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1.0 SUMMARY 

Unmanned Air Vehicle, (UAV) Autonomy constitutes a specialized domain of processing 
problems that demand computational architectures optimized to its needs. The unique combina-
tion of processing requirements stemming from the nature of the platform, the tasks to be per-
formed, and the nature of the environment in which the systems operate requires the design of 
efficient and effective real-time cognitive processing architectures that can rapidly adapt to the 
demands of unpredictably changing tasks/environments. As processing resources are a limiting 
factor for autonomous operations in complex environments, the incorporation of new enabling 
low Size, Weight and Power, and Cost, (SWAP-C) processing technologies into autonomous 
systems is important to overcoming current limitations and keeping pace with peer adversaries. 
But with the increasing variety of processing technologies, the number of design choices for im-
plementing end-to-end cognitive processing flows multiplies and the impact of these design deci-
sions on efficiency and effectiveness increases. The goal of this paper is to provide insights and 
guidance to system designers and program managers, not necessarily familiar with cognitive 
processing, regarding the resource/performance tradeoffs, and to provide guidance on the costs 
and benefits of different approaches to cognitive processing.   

Understanding the potential value of cognitive processing requires evaluating overall system 
costs and benefits of behavioral complexity. Typical analyses characterize computational costs of 
component functions independent of the end-to-end autonomous behaviors to which they con-
tribute and the environments in which they operate.  This type of analysis obscures key contribu-
tions that behavioral complexity can make to overall system efficiency and performance (e.g., 
energy consumption of executing complex trajectory planning algorithms needs to be weighed 
against the energetic gains of avoiding energetically expensive paths).  It is important for design-
ers to understand the impact of behavioral complexity beyond its computational costs and event 
to consider behavioral approaches to managing resource consumption and optimization. This pa-
per is organized into two parts: the first part introduces an analytical framework within which the 
relationships between task complexity and system complexity can be formulated; in the second 
part, we introduce and analyze a canonical architecture called context switching cognitive pro-
cessing architecture (CSCPA), that exploits heterogeneous and run-time reconfigurable pro-
cessing hardware to addressing some of the key features and constraints of processing for 
autonomy.   

We begin by introducing a framework for decomposing and characterizing both system and 
task complexity using a state space formalism. This formalism allows us to formulate complexity 
of the environment (i.e., physical systems) and complexity of the autonomous system (i.e., com-
putational systems) within the same framework.  The generality of the state-space formalism is 
equally important in our context in order to be able to analyze a wide variety of different compu-
tational models including both discrete and continuous systems, and asynchronous and synchro-
nous system. Within the state space formalism we describe three distinct dimensions of 
complexity, Structure; Function; and Dynamics. Within this framework we relate task complexi-
ty to system complexity, and provide a framework for describing the different aspects of com-
plexity of each and tradeoffs between them. In general, system complexity must be designed to 
match the requirements of task complexity, but there are a variety of different ways in which 
complexity can be distributed during system design. Of particular importance are the tradeoffs 
between specialization, configurability, efficiency, and autonomy. Mismatches between architec-
tural optimizations and specific function/application characteristics result in inefficiencies. In 
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many application domains, specialization is a common design strategy in which behavioral 
breadth is traded for either greater efficiency (by exploiting structure of a simpler domain) or for 
higher performance (depth of processing in a particular domain). However, in autonomy, there is 
a tension between two key metrics for autonomy, efficiency and operating range. The current 
challenge of autonomy is to achieve a reasonable scaling between task breadth and system re-
sources.     

The conflict between operating range (i.e., breadth), efficiency, and performance can be ad-
dressed through dynamic specialization of processing capabilities to the current task demands to 
increase both autonomous performance and computational efficiency. This approach is enabled 
by run-time reconfiguration (RTR) architectures that allow hardware to change organization dur-
ing the computation to tailor end-to-end processing chains as needed during different phases of 
the computation/behavior/task. Specialization of processing provides improvements in both the 
efficiency and performance of processing, over processing that is statically optimized to the 
global operational context. Context Switching Cognitive Processing Architectures are introduced 
as a canonical RTR architecture suited to autonomy applications. The core computational princi-
ple motivating context switched processing is the decomposition of complex task domains into 
piecewise simple domains, called contexts, enabling the use of lower complexity/specialized al-
gorithms to achieve the task objectives within each domain.  When operating in dynamic and un-
predictable real-world scenarios, context sensitive run-time reconfiguration can temporally 
multiplex limited hardware resources. The potential benefit of run-time reconfiguration is the 
specialization of the context specific computation to the near-instantaneous needs of the task, 
reducing resources (e.g., the size and energy) required/consumed. These benefits of improved 
context specific processing performance/efficiency must be weighed against the costs of context 
monitoring and context switching (e.g., the additional space required to hold extra configuration 
information and the time and energy needed to reconfigure).  One of the advantages offered by 
CSCPA is the ability to parallelize the Context Monitoring and the Context Specific Processing 
components. Our analysis supports the case for using heterogeneous reconfigurable processing 
hardware in implementing CSCPA when the number/complexity of contexts is sufficiently large, 
and the frequency of context changes is sufficiently low.  We specifically considered the use of 
event based processing (e.g., TrueNorth) for context monitoring because of the low power need-
ed for continuous monitoring of sparsely occurring complex events. The low precision, probabil-
istic, and approximate nature of event based processing techniques is well matched to the nature 
of contexts in the environment, which do not have precisely definable boundaries or features. 
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2.0 INTRODUCTION 

In this paper we present a processing resource analysis for embedded systems that consist of 
heterogeneous processors. Different processing hardware architectures (General Purpose Proces-
sor, GPP, Graphical Processing Unit, GPU, Neuromorphic, Field Programmable Gate Array, 
FPGA, and Application Specific Integrated Circuit, ASIC) are efficient for performing different 
computational tasks. The overall performance of such a heterogeneous embedded system will 
depend upon the allocation of computational tasks to computational resources. The domain of 
interest in this paper is UAV autonomy which has a unique combination of processing require-
ments stemming from the nature of the platform, the tasks to be performed, and the nature of the 
environment in which the systems operate. The following attributes, in combination, shape the 
unique the requirements and constraints of processing for autonomy:  
1. Nature of the Task/System:
a. Closed Loop Control: all autonomous behaviors inherently consist of closed loop interac-

tions between the platform and the environment. The environment provides inputs to the plat-
form sensors and the platform responds to inputs by acting upon the environment through
actuators. The function of processing in autonomy is to optimally map sensor inputs to actua-
tor outputs. The fundamental organizational structure of processing for autonomy consists of
the control loop, consisting of elaborations of the basic sense-decide-act chain that is closed
through the environment.

b. Real-Time Control: Typically there is a limited amount of time in which the autonomous
system must respond to events in the environment. Most of the control tasks performed in au-
tonomy therefore have latency requirements. These can often be very demanding (e.g., obsta-
cle avoidance during high speed flight in cluttered environments), and optimization of end-
to-end processing latency is often a key performance objective. Real-time, (RT) stream pro-
cessing provides an appropriate algorithmic framework for the formulation of RT end-to-end
processing chains for control.

c. Performance criteria: In many application domains, the primary objective of computation is
to find exact or optimal solutions to a computational problem, while the minimization of
computational resources is a secondary concern. In autonomy, whole system resource mini-
mization (which includes computational resources) is often an equal or more important con-
cern, and adequate solutions to computational problems that can be generated quickly and
cheaply are often preferable to exact or near optimal solutions.

d. Operating Range: In many computational domains, the input and output spaces and the ob-
jectives of the computation are narrowly defined and known a priori, which leads to solutions
that are deep (highly optimized for the specific domain) but not broad. One of the fundamen-
tal objectives of autonomy is breadth - the ability to operate in as wide a variety of environ-
ments as possible, and to execute as wide a variety of missions (objectives) as possible.

e. SWAP-C: The size, weight, power, and cost constraints on the autonomous system are typi-
cally considerably stricter than in other domains. These considerations not only affect the
performance criteria as discussed above, but also limit the sensing, processing, and actuation
capabilities of the system. These limitations affect the type, bandwidth, resolution, and quali-
ty of measurements of the environment, and affect the bandwidth, precision, and effective-
ness of actions on the environment.
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2. Nature of the Environment:
a. Non-Stationarity: Many of the algorithms designed today depend upon assumptions about

the statistical stationary of the environment (e.g., linear time invariant systems) that allow the
use of standard statistical estimation methods. Unless one artificially constrains the operating
environment within narrow ranges, typical environments are highly non-stationary and fre-
quently discontinuous. This strongly influences the nature of inputs to autonomous systems
and the dynamic responses of the environment to system outputs.

b. Information Sparseness: the vast majority of sensor data is either predictable (due to the
highly predictable nature of the environment) or irrelevant to the task being performed. The
main occupation of processing in autonomy is the detection of and response to the sparse set
of unpredictable and relevant events. Data may be unpredictable for several different reasons:
truly stochastic behavior of the environment that cannot be predicted; insufficient sensing
which does not provide enough resolution/accuracy/range of the variables needed for predic-
tion; hidden or unobservable variables that influence the behavior of the environment; insuf-
ficient complexity in prediction models/or limited predictive processing resources that do not
provide the needed accuracy/complexity to model the environmental phenomena of interest.
Computational, architectural, and algorithmic concerns, approaches, and solutions that con-

form to this unique collection of task, system, and environmental constraints and characteristics 
should therefore be considered to constitute a distinct sub-class of embedded computation, pro-
cessing for autonomy, on a par with other classes of computation like cloud computing.   

UAV autonomy requires the design of efficient and effective real-time cognitive processing 
flows. The use of a variety of specialized processing technologies provides unique advantages in 
addressing both the strict SWAP constraints on UAV processing and the demanding processing 
requirements of autonomous behavior in complex and rapidly changing environments. For ex-
ample, event-based sensing and computation is an efficient alternative to traditional solutions, 
but it is not clear exactly for what platforms, tasks, and environments. As processing resources 
are a limiting factor for autonomous operations in complex environments, the incorporation of 
new enabling processing technologies into autonomous systems is important to overcoming cur-
rent limitations and keeping pace with peer adversaries. But with the increasing variety of low 
SWAP-C processing technologies, the number of design choices for implementing end-to-end 
cognitive processing flows multiplies and the impact of these design decisions on efficiency and 
effectiveness increases [1].  The leading cause of delay between innovation and deployment in 
this arena is the combination of rapid evolution of new processing technologies, and the lack of 
tools to evaluate the resource and performance impacts of alternative end-to-end system design 
choices. In current design practice, performance/resource consumption assessment is limited to 
analysis and experimentation on specific implementations of individual component functions be-
ing executed on homogeneous processing hardware. Design of optimized system level autonomy 
requires the performance assessment of entire end-to-end flows, driven by and interacting with 
operationally realistic environments while executing on real heterogeneous processing platforms. 
Tools for evaluating the performance/efficiency of heterogeneous cognitive processing flows are 
becoming increasingly important for accelerating the transition of new processing technologies 
into autonomous systems.  While resource requirements and performance of end-to-end autono-
mous systems have been evaluated for isolated system functions, integrated end-to-end cognitive 
processing flows have not received the same treatment. End-to-end cognitive systems require 
their own unique performance and resource metrics and analysis methods that differ significantly 
from those of their individual functional constituents. If clear metrics and methods existed for 
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assessing costs and benefits of different end-to-end cognitive systems and alternative computing 
technologies, then system design and acquisition personnel could make systematic analyses and 
quantitative comparisons of alternative technologies leading to more informed decisions. The 
goal of this paper is to provide a reference document to be used as a decision-making aid to 
guide system designers and program managers not necessarily familiar with cognitive pro-
cessing, or resource/performance tradeoffs of different approaches to cognitive processing, to 
provide guidance on the costs and benefits of different approaches to cognitive processing, pay-
ing particular attention to issues related to integration of cognitive process flows within both leg-
acy and emerging UAVs and weapons systems.  In the following we will address two topics: 1. 
Metrics appropriate for the design and analysis of end-to-end processing systems for autonomy. 
2. The resource analysis of a particular canonical form for autonomous system processing.
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3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Taxonomy and Metrics for Autonomy 

 One of the most challenging aspects of performing a quantitative comparison between end-
to-end cognitive systems is their variety. In their most basic/abstracted form, end-to-end cogni-
tive flows integrate sensor processing, decision making, and motor output, into a sensori-motor 
information processing loop that is closed through the environment which is both sensed and act-
ed upon (Figure 1). The basic Sense-Decide-Act 
loop constitutes the basic structural construct of 
processing for autonomy. [2] 

However, both in evolved and engineered sys-
tems, the elaboration of this basic pattern, and in 
particular the expansion of the intermediate pro-
cessing between sensory input and motor output, 
has been associated with an increase in cognitive 
capability and behavioral flexibility. These sys-
tems can span a large range of complexity, capa-
bilities, and operating ranges [3, 4]. In this section 
we will address metrics enabling analysis of a 
wide variety of full cognitive process flows.    

No single factor has a more ubiquitous effect 
on both performance and SWAP-C than system 
complexity. Additional complexity can always be 
exploited to achieve better task performance but 
there are complicated factors that affect the cost-benefit tradeoff of adding additional complexi-
ty.  For example, evaluation of the value of current computations is complicated by their influ-
ence on future benefits/rewards, indicating the need for an amortized analysis (i.e., an analysis 
that takes into account not only instantaneous performance but also long term performance). A 
canonical example is the use of pro-active computation, in contrast with reactive computation. 
Reactive processing is always necessary in autonomous systems to cope with unexpected events 
in the environment. Pro-active processing, while adding complexity and not being strictly neces-
sary, can however lead to significant performance improvements that can outweigh significant 
processing costs by predicting and preventing computationally or energetically expensive cir-
cumstances from arising (e.g., it is much more costly to perform an emergency maneuver to 
avoid a collision, than to predict it and avoid it long in advance).   

It is therefore important to account for system complexity in analyzing cost/performance 
trends. Analysis of other factors influencing cost and performance will require that system com-
plexity be factored out before making comparisons. In the following we will present a taxonomic 
breakdown of autonomous system complexity, both its descriptive components (which should be 
used to characterize the complexity and limitations of autonomous systems), and its prescriptive 
components (which should be used during design to determine the required system complexity). 
Taxonomies and metrics go hand in hand; the criteria used for splitting systems into groups must 
be based upon some form of metric. Therefore we will present an integrated discussion of taxon-
omies and metrics rather than discussing them separately.     

Figure 1: Illustration of Basic Sense-Decide-
Act Loop 
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3.1.1 Background. 
AUTONOMY LEVELS FOR UNMANNED SYSTEMS (ALFUS) is the best known and 

most well established unmanned system (UMS) taxonomy [5]. It was a product of a cross-
government ad hoc working group started in 2003 under the direction of the National Institute of 
Standards and Technology (NIST), Department of Homeland Security (DHS), and Army Re-
search Laboratory (ARL), and published its results in 2008. Its goal was to develop a framework 
for characterization of autonomy for unmanned systems that provided standard terms and defini-
tions for requirements analysis and specification, and metrics, processes, and tools for evaluation 
and measurement. The ALFUS metrics characterize autonomous systems along three dimen-
sions: Mission complexity; environmental complexity; and human independence. These are a 
good set of metrics for characterizing key factors that are specified by external functional system 
requirements at the beginning of the system design process. However, these dimensions do not 
address the solution space.  

Figure 2: Illustration of the Three Primary Dimensions of the 
Autonomy Levels for Unmanned Systems Framework 

While the ALFUS framework was a seminal study and many of the distinctions developed in 
that study are adopted here, this framework does not provide a means for characterizing internal 
system complexity needed in the design and comparison of alternative cognitive processing ar-
chitectures, and the framework does not provide clear insights into the design tradeoffs between 
the different metrics.   In the current work, we alter the ALFUS framework, combining some 
categories and splitting others to provide a framework useful from the prescriptive/engineering 
standpoint. The framework developed here captures key engineering decision points and re-
quirements and dependencies between engineering decisions from top down perspective. 
3.1.2 State-space Formulation of Complexity. 

 The complexity of systems, whether natural or man-made, can best be formalized using the 
concept of the system state space (also called phase space). The state space of a system is the 
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space of possible configurations that the system can assume. For example, in statistical mechan-
ics, the state of a gas is determined by the positions and velocities of all the particles in the gas. 
In a digital computer, the state would be the binary state of all the binary devices in the comput-
er. However, in practice such fine grained analysis is not possible, and one must instead evaluate 
coarser macro-states of these systems. We will return to the topic of characterizing the complexi-
ty of the state space in the section on context switching systems.  The generality of the state-
space formalism is important in our context in order to be able to analyze a wide variety of dif-
ferent computational models including both discrete and continuous systems, and asynchro-
nous and synchronous system. It also allows us to formulate complexity of the environment 
(i.e., physical systems) and complexity of the autonomous system (i.e., computational sys-
tems) within the same framework. It is conceptually useful to think of resource consumption as 
a measure of the resources needed to maintain states and to make state transitions, and to formu-
late processing latency in terms of the length of trajectories in state space.  

Each of the system complexity measures we will be discussing (environmental, mission, sys-
tem complexity) can be described along three distinct dimensions: Structure; Function; and 
Dynamics. Each can be conveniently formulated within the state space framework. All three 
types of characterization are useful for a full description of system complexity, but this triplet 
constitutes an over-complete description. Any two measures in the triplet will largely determine 
the third. For example, knowing the structure of the processing system and the dynamics of the 
execution of the processing determines the functional input-output relationship. In computational 
system design there is often a tradeoff between complexity in one of these dimensions and com-
plexity in the others.        
3.1.2.1 Structural Complexity. 

Structural complexity captures the static/kinematic aspects of the system that define and con-
strain the possible states of the system and hence determine the complexity of the state space it-
self. Structural system characteristics correspond either to static aspects of the system that are 
fixed at design time, or to infrequently or slowly changing (in comparison with the timescales of 
the run time computations) characteristics of the system.  It is largely determined by capabilities 
of fixed hardware, but can also include the constraints imposed by software, if the software is 
fixed (e.g., many FPGA implementations). 

The structural complexity reflected in the state space is determined by the: 
• Dimensionality or number of degrees of freedom (DoF) in the state space; Dimensionali-

ty and DoF can differ when the actual state space is constrained and consists of a sub-
space embedded in a space of higher dimensionality (e.g., strange attractors).

• Geometry and Topology of the state-space, defining neighborhoods of states, nearness
of states, and distance metrics between states. State spaces with complex geometry and
topology can be constructed with complex state transition functions where distance is de-
fined in terms of number of transitions from one state to another. The structural complex-
ity of an ASIC is captured in both the complex geometry/topology of its state-space and
of the state-transition function which is determined by the particularities of the structure
of a specific application.

• Quantization of the state-space, which includes both the dynamic range and the resolu-
tion of each of the dimensions of state space. Quantization need not be uniform, and may
be specialized for the environment or task.

One can intuitively think of these factors as determining the number of unique states that 
can be distinguished. The state space is partitioned up into N dimensional volumes (cubes in the 
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simplest case) and each distinct state is represented by a unique volume. The number of elements 
in the state space is often a key parameter in determining the computational complexity of algo-
rithms. A critical task in the design of autonomous systems is specification of the state spaces for 
the environment, the mission, and the system, their dimensions, metrics, and quantizations.    
SWAP-C  

• Cost:  Structural complexity is the dominant contributor to fixed/sunk costs in hardware
determined at design time.  Since structural complexity cannot be altered easily after the
system is constructed, it is common for designers to engineer in excess structural com-
plexity to create capacity to accommodate unanticipated future processing demands. It
has been hypothesized that in biological systems, structural complexity comes at a low
cost [6].

• Power: The idle power consumption is determined by structural complexity. Each active
stateful device requires power to maintain state and be ready to respond. Another im-
portant contributor to power requirements is communication network needed for interac-
tions between devices.

• Size/Weight: Greater structural complexity implies more devices which leads to larger
and heavier systems. The scaling of auxiliary systems such as power supplies may domi-
nate the scaling of size and weight as structural complexity increases.

3.1.2.1 Functional Complexity. 
Functional complexity describes the complexity of the input-output mapping or the objective 

function being optimized, without reference to the implementation of the mapping. This is only 
relevant to systems in which there are subspaces of the state space identified as input dimensions 
(e.g., sensor state variables) and output dimensions (e.g., actuator state variables). Functional 
complexity captures the complexity of externally observable mapping performed by the system, 
which can be assessed based upon a black-box analysis.  Characteristics of mappings such as 
number of input/outputs, number of dependencies between inputs/outputs, non-linearity, non-
convexity, discontinuity, and asymmetry contribute to their complexity.  Figure 3 shows a sys-
tem with low functional complexity.  

Figure 3: Rube Goldberg Machines Have Low Functional Complexity 
but High Structural and Dynamic Complexity 
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For engineered/designed systems, the input-output mapping is specified by functional re-
quirements of the task to be performed. The input-output mapping can be described either:   

• Explicitly with an exhaustive, exemplar based, or sample based set of input-output pairs,
or with equations; or

• Implicitly with an objective function or reward function and constraints whose optimal
solution is the desired mapping

In autonomous systems, it is most common to specify functional requirements implicitly as 
an optimization problem.  

The concept of function can also be applied to natural/non-engineered systems (e.g., the envi-
ronment) in a well-defined way by considering the governing equations of the system as their 
input-output function. The governing equations provide a mapping from current observable state 
of the system to next states. For example the behavior of many physical systems can be derived 
from the optimization of an objective function (energy function/Hamiltonian). This mapping may 
depend upon unobservable variables.  

The Vapnik-Chervonenkis (VC) dimension offers a possible computational complexity 
measure with which to quantify Functional complexity. This is a measure of the ability of the 
functional map to distinguish and respond to different situations differently. It is a measure of 
behavioral flexibility. 
SWAP-C:  

Since functional complexity is by definition independent of implementation, it is difficult to 
establish anything but theoretical lower bounds on the processing complexity and SWAP. It does 
however have a profound effect on the overall SWAP of the autonomous system (i.e., the 
plant). For example, the energy consumption of navigating to a target will depend critically on 
the navigation behavior executed, and whether the platform can intelligently anticipate and avoid 
time and energy consuming situations. The behaviors executed by the autonomous system are 
determined by the input-output mapping. If we are discussing a control system (as all autono-
mous systems essentially are), the input-output map constitutes the control law. One can evaluate 
and compare different control laws using metrics such as energetic efficiency, robustness, speed 
of convergence, etc. These are key behavioral performance measures for the system as a whole, 
rather than just for processing. Increasing functional complexity, while it may incur a computa-
tional cost, may be critical for reducing overall system SWAP. The greater functional complexity 
achievable by a larger platform (due to its ability to incorporate more processing resources) may 
provide behavioral energetic advantages that offset the larger processing SWAP-C. Conversely, 
in order for a larger SWAP platform to be operationally useful / feasible, it may be necessary to 
give it greater functional complexity and hence processing SWAP-C in order to offset its overall 
SWAP-C. 
3.1.2.1 Dynamical Complexity. 

Dynamic/Behavioral complexity describes the complexity of state space trajectories as the 
system evolves in time.  The system dynamics are specified by: a state transition function that 
explicitly describes the mapping of the state at one instant to the state at the next instant (e.g., a 
program); differential or difference equations (e.g., a dynamical system); or by the implicit opti-
mization of an objective function (e.g., minimization of an energy function or other trajectory 
characteristics such as curvature or length).  Figure 4 shows a system with high dynamical com-
plexity.   
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In the resource analysis of end-to-end system cognitive processing, measures of interest are 
defined on end-to-end state trajectories. There are many ways to characterize the complexity of 
state space trajectories. For systems in which there are distinguished input and output subspaces, 
the trajectories of interest are typically those corresponding to the propagation of information 
from input (changes in state of input subspace) to output (changes in output subspace). One sim-
ple measure is the length of the trajectory, which is a measure of the latency of the end-to-end 
computation. The calculation of the energy consumed during end-to-end computations can be 
partitioned into energy consumed in maintaining state and energy consumed in state transitions. 
The total transition energy consumed in an end-to-end computation is the path integral of the 
state-transition energy function. In physical systems, the complexity of state space trajectories 
can be descriptively characterized by the rate at which new information is generated. For simple 
deterministic phenomena, the trajectory complexity is low due to the predictability of the next 
state. Information generation rate is an important measure of the complexity of dynamics. As 
discussed in greater detail in the section on reconfigurable computing, temporal multiplexing of 
hardware leads to more complex computational dynamics in both system activation and configu-
ration state-spaces. 

Figure 4: Busy Beaver Turing Machines Have Low Structural and 
Functional Complexity, but High Dynamic Complexity 

The following examples illustrate the mapping from common computational concepts to 
characterizations of computational dynamics:  

• Parallelism in processing is reflected in the state-space trajectories that move in multiple
state-space dimensions simultaneously.

• In synchronous processing the trajectories progress in regular discrete time steps, while in
asynchronous processing, the trajectories can progress in continuous time or irregular
discrete steps.
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SWAP-C: 
Each active change in state of a processing system consumes time and energy. In general, 

larger changes in state will consume more time and energy. Motion of the state in different di-
mensions of the state space will incur different energy and time costs. In particular it is important 
to note that in processing systems, there can be significant dynamics in both the activation state 
space (corresponding to the execution of “within context” computations) and in the configuration 
state space (corresponding to context switching). The costs associated with state transitions dur-
ing program execution will be significantly different from the costs of system reconfiguration 
that occurs during context switching. 
3.1.3 Complexity of Autonomy. 

There are dual aspects of the complexity of autonomous systems: one aspect captures the task 
complexity and determines the requirements imposed upon the designed system, constituting the 
independent variables over which the designer has no control (although see below under mission 
complexity for caveats); the dual aspect is the system complexity, which includes many aspects 
of the system other than processing (although we will be focusing only on sensing, processing, 
and actuation system components), and is the result of engineering design decisions. Figure 5 
shows that system complexity must be commensurate with task complexity. Growth of system 
complexity with respect to task complexity (right) is the main challenge of autonomy. 

Figure 5: Taxonomy of Complexity for Autonomy 

3.1.3.1 Task Complexity. 
Task complexity and performance requirements place a lower bound on the complexity of 

the autonomous system that can execute the task at the desired level of performance. Task com-
plexity combines two of the dimensions in the ALFUS framework: Environmental complexity; 
and Mission complexity. While these are typically beyond the control of the system designer and 
come in the form of system requirements, there is an important feedback from the designer dur-
ing system design, in which the designer alters the design requirements by specifying system op-
erating constraints. These specify both limitations on the environment complexity (e.g., cannot 
fly in winds stronger than x) and on the mission complexity (e.g., can only track up to x simulta-
neous targets).  
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Environmental Complexity 
The environment or range of environments in which the autonomous system must operate 

will have a significant impact on the computational burden on the system and is an important 
factor in determining the requisite system complexity. For example, the processing load associat-
ed with navigating in a sparse environment differs significantly from the processing load associ-
ated with navigating in a heavily cluttered environment.  As discussed in the introduction, two 
characteristics of the environment that have a significant impact on the processing load are: sta-
tionarity/non-stationarity; and predictability/stochasticity/information generation rate/rate of in-
novation. 

• State Space Structure: The state of the environment can be described at many different
levels of granularity. In practice, the appropriate level of description is largely determined
by the mission requirements and by the behavioral resolution of the system. The finest
scale at which the system can sense and act upon the environment sets a lower limit on
the relevant resolution of the environment state space. The dimensions of the environ-
ment state-space are not typically the same as for the sensor state space. For example, for
a navigation task, the relevant environmental state space could be the 3D positions and
motions of all the objects in the environment, but the sensors may not be able to detect
these features directly. The maximum precision with which positions and velocities in the
environment can be inferred will be determined by the sensors. The dimensions of the
environmental state space need not correspond to physical dimensions, nor do they need
to be tied to an absolute coordinate system. They can be conceptual (e.g., object catego-
ries) and relational dimensions (e.g., relative speed). Relevant environmental states can
include unobservable/hidden variables such as the internal states of other systems in the
environment (e.g., internal state of an evasive target) that can affect their observable be-
havior.

• State Space Function: The governing equations of the dynamics of the environment can
be expressed in a variety of different forms.  The trajectory of a thrown ball is governed
by Newton’s laws but also can be expressed as the minimization of an objective function
(Hamiltonian formulation). In the case of animate objects in the environment (e.g., other
aircraft, people, machines) their behavior can also be described by governing equations
that can often be expressed as the optimization of an objective function that captures in-
tent or purpose. It is important to note that governing equations can vary with respect to
the state of the environment, and it is not uncommon to have large abrupt changes in the
governing equations. This gives rise to situations in which different regions of the envi-
ronmental state space exhibit very different dynamics (non-ergodic/non-stationary behav-
ior).

• State Space Dynamics: The dynamics of the environment is a product of both the state of
the environment and the governing equations (structure and function). Dynamics can be
described either implicitly as the solution of the equations of motion or state transition
function, or explicitly as a trajectory in state space. Even if the current state is known
with certainty, the trajectory can be stochastic due to the stochasticity of the equations of
motion/transition function. The complexity of the dynamics of the environment deter-
mines how predictable the environment is, which in turn has a significant impact on pro-
cessing load.
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Mission Complexity 
• State Space Structure: Mission state consists of the state of autonomous system with re-

spect to state of the environment, both points being in the state space of the environment
(e.g., if the mission is to navigate to a target, the current state is the position and heading
of the UAV relative to the target). The description of the autonomous system state does
not include any internal system state variables that are not part of the environment state
space.

• State Space Function: Mission objectives can be expressed in a number of ways: by de-
fining a set of goal states (environment state, autonomous system state) pairs; or by defin-
ing an objective function on the set of all pairs that is to be optimized.

• State Space Dynamics: Mission dynamics are the product of both the dynamics of the
environment and the dynamics of the autonomous system. Mission objectives can change
as a function of both of these states. Changes to mission objectives can have a significant
impact on both processing and overall system resource demands.

3.1.3.2 System Complexity. 
Usually the designer tries to find the simplest system architecture that will satisfy the task re-

quirements. SWAP-C is proportional to complexity since more complex systems usually consist 
of more components, more complex components, and more expensive components. There are 
however interesting tradeoffs that can be made between the complexity of the non-processing 
system components and the processing components in which: one can make do with less com-
plex non-processing components by increasing behavioral/processing complexity (e.g., can 
maintain temperature either with an internal temperature control system, or behaviorally - by go-
ing into the sun when it is cold); likewise, one can make do with simpler processing if more 
complex non-processing elements are used (e.g., elastic properties of materials can be exploited 
to passively conserve energy).   

In order to account for systems that are semi-autonomous and/or are part of a larger distribut-
ed system, we broadly divide system complexity into internal system complexity, and external 
system complexity. This distinction is important, as many systems shift complexity from internal 
systems to external systems as a means for lowering the SWAP-C in exchange for sacrificing full 
autonomy. It has been proposed that a measure of autonomy is the ratio of the algorithmic com-
plexity of the internal system and the communication complexity between the internal system 
and external systems [7]. Figure 6 illustrates both the notional tradeoff between internal and ex-
ternal system complexity with respect to autonomy, and the splitting of task complexity between 
internal system complexity and external system complexity. The split determines the degree of 
autonomy of the system. 

While the ALFUS framework specifically refers to human independence as a dimension for 
characterizing autonomous systems, we use a more general framework in which external systems 
can be either human or machine. External systems such as larger platforms, ground stations, 
networks/clouds, supercomputers, or humans can provide a resource constrained system with 
additional resources as long as the systems have sufficient bandwidth to communicate the needed 
information. While communication with external systems is desirable in that it can provide use-
ful information/resources that are not available locally, the dependence on external systems in-
troduces an undesirable vulnerability that can be exploited by adversaries, (e.g., denial of 
communications or manipulation).   
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Figure 6: Illustration of the Growth of System Complexity with Task Complexity 

System designs with adjustable autonomy should be considered a compromise that permits 
resource savings by depending on external systems when communications are available and can 
move toward progressively greater autonomy as communications degrade. The price for this 
compromise is that such systems must be designed to include enough “margin” to ensure that 
processing resources are available when increased autonomy is required. This has the side effect 
of requiring more SWAP-C to accommodate the additional processing resources, which will 
consume additional power, fuel, etc. even when the additional processing resources are idle.  
Internal System Complexity 

In processing systems it is convenient to distinguish two different types of system state, con-
figuration state and activation state, and to factorize the state-space into the product of the con-
figuration state-space and the activation state-space.   

• Configuration state corresponds to the values of all the adjustable settings of the system
that determine the system operation (e.g., programs). Configuration changes include load-
ing new programs, such as during reflashing of an FPGA/neuromorphic processor, or
context switching in a GPP. Configuration state is particularly important when we con-
sider learning and adaptation. Configuration parameters include slowly changing global
mode parameters such as energy saving modes and clock speeds, to operating system pa-
rameters governing things like memory allocations and priorities, to very fast changing
context switching and configuration of control logic during program execution.

• Activation state corresponds to the dynamic state of the system that changes as data is be-
ing processed. In digital computation, the activation state includes values of variables in
memory, stacks, caches, registers etc. In neuromorphic processing, the activation state in-
cludes the activation values of each of the neurons, synapses, etc. A program execution
can be viewed as a trajectory in activation state-space.

Figure 7 shows the decomposition of internal system complexity into activation and configu-
ration complexity.  These are primarily distinguished by timescale, but are conventionally asso-
ciated with data and control/instruction processing. The complexity of any state space can be 
decomposed into structural, functional, and dynamical complexity. Structural complexity is de-
termined by degrees of freedom, quantization resolution, and geometry and topology of the state 
space.  In formal terms, the main distinction between these is in the timescales on which they 
change (slow and fast respectively – more generally one should consider a spectrum of time-



Approved for Public Release; Distribution Unlimited. 
16 

scales). Informally, the distinction is between control/instruction and data. Computational archi-
tectures often include separate communications paths for data and for control signals for recon-
figuration. The independent consideration of these two subspaces is only valid when the behavior 
in configuration space is independent of the behavior in activation space. In general this will not 
hold. In neural systems an important component of the activation state is the membrane voltage 
of neurons, whereas an important component of the configuration state would be the strengths of 
synaptic connections between neurons.  

Figure 7: Decomposition of Internal System Complexity into Activation and Configuration 
Complexity  

It is common in processing system design to trade off structural complexity and dynamical 
complexity to implement a given function (simple system doing more work vs. complex system 
doing less work) [8]. A comparison of complex instruction set computing (CISC) architectures 
that build complex instructions directly into the hardware and reduced instruction set computing 
(RISC) architectures that can accomplish the same things using simpler hardware but at the cost 
of more/complex activity serves as a well-known example of this tradeoff [9]. By constructing an 
activation state space in which relevant states are close or well organized, one can simplify dy-
namics. The distinction between software and hardware reflects the differences between dynam-
ics and structure. For example, one can implement the same algorithm on an ASIC or in a GPP. 
The ASIC has high structural complexity (e.g., many irregularities/asymmetries in the circuit de-
sign leading to complex state space geometry and topology) and low dynamical complexity (e.g., 
no dynamics in the activation state space associated with program execution; no configuration 
state space dynamics). The central processing unit (CPU) implementation has low structural 
complexity (e.g., simpler state space geometry and topology), and high dynamical complexity 
(e.g., complex dynamics due to program execution). To be scalable, processing hardware design 
depends a great deal on structural regularity/symmetry. This gives rise to regularity/symmetry in 
the geometry and topology of the state space. These regularities give rise to low complexity ac-
cording to the definition of algorithmic complexity. As task complexity (ie. functional complexi-
ty) increases the system complexity must also increase, but there is a design choice to be made 
about how one splits that additional complexity between structural and dynamic (Figure 8).  
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Figure 8: Relationship Between Functional or Task Complexity and System (Structural 
and Dynamic) Complexity 

As part of the design tradeoff between structure and dynamics important design decisions 
must be made regarding the allocation of complexity to the activation state space and to the 
complexity of the configuration state space. This is also a tradeoff in which, greater complexity 
in the configuration state space/dynamics can result in simplification of the activation state 
space/dynamics,([see discussion of context dependent processing).  

Supporting dynamic reconfiguration has costs and benefits. Creating complex activation state 
spaces without configurability imposes a large design time cost [8]. Creating complex activation 
state spaces with configurability imposes a run time cost. Comparing an ASIC, an FPGA, and a 
GPP illustrates this point. An ASIC has few degrees of freedom in its configuration space – its 
configuration is fixed at design time to support a particular application – but has complex (appli-
cation specific) activation state-space geometry/topology and dynamics; an FPGA has many de-
grees of freedom in its configuration space but it is costly (in time and energy) to reconfigure and 
the structure of the activation state space is less complex; a GPP has a relatively few degrees of 
freedom in configuration space, but highly complex configuration space dynamics (which results 
in time and energy costs). 

• State Space Structure: Internal system state can be decomposed into activation and con-
figuration subspaces. From the hardware perspective, the state space consists of the pos-
sible states of the hardware. The actual state space may be considerably more
constrained, consisting only of the set of states that can be reached from initial states us-
ing valid transition functions. As with the state-space of the environment, the relevant
granularity of the internal system state space will depend on the function being per-
formed. Characterization of structural complexity will leverage a key architectural design
pattern for incrementally expanding capabilities of cognitive systems through the addition
of new sensori-motor loops on top of existing sensori-motor loops.

• State Space Function: The function of the internal system is characterized in terms of the
mapping performed from state in the input subspace, to state in the output subspace. This
function can be described either extensionally in terms of input, output state pairs, or in-
tensionally with equations or objective functions.

• State Space Dynamics: Internal system dynamics is described by the trajectory of system
states that are determined by the state transition function.
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3.1.3.3 Specialists, Generalists, and Autonomy. 
In general, the more task complexity is reduced, the greater the degree of autonomy we can 

achieve with limited resources [10, 11]. Specialization is a common design strategy in which be-
havioral breadth is traded for depth in order to achieve a performance objective within given re-
source constraints. Constraining the task can introduce regularities that can be exploited to 
reduce required system complexity. Task specialization is the restriction of either the operating 
range/environment of the system or a restriction of the breadth of the mission. At some point, if 
the task is made simple enough, we cross the line from the autonomous into the automatic. The 
current challenge of autonomy is to achieve a reasonable scaling between task breadth and sys-
tem resources. It is important when comparing different autonomous systems, to compare sys-
tems of similar degree of specialization. Matching task complexity to resources, or resources to 
task complexity, is an important part of the design process. 

Specialization can be understood as a reduction in/redistribution of the state-space complexi-
ty of the system enabled by a corresponding reduction in the state-space complexity of the 
task/environment. System state space complexity can be reduced through a reduction in dimen-
sionality/degrees of freedom, complexity of quantization, or geometric/topological complexity, 
Figure 9). For example, by operating within a restricted environment, environmental complexity 
will be reduced as a result of reducing the number of degrees of freedom and increasing the pre-
dictability of the environment (e.g., operating in an environment with a constant temperature). 
The corresponding system state-space can also be of reduced dimensionality (e.g., no need to 
monitor or regulate temperature). There are a variety of different ways in which environmental 
complexity can be reduced for the autonomous platform:  

• External/User restriction of operating range
• Internal/Behavioral restriction of operating range: the platform autonomously avoids cer-

tain environmental conditions so that it stays within valid operating range.
• Active Control of the Environment:

the platform acts on the environment
to maintain a restricted set of states.

• Partitioning environments into parts
that can be handled autonomously
and parts that require the help of ex-
ternal systems (e.g., maybe autono-
mous platform can cope with
navigating around objects that don’t
move, but need help navigating
around moving objects).

• Gross/Coarse quantization/control of
some state space dimensions and fi-
ne quantization/control of others.

With the consequent reduction in task 
complexity, systems can either achieve the 
same performance with fewer resources, or 
can achieve higher performance with same 
amount of resources. 

An important example of the latter strat-

Figure 9: The Relationships Between Internal 
and External Complexity in the Context of 

Autonomy; Between DoF and Quantization in 
the Context of Specialization; Between 

Specialization and Autonomy 
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egy involves the reduction in state space dimensionality and the increase in the quantization reso-
lution of some of the remaining dimensions, so that the overall number of states remains approx-
imately constant. This increase in resolution on fewer dimensions will permit the system to 
implement more precise and accurate behaviors.  
 3.1.3.3 Behavioral approaches to regulation of computational load and optimization of sys-

tem resources. 
Typically one thinks of system behavior as being governed by processing/computational systems 
for the purpose of achieving mission goals. There is, however, a class of behaviors, the purpose 
of which is to govern processing/computational systems themselves. This class of behaviors can 
be considered to be a subset of homeostatic behaviors that are intended to control/maintain inter-
nal state. There are two types of homeostatic mechanism: internal/covert regulatory mechanisms; 
and external/overt mechanisms. In the case of regulation of processing, an internal regulatory 
mechanism might be to throttle inputs to match the throughput of processors and avoid buffer 
overflows (e.g., increasing the threshold on event based sensors to produce fewer events).  An 
external or behavioral regulatory mechanism might be a UAV slowing down flight speed in clut-
tered environments to maintain a constant sensor data generation rate. [12, 13] These behaviors 
are similar to those mentioned in the previous section devoted to regulating the environment in 
which the system operates, and within our framework, has the effect of simplifying the com-
plexity of the state space dynamics of the environment. In contrast, the internal regulatory mech-
anisms have the effect of reducing the complexity of system state-space dynamics. Figure 10 
shows a UAV performing a navigation/collision avoidance task. At slow speeds, the rate at 
which data needs to be processed and re-
sponded to are lower (top) than at high 
speeds (bottom). Behavioral regulation of 
information rates (e.g., by regulating speed) 
is an important technique for managing data 
with resource constrained computing. 

While these behaviors may seem sec-
ondary to those directed at accomplishing 
mission goals, when resources are limited 
and maintaining autonomy is sufficiently 
important, these behaviors can be of equal 
importance to accomplishing mission goals.  

3.2 Resource Analysis of Cognitive 
Reconfigurable Computing 

The cost structure for processing in autonomy applications differs from other classes of pro-
cessing task [7, 14]. Key metrics for autonomy, efficiency and operating range are addressed by 
architectures that can accommodate real-time reconfiguration, tailoring end-to-end processing 
chains to the current demands of the environment and task. Traditional metrics of optimality, 
precision, and accuracy become soft constraints rather than hard requirements in autonomy ap-
plications. As we enter new era in computing technologies (the “era of dark silicon”) in which 
we can place more transistors on a silicon die than we can afford to turn on at their maximum 
operating speed, energy efficiency determines performance, and the energy efficiency of recon-
figurable architectures may be their key asset [15]. 

Figure 10: UAV Achieving a Collision 
Avoidance Decision 



Approved for Public Release; Distribution Unlimited. 
20 

In this section we present a particular canonical form for cognitive processing architectures, 
which we call Context Switching Cognitive Processing Architectures (CSCPA). As will be dis-
cussed in greater detail below, from the hardware standpoint this architecture belongs to the class 
of run-time reconfigurable (RTR) computing architectures [16]. From the control sys-
tems/functional standpoint this approach belongs to the class of Hybrid control systems. We will 
argue that context switching architectures are: well suited to the nature of processing for auton-
omy; provide a convenient form for analysis; and are general enough to accommodate a wide 
variety of autonomous processing systems. We believe this class is canonical in the sense that: 1) 
completeness/computability/sufficiency: any autonomous control algorithm can be either imple-
mented or approximated to any desired accuracy with an algorithm from this solution space; and 
2) complexity/optimality: there is a control algorithm in the space of solutions which has a com-
plexity that approximates to any desired accuracy the complexity of an arbitrary optimal algo-
rithm.   
3.2.1 Background. 

One of the most important design degrees of freedom in processing architectures is the de-
gree of programmability/configurability. The more programmable the architecture (i.e., degrees 
of freedom in system configuration space), the greater the variety of functions it can perform. As 
processors become more specialized/less configurable, they become faster and more efficient by 
exploiting function specific architectural optimizations. Mismatches between architectural opti-
mizations and function/application characteristics, result in inefficiencies. Designers have chosen 
to balance this flexibility-efficiency tradeoff in different ways resulting in a wide variety of dif-
ferent processing architectures. Many processor technologies are defined by where they fall 
within the configurability/efficiency space (e.g., FPGA) [16].  

At one extreme of programmability, universal machines, any computable function can be im-
plemented by programming the device after it has been created (i.e., post-fabrication program-
ming). The von Neumann general purpose processing (GPP) architecture heavily shares (e.g., 
through temporal multiplexing) a single or small number of generic compute elements which are 
rapidly and frequently reconfigured using instruction bits to perform a specific task (i.e., high 
dynamic complexity of configuration state). Re-configurability does have costs. Holding pro-
grams and reconfiguring functionality comes at the cost of area:  area to store the configuration; 
area for gates that have more functionality than strictly necessary; and area for wires that may 
not be used. In cases that are not fully spatial (e.g., stored-program processors), we also pay for 
energy-reading configurations from memory. These costs result in lower performance, higher 
area, and higher energy than a fixed-function component.  But these costs can be amortized over 
a large set of applications and users and over the lifetime of the device. For these reasons, gen-
eral purpose von Neumann architectures gained a foothold early on in the development of pro-
cessing architectures [8, 16]. 

At the other extreme of programmability, application specific integrated circuits (ASICs), a 
large number of compute elements is used without multiplexing, each of which performs a single 
dedicated operation during a computation. For typical dedicated computing applications the de-
signer attempts to tailor the organization of the machine to a particular application or algorithm, 
or even a particular data set, so as to maximize performance, minimize area, and minimize ener-
gy [8].  

Spatially distributed processing elements and efficient interconnection networks are config-
ured to exploit application specific data and instruction locality characteristics resulting in reduc-
tion in computation time and computation energy. Inefficiencies occur when there is a mismatch 
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between architecture parameters and application characteristics such as: locality (as measured by 
the Rent Exponent, i.e., p_arch vs.  p_app); and word width (i.e., task size vs. device component 
size).   

Between these extremes there are devices whose configurability is limited spatially, tempo-
rally, and/or functionally (e.g., FPGAs, GPUs, Digital Signal Processors, DSPs, Coarse Grained 
Reconfigurable Architectures, CGRAs). Even within the realm of universal machines there are a 
range of processor architectures that fall on the spectrum between few general purpose multi-
plexed computational elements (e.g., RISC) to many special purpose less multiplexed computa-
tional elements (e.g., CISC). Reconfigurable computing (RC) addresses performing 
computations with spatially programmable architectures (e.g., FPGAs). A key differentiator in 
reconfigurable processing architectures is whether the reconfigurable resources are controlled 
with a static configuration, like FPGAs, or with multi-context memories (e.g., Very Long In-
struction Word, VLIW-style CGRAs) [17]. To distinguish cases where the configuration remains 
constant during an application from dynamic/on-line reconfiguration, the latter is termed run-
time reconfiguration (RTR). RTR allows for hardware to change organization during the compu-
tation as needed during different phases of the computation/behavior/task [10].   

There are many organizational scales on which reconfiguration can occur, ranging from local 
gate level to whole system and multi-system levels. The individual processor architectures dis-
cussed above each constitute optimizations to achieve a particular tradeoff between speed, ener-
gy, area, and flexibility, often built to support a single set of parameters tuned to the 
homogeneous characteristics of particular applications. In practice, end-to-end applications do 
not have homogeneous characteristics, but rather contain a mix of sub-computations with differ-
ent characteristics. The famous 90/10 rule from Knuth suggests that 90% of the runtime is spent 
in only 10% of the code.  Such a profile might benefit from a hybrid architecture that has two 
components: one that focused on area minimization for the 90% of the code that runs only 10% 
of the time; and another focused on maximizing computational density and minimizing the ener-
gy for the 10% of the code that runs 90% of the time [18]. At the board level, a variety of proces-
sor architectures supply building blocks from which larger scale heterogeneous processing 
architectures can be constructed. This has led to designs that combine the area efficiency of a 
GPP with the computational density and energy efficiency of a spatially reconfigurable compute 
engine (e.g., commercial processor-FPGA hybrids such as Xilinx Zynq devices combining ARM 
cores and FPGAs).  In the following we will discuss a run-time reconfigurable heterogeneous 
processing architecture that is targeted at autonomy applications in which dynamic configuration 
of end-to-end processing flows will benefit performance both by enabling dynamic specialization 
of processing capabilities to the current task demands to increase both autonomous performance 
and computational efficiency. 
3.2.2 Context Switching Cognitive Processing Architectures. 

The core computational principle motivating context sensitive processing is the decomposi-
tion of complex task domains into piecewise simple domains, called contexts, enabling the use of 
lower complexity/specialized algorithms to achieve the task objectives within each domain. This 
is similar to piecewise approximation of functions. By choosing a sufficiently fine decomposi-
tion of the domain of the function, linear approximations to the function will be valid within each 
domain element. With coarser partitions of the domain, more complex (e.g., quadratic) approxi-
mations will be needed to keep error low. In essence, context switching factorizes complex algo-
rithms into conditionally independent components (conditions are contexts), concentrating the 
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computational task of condition testing into a separate dedicated processing component. The ar-
chitectural components of the context switching computational architecture are:  

• Context monitoring: this computational component continually monitors information
from sensors (of both internal and external state) and inputs from other sources (e.g., ex-
ternal systems, top down inputs) to detect changes in the context, and when a context
change occurs, to characterize, recognize/classify the new context.

• Context switching: once a new context is recognized, this component will recall/derive a
processing configuration specific to the new context, and will reconfigure the end-to-end
cognitive processing flows governing autonomous system behavior. The configurations
will consist of: assignments of programs to processors; settings of program and processor
parameters; and setting of information flows both within and between processors.

• Context specific processing: this computational component constitutes the end-to-end
cognitive processing that provides the control systems needed for operating within the
current context.

Figure 11 illustrates these components in a possible instantiation of a context switching ar-
chitecture in which contexts are linked to processing configurations via a lookup table. Context 
monitoring, switching, and specific processing are all executing in parallel on hardware re-
sources. Right shows an instantiation of the architecture in which an array of context monitors 
continuously receives data and evaluates in parallel. Triggering of a particular context causes an 
associated context specific program to be loaded into context specific processing module. 

Figure 11: Diagram of Functional Components of a Context Switching Processing 
Architecture 

Contexts and Complexity 
The CSCPA is well suited to the computational demands of autonomous operations in natural 

environments because natural environments tend to be composed of non-uniformly distributed 
local niches with discontinuous boundaries and locally stationary statistical characteristics. The 
local/stationary structure of the context can be exploited to simplify processing within that con-
text. These contexts are encountered discontinuously and unpredictably during autonomous op-
erations. As the task state leaves one context and enters another, the autonomous processing 
changes to suit the new context. This approach, which can be broadly included in the class of 
divide and conquer computational methods, has been widely applied in different application do-
mains (e.g., gain scheduling in flight control). Within each context, the simplification of the 
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state-space allows for specialized/special purpose/context specific processing, resulting either in 
a reduction of computational resources needed, and/or an increase in the performance achievable 
within the context. Specialization of processing to the local operating environment provides im-
provements in both the efficiency and performance of processing, over processing that is statical-
ly optimized to the global operational context.  

With a fixed set of hardware resources, scaling autonomy to more complex tasks requires 
that the resources be used more efficiently. When operating in dynamic and unpredictable real-
world scenarios, context sensitive run-time reconfiguration (RTR) can temporally multiplex lim-
ited hardware resources. The potential benefit of run-time reconfiguration is the specialization of 
the context specific computation to the near-instantaneous needs of the task, reducing resources 
(e.g., the size and energy) required/consumed. These benefits of improved context specific pro-
cessing performance/efficiency must be weighed against the costs of context monitoring and 
context switching (e.g., the additional space required to hold extra configuration information and 
the time and energy needed reconfigure).  

A unique design aspect of this type of architecture is the need to co-optimize the definition of 
contexts and the context specific processing. Contexts are portions of the task (environment and 
mission) state space. Examples of broad contexts are: 

• Environmental Contexts: flight regimes (e.g., wind conditions), environmental complexi-
ty (e.g., urban/rural, high clutter/low clutter)

• Internal Contexts: state of resources (e.g., battery level, weapons, processor loading), sys-
tem health, physical state (location, velocity), behavioral state

• Mission Contexts: threat level, op-tempo (e.g., high speed/low speed), mission phase
(e.g., explore/seek, track/pursue, exploit/attack/consume)

It is far more common in autonomy for the environment to be the trigger for either a change 
in function being performed, or a change in the way in which a particular function is being per-
formed. We will refer to this situation as data-driven reconfiguration in contrast with task-driven 
reconfiguration. 

Partitioning of the environment into distinct contexts is determined both by the inherent 
characteristics of the environment (e.g., statistical characteristics, ergodic decomposition) and by 
the ability to discriminate different contexts, both from the standpoint of detec-
tion/characterization and action (i.e., if two distinct contexts do not have different context specif-
ic processing associated with them, then there is no reason to treat them as separate). The 
granularity with which contexts are defined (i.e., quantization of state space into contexts), will 
have a significant impact on computational costs, where the computational costs are the sum of 
the costs of context monitoring, context switching, and context specific processing.  There will 
be a tradeoff between complexity of context monitoring/switching and complexity of context 
specific processing. Figure 12 shows of the tradeoff between the granularity of the partitioning 
into contexts and the complexity of the context specific processing. The notional graph shows 
three different granularities of partitioning of the state space ranging from the degenerate single 
element partition on the lower right, to a very fine partition at the upper left, corresponding to 
different context monitoring/switching complexities. 

There is some freedom in creating a context partition on the part of the designer, who needs 
to balance the costs of context monitoring and switching with the costs of context specific pro-
cessing. At one extreme, one large (degenerate) context can be created which never changes, in 
which case there are no costs associated with context monitoring or switching, and all the com-
plexity needed to cope with complex environments must be contained within the context specific 
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processing. At the other extreme, a context partition can be created with many elements that are 
so small that, within each of these contexts the environment can be considered constant so that 
the context specific processing for each context may be as simple as constant functions. In this 
case the computational cost of context specific processing is minimized, and most of the com-
plexity (and cost) is pushed into the context monitoring and context switching components. In 
this case, monitoring for many small contexts is expensive, and context switching will occur fre-
quently, incurring a context switching cost. Another cost that needs to be accounted for is the 
design cost of implementing a context specific algorithm for each context in the partition. If the 
partitioning is very fine and there is no sys-
tematic way of deriving context specific al-
gorithms from context characteristics, the 
burden of designing individual context spe-
cific algorithms will be untenable. 

Here we conjecture an analogue to the 
90/10 rule, for the domain of autonomy:  

90% of the computational resources of 
autonomous systems are spent in exe-
cuting the 10% of the code (context 
specific processing).  

This is saying that autonomous systems 
will spend most of their time on context spe-
cific processing, but need to be continuously 
monitoring and respond quickly to changes in 
context that will occur sparsely and unpredictably. The other 90% of the code that is dedicated to 
context monitoring and switching must be implemented so as to minimize the computational re-
source consumption. By creating a context partition at the appropriate level of granularity, the 
CSCPA will efficiently handle the 90/10 split in autonomy tasks by: exploiting context specific 
structure to optimize the efficiency of context specific processing; minimizing the effort needed 
for context monitoring and the frequency of context switching (i.e., see discussion of efficient 
event based context monitoring below). 

We also conjecture that another form of the 90/10 rule holds for autonomy: 

90% of the runtime in autonomous systems is spent in monitoring for 10% of infor-
mation that is task relevant (requiring a response).  

3.2.3 Analysis of CSCPA Performance. 
There are many factors to consider when designing an autonomous system to perform a task. 

All aspects of the processing, detection and even system idling need consideration when evaluat-
ing processing architectures. This work aims to describe an example analysis process to follow 
when evaluating designs with respect to overall power usage.  

Figure 12:  The Tradeoff between Granularity 
of the Partitioning into Contexts and 

Complexity of the Context Specific Processing 
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For this analysis, we will use the standard definition of power, where 𝑊𝑊 is power measured 
in Watts, 𝐽𝐽 is energy measured in Joules, and 𝑡𝑡 is time in seconds: 

𝑊𝑊 =
𝐽𝐽
𝑡𝑡

(1) 

The goal is to minimize the value of 𝐽𝐽 by finding the optimal combination of the processors, 
algorithms, and overall logic. 
3.2.3.1 Example Scenario. 

Imagine designing a system for a UAV flying a reconnaissance mission. We are tasked to de-
sign an autonomous control system that can adapt the control law to the current weather condi-
tions and terrain. If the drone encounters a significant change in environment, such as the change 
between flying in a dessert and then flying near mountains, it will adjust its flight control, (Fig-
ure 13). This system is power constrained, and the mission specifies that the task must complete 
in a defined amount of time. 

Figure 13: A Drone Flying in Two Separate Contexts, Which in this Case are 
Environments 

3.2.3.2 Problem Breakdown. 
We will break this problem into three main parts: context monitoring, context switching, and 

context specific processing.  
Context Monitoring 

This component of the system has the job of monitoring the environment and triggering any 
changes necessary. This can potentially be done in two different manners: a polling approach, or 
an event-based/interrupt approach [19].  

In a polling approach, we imagine a sensor that is constantly sampling its environment at 
some frequency, (Figure 14). With each poll, a small amount of processing is performed that de-
termines if a reconfiguration is needed, such as a change in UAV navigation or sensing algo-
rithms. During the rest of the time, the polling system lays idle, waiting until its next scheduled 
time to poll once again.  

In an event-based/interrupt system, there is no continual checking needed. Rather, the system 
relies on asynchronous signals/interrupts to trigger a context switch. These signals can come 
from sensors or other systems at any time. Upon receipt of trigger signals, associated reconfigu-
ration can be performed immediately.  
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Events triggering reconfiguration can range in complexity from very simple (single bit 
changes) to very complex (complex configuration of events). 

Figure 14:  Comparison of Polling and Event Based Sensing Schemes 

Context Switching 
Context switching refers to a reconfiguration process that may consist of multiple subtasks, 

such as saving previous state, recalling context specific algorithms, loading in new or saved pa-
rameters, and initialization [20]. Each of these aspects take a certain amount of time and power 
to complete, so they too must be considered when trying to minimize the overall power con-
sumption of the system, (Figure 15).  

Figure 15: Example of a Context Switch Timeline 

Context Specific Processing 
The last and likely most significant consumer of power for the overall system is the context 

specific processing that is running continuously between context switches. In the UAV example, 
this would be the navigation and flight control algorithms. Depending on their complexity, this 
processing may be very power hungry and time consuming. Algorithms for different contexts 
may differ in complexity. If the system often uses the more expensive algorithms, it will con-
sume more power. The overall complexity will therefore depend upon the probability distribu-
tion across contexts. Figure 16 shows an example of this.  There are periodically context changes 
that trigger different algorithms. Each algorithm has its own power consumption. 
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Figure 16: Example of Algorithm Timeline 
3.2.2.3 Estimating Power Consumption. 

In this paper, we will consider four different processors types: Central Processing Units 
(CPUs) [21, 22], Graphics Processing Units (GPUs) [23], Field Programmable Gate Arrays 
(FPGAs) [24, 25, 17], and neuromorphic processors like IBM’s TrueNorth [26, 27]. The same 
process can be considered for nearly any processor type in order to get a rough estimate of which 
architecture would work best for the task.  
Context Monitoring 

In order to estimate the amount of power that the polling or event-based scheme might con-
sume, we first estimate how often we are going to be polling for information, or how often we 
are going to be receiving events. We will define the polling scenario frequency as 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, meas-
ured in Hz. The polling rate will determine the amount of power necessary. This estimate in-
cludes the cost of reading sensor data as well as the cost of processing this data to determine if a 
context switch condition has occurred. After obtaining and processing the data, the monitoring 
system will sit at idle, waiting for the next scheduled time to poll, (Figure 17). 

Figure 17: Breakdown of Polling Scheme 
The average power consumed by polling is defined as 𝑊𝑊𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒 

𝑊𝑊𝑐𝑐ℎ𝑒𝑒𝑐𝑐𝑒𝑒 = 𝑊𝑊𝑔𝑔𝑒𝑒𝑔𝑔 + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 (2) 

Applying Equation 1, the values of 𝐽𝐽𝑔𝑔𝑒𝑒𝑔𝑔 and 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 need to be determined, as well as their 
respective time values. These values are determined by the algorithms and the data that is needed 
during each polling event. If the sensor is an infrared camera looking at the heat signature from 
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the ground, then the “get” process would require the retrieval of an entire image frame, and the 
processing might involve analysis of the whole frame. In contrast, if the sensor is a thermometer, 
reading and processing a single temperature value then the cost will be dramatically less.  

Using estimates of the power consumption per operation and the approximate number of op-
erations per polling operation (#op), we can estimate the number of Joules necessary to perform 
a poll.  

𝐽𝐽𝑔𝑔𝑒𝑒𝑔𝑔 = #𝑝𝑝𝑝𝑝,𝑔𝑔𝑒𝑒𝑔𝑔 𝐽𝐽𝑝𝑝𝑝𝑝 (2) 
𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 = #𝑝𝑝𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 𝐽𝐽𝑝𝑝𝑝𝑝 (3) 

Similarly, we can determine the amount of time for each component of polling. 

𝑡𝑡𝑔𝑔𝑒𝑒𝑔𝑔 = #𝑝𝑝𝑝𝑝,𝑔𝑔𝑒𝑒𝑔𝑔 𝑡𝑡𝑝𝑝𝑝𝑝 (4) 

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 = #𝑝𝑝𝑝𝑝,𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒 𝑡𝑡𝑝𝑝𝑝𝑝 (5) 

Finally, the amount of time and power used during the idle time is easily calculated as fol-
lows: 

𝑡𝑡𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒 =
1

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
− �𝑡𝑡𝑔𝑔𝑒𝑒𝑔𝑔 + 𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒� (6) 

The idle power can obtained from processor datasheets when available, or can be derived 
from performance benchmarks, otherwise. We estimate that the idle power consumed is approx-
imately 5% of the designed thermal design power (TDP) of a processor, where TDP is the ap-
proximate amount of thermal power dissipated by processor under normal operation. While this 
is not an exact measure of processors power consumption, it is often a good estimate. Typically 
this (TDP) value for CPUs and GPUs can be obtained from spec sheets. 

We estimate the energy of the idling systems as follows: 
𝐽𝐽𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒 = 𝑊𝑊𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒𝑡𝑡𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒 (7) 

Combining all the power values, we obtain the poll power required. 

𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝐽𝐽𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒 + 𝐽𝐽𝑔𝑔𝑒𝑒𝑔𝑔 + 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒� (8) 

Event-based polling can be similarly analyzed. Because event-based polling is asynchronous, 
we must use an estimate of the average frequency of events in place of a fixed polling frequency. 
We call this estimated event frequency 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑔𝑔. This can be used identically as 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 
Context Switching 

In the estimation of power consumption used in context switching, we separate the switching 
process into 4 different portions, each of which can be analyzed separately. These four segments 
are: Save state; Load Program; Reprogram; and Initialize. Each of these segments serves its own 
purpose and may function slightly differently depending on the platform on which they are run-
ning. However, the final result will still be an estimation of the average amount of power neces-
sary, (Figure 18). 
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Figure 18: Breakdown of Context Switching Element of the System 
As with the context monitoring, we can estimate the amount of power necessary to perform 

context switches as: 
𝐽𝐽𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ = 𝐽𝐽𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒 + 𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝 + 𝐽𝐽𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖 + 𝐽𝐽𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔 (9) 

The save state phase includes all necessary saving of weights, results, and other values that 
need to be stored from the previously run algorithm. This could also include the saving the pro-
gram execution state that may be needed to reinstate processing later. This may not always be 
necessary or even possible, depending on the algorithm and processor type, but is must be con-
sidered when it is.  

The amount of power consumed in switching context is highly dependent on the amount of 
information that needs to be stored. If a large table needs to be kept, it will likely require more 
power than a few cached weights. We estimate the required power using values from processor 
specification sheets. If the amount of data to be stored is known, or can be projected, it is simply 
as follows: 

𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠 =
𝑊𝑊𝑝𝑝𝑒𝑒𝑝𝑝

𝐵𝐵𝑊𝑊𝑠𝑠𝑝𝑝𝑖𝑖𝑔𝑔𝑒𝑒 (10) 

𝐽𝐽𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒 = 𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠#𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠 (11) 
The value of 𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠 represents the amount of power necessary to write one byte of memory, 

when 𝑊𝑊𝑝𝑝𝑒𝑒𝑝𝑝 is the rated power of the memory being used, and 𝐵𝐵𝑊𝑊𝑠𝑠𝑝𝑝𝑖𝑖𝑔𝑔𝑒𝑒 is the write bandwidth of 
that same memory. The total power needed to save is then simply the amount of number of bytes 
needing to be stored multiplied by the cost of each byte, as seen in Equation 12. Finally, the 
amount of time this procedure will take is found by taking #𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠 and dividing by the write 
bandwidth of the memory.  

The amount of power needed to reprogram the processor is the most difficult to estimation. 
This will vary greatly between processor types. Reprogramming a CPU and GPU will be fast due 
to their design for temporally multiplexing hardware. However, for an FPGA or a TrueNorth, 
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where they are more designed to be single purpose, loading a new algorithm can likely mean re-
programming/re-flashing the chip entirely[27, 17].  

As a conservative measure for making sure enough power is supplied, it is best to assume 
that the reprogramming process is going to consume near the max amount of power that the pro-
cessor is rated for. For a CPU or GPU, this value would be listed as the TDP from a specification 
sheet. For an FPGA, it would be safe to estimate this value by using the maximum voltage and 
current values from its voltage regulator. Using the power formula, 𝑃𝑃 = 𝐼𝐼 × 𝑉𝑉, we can get an es-
timate of maximum power used. It is not very likely that this much power will be used, but an 
overestimation will ensure enough power is available. Lastly, for something like IBM’s True-
North, since published data is scarce, we can just take the highest recorded power values and 
time for our accepted programming power. 

While finding exact values for the programming of a specific chip is difficult, once a value is 
acquired, it can be applied to the same formulas as everything else to give the amount of power 
required to reprogram in an algorithm.  

𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝 = 𝑊𝑊𝑝𝑝𝑎𝑎𝑚𝑚𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝 (12) 
By multiplying the estimated power, by the approximate about of time necessary to repro-

gram, 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝, we can get the number of Joules required.  
The next portion requiring estimation is the loading of weights, tables, and other data that 

may need to be loaded for the algorithm to be run. This is the inverse of the saving portion of the 
switching element, and can thus be estimated in much the same way. The only true difference is 
that the amount of power needed is not determined by the write bandwidth, but by the read 
bandwidth. Using the read bandwidth we get the equations for loading to be as follows:  

𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑝𝑝 =
𝑊𝑊𝑝𝑝𝑒𝑒𝑝𝑝

𝐵𝐵𝑊𝑊𝑝𝑝𝑒𝑒𝑎𝑎𝑖𝑖
(13) 

𝐽𝐽𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖 = 𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑝𝑝#𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑝𝑝 (14) 

Finally, we must consider the possibility of the system needing to initialize some other com-
ponents. For some systems, this may not be necessary, but for others it might. This includes the 
need to send messages, open up I/O ports, and whatever other sort of initialization needs to take 
place. Because this process will vary highly, we will use the same general estimation seen in the 
analyze phase of the sensing element, presented above. This initialization can be generalized as 
an algorithm, much like what the above described analysis is. Making this assumption, the 
amount of power necessary is simply the number of operations necessary multiplied the average 
power per operation.  

𝐽𝐽𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔 = #𝑝𝑝𝑝𝑝,𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔 𝐽𝐽𝑝𝑝𝑝𝑝 (15) 
With all elements of the switching stage estimated, we can finally complete the equation for 

the power required for switching.  

𝑊𝑊𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ =
𝐽𝐽𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒 +  𝐽𝐽𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝 +  𝐽𝐽𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖 +  𝐽𝐽𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔

𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ
(16) 

𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ = 𝑡𝑡𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒 +  𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑎𝑎𝑝𝑝 +  𝑡𝑡𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑎𝑎𝑖𝑖𝑔𝑔 (17) 

3.2.2.4 Analysis. 
The final component of the process is evaluating the amount of power that is needed to run 

the algorithm that is controlling the system overall. For the drone example, it could be navigation 
system that is keeping the drone flying and not colliding with anything in the environment. This 
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portion of the system is highly dependent on the algorithm of choice, but nonetheless can still be 
put into a general form. As with the initialization phase of the context switch and the analyze 
phase of the polling scheme, we can make assumptions to break it down into a simple calculation 
of the number of operations multiplied by the estimated amount of power per operation.  

𝐽𝐽𝑎𝑎𝑝𝑝𝑔𝑔 = 𝐽𝐽𝑝𝑝𝑝𝑝#𝑝𝑝𝑝𝑝,𝑎𝑎𝑝𝑝𝑔𝑔 +  𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠#𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑠𝑠 +  𝐽𝐽𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑝𝑝#𝑏𝑏𝑎𝑎𝑔𝑔𝑒𝑒,𝑝𝑝 (18) 

𝑡𝑡𝑎𝑎𝑝𝑝𝑔𝑔 = #𝑝𝑝𝑝𝑝,𝑎𝑎𝑝𝑝𝑔𝑔𝑡𝑡𝑝𝑝𝑝𝑝 + # (19) 

𝑊𝑊𝑎𝑎𝑝𝑝𝑔𝑔 =
𝐽𝐽𝑎𝑎𝑝𝑝𝑔𝑔
𝑡𝑡𝑎𝑎𝑝𝑝𝑔𝑔

(20) 

It is also very likely that the algorithm will take require sort of memory reading and writing, 
so we can use the same estimations that we saw in the save and load portions of the context 
switching. These values can then be added to the operation costs of the algorithm itself to finally 
give the value of 𝐽𝐽𝑎𝑎𝑝𝑝𝑔𝑔. Using the value of 𝐽𝐽𝑎𝑎𝑝𝑝𝑔𝑔 and an estimated time to complete the algorithm, 
we can get a value for 𝑊𝑊𝑎𝑎𝑝𝑝𝑔𝑔. 

The above calculation of 𝑊𝑊𝑎𝑎𝑝𝑝𝑔𝑔 only assumes that the algorithm is going to be run once 
through, but it is going to run for a while, assuming that the context the plan is flying through 
does not change after one single iteration of the algorithm. Because of this, we need to assume 
some sort of frequency of condition changes that would cause a context switch, denoted by 
𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒. With this assumption, we can calculate how much power, on average, the entire algo-
rithm and context switching will take. The inverse of 𝑓𝑓𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ gives the amount of time between 
context switches, and since we already have the amount of time the switch will take, we can cal-
culate the time that the algorithm will run, as well as the total amount of joules it will require.  

𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 =
1

𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒
− 𝑡𝑡𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ ( 21 ) 

𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 = 𝑊𝑊𝑎𝑎𝑝𝑝𝑔𝑔𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 ( 22 ) 

Now that the value of 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 has been found, we can combine it with the value of 𝐽𝐽𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ to 
get the average power of the entire algorithm processor, including context switches, at some giv-
en frequency of change, 𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒. 

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 = �𝐽𝐽𝑠𝑠𝑠𝑠𝑖𝑖𝑔𝑔𝑐𝑐ℎ +  𝑊𝑊𝑎𝑎𝑝𝑝𝑔𝑔𝑡𝑡𝑎𝑎𝑝𝑝𝑔𝑔�𝑓𝑓𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒 ( 23 ) 

Combined Estimations 
With the calculations of the power for the polling, switching, and analysis setups of our sys-

tems, we can combine all of them to get an approximate value for the amount of power that the 
system will require to run constantly, and then see how much power something like a battery 
might need to supply to keep it running.  

𝑊𝑊𝑠𝑠𝑎𝑎𝑠𝑠𝑔𝑔𝑒𝑒𝑝𝑝 = 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑠𝑠𝑖𝑖𝑠𝑠 +  𝑊𝑊𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ( 24 ) 

With the value of 𝑊𝑊𝑠𝑠𝑎𝑎𝑠𝑠𝑔𝑔𝑒𝑒𝑝𝑝, you can estimate the amount of power necessary over any given 
amount of time on average.  

𝐽𝐽𝑔𝑔𝑝𝑝𝑔𝑔𝑎𝑎𝑝𝑝 = 𝑊𝑊𝑠𝑠𝑎𝑎𝑠𝑠𝑔𝑔𝑒𝑒𝑝𝑝𝑡𝑡𝑔𝑔𝑝𝑝𝑔𝑔𝑎𝑎𝑝𝑝 ( 25 ) 
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These final values of 𝐽𝐽𝑔𝑔𝑝𝑝𝑔𝑔𝑎𝑎𝑝𝑝 and 𝑊𝑊𝑠𝑠𝑎𝑎𝑠𝑠𝑔𝑔𝑒𝑒𝑝𝑝 can then be used to estimate the amount of power, 
and even the voltage and current required to keep the system running.  
Real-World Estimation Context Monitoring 

Nearly all of the estimation above is assuming generalized information, but it is important to 
understand how this process would likely happen with commercial off-the-shelf (COTS) prod-
ucts. For this section, we will outline this process with popular processors in all the above men-
tioned categories: CPU, GPU, FPGA, and TrueNorth, (Table 1).  

Table 1: General Information for COTS Processors Used in Evaluation of Respective 
Power Consumption 

Processor Architecture Manufacturer Model Idle Power (W) TDP Clock Speed 
CPU x86 Intel Core i7 2600K 4.7500 95.0000 3.4 GHz 

TrueNorth True North IBM TrueNorth 0.0040 0.0730 1 kHz 
FPGA FPGA Xilinx Virtex5 1.5000 N/A 100 MHz 
GPU GPU Sapphire Radeon HD 7970 15.0000 300.0000 925 MHz 

As described in the sensing calculation section, we need to obtain several values in order to 
determine an estimated power for the polling or event-based scheme: 𝐽𝐽𝑔𝑔𝑒𝑒𝑔𝑔, 𝐽𝐽𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒, 𝑡𝑡𝑔𝑔𝑒𝑒𝑔𝑔, and 
𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑒𝑒. For these calculations we can use the estimated clock speed that is typically found on a 
specification, or the clock speed that is defined when writing the FPGA program. This also, may 
be difficult to retrieve for a neuromorphic processor, like the TrueNorth, but a rough order of 
magnitude estimate will yield relatively similar estimates to the actual values. Using this clock 
speed, and the TDP, we can estimate the number of joules per operation, by dividing TDP by the 
clock speed.  

𝐽𝐽𝑝𝑝𝑝𝑝 =
𝑇𝑇𝑇𝑇𝑃𝑃

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×  #𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑠𝑠
(26) 

Next, we need to get the number of operations for the poll or event and then the analysis. 
This part is very dependent on the situation, and thus can only loosely be demonstrated. For this, 
we will assume that the polling takes 100 operations and the analysis takes approximately 5000 
operations. This is very naïve, as it is not likely the process will be identical for each processor 
type, but for simplicity sake, we will assume that they will be. With the number of operations, 
we can figure out how quickly this can happen, by dividing the number of operations by the 
quantity of the clock speed multiplied by the number of threads on the processor. This assumes 
that the process can be easily parallelized. This may not be true, so if it is not, simply ignore the 
number of threads, which makes it as if the process is completely single threaded.  

𝑡𝑡 =
#𝑝𝑝𝑝𝑝

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ×  #𝑐𝑐𝑝𝑝𝑝𝑝𝑒𝑒𝑠𝑠
(27) 

Using these values and estimates, we calculate and estimate the necessary power for each 
processor type to complete a poll. Along with this and a frequency of polling, which we will as-
sume is once every 10 seconds or 0.1 Hz, we get an average power to poll the environment for 
each type.  

As seen in Table 2, because the operations require so few cycles, the amount of power con-
sumption comes mainly from the system idling. However, if the polling and analysis were to be 
more intensive and require more operations, this total power value would increase.  
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Table 2: Estimated power values for each processor type 
Processor Type Model Clock Speed TDP (W) # threads 𝑾𝑾𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (W) 

CPU Core i7 2600K 3.4 GHz 95 1 4.75001354 
TrueNorth TrueNorth 1 kHz 0.073 256 0.04087273 

FPGA Virtex5 100 MHz 30 4 1.50015109 
GPU Radeon HD 7970 925 MHz 300 512 15.0001652 

Real-World Estimation Context Switching 
The same process can be followed for the rest of the system to get their respective power es-

timates. We will follow a similar process for the switching portion. For this analysis, we will ig-
nore the “init” portion of the process, under the assumption that no new initialization will be 
necessary, but this could easily be included if it is actually required.  

For all of the memory portions, the saving and loading of parameters, we will also assume 
the same information is being saved in all scenarios, and the same form of memory is being used. 
Because there is no difference in our memory type or the amount of information being saved or 
loaded, we can just assume a single value for this. For example, both 𝐽𝐽𝑠𝑠𝑎𝑎𝑒𝑒𝑒𝑒 and 𝐽𝐽𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖, can be as-
sumed to be approximately 0.1 Joules each, and will take approximately 1 millisecond. We make 
this assumption for brevity, but if the memory type were to vary for each processor type, we 
would calculate the cost of each memory operation and the number of memory operations neces-
sary thus giving us the total cost of the saving and loading data. 

The most costly portion of the context switching is the actual reprogramming of the proces-
sor. Much like the idling that we see in the sensing portion, we must make some broad assump-
tions regarding the cost of reprogramming a processor. For a CPU and GPU, which are more 
designed to do many different tasks, the switching is relatively cheap, but for an FPGA and IBM 
TrueNorth, these systems likely need to be re-flashed completely, which takes more time and 
energy. For all systems we will assume that the power required is equal to the TDP, but the 
amount of time necessary will vary. We will make the assumptions that are listed in the Table 3. 

As seen in Table 3, we assume that the TrueNorth and FPGA take much longer to program. 
Because of this elongated programming time, the necessary power to program is sometimes 
higher than with the CPU or GPU despite the TrueNorth and FPGA having a significantly lower 
TDP. While this will not matter all that much if we are switching contexts infrequently, but must 
be considered more if contexts need to be changed more often.  

Table 3: Estimates of the Power Required to Program the Processor to Run Algorithms 
Processor Type Model TDP (W) 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (sec) 𝑱𝑱𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 (J) 

CPU Core i7 2600K 95 0.001 0.095 
TrueNorth TrueNorth 0.073 5 0.365 

FPGA Virtex5 30 0.5 15 
GPU Radeon HD 7970 300 0.001 0.3 

With the estimated cost of the programming the processor, as well as our assumption about 
the cost to save and load parameters, we can figure out the energy necessary for the context 
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switch. Table 4 combines all of these values. These final values will be used after we evaluate 
the cost of the actual algorithm running.  

Table 4: Estimated Costs of the Different Portions of Context Switching 
Processor Type Model TDP (W) 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑱𝑱𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 𝑱𝑱𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔/𝒑𝒑𝒑𝒑𝒑𝒑𝒍𝒍 𝒕𝒕𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔/𝒑𝒑𝒑𝒑𝒑𝒑𝒍𝒍 

CPU Core i7 2600K 95 0.001 0.095 0.1 0.001 
TrueNorth TrueNorth 0.073 5 0.365 0.1 0.001 

FPGA Virtex5 30 0.5 15 0.1 0.001 
GPU Radeon HD 7970 300 0.001 0.3 0.1 0.001 

Real-World Estimation Context Specific Processing 
The final part to consider is the algorithm that we are going to be running. This algorithm is 

running constantly, as long as a context switch is not occurring. This is very similar to how we 
treated the idle power during our estimation of the sensing power. Because this will be running 
constantly, we need to figure out on average how long between context switches, as these are the 
points that terminate and begin an algorithm running. For this example estimation, we will as-
sume that this process will take place every 100 seconds.  

We will assume that there are no read or write operations in the algorithms, for simplicity. 
Another assumption is that all potential algorithms will take on average 500k operations to com-
plete. Using these assumptions we can figure out how long this will take and the amount of ener-
gy, (Table 5).  

Table 5: Estimates of Power to Run the Algorithm Constantly Given 500k Operations are 
Necessary 

Processor Type Model Cores Threads 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑 (s) 𝑾𝑾𝒑𝒑𝒑𝒑𝒑𝒑 (W) 
CPU Core i7 2600K 4 2 7.35E-05 47.5 

TrueNorth TrueNorth 256 128 3.91 0.0365 
FPGA Virtex5 16 8 6.25E-04 15 
GPU Radeon HD 7970 2048 128 4.22E-06 18.75 

Using the values in Tables 3-5, and the process described in the analysis section of Estima-
tion of Power Consumption subsection, we can get the amount of power necessary to run the en-
tire analysis (Table 6). 

Table 6: Estimated Values of the Cost to Run the Whole Analysis 
Processor Type Model 𝒕𝒕𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔 (s) 𝑱𝑱𝒔𝒔𝒔𝒔𝒔𝒔𝒕𝒕𝒔𝒔𝒔𝒔 (J) 𝑾𝑾𝒑𝒑𝒑𝒑𝒑𝒑 (W) 𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑 (s) 𝑾𝑾𝒑𝒑𝒂𝒂𝒑𝒑𝒑𝒑𝒂𝒂𝒔𝒔𝒔𝒔𝒔𝒔 (W) 

CPU Core i7 2600K 0.003 0.295 47.5 99.997 47.501525 
TrueNorth TrueNorth 5.002 0.565 0.0365 94.998 0.04032427 

FPGA Virtex5 0.502 15.2 15 99.498 15.0767 
GPU Radeon HD 7970 0.003 0.5 18.75 99.997 18.7544375 

Final Total Power Estimation 
Now that everything is estimated we can combine the sensing scheme with the analysis to get 

an estimate of the amount of power to run the entire system. This can be any combination of the 
different processor types. A CPU could be running the polling while a TrueNorth is running the 
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analysis. We simply need to add the two power values together to get the total approximate 
amount of power to run everything.  
3.2.2.5 Potential Realizations of the CSCPA. 

There are a variety of ways in which the CSCPA can be realized using current technologies. 
One of the advantages offered by CSCPA is the ability to parallelize the Context Monitoring and 
the Context Specific Processing components. Our analysis supports the case for using heteroge-
neous reconfigurable processing hardware in implementing CSCPA when the num-
ber/complexity of contexts is sufficiently large, and the frequency of context changes is 
sufficiently low.  

We specifically considered the use of event based processing (e.g., TrueNorth) for context 
monitoring because of the low power needed for continuous monitoring of sparsely occurring 
complex events. The low precision, probabilistic, and approximate nature of event based pro-
cessing techniques is well matched to the nature of contexts in the environment, which do not 
have precisely definable boundaries or features. The context specific processing component can 
be implemented using more traditional reconfigurable processing hardware (e.g., GPP, FPGA) 
that executes synchronously at high rates.   



 

Approved for Public Release; Distribution Unlimited. 
36 

4.0 RESULTS AND DISCUSSION 
 
Below is an enumeration of some of key high level points for program managers and system de-
signers to take into consideration when making decisions regarding the processing capabilities 
needed for autonomous systems. 

• System complexity must be designed to match the requirements of task complexity. 
Matching task complexity to system resources, or resources to task complexity, is an im-
portant part of the design process. The first step in the design process should be a detailed 
analysis of the task complexity. 

 
Table 7: Components of Complexity Assessments to be Performed During System Design  

 

 
 

DoF Stands for Degrees of Freedom; Q stands for Quantization resolution. 
 

• Greater behavioral complexity can provide overall system level energetic advantages that 
offset the larger processing SWAPC. These impacts must be considered during design 
when allocating SWAP to processing. 

o For example, the value of pro-active computation is a tradeoff between the cost of 
pro-active processing and the increase in the value of future actions in achieving 
the objective (sequential decision making/dynamic programming/model predic-
tive control).   

• Behavioral regulation of processing load to match available resources should be consid-
ered as an important cognitive function providing a means for autonomous systems to re-
lax static constraints on operating range. 

• Task complexity can be addressed by splitting the complexity across the internal and ex-
ternal (human or machine) systems, at the cost of reducing autonomy and introducing de-
pendencies on communications.   

o System designs with dynamically adjustable autonomy should be considered as a 
compromise that permits resource savings by relying on external systems when 
communications are available and can move toward progressively greater auton-
omy as communications degrade. 



Approved for Public Release; Distribution Unlimited. 
37 

• The state space formalism provides a common framework for the formulation of both
system and task complexity, and can accommodate a wide variety of different computa-
tional models including both discrete and continuous systems, and asynchronous and
synchronous system.

o The computation of the energy consumed during end-to-end computations can be
partitioned into energy consumed in maintaining state and energy consumed in
state transitions.

• Overall complexity consists of distinct contributions from Structural, Functional, and
Dynamic complexity. These different contributions to complexity can be traded off
against each other.

o Structural complexity is determined by state space dimensionality, quantization,
and topological/geometric complexity.

o Scaling the task/functional complexity can be addressed in the design of the pro-
cessing system either by scaling its structural or dynamic complexity (or some
combination of the two).

• Specialization of function is an important design strategy for decreasing resource con-
sumption and increasing performance, at the cost of operating range and/or autonomy.

o It is important when comparing autonomous systems, to compare systems of simi-
lar degree of specialization.

• Division of internal system complexity between configuration complexity and activation
complexity has important consequences for resource usage. Individual processing archi-
tectures are optimized to a particular operating point in this division between configura-
tion/activation complexity.

• In system level end-to-end analysis and implementation, it is convenient to partition task
state space into piecewise simple contexts, so that processing requirements for context
recognition, context switching, and context specific processing can be accounted for sep-
arately.

• 90/10 Rules of Context Sensitive Processing for Autonomy:
o 90% of the computational resources of autonomous systems are spent in execut-

ing the 10% of the code related to context specific processing/activation complex-
ity.

o 90% of the code in autonomous systems is devoted to monitoring for task relevant
context changes that occur 10% of the time (configuration complexity).
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5.0 CONCLUSION 

Increasing the autonomy of air assets requires the integration of many different cognitive func-
tions currently performed by pilots into real-time end-to-end cognitive processing flows execut-
ing on embedded hardware. The growing variety of low SWAP-C specialized processing 
technologies (e.g., GPU, FPGA, and Neuromorphic) is increasing both the complexity and im-
pact of autonomous system design on system level/mission level efficiency and effectiveness. 
Design of optimized system level autonomy requires a framework for the performance assess-
ment of entire end-to-end flows, driven by and interacting with operationally realistic environ-
ments. In this paper we provide a statespace framework that enables:  

• the analysis of a wide variety of different computational models including both dis-
crete and continuous systems, and asynchronous and synchronous system.

• the formulation of complexity of the environment (i.e., physical systems) and com-
plexity of the autonomous system (i.e., computational systems) within the same
framework.

• the description of complexity along three distinct dimensions: Structure; Function; and
Dynamics.

This framework is useful from the prescriptive/engineering standpoint in capturing key engineer-
ing decision points and requirements and dependencies between engineering decisions from top 
down perspective. Within this framework it becomes easy to formulate key correspondences 
(e.g., between task and system complexity, between internal system complexity and external sys-
tem complexity) and tradeoffs (e.g., between system specialization and autonomy, between 
structural, function, and dynamic complexity). We apply this framework to the analysis of a pro-
posed context switching cognitive processing architecture which exploits event based processing 
to efficiently perform context monitoring and context switching, and more conventional proces-
sors to perform within context processing. When the task environment consists of many distinct 
complex contexts, and context switching occurs on a slower timescale (order of magnitude) than 
update rates needed for within context behaviors, there can be significant advantages to using 
event based processing hardware in conjunction with conventional processing. 

Ultimately, we hope that this analysis framework provides a useful foundation that will facilitate 
the use of a variety of specialized processing technologies to provide unique advantages in ad-
dressing both the strict SWAP constraints on UAV processing and the demanding processing 
requirements of autonomous behavior in complex and rapidly changing environments.  
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 

Acronyms Description 
ALFUS Autonomy Levels For Unmanned Systems 
ARL Army Research Laboratory 
ASIC Application Specific Integrated Circuit 
CISC Complex Instruction Set Computing 
CGRA Coarse Grained Reconfigurable Architectures 
COTS Commercial Off The Shelf 
CPU Central Processing Unit 
CSCPA Context Switching Cognitive Processing Architecture 
DHS Department of Homeland Security 
DoF Degrees of Freedom 
DSP Digital Signal Processors 
FPGA Field Programmable Gate Array 
GPP General Purpose Processor 
GPU Graphical Processing Unit 
NIST National Institute of Standards and Technology 
RISC Reduced Instruction Set Computing 
RT Real Time 
RTR Run-Time Reconfiguration 
SWAP-C Size, Weight and Power, and Cost 
TDP Thermal Design Power 
UAV Unmanned Air Vehicle 
UMS Unmanned System 
VC Vapnik-Chervonenkis 
VLIW Very Long Instruction Word 
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