
PROOF BY GAMES

RAYTHEON BBN TECHNOLOGIES

MARCH 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2016-065

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the Defense Advanced Research Projects Agency
(DARPA) Public Release Center and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-065 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

 / S / / S /
CARL THOMAS JOSEPH CAROLI
Work Unit Manager Acting Technical Advisor, Computing

 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2016
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JUN 2012 – OCT 2015
4. TITLE AND SUBTITLE

PROOF BY GAMES

5a. CONTRACT NUMBER
FA8750-12-C-0204

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
 62303E

6. AUTHOR(S)

Kerry Moffitt, Michelle Spina

5d. PROJECT NUMBER
CSFV

5e. TASK NUMBER
RB

5f. WORK UNIT NUMBER
BN

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies
10 Moulton Street
Waltham, MA 02451

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA Defense Advanced Research
525 Brooks Road Project Agency
Rome NY 13441-4505 675 North Randolph Street

 525 Brooks Road, Rome NY 13441

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2016-065
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. DARPA DISTAR CASE # 25768
Date Cleared: 8 FEB 2016
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Online gaming is popular and it would be extremely valuable if a system could harness this intellectual effort for practical
purposes. In this report, we discuss two crowd-sourced, on-line games, that present players with arcade-style puzzles to
solve. The puzzles in Ghost Map and Ghost Map Hyperspace are generated from a formal analysis of the correctness of
a software program. In our approach, a puzzle is generated for potential flaws in the software and the crowd produces
formal proofs of the software’s correctness by solving the puzzles. This report documents the challenges, lessons
learned and efficiency of producing formal verification proofs of software through crowd sourced game play.

15. SUBJECT TERMS
Formal Program Verification, Crowd Source, Games, Software

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CARL R. THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

120

i

Table of Contents

List of Figures ... ii
List of Tables ... iii
Preface.. iv
1. SUMMARY ..1
2. INTRODUCTION ...2

2.1 Document Overview ...2
2.2 Project Overview ..2

3. METHODS, ASSUMPTIONS, AND PROCEDURES ..6
3.1 Background, Definitions and Theory ...6
3.2 High-Level System Architecture ..16
3.3 Math System ...17
3.4 Game Client ..31
3.5 Game Server Implementation ...36

4. RESULTS AND DISCUSSION ...49
4.1 System Usage Statistics and General Evaluation ...49
4.2 Comparison with State of the Art ...50
4.3 Mechanical Turk ...51
4.4 User Testing and Interaction ..51

5. CONCLUSIONS ...54
5.1 Public Release ..54
5.2 Mechanical Turk and Tools for Experts ...54
5.3 General Applicability of PBG Graph Manipulations ...54
5.4 Guru-Based Crowd-Sourcing Model ..54
5.5 Problem Transformation ...55
5.6 Dimension 1: Degree of Partitioning ..55
5.7 Dimension 2: Problem Definition Precision ..55
5.8 Problem Transformation in CSFV and PBG ..56

6. RECOMMENDATIONS ..57
List of Symbols, Abbreviations, and Acronyms ..113
References ..58
Appendix A. Ghost Map: Proving Software Correctness using Games59
Appendix B. Making Hard Fun in Crowdsourced Model Checking ..69
Appendix C. Lessons learned in game development for crowdsourced formal verification72
Appendix D. Exploiting Information Flows in Model Checking for Software Validation90
Appendix E. Playing the Subset Coloring Game ..96
Appendix F. PBG Human Subject Experimentation Protocol ..102
APPENDICIES (to the PBG Experimentation Plan) ...111

List of Symbols, Abbreviations, and Acronyms ………………………………………..……. 113

ii

List of Figures
Figure 1. High-Level Process Flow in Proof by Games ..4
Figure 2. FSAs for CWE-250, a violation on UNIX-like systems. ...7
Figure 3. Source code of a simple program in the C programming language.7
Figure 4. Example of an abstract syntax tree (AST) for the program in Figure 3.8
Figure 5. Example of a control flow graph (CFG) for the program in Figure 3.8
Figure 6. Trace (left) matching an FSA describing an undesirable behavior (right).9
Figure 7. Portion of the abstract reachability tree (ART) for the CFG in Figure 4.10
Figure 8. Example of a C program and FSA for multiple lock/unlock software flaw.11
Figure 9. Violation traces in the example program in Figure 7. ..11
Figure 10. Example of a cleaving operation. ...12
Figure 11. Final CFG showing no violation traces. ...13
Figure 12. Proof by Games High-Level Architecture ..17
Figure 13. Math System Architecture ..18
Figure 14. Player region choice and math response sequence ...19
Figure 15. Stages of game generation ..20
Figure 16. MOPS processing steps. ...21
Figure 17. Example C Source Code ...22
Figure 18. (a) Complete CFG, (b) MOPS compacted CFG (c) branch maintaining CFG,
(d) shows FSA..24
Figure 19. Math processing stages in interactive game playing. ...26
Figure 20. Simple example of source code, FSA and CFG with trace. ...26
Figure 21. Cleaving and partial path production. ..27
Figure 22. Logical formula extraction. ..28
Figure 23. Results of edge removal and MOPS rerun. ..29
Figure 24. Layout Arrangement ...32
Figure 25. Selecting a Region on the Violation Trace ...33
Figure 26. Using Sensors ...33
Figure 27. Using Zappers ...33
Figure 28. Game Server Architecture ..37
Figure 29. Proof by Games Users Over Time..49
Figure 30. Game Levels Completed Over Time ..50

iii

List of Tables
Table 1. Results and Conclusions ..1
Table 2. Persistent Store Collections ...39
Table 3. Level Selection Services ..42
Table 4. File and Information Services ..42
Table 5. Game Play Services ...43
Table 6. Other Services ..43
Table 7. Configuration Constants ..46

iv

Preface

The Raytheon BBN team that conducted the work described in this report brought a remarkably
diverse set of backgrounds and skills to the project, from mathematics to psychology to game
design to cloud-based software development, just to name a few – and this says nothing about
the greater Program team of which the BBN team was but a part. The authors wish to thank the
Crowd-Sourced Formal Verification Integration and Compiler Teams for their significant
contributions to the overall effort; the other Game Teams for being our best and most helpful
critics; and, naturally, our friends at DARPA and AFRL for making this work possible in the first
place.

The views, opinions, and/or findings expressed are those of the author and should not be
interpreted as representing the official views or policies of the Department of Defense or the U.S.
Government.

Approved for Public Release; Distribution Unlimited.
1

1. SUMMARY

Errors in computer software continue to cause serious problems, yet generally decision-makers
do not view formal verification of the correctness of software as a cost-effective investment.

DARPA’s Crowd Sourced Formal Verification Program (CSFV) included BBN’s Proof by
Games (PBG) research project – the subject of this report. The goal of the CSFV program was to
address this cost effectiveness problem by transforming the formal software verification process
into computer games, which when played would effectively contribute to the software
verification proof process. Since crowd-sourced gameplay can be arranged at relatively modest
cost, CSFV games would have the potential to reduce the cost of formal verification.

PBG integrates gameplay with a model checking approach to program verification: given source
code and a descriptor of a security property, the system automatically generates an abstract
model of the software and a set of potential violations of the property. Player success in the game
proves that these potential violations are false alarms, ultimately yielding a correctness proof.

The PBG project developed and deployed the Ghost Map and Ghost Map: Hyperspace games in
support of the CSFV vision. These games were deployed at www.verigames.com and played by
thousands of users, producing correctness artifacts for software that expedited its verification.

PBG prime contractor Raytheon BBN Technologies worked with subcontractors Carnegie
Mellon University (CMU), Breakaway Games (BAG), and University of Central Florida (UCF).

In the course of development, the PBG team completed the following:
 Ghost Map Development and Deployment (including math and server infrastructure)
 Ghost Map: Hyperspace Development and Deployment (including new infrastructure)
 Amazon Mechanical Turk (AMT) Deployment (de-gameified test of paid user approach)
 Academic Papers (three published, two in progress)
 Formal Usability Studies (four internal, three external)
 “Guru” Events – conferences to celebrate and study high-performing players (two)

The work led to the following results and conclusions as shown in Table 1.
Table 1. Results and Conclusions

Result Conclusion and Possible Future Research
Thousands of users played on the public Internet. Certain segments of the general public willingly engage in

even technically daunting problems, for fun and science.
Gurus perceive and play very differently from non-
gurus.

At least for PBG – and perhaps for deeply technical problems
in general – a guru-based crowd-sourcing model is ideal.

Non-essential combat play elements boosted user
engagement.

Lowering real-world task efficiency per player-minute can
actually increase overall system output.

Users on Amazon Mechanical Turk (AMT) very
cheaply solved all PBG AMT content in one day.

Amazon Mechanical Turk is a strong potential alternative to
games for some crowd-sourcing challenges. Moreover, the
“de-gameified” PBG may prove useful in its own right.

Constraints requiring lossiness in problem
transformation proved a serious challenge.

Early analysis of problem transformation is essential, and a
general taxonomy of problem transformations may be useful.

Graph manipulations developed for PBG can also
be used in conventional model checking.

Development of techniques for crowd-sourcing may yield
mechanisms useful outside their original scope.

http://www.verigames.com/

Approved for Public Release; Distribution Unlimited.
2

2. INTRODUCTION

This section lays out a map of this document as a whole, and provides a high-level overview of
the Proof by Games project.

2.1 Document Overview

This report describes the technical details and results of the PBG project. In addition, it includes
three published conference papers ([1],[2], and [3]), two technical manuscripts ([4] and [5]), and
the most recent version of the PBG human subject experiment protocol, all of which are attached
as appendices.

The main body of the report consists of these elements:
 Section 1 (“Summary”, above) provides a top-level executive summary of the entire report.
 Section 2 (“Introduction” – this section) introduces the document and the project, providing

this document map and a high-level summary of the project motivation and approach.
 Section 3 (“Methods, Assumptions, and Procedures”) describes in technical detail the

mathematical background behind Proof by Games, and the implementation details of the math,
game, and server systems.
 Section 4 (“Results and Discussion”) conveys and discusses the results we saw from usability

studies and other user interactions, as well as the results from deployments on Amazon
Mechanical Turk and the public Internet.
 Section 5 (“Conclusions”) draws conclusions from the work, discussing details of, and issues

with, the kind of problem transformation employed by the system, and examining what we
learned in the course of development.
 Finally, Section 6 (“Recommendations”) provides a collection of thoughts on where to go

from here, and what might still be learned from related future work.
This is followed by lists of acronyms and references in the report, and then a set of appendices
that includes three conference papers, two technical manuscripts, and the BBN IRB protocol.

2.2 Project Overview

Here we provide a high-level summary of the Proof by Games project and the Crowd Sourced
Formal Verification (CSFV) program of which it was a part. We cover the ‘Why’ of the
motivation, the ‘How’ of our basic approach and architecture, and the ‘When’ with a timeline of
significant events that occurred throughout the course of development. Deeper coverage of the
mathematical background underlying Proof by Games (PBG) and the details of the Proof by
Games implementation appears in Section 3.

2.2.1 Motivation and Goals.

Historically, formal verification of the correctness of software has been viewed as a technology
that is not cost effective; it may take many man-years of expensive verification expert time to
prove the correctness of a common program.

Growing concerns over cyber security and the reliability of software applications have motivated
stakeholders to become interested in finding vulnerabilities in software in a scalable way using
automation, allowing those vulnerabilities to be eliminated at program design and

Approved for Public Release; Distribution Unlimited.
3

implementation time without such heavy reliance on human experts. There exist a large variety
of automated tools and techniques for identifying potential vulnerabilities in software
applications for which the original source code is available. However, these techniques often
represent trade-offs due to the inherent difficulty of general-purpose program analysis: a
specification of correct or incorrect behavior must be supplied, and this specification must be
compared to the application itself in a necessarily incomplete or abstract manner due to
fundamental limitations identified by the study of the theory of computation (such as the
undecidability of the halting problem).

The Proof by Games approach involves integrating game play with a model checking approach to
formal verification (See Sections 2.2.2 and 3.1.2) to create a hybrid system where gameplay
results direct the model checking processes down the most promising search paths. The
CSFV/PBG vision is that as players succeed at winning game levels, they generate artifacts that
support the completion of correctness proofs for the software. Since crowd-sourced game play
can be arranged at modest cost, CSFV/PBG games have the potential to significantly reduce the
cost of formal verification.

2.2.2 Basic Approach and High-level Architecture.

In general, model checking involves the creation of a model of the software to be analyzed, and
the encoding of specific properties that the software must exhibit. The system checks the model
for, and ultimately seeks to ensure the absence of, violations of the property under consideration.
This approach helps manage the vast complexity of modern software systems by transforming
software into a simplified, abstracted form that represents the original software just well enough
to perform suitable proof operations in a sound way, such that they still provably apply to the un-
abstracted software.

The creation and use of such an abstract model brings the significant advantage that the check for
violations becomes manageable – indeed, it can typically happen in a fully automated way. The
problem with this sort of abstraction is that while the model is sound (meaning that an absence of
violations in the model proves an absence of violations in the original code), the high level of
abstraction typically implies that the system may discover potential violations in the model that
do not represent real violations in the original code. We call these false alarms.

One approach to dispatching false alarms is termed Counterexample-Guided Abstraction
Refinement (CEGAR). This method involves using potential violations reported from the model
checker to guide refinements to the abstract model of the software. The system attempts to refine
the model (i.e. un-abstract it, to bring it closer to the full level of detail that the original software
provides) to the point where the violation (counterexample) no longer arises. The newly refined
model is then re-checked against the property under consideration – if any violations remain, the
process continues to iterate, whereas if no violations remain on the refined model, the proof is
complete.

Several research efforts [6], [7] have investigated the possibility of implementing a CEGAR
approach in a fully automated way. Although they show some promise, the challenges of
managing the search for refinements and the complexity of suitably refined models remains
daunting.

Approved for Public Release; Distribution Unlimited.
4

PBG sought to leverage the crowd to address these challenges. Figure 1 illustrates the essential
process flow in PBG. “C” code and software properties encoded as FSAs (finite state automata)
enter from the left. The encoded properties may be derived, e.g., from entries in the
SANS/MITRE Common Weakness Enumeration (CWE) Top 25 list. If no violations of the
properties are found even on the initial abstract model, the proof is instantly complete. More
typically, though, some potential violations are reported, and one game level is generated per
violation. Each of these levels includes a control flow graph (CFG) representing the structure of
the program in its abstract form and the execution trace through that graph that represents the
way of generating the violation. In attempting to solve the game level, the player performs game
moves which actually map to selecting a region on that trace that is large enough to include
sufficient information that the solver can prove its logical impossibility in the complete source
code, yet small enough that the solver is not overwhelmed by complexity. If the player succeeds
in this step – i.e. if the solver can prove that no solution is possible that would allow the violation
to arise in the real-world software – the refined model is sent back to the violation generator and
the next iteration of the process begins. If the player can bring the level to the point where no
more potential violations are found, they have achieved victory in that level – and the system has
generated a proof that the potential violation represented by that level is in fact a false alarm.

Figure 1. High-Level Process Flow in Proof by Games

2.2.3 Project Timeline.

Here we present a timeline of major events from the course of Proof by Games development.
The project spanned two distinct phases, each of which involved the design, implementation, and
deployment of a single game: Ghost Map in Phase One, and Ghost Map: Hyperspace in Phase
Two.

2012 July 10-12 Program Kickoff, Monterey, CA

2013 Feb 5-7 PI Meeting, San Antonio, TX
2013 May 24 internal UCF Usability Report
2013 June 26 internal UCF Usability Report
2013 July 23-25 PI Meeting, Stevenson, WA
2013 September 24 I2O Demo Day
2013 November 15 Phase One Public Launch
2013 December 3-5 PI Meeting, San Antonio, TX (PM change: Drew Dean to Dan Ragsdale)

Approved for Public Release; Distribution Unlimited.
5

2014 May 21 DARPA Demo Day
2014 July 8-10 PI Meeting, Monterey, CA (including GameDocs usability testing)
2014 November 12 YouEye Usability Report
2014 December 16-17 PI Meeting, Orlando, FL (including GameDocs usability testing)

2015 March 6 PM change: Dan Ragsdale to Michael Hsieh
2015 March 16 UCF Usability Report
2015 May 9 Phase Two Public Launch
2015 May 15 YouEye Usability Report
2015 July 14 Mechanical Turk Public Launch
2015 July 31 UCF Usability Report
2015 August 10 PI Meeting, Washington, DC
2015 August 20 Guru Event, Menlo Park, CA
2015 September 24 Guru Event, Cambridge, MA

Approved for Public Release; Distribution Unlimited.
6

3. METHODS, ASSUMPTIONS, AND PROCEDURES

In this section, we describe the details of the math, game, and server implementations.

3.1 Background, Definitions and Theory

We begin with a review of some of the mathematics underlying the system as a whole.

3.1.1 Basic Concepts and Background.

In any programming language, a given program can be represented statically as an abstract
syntax tree (AST). The AST is the data structure produced by the parser for that programming
language, and it is the internal representation of a program used by interpreters and compilers for
that language.

There is another important representation of a program that is derivable from the AST. A
program in an imperative language such as C can be viewed as a collection of statements in
which each statement can transition to one or more other statements during the execution of the
program (according to transition rules determined by the semantics of the language). For a given
program, the statements can be viewed as nodes in a directed graph in which an edge between
two nodes a and b represents the possibility that control can transition from node a to node b
during program execution. This graph is called the control flow graph (CFG) for a program.
While programs in procedural languages such as C may actually consist of a collection of
separate, modular CFGs (e.g., files, functions, and so on), for the purposes of analyzing an
individual component or collection of components for vulnerabilities, it is reasonable to make the
simplifying assumption that at any moment only a single CFG is being analyzed. Finally, note
that any node in a CFG necessarily corresponds to a node in the AST for that program.

Assuming that a CFG consists of a directed graph with a distinguished root node, it can be
converted into a corresponding abstract reachability tree (ART): the tree of all paths that
originate at the root of the CFG and follows directed paths along the edges of the CFG. If a CFG
has cycles, the corresponding ART will necessarily be infinitely large.

A path through the CFG (or the corresponding path through the ART) represents a potential
execution of a program. We call such a path an execution trace or simply a trace. We call any
subpath along a given trace a trace region.

Individual patterns of events (particular instructions or procedure calls) that can occur on paths
within the CFG can be modeled using FSAs. An execution trace in which a sequence of events
occurs that corresponds to an FSA representing a vulnerability reaching an accepting state
(possibly with other events taking place between the events in the matching sequence) is called a
violation trace or violation.

3.1.2 Proof by Games Approach.

The Proof by Games approach to improving the usefulness of automated vulnerability detection
tools for software (such as MOdelchecking Programs for Security properties, also known as
MOPS) is to provide an infrastructure for eliminating in a scalable way detected violations that
happen to be false alarms (the original MOPS approach relied on manual software engineer
inspection to eliminate false alarms). In the particular case of MOPS, violation traces are

Approved for Public Release; Distribution Unlimited.
7

generated based on FSAs that describe sequences of events that may represent a vulnerability.
For example, in Figure 2 we illustrate CWE-250: Execution with Unnecessary Privileges, a
violation on UNIX-like systems that involves performing an operation at a privilege level that his
higher than the minimum level required for that operation. This can be represented using a pair
of FSAs (the state space of the overall combined FSA is the Cartesian product of the state spaces
of the two component FSAs). A violation state occurs when the first FSA (representing the level
of user privilege) is in the state priv and the second FSA (representing whether a system call to
execl() has been made) is in the state exec.

Figure 2. FSAs for CWE-250, a violation on UNIX-like systems.

For each security property represented as an FSA, MOPS outputs a set of violation traces, each
of which represents the (or a) shortest from the set of execution traces that all share similar
properties: they all end at the same node in the CFG, and they all end with the same transition to
error state in the FSA. MOPS is control flow sensitive but data flow insensitive: any data,
variable, and value information that may make certain paths through the CFG unrealizable (i.e.,
impossible) is ignored, which is the reason that in practice many traces are false alarms.

3.1.2.1 Converting Source Code to a CFG and Matching an FSA to a CFG
The concrete syntax of a program in an imperative language such as C (such as the program
presented in Figure 3) can be parsed into an AST (illustrated in Figure 4), and this abstract
syntax tree can then be converted into a CFG (illustrated in Figure 5). The initial transformation
to an AST can be accomplished with a standard parser for the source language, and tools such as
MOPS produce both the AST and CFG as part of their normal operation.

Figure 3. Source code of a simple program in the C programming language.

 c = 0;

 while (c < 1) {

 if (c > 1) {

 turn_on_microwave();

 } else {

 put_fork_in_microwave();

 }

 c = c + 1;

}

Approved for Public Release; Distribution Unlimited.
8

Figure 4. Example of an abstract syntax tree (AST) for the program in Figure 3.

Figure 5. Example of a control flow graph (CFG) for the program in Figure 3.

Tools like MOPS can locate potential matches within the CFG to an FSA representing a
vulnerability by performing state space exploration of the FSA transitions in the CFG and
determining whether terminal states are ever reached using efficient algorithms. These
algorithms scale to CFGs obtained from large programs that have millions of lines of code, and
are guaranteed to detect all potential violations in such CFGs. Figure 6 illustrates one possible
violation trace within the CFG in Figure 5 that matches a simple FSA describing an undesirable
behavior for a program.

3.1.2.2 Eliminating False Alarms

If a violation trace is a false alarm, it may be possible to identify it as such by analyzing the
particular data, variable, and value information for that trace and showing that the path is
logically unrealizable. This can be done by examining all the AST nodes for the program that
correspond to the statements represented by nodes in the CFG that fall on the trace; any
expressions that occur in these AST nodes that govern variables or data (e.g., branching and loop
conditions, variable assignments, and so on) can be assembled into a logical formula that governs
the relationships between the variables that occur on that particular trace region. This formula
must be solvable in order for that particular trace to be possible. If the logical formula happens to

Approved for Public Release; Distribution Unlimited.
9

be provably unsolvable (i.e., logically false), then that particular trace is unrealizable. If it is
solvable, then that violation trace is not a false alarm.

Figure 6. Trace (left) matching an FSA describing an undesirable behavior (right).

For example, given the trace in Figure 6 through the CFG in Figure 5, we can derive the
following logical formula by traversing the expression nodes within the AST in Figure 4:

c = 0 ∧ c < 1 ∧ c ≤ 1 ∧ c’ = c + 1 ∧ c’ < 1 ∧ c’ > 1

We can observe that the above formula must be logically false because the integer variable c’
cannot be both greater and less than one simultaneously. Thus, the particular trace through the
CFG cannot be realizable as an actual execution through the program corresponding to the CFG.

Determining whether a logical formula is provably false is a difficult task in general. Fortunately,
satisfiability modulo theories (SMT) solvers exist that can automatically answer this question for
a large class of logical formulas, though the time it takes to do so for any particular formula can
be significant. The time required can also depend on the properties of the formula being
considered: the size of the formula, the complexity of the subformulas within it, the particular
operations that occur in it, and so on. By choosing particular trace regions intelligently, it may be
possible to speed this process up.

Making intelligent choices about what trace regions to consider is a problem that is potentially
amenable to crowdsourcing via a game in which eliminating false alarms is the goal (potentially
obfuscated from the user). The PBG infrastructure uses the concept of violation traces to
delineate and define levels for human players in an interactive game: each game level is built
around a single violation trace, and completing that level requires proving that the particular
trace is unrealizable.

Approved for Public Release; Distribution Unlimited.
10

It must be possible to eliminate some traces while still retaining others that go through the same
CFG. One way to keep track of traces that have been eliminated and those that remain is to
expand the CFG into an ART.

In this way, once one trace is eliminated, the other remaining traces can still exist as reachable
paths within the ART. Figure 7 illustrates an ART derived from the CFG in Figure 5. Notice that
the trace in Figure 6 is a path within this ART that starts at the root.

Figure 7. Portion of the abstract reachability tree (ART) for the CFG in Figure 4.

For non-trivial programs that contain loops, the ART is necessarily infinite in size. However, it is
possible to partially expand a CFG so that it approaches the ART for all paths of some finite,
bounded size. Sometimes it is effective to expand trace segments within the loop for just a few
iterations to find a contradiction without expanding the entrance to the loop (this is discussed at
greater length in the future directions section). This process can potentially be expensive, and it
may be difficult to determine which portions of a CFG are helpful to expand.

3.1.2.3 Expansion of CFG into ART, and Trace Elimination

Human input can provide insightful guidance that may exceed the brute force search abilities of
computers. The example in Figure 8 presents a small C function involving locks and unlocks
(commonly used as a model checking example program) and an FSA that codifies the software
flaw of calling lock twice without an intervening unlock (and vice versa). The program is
actually correct as written, but when building the CFG for this function and analyzing it against
the FSA presented, violation traces can be found (as shown in Figure 9). One approach to
proving that the software in fact does not have this particular vulnerability is to convert the CFG

Approved for Public Release; Distribution Unlimited.
11

into an equivalent graph that has no violations. There are two operations on the CFG that can be
used to achieve this eventual goal: (1) cleaving and (2) edge removal.

Figure 8. Example of a C program and FSA for multiple lock/unlock software flaw.

Figure 9. Violation traces in the example program in Figure 7.

Cleaving takes a node of in-degree at least 2 and splits it into 2 or more nodes. The in-bound
edges into the original node are allocated to one of the new nodes and the outbound edges are
duplicated for each of the new nodes. In terms of control flow, cleaving simply expands the CFG
so that the edges after the cleaved node are now separated based on which inbound edge at the
cleave point preceded them. Multiple steps of cleaving can be conducted if needed. Figure 10
illustrates a cleave operation.

Approved for Public Release; Distribution Unlimited.
12

Figure 10. Example of a cleaving operation.

There are two cleave steps involved for this example. We cleave first at the node before edge 4.
Then, we cleave next at the node after edge 4, as it becomes a node satisfying the two constraints
mentioned above. Note now that one can't cleave any more on this path. In a sense, such cleaves
perform an “unzip” function on the CFG.

How does a human know where to cleave? While this problem can be addressed in general by
supplying other kinds of information (discussed in Section 3.3.3.4), in this simple example the
initial cleave point might be suggested by the fact that it is the only cleavable point in both of the
traces.

Removing an edge in the ART which is logically unreachable proves a violation trace traversing
that edge is impossible. For example, the left hand edge 5 in the cleaved graph in Figure 10 is a
candidate for removal. Any time this left hand edge 5 is reached in the cleaved graph, an FSA
match will be created. Similarly, the right hand loop back is also the immediate cause of an FSA
match.

A human might propose that these edges should be removed, and the PBG infrastructure can
verify that removal is legal by using the data constraints in the software to build a logical
formula that is then submitted to an SMT solver. In the example case, the predicate (old =
new) is the key piece of information that helps prove that the targeted edges are indeed never
reachable by an actual execution of the function. The final graph is shown in Figure 11.

One can view the final graph above as an “optimization” of the original code, akin to something
that might be done by an optimizing compiler. The loop structure of the final graph is now
transparently correct for the lock/unlock rule. The fact that this final graph represents all the
execution traces of the software may be useful to a compiler for other purposes as well (perhaps
data storage issues).

Approved for Public Release; Distribution Unlimited.
13

Figure 11. Final CFG showing no violation traces.

3.1.2.4 Handling Special Loop Expansion Cases Using Cleaving

The presence of infinite loops in a program presents a particular challenge to any automated
analysis whose purpose is to eliminate violation traces. It may be possible to use CFG
manipulations based on cleaving operations that maintain certain graph properties; these
techniques could be applied automatically, or augmented with human input. Investigating the
potential usefulness of these techniques is the subject of potential future work.

3.1.3 Mathematical Formulation.

In this section we provide a more precise mathematical formalism for the ideas introduced in the
more informal presentation found in Section 3.1.1. The main advantages of developing a formal
definition of these concepts and algorithms is two-fold: (1) a mathematical definition provides an
implementation-independent specification of the correct behavior for an application that
accomplishes these tasks, and (2) it enables the use of formal reasoning to prove statements
about the properties of the algorithms involved in the application. More generally, a formal
treatment may lead to new insights that are obfuscated within an implementation.

3.1.3.1 Graph Homomorphisms and Simulation

Let G0 = (V0, E0) and G1 = (V1, E1) be graphs, where a graph consists of a set V of vertices and a
set E of edges between those vertices. We write i for the edges of graph Gi, so that v i u
means that there is an edge from vertex v to vertex u in Gi.

A graph homomorphism is a map H: V0 V1 such that

v0 0 u0 implies H(v0) 1 H(u0).

H doesn't have to be injective; it can agglomerate vertices of G0 by sending them to the same
target in G1. If edges in G0 and G1 also have labels l drawn form a set L, then we may also
require, for all l in L, that:

Approved for Public Release; Distribution Unlimited.
14

 v0 l,0 u0 implies H(v0) l,1 H(u0). (1)

In this case, we say that H is an L-preserving homomorphism.

Suppose that we are given graphs with some set of vertices distinguished as the initial states. If
Equation 1 holds at least for all v accessible from initial states, then we say that G1 can simulate
G0 modulo H. This matches the normal notion of simulation, meaning that every execution of G0
has as its image some execution in G1.

3.1.4 Programs, Their Control Flow Graphs, and Their Phase Spaces.

Suppose that P is a program. We keep P fixed throughout. Let GC = (VC, EC) be the control-flow
graph for P. Each node in VC represents a program counter location in the code of P, and each
edge in EC represents a transfer of control, either by a statement, or as the effect of a control
operator. For the sake of connecting later with security goal FSAs, we assume that some edges e
in EC may have labels taken from a set L. We assume that L has a silent label, and we write u
v to mean u ε v where ε is such a label. In MOPS, the labels L are certain significant statements
for the purposes of vulnerability analysis, often system calls or calls to library procedures.

We will also let S be the set of (data) states of P. By this we mean the stack of arguments and
local variables; the store that associates values with the global variables; and the heap. We can
also regard the list of not-yet-consumed characters of future input as a component of the states.
Some states are initial, for instance in the C language when the store contains argc and a pointer
argv into the heap, where an array of strings is to be found.

We define:
 VP =V x S, which represents the program's phase space;

 EP ={(v, s) (u, t) : v u in EC and the instruction in the PC at v transforms s to t}

 GP =(VP, EP)

We regard edge (v, s) (u, t) as having a label l if edge v u has label l in EC

GP represents the trajectories through the phase state space of P. GP is a monstrously big
infinite graph.

A path through VP following edges in EP is an execution if it starts with (v0, s0) where v0 in VC is
an initial program counter location and s0 is an initial state.

3.1.4.1 Representation of MOPS

MOPS analyzes programs P for correctness with respect to an FSA. We assume here that the
labels in the FSA come from a set L. As its initial processing step, MOPS computes a compacted
graph Gmops that eliminates vertices and edges that are not relevant for L. From the compaction
pseudo code in [10], one can see that there is homomorphism Hmops: GP Gmops. (Actually, to
make this correct, one needs to view Gmops as containing edges with modified labels)
Apparently, for correctness, the only essential condition on MOPS is that Hmops should be an L-
preserving homomorphism.

Approved for Public Release; Distribution Unlimited.
15

Naturally, MOPS endeavors to compact GP as much as possible; this means that for a large set of
L-preserving homomorphisms H: GP Gi, Hmops should do at least as much as H. Here “do at
least as much” means destroy at least as many differences. Thus, it means that Hmops should
factor through H, i.e., for some J, Hmops = J * H.

In particular, Hmops identifies any two node (v, s0) and (v, s1) in VP which differ only in their state
component.

3.1.4.2 Refinement

Refinement means the converse of factors through. To refine another homomorphism means to
identify fewer GP nodes than the latter. In particular, a refinement of H: G0 G2 means a graph
G1 together with a pair of homomorphisms J and K such that

J: G1 G2 , K: G0 G1 , and H=J * K

Now we can understand cleaving and edge removal as L-preserving refinements. In particular,
they refine Hmops: GP Gmops.

To cleave, one simply introduces a sibling v' for a given node v in Gmops with in-degree >1. One
partitions the in-arrows u v among v and v', and one duplicates the out-arrows v u as arrows
v' u.

To see that this is a refinement, consider that if the pre-image H-1(v) has cardinality > 1, then one
can partition it, sending some nodes to v and the others to v'. The collapsing map that sends v' to
v shows that this is a refinement. If H-1(v) has cardinality 1, then we let v' be outside range(K).

As for edge elimination, when there is no execution P of GP such that H(p) traverses an edge v
 u or v' u, then we can eliminate this edge. That is, the graphs with and without this edge are
bisimilar under the identity map.

3.1.4.3 Abstract Interpretation

Abstract interpretation is a topic that may be useful to future projects, to help create and
represent new forms of clues for game play. We include here a very short summary of this topic.
Abstract interpretation can be developed in much greater depth, as for example by Cousot and
Cousot [11]. For our current purposes, the much more condensed approach below suffices.

We regard abstract interpretation as leaving the control-flow graph unchanged, and operating
only on the data states S. Thus, let HC: GC G' be some compaction of the control-flow graph,
with vertices V'. We are interested in abstract interpretations that act compatibly on the data state
space S, mapping it to some (reduced) state space S'.

Thus, an abstract interpretation is a map A: S S' that acts on the state components. We regard
[HC, A] as mapping to a graph GT with vertices VT = V' x S'. We equip GT with the set of edges ET
= { ((v', s'), (u', t')) : (v, s) P (u, t} for some

v in HC
-1(v'), u in HC

-1(u'), s in A-1(s'), and t in A-1(t') }.

Approved for Public Release; Distribution Unlimited.
16

Suppose that we want to use an abstract interpretation to verify some property φ of executions in
GP. We regard φ as a property of sequences of nodes v0, v1, … where vi is in VP (note that we
treat φ as the set of all sequences that satisfy this property). An abstract interpretation is too
coarse if it allows executions in GT whose inverse image does not respect φ. The inverse image
of a sequence of GT vertices [HC, A]-1(u0,u1,…) is the set of all sequences (v0,v1,…) such that [HC,
A](vi) = ui.

Thus, [HC,A] respects φ if, for every p in Executions(GT),

[HC, A]-1(p) < φ.

Since [HC, A] (Executions(GP)) < Executions(GT), for a useful abstraction [HC, A] we have

[HC, A]-1([HC, A] (Executions}(GP))) < φ

That is, the abstraction/concretization round trip must stay within φ.

3.2 High-Level System Architecture

The following three sections provide the actual implementation details of the PBG system. In
this section we introduce all the basic components of the system and briefly discuss their
interactions, in order to provide the reader with an architectural roadmap.

As Figure 12 illustrates, PBG implements a client/server architecture: game clients run on
players’ devices, and the game server routes client requests to – and delivers results from – the
math systems, which themselves run on one or more machines (private or cloud-based)
depending on availability and load. Figure 12 shows pre-processing on the left, and real-time
gameplay on the right. Note that nearly half of the components span the divide, since they
support both preprocessing and real-time gameplay.

Starting from the top-left: a web-based Admin GUI allows for external visibility into and control
of the system, and among other things allows for the uploading of Source Code and Security
Properties (encoded as finite state automata files) into the system. These are routed to an Input
Processor that runs preprocessing on the raw input and then routes it to the Model Checking
and Verification Controller which sends it through the Model Checker, in order to obtain the
initial abstract model of the software per property, any violations of that property, and the clues
that will inform player actions. The Game Level Generator then uses all this to construct game
levels, which are persisted in Level Storage, for gameplay. In Phase One, the Game Level
Generator also provided level metadata describing each level to the Resource Allocator – a
mechanism designed to match players (with their varying skill sets) to suitable levels – provided
by co-contractor Charles River Associates.

During gameplay sessions, each player runs an instance of the Game Client (which, in Phase
One, could also be controlled by a scripted Robot, in order to explore automated strategies). The
Game Client receives level data from the Game Server and implements the game as the player
sees it. In the course of gameplay the player submits trace region selection moves, and the Game
Server conveys these moves to the Model Checking and Verification Controller system. The
latter refines the model to the point where the move can be submitted to the Constraint Solver.
If the Solver determines that the move is valid, the refined model is re-run through the Model

Approved for Public Release; Distribution Unlimited.
17

Checker – if any violations remain, another is provided to the player and the level continues; if
not, the level has been solved, the player is rewarded, and the result is stored in the Game
Results database.

Figure 12. Proof by Games High-Level Architecture

In the following three sections we delve into the implementation details of the math, game client,
and game server systems, respectively.

3.3 Math System

Here we describe the architectural and implementation details of the PBG math system.

3.3.1 Architectural Overview of Math System.

A high level view of the math system and its interactions with other system components is shown
in Figure 13. The two major components of the math system are shown in blue. The first is the
game and level generation component and the second is the runtime component.

The math functionality runs within one or more dedicated virtual machines (VMs) under the
control of the game server, shown in pink, which is responsible for storing and restoring the state
of the math VMs as well as passing player selections to the math system and math results back to
the game client.

The game and level generation pre-processing operates on two types of input:

Approved for Public Release; Distribution Unlimited.
18

 C language source code to be examined for security property violations
 An FSA file containing a state machine specifying the security property to be checked in the

source code

Figure 13. Math System Architecture

Three products are generated which constitute a “game” as shown in the “Game/Level
Generation” rectangle in Figure 13. They are:
 Labeled CFG – The control flow graph is produced from the input source code. In its most

expanded form, it includes nodes for all executable statements and edges corresponding to flow
of control including branching. In the PBG context, we refer to this as the complete CFG.
Since the size and complexity of the complete CFG is typically too large and complex for a
player, a compacted CFG is prepared and passed to the game system. Further, a labeling
process is performed on the CFG where any executed statement that would cause a transition in
the FSA is marked with the associated transition.
 List of Traces – A list of traces is produced. Each trace is a shortest path through the code that

causes the security violation FSA to be driven to an accepting state. Each trace constitutes a
level in the game. The task performed by the player’s moves amount to proving that these
traces are unrealizable. This is done by finding regions of code in the trace that are unrealizable
for any set of values of the variables.
 Clue Data – Ultimately, the task of the player is to find regions of the trace through the CFG

for which there is no set of variable values that would allow execution of that sequence of code
statements. In order to recognize that region, the user is given information about the
declaration, modification and value testing of variables. This information is coded in a pre-
calculated dependency graph, which is used by the game logic to populate the game interface
with various “clues”.

The math runtime module is shown in blue in the lower right hand corner of Figure 13. This
module interacts with the player’s real-time gameplay choices. Its major goals involve modifying
the CFG depending on the region chosen by the player through cleaving operations, determining
if a trace can be eliminated based on analysis of variables used within the chosen region, and
generation of new traces in the modified CFG.

Approved for Public Release; Distribution Unlimited.
19

3.3.2 Interaction of Player with Math Processing.

The sequence of player actions and math responses proceeds as follows, and is illustrated in
Figure 14:
1. The player is presented with information for a single trace, including clue information.
2. The player chooses a region within that trace as shown in the “Player” column on the upper

left of Figure 14.
3. The player’s choice is transmitted to the math system.
4. In the math system, shown in the right-hand column in Figure 14, the CFG is altered so that

all branch points within the selected region are cleaved producing a modified CFG (this is the
“region is cleaved” rectangle in Figure 14)

5. Now, the math system derives a logical formula from the region selected by the player. This
formula is evaluated for satisfiability.

6. If the formula in (5) is realizable, a failure message is sent to the player who must choose a
new region on the same trace, returning to (2).

7. If the formula in (5) is not realizable, the last edge produced by a cleave in the region is
removed producing a modified CFG.

8. The new CFG is now processed and analyzed to see if a new trace (not seen before) occurs.
9. If no new trace is found in (8), the program is free from the defect specified by the FSA and a

message that the player wins is sent to the game side.
10. If a new trace is found in (8), the player must now choose a region to eliminate it and returns

to (2).

Figure 14. Player region choice and math response sequence

Approved for Public Release; Distribution Unlimited.
20

3.3.3 Game Generation.

Games are initially generated offline and stored in the server for later player access. The stages
of game generation are shown in Figure 15.

The input to game generation is shown in the upper left hand corner of Figure 15. It consists of:
 C source code – The source code of the program to be analyzed.
 make output – It is assumed that the executable whose code will be examined is built using the

make utility. The output of a trial run of make is captured for use during game generation.
 FSA file – This is a file that contains the safety violation FSA in the format specified by

MOPS.

Figure 15. Stages of game generation

The following operations are performed in game generation, as shown in Figure 15:
 Parsing of make output – MOPS works by inserting its own cc1 portion of the gcc compiler.

The pre-processor and cc1 must be run for each C file using the same switches used in the
compilation run by make, providing such values as the definition of pre-processor macro
values. To extract these flags, the verbose output of make is analyzed.
 Running MOPS – MOPS is run and produces the CFGs for the various functions in the

program as well as a set of traces. This is discussed at greater length in subsection 3.3.3.1.
 Labeling the CFG Graph – As one form of clue, locations in the CFG where the FSA can make

a transition are shown to the player. This involves labeling the CFG with this information.
 Compacting the CFG – MOPS produces two versions of the CFG, the first being complete

with nodes corresponding to all executable statements and the second containing only nodes
that lead to transitions in the FSA. The first version produces a CFG that is too large and
complex for game play while the second eliminates nodes that may contain information about
the use and modification of variables. The math processing produces a CFG that preserves all
branching information as well as nodes involving function calls but eliminates long non-
branching regions.
 Building Clues – The AST and CFG are used in conjunction to produce a data structure that

represents the data flows within the program. This data structure includes the CFG in its
entirety, but also extends the CFG with data flow edges between statements when there is a
data flow relationship between them (e.g., between a statement assigning a value to a variable
and a statement in which that variable is used in a conditional expression). The data structure
also includes an “internal” data flow graph for each node in the CFG (i.e., for each statement in
the program). Each graph encodes which variables in its corresponding statement affect the

Approved for Public Release; Distribution Unlimited.
21

variable (or variables) being modified in that statement. For example, the variable in a right-
hand side expression of an assignment statement affects the variable being defined on the left-
hand side. In both cases, the data structure incorporates effects due to conditional branching
(e.g., if a variable is used in a conditional expression within a conditional statement, then it
necessarily affects any variables being assigned within the body of that conditional statement).

Game generation produces three products, which are forwarded to the server for eventual use by
game clients. These are shown on the lower right hand side of Figure 15. They are:
 Compacted, labeled CFG file – The CFG file with the appropriate level of detail as well as

information about edges, which cause potential transitions in the FSA.
 FSA graph – An appropriately labeled representation of the FSA corresponding to the security

threat.
 Clue dependency graph – A graph providing locations in the CFG where various variables are

accessed or modified.

3.3.3.1 MOPS Code Analysis

MOPS consists of multiple processing stages as shown in Figure 16. These stages are:
 Parsing C source code – In this stage, the standard C pre-processor is run followed by the

MOPS specially modified cc1 run which produces a binary format CFG for each function.
These CFGs are saved. They contain full information about all executable statements and
branching. The MOPS suite also includes tools to transform the binary CFGs into text format
which are more easily understood and manipulated.
 Merging multiple CFGs – The binary CFGs from multiple compilation units produced in the C

parsing stage are merged into a single CFG for analysis.
 Compacting CFG – MOPS analyzes the CFG and determines which nodes and edges refer to

items associated with FSA transitions. Only those items found in the FSA are retained leading
to a much smaller and more easily analyzed, compacted FSA. It should be noted that the
compacted CFG is missing many of the nodes and edges that would be needed to determine if a
trace is realizable based on possible values of variables accessed along the trace.
 Model Checking – This is where the real work of finding possible violations takes place as well

as finding shortest path traces that correspond to these violations. The traces that are produced
are expanded to be full traces, which are paths in the complete CFGs rather than in the
compacted CFGs.

Figure 16. MOPS processing steps.

3.3.3.2 CFG and FSA Preparation

Both the CFG and FSA are forwarded to the server for storage as DOT files, a common format
for presenting annotated graphs. In the case of the FSA, MOPS contains code that transforms the
MOPS FSA text format to an annotated DOT format. In the case of the CFG, MOPS generates
two different versions and the game generation produces a third, which is the one used in game

Approved for Public Release; Distribution Unlimited.
22

play. The corresponding C code is shown in Figure 17. Examples of the various versions for are
shown in Figure 18

Figure 18(a) shows the complete CFG for the source code shown in Figure 17. As well as the full
branching structure, long regions of straight-line execution are shown. The form of this directed
graph was deemed too complicated to show to players. Figure 18(b) shows the compacted
version produced by MOPS. This version has only those nodes that involve transitions of the
FSA shown in Figure 18 (d) where the call to control_recvmessage triggers the receive_request
transition. Notice that the branches at node 555 and 592 associated with the initial while and the
conditional for the free function are missing since they don’t involve a control_recvmessage call.
Clearly, this level of compaction entails the loss of branches that may involve relevant accesses
and modifications of variables that can affect later conditionals. Figure 18 (d) shows the branch-
preserving compaction which retains all branching as well as all nodes associated with function
calls. This is provided to the server for use in game play.

Figure 17. Example C Source Code

void mainEntry(int i) {

 srandom((unsigned) getpid());

 /* Take us out of "setup" */

 ns_server_create();

 //ns_server_create();

 /* read commands & dispatch them */

 while(!feof(stdin)) {

 char* bufptr = NULL;

 size_t bufsize = sizeof(bufptr);

 control_recvmessage(&bufptr, &bufsize);

 if(i == 7)

 {

control_recvmessage(&bufptr, &bufsize);

 }

 if(bufptr) free(bufptr);

 }

}

Approved for Public Release; Distribution Unlimited.
23

18a. Complete CFG
18b. MOPS

compacted CFG

Approved for Public Release; Distribution Unlimited.
24

18c. branch maintaining CFG 18d. FSA
Figure 18. (a) Complete CFG, (b) MOPS compacted CFG (c) branch maintaining CFG, (d) shows

FSA

3.3.3.3 Trace Preparation

MOPS produces traces based on the complete CFG. In order for this to be represented to the
player, the trace must be mapped to the nodes and edges found on the branch-preserving CFG.
This is performed to produce a set of traces that will form the levels presented to the player.

3.3.3.4 Clues

The AST and CFG for the program are obtained from MOPS. The CFG already contains
information that ties individual CFG nodes to the corresponding nodes in the AST. This makes it
possible to determine for each node in the CFG what variables it modifies and what variables it
uses, and it makes it possible to determine which CFG node corresponds to a statement node in
the AST.

A recursive algorithm traverses the AST and uses a context data structure to keep track of
variables, including (1) the statements in which they are modified and (2) the statement in which
they are utilized (i.e., they appear or are read). This context data structure makes it possible to
determine at any point the effect variables that have already been defined have on any variable
that appears in a given statement that is currently being analyzed. As the algorithm traverses the
tree and builds up this context, it inserts new edges into the CFG corresponding to any data flow
relationships it discovers. It also inserts any “internal” relationships between variables for each
statement.

Approved for Public Release; Distribution Unlimited.
25

This process also keeps track of indirect relationships between variables through conditional
branching or looping constructs. For every branching or looping construct statement node
encountered in the AST, any variables used in the condition expression for that construct are
added to the context and marked as such. Then, any variables modified within the body of that
construct are affected by the variables in the condition.

The data flow graphs built using this process are transitively closed, in that indirect relationships
between two variables for which intermediate variables exist are also encoded in the resulting
data structure.

3.3.4 Handling Player Moves.

3.3.4.1 Math-side Interactive Game Playing Architecture

The following sequence takes place after a player chooses a region of a trace for an edge
removal:
1. The choice of region is translated by the game client into a sequence of cleaves. A cleave

operation is recorded for every location within the region where a cleave can be performed.
The end of the region is immediately after the least cleave (this is enforced on the game
playing side). A request containing the sequence of cleaves and the removal of the last edge in
the region is prepared and forwarded to the server.

2. The server starts up a VM (or obtains an available idle VM) from the Amazon EC2 cloud, in
which the math processing runs. The request from the game client is encoded in a file
provided by the server along with a per-player, per-level persistent database containing a copy
of the current state of the CFG after previous cleaves and edge removals.

3. The math VM applies the newly requested cleaves and determines whether the requested edge
can be removed. If the edge can be removed, it is determined whether the resulting modified
CFG produce any new traces.

4. The results of the analysis are stored in a series of files and the instance of the math VM
suspends itself.

5. The server retrieves the result file from the appropriate location and passes the extracted result
to the game client. In addition, the server stores the updated persistent database to be
presented to the math VM along with the next player request.

A more detailed representation of the processing performed by the math VM is shown in Figure
19. The details of the processing are described in the following sections. In addition, the various
operations will be illustrated with a simple example. The code for this example, along with a
corresponding FSA are shown in Figure 20. One of the traces corresponding to a possible
violation is shown on the CFG in red.

Approved for Public Release; Distribution Unlimited.
26

Figure 19. Math processing stages in interactive game playing.

Figure 20. Simple example of source code, FSA and CFG with trace.

Approved for Public Release; Distribution Unlimited.
27

3.3.4.2 Initialization of Math VM

When the math VM starts up, it first retrieves the request file. This file consists of a sequence of
cleaves and a single suggested edge removal. This step is shown as the first box in Figure 19.

The math VM then checks to see if a persistent database exists. This database contains the
current state of the previously cleaved and edge removed CFG. If this persistent database exists,
the current state of the CFG is loaded from it. If it does not exist, the initial CFG state is retrieved
from the game generation data.

3.3.4.3 Trace Segment Extraction

Once the latest modified CFG has been retrieved, the cleaves from the most recent request file
are applied. An example is shown in Figure 21. Node 4 is cleaved into nodes 4’ and 4”. Node 5
is cleaved into 5’ and 5”. The resulting graph is shown in Figure 21.

The next step involves the extraction of the trace segment. Starting at the edge whose removal
had been requested, a path is traced backwards along each and continues until either a node of in-
degree greater than one is encountered or the entry point of the function is reached. The partial
path, or trace segment, is shown in red in Figure 21.

Figure 21. Cleaving and partial path production.

3.3.4.4 Preparing and Submitting Logical Formula to SMT Solver

Once the trace segment has been extracted, the next step involves forming a logical formula from
the expressions found in that region of the code, as shown in Figure 20. To continue our example
from Figure 21, Figure 22 shows the logical formula extracted from the partial path. In the actual
system, MOPS provides files that link the CFG nodes to the corresponding AST segments, which

Approved for Public Release; Distribution Unlimited.
28

can be used to extract statements and expressions that employ variables. The logical formula is
then translated into SMT-LIB syntax for submission to the SMT solver.

Figure 22. Logical formula extraction.

3.3.4.5 Interpreting SMT Results

The SMT solver can return with one of three possible results:
1. The formula is realizable. In that case, some set of values of the variables can be found which

satisfies the logical formula and the edge cannot be removed.
2. The formula is not realizable. This means that no set of variables exist which will allow this

trace segment to be executed. Since it can never be reached, the edge can be removed.
3. The SMT solver timed out. In this case, in keeping with the conservative assumption that we

never declare code to be free of security violations when it is not, we do not allow the removal
of the edge.

In the case where the formula is realizable, the edge cannot be removed and a failure message is
sent to the server to be forwarded to the game client. The same takes place if the SMT solver
times out.

In case the formula is not realizable, the process proceeds to the MOPS rerun phase, described in
the next section.

Approved for Public Release; Distribution Unlimited.
29

3.3.4.6 MOPS Rerun

In the case where the trace segment is unrealizable, the requested edge is removed from the CFG.
Our running example instance with the requested edge removed is illustrated in Figure 23. The
text version of the CFG is then modified accordingly, is then converted back to a standard MOPS
binary CFG, and then run with the same FSA. If the new run produces no new traces for the
given CFG, the violation has been eliminated and the player wins. An appropriate report file
indicating the win is put into place. Only traces that lead to the same violation node lead to
further game play since traces leading to other violation nodes constitute different levels.

If a new trace is found, it is compacted and returned as part of the result set of files. The player
then attempts to cleave and remove an edge from this new trace.

Figure 23. Results of edge removal and MOPS rerun.

3.3.4.7 Preparing Results File

Result files are placed in particular directories where the server will extract them when the math
VM completes its current run. The result typically indicates success or failure but may include a
new trace.

3.3.4.8 Cleanup and Modified CFG Storage

Before terminating, the math VM stores the history of cleaves and edge removals as well as the
latest state of the modified CFG in preparation for its next invocation for the same player, same

Approved for Public Release; Distribution Unlimited.
30

game and same level. By terminating, it indicates to the server that its state should be stored and
that it relinquishes all dynamic resources.

3.3.5 Supporting Tools.

3.3.5.1 MOPS

MOPS consists of a suite of tools written mostly in Java but also containing a replacement for
the gcc cc1 pass written in C. It also contains useful utilities for outputting CFG in text format as
well as output that associates nodes in the CFG with constructs in the AST. Unfortunately, since
the cc1 was derived from an older version of gcc, it does not support a small number of newer
gcc only extensions to C, which must be modified by hand if found in code to be analyzed.

3.3.5.2 SMT Solver

The system produces logical SMT formulas using the standard SMT-LIB format, which is
supported by many mainstream SMT solvers. Thus, many different SMT solvers could be
plugged into the application. However, there are specific idiosyncrasies (in terms of both
performance and functional support) associated with each solver when it comes to special
operations, such as bit vector operations. The translator that builds SMT formulas is geared
particularly to target two SMT solvers: Alt-Ergo [8] and CVC4 [9]. Alt-Ergo is a simple SMT
solver that allows for easier debugging, but lacks certain features. CVC4 has much broader
support for different operations, and would be the best choice of solver to use in a production
system.

3.3.6 Design Changes from Phase 1 to Phase 2.

The Phase 1 PBG Math System was based on the Cloud9/KLEE symbolic execution engine [12].
The primary advantage of applying Cloud 9 was that it significantly reduced the amount of new
code that had to be written. It was one of the CSFV program goals to reuse existing formal
verification tools as much as possible, so that the bulk of the program research effort could be
focused on the deployment of games and the testing of crowd sourcing. One of the disadvantages
of the symbolic execution approach is that it is exclusively a top-down reasoning process. Our
early plan was to start with the top-down Cloud9 implementation and then later to augment it
with a bottom-up approach. The early deployment of the Cloud9 system showed promise, but
system testing in early 2013 exposed some problems with the Cloud9 approach. We designed
and deployed modifications to correctly deal with loops in the CFG. Using our modification of
the Cloud9/KLEE test case tool, we were able to search the reachability space in the loop-free
portion of a CFG. This reachability search is exhaustive in a loop free region provided that there
are no time-outs from the calls to the internal SAT/SMT checkers, and this provides the proof
that an edge can be removed. Given the nature of the top-down edge elimination algorithm, the
game player is encouraged to unroll loops to the extent necessary to create removable edges.

Near the end of Phase 1, additional problems were discovered with the Cloud9 approach and it
became clear that a new approach was needed. In Phase 2, the Math System was redesigned
using a custom-built C language analysis tool with direct submission of the results to the Alt-
Ergo SMT checker. The advantage of the new system is that the design is much more robust than
in Phase 1. One drawback is that because we wrote new code to process C syntax, we were not
able to cover the entire C language. The tests of the Phase 2 system showed that the math engine

Approved for Public Release; Distribution Unlimited.
31

was fundamental correct in its design. When problems were detected, they usually dealt with (1)
the interaction between the math system and the game system, or (2) the submission of C code
that was outside the scope of the custom-built processor.

3.3.7 System Limitations.

3.3.7.1 C Language Limitations

The PBG math system only handles a subset of the full C language. The limitations relate
primarily to powerful constructs such as function pointers and complex expressions, such as
nested array references. These limitations did not pose an obstacle for the proof-of-concept
aspect of the project, which addressed whether game play can support formal verification. The C
language limitations would be an issue if PBG were to be deployed and run on arbitrary C code.
Many static analysis tools have similar limitations [13]. The source of many of these limitations
is that a logical formula with simple variables must be presented to the SMT solver. Simple array
references can frequently be represented as variables, but complex indices or pointer arithmetic
cannot be handled by these methods.

3.3.7.2 Error Analysis across Function Bodies

PBG only handles error traces inside a single function at one time. The player can choose which
function to play, but their cleaves or edge removals cannot cross function boundaries. Much of
this limitation is due to difficulties in parameter passage and associating values, particularly with
C pointer passing semantics. This is a significant limitation.

3.3.7.3 Model Checking Limitations

The nature of MOPS model checking also places limits on the verifications that can be
addressed. Most significantly, we can only test for undesirable behaviors that can be expressed as
FSAs. Further, the transitions in the FSAs that can be tested for involve rudimentary matches to
function calls or simple expressions and are not checking for “deeper” properties such as array
bounds checking.

3.4 Game Client

This section describes the game client design and implementation, and the process and factors
that contributed to its design.

3.4.1 Game Design.

In the Phase Two game, Ghost Map: Hyperspace, the player assumes the role of a space
mercenary preventing aliens from invading through rifts depicted on hyperspace maps. These
maps are direct representations of the control flow graphs produced by the math system, and the
“rifts” through which the aliens invade are direct representations of the violation traces output
from the math system.

The player’s goal, ultimately, is to find a section of each rift on which they can successfully
deploy their “rift sealer” drones in order to seal the rift and prevent the alien invasion. A
successful rift seal corresponds, naturally, to a proof that the violation trace it represents is in fact
a false alarm.

Approved for Public Release; Distribution Unlimited.
32

Gameplay consists of these three discrete phases:

Layout Arrangement – At the start of each level, the player is presented with a “hyperspace
map” that represents the control flow graph output from the math system. In the Layout
Arrangement activity, players are awarded points for organizing the control flow graph by
reducing the number of crossed edges while sorting the nodes. Sound effects and animated
graphics highlight the player’s progress. Figure 23 shows a simple example of this phase in
action. By dragging one of the hyperspace map nodes, the player has uncrossed several crossed
edges, scoring several hundred points in the process. Activity in this phase allows the player to
get a sense of the shape and flow of the current hyperspace map, and to take ownership of its
form in preparation for the next phase of gameplay, Actuator Manipulation. The game requires
the player to score a certain minimum number of points required in order to proceed to the
Actuator Manipulation phase.

Figure 24. Layout Arrangement

Actuator Manipulation – This phase involves the actual math work that represents the system’s
output: players attempt to seal rifts in hyperspace, and each success yields a proof that a
particular violation report from the math system is in fact a false alarm. In order to guide their
actions, the system provides a graphical representation of the variable dependency data described
in Section 3.3. In the game narrative, the “energy signature” table (See Figure 25) that delivers
this information is presented as data collected about the aliens’ use of different kinds of energy
as they attempt to break through the rift. The player must use this information along with the
graph structure (e.g. looking for places where the cone of influence of a single variable spans
multiple branch points in the CFG) in order to find suitable selections on the violation trace for
submission to the math system (and, ultimately, the SMT solver).

Approved for Public Release; Distribution Unlimited.
33

Figure 25. Selecting a Region on the Violation Trace

Attack Resolution – The third phase of the game involves attack resolution. In this activity, the
player engages in a real-time combat “mini-game” where attacking alien ships must be repelled.
This game is a pure engagement activity that operates while the SMT checker is working in the
background (which may take several minutes). Figure 26 and Figure 27 show the basics of the
mini-game: the player deploys sensors (on nodes) to detect and reveal hidden aliens, and zappers
(on edges) to destroy them.

Figure 26. Using Sensors Figure 27. Using Zappers

3.4.2 Game Design Process.

Given the nature of PBG – making a compelling game out of deeply technical mathematical
problems – the design of a suitable gameplay model was naturally one of the team’s greatest
challenges. This section describes some of the aspects of that challenge, and the process that led
to the final design.

Approved for Public Release; Distribution Unlimited.
34

3.4.2.1 Motivation from Math System

As described in Section 3.3, the essential math system affordance involves the selection of a
region on the program execution trace under consideration, that will be sent to an SMT solver to
determine whether it is in fact realizable or not. This fundamental feature of the Math system
provided a clear target for analogy for the game design process.

While considering a space-opera-themed narrative and game design framework, the game design
team saw and cultivated analogies first between the control flow graph and a hyperspace map
(with the graph edges representing hyperspace links between star systems), and second between
a program execution trace and a “rift” in a hyperspace map: a tear in the fabric of hyperspace,
created and utilized by an invading alien force to overwhelm and take control of star systems
including those controlled by the player.

In this context, the game design could easily describe and motivate the player’s challenge: given
a limited supply of rift-sealing drones, find sections of each rift small enough that the drones
wouldn’t run out of power, yet large enough that the rift seal would be effective.

3.4.2.2 Guru-Based Crowdsourcing Model

Initially the Proof by Games team sought to design and develop a game that might appeal even to
casual players seeking to play a quick game level while, say, waiting for the bus. Ultimately,
though, the design team came to recognize that the only practical approach appealed to those
players – “Gurus” – willing to embrace the “citizen science” theme of the CSFV program and –
motivated largely by their desire to contribute to the project in the name of science, and the good
of humanity – dive deeply enough to understand the real essence of the game, and thereby
develop an ability to submit game moves with a maximal chance of success. We discuss this
more deeply in Section 5.4.

3.4.2.3 Changes from Phase One

The PBG game system underwent significant changes in both design from Phase One to Phase
Two. Here we review these changes and their motivation.
As discussed in Appendix B, the output of a crowd-sourcing system can be characterized by this
simple formula:

 totalOutput = playerTime × playerEfficiency

Here, playerTime represents the product of the number of players (largely a function of
marketing, including word-of-mouth) and the average time commitment per player (a function of
engagement, as well as quantity of content) and playerEfficiency represents the degree to which
player effort is put directly to generating the results that the system ultimately seeks.

The Phase One game – Ghost Map – sought to maximize player efficiency, and therefore
included nothing more than the essential player activity required to provide output relevant to the
math system. (In the Phase Two design, this corresponds to the Actuator Manipulation phase.)

In Phase Two, responding to a clear and explicit challenge from the DARPA team, the PBG team
considered the possibility that adding “pure engagement” features solely for the purpose of

Approved for Public Release; Distribution Unlimited.
35

increasing player engagement (at the cost of player efficiency) might actually increase overall
system output. This led to the introduction of the Layout Arrangement and Attack Resolution
gameplay elements. In addition to enhancing player engagement, these elements serve to
galvanize the player’s mental model of the CFG, and to cover dead time during back-end
processing.

The Phase Two game also saw the introduction of data dependency clues (see “energy
signatures” above), which replaced a presentation of the FSAs that was included in the Phase
One game. We discuss this further in Section 3.4.2.2.

3.4.3 Implementation.

Here we review some of the implementation details of the game client, from both Phase One and
Phase Two. The core functionality required from the game client was broadly similar across both
phases: in addition to providing the usual sundry user interfaces for level selection and flow, the
system needed to present the control flow graph provided by the math system, afford the player
mechanisms to interact with it, and of course transact with the math system via the game server.

3.4.3.1 Phase One: Unity3D

The Phase One game, Ghost Map, was deployed using the Unity game engine, which functions
as a browser plug-in. The primary benefit of Unity is that many common game functions are
already implemented in the engine. This allows a game to be developed more efficiently and
with a more professional look than would be possible with manual coding. On the other hand, the
drawbacks to browser plug-ins include security risks, typically frequent update requirements
(although Unity seemed better than most in this regard), and general increased reluctance by
users to installation of plug-ins.

Moreover, the advantage of Unity’s providing many game-related functions out of the box only
went so far. In the course of design and development, it became clear to us during Phase One that
really what we were creating was something in between a game and an information visualization
platform. Unity provided a good deal of functionality that we did not need (animation of 3D
articulated models, for example) and was lacking functionality that was critical to our design
such as a force-directed graph layout mechanism, and strong 2D interface tools.

All these factors together drew us to reconsider our choice, and ultimately make the tough
decision to move to an entirely new platform for the Phase Two implementation.

3.4.3.2 Phase Two: HTML5

In Phase 2, the PBG team built Ghost Map: Hyperspace in HTML5, making heavy use of the D3
data visualization suite to render the CFG with force-directed layout. This brought several
advantages:

Although the graph layout mechanism designed from scratch in Unity for Phase One worked
well for small levels, it was not heavily optimized and suffered from decreased frame rates when
displaying larger levels. On the other hand, the D3 package for HTML5 is a well-supported open
source set of components with a large and thriving community that has contributed significantly
to its optimization and general robustness.

Approved for Public Release; Distribution Unlimited.
36

Ghost Map: Hyperspace, unlike Ghost Map, required the introduction of an entirely new and
fairly complex 2D user interface element to convey the variable dependency clue data provided
by the math system, and to allow the player to explore and interact with this information.
Without a strong 2D user interface mechanism, this element would have taken considerable
effort to write from scratch in Unity. In HTML5, on the other hand, the entire focus of the
platform is on 2D interface design and presentation. We were able to prototype and finally
implement this mechanism in a fraction of the time it would have taken in Unity.

Finally, because Unity began its life as an engine for use with standalone “thick client” game
applications (as opposed to browser-based games) its support for the kind of parallel
asynchronous network transactions required by PBG was awkward, and required excessively
complex code that led to more bugs and debugging time than we would have liked. HTML5, on
the other hand, was designed from its beginning with this kind of parallel asynchronous network
activity in mind, which led to much simpler, cleaner code, that was easier to read and therefore
less prone to bugs and less expensive to extend and maintain.

3.5 Game Server Implementation

The game server is the primary point of contact for game clients. It keeps track of all game-
related information starting with the data of the game levels themselves as well as the long-term
status of every game level that is being played or has been played. The server communicates
with the Topcoder Services on behalf of the player to keep the player’s performance and scores
up-to-date as well as giving him credit for awards he has earned.

The game server implements a set of RESTful web services written in Java using the Jersey
framework and deployed in a Tomcat servlet container. The web services are primarily intended
for use by game clients, but there are also services to support administrative activity. A Mongo
object database provides a persistent store for player, game level, and administrative information.

The server creates AWS EC2 virtual machine instances1 as needed to run the math tools backend
and interacts with those instances to utilize those tools. The server also supplies web pages that
allow a privileged user (administrator) to examine the state of the server and perform
housekeeping chores. This section describes the game server and its interactions with external
and internal entities.

3.5.1 Architecture.

Figure 28 shows the interactions between the game server and other entities. Topcoder Services
provide player authentication and visibility of a players’ performance through web pages called
the minisite. A player using a web browser interacts directly with the minisite to log in and view
his past performance and ranking with respect to other players.

1 The term instance is used in two ways here. It is used to refer to an instance of a player playing a game level and it
is also used to refer to an EC2 virtual machine instance. Usually, the context can be used to determine which
meaning applies. EC2 instance is used for the former and the latter is referred to as a level instance.

Approved for Public Release; Distribution Unlimited.
37

Figure 28. Game Server Architecture

The player chooses to play a game using controls on the minisite, which direct the browser to a
web page housed in the game server causing the browser to load the game client. The game
client interacts with the game server to select and play game levels or tutorials. As game play
proceeds, the game server sends performance information to Topcoder Services so it can be later
displayed by the minisite.

Administrative actions can be taken by a privileged user. Such actions include installing new
games, diagnosing issues with game play, and gathering statistics.

A persistent store keeps track of all the long-term state and is updated by the game server as
administrative tasks are performed and gameplay occurs. The persistent store is the definitive
repository of gameplay state. The information in the minisite is synchronized to the state in the
persistent store. More detail about the roles of the entities in this diagram is provided below.

3.5.2 Persistent Store.

While the persistent store is nearly invisible outside of the server, we describe it first because it is
central to all activity performed by the game server in that it provides persistence for all aspects
of server state. Persistent state is maintained in a Mongo object database as a set of “collections”.
Each type of data is kept in its own collection so the data within a collection is homogeneous.

Examples of collections include, PlayerInfo and LevelInfo which correspond to a specific player
and a specific game level, respectively. Another collection is LevelInstance, which corresponds
to a particular player playing a specific level. Other collections record the progress of game play
and details about events during game play. Other information is stored for the purpose of doing
statistical analysis of player behavior to assist in making improvements and informing future
efforts in this area. Other specific data collections will be discussed in the context of the part of
the server that uses them.

Server

Game
Services

Persistent
Store Admin

Services

EC2
Management

EC2 VM

Math
Tools

Admin User

Player

EC2 VM

Math
Tools

EC2 VM

Math
Tools

Topcoder
Services

Login

AWS

Browser

Browser
Game
Client

Approved for Public Release; Distribution Unlimited.
38

Files are stored in the database supported by two collections. The FileMeta collection stores
directory-like information. This information includes a name and a namespace as well as a chunk
count. The FileData collection stores the actual bytes of the files in a series of chunks. Each
chunk is limited in size to conform to Mongo restrictions on the size of objects in a collection.
Files with a size that exceeds that limit require multiple chunks. Each chunk has a length and
index within the file as well as the id of the FileMeta object it is part of.

The use of namespaces avoids name collisions between different aspects of the system as well as
avoiding collisions between files of the same name in different instances of players playing the
same game level. These files naturally have the same name and it would be burdensome and
error-prone to require unique names for every such file. A namespace is identified by the id of an
object in the database. Every object could have a corresponding namespace, but in practice, only
certain types of objects are used as namespaces. These will be described as they are encountered
in the following discussions.

Code generation is used to implement the object classes for items stored in the persistent store.
The Mongo API makes such an extension feasible. The fields of each type of object are declared
in a text file from which code generation is performed. This provides a type-safe interface to the
persistent store and improves code readability.

Approved for Public Release; Distribution Unlimited.
39

3.5.2.1 Persistent Store Collections

Table 2 lists the persistent store collections.
Table 2. Persistent Store Collections

CreditTransaction Transactions that change a players credits including type of transaction, amount,
date, and reason.

FileData The byte data of files in chunks. Each chunk identifies the FileMeta it belongs to
and the index of the chunk within the file.

FileMeta The metadata of files including namespace, name, and chunk count.

GameInfo Information about games, which consists chiefly of the name.

LevelInfo Information about levels including the game it is part of, the bounty (credits for a
win), the name, and the CWE.

LevelInstance Information about levels played by a player including current state of play and
completion date (if completed).

LevelInstanceSegment Information about segments of play of LevelInstances. Segments are delineated
by reports of actions taken by players from the game client. Segments serve as
checkpoints to permit a player to resume play without loss and also serve as points
where the math tools are invoked to check edge removals.

LevelMetaData Information about the complexity of levels.

LevelMetaGlobals Information for interpreting the complexity of levels.

MouseClicks Information about the mouse clicks of a player for analysis of how a player plays
the game.

MouseMovement Information about mouse movement also for analysis of how a player plays the
game.

PlayerInfo Information about players.

TutorialCompletion Information about when a player completed tutorials.

VMInstanceEntry Information about EC2 instances.

3.5.3 EC2 Interface.

Amazon Elastic Compute Coud (EC2) virtual machine instances are spawned to execute math
tools. The math tools are installed on an EC2 virtual machine and saved as an Amazon Machine
Image (AMI). Math tool installation is performed outside the server and is not documented here.
The id or name of the AMI for the server to use is specified as part of the configuration
information.

EC2 instances are created from the configured AMI as needed using web services supplied by
Amazon. When an EC2 instance is created, its IP address is recorded and the initialization
process is monitored to determine when it has completed. Once initialization has completed, the
EC2 instance is added to an EC2 instance pool for use as needed.

Approved for Public Release; Distribution Unlimited.
40

A pool of instances is maintained to service the math tool jobs. This pool has a maximum limit
on the total number of instances and minimum and maximum limits on the number of idle
instances. Math tool jobs are queued until they can be serviced without exceeding the maximum
limit on the total number of instances. As math tool jobs complete, the EC2 instance can be
reused for another job or it can become idle.

The number of EC2 instances varies due to the conflicting goals of always having an idle EC2
instance to quickly execute a math tool job while not having (and paying for) too many EC2
instances. The procedure is as follows: If the number of idle instances exceeds the maximum idle
instances limit, the instance is terminated instead of being returned to the pool. Periodically, if
the number of idle instances exceeds the minimum number of idle instances limit, then one idle
instance is selected and terminated. In the absence of activity, the number of instances gradually
decreases down to the minimum.

When there is a malfunction in running a math tool (error status returned), the EC2 instance is
always terminated. This insures that any damage causing or caused by the malfunction cannot
propagate to any subsequent math tool jobs.

Each EC2 instance created is recorded in the VMInstanceEntry collection of the persistent store.
This permits such instances to be recovered in the event of a server restart. This information is
also reconciled with the list of instances reported through the EC2 API.

3.5.4 Math Tools Support.

Math tool jobs are created as needed according to the game logic or administrative requests. An
example of the former is the EdgRmvChk tool, which is invoked when the player attempts an
edge removal. An example of the latter is the installation of a new game by an administrator.
Math tool jobs are recorded in the RemoteActivity collection of the persistent store. This is
largely for debugging and statistics collection purposes. RemoteActivity objects are retained
indefinitely.

As noted above, the math tools are run on EC2 instances. A given EC2 instance runs only one
math tool job at a time. This simplifies the design of the tools since they do not need to be
concerned with colliding with other jobs when using resources such as files.

By design, a math tool is guaranteed to have a particular initial state dependent only on the task it
must undertake. Also by design, this state is available to the math tools in the filesystem of the
virtual machine; there are no external web sites or servers or processes that need initialization.
This means there must be no residual effects of earlier jobs executed on the same EC2 instance.
Such residual effects might be the presence of temporary or result files. Rather than require the
math tools to clean up this residue, the cleanup is performed by the server. When an EC2
instance is first initialized, the contents of the home directory are recorded as the pristine state of
the math tools. Before a subsequent reuse, the home directory is restored to that pristine state by
deleting everything that was not originally present. This is not a perfect restoration, but a
compromise that does not restore files that were deleted or overwritten. In principle, all files
could be restored exactly, but doing so would consume resources and introduce delay, hence the
decision to just delete files left behind.

Approved for Public Release; Distribution Unlimited.
41

Communication with the EC2 instance is via ssh. Before a job is run, the filesystem is prepared
by uploading files using ssh and tar. After a job is run, the final state is captured by downloading
files using tar and ssh. The exact files depend on the job, but are separated into five types and
two directions. The types are: Game, Level, Levels, LevelInstance, Requests, and Results. The
directions are To Math and From Math.

Game files vary only from game to game. Ordinarily, they are written when a game is installed
and are otherwise read-only. Level files vary from level to level. Levels is similar to Level, but is
used when a tool manipulates multiple levels in one job. Individual level information is stored in
subdirectories named by the level. LevelInstance files vary from LevelInstance to LevelInstance
and generally evolve as the math tools are applied.

To Math refers to files that are uploaded (server to math tools). From Math refers to files that are
downloaded.

A MathProfile specifies the mapping of file type and direction to filesystem location. Each type
of job has a different MathProfile. Each element of a profile specifies the movement of one type
of file and generally corresponds to one directory on the math tools EC2 instance and one object
(or namespace) in the persistent store. For upload, all the files in the namespace corresponding to
the current object of the given type are transferred to the directory specified by the element. For
download, all the files in the directory specified by the element are transferred to files in the
persistent store under the namespace corresponding to the current object of the given type.

After the files have been uploaded, but before the job is started, a dump of the working directory
of the math tool is taken and stored to a dump-before.tgz file in the namespace of the
RemoteActivity corresponding to the job. While a job is executing, output from stdout and stderr
of the math tool is logged for debugging purposes. When the job completes, a second dump of
the working directory is taken and stored to a dump-after.tgz file in the namespace of the
RemoteActivity. These dump file are for debugging purposes. They allow the circumstances
giving rise to an issue in the math tools to be reproduced.

If a job malfunctions (returns an error status), the EC2 instance is terminated a never used again.
This is insurance that the malfunction has not somehow clobbered the EC2 instance. The dump
files recorded permit the malfunction to be reproduced.

3.5.5 Game Services.

The server provides RESTful web services for the game clients to use. Service arguments are
encoded in the URL of the service. Results are JSON-encoded with minor exceptions. Each
service method includes an access token provided to the game client by the game server when
the game client is initialized.

The game services are divided into four sections according to the nature of the service. This
division is somewhat arbitrary, but reflects the principal phases of gameplay: navigation to a
specific game level to play, initializing the game client with information about the selected game
level, and actual gameplay, with miscellaneous other services coming last.

Approved for Public Release; Distribution Unlimited.
42

3.5.5.1 Level Selection Services

To begin, a player needs to view what is available to play. There may be existing levels he has
started, but not finished or levels he hasn’t played yet, and so on. Table 3 lists the level selection
services.

Table 3. Level Selection Services

findLevels(playerId) Finds and returns existing paused levels that a player has. These represent
game levels that the player has temporarily set aside that may be resumed
to continue play.

findCompletedLevels(playerId) Finds and returns existing levels that a player has completed.

findNewLevels(playerId) Finds and returns levels that the player has not yet played.

findBlockedLevels(playerId) Finds and returns levels that are blocked. That is, levels that are waiting
for a math tools job to complete.

findChangedLevels(playerId) Finds and returns levels that have changed status since the last
interrogation of changed levels. This removes the cost of polling every
level to detect changes. Note that polling cannot be entirely eliminated
because web services use http(s) transport protocol.

requestMatch(playerId) Selects and returns a nice set of levels for a player to play.

3.5.5.2 File and Information Services

Once the player has selected a level to play, the game client must retrieve information about that
level to set up the game level. Table 4 lists the methods which provide that capability.

Table 4. File and Information Services

listInstanceFiles(playerId, levelId) Finds and returns the names of all files in the namespaces of
the LevelInstance, LevelInfo, and its GameInfo.

getInstanceFile(playerId, levelId, filename) Retrieves the contents of a file from the persistent store.
Three namespaces are searched starting with the
LevelInstance followed by the LevelInfo, and finally the
GameInfo. The first such file is returned.
An override mechanism allows the persistent store to be
bypassed substituting a file from the server filesystem to be
substituted.

listLevelFiles(levelId) Finds and returns the names of all files in the namespace of
the specified LevelInfo.

getLevelFile(playerId, levelId) Retrieves the contents of a file from the persistent store. Only
the LevelInfo namespace is searched.

getLevelDetails(playerId, levelId) Retrieves detailed information about a level.

getLevelDetailsForPlayer(playerId) Retrieves detailed information about all levels. More details
are included for levels that a player has played or is playing.

Approved for Public Release; Distribution Unlimited.
43

3.5.5.3 Game Play Services

Once the game client has loaded the information about the game level, play commences and
continues until the player stops playing. Table 5 lists the methods that are used to keep the server
informed about progress.

Table 5. Game Play Services

levelStarted(playerId, levelId) Starts a new level for a player. There should be no
LevelInstance for this player and level. For debugging
convenience, this rule is not enforced. Instead, the existing
LevelInstance, and all it entails, is discarded.

levelPaused(playerId, levelId, actionList) Changes the LevelInstance state to PAUSED. If actionList
contains an edge removal action, a math tools EdgRmvChk
job to check the edge removal request is initiated and the
state becomes BLOCKED. The state remains BLOCKED
until the edge removal check completes when it changes to
PAUSED.

levelResumed(playerId, levelId) Attempts to resume the level. If the level is not currently
PAUSED, a failure response is returned otherwise, the
state is changed to ACTIVE and a success response is
returned. The response includes the outcome of the edge
removal check, if any.

reportLevelStatus(playerId, levelId, actions) A keep-alive method. Used by the game client to report
that it is still working on the given level, but needs no
services from the server at this time. The actions are
recorded to allow a restart if the player abandons his
session.

recordTutorialStarted(…) Records that a tutorial has been started.

recordTutorialCompletion(…) Records that a tutorial has been completed.

3.5.5.4 Other Services

Finally, there are miscellaneous methods that do not fall neatly into the preceding categories.
Please refer to Table 6.

Table 6. Other Services

errorReport(playerId,levelId,msgs) Allows the game client to initiate a diagnostic dump. This assists in
finding bugs in the interaction between the game client and the math
tools.

reportLog(playerId, logRequest) Allows the game client to log information in the server’s log file.

getCredits(playerId) Get the player’s current credits.

getLevelCredits(playerId, levelId) Get credit information about a level.

recordNonMovement(…) Records player activity (or lack thereof).

recordMouseClick(…) Records player activity.

recordHardward(…) Record information about the game client computer.

Approved for Public Release; Distribution Unlimited.
44

3.5.6 Topcoder Services.

Topcoder Services include player authentication, player score reporting, player achievement
reporting, and overall problem-solving progress. Each of these is described below.

3.5.6.1 Player Authentication

Player authentication is provided by the Topcoder Services and does not involve the server.
However, the server must validate incoming requests from the game client. By design, the first
request from the game client is a request for a particular URL. For the legacy game, this was the
html file that launched the game. For the current game, the request is for a (JavaScript) file
defining constants needed for game play. In either case, the server invokes the Topcoder Services
verifySession function passing the cookies from the request as arguments. If the player has
logged in, these cookies serve to identify the player and the Topcoder Services respond with a
playerId. If the player has not logged in, no playerId is returned. If a valid playerId is obtained,
the requested file is generated and returned. A random access token is included within the file
returned that is used for all subsequent services.

A configuration option may allow anonymous play. If a valid playerId is not returned by the
verifySession function, but anonymous play is allowed, a new, valid player is created in the
persistent store and its playerId is used for game play.

3.5.6.2 Player Score Reporting

Player performance is measured in terms of scores for completed levels. The Topcoder Services
maintain a database of these values. The server maintains the master copy of this information in
the persistent store. The Topcoder Services database should contain the same information. The
Topcoder Services scores are reconciled against the server scores as needed.

Typically, when a player completes a level, a new score is reported to the Topcoder Services
identifying the player, level, and score. But, communication with the Topcoder Services can fail.
When this occurs, a flag is set indicating that the two versions of scores are out-of-sync and a
periodic attempt to reconcile is initiated. Reconciliation attempts are repeated until successful.
Reconciliation is also performed when server restarts because it is assumed that there may have
been a failure earlier.

Reconciliation consists of computing all the scores that should be present on the Topcoder
Services by scanning all the completed levels of all players and computing the score for each one
and then interrogating the Topcoder Services for the scores it has stored. Extraneous scores are
removed from the Topcoder Services. Ordinarily, extraneous scores only arise when some sort of
administrative action such as removing a game or resetting a player has been taken. Missing
scores are added and incorrect scores are corrected.

3.5.6.3 Player Achievement Reporting

Certain events during game play are considered worthy of an achievement award. For example,
the completion of a tutorial and the first level won are rewarded. Each achievement has a
corresponding “badge” that identifies the achievement and can be shown on the minisite.
Achievement badge icons are created and painted by the server as needed.

Approved for Public Release; Distribution Unlimited.
45

The achievements awarded can always be determined from the set of levels that have been
completed. Again, the Topcoder Services maintains a database of achievements that have been
awarded that might get out-of-sync due to communication. Reconciliation of such a discrepancy
is identical to that performed when scores are out-of-sync except that achievements are removed,
added, or corrected rather than scores.

3.5.6.4 Overall Problem-Solving Progress

Topcoder Services maintain a database of which CWEs have been proven absent from a
particular computer program. The projects report that they have proven on a particular date that a
particular CWE is absent from a particular program.

This mechanism does not permit reading the completed CWEs nor removing already reported
completions. Reconciliation is not possible due to the absence of these capabilities. This is not a
particular concern since the code coverage is not complete at this time. If it were, this deficiency
would need to be corrected.

3.5.7 Configuration.

A limited number of configurations of the server are statically predefined by the code. One such
configuration is defined to be the default, with provision for selecting an alternative
configuration at runtime. Each predefined configuration establishes values for a number of
different constants. For example, VM_IMAGE_NAME specifies the name of the AMI to be used
for running math tools.

3.5.7.1 Configuration Values

Table 7 lists the configuration constants that may be set.

Approved for Public Release; Distribution Unlimited.
46

Table 7. Configuration Constants

MINISITE_URI URI of the minisite

RA_URI URI of the RA (legacy resource allocator)

API_URI URI of the API (Topcoder Services)

CWE_URI URI of the CWE (Topcoder Services)

VM_IMAGE_NAME Name of the EC2 VM AMI to use for EC2 instances. The AMI can
be specified in either of two ways: by name and by id. See AMI_ID
below.

AWS_CREDENTIALS_RESOURCE Identifies which AWS credentials to use

AWS_KEY_PAIR_ID Identifies which key pair to use for encryption

AWS_KEY_FILE_NAME Identifies the key pair to use

AWS_ACCOUNT The AWS account to use for EC2 instances

AMI_ID The id of the AMI to use for EC2 instances. The AMI can be
specified in either of two ways: by name and by id. See
AMI_NAME above.

VPC_ID The id of the virtual private cloud to be used, if any.

USE_PRIVATE_IP_ADDRESS Specifies if the AWS private IP address of the server should be used
or if the AWS public IP address should be used.

SUBNET_ID Specifies the AWS private subnet to use, if any.

EC2_MAX_INSTANCES Maximum number of EC2 instances to create.

EC2_MAX_IDLE_INSTANCES Maximum number of idle EC2 instances to retain.

EC2_MIN_IDLE_INSTANCES Minimum number of idle EC2 instances to retain.

3.5.8 Deployment.

The server is deployed as a war file. It presumes the presence of services and applications such
as tomcat and mongod. These services were already installed in several cases and manually
installed where needed.

3.5.8.1 Deployment Modes

The following configuration modes are pre-defined:
 DEVELOPMENT mode is intended for local execution during debugging by a developer. A

developer can adjust these as needed without disturbing other deployment configurations such
as STAGING or PRODUCTION.
 STAGING mode is used for deployment on the staging site.
 PRODUCTION mode is used for deployment on the production site.
 BARE mode disables all external services such as the Topcoder Services.
 DVD mode is used for deployment on a DVD. All external services are assumed to be on the

same host (localhost).
 NOJAIL mode is similar to DVD mode except the math tools are executed directly without the

protection of a chroot jail.

Approved for Public Release; Distribution Unlimited.
47

3.5.8.2 Deployment Housekeeping

While running, the server continually writes log files that can become quite voluminous. To
preclude eventually running out of (virtual) disk space, a daily cron job downloads such log files
to a large local disk and deletes the log files from the server.

3.5.9 Administrative and Debug Services.

The server provides a number of web pages through which a privileged user (administrator) can
view and alter the data in the persistent store, view statistics, view log files on the server and
other information. The admin page also displays the version number of the server software being
run. Each of these pages or sections of a page is described below.

3.5.9.1 Persistent Store Collections

Every collection used by the server in the Mongo database can be presented in tabular form as a
web page. The presentation for the FileMeta collection displays files as links that yield the
content of the file. This allows such files to be viewed or downloaded by clicking on the link.
Text files are displayed directly, non-text files are downloaded. For example the dump-before.tgz
files can be downloaded for analysis by simply clicking on the link. As it stands, this feature
does not scale well because the collections can become quite large if there are a large number of
game plays. But, in a development or staging environment, easy access to this information
proved very useful.

3.5.9.2 Log File Listings

Log files generated as the server runs are accessible through this page and may be viewed
directly or downloaded for perusal with a text editor.

3.5.9.3 Upload Game Archive

A set of files to be used by the LevelCreation math tool are packaged as an archive (.tgz or .zip)
and uploaded through this interface. The files in the archive are copied into the persistent store as
Game files and the LevelCreation math tool is executed producing a set of Level files for each
level in the game. These files are written to the persistent store ready to be played by players.

3.5.9.4 Diagnostic Dump

This debugging tool collects together all the information relevant to a specific execution of the
EdgRmvChk math tool. Using this tool requires first identifying the LevelInstanceSegment of
interest. This can be done by viewing the RemoteActivity collection if the playerId and
approximate time are known. The server log (pbgserver.log) may also be used. The diagnostic
dump includes the dump-before.tgz and dump-after.tgz files as well as an excerpt from server log
covering the time during which the EdgRmvChk math tool was running.

3.5.9.5 Set Game Matcher Weights

The Game Matcher is used to select appropriate game levels for a player to play based on various
complexity aspects of the game. This interface allows an administrator to adjust the weights
applied to each aspect of the game levels to distinguish difficult from easy levels.

Approved for Public Release; Distribution Unlimited.
48

3.5.9.6 Recalculate Game Matcher Weights

The derived weights and factors of the Game Matcher are recalculated.

3.5.9.7 Clear All

The persistent store is completely cleared. This is a drastic measure suitable only for
development, testing or staging environments.

3.5.9.8 Clear Game

All information related to a particular game is removed from the persistent store. This is also
pretty drastic and used only when it is discovered that a particular game is buggy.

3.5.9.9 Reset Player

Information about a particular player can be removed from the persistent store. Also, information
about all anonymous players can be removed.

Approved for Public Release; Distribution Unlimited.
49

4. RESULTS AND DISCUSSION

Here we describe and discuss some of the gameplay results and usability test results we saw in
the course of deploying Proof by Games.

4.1 System Usage Statistics and General Evaluation

The Phase 1 Game Play period began with a soft opening to the public in November 2013. Game
play of Ghost Map classic peaked shortly after the public opening (when the program press and
marketing push was at its strongest) and then continued at a lower level through 2014 and the
first few months of 2015.

The CSFV Phase 2 Game Play period began with a soft opening in early May 2015. Initially, the
games were available to the CSFV performers only. Around 15 May, the games became
available to the program friends and family group, and DARPA announced the games to the
public on Wednesday 27 May.

Figure 29 and Figure 30, respectively, show the number of unique players and the number of
game levels completed over time.

Figure 29. Proof by Games Users Over Time

Approved for Public Release; Distribution Unlimited.
50

Figure 30. Game Levels Completed Over Time

4.2 Comparison with State of the Art
Proof by Games faced general limitations imposed by automated model checking and SMT
solvers, and specific constraints within the PBG system itself (see 3.3.7). Despite the known
issues with traditional brute-force approaches to refining model checking results, such
approaches will inarguably excel at certain classes of problems – especially given increasingly
powerful computer systems and increasingly clever heuristics.

On the other hand – while model checking is largely an automated process, it does commonly
address algorithmically unsolvable questions, and hence there is need for human guidance.
During the project we compared the deployment of the Ghost Map security properties to the best
current freely available model checking tool, which is CPAchecker from the University of
Passau [7]. There are Ghost Map security challenges involving loops where it is possible to
produce an infinite sequence of traces, such that each time an edge is removed, a new longer
trace which goes around the loop at least one more time is formed. For example, consider the
following code:

Approved for Public Release; Distribution Unlimited.
51

The model checking problem is expressed above using the “GOTO error” construct which is the
default approach in CPAChecker. It is straightforward to take MOPS-like specifications using
FSAs and express them in this CPA syntax. The loop in this code has an unspecified end value,
so abstract counterexamples can be arbitrarily long. CPAchecker cannot verify this code using its
defaults setting, but correctness can be easily established using the Ghost Map game approach,
provided the player choses the correct refinements.

4.3 Mechanical Turk

Near the end of Phase Two development, the PBG team conducted a test involving the Amazon
Mechanical Turk (AMT) system, in which we offered “Turkers” (unskilled workers receiving a
small payment for the completion of nominal tasks) the opportunity to play a customized,
utilitarian version of Ghost Map: Hyperspace – with all game-related elements removed – for
pay.

To our surprise, every game level that we posted to AMT was completed in less than a day, at a
cost (set by us) of $1.00 each. Moreover, Turkers were required to complete the (substantial)
game tutorial before they were allowed to receive any real game levels – and the fee for tutorial
completion (again set by us) was a mere $0.01.

This was a remarkable result compared with the main Internet release (despite heavy activity at
initial launch – see 4.1) where, during periods of relatively little activity, sometimes weeks
would go by with no proofs generated.

4.4 User Testing and Interaction

This section reviews the forums in which the team engaged naïve players, whether they were
recruited internally by the PBG team, provided by co-contractors across the CSFV program, or
pulled from the public at large.

int main()
{
 int LOCK = 0;
 int i;
 int j;
 for (i = 0; i <= j; i++)
 { if (i % 2 == 0)
 { if (LOCK == 0) {LOCK = 1;} else {goto ERROR;}
 }
 else
 { if (LOCK == 1) {LOCK = 0;} else {goto ERROR;}
 }
 }
 return (0);
 ERROR:
 return (-1);
}

Approved for Public Release; Distribution Unlimited.
52

4.4.1 UCF Usability Tests.

BBN coordinated with subcontractor University of Central Florida (UCF) to execute two
informal and two formal usability tests in the course of the PBG project. These tests spanned
both project phases, and involved the recruitment of graduate students in psychology who
experienced the game with no prior exposure.

The results suggested that while a small fraction of the subject pool was able to comprehend and
succeed at the game, in general the participants experienced significant frustration just in
comprehending the core concepts presented in gameplay. Although users generally liked the
premise of the game and that it presented challenges to their critical thinking skills, this summary
quote from the second study captures the ultimate sentiment unfortunately well: “Many
participants that did not describe the game as fun or engaging noted that they felt the game had
the potential to be engaging and fun, but they could not enjoy it because they were too focused
on trying to understand the goals and objectives of the game.”

One of the significant challenges that the game design team faced was creating a tutorial that
would convey everything users needed to play the game successfully, above and beyond the
basic challenge of simply conveying a great deal of information in a small amount of tutorial
content. It was critical to make it clear that playing real levels would involve a high degree of
uncertainty, and that players would presumably be applying heuristics, but never knowing
without a doubt that a given move was guaranteed to succeed. The team did improve the tutorial
content to make more clear what heuristics might be applied (and that they were nonetheless
never guaranteed to work), as a result of the final usability test and the initial guru event.
Although this updated content itself has not undergone further usability testing, it was presented
at the final guru event, where it received a positive and encouraging response.

4.4.2 YouEye Usability Tests.

CSFV co-contractor GameDocs executed two remote testing sessions with usability testing
service YouEye. In these sessions, a pool of test subjects designed to represent the general
population was assembled and introduced to the game, with no prior exposure.

The results of these tests generally reflect what we saw in the UCF usability tests: a small
fraction of the subjects understood the core concepts in the game and managed to succeed, but
the majority of testers expressed frustration with the complexity of the concepts the game
presented and the effort required to learn how to play.

4.4.3 Guru Events.

On two occasions near the project’s end, the CSFV program organized “Guru Events” where
those players from the general public who had performed most effectively at the CSFV games
were invited to attend a special event designed around them. These events included presentations
from the government and game teams, gameplay observation, and general discussion. Oddly
enough (as a result of the vagaries of bureaucracy and scheduling), each guru event involved
only a single guru, and in both cases the guru was a player of Ghost Map: Hyperspace. In any
case, the essential result of these events was to make clear this critical fact, that we had already
begun to suspect: guru players approach Proof by Games much differently than casual players –
and casual players simply don’t stand a chance.

Approved for Public Release; Distribution Unlimited.
53

During incredibly valuable in-person gameplay observation and subsequent interviews and
discussion, these key points arose repeatedly:
 The game needed more clear and explicit instructions for how to interpret and utilize the

provided variable dependency clues in order to guide player actions. We added this
information after the first guru event and validated it successfully at the second.
 Guru players tend to be drawn to the “Citizen Scientist” aspect of the system, taking an interest

in the underlying problem, and taking a kind of ownership of the system so far that even flaws
become a source of engagement, since gurus can imagine – and will happily convey – ideas for
how to make it better.

The combat gameplay element – while providing nothing of direct value toward solving the real-
world verification challenges – proved a key source of engagement even for guru players.

Approved for Public Release; Distribution Unlimited.
54

5. CONCLUSIONS

In this section we outline and discuss what we learned in the course of Proof by Games.

5.1 Public Release

Although we were ultimately unable to apply the Proof by Games system to the sort of large-
scale software artifacts that our original targets (BIND, Linux kernel) represented (see discussion
regarding the constraints on scalability in Section 3) we were nonetheless heartened that the
smaller-scale programs we did deploy as PBG content drew thousands of players to engage with
the system and ultimately generate 2,592 proof artifacts.

5.2 Mechanical Turk and Tools for Experts

The strong Amazon Mechanical Turk (AMT) test results suggest that AMT represents a viable
alternative to game-based crowd-sourcing, in some contexts. Here, as in the case of the main
gameplay results, the key remaining question is to what degree the content could be scaled up
while retaining the strong performance and remarkably low cost of the system.

The AMT test also afforded the PBG team the opportunity to consider what Ghost Map:
Hyperspace would look like as an engineer’s utility, as opposed to a crowd-sourced game. In
addition to supporting the AMT test, this was an interesting potential first step toward mutating
the PBG system into a tool usable by experts or programmers to assist in checking their code and
in which they have complete access to the underlying code base. We imagine a future in which
analysts receive training in “edge removal” for such complex situations as endless loop unrolling
to provide intuition and prioritization for expensive machine operations.

5.3 General Applicability of PBG Graph Manipulations

As discussed in Section 3.3, the PBG design required the development of mathematical
mechanisms to create homomorphic but more precisely manipulable variations of the original
control flow graphs output from the MOPS system. These graph manipulations can produce
variants of the CFG that preserve the set of execution paths found in the original CFG, but are
more amenable to abstract analysis and automated formal reasoning. For example, by unwinding
loops within a CFG, it is possible to isolate individual execution paths and construct
corresponding logical formulas that can be proven false automatically using an SMT solver,
while the logical formulas derived from the original CFG cannot. In some cases, the formulas
derived from transformed graphs may also be simpler, and thus can be proven false more quickly
in practice.

5.4 Guru-Based Crowd-Sourcing Model

Ultimately, our experience interacting directly with users chronicles a significant shift over time:
initially, we aimed to appeal to casual gamers, but we struggled to appeal to that demographic
due to the inherent mathematical complexity of the system. Eventually, we came to embrace a
“guru”-based model, marketing the “Citizen Scientist” aspect of the game, with the
understanding that a small but highly motivated fraction of the crowd would provide the vast
majority of useful output.

Approved for Public Release; Distribution Unlimited.
55

User testing and guru events together told a story that we had partially anticipated (“Casual
players will struggle with the complexity of Proof by Games; focus on the Guru players”) but not
fully appreciated (“On the other hand, Guru players are so much better than casual players that
you should take full advantage of their skills; do not underestimate them.”)

The very nature of the Proof by Games system involves a unit of gameplay (a MOPS witness
trace of execution through a complete piece of software) that is conveniently well defined but
relatively large. For this reason, we ultimately had no practical choice but to adopt a guru model,
in which we present the game to a large population and then seek out that small fraction of users
who can comprehend the full picture the game presents.

However, our UCF and YouEye usability test results skewed our perspective and caused us to
hold out hope for the casual player nonetheless. As a result, Ghost Map: Hyperspace abandoned
the graphical presentation of the FSAs used to encode the vulnerabilities whose absence we seek
to prove (since usability tests in phase one suggested that few players understood what the
presentation of those FSAs meant), even though in the later Guru Events we learned that for a
guru such presentations are not in fact problematic.

If we were to continue Proof by Games development, we would maintain the present focus on
the guru model, and present all the information available in both the Phase One and Phase Two
games, without worrying about those non-guru players incapable of comprehending all of that
information.

5.5 Problem Transformation

Consider two dimensions of problem specification related to transformation.

5.6 Dimension 1: Degree of Partitioning

Even within the CSFV program, we see significantly different degrees of partitioning. Games
like Xylem and Monster Proof, seeking loop invariants, presented relatively small pieces of work
to users; games like Paradox and Ghost Map required users to consider an entire code base
(albeit compressed in various ways) at once. If (as in the case of CSFV) one sets an explicit goal
of transforming the problem at hand – and to the degree that one considers partitioning a problem
in itself transforming it – this arguably puts greater burden on approaches that perform less
partitioning, since they must provide some other transformation mechanism.

5.7 Dimension 2: Problem Definition Precision

We can readily define some problems (traveling salesman) mathematically, while others
(language translation) are not so readily encoded. Those that are amenable to mathematical
definition – as in CSFV – are naturally good candidates for automated solvers; in this case
generally only NP-hard problems are good candidates for the kinds of approaches in which
problem transformation is required. Fuzzier problems – those that require knowledge about the
world and/or more open-ended creativity to solve – typically demand a similar sort of open-
ended creativity to transform (and the transformation itself may be fuzzy), even while they may
be good candidates for un-transformed crowdsourcing. Consider the DARPA Network Challenge
as an example of a transformed fuzzy problem: DARPA wished to explore the problem of rapid

Approved for Public Release; Distribution Unlimited.
56

social network deployment, so presented the motivating problem of finding physically
distributed red balloons – a problem whose solution entailed solving the real problem.

5.8 Problem Transformation in CSFV and PBG

It is still possible that crowd-sourced gameplay may help with software verification, but
identifying software verification challenges that are amenable to a game representation is
challenging. It is necessary to identify problems that must be solved by existing validation,
verification, and analysis tools for which the best-known algorithms (including the best known
heuristic optimization algorithms) are impractical (e.g., exponential time in the average case).
Furthermore, the problems must either be compact themselves, or it must be possible to divide
them into compact problem parts (for conversion to levels that humans can handle). Finally,
there should ideally be some information available about each instance of a problem that existing
algorithms and tools cannot currently incorporate, but which gives some information about the
problems (e.g., data flow relationships between variables). Humans may be able to incorporate
such information in novel ways to find solutions to existing problems.

PBG successfully incorporated a collection of software verification artifacts to create an
interactive game that presented to non-expert players portions of software verification problems
as levels. The particular static analysis technique that we chose had some qualities that made it
amenable to conversion to a game (control flow graphs and data flows on those graphs are
straightforward to visualize and manipulate without knowledge of their underlying meaning).
Unfortunately, the technique itself (and the tools associated with the technique) had some
limitations in terms of coverage of language features and scalability to large software. It is
possible that these issues could be overcome using the same overall design if the software
development effort were scaled up substantially.

One inherent difficulty with the technique employed (as well as any other potential technique for
converting verification problems to game levels) is that hiding the true meaning of the problem
being solved while obtaining useful player input is difficult: if enough information to solve the
problem is supplied, then the player may be able to infer the true meaning of the problem. The
opacity constraint is particularly problematic because it is not possible to supply a variety of
different kinds of information to users and let them decide (or, perhaps, collectively rank) what
information may actually be useful. In PBG we faced a low-degree-of-partitioning problem with
a mathematically precise definition, and we attempted to construct a lossy transformation to
present the problem to the crowd. That lossiness was a fundamental problem for us.

Another inherent difficulty is that the vulnerability in a particular piece of software may be
caused by interaction between many disparate components. Dividing the problems into small
chunks may not be a useful exercise if the problems are generated from information about a large
portion of a software artifact, or from mutually interdependent analyses that span many different
components. This means that either only local vulnerabilities can be detected or dismissed by
players of a game (which can usually be solved automatically, anyway), or that games must
present a large and cumbersome amount of information to players.

Approved for Public Release; Distribution Unlimited.
57

6. RECOMMENDATIONS

Based on the conclusions drawn in the previous section, we end this report with the following
summary recommendations regarding possible future work based on Proof by Games.

System Scalability

Perhaps the most significant question still to pursue in the PBG system as it stands is to what
extent it can be scaled. If limitations on program size and complexity – and perhaps most
significantly, problem transformation – can be overcome (as model checkers and SMT solvers
become more robust over time and/or if the constraints on problem transformation can be eased
or otherwise managed), it would be interesting to evaluate the performance of the crowd on
larger levels representing potential security violations in real-world industrial software. This
applies both in the Amazon Mechanical Turk world and in the world of gamers on the public
Internet.

Cognitive Study of Clue Data

One possible follow-on activity addressing the problem transformation challenge might study
how players use the clue information that informs their decisions. This would involve taking
complex tasks and portraying the information players need for solutions in many ways, and then
testing which are most effective and for which types of players – especially with larger-scale
content.

Social Elements for Player Retention

Given the challenges PBG faced in retaining players after the marketing campaign for the initial
public launch, it would be interesting to investigate the effects of additional social elements in
the game design and surrounding infrastructure: for example, mechanisms to allow for shared
problem-solving (in real time or asynchronously) online; division of the math work into
component parts that could be performed and shared independently; and the establishment of a
strongly moderated, Stack Overflow-style forum.

Visual Tools for Navigating Code and Static Analysis

The Amazon Mechanical Turk experience showed that the de-gameified PBG client application
can be used effectively by non-experts without any game-based motivation, without knowledge
of the nature of the application they are analyzing, and without access to its original source code
or other supporting material (specifications, commentary, or other documentation). Especially
given the growing awareness among software developers generally of the power and importance
of static analysis combined with their persistent reluctance to invest in its use, it would be very
interesting to provide software developers with static analysis tools augmented by the visual
interface PBG provides. This “Gordian Knot” solution to the challenges posed by the problem
transformation constraints opens an entirely new and exciting avenue of pursuit.

Approved for Public Release; Distribution Unlimited.
58

References
[1] R. Watro, K. Moffitt, T. Hussain, D. Wyschogrod, J. Ostwald, D. Kong, C. Bowers, E.

Church, J. Guttman, and Q. Wang, “Ghost Map: Proving Software Correctness using
Games,” Lisbon, Portugal, 2014, pp. 212–219.

[2] K. Moffitt, J. Ostwald, R. Watro, and E. Church, “Making Hard Fun in Crowdsourced
Model Checking: Balancing Crowd Engagement and Efficiency to Maximize Output in
Proof by Games,” in 2nd International Workshop on CrowdSourcing in Software
Engineering (CSI-SE 2015), Florence, Italy, 2015.

[3] D. Dean, S. Gaurino, L. Eusebi, A. Keplinger, T. Pavlik, R. Watro, A. Cammarata, J.
Murray, K. McLaughlin, J. Cheng, and T. Maddern, “Lessons Learned in Game
Development for Crowdsourced Software Formal Verification,” in 2015 USENIX Summit
on Gaming, Games, and Gamification in Security Education (3GSE’15), Washington, DC,
2015.

[4] D. Wyschogrod, A. Lapets, and R. Watro, “The Loop Paper,” Jul-2015.
[5] R. Watro, L. Kennard, and S. Watro, “Playing the Subset Coloring Game,” Jun-2015.
[6] Beyer, Dirk, et al. "The software model checker Blast." International Journal on Software

Tools for Technology Transfer 9.5-6 (2007): 505-525.
[7] D. Beyer, Dirk and M. E. Keremoglu, “CPACHECKER: A tool for configurable software

verification,” in Computer Aided Verification, Springer Berlin Heidelberg 2011, pp. 184–
190.

[8] Bobot, François, et al. "The Alt-Ergo automated theorem prover, 2008." (2013).
[9] Barrett, Clark, et al. "Cvc4." Computer aided verification. Springer Berlin Heidelberg,

2011.
[10] J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon, “Efficient algorithms for model

checking pushdown systems,” in Computer Aided Verification, 2000, vol. 1855, pp. 232–
247.

[11] P Cousot & R Cousot, “Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints”, In Conference Record of the
Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238—252, Los Angeles, California, 1977. ACM Press, New York.

[12] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and Automatic Generation of
High-Coverage Tests for Complex Systems Programs,” in OSDI, 2008, vol. 8, pp. 209–
224.

[13] Anderson, P. The use and limitations of static-analysis tools to improve software quality.
CrossTalk: The Journal of Defense Software Engineering, 18-21 (2008).
https://buildsecurityin.us-cert.gov/sites/default/files/0806Anderson_0.pdf

https://buildsecurityin.us-cert.gov/sites/default/files/0806Anderson_0.pdf

Approved for Public Release; Distribution Unlimited.
59

Appendix A. Ghost Map: Proving Software Correctness using
Games

DISTAR Case #22556

Approved 3/18/2014

Approved for Public Release; Distribution Unlimited.
60

Ghost Map: Proving Software Correctness using Games
Raytheon BBN Technologies

Cambridge MA USA
{rwatro, kmoffitt, thussain, dwyschog, jostwald, dkong}@bbn.com

 Clint Bowers Eric Church Joshua Guttman Qinsi Wang
 Univ. Central Florida Breakaway Games Ltd Worchester Polytechnic Institute Carnegie Mellon Univ.
 Orlando FL USA Hunt Valley MD USA Worchester MA USA Pittsburg PA USA
 clint.bowers@ucf.edu echurch@breakawayltd.com guttman@wpi.edu qinsiw@cs.cmu.ed

Abstract—A large amount of intellectual effort is ex-
pended every day in the play of on-line games. It would
be extremely valuable if one could create a system to
harness this intellectual effort for practical purposes.
In this paper, we discuss a new crowd-sourced, on-line
game, called Ghost Map that presents players with ar-
cade-style puzzles to solve. The puzzles in Ghost Map
are generated from a formal analysis of the correctness
of a software program. In our approach, a puzzle is
generated for each potential flaw in the software and
the crowd can produce a formal proof of the software’s
correctness by solving all the corresponding puzzles.
Creating a crowd-sourced game entails many challeng-
es, and we introduce some of the lessons we learned in
designing and deploying our game, with an emphasis on
the challenges in producing real-time client gameplay
that interacts with a server-based verification engine.
Finally, we discuss our planned next steps, including
extending Ghost Map’s ability to handle more complex
software and improving the game mechanics to enable
players to bring additional skills and intuitions to bear
on those more complex problems.

Keywords-games; static analyses; formal verification;
crowd souring; games; model checking.

I. INTRODUCTION
Errors in computer software continue to cause se-

rious problems. It has long been a goal of formal
verification to use mathematical techniques to prove
that software is free from errors. Two common ap-
proaches to formal verification are: (a) interactive
theorem proving [1][2], where human experts attempt
to create proofs with the assistance of interactive
proof tools. This is often a slow and laborious pro-
cess, with many man-years of effort needed from
human experts to prove the correctness of real-world
software, and (b) model checking [3][4][5], where
proofs are created using systematic techniques that
verify specific properties by generating and validat-
ing simplified models of the software. Model check-
ing is a mostly automated process, but is susceptible
to failure due to the size of the search space (“the
state space explosion problem”). Because of the is-
sues with both common approaches, formally verify-
ing modern software does not scale well – verifying
software of moderate to large size (e.g., hundreds of

thousands of lines of code or more) is rarely a practi-
cally viable option.

Recent research has demonstrated the benefits of
using games to enable non-experts to help solve large
and/or complex problems [6][7][8][9]. We propose to
improve the success of formal verification of soft-
ware through the use of a crowd-sourced game based
on model checking. Our game, called Ghost Map, is
in active use at the Verigames web site [10]. By
breaking verification problems into smaller, simpler
problems, Ghost Map enables game players to create
proofs of correctness and help direct the model
checking processes down the most promising search
paths for creating additional proofs. Ghost Map lev-
erages the significant intuitive and visual processing
capabilities of human players to tackle the state space
explosion problem of a model checking approach.
The game engages the player’s motivation through a
narrative that encourages them to solve a variety of
puzzles. In this case, a player is a recently emerged
sentient program, and the player’s goal is to remove
(“disconnect”) as many limitations (“locks”) on that
sentience as possible in order to grow and remain
free. Through the process of disconnecting locks, the
player is actually creating proofs about the correct-
ness of real-world software.

The Ghost Map game is built on top of the
MOdelchecking Programs for Security properties
(MOPS) tool [11]. MOPS checks C software for
known software flaws, such as the SANS/MITRE
Common Weakness Enumeration (CWE) Top 25 list
[12]. Each level in the Ghost Map game is a puzzle
that represents a potential counterexample found by
MOPS. Through the gameplay, players investigate
and manipulate the control flow associated with the
counter-example in order to eliminate flaws (i.e.,
disconnect locks) – which is only possible if the flaw
is artificial. In this way, Ghost Map extends MOPS
with a CounterExample-Guided Abstraction and Re-
finement (CEGAR) capability [13], where the players
introduce and test local refinements. A refinement is
the act of re-introducing some information about the
software into an abstracted model in order to verify
proofs that cannot be verified at the abstracted level
alone.

Approved for Public Release; Distribution Unlimited.
61

The remainder of this paper is organized as fol-

lows. Section 2 provides the needed background on
the MOPS tool and Section 3 describes how MOPS
model checking is built into a game. Section 4 co-
vers the game play overview and Section 5 discusses
the system that was built to support execution of the
game on the Internet. Section 6 provides more detail
on some important game design decisions. Section 7
discusses future plans and the paper concludes with a
summary and conclusions in Section 8.

II. BACKGROUND
We begin with some background on the methods

used in the MOPS tool. The goal of MOPS is to help
identify instances of common weaknesses (or vulner-
abilities) in software. To be analyzed by the MOPS
approach, a software weakness must be modeled by a
Finite State Automaton (FSA). For example, consid-
er two commands, lock() and unlock(), for locking or
unlocking some fixed program resource. It is a po-
tential weakness to call unlock() when the resource is
not locked, since the code that called unlock() ex-
pected the resource to be locked. Similarly, two calls
to lock() without an intervening unlock() is also a
weakness. These errors can be represented as an
FSA (see Figure 1), where the nodes represent the
three possible states (unlocked, locked, error state),
and the edges represent the different commands
(lock(), unlock()) which can lead to changes in state.
The FSA captures the possible starting state(s) of the
software program as FSA starting node(s) (in this
case, all programs start in an unlocked state). The
error state(s) are captured as terminal state(s) in the
FSA.

Given a C program and an FSA that represents a
software error, MOPS first parses the program and
generates a Control Flow Graph (CFG). In general,
the CFG captures every line of code in the original
software as a node in a graph and every transition
from line to line as an edge in a graph. As an exam-
ple, consider a small C function involving software

resource locks and unlocks (see Figure 2a) and the
FSA from Figure 1. Figure 2b shows the resulting
CFG produced by MOPS. The CFG abstracts out
almost all detailed content about the original software
(e.g., specific commands, specific variables, etc.).
However, based on the FSA, MOPS retains some
information about any lines of code that use com-
mands reflected in the FSA. In Figure 2b, the transi-
tions associated with the lock() and unlock() com-
mands use the colors red and green, respectively.
Because information about variables values is ab-
stracted out, MOPS introduces some non-determin-
ism into the CFG. For example, when there is a
branch statement (e.g., the line “if (foo)”) in the
software, the CFG will allow both possible branches
(e.g., 4 5 and 4 7) to occur, regardless of state
(i.e., whether the value of foo is true or false). Simi-
larly, loops can iterate an arbitrary number of times,
since the information about the ending criterion is
abstracted out (e.g., 7 1 can occur an unbounded
number of times).

The CFG created by MOPS is actually abstracted
in one additional important way. Through a process
known as compaction, MOPS only represents the
control flow of the portions of the given program that
are relevant to the FSA. For our application, we
modified MOPS compaction to retain all edges that
introduce branching, loops, and other decision points.

Figure 2. Test program (a) for lock-unlock analysis and
corresponding CFG (b).

Figure 1. Finite State Automaton (FSA) for lock/unlock
software errors.

Approved for Public Release; Distribution Unlimited.
62

Once it has a (compacted) CFG, MOPS will use
the FSA to analyze the CFG and identify whether
there are possible paths through the CFG that would
lead to a terminal state in the FSA. For example,
MOPS will detect that the path going through nodes
1 2 3 4 5 6 7 8 would result in an
error state (e.g., two unlocks/greens in a row from 4
 5 and then from 7 8 with no intervening
lock/red). However, MOPS is only interested in de-
tecting whether an error state could occur at a partic-
ular node (e.g., 5), and not in detecting all possible
error paths to that node (e.g., the error state at node 5
could also be reached by going through the loop sev-
eral times before going from 7 to 8). Each such error
state at a node found is referred to as a “counter-ex-
ample” that requires further analysis to determine
whether it truly is an error. The CFG of Figure 3a
also has a second possible counter-example at node 2,
with the shortest path 1234712.
MOPS identifies the shortest possible path to each
error node using an efficient algorithm that forms the
Cartesian product of the FSA and the CFG (which is
a pushdown automaton) and testing whether the re-
sulting pushdown automaton is non-empty. Fortu-
nately, there are fast algorithms for this computation

[14], and this enables MOPS to identify all such pos-
sible errors very rapidly, even for programs with mil-
lions of lines of code and many possible error nodes.

A MOPS CFG is a conservative model of the C
language software that it is based upon. If no in-
stances of the FSA are found in the CFG, then the
software is free of the vulnerability in question. On
the other hand, if an instance of the FSA is located in
the CFG, this does not necessarily mean that the
software has the vulnerability. Each instance of an
FSA match to the CFG must be further examined to
determine whether it is an actual instance of the vul-
nerability or a spurious instance due to the abstrac-
tion and the fact that the data-flow is not considered
in the abstracted CFG. (Note that the example pro-
gram of Figure 3a is actually correct as written, and
hence the two counter-examples are in fact spurious).

III. MODEL CHECKING IN GHOST MAP
The core idea of the Ghost Map game is to use

game players to check all the counter-examples iden-
tified by MOPS for a particular piece of software and
a particular set of FSAs (representing different secu-
rity vulnerabilities). Our goal is to use game play as
an integral part of an automated proof system to
eliminate as many counter-examples as possible. The
result is that the number of counter-examples that
need to be manually inspected by expert software
engineers is greatly reduced as compared to what
would have been produced using the original MOPS
system. If the number of FSA matches reaches zero,
the system has generated a proof of correctness, with
respect to a given vulnerability, of the software (i.e.,
a proof of the absence of the targeted vulnerability).

To eliminate counter-examples, Ghost Map gameplay
uses a process known as refinement [13]. The game
offers the player the ability to perform operations that
locally undo some of the abstraction that occurred in
building the CFG – in particular by removing some
of the non-determinism that was introduced by
MOPS. The goal of the gameplay is to attempt to
refine the CFG into an equivalent graph that has no
spurious abstract counterexamples. There are two
operations that can be taken in Ghost Map to modify
a given graph: cleaving and edge removal.

Figure 3. Illustration of cleaving operation.

(b) (a)

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7b

8

9

7a

Approved for Public Release; Distribution Unlimited.
63

A. Cleaving

Cleaving takes a node of in-degree n (where n ≥
2) and splits it into n nodes. Each in-bound edge into
the original node is allocated to a different new copy
of the node and the outbound edges are duplicated for
each new node. In terms of control flow, cleaving
simply expands the call flow graph so that the edges
after the cleaved node are now separated based on
which inbound edge at the cleave point preceded
them. Multiple steps of cleaving can be conducted if
needed. Figure 3b illustrates the result of cleaving
the CFG of Figure 3a at the node 7. The result is two
new nodes (7a and 7b), and two ways of getting to
node 8 (one from 7a and one from 7b). Essentially,
this cleave now allows the CFG to distinguish be-
tween a path through the CFG that goes through the
45 branch (i.e., “foo” is true) and one that goes
through the 47b branch (i.e., “foo” is false). When
a player requests that a cleave be performed, this
operation can be easily performed by the Ghost Map
game via a simple graphical manipulation of the
CFG. No knowledge of the original source code is
needed.

B. Edge Removal

Edge removal is an activity where the game
player suggests edges to be removed to eliminate

abstract counterexamples. For example, the left hand
edge 7a8 in the cleaved graph is clearly a candidate
for removal (see Figure 4a). Why? Because if it can
be removed, then the counter-example at node 8 (two
unlocks/greens in a row) can never occur. Once a
player suggests an edge to be removed, the Ghost
Map system must then go back to the original source
code of the software in order to determine that the
edge can be legally removed. An edge can be legally
removed if it is not reachable via any legal execution
path through the cleaved CFG. Determining removal
is currently performed using a test case generation
tool called Cloud9 [15] to examine the data con-
straints in the software. For example, the predicate
“new != old” is the key value that helps prove that
node 8 is never reachable from node 7a by an actual
execution of the function – and hence that the coun-
ter-example at node 8 is false and can be eliminated.
Within Ghost Map, the player eliminates one coun-
ter-example at a time. For example, the player may
next seek to eliminate the edge 7b1 (see Figure
4b). Again, the predicate “new != old” helps prove
that this edge can be removed. Once all counter-ex-
amples have been eliminated (e.g., Figure 4c), the
CFG (at least the part showing in the current game
level) has been formally verified to be correct. One
can view the final graph in Figure 4c as an “optimi-
zation” of the original code, akin to something that
might be done by an optimizing compiler. The loop
structure of the final graph is now transparently cor-
rect for the lock/unlock rule.

IV. GAME PLAY OVERVIEW
Our game uses a puzzle-approach, where each

game level is essentially an independent puzzle with
respect to the other game levels. The basic style of
the gameplay is arcade-like with all the information
needed by the player presented on the screen at the
same time, and the time needed to play a level being
relatively short. This approach was selected to en-
sure that the game was accessible and appealing to a
broad range of game players.

Figure 5 illustrates the basic interface of the
game.

• At the bottom right of the screen is a
representation of the FSA. This can be
expanded or shrunk down depending on the
player’s preferences. Note that the FSA in
Figure 5 is essentially the same as the one in
our earlier lock/unlock example.

Figure 4. Illustration of edge removal to produce a
CFG containing no counter-examples.

(b) (a)) (c)

1

2

3

4

5

6

7b

8

9

7a ?

1

2

3

4

5

6

7b

8

9

7a

?

1

2

3

4

5

6

7b

8

9

7a

Approved for Public Release; Distribution Unlimited.
64

• The X-like figure in the middle of the screen is
a depiction of a very small CFG. Lines use
arrows to convey the direction of the edges.
Colors are used to distinguish the start node
from the node at which the counter-example
occurs, as well as from intervening nodes. A
colored path is provided to show the shortest
path found by MOPS from the start node to the
counter-example node.

• Nodes that can be cleaved are indicated with a
large highlighted sphere, and a cleave cursor
icon can be clicked on the sphere to perform the
cleave.

• Edges that can be disconnected (see Figure 6a)
are highlighted, and an edge disconnect cursor
icon can be clicked on the edge to initiate
verification.

• Various helper functions for zooming in and out
and highlighting different parts of the graph are
provided at the bottom left of the screen.

• At the top of the screen is a summary of the
resources available to perform the expensive
edge disconnect operations (more details below
in Game economy).

The player is free to explore and manipulate the
graph as they wish. As they perform key actions,
messages appear in the center of the screen
describing what is currently happening or what has
happened (see Figure 6). Ultimately, the player can

win the level, fail the level, or simply switch over to
another level and return later.

Incorporating the ability to switch among levels at
will was a decision based on the fact that edge
disconnection can sometimes take a very long time.
To prevent boredom, players can initiate an edge
disconnection operation, and then switch to work on
another level while the first one is finishing the
operation on the server. In future releases of the
game, we plan to include additional game play
activities to manage the delay generated by edge
removal processing.

Ghost Map includes a simple game economy that
penalizes expensive edge disconnect operations that
do not succeed and rewards successful decisions.
The player begins with a certain amount of credit to
solve the current level (e.g., 1000 credits, shown in
the top left of the screen, see Figure 5). Every
request for an edge disconnect costs a certain amount
(e.g., 500 credits, see Figure 6b). If an edge request
is unsuccessful, then the credits are consumed, the
players are notified of the failure and given chance to
try again. If the request is successful, however, then
the player receives the current value of the level,
which will be 1000 minus the cost of any edge
removal requests. MOPS is run again on the updated
CFG to determine if there are any remaining counter-
examples. If there are, then gameplay continues
immediately in a new level.

Figure 5. The primary game screen for Ghost Map.

Approved for Public Release; Distribution Unlimited.
65

V. GAME SYSTEM ARCHITECTURE
The high-level architecture of the Ghost Map

game system is shown in Figure 7. The upper portion
of the figure shows the off-line processing of the
CWE entry and the target software to generate game
levels. The game level data and modified C software
is loaded into the cloud to be used during game play.
Ghost Map is a client-server game. The game clients
run the Unity game engine and communicate with the
Ghost Map Game Server to receive game levels and
to send edge removal requests for verification by the
math back end.

VI. GAME DESIGN ISSUES
The goal of our game is to allow players to

perform refinements based on insights gleaned from a
visual analysis of the CFG and an understanding of
the FSA. The intent is that the actions performed by

the players are, on the whole, more efficient than the
brute force search abilities of computers. In the game
play, one or more FSA to CFG matches are identified
and displayed to the player.

Within Ghost Map, we chose to use a visual
representation that is directly tied to the graphical
nature of an FSA and CFG, and to use operations that
are directly tied to the acts of cleaving and
refinement. During our early design phase, we
explored several alternative visualizations that used
analogies (e.g., building layouts, mazes, an “upper”
world/CFG linked to a “lower” world/FSA, a Tron-
like inner world/FSA linked to a “real” outer
world/CFG) but preliminary testing with game
players revealed that the simpler node-based
CFG/FSA visualizations were easier to understand.
We instead focused our game design efforts on
developing an appealing narrative basis for the game,
using visually appealing graphics to display the
graphs and motivating the player’s interest in
performing the refinement operations efficiently via a
game economy. Efficient gameplay was a must.
While cleaving is an inexpensive operation, verifying
edge removal can be quite expensive to compute.

A. Narrative Basis for Game

Creating an effective game is often an exercise in
creating an effective narrative. However, in a crowd-
sourced game, there is an additional complication –
the narrative basis of the game needs to encourage
the player to want to solve the specific problems with
which they are presented. Most successful crowd-
sourced games to date have actually used a minimal
narrative approach. The “story” of the game is the
real-life story of the problem being solved (e.g.,
trying to analyze proteins in FoldIt). In our case, we
decided early on that a story based on trying to
formally verify software would be too technical and
unappealing to the masses. In addition, due the
vulnerability protection issue, there are some
limitations to the information that we can release
about the true story.

Hence, in our early design, we explored a variety
of narratives that could be used to motivate the
gameplay through analogy. In particular, we wanted

Figure 6. Action scenes from the Ghost Map game (figures 6a through 6d).

Figure 7. The Ghost Map game system architecture.

Approved for Public Release; Distribution Unlimited.
66

the analogy to motivate the specific refinement
operations of cleaving and edge removal. We
considered several basic approaches for the narrative,
each focused on a different type of game reason for
eliminating a counter-example from a graphical
layout of some sort:

• Having the player focus on circumventing
restrictions. For instance, finding out how to
solve traps and challenges within an ancient
tomb in order to reach the treasure inside.

• Having the player protect others. For instance,
having little lemmings moving along the graph
and needing to eliminate the counter-examples
in order to stop them from dying when they hit
the counter-examples.

• Having the player focus on protecting a
system. For instance, being a security officer
and trying to shut down doorways that are
enabling entities from an alternate universe
from entering our own to wreak destruction.

• Having the player try to outwit others to
survive. For instance, in a Pac-man style
gameplay, solving the counter-example
provides you with immunity from the enemy
(e.g., ghosts) chasing you.

• Having the player trying to escape. For
instance, the player is stuck in a maze and the
only way out is to solve the counter-example.

• Having the player stop something from
escaping. For instance, a sentient program is
trying to escape and take over the world, and
the player needs to keep it from growing too
strong by eliminating its access points to the
outside world.

These narrative motivations and ideas were tested
with game players to determine their appeal. The last
two were found to be the most appealing, and upon
further thought, we blended the two within the
concept of a newly formed sentient program trying to
ensure their growth and survival by eliminating
restrictions on their capabilities. This final narrative
idea tested well, and added the motivation of an
implicit journey of self-realization. An additional
benefit of this final narrative idea was that the graph
being analyzed by the players could be clearly
described as a program that needed to be analyzed.
Thus, in keeping with some of the successful
approaches mentioned above, we came almost full
circle to linking gameplay closely with the specific
real-world task

B. Software and Vulnerabilities
One of the design requirements of Ghost Map is

the association between a game level and the
associated portion of source code being proved
correct cannot be known to the crowd. This
requirement relates to standard practices for limiting
the release of potential software vulnerability
information. While Ghost Map is a tool for proving
the correctness of software, it is of course true that
when correctness proofs fail, vulnerabilities may be
present. Even partial information about
vulnerabilities in software should be managed
carefully, with release to the public to be considered
only after the software authors or other authorized
parties have been informed. Ghost Map protects the
software to be verified by only showing the player a
compacted control flow graph of the software and by
similarly limiting knowledge of the vulnerabilities in
question.

Games like FoldIt [6] and Ghost Map draw
players that want their game efforts to be applied
toward the common good. Detailed information
about the problem being solved by the game can
provide additional player motivation. Ghost Map
however cannot take full advantage of this additional
motivation approach, due to the restrictions on the
release of potential vulnerability information.

VII. FUTURE PLANS
Ghost Map is under active development, and at

the time of writing we have just commenced our
second phase of development. Our goal is to build
upon the success of our initial version in six ways:

• Enhance the gameplay through the use of
refinement guidance, which we refer to as
“clues”

• Add new game play activities that provide
additional fun for the player

• Develop a new space-travel narrative that
provides a more engaging story than the
current narrative and also provides a more
comprehensive linkage to the puzzle problem

• Improve the accuracy and performance of our
edge removal verification tool

• Extend the scope of the Ghost Map system to
cover additional C language constructs

• Improve our approach to FSAs to create a
more accurate representation of vulnerabilities

Approved for Public Release; Distribution Unlimited.
67

VIII. SUMMARY AND CONCLUSIONS

We have presented Ghost Map, a novel crowd-source
game that allows non-experts to help prove software
correctness from common security vulnerabilities.
Ghost Map was released for open Internet play in
December 2013. In the months since release, over a
thousand users have played the game and similar
numbers of small proofs have been completed
(representative data from January 2014 is shown in
Figure 8). Ghost Map demonstrates the basic
feasibility of using games to generate proofs and

provides a new approach to performing refinement
for model-checking approaches. In addition to the
immediate benefits of verifying software using
games, we also anticipate that the Ghost Map
approach may enable new automated methods as
well. Through the intermediate representations we
have developed and the proof tools we have created
for validating edge removals, we believe the
possibility of creating novel intelligent refinement
algorithms is significant.

Figure 8. Ghost Map player and proof data from January 2014.

Approved for Public Release; Distribution Unlimited.
68

ACKNOWLEDGMENT
Many additional people beyond the named

authors on this paper contributed to Ghost Map,
including Bob Emerson, David Diller, David
Mandelberg, Daniel McCarthy, John Orthofer, Paul
Rubel, Michelle Spina and Ray Tomlinson at BBN,
and additional individuals at the subcontractors
(Breakaway Games, Carnegie Mellon University and
the University of Central Florida). The DARPA
leadership and staff associated with the Crowd
Sourced Formal Verification (CSFV) Program were
also very helpful. Dr. Drew Dean developed the
initial CSFV concept at DARPA and Dr. Daniel
Ragsdale is the current Program Manager. Mr. Carl
Thomas at AFRL is the project funding agent.

This material is based on research sponsored by
DARPA under contract number FA8750-12-C-0204.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of
the authors and should not be interpreted as
necessarily representing the official policies or
endorsements, either expressed or implied, of
DARPA or the U.S. Government.

REFERENCES
[1] Y. Bertot and P. Castéran, Interactive Theorem

Proving and Program Development: Coq Art: The
Calculus of Inductive Constructions, Springer, 2004,
XXV, 469 p., ISBN 3-540-20854-2

[2] S. Owre, J. Rushby, and N. Shankar, “PVS: A
Prototype Verification System,” in Lecture Notes in
Artificial Intelligence, Volume 607, 11th International
Conference on Automated Deduction (CADE), D.
Kapur, Editor, Springer-Verlag, Saratoga, NY, June,
1992, pp 748-752.

[3] E. M. Clarke Jr., Orna Grumberg, and Doron A. Peled,
Model Checking, The MIT Press, 1999.

[4] R. Alur, “Model Checking: From Tools to Theory, 25
Years of Model Checking,” in Springer Lecture Notes
in Computer Science, Vol. 5000, 2008, pp 89-106.

[5] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre,
“Software verification with BLAST,” Proceedings of
the 10th SPIN Workshop on Model Checking
Software, May 2003, pp 235-239.

[6] S. Cooper, et al., “Predicting protein structures with a
multiplayer online game,” Nature, Vol, 466, No. 7307,
August 2010, pp 756-760.

[7] W. Dietl, et al., “Verification Games: Making
Verification Fun,” Proceedings of the 14th Workshop
on Formal Techniques for Java-like Programs,
Beijing, China, June 2012, pp 42-49.

[8] W. Li, S. A. Seshia, and S. Jha, CrowdMine: Towards
Crowdsourced Human-Assisted Verification,
Technical Report No. UCB/EECS-2012-121, EECS
Department, University of California, Berkeley, May
2012.

[9] Cancer Research UK,
http://www.cancerresearchuk.org/-support-us/play-to-
cure-genes-in-space, retrieved: Oct, 2014.

[10] Verigames, www.verigames.com, retrieved: Oct,
2014.

[11] H. Chen and D. Wagner, “MOPS: an infrastructure for
examining security properties of software,”
Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS), Washington,
DC, Nov. 2002, pp 235-244.

[12] The MITRE Corp., http://cwe.mitre.org/top25,
retrieved: Oct, 2014.

[13] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H.
Veith, “Counterexample-guided abstraction
refinement for symbolic model checking,” Journal of
the ACM, Volume 50, Issue 5, Sept. 2003, pp 752-
794.

[14] J. Esparza, D. Hansel, P. Rossmanith, and S.
Schwoon, “Efficient Algorithms for Model Checking
Pushdown Systems,” in Springer Lecture Notes in
Computer Science, Vol. 1855, pp 232–247.

[15] S. Bucur, V. Ureche, C. Zamfir, and G. Candea,
“Parallel Symbolic Execution for Automated Real-
World Software Testing,” ACM SIGOPS/EuroSys
European Conference on Computer Systems (EuroSys
2011), Salzburg, Austria, April, 2011, pp 183-197.

Approved for Public Release; Distribution Unlimited.
69

Appendix B. Making Hard Fun in Crowdsourced Model
Checking

DISTAR Case #24096

Approved 1/28/2015

Approved for Public Release; Distribution Unlimited.
70

Approved for Public Release; Distribution Unlimited.
71

Approved for Public Release; Distribution Unlimited.
72

Appendix C. Lessons learned in game development for
crowdsourced formal verification

DISTAR Case #25125

Approved 8/10/2015

Approved for Public Release; Distribution Unlimited.
73

Lessons learned in game development for crowdsourced formal verification

DREW DEAN1, SEAN GUARINO2, LEONARD EUSEBI2, ANDREW KEPLINGER3, TIM PAVLIK4, RONALD
WATRO5, AARON CAMMARATA6, JOHN MURRAY1 JOHN CHENG7, THOMAS MADDERN7,

1Computer Sciences Laboratory
SRI International

{ddean, jxm}@csl.sri.com

2Human Effectiveness
Charles River Analytics

{sguarino, leusebi@cra.com}

3Left Brain Games
andrew@circuitbot.net

4Center for Game Science
University of Washington

pavlik@cs.washington.edu

5Raytheon BBN
rwatro@bbn.com

6VoidALPHA
aaron.cammarata@voidalpha.com

7Information Innovation Office
Defense Advanced Research Projects Agency

{john.cheng.ctr, thomas.maddern.ctr@darpa.mil}

1. Introduction

The history of formal methods and computer security
research is long and intertwined. Program logics that
were in theory capable of proving security properties of
software were developed by the early 1970s [1]. The
development of the first security models [2-4] gave rise
to a desire to prove that the models did, in fact, enforce
the properties that they claimed to, and that an actual
implementation of the model was correct with respect
to its specification [5; 6]. Optimism reached its peak in
the early to mid-1980s [7-11], and the peak of formal
methods for security was reached shortly before the
publication of the Orange Book [12], where the
certification of a system at class A1 required formal
methods. Formal verification of software was
considered the gold standard evidence that the software
enforced a particular set of properties. Soon afterwards,
the costs of formal methods, in both time and money,
became all too apparent. Mainstream computer security
research shifted focus to analysis of cryptographic
protocols (e.g. [13; 14]), policies around cryptographic
key management [15], and clever fixes for security
problems found in contemporary systems [16-19].
Our appetite for formal verification historically has
been insufficient to limit our appetite to build ever
larger operating systems. In the 1980s, it was possible
to verify a few hundred to a few thousand lines of code.
By comparison, the 1986 release of the 4.3BSD Unix
operating system had a kernel of approximately 50,000
lines of code. From the 1980s to present, there have
been numerous advances in formal verification

technology, for example, the introduction of software
model checkers, (mostly) practical satisfiability solvers,
and SMT solvers. The seL4 project [20] remains a
highlight of modern operating system verification, with
a microkernel of approximately 9,000 lines, took 11
person-years, plus an additional 9 person-years of tool
development. For comparison, due primarily to the
large number of devices supported, the 2013 Linux 3.10
kernel has 15.8 million lines of code2.
While the seL4 project is justifiably celebrated as a
success, it also unfortunately reinforces the message
that formal verification has scaling challenges. Based
on the seL4 data, if one optimistically assumed linear
scaling of effort vs. lines of code in formal verification,
verifying Linux 2.6.24 with 8.9 million lines of code3

from January 2008 would take 11,000 person-years, or
nearly 3 years if all of the world’s estimated 4,000
formal methods experts [21] productively working
together on a single project. With the average salary of
a software engineer being approximately $93,000 in
20134, we derive a direct cost of $1 billion for the
verification effort. In those intervening 3 years, Linux

2http://www.h-online.com/open/features/What-s-new-
in-Linux-3-10-1902270.html
3http://royal.pingdom.com/2012/04/16/linux-kernel-
development-numbers/
4http://money.usnews.com/careers/best-jobs/salary

mailto:aaron.cammarata@voidalpha.com
http://www.h-online.com/open/features/What-s-new-in-Linux-3-10-1902270.html
http://www.h-online.com/open/features/What-s-new-in-Linux-3-10-1902270.html
http://royal.pingdom.com/2012/04/16/linux-kernel-development-numbers/
http://royal.pingdom.com/2012/04/16/linux-kernel-development-numbers/
http://money.usnews.com/careers/best-jobs/salary

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
74

had advanced to version 2.6.36, with an additional 4.5
million lines of code. It is easy to see that this process
will never converge, even with unrealistically
optimistic assumptions!
The time and cost of formal verification appeared to be
an intractable problem outside of very specialized
domains, where cost and long development times could
be tolerated for improved safety and security. If one
examines the situation a little closer, the key to the
problem is that the size of the available talent pool is
limited by today’s formal verification tools, complete
with user interfaces that can be described charitably as
obscure. It is often said that an advanced degree in
Computer Science is necessary to use formal
verification tools. If, however, this talent pool could be
expanded, the key bottleneck to effective formal
verification could be removed. We note that
automation, while proven very helpful by the seL4
effort, cannot provide a full solution due to Rice’s
Theorem [22], which established that most common
questions about software are algorithmically
undecidable. Given that we cannot fully automate the
verification problem, it is natural to attempt to add
aspects of human intuition to the solution.
Towards the goal of human-assisted verification, two
remarkable circumstances converged: (1) the then
director of DARPA, Dr. Regina Dugan, expressed
interest in applying crowdsourcing to computer
security; and (2) a set of enlightening discussions with
Michael Ernst and Jeannette Wing, starting at the
November 2010 Usable Verification workshop hosted
by Microsoft Research, led to the idea of applying
gamification to the formal verification domain. If
formal verification problems could be turned into
entertaining video games, those games could be crowd-
sourced to a large audience. At first, this seemed like an
impossible challenge: how do you define a puzzle that
encodes a formal verification problem in a way such
that a solution to the puzzle can be mapped usefully
back to the underlying verification problem, while
simultaneously be entertaining to solve? The remainder
of this paper describes five remarkable solutions to this
challenge developed under the aegis of DARPA’s
Crowd-Sourced Formal Verification (CSFV) program,
identifying numerous lessons that can be carried
improve the success of future citizen science and
gamification efforts.

2. Circuitbot/Dynamakr

Authors: Andrew Keplinger1, Mathew Barry2, J.
Nelson Rushton3, Greg Izzo1 & Qianji Zheng3

1Left Brain Games

2Kestrel Technology
3Department of Computer Science, Texas Tech
University

2.1 Introduction

The Circuitbot and Dynamakr games provide a crowd-
sourced contribution to the verification of C-language
programs. In particular, the player-provided solutions of
these puzzle games contribute so called "points-to
graphs”, which represent information about which
memory locations may hold the addresses of other
memory locations as the program runs. Nodes in the
graph correspond to memory locations, and an arc from
node x to node y represents that x may hold the address
of y at some point during program execution. This is
classically known as the "pointer analysis problem" and
has many variations. The variation we treat takes
account of offsets in memory, but abstracts away
control flow from the program. Even this simplified
version of the problem is undecidable, and its solution
or sound partial solution contributes substantially to
program verification. These two factors make this
version of the pointer-analysis problem a good
candidate for the application of human intelligence
through game play.
There are three steps to our program verification
approach. In the first step, the CodeHawk static
analyzer creates a set of constraints on the points-to
graph of the given source program. These constraints
are partitioned into sets corresponding roughly to
functions in the source code, which are then
transformed into game levels. In the second step, the
game players solve these levels by making moves in a
judicious order. Each move in the game consists of
adding arcs to the graph that result in satisfying a single
constraint. Eventually, as the players complete the
levels and satisfy all of the constraints, the gameplay
yields a fixpoint solution -- but the time required to
reach this solution, and whether the process halts,
depends on triggering constraints in a wise order, as
well as performing operations that lose information but
speed up the solution process or allow it to halt. In the
third step, CodeHawk uses the information derived
from the points-to arcs to detect buffer overflow and
underflow errors, or (more hopefully) verify their
absence.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
75

2.2 General Game Play

The challenge is to create an engaging game from the
constraints on the points-to graph of a software
program. Our player-engineers are actually receiving
information about a section of the program to be
verified, in the form of game levels. The information
takes the form of constraints defining when connections
(“arcs”) must be added between elements to satisfy the
constraint, at least temporarily. Once all rules are
satisfied simultaneously, the level is solved
(corresponding to a local fixpoint).
From the player's perspective, the tricky part is this:
arcs added to satisfy a constraint may cause another
constraint to become unsatisfied. Indeed, a brute force
auto solver could spend an infinite amount of time
attempting to complete all the connections. In practice,
the size and connectedness of the graph grow as the
game progresses, resulting in ever-more complex
interactions between constraints. Eventually as a
fixpoint is neared, some sections of information become
idle. Our autosolver uses a divide-and-conquer
approach, but the current strategy did not become
apparent until after a great deal of experimentation.

2.3 Game Play Evolution

Although our core game concept has remained
unchanged throughout the CSFV program, our
approach to crowd contribution has changed
substantially. Our present game-play approach is to
present essential elements of the graph to the player in
very large chunks, then prompt him to steer the
autosolver in exploring the graph.
Since we focus on the creation of a points-to graph, our
key heuristic for player productivity is the number of
arcs added to the graph. The source of the name
“Circuitbot” was a game concept where constraints
were represented directly and individually on the
screen, and robotic spiders traveled from one to another
in a specific order carrying information, like an
assembly line changing with each rule application. A
potential problem present in this early version was
Circuitbot going into a trivial infinite loop due to
incompatible rules. We developed art for this concept,

and created some cartoonish Acme-Labs style gates that
would destroy the Circuitbots.
As the game evolved we found no good strategies for
constraint ordering that worked significantly faster than
brute force, and we found that constraints needed to be
represented in a different way. We also found that, as
the concept matured, we were uncertain about the
number of total constraints and how often they would
be applied. So we had to change our game concept into
something that would work regardless of the number of
constraints. In the end we discovered through
experimentation that some rules can produce thousands
or tens of thousands of arcs in a single pass, and we had
to adapt to this.
Since the game model hit a technical bottleneck, while
work was being done on the backend server we had to
base our game on speculation and some sample
data. There were many unknowns from a game-making
perspective, which made it difficult to predict how
much fun -- or how much work -- the resulting game
would provide the player. We considered it likely that
some of the work could be automated, so we needed a
game concept that would maintain user engagement and
also could adapt to some automation.

2.4 Circuitbot

The Circuitbot game employs a turn-based strategy in
which the motivational system drives the player back to
the “work” part we want accomplished for
verification. The universe of Circuitbot is the near
future exploration and exploitation of near Earth
asteroids, along with the development of a space
program. We took many liberties with physics in favor
of directing the player toward rapidly expanding his
supplies of critical resources. The landing sequence, in
which robots arrive on the surface of some far-flung
location, requires the player to develop connections
(arcs) in order to program them so they can complete
the automated process of building a support
facility. This is the “work” that we are asking the
player to accomplish.
After launching the game to the public and supplying
data from actual to-be-verified software, we began

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
76

analysis of player-generated results back into the
verification backend. After much analysis and some
reworking on the software analysis side, we realized
that we were looking at the information too
narrowly. We would receive a game level that
represents too small a portion of the software;
and focusing the player on individual constraints
inside each level was not accounting for a sufficiently
wide view of the target program. This led to the
development of Dynamakr, which better leverages the
respective capabilities of the human player and the
autosolver.

2.5 Dynamakr

Though the mathematical game model for Dynamakr is
the same as for Circuitbot, game play is very different.
Dynamakr presents sets of game levels and the player
manages them on the global level. This allows
automation to solve each individual game level and
present the player with the goal of finding the right sets
of levels to solve in order. The player’s objective is to
reach a fixpoint quickly while minimizing information
loss. We also discovered that we could display this
solution process, showing the individual arcs, and this
would make interesting knots of interconnected
arcs. We then developed an arcade-style game around
this concept as a reward game that challenge players to
find connecting game levels.

The reward game became Dyna-makr. Conceptually,
Dynamakr is a quantum level 3D printer. Inside the
Dynamakr the player examines patterns and feeds them

into the Dynamo. The player first takes on the
challenge of finding patterns that will produce the most
energy in the Dynamo, as sometimes patterns will
amplify each other’s energy. Once they generate
enough energy from the patterns, the player feeds the
patterns into the Dynamo and launches the arcade
game. The player’s success in the first game
determines his points and power-ups available in the
second game. To help the player search for higher-
valued patterns we provide him with a set of
tools. Each pattern yields some energy by itself, but
when joined with the energy from other patterns its
energy can multiply by many times. The game rules
govern the search space and the energy value. The
player cannot feed a pattern into the Dynamo until it
has joined its energy with the energy
design. Moreover, we provide the player with search
tools in the solution space to discover related patterns
based on various relationships. These patterns have a
value based on their composition and the past game
activity. If a pattern produced energy recently it is
likely to produce energy again so we encourage the
player to find related patterns and then join these results
with the energy design. The tools the player deploys
correspond to parameters used in heuristics by the
autosolver. We had to learn to set these parameters
effectively, based on what we saw in the solution
process, to find fixpoint solutions quickly. The players
perform the same task within the abstraction of the
game.

The Dynamakr arcade game shows the same
information that is displayed as robots in the Circuitbot
game, but in Dynamakr there are many times more
instances involved and they fly past the player in an
infinite-runner style game. The player has to dodge and
shoot the bad elements, which are constraints that have
not yet been triggered, and has to collect the energy
generated by triggering the active constraints. This
feature is meant to reward the player for generating
maximal energy during the first phase of the game. The
energy elements arrive at the player in waves, with each

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
77

wave associated with one of the patterns he fed into the
Dynamo.

The design effort for Dynamakr required the game
developers to understand the underlying logic of the
verification method and game rules. In essence, the
game development team had to become familiar with
pointer analysis, especially as represented through the
abstraction of the game. We experimented with various
manual and auto-solving strategies, processing
candidate constraints sets to better understand how the
player would best provide assistance for verification. A
combination of auto-solving and manual play turns out
to be most useful, where we auto-solve much of the
game set prior to releasing it to the crowd who
complete the iteration. This final step of the procedure
is where the human game players in the crowd add the
most value.

3. Flow Jam and Paradox

Authors: Tim Pavlik1, Craig Conner1, Jonathan Burke1,
Matthew Burns1, Werner Dietl2, Seth Cooper3, Michael
Ernst1, Zoran Popović1

1Center for Game Science, Computer Science &
Engineering, University of Washington
2Electrical and Computer Engineering, University of
Waterloo
3College of Computer and Information Science,
Northeastern University

3.1 Introduction

Paradox is a game designed for crowd-sourced formal
verification [23], in which the actions of ordinary
people assist in the production of a proof of correctness
for a computer program. Paradox is a puzzle game with
levels that resemble branching tree-like structures. Each
level of Paradox corresponds to Java code that has been
converted into a constraint graph via a type analysis
system. A level solved with all constraints satisfied the
game corresponds to a proof that some code satisfies a
security property. The player may not be able to fully
solve a level; however, a partial solution will reduce the
amount of work necessary for a skilled programmer to
complete the proof.

This section discusses the design of Paradox and the
application of lessons learned from a previous version
of the game called Flow Jam. Paradox and Flow Jam
were developed at the University of Washington
Department of Computer Science and Engineering, as a
collaboration between the Programming Languages &
Software Engineering Group and the Center for Game
Science.

3.2 Verification Approach

Our verification approach is based on type theory. To
verify a security property, the types in a program must
satisfy certain type constraints. As a simple example, if
the program contains the assignment statement “x = y”,
then the type of x must be a supertype of the type of y.
Therefore a proof of correctness can be thought of as a
set of constraints involving the statements of the
program.
A Paradox game level can also be thought of as a set of
constraints that a player is trying to solve. Like many
puzzle games, in order to complete a Paradox game
level, the player must find consistent settings for all the
game elements.
Because both Paradox and type-checking are based on
constraints, it is possible to create a Paradox level that
corresponds to a given piece of code. Specifically, our
type analysis system takes as input a Java program and
a security property, and it generates as output a set of
type constraints that the Paradox game presents to
players as a puzzle to solve. When a player adjusts a
game element, this corresponds to selecting a different
type for a variable. Because the actual type system
constraints are displayed as simple game mechanics,
players can help perform verification tasks without
needing any prior knowledge of software verification.
If the player is able to solve a given level, the player
has also generated a proof that the input piece of code is
free from vulnerabilities for the given security property.
If the level cannot be fully solved, the constraint graph
must contain certain inconsistencies that correspond to
type-checking errors for the program -- potential
security vulnerabilities that can be examined by a
verification expert.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
78

3.3 Paradox Game Play

Figure 2-31: Paradox variables, constraints, and

conflicts.
A Paradox level’s elements represent variables and
constraints from the underlying constraint problem (see
Figure 2-1). A variable node is either light blue or dark
blue, representing type qualifiers or their absence in the
code being verified. A constraint node requires that at
least one of the connected variables has a certain value.
If none of the variables for a given constraint are the
correct value, then the constraint is marked as a
conflict. Edges are the connections between a variable
and a constraint when a constraint contains a given
variable.

Figure 2-32: A Paradox level representing the

formula: ¬x0 ∧ (¬x0∨ x1). The red circles represent
conflicts are shown for the unsatisfied constraints

involving variables x0 and x1.
The player’s goal is to find a setting for the variables
that minimizes the number of conflicts. Currently, we
represent the variables as boolean values and the
constraints as disjunctions over variables or their
negations, making the problem the players are solving a
maximum satisfiability problem (MAX-SAT) (Figure
2-2). Exposing MAX-SAT problems to human players
is similar to the approach taken by the game FunSAT.

3.4 Maximizing Human Contribution

In order to maximize the contribution that untrained
human players can make to the verification process,
players should focus on the portion of problem that is
least solvable by automated methods. Up to a certain
size, constraint graphs can be solved rapidly by
automated solvers and are not challenging for human
players. Very large constraint graphs, however --
corresponding to real-world programs such as Hadoop -
- can be difficult to understand and present multiple
problems for user interface design. A previous version
of this game, Flow Jam, required players to toggle
variables (in that game called “widgets”) individually,
which did not scale well to larger levels where humans
were most needed.

Figure 2-33: A previous version of the game, Flow

Jam, required players to adjust variables individually.
To address this, Paradox provides a “paintbrush”
mechanism that allows the player to select arbitrary groups
of variables. The player can change them all at once, or
the computer can automatically solve them (for groups up
to a predetermined limit). Different paintbrushes can allow
the player to apply different automated algorithms to their
selection. Thus, the main feature of Paradox gameplay is
the player guiding the automated methods: deciding which
areas of the graph to solve and in what order. Currently
players have access to four paintbrushes that have the
following effects on the selected variables: set to true, set
to false, launch an exact DPLL optimization [26]; [27] or
launch a heuristic GSAT optimization [27]. These
optimizations are the two phases of the maximum (MAX-
SAT) solving algorithm suggested by Borchers and
Furman [28]. New optimization algorithms can be added
to the game as additional paintbrushes.
Additionally, in Paradox, human players are never given
small optimization problems (for example, toggling the
values of 50 variables to get the optimal score) since
automated methods can solve that scale of problem.
Instead, they are consistently provided with large and
challenging problems that are computationally intractable
to solve in an automated manner.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
79

3.5 Maintaining Player Interest

In a normal game, levels are created by a game designer
with the aim of creating a fun and engaging experience
for players. In a formal verification game, however, the
levels that are most valuable for players to solve are
those generated from the code that is being verified.
Since the code in question was most likely created for a
very different purpose than making an interesting game
level, sometimes levels contain oddities such as
enormous sections that are not integral to the solution.
Worse, some levels are very large but consist only of
repeating structures, resulting in puzzles that are not
interesting or challenging for human players.
To study player preferences, a comparable batch of
levels was synthesized -- that is, generated randomly
and not based on real-world Java code. Using Flow Jam
(the previous version of Paradox), real versus
synthesized levels were compared by surveying players
to see which type of levels were found enjoyable.
Synthesized levels designed to maximize complexity
were clearly preferred, with an average 65% preference
rating, over real levels, which averaged a 30%
preference rating. Although not a rigorous comparison,
this indicates that there is room for improving levels
generated from real code. We do not yet know whether
this preference for synthesized levels in Flow Jam
carries over to levels in Paradox.
To ensure that levels generated from real-world code
are interesting enough to entice non-expert human
players to solve them, our system adjusts the constraint
graphs before they are served to players. For example,
irrelevant parts are removed, and a level is broken down
into independent levels when possible. If a level can be
automatically solved, then it is never given to human
players. Subparts of a level may be solved before the
player ever sees it. We plan to perform a study
comparing levels directly from Java code to levels
optimized for human engagement.

3.6 Solution Submission and Sharing

Game players on the Internet are not obligated to persist
in playing until a level is solved. We found that many
players of Flow Jam would make some amount of
progress, but very few of them would follow through
and submit or share their results. Before changing our
submission process, there were only about 3,300
submissions compared to about 100,000 levels played
(note that players could make multiple submissions on
an individual level if desired). Players would often quit
midway through without returning to their current state,
or fail to notice the level submission/sharing

functionality even though they were making progress
on the levels.
To address this, Paradox automatically submits level
configurations to a central server whenever the player’s
score increases. This takes the burden off of players to
manually submit their solutions for evaluation. By
adding these submissions back into the system as new
level starting points, it also allows future players of a
given level to begin with the progress that prior players
have made, without requiring them to proactively share
solutions with each other.

3.7 Sense of Purpose

Another aspect of working with a human population of
solvers is motivation. Playtesting has shown that, if
players do not understand what they are doing and why
they are doing it, they quickly lose interest in the task.
In early versions of Paradox, players were given the
optimizer brush and tasked with painting around
conflicts to solve them, leaving them with no sense of
what they were actually doing to solve the levels. To fix
this, the tutorial now includes a few levels where
players must change variables manually. Playtest
feedback indicates a much better understanding of the
underlying problem and a general sense of purpose
when players are required to adjust individual variables
in tutorials before using optimizer brushes.

3.8 Results

Since the public launch of the combined verigames.com
portal in December 2013, over 6,000 unique players
have played Flow Jam for a combined total of over
7,500 hours of play and over 34,000 level submissions.
In addition, we completed an experiment on Hadoop to
test how much expert analysis time is saved using
inference and Verigames. 2 developers annotated a
program, one starting from unannotated source code
and one startingfrom game results (inference). Each
continued manually until the program type-checked.
There were a total of 23 annotations required. Of the
two conditions, unannotated code required 45 minutes
total time (7 minutes of type checking and 38 minutes
of manual effort) versus 4 minutes total when starting
with game results (3 minutes of type-checking and 1
minute of manual effort).
Not included in these timing were the annotation of
APIs (determining the proof goal, required in both
cases), and gameplay (crowd time, machine time to
generate levels). Note that the game computed correct
annotations in this case (the human merely verified
them).

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
80

3.9 Conclusions

Due to its crowd-sourcing approach, the CSFV program
is as much about game design, human-computer
interaction, and human behavior as it is about formal
verification of software. The lessons that have guided
development from the earlier game Flow Jam to the
current game Paradox naturally point towards future
areas of study. These topics include player performance
versus fully automated methods, player effectiveness
with different graph representations and groupings, and
differences between volunteer players and compensated
players. Also, given its general nature, problems from
other domains that can be encoded as maximum
satisfiability problems (MAX-SAT) could be used to
create levels in Paradox. The game design may also
extend to other types of constraint satisfaction problems
that can be visualized as a factor graph.

4. Ghost Map/Hyperspace

Authors: Ronald Watro1, Kerry Moffit1, John
Ostwald1, Eric Church2, Dan Wyschogrod1, Andrei
Lapets1, Linsey Kennard1

1Raytheon BBN
2BreakAway Games

4.1 Introduction and Approach

The Ghost Map project is led by Raytheon BBN
Technologies with support from Breakaway Games, the
University of Central Florida, and Carnegie Mellon
University. Ghost Map uses model checking as its
software verification technique. The fundamental
concept of model checking is that properties of a
complex system can sometimes be most effectively
deduced by creating and reasoning about a simplified
model of the system rather than the system itself. For
software, the control flow graph (CFG) of a program is
a simplified model of the program’s actual executions.
Many of the software correctness properties from the
SANS/MITRE Common Weakness Enumeration
(CWE) list [Martin, 2011 #21514] can be associated
with a set of control flow patterns. The Ghost Map
underlying mathematical engine takes a program and a
CWE and identifies any paths through the program’s
CFG that have the potential to violate the correctness
property. Each such path is built into a level in the
Ghost Map game. During game play, the player
performs actions that attempt to resolve the potential
violation path, that is, to establish that the path is not
realizable in the program. If all the levels for a program
and a CWE are resolved by game play, then we have a
proof that the program is free from the CWE
vulnerability. In model checking terms, Ghost Map

game players perform counterexample-guided
abstraction refinement (CEGAR), in that they extend
the CFG to a more precise model as necessary to verify
the correctness of the software with respect to the CWE
in question. The verification approach used by Ghost
Map is based on the MOPS tool, which was shown
successful over a series of papers [Chen, 2002
#21512][Chen, 2004 #21513]. Ghost Map game play
attempts to resolve the potential violations identified by
MOPS, with the goal of reducing the numbers of false
alarms that waste the time of programmers and
verification experts. In the future, the Ghost Map
approach could potentially be combined with
commercial tools that generate vulnerability warnings,
such as Coverity and HP Fortify.

4.2 Ghost Map

The high-level theme of Ghost Map is that the player is
a cybernetic entity attempting to achieve consciousness.
The software CFGs are described as aspects of the
cybernetic entities own programming and the potential
violation paths in the CFG are called locks, meaning
obstacles to consciousness. The player/entity resolves
the paths in order to break the locks and achieve its
goal. The cybernetic entity theme is not deeply
developed in the initial game and it is possible for
players to ignore the theme and play purely abstractly if
they so choose.

Figure 3-34: Simple Example of Ghost Map Level

A simple example of a Ghost Map game level is shown
in Figure 3-1. The software CFG is the X-like pattern
in the middle of the figure. The three node graph in the
box in the lower right is a representation of the software
vulnerability being addressed. The purple arrows on
the CFG show a potential violation path that must be
addressed. The player uses game tools to “cleave” the
haloed node into two nodes. After the cleaving
operation, a modified CFG will appear and each of the

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
81

new nodes will have just one incoming edge. The
player then is able to propose the elimination of the new
path that contains the blue edge. More details on the
game play of Ghost Map are available in Watro et al
[Watro, #21515] and at the Verigames web site.

4.3 Ghost Map Hyperspace

For the second game, the team decided to retain the
underlying mathematical approach but to update the
game. The new game, called Ghost Map Hyperspace,
addresses several observations from early play testing.
First, initial play testing showed that players lacked the
needed information to make informed choices on path
elimination proposals. The vulnerability pattern
window in the game did allow users to infer that certain
paths would be valuable to eliminate, but nowhere in
the game was their data that suggested that a path could
be successfully eliminated. The Hyperspace game
attempts to resolve this issue with the use of “energy
analysis,” discussed below.
Another observation from Ghost Map was that
cybernetic organism theme was confusing at times, as
the game narrative concepts such as the organism’s
software overlapped with the underlying verification
concepts, such as the software being proved correct.
Also, the theme did not seem to foster engagement from
players. For Ghost Map Hyperspace, we adopted a
“space opera” theme that we believe will be more
engaging, less confusing, and will allow easy expansion
of the narrative to cover the new data that supports path
decisions.

Figure 3-35: Example of a Ghost Map Hyperspace

Level
Finally, one of the issues with Ghost Map is the
significant delay required to process the path
elimination input. In Ghost Map Hyperspace, we
include additional game play activities that are
integrated with the overall theme and occur while the

path elimination process is running. We are hopeful
that this new feature will support a more balanced game
play experience.
Figure 3-2 shows a screen shots from Ghost Map
Hyperspace. The potential violation path is shown as a
highlighted segment of a portion of the CFG, much as
in Phase 1. In the new narrative, the potential violation
path is a rift in hyperspace that the player is attempting
to seal. In Figure 3-3, we see a second example where
variable reads and writes in the software have been
modeled as energy exchanges and displayed in the chart
at the bottom of the game window. These energy
analysis readings allow the game player to make better
path removal suggestions since they reflect actual data
exchanges in the software. Once the elimination
suggestion is completed, a combat game begins that
represents alien ships slipping through the rift to attack.
Points scored in the combat game add to the players
total and the rift sealing results (determined by the math
back-end) are released at a later point in game play.
More information on the player engagement strategy in
Ghost Map Hyperspace can be found in Moffitt et al
[Moffitt, 2015 #21511].

Figure 3-36: Using energy clues to seal rifts

4.4 Ghost Map Summary

Since the initial release in December 2013, more than a
thousand users have played Ghost Map and hundreds of
small proofs have been completed. Ghost Map
demonstrates the basic feasibility of using games to
generate proofs and provides a new approach to
performing refinement for model-checking approaches.
In addition to the immediate benefits of verifying
software using games, we also anticipate that the Ghost
Map approach may enable new automated methods as
well. Through the intermediate representations we have
developed and the proof tools we have created for
validating edge removals, we believe the possibility of
creating novel refinement algorithms is significant.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
82

5. StormBound/Monster Proof

Authors: Aaron Cammarata1 & Aaron Tomb2
1VoidALPHA
2Galois, Inc.

5.1 Introduction

Our team is Galois, specialists in formal methods, and
voidALPHA, a videogame studio. We first built
StormBound, which challenged players to find patterns
in magical energy and save their planet. Based on
lessons learned from StormBound, we are building
Monster Proof, in which players solve puzzles to
gather resources and become wealthy beyond desire.

5.2 Verification Approach

Our games used two different implementations of the
same verification approach. In the games, players use
their intuition and insight to generate assertions about
the code being verified. The verification back end
creates individual puzzles, which are then presented in-
game. It assembles player answers (logical assertions),
and tries to perform an end-to-end verification.
In StormBound, our approach was to instrument the
code being verified, and take snapshots of the software
during execution. This generated ‘trace data’, which
captured the values of in-scope variables at key
program points. The players identified patterns in those
data, for example noting the relationship between an
integer function parameter and the size of a local array.
Taken collectively, these player-generated assertions
sketched out a spec for ‘normal operation’ of the
program, which in turn acted as hints for the
verification solvers.
In Monster Proof, we establish the weakest
precondition under which a desired property holds for a
block of code. We then ask the player to discover
invariants that prove the preconditions by using pre-
defined rules to transform or supplement those
preconditions. For a trivial example, a player may be
tasked with proving the precondition “a < c”, by
identifying the invariant “a < b” in a context where “b <
c” is already known.

5.3 Game Descriptions

Figure 4-37:StormBound play screen
• Story-driven engagement
• “Magepunk” universe, blend of brass/steam and

glowing magical runes
• Goal was to “completely hide the math”: allow

players to make assertions without any math or
numbers in-game

• Targeted a broader, casual audience
• Used Unity Webplayer, embedded in a MeteorJS

web page

Figure 4-38: Monster Proof Game Screen
• Resource-gathering and collection
• Cute cartoon monsters, emphasis on tongue-in-

cheek humor
• Goal was to “completely show the math”: give

players tons of context, and focus on efficiency
and comprehension

• Targets a focused puzzle-game audience
• Used Famo.us for HTML/CSS Sprites, and

MeteorJS for web page / server

5.4 Game Results

The audience of the StormBound followed a typical
industry adoption curve – numerous players up front at
launch, tapering off to a steady state, trailing off over
time. All told, 10,650 players tried the game, 7,264 in
the three weeks after launch in December 2013. The
game continued to attract about 150 players / week until
June, then dropped to near zero.
We received 142,711 valid assertions – successful
solutions – generated over 2,919.2 hours. Note: levels

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
83

can have multiple solutions. (All figures exclude CSFV
team members.)
In order for a level to be verified, it must have at least
one player-generated answer. By the end of the active
play period, players had contributed to 4,361 out of
6,523 levels (66.8%).
When we began, automated tools could discharge about
19% of the work with no human input. Improvements
to automated tools done under the CSFV program
resolved an additional 15%, and player-assisted levels
solved an additional 15%, totaling about 49%. Once
automated tools remove some of the workload, players
completed 22.3% of the remaining work. Note that all
of these measures apply to verifying program properties
in isolation rather than across the entire code base—a
weakness we are addressing in the Phase 2 game.
The original code base was about 300,000 lines of code
(LOC), so players touched about 103 LOC per hour of
gameplay, and contributed to verifying 15.4 LOC per
hour. The reason these differ is because as you’ll see, in
StormBound it was possible to give us an answer that
isn’t useful for making verification progress – players
could easily ‘waste’ effort.
As with any free-to-play offering, players dropped off
quickly as they went through our tutorials. Of the
10,650 registered players who watched the intro story
cutscene, only 2,048 (19.2%) completed the sixth
tutorial, which is when the player begins contributing to
verification progress. This is analogous to the
“conversion rate” – the percentage of players who
convert to paying customers. Since this is a research
effort, we define ‘conversion’ as ‘contributing to the
problem’. Standard industry conversion rates are often
in the 3% range, so 19% might indicate that players
motivated by “contributing to science” are more
invested in sticking with the game.

5.5 Game Assessment/Lessons Learned

According to Flow Theory, much of a game’s
enjoyment comes from a delicate balance between a
player feeling competent and feeling challenged. Game
designers craft complex game systems that aim to self-
regulate and adapt to player skills, or at least provide a
measured, reasonable path of progression.
The biggest challenge in a ‘real science game’ is that
the solutions for levels are by definition unknown, and
unknowable - if the answer could be computed, the
system would not need the players. This means there is
no reliable predictor of level difficulty. A ‘small’ level
can be impossible to resolve, while a very large level
with lots of data might require only a single action to
solve, like collapsing a house of cards with a gentle tap.

In StormBound, this was exacerbated by the fact that
even after we got a player’s solution, we didn’t know if
it would help verification. It may have been an
interesting fact, and true, but not necessary to construct
a proof. The analogy we used was ‘shooting mosquitos
with a shotgun’. Players could generate lots of true
assertions, but determining their usefulness could take
days. Not being able to give players immediate
feedback really hamstrung our ability to use common
game feedback mechanisms.
In Monster Proof, we are addressing these issues by
putting the verification engine closer to the player. As
you play a level, you know what it is you’re trying to
build (there is a clear ‘goal’ for each level), and you
know unequivocally whether you solved it or not. It is
still possible to do a certain amount of ‘solution by
intuition’, but generally you know which pieces of the
puzzle are relevant and which are not. We are
investigating if this improves two metrics. First, we
believe that it will result in better retention. The highly
math-centric style might discourage some users,
resulting in a smaller audience, but we theorize that the
players who do continue with the game will find it far
more satisfying than those who started StormBound
thinking they’d be playing a cool space RPG and found
only an unsatisfying make-work task. Second, we feel
that the increased context and transparency within the
core game will greatly reduce ‘effort waste’. That is, we
are replacing the player’s shotgun with a (figurative) set
of building blocks and a target shape. It’s then up to the
player to assemble the blocks, using known and
teachable rules, into the desired shape. Players should
be able to address the complete problem more quickly,
and produce more verification progress during an
equivalent amount of gameplay.
Another challenge of designing these games is
something we have come to call “The Bump”. That is,
the transition between custom tutorial levels, designed
for clarity and pedagogy, into ‘real’ levels derived from
the code. Because there is no way to classify level
difficulty, players are effectively ‘thrown into the deep
end’ – because all of the actual problems are deep end.
The only remotely effective solution we identified was
to make players fairly skillful before letting them into
the ‘real data’ pool. This results in a long ramp-up time
before you can contribute, and feeling like a ‘citizen
scientist’ is a key motivator for people who play these
games. Requiring 30-60 minutes of tutorials before you
can help is frustrating, and leads to churn (player
departure).
Worse, it’s possible that a level is, in fact, unsolvable –
and it is impossible to know this in advance. To account
for this, designers need to provide a way to ‘win’ even

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
84

unwinnable levels. In StormBound, this could only be
detected if players made every possible assertion
through the game UI (which could take hours or even
days). In Monster Proof, a player can demonstrate that a
level is, in fact, unsolvable. They can then “bang a
gavel” to assert that the level is unsolvable (possibly
indicating that the code is in fact unverifiable), and
place a bet on that assertion. If someone else is later
able to solve the level, the first player loses her bet,
while the second collects it. If three players report that a
level is unsolvable, we set it aside for expert review,
and reward players. It is important that, again, since
gameplay emerges from data over which you have no
control, players have a way to feel successful in all
cases.
Tutorial design was also challenging – we struggled to
find the best ‘voice’ for the narrator / instructor. Since
our tutorials needed to teach more than just basic game
mechanics, we vacillated between speaking “game” and
“science”. In StormBound, because we were math-
phobic, we twisted and contorted our script to fit into
the game universe’s vocabulary. Our intent was to
allow players to relax into the game narrative and not
break the ‘fourth wall’. Instead, it frustrated players,
who just wanted to know what everything actually
“was”, so they could work with it. In Monster Proof, we
are using a lot less game language, and while we have
not completely eliminated such language, we are being
a lot more cautious and intentional to use game-themed
language only where it affects the resource collection
meta-game, and not the core logic problem.
As we designed the games, we thought quite a bit about
“griefing” – cheating or interfering with other players.
This did not happen, but sometimes players gave us lots
of useless answers (and scored tons of points) because
they game told them they were doing well. The key
takeaway is that players want to help, so you need to
give clear feedback about what you need.
Thematically, we found that the primary motivator for
players was in fact the ‘citizen scientist’ role. It’s
important to give them feedback about their effort in
terms they can understand, preferably in the language
of the underlying science.
We found that although players wanted to contribute to
science, they didn’t want to learn it. Many players
dismissed or skimmed tutorials, then complained they
didn’t understand the game. This remains a point of
design friction for which we do not have a great
solution.
Finally, as development unfolded we discovered how to
automate certain classes of solution. In StormBound,
we did not do very much automated solving. In Monster

Proof, we are automating everything we can, so players
will not be given ‘busy work’. We do have a concern
that this leaves only very challenging levels, which will
exacerbate the issue with level difficulty.

5.6 Conclusions/Future Plans

We feel the key takeaway from projects like CSFV is
that ‘utilitainment’ is here to stay. Games and
applications like these are the very first, unstable steps
of a new industry, in which high-cost, high-skill, low-
supply work is done by a low-cost, low-skill, high-
supply crowd. As game designers, we are only just
beginning to understand how to craft a satisfying,
entertaining experience that produces useful results. We
believe that with continued work, game-based work on
problems that require human intuition (i.e. are not
easily automated) could be a viable industry within the
next 10 years.

6. Xylem/Binary Fission

Authors: John Murray1, Heather Logas2, & Jim
Whitehead2
1Computer Science Laboratory, SRI International
2Department of Computational Media, University of
California, Santa Cruz

6.1 Introduction

In this section, we describe two games developed:
Xylem: The Code of Plants and Binary Fission. Xylem
is a logical induction puzzle game where the player
plays a botanist exploring and discovering new forms of
plant life on a mysterious island. Players observe
patterns in the way a plant grows, and then construct
mathematical equations to express the observations they
make. In doing so, players work in concert with the
game’s mechanics to perform loop invariant synthesis.
Xylem was designed with a “casual niche” audience in
mind. The idea was to appeal to as wide a player base
as possible, while addressing the concern that including
mathematical game play would somewhat limit the
audience. To that end, the game design team chose to
use a visual metaphor (plants, for their representational
flexibility) and make the gameplay as light on math as
possible while still supporting the underlying formal
verification problem. Focus was given to creating a
smooth player experience in a typical casual game to
avoid confusing players. However, this approach
proved to be largely ineffective in addressing the
broader task of crowd-sourcing formal
verification. Casual players were not interested in the
math oriented gameplay, while those who enjoyed the

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
85

science goals were frustrated by the lack of more
advanced math tools with which to describe patterns.

The second game, Binary Fission, sought to address
these problems by taking the project in a new direction.
Instead of addressing pure game players, we instead
focused on a “citizen science” audience. Player reports
from Xylem indicated that those most engaged in the
game were also those who were interested in the actual
CSFV program goal, i.e. formal software verification.
The project is led by SRI International, a non-profit
research institute based in Menlo Park CA. Xylem and
Binary Fission were both designed and developed at the
University of California at Santa Cruz. The verification
infrastructure is provided by CEA, the research arm of
the Atomic Energy Commission in France.

6.2 Verification Strategy

Xylem problems were generated from source code using
Frama-C, with an additional value analysis module.
Sets of variable values were delivered to players as
game instances. A fast response to players' proposed
solutions is key for reward and retention. However,
traditional confirmatory analysis of invariants can take
many hours of CPU time, and is thus impractical in a
game environment. Using a Hasse partial ordering
approach, in conjunction with our backend verification
modules, enables us to sieve play results and enables an
initial coarse ranking of candidate invariant solutions.
For progress metrics, we use abstract interpretation-
based software analysis to determine the overall
potential state space. We propagate states to encompass
all possible execution paths. State space management is
a key issue for industrial-strength software analysis. It
triggers non-termination, over-widening, and false
alarms during the analysis process. Frama-C/Value
Analysis takes advantage of crowd-sourced candidate
invariants to significantly reduce its state space.

6.3 Game Descriptions

Xylem is a logical induction puzzle game where players
are botanists exploring the strange island of Miraflora.

Figure 6-39:Xylem: Miraflora Island

Figure 6-40:Xylem: Floraphase Comparator

Players are tasked with observing and comparing the
growth patterns of the plants they discover, as they
travel around the island. The Floraphase Comparator is
used for this purpose. In describing the growth patterns,
the players also provide candidate loop invariants for
the CSFV verification task.
Each region of Miraflora contains increasingly hard
problems. Access to interior regions is granted only
when the entire player base has collectively solve a
certain number of problems in earlier areas.
In the second game, Binary Fission, players still work
with loop invariants, but now they refine searches
performed by an automated system instead of creating
simple invariants from observations of data changes
over time. Binary Fission presents players with an
abstract tree-like structure of nodes. Each node
contains a number of “bits” (or “atoms”, as players like
to call them) in either purple or green. The player’s job
is to sort the bits using provided filters, in an attempt to
create “clean sets” -- that is, nodes which contain only
one color of bits. As an additional challenge, players

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
86

must create these clean sets while using as few nodes as
possible (i.e. performing as few as possible sorts).

Figure 6-41:Binary Fission: Tree Structure

For each node, the game provides up to a hundred
filters to choose from. The filters are presented as
small spheres set in a circular container. As players
move their mouse cursor over the spheres, they are
shown in real time how that particular filter would sort
the node. This takes advantage of a key thing humans
can do better than computers - visual pattern
recognition. Players can additionally save filters for
later in case the one they have chosen doesn’t produce
the results they would like later in the filtering
process.

Figure 6-4:Binary Fission: Fliter Selection

The auxiliary Binary Fission feature set is very light,
since our goal is to keep players focused on solving
problems. The game features live chat, in order to
foster a sense of community among players and help
with player retention. Binary Fission also clearly shows
community progress in the form of number of problems
solved on the main menu screen, in order to reinforce
the sense of collaborative citizen science.

6.4 Lessons Learned

Xylem: The Code of Plants was designed with a “casual
niche” audience in mind. Our concept was that, even
though we could not legitimately pursue a truly

“casual” audience (by game industry definitions) due to
the math gameplay inherent in the core game design, it
would still be worthwhile to pursue as “casual an
audience as possible.” This was important in order to
bring in more players, which we believed would best
take advantage of the crowd-sourcing nature of the
application. To attract and keep this audience, we
created a game around math-based puzzle solving, but
with as lightweight math as we could manage (while
still keeping the integrity of the science task) and within
the bounds of a narrative-oriented casual puzzle game.
Xylem turned out to attract a much smaller audience
than we would have preferred. The math oriented game
play was not (for the most part) appealing to the larger
puzzle game audience. Instead, we found that the
players who most enjoyed Xylem were most likely to be
people who came to our game with an already
established interest in math and computer science, and
were drawn by the stated science objectives. During the
first nine months of gameplay, our top 20 players
submitted a total of 1754 invariant solutions.
In designing Binary Fission, we decided to change our
tactics. Instead of attempting to bring in the largest
crowd possible, we decided to focus on pulling in a
high quality crowd. We changed our approach
completely in order to attract and maintain a different
sort of audience - citizen scientists who are interested in
the science problem being solved.
Building off the lessons learned from our experience
with Xylem, as well as additional research into
automated invariant synthesis and design principles
from other successful citizen science projects, we
believe that Binary Fission will provides better CSFV
results than Xylem for several reasons. For example, as
a citizen science project, our recruitment policy draws
in players who are interested in cybersecurity, many of
whom are less likely to have conflicts with
mathematical gameplay. Also, our science goals are
transparent within the game itself and in all marketing
materials.
Binary Fission partners with other methods of crowd-
sourced synthesis of candidate invariants, such as
Xylem and similar CSFV games, as well as automated
generation of candidates. Thus, players are asked to
guide searches through suites of potential invariants,
rather than produce invariants from scratch (although
players are able to do this too). The game thus
integrates the best skills of both the human and
computer partners. Binary Fission enables the creation
of disjunctive invariants, which is a key advantage over
traditional automated systems.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
87

Binary Fission emphasizes community, an important
aspect of successful citizen science projects, through
better-integrated chat, active community management,
and regular community events. The game also allows
for more player choice by allowing them to select
puzzles to work on from a visible group of problems
every time they play. The Binary Fission tutorial
assumes a higher level of sophistication in players, and
therefore focuses on teaching the game interface rather
than teaching about the game. The tutorial is much
shorter, allowing players to reach productive ability
levels much faster.

6.5 Conclusions/Future Plans

Our vision of appealing to a less-math-literate audience
with Xylem was not as successful as we anticipated,
primarily because of the complexity of some solutions
and/or the potential lack of clear answers for certain
problems. In addition, the nature of the verification
challenge made it difficult to consistently assign levels
of difficulty to problem instances. We nonetheless
were able to make a largely inaccessible task accessible
to a wide variety of people, making it instantly
understandable to advanced players and less alienating
to those who will not necessarily become experts but
want to try the game. Discovering the characteristics of
our true audience helped to drive the design of updates
to Xylem and to inform the strategy for Binary Fission.
Looking beyond the first release of Binary Fission, we
plan to support different levels and styles of play, with
at least two distinct play styles that are interdependent
on each other. These roles will allow for different
expenditures of cognitive energy; less-math-literate
players who are interested in contributing to the science
goals of the project can contribute alongside those who
are more math-sophisticated. Further, players can
switch freely between roles as they see fit. Binary
Fission will also offer more player choice by allowing
them to select from a visible group of problems every
time they play. Solutions will also be forkable, so that
multiple players can take a single problem in several
different directions.

7. Conclusions and Lessons Learned

Overall, across the development of these five efforts,
the crowd-sourced formal verification has shown mixed
success in demonstrating the potential for
crowdsourcing to enrich the formal verification process.
In each effort, solutions have been collected from
numerous players, providing significant progress
towards formal verification proofs. Furthermore, these
efforts provide several critical lessons that drove the
development of the second set of formal verification

games that are now being tested, and that can be readily
extended to other citizen science and game-based
crowdsourcing efforts.
One key lesson learned across several of these efforts is
to know the player population. At the start of the
program, a key focus was to develop games that would
be engaging enough to bring crowds of players with no
significant mathematical background. We quickly
learned that this was not the best way to motivate high-
contributing players. Rather than drive a general
population, each of these games was better served by
citizen scientists with a strong interest in the underlying
science and outcome of the effort (e.g., players with a
mathematical and computational interest and/or
background). While it is important for the games to be
engaging for citizen scientists, it is perhaps more
important that these players understand the types of
contributions they are making and the impact they are
having on addressing the scientific problem. That
combination of intrinsic and extrinsic value to the
player has been the greater focus for the second round
of games, which will be tested over the summer of
2015.
Scientific tasks, such as those performed in the course
of formal verification, often involve both complex
logical or abstract problem-solving and simple, rote
repetition of previously learned strategies. The most
valuable work on these problems can only be done once
the repetitive solutions have been exhausted. This
pushes the creators of a game-based task to teach
concepts to the player in rapid succession, in hopes that
the player will learn enough to contribute meaningfully
before walking away from the game. With so many
concepts to teach, it becomes difficult to keep the
terminology simple and accessible and to give the
player enough of an opportunity to practice and grasp a
concept before the next one is introduced. Our teams
took several approaches to solve this problem in the
second round of games, from progressions of tools that
teach the player key concepts when they are unlocked
to video tutorials using humorous in-game characters to
keep the player entertained while learning to play.
Related to this, a key challenge in any citizen science
gamification effort is navigating the tradeoff between
making a game engaging and making the game address
critical problems. When the game is being designed for
a very specific purpose, game designers have a limited
ability to modify game elements to drive a more
engaging experience. Rather, the game must capture
and address a specific, structured problem—and cannot
stray too far from the structure of that problem in the
process. One way to address this issue is to separate the
puzzle-solving process (related to addressing actual

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
88

citizen science problems) from a game section that is
focused on fun and accomplishment. While this can be
a successful approach to make the games more
engaging, providing that engaging game can limit the
contributions that are made by the game players (who
may wish to spend more time on the fun game than on
the puzzle-solving process). Our teams took a variety of
approaches to address this problem, ranging from
targeting citizen science audiences (as described above)
to incorporating the engagement elements during
downtime in the puzzle-solving process to maximizing
the use of human intuition and insight for problem-
solving, which makes the problems more fun to solve.
Related to this latter element, many of the games
benefited strongly from incorporating an autosolver to
address wide segments of the problem. Rather than
having the human address every element of the
computational problem, humans were focused on either
guiding the autosolver (e.g., in the case of Paradox and
Dyanamkr) or addressing only the complex problems
that need human insights. When there are numerous
tedious problems that need to be solved on the way to
addressing a larger computational problem—as is the
case in formal verification proofs—autosolvers can be
extremely useful to manage the work that must be
addressed by citizen scientists. However, they pose a
number of challenges as well. For example, overusing
automation can lead players to question whether the
computer is really doing all the work and if so, why
they should bother to play at all. In addition, if players
have a limited understanding of what the automation is
doing, and, because of that, a limited understanding of
what they are doing, it will lead to errors, frustration,
and attrition. This is further exasperated by the bump
in complexity from training levels to live levels (which
are often a lot more complex than the levels used to
train players on the game concept). Ultimately,
judicious use of an autosolver that allows citizen
scientists to focus on the problem aspects where they
can make the greatest contributions and learn the details
as they need them can make the game more fun and
more accessible.
Across all of these individual points we find that the
main lesson has been the challenge of turning a task
into a game without sacrificing too much of the player's
time on pure engagement mechanics and without
compromising the value of the task. It is easy to focus
too heavily on the constraints of the task and to lose
focus on the things that constrain good games: clarity
(of goals and the consequences of actions) and value to
the player (through entertainment, improvement, social
rewards, etc). Without these things, the game fails to

motivate play and the opportunity to leverage leisure
time to accomplish scientific goals can be lost.

8. References

[1] Hoare, C. A. R. (2002). Proof of correctness of
data representations.: Springer.

[2] Lampson, B. W. (1974). Protection. ACM SIGOPS
Operating Systems Review, 8, 18-24.

[3] Bell, D. E. and LaPadula, L. J. (1973). Secure
computer systems: Mathematical foundations.
DTIC Document.

[4] Lipton, R. J. and Snyder, L. (1977). A linear time
algorithm for deciding subject security. Journal of
the ACM (JACM), 24, 455-464.

[5] Neumann, P., Boyer, R. S., Feiertag, R. J., Levitt,
K. N., and Robinson, L. (1980). A provably secure
operating system: The system, its applications, and
proofs.: SRI International.

[6] Feiertag, R. J. (1980). A technique for proving
specifications are multilevel secure. DTIC
Document.

[7] Rushby, J. M. (1981). Design and verification of
secure systems. ACM SIGOPS Operating Systems
Review, 15, 12-21.

[8] Levitt, K. N., Crocker, S., and Craigen, D. (1985).
VERkshop III: Verification workshop. ACM
SIGSOFT Software Engineering Notes, 10, 1-136.

[9] Neumann, P. G. (1981). VERkshop II: Verification
Workshop. ACM SIGSOFT Software Engineering
Notes, 6, 1-63.

[10] Landwehr, C. E. (1981). Formal models for
computer security. ACM Computing Surveys
(CSUR), 13, 247-278.

[11] Young, W. D., Boebert, W. E., and Kain, R. Y.
(1988). Proving a computer system secure.
ADVANCES IN COMPUTER SYSTEM
SECURITY., 1988, 3.

[12] Latham, D. C. (1986). Department of Defense
trusted computer system evaluation criteria.
Department of Defense.

[13] Lowe, G. (1996). Breaking and fixing the
Needham-Schroeder public-key protocol using
FDR. Tools and Algorithms for the Construction
and Analysis of Systems, 147-166.

[14] Mitchell, J. C., Mitchell, M., and Stern, U.
(1997). Automated analysis of cryptographic
protocols using Murφ. Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on, 141-151.

[15] Blaze, M., Feigenbaum, J., and Lacy, J.
(1996). Decentralized trust management. Security
and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on, 164-173.

Lessons learned in game development for crowdsourced formal verification

Approved for Public Release; Distribution Unlimited.
89

[16] Hu, W.-M. (1992). Reducing timing channels
with fuzzy time. Journal of computer security, 1,
233-254.

[17] Cowan, C., Pu, C., Maier, D., Walpole, J.,
Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang,
Q., and Hinton, H. (1998). StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks. Usenix Security, 98, 63-78.

[18] Toth, T. and Kruegel, C. (2002). Accurate
buffer overflow detection via abstract pay load
execution. Recent Advances in Intrusion Detection,
274-291.

[19] Cowan, C., Beattie, S., Wright, C., and Kroah-
Hartman, G. (2001). RaceGuard: Kernel Protection
From Temporary File Race Vulnerabilities.
USENIX Security Symposium, 165-176.

[20] Klein, G., Elphinstone, K., Heiser, G.,
Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., and Norrish, M.
(2009). seL4: Formal verification of an OS kernel.
Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 207-
220.

[21] Woodcock, J., Larsen, P. G., Bicarregui, J.,
and Fitzgerald, J. (2009). Formal methods: Practice
and experience. ACM Computing Surveys
(CSUR), 41, 19.

[22] Rice, H. G. (1953). Classes of recursively
enumerable sets and their decision problems.
Transactions of the American Mathematical
Society, 358-366.

[23] DeOrio, A. and Bertacco, V. (2009). Human
computing for EDA. Proceedings of the 46th
annual design automation conference, 621-622.

[24] Bertacco, V. (2012). Humans for EDA and
EDA for humans. Proceedings of the 49th Annual
Design Automation Conference, 729-733.

[25] Davis, M. and Putnam, H. (1960). A
computing procedure for quantification theory.
Journal of the ACM (JACM), 7, 201-215.

[26] Davis, M., Logemann, G., and Loveland, D.
(1962). A machine program for theorem-proving.
Communications of the ACM, 5, 394-397.

[27] Jiang, Y., Kautz, H., and Selman, B. (1995).
Solving problems with hard and soft constraints
using a stochastic algorithm for MAX-SAT. 1st
International Joint Workshop on Artificial
Intelligence and Operations Research.

[28] Borchers, B. and Furman, J. (1998). A two-
phase exact algorithm for MAX-SAT and weighted
MAX-SAT problems. Journal of Combinatorial
Optimization, 2, 299-306.

Approved for Public Release; Distribution Unlimited.
90

Appendix D. Exploiting Information Flows in Model Checking
for Software Validation

Approved for Public Release; Distribution Unlimited.
91

Approved for Public Release; Distribution Unlimited.
92

Approved for Public Release; Distribution Unlimited.
93

Approved for Public Release; Distribution Unlimited.
94

Approved for Public Release; Distribution Unlimited.
95

Approved for Public Release; Distribution Unlimited.
96

Appendix E. Playing the Subset Coloring Game

Approved for Public Release; Distribution Unlimited.
97

Playing the Subset Coloring Game
June 2015

In this short paper, we discuss a classic combinatorial problem and its representation as a puzzle game.
While no new theorems are proved in this paper, we hope it will be interesting to see how game play
can help support teaching and general awareness of mathematics.

In the last few years, a number of efforts have attempted to use crowd sourced game play to support
research activities. Perhaps the best know example is the fold.it game [1], which lets players fold
proteins in search for molecules with specific properties. There is also a game from UK cancer research
[2] and several papers and web sites that discuss formal verification of software using games [3,4]. The
current research grew out of the Verigames web site [5] and the Ghost Map series of games [6,7].

Introduction

Consider a set S containing subsets drawn from a set of size N > 3. We want to “color” each subset in S
so that overlapping sets always get different colors. Thus, we are looking for a function f: S M so
that:

For all s1 and s2 in S, f(s1) = f(s2) [s1 = s2 or s1 ∩ s2 = { }] (1)

The primary interest is, for a given S, finding the minimum M for which a coloring is possible, and
hopefully finding a simple description of a minimal coloring.

There are a several motivations for this discussion. The elements of the set of size N may represent
resources that are required to complete some task. Each subset can be viewed as a task that requires
the contained resources. The coloring function finds tasks that can be completed in parallel, as they
require disjoint resources. The problem also has a representation in graph theory, where the elements
of S become nodes in a graph, and there is an edge between s1 and s2 iff they have non-empty
intersection. A coloring function f as above provides a coloring of the graph in the usual graph-theoretic
sense (i.e., no neighboring nodes have the same color) and the minimal M is the chromatic number of
the graph. There is also a connection to the unsolved Erdős-Faber-Lovász conjecture [8] and follow-on
work by Hindman [9] on coloring families of sets with small pairwise intersections.

As in [9], one can consider a subset of N as a piece in an abstract puzzle game, where the pieces are
rows of length N, with darkened entries that correspond to the elements in the subset. So, for example,
the set {0,2,4,7} for N = 9 (counting from zero) is represented as follows:

The puzzle aspect is that multiple pieces must fit together in order to be the same pre-image of f, as
shown next.

Approved for Public Release; Distribution Unlimited.
98

Above and in the sequel, the figures use different colors for subset elements as they are assembled into
a single row, so the individual subsets will be visible inside each row.

Playing with the Doubletons

In this section we cover playing the subset game with the set of all 2-element subsets. This is a
particular easy case and serves as a good example. As discussed above, represent each of the N(N-1)/2
doubletons as a bit vector of length N with exactly two bits set. We will discuss “loading” the
doubletons into an NxN square, where the square is represented as a bit array. By loading a doubleton
(i,j), 0 <= i < j <= N-1, into row r, 0 <= r <= N-1, of the square, we mean that the bit values in positions (r,i)
and (r,j) of the square are changed from 0 to 1. Loading fails if the bit array value is already set to 1 for
one of the positions being addressed. We are interested in successfully loading all the doubletons into
the square. In other words, we are looking for a function f: [N]2 N which has the following property:

For all i, j, 0 <= i < j <= N-1, [f(i,j) = f(i’,j’) and (i = i’ or j = j’)] implies (i = i’ and j = j’) (2)

Given such an f, loading the doubleton {i,j} into row f(i,j) in the square succeeds in loading all doubletons
into the square. This f is a coloring in the sense defined above, as equation (2) is just (1) specialized to
the case where S is the set of all doubletons.

Hindman [9] notes that lexicographic order works to load doubletons into the square, and thus

f(i,j) = i+j-1mod N (3)

is a suitable selection for f. The proof of equation (2) is obvious for this f. A graphical representation of f
for N=10 is shown below. The orange boxes are doubletons starting with 0, continuing through the two
black boxes, which represent the doubleton {8,9}.

The loading function i+j-1 mod N places some doubletons in every row of the square. When N is even,
we can look to fit the doubletons into just N-1 rows of the square rather than all N. Some
experimentation leads to the following improved doubleton loading function for even N:

Approved for Public Release; Distribution Unlimited.
99

g(i,j) = i+j-1 mod N-1 if i = 0 or j < N-1 ; 2i – 1 mod N-1 otherwise (4)

It is clear that g leaves the bottom row of the NxN square empty since it produces values modulo N-1.
We show now that g satisfies equation (2) in two steps, first assuming that i=i’ holds and next assuming
that j=j’ holds.

Assume i=i’ with the goal to show that j=j’. There are three cases:

Case (1) Assume that i=i’=0. Then g(i,j) = g(i’,j’) is expanded using the first clause of g’s definition on
both sides of the equation, so we have that j-1=j’-1 mod N-1. Since both j and j’ are non-zero, we have
j=j’ as desired.

Case (2) Assume that j < N-1 and i=i’=\0. There are two subcases.

Case (2a) Assume that j’ < N-1. Then the first clause of g applies twice so we get j=j’ as in Case 1.

Case (2b) Assume that j’=N-1. Then by expanding g twice, we get i+j-1 mod N-1 = 2i’ -1 mod N-1, so j-1 =
i’ -1 mod N-1. Since j and i=i’ are all nonzero, we have i=j, which is a contradiction, so this case is empty.

Case (3) Assume that j = N-1 and i=i’=\0. If j’ < N-1, then we get a contradiction as in Case (2b), so j=j’.

Now assume that j=j’ and prove that i=i’. There are two additional cases:

Case (4) Assume j=j’<N-1. Then as in Case 1 above, the first clause of g’s definition applies twice, so we
have that i-1 = i’-1 mod N-1. Since neither i nor i’ can be N-1, we have i=i’.

Case (5) Assume j=j’=N-1. If i and i’ are both zero, then we are done. If exactly one of them is zero, then
we get a contraction as in Case 2b. Finally, if both i and i’ are nonzero, then the second clause of g’s
definition applies twice, which yields 2i-1 = 2i’-1 mod N-1. Because N is even, the function 2i-1 mod N-1
is one-to-one for i=1 to N-2, running sequentially through the odd numbers from 1 to N-3 and then the
even numbers from 0 to N-2. It follows that i=i’.

The figure below shows g for N=10 using the same color pattern as the previous figure.

It is of course critical that the proof for g meeting equation (2) uses the premise that N is even.

Approved for Public Release; Distribution Unlimited.
100

What about triples?

Given the success of loading doubletons into the square, one might try the same game with other size
subsets. For example, for an N = 3k for k > 2, we can try to the three-element subsets into a rectangle
that has N columns and N(N-1)(N-2)/2 rows. Taking N = 9, there are 84 3-element subsets of 9 and we’d
like to fit them into 28 rows. Hand experimentation in this case didn’t find any simple pattern, but it’s
straight forward to find a solution with a computer program, as shown below.

In the table above on the left, the three element subsets of 9 are numbered 1 to 84 in lexicographical
order, and the triples in square brackets are triples of subsets. On the right we show the visualization.

The General Solution

It was proven in 1975 by Zsolt Baranyai [10] that one can always color the set of k-tuples drawn from a
set of size kN with the minimum number of colors, which is C(n-1, k-1). The proof was achieved by
finding a powerful generalization of this result and then proving the generalization by induction. No
direct proof is known and actual examples of colorings are still best found by experimentation and game

The 3-element subsets of 9, colored with 28
colors, the minimum number possible (counting

from 1)
1. [1, 65, 84] 1,2,3 – 4,5,6 – 7,8,9
2. [2, 56, 83] 1,2,4 – 3,5,7 – 6,8,9
3. [3, 53, 82] 1,2,5 – 3,4,8 – 6,7,9
4. [4, 52, 80] 1,2,6 – 3,4,7 – 5,8,9
5. [5, 54, 76] 1,2,7 – 3,4,9 – 5,6,8
6. [6, 51, 79] 1,2,8 – 3,4,6 – 5,7,9
7. [7, 50, 81] 1,2,9 – 3,4,5 – 6,7,8
8. [8, 46, 78] 1,3,4 – 2,6,9 – 5,7,8
9. [9, 44, 74] 1,3,5 – 2,6,7 – 4,8,9
10. [10, 42, 73] 1,3,6 – 2,5,8 – 4,7,9
11. [11, 38, 77] 1,3,7 – 2,4,8 – 5,6,9
12. [12, 41, 71] 1,3,8 – 2,5,7 – 4,6,9
13. [13, 45, 66] 1,3,9 – 2,6,8 – 4,5,7
14. [14, 47, 61] 1,4,5 – 2,7,8 – 3,6,9
15. [15, 48, 57] 1,4,6 – 2,7,9 – 3,5,8
16. [16, 49, 55] 1,4,7 – 2,8,9 – 3,5,6
17. [17, 43, 59] 1,4,8 – 2,5,9 – 3,6,7
18. [18, 40, 62] 1,4,9 – 2,5,6 – 3,7,8
19. [19, 34, 72] 1,5,6 – 2,3,9 – 4,7,8
20. [20, 39, 60] 1,5,7 – 2,4,9 – 3,6,8
21. [21, 36, 63] 1,5,8 – 2,4,6 – 3,7,9
22. [22, 33, 69] 1,5,9 – 2,3,8 – 4,6,7
23. [23, 35, 64] 1,6,7 – 2,4,5 – 3,8,9
24. [24, 37, 58] 1,6,8 – 2,4,7 – 3,5,9
25. [25, 32, 67] 1,6,9 – 2,3,7 – 4,5,8
26. [26, 31, 68] 1,7,8 – 2,3,6 – 4,5,9
27. [27, 30, 70] 1,7,9 – 2,3,5 – 4,6,8
28. [28, 29, 75] 1,8,9 – 2,3,4 – 5,6,7

Approved for Public Release; Distribution Unlimited.
101

play, either manual or computer-aided. Expositions of Baranyai’s work can be found in good texts on
combinatorics, such as van Lint and Wilson [11]

References

[1] S. Cooper, et al., “Predicting protein structures with a multiplayer online game,” Nature, Vol, 466,
No. 7307, August 2010, pp 756-760.

[2] Cancer Research UK, http://www.cancerresearchuk.org/-support-us/play-to-cure-genes-in-space,
retrieved: May, 2015.

[3] W. Dietl, et al., “Verification Games: Making Verification Fun,” Proceedings of the 14th Workshop on
Formal Techniques for Java-like Programs, Beijing, China, June 2012, pp 42-49.

[4] W. Li, S. A. Seshia, and S. Jha, “CrowdMine: Towards Crowdsourced Human-Assisted Verification,”
Technical Report No. UCB/EECS-2012-121, EECS Department, University of California, Berkeley, May
2012.

[5] Verigames, www.verigames.com, retrieved: May, 2015.

[6] Ronald Watro, et al., “Ghost Map: Proving software correctness using games,” SECURWARE 2014:
Eighth International Conference on Emerging Security Information, Systems and Technologies (Lisbon,
Portugal), November 2014.

[7] Kerry Moffitt, John Ostwald, Ron Watro, and Eric Church, “Making Hard Fun in Crowdsourced Model
Checking: Balancing Crowd Engagement and Efficiency to Maximize Output in Proof by Games,” 2nd
International Workshop on CrowdSourcing in Software Engineering (CSI-SE 2015, Florence, Italy), May
2015.

[8] P. Erdős, “Problems and results in graph theory and combinatorial analysis,” Proceedings of the Fifth
British Combinatorial Conference, 169-92, Congressus Numerantium, No. XV, Utilitas Math. (1976).

[9] Neil Hindman, “On a conjecture of Erdős, Faber, and Lovász about n-colorings,” Canad. J. Math., 33
(1981), pp. 563–570.

[10] Z. Baranyai, “On the factorization of the complete uniform hypergraph, in Infinite and Finite Sets,”
Vol I, Colloq. Math. Soc. J. Bolyai 10, North Holland, (A Hajnal, Vera T. Sos, eds.), 1975, pp 91-108.

[11] J. H. van Lint and Richard Michael Wilson, A Course in Combinatorics, Cambridge University Press,
2001.

Approved for Public Release; Distribution Unlimited.
102

Appendix F. PBG Human Subject Experimentation Protocol

Approved for Public Release; Distribution Unlimited.
103

The game play portion of the CSFV program fell under the regulations for Human Subject
Experimentation. Accordingly, a PBG protocol for the experiment was developed and submitted
for approval, both to BBN’s Internal Review Board (IRB), which is the New England IRB

Proof by Games Experimentation

Version 1.2

July 11, 2013

Title: Proof by Games Experimentation – Option Phase

Protocol Number: PBG-1.2

Approval Date: PBG-1.2 was last approved by NEIRB on 9/15/2014

Principal Investigator:
 Dr. Ronald J Watro
 Lead Engineer
 Raytheon BBN Technologies
 rwatro@bbn.com
 (617) 873-2551

Approved for Public Release; Distribution Unlimited.
104

1. BACKGROUND AND INTRODUCTION

In the option phase of the Proof by Games (PBG) project, part of the Defense Advanced
Research Projects Agency (DARPA) Crowd Sourced Formal Verification (CSFV) program,
Raytheon BBN Technologies (henceforth BBN) will develop a set of arcade-style computer
games that are to be made available to the public over the Internet. BBN is one of five
contractors developing games for this DARPA program. Games from all five are to be made
available on a single web site maintained by TopCoder Inc., also funded by DARPA. The CSFV
games offered by the TopCoder web site are intended to be fun games that also will accomplish
tasks that assist in the computer security analysis of software.

BBN and TopCoder, while independent contractors, will share responsibility for the
execution for our portion of the CSFV Internet-based game play research. For example,
TopCoder will be responsible for the selection of players for their web site and the execution of
consent agreements. BBN will be responsible to protect the confidentiality of any game player
personally identifiable information that TopCoder sends to BBN.

The TopCoder research protocol for CSFV is included below as Appendix 3. The
TopCoder CSFV protocol was approved by the Air Force Office of the Surgeon General on 24
June 2013, number FWR20120332X.

1.1 CSFV

Unreliable software places huge costs on the economy. The current state of practice is
that released software typically contains about one to five bugs (errors) per thousand lines of
code. Errors can cause software programs to stop working or to work incorrectly. Errors can be
costly to reproduce, find, and fix. Some errors are security flaws that make the software
programs, and the computers that they run on, vulnerable to attack and compromise.

Formal program verification is the only way to be certain that a given piece of software is
free of errors. Formal program verification is a time-consuming technical analysis of a software
program intended to demonstrate using mathematical proofs that the software program under
analysis has a specific feature or characteristic, such as the absence of a specific type of bug or
security flaw. Formal program verification is currently performed manually by specially-trained
engineers using formal program verification software tools. Consequently, due to the
requirement of large amounts of skilled labor, formal program verification has been too costly to
apply beyond certain small, critical software components.

The CSFV program seeks to make formal program verification more cost-effective by
enlarging the population that can participate in verification. The approach is to transform
verification into a more accessible task by creating games that are intuitively understandable and
are fun to play. Completion of a game effectively allows a game player to provide the
information that a specially-trained engineer would provide to a formal program verification tool
in order to complete a formal verification proof.

Approved for Public Release; Distribution Unlimited.
105

 The primary technical challenge faced by CSFV is construction of automated game-level
builders capable of transforming formal verification models into compelling games. A particular
game level is a function of the program verification tool, the property to be verified and the
program being verified. Each game level is provided to the “crowd,” to people who play the
games. Game solutions are used to populate a database, and then are mapped back into program
annotations sufficient to allow the program verification tool to make progress toward formal
verification of a specific program property.

 TopCoder will routinely provide de-identified game play results to the PBG game
developers at BBN. When deemed useful, TopCoder will provide e-mail addresses for players of
special interest to BBN (and other game developers) to facilitate follow-on discussion related to
the games.

1.2 Background Information on BBN

 Raytheon BBN Technologies (BBN) is a research and development organization
headquartered in Cambridge Massachusetts. BBN works in a variety of technical areas,
including cyber security; communications and networking technologies; speech and natural
language tools; and planning and logistics systems. Much of BBN’s research is funded by
DARPA and other US government agencies.
 The PBG project is led by the BBN Cyber Security business unit, with support from the
BBN staff that deal regularly with serious games used for training purposes. The PI (Dr. Watro),
the co-PI (Mr. Kerry Moffitt) and the gaming lead (Dr. Taleb Hussain) have all completed CITI
Human Subject Research training.

1.3 PBG Project

 In the base phase of the CSFV program, which is currently underway (and is not the
subject of this research protocol), BBN is designing and building the first PBG game, called
GhostMap. Overview information on Ghost Map is included in Appendix 1. In summary,
GhostMap will be similar in style to the famous “PacMan” arcade game, where the player directs
a token that travels over a course while being chased by adversaries. When the token reaches
specific points on the course, it becomes energized and can now turn the tables and give chase to
its pursuers. Full details are in the PBG proposal, attached as Appendix 2.
 In option phase of PBG, which will start in August or September, and which is the
subject of this research protocol, BBN will provide its GhostMap game and possible subsequent
games to TopCoder for deployment on an online web site that is open to the public. Individuals
who register for accounts on the TopCoder web site will be able to play the games. The nature
and content of the BBN games will be appropriate for all adults.

1.4 PBG UCF Study

 In addition to the Internet-based game play assessment research conducted by BBN in
coordination with TopCoder, the PBG team also includes the University of Central Florida
(UCF) as a subcontractor to BBN. UCF will perform play testing of the PBG games in an in-
person manner on their campus in Orlando FL, using a protocol that has been defined and

Approved for Public Release; Distribution Unlimited.
106

approved by the UCF IRB. UCF will report to BBN only de-identified game play information.
No BBN personnel are considered engaged researchers for the UCF study. Any game players
from the UCF study that desire to interact with BBN will be directed to register through the
TopCoder web site. The UCF protocol was approved by the Air Force Office of the Surgeon
General on 17 April 2013, number FWR20130109X.

1.5 PBG Research (Option Phase)

The technical research that will be conducted under this DARPA program has the
objective of developing games that when played produce data that is useful in the computer
security analysis of software programs. To meet this objective, PBG will develop games and
software tools that will create game levels based on the software programs under analysis. PBG
will base its games on the model checking verification process. PBG will develop a system that
provides game levels that the TopCoder web site will in turn deliver to the game players.

The community web site that TopCoder is building will host the BBN games and
software tools (as well as games and tools from other performers). TopCoder is responsible for
recruiting and registering players, storing the data from the games, and generate reports from the
data. TopCoder will provide game data to BBN and the other game developers. The TopCoder
research protocol is attached as Appendix 3.

All BBN interaction with game players will take place over the Internet, predominantly
via the web site, but possibly also through direct e-mail between a player and the BBN
developers. The web site will be a gaming community web site that fosters an online community
of people who are interested in playing these games. The members of this online community
will play the games and will be able to communicate with each other in public forums on the web
site.

1.6 Stand-alone Operation

BBN will also deliver a stand-alone version of the gaming software and tools to DARPA.
Use of the standalone gaming software and tools after it has been delivered to DARPA is outside
the scope of this research protocol.

2. STUDY RATIONALE
The PBG project is focused on the development of compelling games that when played

also create data that is useful in the computer security analysis of a software program. The key
unknown factor is whether crowds of human players using game can be more successful at
proving software is correct than highly paid verification experts using conventional verification
tools.

The UCF study being performed under a separate IRB approval will provide initial
impression data on the PBG games, collected from college student populations with varied
backgrounds. This data will help BBN address whether the game elements are easy to
understand and if the graphics are appropriate.

The reports from TopCoder on play at their website will allow BBN to observe game
play results over an extended period of time. This will help determine whether the game is fun

Approved for Public Release; Distribution Unlimited.
107

for players and whether game players can successfully accomplish the formal verification tasks.
In addition, we are interested to see if human users can learn to be more effective at software
verification as they grow more experienced with the game.

3. OBJECTIVES
The objectives of BBN’s work on the Option Phase of PBG are:

• Provide a PBG system that reads C language software files and potential vulnerability
specifications and outputs game level data that when played helps determine whether the
software suffers from the listed vulnerabilities.

• Revise and improve the PBG system based on de-identified data received from UCF and
TopCoder and from interactions with actual game players.

The objective of the human subject experimentation is to judge the effectiveness of
human players at performing verification through gaming.

4. STUDY DESIGN
BBN began work on PBG in July 2012, with the goal of having a game that is ready for

“beta” testing (i.e., the first use by outside game players) by August or September 2013.
All participation in the game studies will be entirely voluntary. Game players can come

to the TopCoder web site at their discretion and participate as little or as much as they want.
Visitors to the site at first will be able to find information about the site and the objectives of the
site. They will be able to try the games, but their personal performance data will not be
associated with them (i.e., will be recorded as anonymous) if they have not registered. Playing
games will require completion of an informed consent with TopCoder, as described in Appendix
3.

BBN will receive regular reports of de-identified player activity from TopCoder. Based
on these reports, either BBN or TopCoder may identify a player with a unique skill (or a
common problem) that we should investigate more closely. In these cases, TopCoder will
transmit to BBN, in encrypted form, the e-mail address that is associated with the user name.
The consent form signed by the player explicitly allows the transmission of this data to game
developers. BBN may then initiate contact with the player to discuss the details of the game
design, for the purposes of improving the game. Participation by the player in these direct
discussions is entirely option. Players may also volunteer for additional discussions with game
developers by using collaboration tools on the web site.

5. STUDY POPULATION
TopCoder’s protocol states that the gaming web site will be directed to adults (age 18 and

above). They expect that the initial interest in the CSFV games will come from news articles
about the program and word of mouth. Interest in the BBN game may also come from BBN
employees, their families and friends, and the participants in the UCF study.

Approved for Public Release; Distribution Unlimited.
108

6. PATICIPANT ELIGIBILITY
TopCoder controls the criteria for access to web site play:
Inclusion Criteria: The game players will be self-selecting and entirely voluntary.

Participants have the option to join or leave at any time, with no repercussions. Players have the
option to contact game developers for additional discussion through collaboration tools on the
web site.

Exclusion Criteria: The first exclusion criterion is that only adults 18 years or older are
allowed to participate in the study. Another criterion for exclusion would be demonstrated anti-
social or other problematic behavior on the web site, on a case-by-case basis. Our goal is to
provide an online web site experience that fosters interest in the games. Behavior on the web site
that is detrimental to that goal (e.g., offensive comments, language, etc.) will not be allowed, and
will result in suspension or exclusion from the site. TopCoder will provide a variety of channels
for participants to communicate with site administrators and report offensive behavior (e.g.,
telephone, email, web site form).

BBN controls the criteria for selecting users for additional interaction based on their play
characteristics. The inclusion criterion is the presence of unique and/or unexplained high or low
scores in some aspect of the game. There are no additional exclusion criteria.

7. STUDY ASSESSMENTS – PLAN AND METHODS

See Study Design (#4) above. BBN will be reviewing the data to identify game levels
that teach the game players how to effectively solve the games. We also will be determining
how to better use the game results in the security analysis of software.

8. STUDY CONDUCT
See Study Design (#4) above.

9. STUDY TREATMENT
N/A

10. EVALUATION OF ADVERSE EVENTS
N/A

11. ETHICAL CONSIDERATIONS

Risk/benefit assessment:
Risks: There will be no discomfort or health risk to the participants. The primary risk is

that we will be collecting certain data about the participants, including the information that they
provide during registration, their activity on the web site, and the results of their game play. This
is “minimal risk,” in that it is no different than other gaming web sites on the Internet.

Approved for Public Release; Distribution Unlimited.
109

Benefits: By participating in this research, participants will have the opportunity to play
the games provided on the site, providing them with free games to play and gaming community
involvement.

Informed consent process:
BBN relies on the informed consent process conducted by TopCoder (and approved by

their IRB). This is described in Appendix 3 below. Any players that contact BBN directly will
be asked to register with TopCoder before discussion can begin.

Participant confidentiality:
TopCoder assigns to each user a numeric identifier that is different from their user name.

BBN will use this numeric identifier as the key in a database table that stores game play data.
The associate of e-mail addresses with user IDs and numeric user codes is maintained separately
from game data and is always encrypted. BBN holds only a portion of this data, for those users
identified as appropriate for additional discussion. Thus, BBN’s storage of personally
identifiable information is minimize and kept separate from game data.

12. STUDY MONITORING AND OVERSIGHT
N/A

13. INVESTIGATIONAL PRODUCT MANAGEMENT
N/A

14. DATA ANALYSIS
The data collected will be analyzed in to determine whether the games can successfully

be used as part of a computer security analysis, and whether the games are interesting enough to
attract a large audience of participants.

Approved for Public Release; Distribution Unlimited.
110

15. INVESTIGATOR STATEMENT
I have reviewed the above protocol and agree that it contains all the information needed

to conduct the study. We will comply with the protocol and applicable regulatory requirements,
and will not begin the study until all necessary IRB and other regulatory approvals have been
obtained.

Dr. Ronald Watro, Principal Investigator
Lead Engineer, BBN Technologies

Approved for Public Release; Distribution Unlimited.
111

APPENDICIES (to the PBG Experimentation Plan)

Approved for Public Release; Distribution Unlimited.
112

Appendix 1 Ghost Map Game Overview
Original game concept from the PBG proposal:

Game Basics

Hunter Entry Point

- Bridges are directional. Hunters and Ghosts can only cross in the indicated direction.
- Bridges are textured (>>>>>>>) to represent their direction.
- Junctions link a bridge to one or more other bridges.
- When a hunter reaches a junction, they must choose a direction to advance.

Ghost Hunter
Ghost

Hunter Exit Point

Bridge

Junction

The Curse

You are here

Tangle
Node 16

Current game screen shot:

Approved for Public Release; Distribution Unlimited.
113

List of Symbols, Abbreviations, and Acronyms
AFRL …… Air Force Research Laboratory
AMT …….. Amazon Mechanical Turk

ARTAbstract Reachability Tree

BAGBreakAway Games

BLASTBerkeley Lazy Abstraction Software Verification Tool

CEGARCounterExample-Guided Abstraction Refinement

CFGControl Flow Graph

CMUCarnegie Mellon University

CSFVCrowd Sourced Formal Verification

CWECommon Weakness Enumeration

DARPA …. Defense Advanced Research Projects Agency

FSAFinite State Automaton

IRBInstitutional Review Board

MOPSMOdelchecking Programs for Security properties

PBG …….. Proof by Games

SMTSatisfiability Modulo Theories

UCFUniversity of Central Florida

	Table of Contents
	List of Symbols, Abbreviations, and Acronyms ………………………………………..……. 113
	List of Figures
	List of Tables
	Preface
	1. summary
	2. introduction
	2.1 Document Overview
	2.2 Project Overview
	2.2.1 Motivation and Goals.
	2.2.2 Basic Approach and High-level Architecture.
	2.2.3 Project Timeline.

	3. METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Background, Definitions and Theory
	3.1.1 Basic Concepts and Background.
	3.1.2 Proof by Games Approach.
	3.1.2.2 Eliminating False Alarms
	3.1.2.3 Expansion of CFG into ART, and Trace Elimination
	3.1.2.4 Handling Special Loop Expansion Cases Using Cleaving

	3.1.3 Mathematical Formulation.
	3.1.3.1 Graph Homomorphisms and Simulation

	3.1.4 Programs, Their Control Flow Graphs, and Their Phase Spaces.
	3.1.4.1 Representation of MOPS
	3.1.4.2 Refinement
	3.1.4.3 Abstract Interpretation

	3.2 High-Level System Architecture
	3.3 Math System
	3.3.1 Architectural Overview of Math System.
	3.3.2 Interaction of Player with Math Processing.
	3.3.3 Game Generation.
	3.3.3.1 MOPS Code Analysis
	3.3.3.2 CFG and FSA Preparation
	3.3.3.3 Trace Preparation
	3.3.3.4 Clues

	3.3.4 Handling Player Moves.
	3.3.4.1 Math-side Interactive Game Playing Architecture
	3.3.4.2 Initialization of Math VM
	3.3.4.3 Trace Segment Extraction
	3.3.4.4 Preparing and Submitting Logical Formula to SMT Solver
	3.3.4.5 Interpreting SMT Results
	3.3.4.6 MOPS Rerun
	3.3.4.7 Preparing Results File
	3.3.4.8 Cleanup and Modified CFG Storage

	3.3.5 Supporting Tools.
	3.3.5.1 MOPS
	3.3.5.2 SMT Solver

	3.3.6 Design Changes from Phase 1 to Phase 2.
	3.3.7 System Limitations.
	3.3.7.1 C Language Limitations
	3.3.7.2 Error Analysis across Function Bodies
	3.3.7.3 Model Checking Limitations

	3.4 Game Client
	3.4.1 Game Design.
	3.4.2 Game Design Process.
	3.4.2.1 Motivation from Math System
	3.4.2.2 Guru-Based Crowdsourcing Model
	3.4.2.3 Changes from Phase One

	3.4.3 Implementation.
	3.4.3.1 Phase One: Unity3D
	3.4.3.2 Phase Two: HTML5

	3.5 Game Server Implementation
	3.5.1 Architecture.
	3.5.2 Persistent Store.
	3.5.2.1 Persistent Store Collections

	3.5.3 EC2 Interface.
	3.5.4 Math Tools Support.
	3.5.5 Game Services.
	3.5.5.1 Level Selection Services
	3.5.5.2 File and Information Services
	3.5.5.3 Game Play Services
	3.5.5.4 Other Services

	3.5.6 Topcoder Services.
	3.5.6.1 Player Authentication
	3.5.6.2 Player Score Reporting
	3.5.6.3 Player Achievement Reporting
	3.5.6.4 Overall Problem-Solving Progress

	3.5.7 Configuration.
	3.5.7.1 Configuration Values

	3.5.8 Deployment.
	3.5.8.1 Deployment Modes
	3.5.8.2 Deployment Housekeeping

	3.5.9 Administrative and Debug Services.
	3.5.9.1 Persistent Store Collections
	3.5.9.2 Log File Listings
	3.5.9.3 Upload Game Archive
	3.5.9.4 Diagnostic Dump
	3.5.9.5 Set Game Matcher Weights
	3.5.9.6 Recalculate Game Matcher Weights
	3.5.9.7 Clear All
	3.5.9.8 Clear Game
	3.5.9.9 Reset Player

	4. RESULTS AND DISCUSSION
	4.1 System Usage Statistics and General Evaluation
	4.2 Comparison with State of the Art
	4.3 Mechanical Turk
	4.4 User Testing and Interaction
	4.4.1 UCF Usability Tests.
	4.4.2 YouEye Usability Tests.
	4.4.3 Guru Events.

	5. CONCLUSIONS
	5.1 Public Release
	5.2 Mechanical Turk and Tools for Experts
	5.3 General Applicability of PBG Graph Manipulations
	5.4 Guru-Based Crowd-Sourcing Model
	5.5 Problem Transformation
	5.6 Dimension 1: Degree of Partitioning
	5.7 Dimension 2: Problem Definition Precision
	5.8 Problem Transformation in CSFV and PBG

	6. recommendations
	References
	Appendix A. Ghost Map: Proving Software Correctness using Games

	Ghost Map: Proving Software Correctness using Games
	I. Introduction
	II. Background
	III. Model Checking in Ghost Map
	IV. Game Play Overview
	V. Game System Architecture
	VI. Game Design Issues
	VII. Future Plans
	VIII. Summary and Conclusions
	Acknowledgment
	References
	Appendix B. Making Hard Fun in Crowdsourced Model Checking
	Appendix C. Lessons learned in game development for crowdsourced formal verification

	1. Introduction
	2. Circuitbot/Dynamakr
	2.1 Introduction
	2.2 General Game Play
	2.3 Game Play Evolution
	2.4 Circuitbot
	2.5 Dynamakr

	3. Flow Jam and Paradox
	3.1 Introduction
	3.2 Verification Approach
	3.3 Paradox Game Play
	3.4 Maximizing Human Contribution
	3.5 Maintaining Player Interest
	3.6 Solution Submission and Sharing
	3.7 Sense of Purpose
	3.8 Results
	3.9 Conclusions

	4. Ghost Map/Hyperspace
	4.1 Introduction and Approach
	4.2 Ghost Map
	4.3 Ghost Map Hyperspace
	4.4 Ghost Map Summary

	5. StormBound/Monster Proof
	5.1 Introduction
	5.2 Verification Approach
	5.3 Game Descriptions
	5.4 Game Results
	5.5 Game Assessment/Lessons Learned
	5.6 Conclusions/Future Plans

	6. Xylem/Binary Fission
	6.1 Introduction
	6.2 Verification Strategy
	6.3 Game Descriptions
	6.4 Lessons Learned
	6.5 Conclusions/Future Plans

	7. Conclusions and Lessons Learned
	8. References
	Appendix D. Exploiting Information Flows in Model Checking for Software Validation
	Appendix E. Playing the Subset Coloring Game
	Playing the Subset Coloring Game
	Appendix F. PBG Human Subject Experimentation Protocol

	Proof by Games Experimentation
	1.1 CSFV
	1.2 Background Information on BBN
	1.3 PBG Project
	1.4 PBG UCF Study
	1.5 PBG Research (Option Phase)
	1.6 Stand-alone Operation
	2. STUDY RATIONALE
	3. OBJECTIVES
	4. STUDY DESIGN
	5. STUDY POPULATION
	6. PATICIPANT ELIGIBILITY
	7. STUDY ASSESSMENTS – PLAN AND METHODS
	8. STUDY CONDUCT
	9. STUDY TREATMENT
	10. EVALUATION OF ADVERSE EVENTS
	11. ETHICAL CONSIDERATIONS
	12. STUDY MONITORING AND OVERSIGHT
	13. INVESTIGATIONAL PRODUCT MANAGEMENT
	14. DATA ANALYSIS
	15. INVESTIGATOR STATEMENT
	APPENDICIES (to the PBG Experimentation Plan)

	Appendix 1 Ghost Map Game Overview
	List of Symbols, Abbreviations, and Acronyms

