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Abstract
Turbulent incompressible bubbly flow in a verti-

cal pipe in a Reynolds number range is studied com-
putationally by using second-moment closure models.
A corresponding instability sensitive eddy-resolving
Reynolds stress model is applied in addition to the
conventional Reynolds averaged Navier-Stokes ap-
proach. The two-phase flow computations are per-
formed by utilizing an Eulerian two-fluid model. The
numerical results are compared with available exper-
imental data and data from Direct Numerical Simu-
lation. The implementations of the described models
and the computations are done in the numerical code
OpenFOAM R©.

1 Introduction
Turbulent bubbly flows are encountered in many

industrially relevant applications, such as chemical in-
dustries or nuclear safety engineering. A commonly
used approach to model two-phase flows is the Eule-
rian two-fluid model by Ishii and Hibiki (2011), which
requires closure models for the interfacial momentum
transfer and the Reynolds stress tensor in both phases.
Modeling of the Reynolds stress tensor in dispersed
gas-liquid multiphase flows is still an open field of re-
search. This is due to the complex interactions be-
tween the shear induced turbulence of the underlying
flow and the modification of the turbulent quantities
by the dispersed bubbles. Due to the lack of realisable
data through experiments or Direct Numerical Simula-
tion (DNS), which would allow a much more detailed
modelling studies, the most common way to account
for the turbulence in multiphase flows is to use coven-
tional incompressible single-phase turbulence models,
mainly eddy viscosity models, and to extend these
models by additional source terms to consider the in-
fluence of the bubbles on the turbulent quantities.

A different approach is followed in the present
work, where we investigate adiabatic disperse gas-
liquid turbulent flows in a vertical pipe in a
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Reynolds number range, but by using a near-wall
second-moment closure model due to Jakirlić and
Maduta (2013) to model the Reynolds stress tensor of
the liquid phase capable of capturing the anisotropy
properties. A recent work where similiar cases are an-
alyzed by utilizing an eddy viscosity model and the
above mentioned modifications can be found in Rze-
hak and Krepper (2013). So far only few investiga-
tions have been done by using Reynolds stress models
(RSM) up to now. For the case of a bubbly flow in
a vertical pipe, Bertodano et al. (1990) used a high-
Reynolds number RSM to evaluate the effect of the
Reynolds stresses on the lateral pressure gradient and
thereby the influence of the turbulence on the radial
void fraction profile. This approach is continued here
with the aim to avoid any lateral models for the in-
terfacial momentum transfer as far as it is possible
for the resulting fully developed two-phase flow equa-
tions. These computations represent a prelimanary
work. In the next step a version of the length scale-
supplying equation extended appropriately in accor-
dance with the Scale-Adaptive Simulation (SAS) pro-
posal of Menter and Egorov (2010) is solved in con-
junction with the RSM-equations, to obtain an insta-
bility sensitive Reynolds stress model (IS-RSM). Such
a modified length scale supplying equation enables the
fluctuating turbulent field to be developed.

This work is therefore split up into two parts. In
a first step, the incompressible turbulent single-phase
flows in a pipe are computed via the Reynolds stress
model of Jakirlić and Maduta (2014) and the associ-
ated IS-RSM over a Reynolds number range. These
results are compared with the experimental data from
Hosokawa and Tomiyama (2010) and DNS data from
Khoury et al. (2013) and Wu et al. (2012). This is the
first investigation of a pipe geometry with the present
IS-RSM. In a second step, a turbulent bubbly pipe flow
from Hosokawa and Tomiyama (2010) is investigated,
by incorporating the previously described models into
the Eulerian two-fluid framework. The influence of the
turbulent stresses on the radial distribution of the gas
volume fraction should be hereby analyzed.



2 Eulerian two-fluid model
The following formulation of the Eulerian two-

fluid model, in cartesian coordinates, taken from Ishii
and Hibiki (2011), is used for an adiabatic, incom-
pressible flow without phase change consisting of the
continuity equation
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with ϕ denoting either the gas phase ϕ ≡ G or the
liquid phase ϕ ≡ L: Σϕαϕ = 1. The conditional av-
eraged velocity and pressure, the volume fraction, vis-
cosity, density and gravitational vector are denoted by
Uϕi , p, αϕ, νϕ, ρϕ and gi. This system of partial differ-
ential equations needs appropiate closure models for
the interfacial momentum transfer term Mϕ

i and the
Reynolds stress tensor Rϕijof both phases. The mod-
elling of the interfacial momentum transfer term with
ML
i = −MG

i , is mainly based on considering different
interfacial forces which are derived from experimen-
tal observations and theoretical thoughts. The drag
and virtual mass forces are commonly considered for
nearly all relevant test cases because of their important
influence on the velocity in the flow direction. In this
work the drag force is modelled via the Tomiyama et
al. (1995) drag correlation and the virtual mass force is
modelled with the coefficient CVM taking the standard
value of 0.5.

Other forces which mainly act in the lateral direc-
tion, like the lift, wall lubrication and turbulent disper-
sion force, see Ishii and Hibiki (2011) for a summary,
are usually referred to be responsible for the radial dis-
tribution of the void fraction in a vertical pipe flow.
This is highly arguable, since their origin and physical
rationale is mostly unclear and their influence strongly
affected by the combination between themself and the
used turbulence model. By taking a look at the radial
momentum equations in cylindrical coordinates for a
fully-developed bubbly turbulent pipe flow in a con-
ventional Reynolds averaged Navier-Stokes (RANS)
sense, by neglecting the turbulence in the gas phase,
the equations simpflies to the following forms perti-
nent to the gas phase
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and to the liquid phase
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with ML
r being the radial component of the interfacial

momentum transfer term, RLrr the radial stress com-
ponent and RLϕϕ the azimuthal stress component. By
analyzing Eq. (4) it becomes clear that the turbulence
plays the same role as in single-phase flows, where the
radial pressure gradient is induced by the turbulence.
The influence on αG becomes more clear by eliminat-
ing the pressure gradient from Eq. (4) by Eq. (3), lead-
ing to
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Therefore in a fully developed vertical pipe flow, the
distribution of αG depends strongly on the interfacial
forces in radial direction and the turbulent quantities
in the liquid phase. This equation has been used by
Drew and Lahey (1982) in a similiar form and solved
analytically, by neglecting the interfacial forces and
modelling the turbulence in the liquid phase via a
mixing length model. As mentioned by Bertodano et
al. (1990) neglecting interfacial forces in radial direc-
tion forces the radial pressure gradient to become zero
in areas where αG is non zero, because of Eq. (3) and
thereby interact with the turbulence structure through
Eq. (4). Because of that the choice of the interfacial
momentum transfer term does not only influence the
radial distribution of αG but also interacts with the
turbulent quantities. To avoid ∂p/∂r becoming zero
in areas where αG exist, a specific model by Drew
and Lahey (1987) for the so-called turbulent disper-
sion force is choosen

ML
r = CTDρLk

dαG

dr
(6)

with the turbulent dispersion force coefficient CTD, set
presently to unity, and the turbulent kinetic energy of
the liquid phase k. This model has the advantage that
it is easy to implement and is also related to the tur-
bulence of the liquid phase. On the other hand every
selection of such a model is controversary, since the
question arises whether or not it is valid for the present
test case and does it influence the turbulence in an un-
desirable way.

A proper way to avoid such situations would be the
use of an eddy-resolving model, which would lead to
a fluctuating velocity field and therefore avoiding the
left hand side of Eq. (1) and Eq. (2) to become zero.

3 Turbulence Modeling
To compute the Reynolds stress tensor in the car-

rier liquid phase the near wall second-moment closure
model of Jakirlić and Maduta (2014), based on the
model by Jakirlić and Hanjalić (2002), is used. To
extend the RSM towards two-phase flow, the volume
fraction αL is incorporated straight-forwardly into the



corresponding transport equations leading to the fol-
lowing equation system
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with Φji representing the pressure strain tensor, Dνij
and Dtij the molecular and turbulent diffusion trans-
port terms (where αL is also included) and εhij the ho-
mogeneous part of the stress dissipation tensor. The
detailed specification of these model terms can be
found in Jakirlić and Maduta (2014). The overscript L
has been omitted here, since all turbulent quantities
are related to the carrier liquid phase. Contrary to
the RSM model by Jakirlić and Hanjalić (2002) uti-
lizes the present model the transport equation for the
homogeneous part of the inverse turbulent time scale
ωh as a supplying length scale-variable. The corre-
sponding transport equation for ωh has been directly
derived from the equation governing the homogeneous
fraction of the total viscous dissipation rate εh and is
modelled in a term-by-term manner leading to
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duction rate of k. The detailed specification of the
unclosed model terms can be found in Jakirlić and
Maduta (2014). Additional source terms due to bubble
induced effects are not included into these transport
equation, since the focus of this work segment lies on
the effects of capturing the anisotropy of the Reynolds
stress tensor rather than the effects of additional source
terms.

This RSM is used preliminary to compute the flow
in a two dimensional axis-symmetric pipe for both
single-phase and two-phase flow. In the next step
a version of the ωh-equation extended appropriately
in accordance with the SAS proposal by Menter and
Egorov (2010) is solved in conjunction with the RSM-
equations. The key term in this eddy-resolving model
resembles a production term defined in terms of the
von Karman length scale containing second derivative
of the velocity field, being capable of capturing the
vortex size variability. Such a modified ωh-equation
enables the fluctuating turbulent field to be devel-
oped. The corresponding ωh-equation solved in the
framework of the instability-sensitive-RSM (IS-RSM)
model reads:(
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)
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withPSAS taking the form adjusted appropriately to the
underlying RSM (see Maduta (2013)):
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with L = k1/2/ωh representing the turbulent length
scale and LvK = κS/|∇2UL| the von Karman length

scale (S =
√
SL
ijS

L
ij). This IS-RSM model has

been applied by Maduta and Jakirlić (2012) and
Maduta (2013) to various turbulent single-phase flows
of different complexity resulting in a very good repre-
sentation of the mean flow field and associated turbu-
lence.

The turbulence in the bubbly gas phase was ne-
glected, as it was done for the present test case by
Hosokawa and Tomiyama (2009).

4 Numerical method
All calculations were performed using the

OpenFOAM-2.2.2 computational code utilizing a cell-
center-based finite volume method on an unstructured
numerical grid. The computations with the RSM,
that means in a classical RANS framework, were
done on a two dimensional axi-symmetric solution
domain. For the single-phase flow computations
periodic boundary conditions, with one cell in flow
direction, are used to obtain a fully developed flow.
An appropiate pressure gradient corresponding to the
target bulk Reynolds number was imposed.

These results provide the boundary conditions for
the two-phase flow computations at the inlet of the do-
main regarding the mean liquid velocity and the re-
quired turbulent quantities. Block profiles correspond-
ing to the average values were used for αG = 0.033 and
the mean gas velocity, in accordance with the case 4
from Hosokawa and Tomiyama (2009). The domain
was 160D long in mean flow direction, with D be-
ing the pipe diameter, to obtain fully developed flow
conditions. The experimental results were measured at
z/D = 68 after the mixing section and it was assumed
that the two-phase flow is fully-developed at that point.
The unsteady IS-RSM computations have been done
on a fully three dimensional grid, by also using pe-
riodic boundary conditions. The wall-next grid point
corresponds to y+ < 1 for all present computations.
The length of the pipe was 2.5D. An O-grid, which
is shown in Fig. 1, was used for setting up the numer-
ical grid with 80 cells in axial direction, 288 cells in
azimuthal direction and 100 cells in radial direction
resulting in 1.2 million cells in total. The convective
transport term in the equation for the mean liquid ve-
locity is thereby discretized by using a fixed blended
scheme with 98 per cent CDS and 2 per cent UDS.



Figure 1: Visualization of the O-grid over a z plane

The temporal discretization is of second order ac-
curacy and a fixed time step is choosen by assuring that
the mean Courant number is always below 0.4. The
utilized turbulence models were implemented into the
so-called twoPhaseEulerFoam solver in OpenFOAM,
to carry out the two-phase flow computations. For the
two-phase IS-RSM computations a modified pressure
gradient corresponding to the flow rate of both phases
was applied.

5 Results
The single-phase flow computations with the liquid

carrier phase as the working medium are performed for
two bulk Reynolds numbers ReD = UbD/νL = 12500
and 25000, with Ub being the bulk liquid velocity, and
compared with the experimental data from Hosokawa
and Tomiyama (2010). Additionally to these exper-
iments, the DNS data from Khoury et al. (2013) for
ReD = 11900 and Wu et al. (2012) for ReD = 24580
are used to validate the single-phase flow results. The
slight deviation from the experimentalReD can be ne-
glected. The computed instantaneous velocity fields
for the streamwise velocity component UL

z for the two
investigated Reynolds numbers in a single-phase flow
are depicted in Fig. 2.

(a) Reb = 12500 (b) Reb = 25000

Figure 2: Visualization of turbulent pipe flow over
a constant z plane using instantaneous axial velocity
component UL

z

It is shown that the IS-RSM is capable of resolv-
ing the turbulence structures in a pipe flow, even when

starting with uniformly distributed initial flow fields
and no additional artificially imposed fluctuations.

These time-dependent simulations have been av-
eraged over a significant time period of at least 100
flow through times based on the bulk velocity. This
results in the mean velocity profile Um for the single-
phase flow computations displayed in Fig. 3 and Fig. 4
exhibiting good agreement with the available DNS
data and the reference experiments under the fully-
developed flow conditions. There is no significant dif-
ference between the reference data and the results ob-
tained with the RSM. Only the results for the higher
Reynolds number obtained by the IS-RSM slightly un-
derestimate the reference data in the core region of the
flow.
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Figure 3: Normalized streamwise velocity
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Figure 4: Normalized streamwise velocity

The results for the normalized turbulent intensities
u+i = ui/Ub in Fig. 5 and Fig. 6 show also good
agreement with the reference data. While the u+i val-
ues computed with the RSM originate only from the
modelled Reynolds stress tensor RL

ii, the results com-
puted with the IS-RSM originate from both the mod-



elled part and the time-averaged resolved fluctuations
and are calculated via

ui =

√(
ULi − ULi

)2
+RL

ii (11)

with no summation over ii. Whereas the RSM show
slightly better predictions in the near wall region for
ReD = 11900, the IS-RSM is able to improve the re-
sults in the core region of the flow. The overprediction
of the Reynolds stress intensities in the region around
the symmetry axis pertinent to the steady RSM orig-
inates from the use of the Daly and Harlow (1970)
turbulent diffusion model. It is well-known that this
model formulation is not invariant with respect to the
coordinate system transformation. Such a discrepancy
vanishes after the turbulence unsteadiness have been
reproduced by the IS-RSM.
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Figure 5: u+i for ReD = 12500
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Figure 6: u+i for ReD = 25000

ForReD = 25000 the IS-RSM slightly overpredicts
the axial stress component u+z , while u+r and u+t show
the same deviation from the reference data as for ReD
= 12500. This behaviour was also seen by Maduta
(2013) for a plane channel flow at Reτ = 395. The
overprediction of u+z is most probably related to an in-
sufficient grid resolution in axial direction.

The calculated radial pressure profiles are com-
pared with the DNS data for the high ReD in Fig. 7,
since the pressure has an essential influence on the ra-
dial distribution of the dispersed gas phase. A very
good agreement obtained by the present RSM in the
near wall region is obvious, being consistent with the
good results for the stresses in Fig. 6. On the other
hand the specific deviation in the core region is associ-
ated with the overprediction of the Reynolds stresses.
The IS-RSM leads to slightly improved results in this
region.
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Figure 7: Normalized pressure distribution

The two-phase flow computations were done with
an average value of αG = 0.033 and a superficial liquid
velocity corresponding to the previously investigated
Reynolds number of ReD = 25000, with the RSM re-
sulting in the αG field show in Fig. 8 for different posi-
tions z/D in flow-direction. It is shown that the model
is capable of correct capturing the accumulation of gas
close to the wall. This also valid with respect to the
correctly reproduced radial position of the near-wall
αG peak value. The slightly increasing values of αG in
the core region of the flow are related to the underes-
timated pressure gradient for the baseline single-phase
flow. In many computational approaches a so-called
wall-lubrication force is to be held responsible for the
fact that the bubbles are not touching the wall, but for
a near-wall RANS model, which is capable of captur-
ing the increasing pressure close to the wall, the use of
such a force can be avoided. On the other hand it is
visible that there are still some changes in αG magni-
tude in terms of the streamwise postion even after z/D
= 160. This uncertainty has to be verified in future
works, since a final evaluation can only be done, after



a fully developed flow condition is assured.
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The computed values for the mean axial relative
velocity Urz = UG

z - UL
z in axial direction are shown

in Fig. 9 for the z/D = 160. The relative velocity is
slightly overestimated. This behaviour was also seen
by Hosokawa and Tomiyama (2009) for the presently
used drag model. A more complex model for the drag
force, e.g. the one proposed by Legendre and Mag-
naudet (1998) could improve the results.
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The computed values for the stress components for
the two-phase flow are shown in Fig. 10. The RSM is
capable to capture the behaviour of the radial and az-
imuthal turbulent intensities, since this quantities are
not essentially influenced by the presence of the dis-
perse phase. The model is not capable to capture the
increased peak value of u+z . This leads to the con-
clusion that additional bubble-related source terms in
Eq. (7) and Eq. (8), could be necessary to correctly
computed this value.
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Figure 10: u+i for a bubbly pipe flow at ReD = 25000

The simulations with the IS-RSM for two-phase
flows are still in progress for a few more flow-through
times. However as it can be seen in Fig. 11, the IS-
RSM is capable of resolving the unsteady nature of
the turbulent flow even in this two-phase flow and re-
sulting thereby in the fluctuating fiels of αG, here the
red colour denotes a value of αG = 0.4.

(a) UL
z (b) αG

Figure 11: Visualization of turbulent bubbly pipe flow
in the r-ϕ plane



6 Conclusions
The Reynolds stress models employed in both

a conventional steady RANS framework and as an
instability-sensitive model in the unsteady RANS
framework are used to compute a turbulent bubbly
flow in a vertically positioned pipe configuration.
For the corresponding single-phase computations both
models result in overall good agreement with the avail-
able reference data. Especially interesting is the fluctu-
ating turbulence field obtained by the IS-RSM model,
which started from the steady flow field with no fluctu-
ations imposed. It is shown that the IS-RSM is capable
of resolving the turbulent structures in two-phase flows
and thereby a fluctuating field of αG. For the two-
phase flow calculation, the coventional RSM yields
satisfactory results of the time-averaged flow proper-
ties. In a future work, different models for the drag
force wil be applied to eventually improve the result-
ing relative velocities between both phases. The sim-
ulations of the bubbly flow by using the instability
sensitive RSM are still running for a few more flow-
through times.
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Jakirlić, S. and Hanjalić, K. (2002), A new approach to
modelling near-wall turbulence energy and stress dissipa-
tion, J. Fluid Mech., Vol. 439, pp. 139-166
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