the left-hand side. When
one of the variables has a type parameter as its declared variable (such as field3 above), then
the constraint may be of two types: if the constraint variable is set to empty, then the constraint is
against the upper bound, and otherwise it is normal.

In addition to handling generics in type-checking and type inference, we upgraded our tools to
handle Java 8 features such as lambdas (anonymous functions) and method references.

When inserting annotations in source code, we now do so only when the value would be different
than the default. This reduces clutter in the source code.

We designed a new qualifier polymorphism mechanism, which allows separate specification of
type and qualifier polymorphism. This permits more flexible specification without changing the
Java code. This simplifies creating type-checkers, as it permits operation at a higher level of
abstraction: qualifiers (semantics) vs. annotations (syntax). This work was motivated by our
discovery an unsoundness for any type system that contain all of transitivity, subtyping, and
mutability; this had not been described in the literature before. Use of qualifier parameters offers
a way to avoid the problem.

We made our architecture pluggable, so that constraints can be solved either via crowd-sourcing
or by dispatching to a (satisfiability) SAT solver such as SAT4j, a Java library for solving Boolean
satisfaction problems. This enables us to compare human solutions with automated ones, and it
enables us to iterate quickly without waiting for gameplay to produce solutions.

We made framework enhancements that make every type checker more accurate:

• The Constant Value Checker performs constant propagation and more: it evaluates side-
effect-free methods, tracks array lengths, and yields a set of values rather than just one.

• The Reflection Checker statically resolves 96% of uses of reflection, so that it is no longer
necessary to use conservative overapproximations at reflective call sites.

• Field type inference performs intra-class and whole-program analysis to infer field types,
which can be used on a subsequent iteration.

We also designed and implemented support for partially-annotated libraries and safe defaults for
unannotated code.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
9

4 RESULTS AND DISCUSSION
4.1 Play Statistics

Since the public launch of the combined verigames.com portal in December 2013, over 6,000
unique players have played Flow Jam for a combined total of over 7,500 hours of play and over
34,000 level submissions. Since the launch of Paradox in May 2015, over 4,500 play sessions
have occurred with nearly 1,400 unique players and 16,200 unique level solutions submitted.
There are fewer players for Paradox because it has not been available as long as Flow Jam.

4.2 Proofs of Correctness

Throughout the course of the project, we performed four proofs of correctness, with increasing
levels of automation:

1. We proved that the Hadoop-common program (100K non-comment, non-blank LOC) has no
operating system command injection attacks. In other words, untrusted data, such as from user
input, is never used as part of an operating system command without being properly quoted. If
such data were used without quoting, then it would be possible for an attacker to execute arbitrary
commands. This proof corresponds to CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('Operating System Command Injection').

The proof consisted of annotating and type-checking Hadoop-common. We manually annotated
the program with @OsTrusted type qualifiers, wherever data was trusted to be used in an
operating system command. All other data is untrusted. We also annotated library routines to
indicate whether they produce or require trusted or untrusted data. When the program type-
checked, that indicated that the security property holds: untrusted data never flowed to library
routines that require trusted data, such as the routines that execute operating system commands

We performed this proof manually. It gave the first indication that our underlying technical
approach is feasible and scalable. It also found 5 bugs in Hadoop: locations where validation calls
were missing.

2. We proved that Hadoop-common uses format strings correctly, as in printf("%s %d", "a string",
42). This was a manual proof, like the one above. We found and reported an error. This shows
that our approach generalizes to multiple type systems.

3. We proved that Hadoop-common does not violate its documented locking
conventions. Programmers can document a locking discipline, which indicates which locks must
be held in order to access which data. If the program violates its locking discipline, then a race
condition occurs, which can corrupt data structures and/or cause inconsistent views even of
uncorrupted data.

Our tools inferred a locking discipline for Hadoop and proved that Hadoop satisfied the locking
discipline. The annotations are of the form @GuardedBy("lockname"), indicating that data of the
annotated type can only be accessed when holding the lock named lockname, and
@Holding("lockname"), indicating that lockname is currently held.

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
10

This result required no human intervention -- it was fully automated. However, it did not involve
the game. This was the first validation of our inference tools, since the previous step had only
exercised type-checking and not inference.

4. We re-proved that the Hadoop-common program (100K LOC, lines of code) has no operating
system command injection attacks. This proof was different in several important respects. One
is that we had corrected many bugs, eliminating the need for human intervention and verification
in certain places. Another is that we performed inference rather than mere type-checking,
meaning that programmers didn't have to write the annotations. And most importantly, the
inference was done by game players. This was the first example of an automated proof: a
program was automatically converted to a game, players played the game, completed game
levels were converted into program annotations, and the annotations were verified, showing that
the program contains no bugs (of one specific variety).

We performed an experiment to compare the cost of two techniques for verifying a program's
correctness. One technique is the traditional one in which a human verification expert writes the
specifications and then those specifications are automatically verified. The other technique is
our crowd-sourced workflow where the specifications are inferred via gameplay, tweaked as
needed by the verification expert, and then automatically verified. Our goal is to reduce the overall
cost rather than to completely eliminate the human expert's job, a goal we believe is impractical
at the current state of the art.

More specifically, our experiment had two developers annotate a program until the program could
be automatically verified. One programmer starts from unannotated source code, and the other
starts from game results (inference).

We verified the Nexus-SS program, which is a source code repository system for the Maven build
tool; it consists of 46224 non-comment, non-blank LOC. We verified that it does not use hard-
coded credentials (CWE-798, https://cwe.mitre.org/data/definitions/798.html), where CWE stands
for Common Weakness Enumeration. This vulnerability exists when “The software contains hard-
coded credentials, such as a password or cryptographic key, which it uses for its own inbound
authentication, outbound communication to external components, or encryption of internal data.”

The type system used for verification consists of two types: @HardCoded indicates that a value
is found in the program source code or computed only from values found in the program source
code, and @NotHardCoded is all other values. Interestingly hard-coded values are trusted in
other contexts, such as assuming that they do not contain data that would be an injection attack.

https://cwe.mitre.org/data/definitions/798.html

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
11

The results are presented in Figure 5.

Starting condition Total time Machine time Manual time
Unannotated 45 7 38
Game results 4 3 1

Figure 6. Results. Times are in minutes. The “Machine time” column is type-checking time,
which is human wait time.

These timings do not include annotating libraries, such as which ones require non-hard-coded
credentials (this determines the proof goal and is required in both cases), or game play (crowd
time, machine time to generate boards). In this particular case, the game computed 23 correct
annotations, and the human merely verified them, which took little time. We would like to re-run
this experiment with more and bigger programs and with different type systems.

4.3 Free-to-play vs. Paid Players Analysis

Testing was performed to determine the feasibility of hosting the game (Paradox) on Amazon
Mechanical Turk, a crowdsourcing marketplace where users are paid based on predefined criteria
to play the game. After some trial and error to determine reasonable rewards, we implemented a
policy where users were paid one cent for completing a shortened set of tutorials. If the tutorials
were completed, users were granted qualifications allowing them to complete game levels
generated from actual code. These actual game levels paid a flat payment of ten cents for each
user per level, with a bonus of 25 cents for each period of 5 minutes where the user was actively
increasing their score (up to a maximum bonus of $1.25). Identical levels were given to players
on verigames.com and submitted as paid tasks for Amazon Turk users.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
12

Figure 7. Time to Completion. The figure below left illustrates the trend that verigames.com
players tend to reach the highest score more quickly within a given play session than Mechanical
Turk users. The y-axis shows scores over time for each player, the x-axis corresponds to the
number of seconds since the beginning of each play session with all players' play sessions for
this particular level (p_005204_v522558) overlaid on top of each other. However, in terms of the
overall number of solutions being generated since the time that the levels are released, the
Mechanical Turk group tends to have tens of solutions within 24-48 hours compared to the smaller
verigames.com group. Below right is a figure showing the top scores per play session and the
number of days since the release of the level that it took to receive those scores per group.

Figure 8. Willingness to Enter Suboptimal Solution Space. One recurring issue with
crowdsourced efforts is that players can confine themselves to local maxima, where users
attempt to monotonically increase their score instead of pursuing a strategy that may
temporarily lower their score in order to find the best configuration. This is undesirable because

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13

it restricts the overall solution space. One might expect that paid players value their time more
and are less willing to undo progress. However, we did not observe this with Mechanical Turk
Players. In general, approximately the same portion of players in Mechanical Turk and
verigames.com pursued lower score strategies. The figure to the left shows one level which
illustrates the presence of those strategies where the starting score is 1750 and players of both
groups are observed to go below that score in order to pursue new solutions.

Solving Strategies. Both the verigames.com group and the Mechanical Turk group were
observed to have used all three brushes, with a heavy emphasis on the Optimizer Brush. There
was a slightly more pronounced bias towards the use of the Optimizer brush in the
verigames.com group compared to the Mechanical Turk group as shown in the figures below,
where paint actions are shown in yellow for the verigames.com group and the Mechanical Turk
group, respectively.

Figure 9. Player Solutions. Generally the high scores for each level contained an even split
between verigames.com and Mechanical Turk players. In addition, the solutions themselves do
not appear to correlate amongst members of the same group. In other words, there do not appear
to be any distinguishing characteristics unique to the verigames.com group solutions compared
to the Mechanical Turk group solutions. The figure below illustrates the difference in solutions for
a given level, with the number of wide/narrow variables in each shade of blue.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
14

Figure 10. Free-to-play vs. Paid Players Conclusions. With our current rewards scheme,
the Mechanical Turk group can return 10-20 solutions for a given level within 48 hours. To
compare, due to low traffic on the verigames.com site, each level takes a few weeks to gather
the same volume of solutions. Given the data above and the fact that the solutions appear to be
equally desirable from both groups, the Mechanical Turk methods appear to be preferable.

5 CONCLUSIONS

We attempted a radical new approach to program verification by transforming the problem domain
into one in which non-experts could interact with a program through the framework of a video
game. We developed and improved important code verification tools and combined them with a
series of game interfaces that anyone could play. Through constant playtesting we eventually
designed a game that

We made a number of concrete proofs on Hadoop, a large piece of a widespread and currently-
used program in support of developing and testing our approach, and performed an experiment
to compare the cost of two techniques for verifying a program's correctness which shows the
CSFV approach can dramatically reduce the time required by an expert, and therefore the overall
cost, of formal verification.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
15

5.1 Recommendations

The lessons that have guided development from the earlier game Flow Jam to the current game
Paradox naturally point towards future areas of study. These topics include player performance
versus fully automated solvers, player effectiveness with different graph representations and
groupings, and differences between volunteer players and compensated players. Also, given its
general nature, problems from other domains that can be encoded as maximum satisfiability
problems (MAX-SAT) could be used to create levels in Paradox. Our game design may also
extend to other types of constraint satisfaction problems that can be visualized as a factor graph.

6 REFERENCES

1. “Verification games: Making verification fun” by Werner Dietl, Stephanie Dietzel, Michael
D. Ernst, Nathaniel Mote, Brian Walker, Seth Cooper, Timothy Pavlik, and Zoran
Popovic. In FTfJP'2012: 14th Workshop on Formal Techniques for Java-like Programs,
(Beijing, China), June 12, 2012.

2. “A type system for regular expressions” by Eric Spishak, Werner Dietl, and Michael D.
Ernst. In FTfJP'2012: 14th Workshop on Formal Techniques for Java-like Programs,
(Beijing, China), June 12, 2012.

3. “Type Annotations specification (JSR 308)” by Michael D. Ernst. Oct. 2011.
4. “Building and using pluggable type-checkers” by Werner Dietl, Stephanie Dietzel,

Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. In ICSE'11, Proceedings of the 33rd
International Conference on Software Engineering, (Waikiki, Hawaii, USA), May 25-27,
2011, pp. 681-690.

5. “Lessons learned in game development for crowdsourced software formal verification.”
Drew Dean et al. “Solution 2: Flow Jam and Paradox.” Tim Pavlik, Craig Conner,
Jonathan Burke, Matthew Burns, Werner Dietl, Seth Cooper, Michael D. Ernst, and
Zoran Popović. USENIX Summit on Gaming, Games, and Gamification in Security
Education (2015).

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
16

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

CGS Center for Game Science
CSFV Crowd-Sourced Formal Verification
CWE Common Weakness Enumeration
DPLL Davis-Putnam-Logemann-Loveland (algorithm for satisfiability)
GSAT Greedy procedure for solving SATisfiability problems
LOC lines of code
MAX-SAT maximum satisfiability
OS operating system
PLSE Programming Languages and Software Engineering
SAT satisfiability
SAT4j a Java library for solving Boolean satisfaction problems

	Contents
	List of Figures
	1. SUMMARY 1
	2. INTRODUCTION 2
	3. METHODS, ASSUMPTIONS, AND PROCEDURES 2
	3.1. Verification Approach 2
	3.2. Game Design 3
	3.3. Verification Tool Improvements 7
	4. RESULTS AND DISCUSSION 9
	4.1. Play Statistics 9
	4.2. Proofs of Correctness 9
	4.3. Free-to-play vs. Paid Players Analysis 11
	5. CONCLUSIONS 14
	5.1. Recommendations 15
	6. REFERENCES 15
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 16

	List of Figures
	1. Pipe Jam ………………………………………………….....3
	2. Traffic Jam …………………………………………….........4
	3. Flow Jam ………………………………………………........4
	4. Paradox …………………………………………………......5
	5. MyClass ………………………………………………….....7
	6. Results …………………………………………………......11
	7. Time to Completion …………………………………….....12
	8. Willingness to Enter Suboptimal Solution Space ….….......12
	9. Player Solutions ……………………………………….......13
	10. Free-to-play vs. Paid-Players Conclusions ……………......14
	1 SUMMARY
	2 INTRODUCTION
	3 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Verification Approach
	3.2 Game Design
	This section introduces and discusses the design of the games Pipe Jam, Traffic Jam, Flow Jam, and Paradox.
	Iterative Game Design History. Pipe Jam was the first game we developed. In Pipe Jam, network of pipes in the game are directly generated from the flow (similar to dataflow) properties of a program. The pipes represent program variables, their widths ...
	Figure 1. Pipe Jam. Although Pipe Jam successfully represented type information in a game format, there were problems in its representation that stopped it from being fun. This was a problem as we imagined players intrinsically motivated to play the...
	Figure 2. Traffic Jam. The next iteration of the game was called Traffic Jam. Traffic Jam changed the visual metaphor from abstract pipes with rolling balls to continuously-flowing traffic. This helped players trace pipes that were connected across ...
	Figure 3. Flow Jam. The next iteration of this approach was called Flow Jam. Flow Jam attempted to address the problems of the previous two iterations by moving back to a simpler abstract representation that could handle very large levels.
	In Phase 2 of the CSFV program, we developed an entirely new game based on what we had learned. This new game was called Paradox. Paradox addressed many of the problems that were present in the “jam” games by representing levels with a clean and appea...
	Figure 4. Paradox. A Paradox level’s elements represent variables and constraints from the underlying constraint problem. A variable node is either light blue or dark blue, representing type qualifiers or their absence in the code being verified. A ...

	3.3 Verification Tool Improvements
	Figure 5. MyClass

	4 RESULTS AND DISCUSSION
	4.1 Play Statistics
	4.2 Proofs of Correctness
	Figure 6. Results. Times are in minutes. The “Machine time” column is type-checking time, which is human wait time.

	4.3 Free-to-play vs. Paid Players Analysis

	5 CONCLUSIONS
	5.1 Recommendations

	6 REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

