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1 SUMMARY 

Our increasing dependence on software makes it imperative to find more effective and efficient 
mechanisms for improving software reliability. Formal verification is an important part of this effort, 
since it is the only way to be certain that a given piece of software is free of (certain types of) 
errors. To date, formal verification has been done manually by specially-trained engineers. Labor 
costs have heretofore made formal verification too costly to apply beyond small, critical software 
components. However, if we were able to transform ordinary computer users into ones capable 
of performing verification tasks, we could achieve a dramatic reduction in the cost of producing 
verified code. The goal of CSFV (Crowd-Sourced Formal Verification) was to make verification 
more cost-effective by reducing the skill set required for program verification and increasing the 
pool of people capable of performing program verification. Our approach was to transform the 
verification task (a program and a goal property) into a visual puzzle task -- a game -- that is 
solved by non-experts. The solution of the puzzle is then translated back into a proof of 
correctness. 

Over the course of the program, we developed and improved the code verification tools from the 
University of Washington Computer Science and Engineering’s Programming Languages and 
Software Engineering group (PLSE), and combined them with games designed and implemented 
by the UW’s Center for Game Science (CGS). We designed a series of games successively titled 
Pipe Jam, Traffic Jam, Flow Jam, and Paradox that present real verification problems as puzzles 
to players with no technical background. A game level in these games can also be thought of as 
a set of constraints that a player is trying to solve. Like many puzzle games, in order to complete 
a game level in this family of games, the player must find consistent settings for all the game 
elements. By the end of the program, over 7,000 unique players had played Flow Jam or Paradox 
for a combined total of over 7,500 hours of play, resulting in over 50,000 level solution 
submissions. 

We made a number of concrete proofs on Hadoop, a large piece of a widespread and currently-
used program in support of developing and testing our approach: 

• We proved that the Hadoop-common program (100K non-comment, non-blank lines of
Java code) has no operating system command injection attacks.

• We proved that Hadoop-common uses format strings correctly.
• We proved that Hadoop-common does not violate its documented locking conventions.
• We re-proved that the Hadoop-common program has no operating system command

injection attacks, this time using type inference, eliminating the need for human
intervention.

Finally, we performed an experiment to compare the cost of two techniques for verifying a 
program's correctness. One technique was the traditional one in which a human verification expert 
writes the specifications and then those specifications are automatically verified. The other 
technique was our crowd-sourced workflow where the specifications are inferred via gameplay, 
tweaked as needed by the verification expert, and then automatically verified. Our goal was to 
reduce the overall cost rather than to completely eliminate the human expert's job, a goal we 
believe is impractical at the current state of the art. Of the two conditions, unannotated code 
required 45 minutes total time (7 minutes of type checking and 38 minutes of manual effort) versus 
4 minutes total when starting with game results (3 minutes of type-checking and 1 minute of 
manual effort). Not included in these timing were the annotation of APIs (determining the proof 
goal, required in both cases), and gameplay (crowd time, machine time to generate levels).  
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2 INTRODUCTION 

Our increasing dependence on software makes it imperative to find more effective and efficient 
mechanisms for improving software reliability. Formal verification is an important part of this effort, 
since it is the only way to be certain that a given piece of software is free of (certain types of) 
errors. To date, formal verification has been done manually by specially-trained engineers. Labor 
costs have heretofore made formal verification too costly to apply beyond small, critical software 
components. However, if we were able to transform ordinary computer users into ones capable 
of performing verification tasks, we could achieve a dramatic reduction in the cost of producing 
verified code. The goal of CSFV (Crowd-Sourced Formal Verification) was to make verification 
more cost-effective by reducing the skill set required for program verification and increasing the 
pool of people capable of performing program verification. Our approach was to transform the 
verification task (a program and a goal property) into a visual puzzle task -- a game -- that is 
solved by non-experts. The solution of the puzzle is then translated back into a proof of 
correctness. 

Over the course of the program, we developed and improved the code verification tools from the 
University of Washington Computer Science and Engineering’s Programming Languages and 
Software Engineering group (PLSE), and combined them with games designed and implemented 
by the UW’s Center for Game Science (CGS). We designed a series of games successively titled 
Pipe Jam, Traffic Jam, Flow Jam, and Paradox that present real verification problems as puzzles 
to players with no technical background. 

3 METHODS, ASSUMPTIONS, AND PROCEDURES 
3.1 Verification Approach 

Our verification approach is based on type theory. To verify a security property, the types in a 
program must satisfy certain type constraints. As a simple example, if the program contains the 
assignment statement “x = y”, then the type of x must be a supertype of the type of y. Therefore 
a proof of correctness can be thought of as a set of constraints involving the statements of the 
program. 

We created a series of games, successively titled Pipe Jam, Traffic Jam, Flow Jam, and Paradox, 
in order to present puzzles to players with no technical background. A game level in these games 
can also be thought of as a set of constraints that a player is trying to solve. Like many puzzle 
games, in order to complete a game level in this family of games, the player must find consistent 
settings for all the game elements. 

Because both the games and type-checking are based on constraints, it is possible to create a 
game level that corresponds to a given piece of code. Specifically, our type analysis system takes 
as input a Java program and a security property, and it generates as output a set of type 
constraints that the games present to players as a puzzle to solve. When a player adjusts a game 
element, this corresponds to selecting a different type for a variable. Because the actual type 
system constraints are displayed as simple game mechanics, players can help perform 
verification tasks without needing any prior knowledge of software verification. 
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If the player is able to solve a given level, the player has also generated a proof that the input 
piece of code is free from vulnerabilities for the given security property. If the level cannot be fully 
solved, the constraint graph must contain certain inconsistencies that correspond to type-
checking errors for the program -- potential security vulnerabilities that can be examined by a 
verification expert. 

3.2 Game Design 

This section introduces and discusses the design of the games Pipe Jam, Traffic Jam, Flow 
Jam, and Paradox.  

Iterative Game Design History. Pipe Jam was the first game we developed. In Pipe Jam, 
network of pipes in the game are directly generated from the flow (similar to dataflow) properties 
of a program. The pipes represent program variables, their widths represent types, and the balls 
represent approximations to run-time values. Player settings for the pipes’ widths directly 
correspond to type annotations in the program that can be mechanically checked and provide a 
proof of partial correctness. 

Figure 1. Pipe Jam.   Although Pipe Jam successfully represented type information in a game 
format, there were problems in its representation that stopped it from being fun. This was a 
problem as we imagined players intrinsically motivated to play the game. Pipe Jam could be 
confusing for several reasons: colored pipes were difficult to differentiate as the number of 
colors grew, the pipes were linked across large maps, different uses of the same variable were 
represented as new pipes. 
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Figure 2. Traffic Jam.   The next iteration of the game was called Traffic Jam. Traffic Jam 
changed the visual metaphor from abstract pipes with rolling balls to continuously-flowing traffic. 
This helped players trace pipes that were connected across worlds and gave players immediate 
feedback when one change created a conflict. The traffic theme was intended to give Traffic 
Jam further appeal by grounding its abstract gameplay in problems recognizable from the real 
world. 

Figure 3. Flow Jam.   The next iteration of this approach was called Flow Jam. Flow Jam 
attempted to address the problems of the previous two iterations by moving back to a simpler 
abstract representation that could handle very large levels.  

In Phase 2 of the CSFV program, we developed an entirely new game based on what we had 
learned. This new game was called Paradox. Paradox addressed many of the problems that 
were present in the “jam” games by representing levels with a clean and appealing visualization 
that can be scaled to display levels of enormous complexity. 
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Figure 4. Paradox.   A Paradox level’s elements represent variables and constraints from the 
underlying constraint problem. A variable node is either light blue or dark blue, representing type 
qualifiers or their absence in the code being verified. A constraint node requires that at least one 
of the connected variables has a certain value. If none of the variables for a given constraint are 
the correct value, then the constraint is marked as a conflict. Edges are the connections 
between a variable and a constraint when a constraint contains a given variable. 

To the left is a Paradox level representing the formula: 
¬x0 ∧  (¬x0∨ x1). The red circles represent conflicts are shown for the unsatisfied constraints 
involving variables x0 and x1. 

In Paradox, the player’s goal is to find a setting for the variables that minimizes the number of 
conflicts. Currently, we represent the variables as boolean values and the constraints as 
disjunctions over variables or their negations, making the problem the players are solving a 
maximum satisfiability problem (MAX-SAT). 

Maximizing Human Contribution. In order to maximize the contribution that untrained human
players of Paradox can make to the verification process, players should focus on the portion of 
problem that is least solvable by automated methods. Up to a certain size, constraint graphs 
can be solved rapidly by automated solvers and are not challenging for human players. Very 
large constraint graphs, however -- corresponding to real-world programs such as Hadoop -- 
can be difficult to understand and present multiple problems for user interface design. Our 
previous games required players to toggle variables (then called “widgets”) individually, which 
did not scale well to larger levels where humans were most needed.
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To address this, Paradox provides a “paintbrush” mechanism that allows the player to select 
arbitrary groups of variables.  The player can change them all at once, or the computer can 
automatically solve them (for groups up to a predetermined limit). Different paintbrushes can allow 
the player to apply different automated algorithms to their selection. Thus, the main feature of 
Paradox gameplay is the player guiding the automated methods: deciding which areas of the 
graph to solve and in what order. Currently players have a-cess to four paintbrushes that have 
the following effects on the selected variables: set to true, set to false, launch an exact DPLL 
(Davis-Putnam-Logemann-Loveland) optimization or launch a heuristic GSAT (Greedy procedure for 
solving SATisfiability problems) optimization. New optimization algorithms can be added to the 
game as additional paintbrushes. 

Additionally, in Paradox, human players are never given small optimization problems (for 
example, toggling the values of 50 variables to get the optimal score) since automated methods 
can solve that scale of problem. Instead, they are consistently provided with large and challenging 
problems that are computationally intractable to solve in an automated manner. 

Maintaining Player Interest. In a normal game, levels are created by a game designer with the 
aim of creating a fun and engaging experience for players. In a formal verification game, 
however, the levels that are most valuable for players to solve are those generated from the 
code that is being verified. Since the code in question was most likely created for a very 
different purpose than making an interesting game level, sometimes levels contain oddities such 
as enormous sections that are not integral to the solution. Worse, some levels are very large but 
consist only of repeating structures, resulting in puzzles that are not interesting or challenging 
for human players. 

To study player preferences, a comparable batch of levels was synthesized -- that is, generated 
randomly and not based on real-world Java code. Using Flow Jam, real versus synthesized levels 
were compared by surveying players to see which type of levels were found enjoyable. 
Synthesized levels designed to maximize complexity were clearly preferred, with an average 65% 
preference rating, over real levels, which averaged a 30% preference rating.  Although not a 
rigorous comparison, this indicates that there is room for improving levels generated from real 
code. We do not yet know whether this preference for synthesized levels in Flow Jam carries over 
to levels in Paradox. 

To ensure that levels generated from real-world code are interesting enough to entice non-expert 
human players to solve them, our system adjusts the constraint graphs before they are served to 
players. For example, irrelevant parts are removed, and a level is broken down into independent 
levels when possible.  If a level can be automatically solved, then it is never given to human 
players. Subparts of a level may be solved before the player ever sees it. We plan to perform a 
study comparing levels directly from Java code to levels optimized for human engagement. 

Solution Submission and Sharing. Game players on the Internet are not obligated to persist 
in playing until a level is solved. We found that many players of Flow Jam would make some 
amount of progress, but very few of them would follow through and submit or share their 
results.  Before changing our submission process, there were only about 3,300 submissions 
compared to about 100,000 levels played (note that players could make multiple submissions 
on an individual level if desired). Players would often quit midway through without returning to 
their current state, or fail to notice the level submission/sharing functionality even though they 
were making progress on the levels.
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To address this, Paradox automatically submits level configurations to a central server 
whenever the player’s score increases. This takes the burden off of players to manually submit 
their solutions for evaluation. By adding these submissions back into the system as new level 
starting points, it also allows future players of a given level to begin with the progress that prior 
players have made, without requiring them to proactively share solutions with each other.

Sense of Purpose. Another aspect of working with a human population of solvers is motivation. 
Playtesting has shown that, if players do not understand what they are doing and why they are 
doing it, they quickly lose interest in the task. In early versions of Paradox, players were given 
the optimizer brush and tasked with painting around conflicts to solve them, leaving them with 
no sense of what they were actually doing to solve the levels. To fix this, the tutorial now 
includes a few levels where players must change variables manually. Playtest feedback 
indicates a much better understanding of the underlying problem and a general sense of 
purpose when players are required to adjust individual variables in tutorials before using 
optimizer brushes.

3.3 Verification Tool Improvements 
As part of the program we made many enhancements to our verification toolsuite. The most 
significant of these is handling of Java generics (parametric polymorphism or type variables). This 
is universally disparaged as the most confusing part of the Java language, and our problems were 
exacerbated by our need to build upon the existing javac implementation, for tool compatibility. 
We improved handling of generics for both type checking and type inference. 

To handle generics for type inference, we needed to introduce a new type of 
constraint.  Ordinarily, if a type system has two qualifiers (say, @Nullable and @NonNull), then 
every type in the program can be annotated as either @Nullable or @NonNull. In practice, 
defaulting and intraprocedural type inference would eliminate the need for many of those 
annotations, so the program would not be so cluttered; but the effect would be the same if every 
annotation were explicitly written. 

With type variables, this is no longer the case, because writing no annotation is different than 
writing any specific annotation. Consider the following code: 

  class MyClass<T> { 
    @Nullable T field1; 
    @NonNull T field2; 
    T field3; 
  } 

MyClass can be instantiated as either of 
  MyClass<@Nullable String> x; 
  MyClass<@NonNull String> y; 

Figure 5.  MyClass 

For both types of instantiation, field1's type is @Nullable String; that is, both x.field1 and y.field1 
have type @Nullable String. Likewise, both x.field2 and y.field2 have type @NonNull String.  But 
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the type of field3 depends on the instantiation:  x.field3 has type @Nullable String, and y.field3 
has type @NonNull String. 

To accommodate this, we created a new type of constraint variable. An ordinary constraint 
variable represents a location in the source code and its values are possible annotations.  When 
the constraints are solved, the value is inserted at the appropriate source code location.  For a 
type parameter, the value can be empty. When two variables interact, such as an assignment "x 
= y;", then the type of the right-hand side must be a subtype of the type of the left-hand side.  When 
one of the variables has a type parameter as its declared variable (such as field3 above), then 
the constraint may be of two types: if the constraint variable is set to empty, then the constraint is 
against the upper bound, and otherwise it is normal. 

In addition to handling generics in type-checking and type inference, we upgraded our tools to 
handle Java 8 features such as lambdas (anonymous functions) and method references. 

When inserting annotations in source code, we now do so only when the value would be different 
than the default. This reduces clutter in the source code. 

We designed a new qualifier polymorphism mechanism, which allows separate specification of 
type and qualifier polymorphism. This permits more flexible specification without changing the 
Java code. This simplifies creating type-checkers, as it permits operation at a higher level of 
abstraction: qualifiers (semantics) vs. annotations (syntax). This work was motivated by our 
discovery an unsoundness for any type system that contain all of transitivity, subtyping, and 
mutability; this had not been described in the literature before. Use of qualifier parameters offers 
a way to avoid the problem. 

We made our architecture pluggable, so that constraints can be solved either via crowd-sourcing 
or by dispatching to a (satisfiability) SAT solver such as SAT4j, a Java library for solving Boolean 
satisfaction problems. This enables us to compare human solutions with automated ones, and it 
enables us to iterate quickly without waiting for gameplay to produce solutions. 

We made framework enhancements that make every type checker more accurate: 

• The Constant Value Checker performs constant propagation and more: it evaluates side-
effect-free methods, tracks array lengths, and yields a set of values rather than just one.

• The Reflection Checker statically resolves 96% of uses of reflection, so that it is no longer
necessary to use conservative overapproximations at reflective call sites.

• Field type inference performs intra-class and whole-program analysis to infer field types,
which can be used on a subsequent iteration.

We also designed and implemented support for partially-annotated libraries and safe defaults for 
unannotated code. 
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4 RESULTS AND DISCUSSION 
4.1 Play Statistics 

Since the public launch of the combined verigames.com portal in December 2013, over 6,000 
unique players have played Flow Jam for a combined total of over 7,500 hours of play and over 
34,000 level submissions. Since the launch of Paradox in May 2015, over 4,500 play sessions 
have occurred with nearly 1,400 unique players and 16,200 unique level solutions submitted. 
There are fewer players for Paradox because it has not been available as long as Flow Jam. 

4.2 Proofs of Correctness 

Throughout the course of the project, we performed four proofs of correctness, with increasing 
levels of automation: 

1. We proved that the Hadoop-common program (100K non-comment, non-blank LOC) has no
operating system command injection attacks. In other words, untrusted data, such as from user 
input, is never used as part of an operating system command without being properly quoted.  If 
such data were used without quoting, then it would be possible for an attacker to execute arbitrary 
commands. This proof corresponds to CWE-78: Improper Neutralization of Special Elements 
used in an OS Command ('Operating System Command Injection'). 

The proof consisted of annotating and type-checking Hadoop-common. We manually annotated 
the program with @OsTrusted type qualifiers, wherever data was trusted to be used in an 
operating system command. All other data is untrusted. We also annotated library routines to 
indicate whether they produce or require trusted or untrusted data. When the program type-
checked, that indicated that the security property holds: untrusted data never flowed to library 
routines that require trusted data, such as the routines that execute operating system commands 

We performed this proof manually. It gave the first indication that our underlying technical 
approach is feasible and scalable. It also found 5 bugs in Hadoop: locations where validation calls 
were missing. 

2. We proved that Hadoop-common uses format strings correctly, as in printf("%s %d", "a string",
42). This was a manual proof, like the one above. We found and reported an error. This shows 
that our approach generalizes to multiple type systems. 

3. We proved that Hadoop-common does not violate its documented locking
conventions.  Programmers can document a locking discipline, which indicates which locks must 
be held in order to access which data. If the program violates its locking discipline, then a race 
condition occurs, which can corrupt data structures and/or cause inconsistent views even of 
uncorrupted data. 

Our tools inferred a locking discipline for Hadoop and proved that Hadoop satisfied the locking 
discipline.  The annotations are of the form @GuardedBy("lockname"), indicating that data of the 
annotated type can only be accessed when holding the lock named lockname, and 
@Holding("lockname"), indicating that lockname is currently held. 

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
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This result required no human intervention -- it was fully automated. However, it did not involve 
the game. This was the first validation of our inference tools, since the previous step had only 
exercised type-checking and not inference. 

4. We re-proved that the Hadoop-common program (100K LOC, lines of code) has no operating
system command injection attacks.  This proof was different in several important respects.  One 
is that we had corrected many bugs, eliminating the need for human intervention and verification 
in certain places. Another is that we performed inference rather than mere type-checking, 
meaning that programmers didn't have to write the annotations.  And most importantly, the 
inference was done by game players. This was the first example of an automated proof:  a 
program was automatically converted to a game, players played the game, completed game 
levels were converted into program annotations, and the annotations were verified, showing that 
the program contains no bugs (of one specific variety). 

We performed an experiment to compare the cost of two techniques for verifying a program's 
correctness.  One technique is the traditional one in which a human verification expert writes the 
specifications and then those specifications are automatically verified. The other technique is  
our crowd-sourced workflow where the specifications are inferred via gameplay, tweaked as 
needed by the verification expert, and then automatically verified. Our goal is to reduce the overall 
cost rather than to completely eliminate the human expert's job, a goal we believe is impractical 
at the current state of the art. 

More specifically, our experiment had two developers annotate a program until the program could 
be automatically verified. One programmer starts from unannotated source code, and the other 
starts from game results (inference). 

We verified the Nexus-SS program, which is a source code repository system for the Maven build 
tool; it consists of 46224 non-comment, non-blank LOC. We verified that it does not use hard-
coded credentials (CWE-798, https://cwe.mitre.org/data/definitions/798.html), where CWE stands 
for Common Weakness Enumeration. This vulnerability exists when “The software contains hard-
coded credentials, such as a password or cryptographic key, which it uses for its own inbound 
authentication, outbound communication to external components, or encryption of internal data.” 

The type system used for verification consists of two types: @HardCoded indicates that a value 
is found in the program source code or computed only from values found in the program source 
code, and @NotHardCoded is all other values.  Interestingly hard-coded values are trusted in 
other contexts, such as assuming that they do not contain data that would be an injection attack. 

https://cwe.mitre.org/data/definitions/798.html
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The results are presented in Figure 5. 

Starting condition Total time Machine time Manual time 
Unannotated 45 7 38 
Game results 4 3 1 

Figure 6. Results.   Times are in minutes. The “Machine time” column is type-checking time, 
which is human wait time. 

These timings do not include annotating libraries, such as which ones require non-hard-coded 
credentials (this determines the proof goal and is required in both cases), or game play (crowd 
time, machine time to generate boards). In this particular case, the game computed 23 correct 
annotations, and the human merely verified them, which took little time. We would like to re-run 
this experiment with more and bigger programs and with different type systems. 

4.3 Free-to-play vs. Paid Players Analysis 

Testing was performed to determine the feasibility of hosting the game (Paradox) on Amazon 
Mechanical Turk, a crowdsourcing marketplace where users are paid based on predefined criteria 
to play the game. After some trial and error to determine reasonable rewards, we implemented a 
policy where users were paid one cent for completing a shortened set of tutorials. If the tutorials 
were completed, users were granted qualifications allowing them to complete game levels 
generated from actual code. These actual game levels paid a flat payment of ten cents for each 
user per level, with a bonus of 25 cents for each period of 5 minutes where the user was actively 
increasing their score (up to a maximum bonus of $1.25). Identical levels were given to players 
on verigames.com and submitted as paid tasks for Amazon Turk users.  
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Figure 7. Time to Completion.   The figure below left illustrates the trend that verigames.com 
players tend to reach the highest score more quickly within a given play session than Mechanical 
Turk users. The y-axis shows scores over time for each player, the x-axis corresponds to the 
number of seconds since the beginning of each play session with all players' play sessions for 
this particular level (p_005204_v522558) overlaid on top of each other. However, in terms of the 
overall number of solutions being generated since the time that the levels are released, the 
Mechanical Turk group tends to have tens of solutions within 24-48 hours compared to the smaller 
verigames.com group. Below right is a figure showing the top scores per play session and the 
number of days since the release of the level that it took to receive those scores per group. 

Figure 8. Willingness to Enter Suboptimal Solution Space.   One recurring issue with
crowdsourced efforts is that players can confine themselves to local maxima, where users 
attempt to monotonically increase their score instead of pursuing a strategy that may 
temporarily lower their score in order to find the best configuration. This is undesirable because 
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it restricts the overall solution space. One might expect that paid players value their time more 
and are less willing to undo progress. However, we did not observe this with Mechanical Turk 
Players. In general, approximately the same portion of players in Mechanical Turk and 
verigames.com pursued lower score strategies. The figure to the left shows one level which 
illustrates the presence of those strategies where the starting score is 1750 and players of both 
groups are observed to go below that score in order to pursue new solutions.

Solving Strategies. Both the verigames.com group and the Mechanical Turk group were 
observed to have used all three brushes, with a heavy emphasis on the Optimizer Brush. There 
was a slightly more pronounced bias towards the use of the Optimizer brush in the 
verigames.com group compared to the Mechanical Turk group as shown in the figures below, 
where paint actions are shown in yellow for the verigames.com group and the Mechanical Turk 
group, respectively. 

Figure 9. Player Solutions.   Generally the high scores for each level contained an even split 
between verigames.com and Mechanical Turk players. In addition, the solutions themselves do 
not appear to correlate amongst members of the same group. In other words, there do not appear 
to be any distinguishing characteristics unique to the verigames.com group solutions compared 
to the Mechanical Turk group solutions. The figure below illustrates the difference in solutions for 
a given level, with the number of wide/narrow variables in each shade of blue. 
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Figure 10. Free-to-play vs. Paid Players Conclusions.   With our current rewards scheme, 
the Mechanical Turk group can return 10-20 solutions for a given level within 48 hours. To 
compare, due to low traffic on the verigames.com site, each level takes a few weeks to gather 
the same volume of solutions. Given the data above and the fact that the solutions appear to be 
equally desirable from both groups, the Mechanical Turk methods appear to be preferable. 

5 CONCLUSIONS 

We attempted a radical new approach to program verification by transforming the problem domain 
into one in which non-experts could interact with a program through the framework of a video 
game. We developed and improved important code verification tools and combined them with a 
series of game interfaces that anyone could play. Through constant playtesting we eventually 
designed a game that 

We made a number of concrete proofs on Hadoop, a large piece of a widespread and currently-
used program in support of developing and testing our approach, and performed an experiment 
to compare the cost of two techniques for verifying a program's correctness which shows the 
CSFV approach can dramatically reduce the time required by an expert, and therefore the overall 
cost, of formal verification.  
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5.1 Recommendations 

The lessons that have guided development from the earlier game Flow Jam to the current game 
Paradox naturally point towards future areas of study. These topics include player performance 
versus fully automated solvers, player effectiveness with different graph representations and 
groupings, and differences between volunteer players and compensated players.  Also, given its 
general nature, problems from other domains that can be encoded as maximum satisfiability 
problems (MAX-SAT) could be used to create levels in Paradox. Our game design may also 
extend to other types of constraint satisfaction problems that can be visualized as a factor graph. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

CGS Center for Game Science 
CSFV Crowd-Sourced Formal Verification 
CWE Common Weakness Enumeration  
DPLL Davis-Putnam-Logemann-Loveland (algorithm for satisfiability) 
GSAT Greedy procedure for solving SATisfiability problems 
LOC lines of code 
MAX-SAT maximum satisfiability 
OS operating system 
PLSE Programming Languages and Software Engineering 
SAT satisfiability 
SAT4j a Java library for solving Boolean satisfaction problems 
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